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SUBCRITICAL IFLUTTER TESTING AND SYSTEM IDENTIFICATION

By John C. Houbolt

SUMMARY

Treatment is given of system response evaluation, especially
in application to subcritical flight and wind tunnel flutter
testing of aircraft. An evaluation is made of various existing
techniques, in conjunction with a companion survey report.
Theoretical and analog experiments are made to study the identi-
fication of system response characteristics. Various input
excitations are considered. New techniques for analyzing
response are explored, particularly in reference to the prevalent
practical case where unwanted input noise is present, such as due
to gusts or wind tunnel turbulence. Further developments are
also made of system parameter identification techniques.

Theory on the subject 1s extended, and many aspects of
identifying system response characteristics are given in hand-
book summary fashion.

INTRODUCTION

An important and vital phase of the aerocelastic study of
aircraft is the substantiation of flutter by means of sub-
critical flight flutter or wind tunnel tests. Because of the
commonality of the problem to aircraft designs, a major confer-
ence was held on the subject in May 1958 in Washington, D.C.
Until recently, little had been done toward maintaining a
summary of the various techniques used, or how they compare;
essentially the companies have independently pursued and
developed their own individual schemes,.

Communications, smaller group meetings, and conference
papers indicate that there is much mutual interest in the
subject, that a number of different methods are being used, and
that a survey and critique of these methods would be valuable.
Design considerations of the space shuttle system emphasize the
need for and timeliness of such a survey.

In the aeroelastic analysis of the shuttle configuration
many questions naturally arise. What subcritical flight flutter
techniques are presently being used, and has the ever increasing
modern computer developments led to improvements in the
techniques? A significant question is whether the techniques
used on aircraft are suitable for studying the flutter problem
of the shuttlie. Tt is realized that the flight parameters for
the shuttle will be in a constantly changing state. Thus,
steady-state-type flutter testing techniques may not be appli-
cable, and those techniques based on transient excitation may be




the only type suitable. Tf present techniques do not appear
suitable in application to the space shuttle, then research must
be undertaken to develop flight flutter prediction methods which
will be applicable,

These needs led to the study effort that is covered in this
report, sponsored by Langley Research Center of NASA. Part of
the effort was directed toward making a survey, reference 1.
This reference should be regarded as a companion to this report.
Treatment herein deals with the evaluation of various sub-
"critical flutter testing techniques, with the set up and conduct
of numerical and analog experiments of various schemes, with the
development of improved procedures, especially for the case
where input noise is present, such as due to turbulence or
buffeting, and with the development of system identification
techniques. The report is also intended to be, in part, a hand-
book, since many notions used in system response evaluation are
summarized.

It is of interest to note that the survey and work of this
report brought out the fact that not only is there much interest
in flight flutter testing in the United States, but a very deep
rooted interest in England and other European countries as well,
and that, in fact, several other survey-type papers on the sub-
ject have recently been written, references 2, 3, and U4,

SYMBOLS
a a constant; elastic axis position from leading edge;
1ift curve slope
A(w) réal part of frequency response function
b a constant; wing span ‘
B(w) imaginary part of frequency response function
c wing chord
C(w) amplitude of frequency response frunction
e exponential function, position of c-g relative to the

elastic axis, positive aft

p distante of force application from elastic axis,
posltive forward
e, distance of accelerometer from eclastic axis, positive

forward

f frequency 1irn cps




input force

Fourier transform of function vy ; generally, the
subscript denotes the function
impulse response function

sin abt

response due to F = =t

o}
frequency response function, H = A + iB

reduced frequency, k = %%

mass radius of gyration
1lift

mass; an integer

an integer

3

operator 3T 5 @ root

dynamic pressure, q = % pV2

nondimensional elastic axis position, r = % :
nondimensional location of accelerometer, r_ = ;9
nondig;nsional location of input force,

s =T

correlation function of ¥y

nondimensional time, s = g%ﬁ

time.

velocity

nondimensional deflection, w = %
general displacement response function
response due to noise

deflectlion at accelerometer location

damping coefficient
critical damping coefficient
Dirac delta function



€ time interval; also used to denote error
A characterivtic root
L mass parameter
. 2V
v measure of velocity, v = -
o alr density
- oV
g reduced velocity, o = o C
r
T time
) angular displacement
¢y(w) power spectrum of the function y
w circular frequency
@, undamped trequency; & cut-off frequency
m% reference frequency

GENERAL THEORETICAL RELATIONS

This secticn presents a listing of the principal general
relations that are appropriate in the treatment of the response
of linear systems to various forcing functions, and especially
in application to subcritical flutter testing. For the most
part, little associated discussion is given. Some derivation
is given where it is ftelt appropriate, especially where the
relationships are not generally known or used. The equatlons
are formulated in terms of basic concepts that are involved in
describing the response characteristics of a structure, such as
the impulse function, the frequency response function, corre-
lation functions, and Fourier transform relations. Some of the
equationis presented may appear as new developments.

General,- Let the general governing differential equation
for response be given by

D,y = DF (1)

where Dj and D, are differential operators, and y 1s the
response to the forcing function F . For a simple damped mass
oscillator equation (1) is

my + By + Ky = F
If the inpul force is a Dirac impulse function at

t
equation (1) defines the impulse response function h for
displacement as follows:

= 0 ,




Dyh = D_5(0) (2)
X . R . iat
For a unit sinusoidal input, F = e , and with
y = Heiam

equation (1) yields the frequency response function

H(w) = A(w) + iB(w) (3)

according to the equation

(4, + 1A5)(A + 1B) = N, + iN (#)

1 2
where 4A; , Ny and Ay , Np are the real and imaginary parts
that are associated with the operators Dy and Do . The A

component of H is symmetrical with respect to the frequency
w , the B component is antisymmetrical.

The h and H functions are related by the Fourler trans-
form pair »

H = jhe'iwt dt (5)
o0
h=2 |5 do (6)

- 00

Since h is zero for t < 0 , and because of the symmetry
properties of A and B , it may be shown that the following
relations also apply

[o o]
h =-% JFA cos wt dw
o]

o o]
h =-% JFB sin wt dw
o)

Useful 1imit properties of the H and h functions are
N .

H(0)

I
= 0~

o3

Q,

ot

=)

-

h(0)

[]



The impulsce recponue functions n and h , for velocity
and for acceleration, fullows as derivatives of h , and are
defined by the relations

oc
ho= - /‘iaﬂA + iB)e
T 27

-0

iwt dw

00

\'/’\Hleimt do

-00

l
nﬁw
3

(]

© =iwt o
Hl = Jphe dt = Al + iBl
-00

o)

- fw2(A + 1B)et?® 4w

- 00

ol
it

2
- 00
where
Al = - uB 9
B, = uA
. > (9)

A2 = - WA

2
B2 = - W B

By the superposition theorem, the solution of equation (1)
for any general forcing function F 1s given by

00

y =fF('r)h(t - 1) dt | (10)

-Co

The Fourier transform of this equation 1is

Fy(w) = H(w)Fp(w) . (11)

where F and Fp denote the Fourier transforms,.resppctively,
of y and F . Similar expressions in terms of h , h , Hy ,
and Hp apply for the response variables y and y . If each
side of this equation is multiplied by its complex conjugate,
the result is




FyFy = HH FFFF

which leads to the well known spectral equation

' 2
o, = || o5 (12)
relating the input spectrum ¢p to the output spectrum ¢

through the amplitude squared of the frequency response function.

A specific response equation.- A specific form of
equation (1) that 1s of prime concern in later sections of
this report is

\ Iv

F

y + a)y + a3y + a5y + aly + a,y = b3F + b2F + blF + bl
(13)
With
y =y et = (a +1B)et®
and
F = eiwt
this equation yields
(4, + ia,) (A + iB) = N; + 1N,
where
4 2 )
Al = way, - w a.2 + ao
- a3
A2 = aﬁ w a3 + wal
, 5 (14)
I\I2 = - a)a‘b3 + wbl )
Solution for A and B yilelds the results
A = NlAl + NgAQ 7
- 2
N,aA, - N.JA
_ 271 172
B = R ? (15)
1 2
o N'2 + N5
c? = 4% + 8% = 5—=
AT + 45 J




Another solution of importance, but whilch has not grown
Into popular use, 1: the solution for impedance I_%-IE

(instead of for admittance A + 1B). It 1s noted that

1 _A-1iB

A + 1B 02

From equations (15) and (9), it follows that

o
L NjAp + NA, - @A 3
= = 7
C NS+ NS cs
g NoBy - NyAy, - “FBe 16
Sl e e y - (36)
| 1 N, 2
' 2 2
(5—_)2-{- B 2~l Al+A2 C2=A2+B2
5 ==y =—5——5 ; Cp=4A;+B;
c c cT NT + NS )

These equations are of special significance in the treatment
of flutter,

A special type response function.- Let the input forcé be
sin wéﬁf
taken as F = —_E;f__'3 this 1s a simple but very special input
force which has not received the recognition it deserves, and
which gives a response that has many important and useful

characteristics. For this force, equation (11) becomes

-

o

F (w) = ]
y g o7
0 0
where, symbolically, the notation indlcates that Fy is simply
H truncated by the "box car" function. The actual” response,
the inverse transform of P_ , is herein denoted as h_ , and
appears as y S

3

vosin woT
hu :~/ Y h(t - =) dt (17)

W T
)

Thus 1f the frequency response function of a system is known,
and is sharply cut oft to zero beyond a frequency o , then
the "impulse" function that is associated with the truncated
frequency response function is simply the response of the




sin w t
system to an 1input force equal to ——EEE—_ 3 as g is made
larger, the more and more hs spproaches h .,

Significant differential equations in terms of
correlation functions.- Several equations are developed here
which are not generally known but which should be of great help
in system identification studies.

Let the input force be h(- t) , which is the impulse
response function folded around to fall along the negative ¢
axis. By equation (10), the response would be

y :-[‘h(— t)h(t - 1) dt

which, in turn, may be written

o0

y = [h(w)h(t + 1) dt (18)

- 00

This equation is, however, tc within some constant, the
definition of the autocorrelation function of h(t) . Thus,
the autocorrelation function of h 1s the response of the
system to a force input of h(- t) , or

D|R, = Dyh(- t) (19)

A related eduation 1s assocliated with the response of the
system to pure white noise, Thus, if the input 1s white nolse,
equation (12) becomes

2
by = | 1]

since ¢F is flat., The inverse transform of this equation is

(6.

R :fh(r)h(t + 1) dr

Yn

which is the same as equation (18). Thus, the correlation
function of the response due to white noise 1s seen to be the
same as the autocorrelation functlion of the impulse function h

An equation involving the cross-correlation between any
input and the associated response is also of 51gnificance The
fFourier transform of equation (1) is

(Al +A8L)F = (N + 1Ny)Fy



10
Multiply both nides by ﬁp » bhe: complex conjugate of FF y the
resull is

(Al + iAQ)FyFF = (Nl + lNQ)FFFF
which immediately leads to the spectral equation
(8, + 1A2)¢>Fy = (N} + 1N2)¢F (20)

where ¢ is the cross-spectrum between the force and the
response, and ¢p 1is the spectrum of the input force, The
inverse transform of this spectral equation is

DyRpy = DRy (21)

Thus, if the autocorrelation function of an input F 1is applied
to the system as an input force, the response is the cross-
correlation function between F and the response y due to F .

Some significant equalities and transforms.- Some
equalities and transforms of imporfance are listed here to close
out this section. They are given without proof or derivation.

Two basic Fourier transforms:

y(%) 1 F(w)
g
|8 1 I sin of
- j \ ol
T 1 I
to
sin w_ t 8 1
(@]
Rl % =¥
Convolution:
(0]
sin ay 7 sin a,(t - T) sin at
2 1
dt = for W,y > ¢

J T oy (€ = 1) ot 2”7 A
) sin wgt

= ——EEE—- for Wy > Wy

R sin w,(t - T)
| sin o7 N R dt = sin wt for w5, > wy
~00
1 -
=5 s8in wlt for. w2 = mi

= 0 for “@ < “ﬁ
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Properties of a specific h function:

The impulse response function h for a simple damped mass
oscillator is

- —E— w
1 cr © .
h = m—ng e sin O.)dt (22)
where /4f——_g.
Dg = @ V2 - Eﬁ—
Bcr

R _ 1 p- cr Cl)ot' + BCI‘ . t '
n = um2m3. g o LCOS (Dd.a + -/—{.—__—-(—* sin a)d |
© Bor VAR gg—
: cr
(23)
as reference 5 also shows. The derivative of’ Rh is
- E_. w t
.E'{ 1 601' © 1 £ AT
I - - € sin w ’C H
h )-lm?rb w _E_ q (4]
od ﬁcr

Interestingly, Ry 1S seen to be equal, within a constant, to
h (equation 22)). It would be of interest to study what type
systems have h functions that obey this property.

-

CHARACTERISTICS OF VARIOUS INPUTS

Spectral content.- Figure 1 indicates in summary fashion
the spectral characteristics that are associated with various
inputs that are of concern in subcritical flutter testing.

Four distinctly different functions, the & function,
sin w t
white noise, a sweptl sine, and ——ETEQ— s are seen to lead to
O
41 ustensibly flat power spectra, Besides the & function,
which is difficult to achieve in pructice, the only function
which leads to a truly flat power spectrum, and which extends
sin w
to zero frequency is the ——nggm function, The white noise

spectrum is usuvally quite Jagged. The spectrum for a swept
Sine has large lobes at the low and high frequency ends. The
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sin w t
contrast between the swept sine and the —_erg— is interesting;
o

the swept sine function has constant amplifude but varying fre-

sin o t
quency; the __erg_ function has a constant frequency but
(o} sin w t

varying amplitude. The _—ZT?Q_ function is a very attractive
o]
function for use in system identification studies and has not

been exploited sufficiently.: Because in the limit as Wy = @

sin w t
the “ETTQ‘ function approaches the & function, it is
o sin w t

suggested that ——6-59— be termed the impulse sine function
5 _

for ready identification purposes.

Classification of the swept sine function.- The swept sine
function has become rather popular for use In subcritical flutter
testing, reference 1. The rate of sweep or total duration is
one of the prime variables; with some tests the sweep rate is
fast, in others the rate is quite slow,. For discussion and
testing purposes, 1t appears desirable to make a classification
of the rate or duration of sweep. The rate of change of fre-
quency depends of course on the frequency range covered and the
duration required to make the sweep. For the testing of most
aircraft systems, however, it appears that classification can be
based mainly on duration alone. The following classification
is suggested:

1) Fast sweep - one made with a duration of about
5 seconds, ‘

2) Moderate sweep - duration of around 1 minute.
3) Slow sweep - duration of around 5 minutes.

Each of these sweeps has certain advantages, and certain
deficiencies, depending on the application. Results later in
the report will try to bring out some of the relative merits.

Related differential equations.- It is perhaps of interest
to note that differential equations associated with various
swept sine wave laws, and with the impulse sine function, may
be identified. Thls section shows, in the nature of an aside,
the construction of these differential equations,

Consider the differential equation solution to be of the
following general form

f(t

(t) sin g(t) (25)

where f(t) and g(t) are any functions of interest. If the
first and second derivative of equation (25) are formed, and if

y =€
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these derivatives are combined in linear feshion with the function
y , then the following differential equation may be shown as a
result

§‘<2£'+§>§'+<"§+f‘2+é2+f‘§y=0 - (26)
g g

Equation (25) is thus a solution of this differential equation.
The differential equation for various swept sine laws and for
the impulse sine function follow directly from these equations.

Linear sweep law:

Consider that the solution is the swept sine wave often
used as a forcing function in subcritical flutter testing, namely

y = sin 6 = sin (a + bt)t (27)
where instantaneous frequency is defined as
' de
©= T
or
w= a + 2bt (28)

In terms of the beginning frequency «, and the end frequency
@ , after a sweep of T seconds, a and b are

a = o

O
© = D )
b ==

|~

so that
t
w=ao + (& - az) T

Equation (25) reduces to equation (27) for

0

H

£(t)
g(t)

(a + bt)t

By equation (26), then, the differential equation yielding
equation (25) as a solution is .

. 2b . 2 o _ 2
y-my+(a+2bt) y=20 (9)
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Linear sweep down:

For this case
y = sin (a - bt)t (30)

or f(t) =0, and g(t) = (a - bt)t . Equation (26) thus
indicates the associated differential equation to be

¥+ 37%2555 7+ (a-20t)y =0 (31)

Exponential sweep:

at
Let ® = we
so that
Y _at
6 = g(t) =;/\wdt =4 ©
Through equation (26), with f(t) = 0 , the swept sine
N
~ o _at
y = sin KE_ e > (32)
is thus found to be defined by the differential equation
¥ - ay + mﬁegat y=0 (33)
Linear perlod sweep:
For this case
w = 1
a - bt
or
6 = g(t) =\/1aﬂt = :Ei log (a - bt)
and
y = sin [- % log (a - bt)] (34)

By equatioh (26) with f£(t) 0 , the differential equation is
found to be .
e b . 1

y-—————ry+————-sy =20 (35
a - bt (a - bt)z )
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The impulse sine function:

With f(t) = - log wt
&(t)

equation (25) defines the impulse sine function

wt

sin ot
- 25 (36)

By equation (26), the associated differential equation is found
to be

y +-% y + w2y =0 (37)

This equation is a special case of Bessel's differential
equation, with the solution

Z (- at)

-1
2

The function
cos wt
wt

is also a solution.

Qther second-order time-varying systems:

Equation (26), and the subcases given by equations (29),
(31), (33), (35), and (37), are noted to be assoclated with
linear systems with time-varying parameters. As a further
aside, it may be noted that equation (26) may be useful in the
study of various second-order systems having time-varying
properties.

A common approach in dealing with time-varying systems 1is
to model the system and then to seek approximate solutions to
the modeled system. Reference 6 is an excellent treatise along
these lines. Consideration of equatlons (25) and (26) suggests
an approach which is Jjust the opposite. Thus, 1t 1s supposed
that the solution is known; from the solution the differential
equation is derived. This differential equation is then
examined to see whether it represents the system being studied, or
at least is a close approximation to the system.

Consider, for example, f(t) = - ft and g(t) = wt ;
equation (20) then 1lndicates the well known damped oscillator
equation

. . 2 2
vy +2By + (w +B7)y =0
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Tn this case, a time invariant second-order system is implied
by the choices_tor [ and ¢ . By contrant, suppose

f(t) - at + bt , g(t) = wh ; in this case, equation (26)
indicates

.0 . L 2
y - (22 + Lbt)y + [- b + (2 + 2bt)° + wé]y =0

This equation is noted to apply to a system with a linear change
in damping and a quadratic change in frequency. If, further, a
and b are small relative to o , then the coefficient of y 1is
roughly a constant. The equation would then represent a good
approximation to a system with a linear change in damping. The
nature of the homcgeneous response behavior of such a system is
in turn automatically given by equation (25).

SECOND-ORDER SYSTEM UNDER CONSTANT FREQUENCY EXCITATION

1n studying the response characteristics of structures, one
of the primary goals is to ildentify the frequencies and damping
values of the various modes. Common or popular ways of identi-
fying these quantities are summarized in this section in terms
of a second-crder system,

Figure - depicts a popular type construction involving trn.
frequency response function, and specifically in the form of a.
plot ot B against A . This presentation is often referred Lo
as the Kennedy-Pancu method, reference 7. Much discussion on
this type construction is also given in reference 8. For a
second-order system, the A's and B's are given by

Displacement, .

Velocity,

; F
1x ‘n-l-a;
Al + iBl = o)
1 - x7 + 1gx Ep Cls
Acceleration, IS POUR
e F
i X om
A, + 1B,
= < 1 - x~ + igx
where x = ﬁ}-, and g = 2 %-—

O cr
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Characteristically, the plots for all three quantities resemble
circles, and indeed the plot for velocity is a true circle.

The resonant frequency 1s identified at the position on the
"eircle" where there is greatest arc length swept for equal
frequency increments. Damping is found in two ways: the diameter
of the circle is 1l/g (assuming the response at zero frequency
has been normalized to unity), or by the equation

@, tan %
where is the resonant frequency.

(o}
The plot in figure 24 illustrates the results obtained if

there is a mixture of viscous damping and structural "g" type
damping; specifically, the frequency response function 1is

given by

F
mw
A+ 1B = ——
1 -x" +1i(ex + &)
All results shown in figure 2 are for g = 2 —E— .1l and
&g = .1 , and are presented on the assumption %ﬁat the factors
—E§ ’ ﬁ%r , and % are unity.
0
0

Other means for evaluating frequency and damping are shown
in figure 3 (agaln for a second-order system)., The top sketch
represents C2 , the square of the amplitude of the frequency
response function. The resonant frequency is assoclated with
the peak of the curve. Damping may be found as shown, either

from the peak value (if £ is known) or from the width at

mw

the half-height position. As shown in the bottom of the figure,
the h function, or the response that ensues after suddenly
cutting off a resocnant excitation, is still another way to
estimate frequency and damping, The frequency is evaluated
from the period@ T ; damplng 1s estimated from the decay of

the peaks, The curves presented are based on viscous damping
and provide a quick way for estimating damping from successive
peak values,

Figure 4 illustrates the impedance method which is another
good way for estimating frequency and damping, although the
schemes haven't been pursued greatly. The plots represent
B s, ét‘ and % ve., @ , For a second-order system, these
c? ce |
quantities are defined by
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Damping and frequency are found as shown (again presented on
the basis that mwg/F is unity).

Figure 5 is provided as a convenient reference figure to
indicate the basic characteristics of the impulse response and
frequency response functions for displacement, velocity, and
acceleration for a second-order system.

RESULTS FOR SIMPLE SYSTEMS WITH TIME-VARYING INPUTS

The nature of the results that are obtained through use
of swept sine and impulsive sine excitations are brought out
in this section. Most of the results given have been obtained
through study of a simple damped mass oscillator system, with

an undamped frequency fo = 9,95 cps , and a Eg— .05
cr

Figure 6 shows the results for a fast swept sine run,
sweeping up from 4.8 cps to 24 cps in U4 seconds, The top
figure 1is the input force, the second the response. The
figure at lower left represents the autocorrelation of the

input force; the function is seen to be composed of two
sin wt

o type functions, thus implying a flat-type spectrum
between an upper and a lower frequency. The figure on bottom
right represents the autocorrelation function R of the
response y If the input force has a truly thte spectrum,
then Ry can be shown to be the same as the autocorrelation
function of the h function, see equation (23) and reference 5.
Further, it is also found that, at least for a single degree of
freedom system, frequency and damping indicated by the Rp
function are the same as for the h function, It is of
interest to note that processing in this case involves use of

-

the response only; the establishment of Rg provides a ready

means for estimating system frequency and

Figure
Tfunction of
In contrast
the process
that result

amping.

7 shows results for h as obtained from the y
figure 6 by a randomdec-type technique (ref. 9).
to the randomdec process described in reference 9,
advocated here 1is developed in terms of functions
from zero-crossings considerations; figure T(a)
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I1lustrates the zoro-cronsings technique for constructing the
randomdec signalure, I'ne Lhegis 1s that the randomdec signal

50 obltained 1s Lh:e impulse response function h . The result
shown 1in figure 7(b) represents the sum of only 20 functions,
starting at the point marked a in figure 6. As seen, the
beginring portion represents quite well the decaying sine wave
characteristic of the h function for a second-order system.
The results at larger time values cannot be considered reliable
because the randomdec summation involved only 20 terms. Here is
a case where a moderate sweep rate would be better for randoumdec
purposes. 1If a moderate sweep had heen used, then the summation
could have involved many more terms, with the consequence that

h function derived would alsc be accurate at larger time values,

Figure 8 presents results obtained by sweeping down f{rom
24 cps to 4.8 cps in L4 seconds. The autocorrelation function of
the response y is found to be virtually the same as for the
sweep-up run of figure 6,

Figure 9 presents the sweep-up results for the system with
zero damping, and is given to show the caution that must be used
in interpreting the autocorrelation function., The function
shown in figure 9 indicates that the system appears to have some
damping., The respcnse y , howsver, shows a persistence in
oscillations, or ringing, after the resonance frequency is
passed., Thigs is 2 Tip-off that the system has little or nco
damping. " Here agalin, it a moderate sine sweep had hbeen used,
then many more cyclen ol persistence would be indicated, which
in turn would lead to a nondecaying autocorrelalion runction,

Figure 10 wpplizs to a fourth-order system wherein two
modes have rrequencies close together; in this case £y = 9.95
and f» - 10,73 «ps, The rewponse y appears as in tigures €
and 3, but the autoucorrelation runctiocn of y  1s seen Lo
exnibit a beat pattern, as might be expected (see rel, 10).
The high fraquency and beatl, frequency seen can he used to
estimate the system f{requencies. The estimation of damping
for each of the modes, however, 1ls not easy. Techniques for
handling the damping =valuation for such situations are in
need of development . :

Figurms 11 shows the response that results due to use of
an impulsive sine input., Shown at the bottom of the figure 1is
the randomdec signature for h that is obtained from the
response y (as outlined in fig. 7). The h obtained is
virtually a true replica of the exact h for the system.

This figure shows that the use of the impulsive sine functlion
can be a powerful tool for use in evaluating system response
characteristics.

The following ftable summarizes the frequencles and damping
values that are indicated by the various evaluation techniques
for the second-order sysitem that was studied,

REPRODUCIBILITY ’\:" ?HE
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Exact 9.95 cps .05

By Ry , Sweep up 9.92 .051
Randomdec of y , sweep up 9.92 .050
By R.y s sweep down 9.92 : .051
From h , impulsive sine 9.96 .ou8

THEORETICAL FLUTTER MODEL

As an aid in the study of various subcritical flutter
testing techniques, a theoretical flutter reference model was
developed. This model was used to provide exact answers; the
model was also set up on an analog machine so as to provide a
means for simulating subcritical testing. This section describes
the theoretical model used.

Differential Equation Formulation of
Nonsteady Aerodynamic Forces

A novel approach 1is given here for approximating the air
forces that develop on an airfoil having nonsteady motion. The
development automatically accounts for lag in 1ift effects, but
avoids having to give explicit consideration to the commonly
used F and G functions that are due to Theodorsen and
Garrick for an oscillating airfoil,

A study of oscillating airfoil theory and results for two-
dimensional incompressible flow indicates that the basic 1ift
forces on the airfoil may be represented as shown in the
following sketch
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where a refers to the position of the elastic axis of the air-
foil system. Besides L} and Lp , an additional force and a
moment associated with the inertia of the air act on the air-
foil; these inertia forces will be neglected in this treatment
and will be assumed tc be taken into account simply as additions
to the mass and rotary inertia of the airfoil. Expressions for
Ll and L2 may be written

-

pch‘/w[V¢ -y +-c(% - %)é}ha(t - 1)dr (39)

-0

-
It
rol

& ~2Vb :
L2 = iﬂﬁg__ ) (40)

where hg refers to the 1ift that develops at the quarter chord
position due to an impulsive change in angle of attack at the
3/b-chord position, and b 1is airfoil span,

The growth in 1ift on an airfoil following a step-function
change in angls of attack is often given in approximation by an
equation of the tform ‘
-blt

T -¢(t) =1 - a,€
Sometimes twe or more exponential terms ars included, but fo,
prescnt purpouses & single term is considered adequate. A good
approximation tor a wing of finite aspect ratio is, in fact,
(see ret. 11)

(4]

L= p(t) =1 - .6e™+3°

Pl
where s = igﬁ

The derivative of equation (41) yields h, , thus

-blt
h, - (1 - a,)6(0) + a;b,e

(42)
where §8(0) signifies a Dirac function at t = 0 .

The substitution of this equation into equation (39) gives

. T ¢ -b, (t-7)
L, - %f>'<V‘bK1 - &l)(t) ' albl_,[oy("f)e v df} (43)

where Y = Vg - y + C % - §>é . The derivative of L, 1is
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£
L, =2 sevo|(L 7 - ab° | Y )e—bl(t-T)d + 8.0, Y
1 °32° S AR L] (v TT R
. -
(44)

If equation (43) is multiplied by b3 , and the result ls added
to equation (44), the following simple result, void of any
integrals, 1is found

Ly +bL; == pCVb[(l - al>§f + bl*zj] (45)

The development of the equations for flutter (or any arbitrary
motion) can now proceed on the basis of this equation, rather
than through a tormulation which involves the ‘F and' G
functions; nonsteady aerodynamic effects will automatically be
taken into account. Note, a similar development can be made
with two exponential terms in equation (41); equation (45) would
then appear as a second-order differential equation for Ll

Fquations for Flutter Model

Consider the aeroelastic system depicted by the following
sketches :

- 7,31_" / ! .
P REPRO Ve
e
L 4 }-; z U
Lo

Note: e , e, s €p

The quantity a denotes tne elastic axis position; e repre-
gents the distance o the mass c-g from the elastle axis; ep

ig the digtance ol sxternal forece appllcation from the elastic
axls, and e, denotes the poslition of' a ruespons: transducer,
such as an accelerumatar, relative to the elastlc axls position,

On the basis of eguatlions (402 and (45), the equations for
motion o the system can be snown Lo be

positive as shown,
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The response quantities of interest herein are for dis-

placement and acceleration at the pickup location e

quantities are defincd acg
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¢

Z w + (“2 b (L"'()
oW o+ %9 & (43)

From equations (h6)‘the solution for 2z 1is found to take the
form

. V A IV see ae . . » Ldded ) a‘n . .
aSZ + auz + a3z + agz + alz + aoz a b3F + b2P + b,F + bof

(49)

1

which is the basis for equalicn (13 presented earlier
(equation (13) is the result of normalizing by the coefficient
25). Functions (14) and frequency response solutions (19) and
(16) are thus appiicable to =quation (49). If the ri ht-hand
side is set equal to zero, and 2z 1is assumed to he er* , tis
following characteristic equation of the system is found

3

\JI

A = a
5

The roots of this equation, A = £ + iw , are a key to the
system response characteriastice, [ X is taken as i, the
characteristic equation yi=lds the real and imaginary parts

4 4 2 .
+ aax + &3A + agx + alA + aO = 0

A ws, - wa -+ a
1 o
5 3
A, = a’a, - a’a. + wa
X tg 3 1

as defined alvo by equations (1),

Equations (4b) (or equation (49)) were avaluated for a
number of specific cases to provide exact reference results.
The equations were also set up on an analog machine so as to
provide a means for simuiating subcritical flutter testing.
Some of the exact results arc presented in the following
section; analoug results will appear later.

Theoretical Results Indicated by Flutter Model

All of the theoretical results given herein are based on
the following parameter cholce

g o= 10
kt
._% =l
.
2.3 :
¢ ULiNAL PAGE I8
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!f’l = .1
ro, o= L4
2

1.14») -~ 06
b, = .3

In all but one case, the uncoupl=ed torsion frequency Wy Was
taken as 10 cps, the uncoupled bending frequency wy was taken

as 2 cps; in the lone case o = @y - The variable parameters
were as follows v
o = %— = %XE 3 (e, 1s a reference freq.)
T T
Y B g.
- REPF
(= RODUCB_{! ITY 1o -
. . -(i A }4 Uif‘ }.'.J 5
"o 7 % ORIGINAL PAGE, [g Poéﬁ :
=
r. 2 —
I i

In all the result.: to tollow, the rotlayenes rpe@ueny W,  Wa.
taken as 10 ups.

System roots.- 8 common way to =#valuate flutter speed and
frequency is to solve for the roots @, of

Al = 0

= (

A2 O
as a function of airspeed V ; the roots of A1p and A, are
referred to here as quasi-flutter roots, since they are
fictitious values for all speeds except the flutter speed. A
flutter condition is det'ined when the roots of 4; and A
are equal., Figure 12 shows illustrative tehavior patterns for
the roots of Ay and A, due to variations in % . Note that,
in agreement with resylts stown by other investigations, no
flutter is found witn the mass ¢.g. in a rorward position,
&

—-

C
instead of a fifth-orcdor system were belng studied, then the
branch label:«d 4A,, would become the Al branch,

Figure 13 is for the Lone rase where Wy = Uy 3 this
situation leads to & very low 1'lutter speed, as has often been
observed.

= - .1 . Tt i1s also to be noted that If a sixth-order system

VRINAL PAGE
F POOR QUALITY
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Illustrations of the bpehavior patterns of the true root:,
as obtained from the characteristic equation, are shown in
figure 14, These roots are of physical significance since
they indicate the damping and frequency of the various modes
that are present in any response excitation. Flutter occurs
when one of the damping values (B) becomes zero (crosses from
positive to negative damping). Figures 14(c) through (e) are
examples of a slow approach to flutter, since the damping de-
grades to zero in a slow fashion as airspeed 1s increased. For
such cases a flutter speed prediction can usually be made by
extrapolating the damping resuits. F-gures l4(a) and (b)
illustrate the behavior for an abrupt or explosive type of
flutter. The damping may appear wel®' behaved, but then with &
very small speed increase can sudder.y degrade to a positive
value. These cases are very difficult, or impossible, to pre-
dict in practice, and are the cases that cause grave concern in
flight flutter and wind tunnel testing. A comparison of
figures 14(a) and (b) is interesting. In one case, the fre-
quencies of two modes cross, while the corresponding damping
values diverge; in the other case, the damping values cross,
while the frequencies approach one another but then diverge.
For the other cases shown in figure 14, the frequencies tend
to come together, but no crossing is noted.

Figure 15 shows a comparison of the true and quasi-rools
for frequencies., Figure 15(a) shows that for a mild approact.
to flutter (figure l4(c), the true roots and quasi-roots are
markedly different (a true and quasi-root are of course the
same at flutter). Figures 15(b) and (c), which apply to an
explosive-type flutter, as seen in figures 1l4(a) and (b), show
that one branch of the quasi-roots is close to the true rocts.
This fact, and other characteristics that are seen in
figures 15(b) and (c), as contrasted to figure 15(a), suggest
that perhaps there may be a "tip-off" at subcritical speeds as
to whether or not the flutter may be explosive. At least threx
distinct patterns may be noted.

1) A quasi-root branch falls close to the true roots.

2) The top portions of the quasi-root branches tend to
remain parallel over a large speed range.

3) The quasi-root branches tend to coalesce near one
another (the coalescence points aren't separated
greatly along the x-axis direction).

Whether all these three characteristics must appear simultane-
ously, or whether any one is sufficient to indicate the likelil-
hood of an explosive flutter, is not known. Further study to
investigate these tentative observations is considered desirable.

' Coefficients of the governing differential equation.- There
i1s another promising possibllity for extrapolating results for-
ward to estimate the flutter speed, which should apply whether
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the approacn to flutter in mild or of an explosive type. Thoe
scheme 1is based on the notion of identifying system parameters
in a more complete way than ldentifying damping and frequency
values only. Specifically, one concept is to identify the co-
efficients a, 1in the governing differential equation of motion,
equation (49). The problem may be stated as follows. Suppose
the response 2z due to a given excitation force F 1is
established; is it then possible to use 2z and F to estimate
the coefficients a, , thus establishing the differential
equation. If the coefficients are known, then the complete
response characteristics can be determined. Involved also is
the notion that perhaps there is a more orderly variation of the
coefficients ap with air speed than found for the damping or
frequency values. Thus, the concept advanced is that of
ldentifying the coefficients a, at several subcritical speeds
assuming a certain order model applies, and then extrapolating
these coefficients to higher speeds, and in turn to use the
extrapolated values to predict the flutter speed. As a way of
gaining some insight to this concept, a specific evaluation of
the coefficients in equation (49) was made through use of
equations (46). Airspeed and elastic axis location were left
as variables, the other parameters were given the specific
values indicated previously in this section.- The results found
are as follows:

5 _ 1n . 2
a5mr = 10 100r
a
4 4 2
5%, = 5.72 - 30r° - 8.6r
a3w$ = 10.4 + (.66 - 9.3r)o2
‘ (50)
. a
Ggai = 4,3808 - (.15 + 3r)o2
2
a,m, = 4 + .59040
a
2= - .012¢°
where ¢ = %?t The coefficlents are noted to be invariant
T

or have a simple quadratic variation wilth respect to the air-
speed. PFigure 16 shows the variation of the coefficients,

normalized to make ag unity, for r = % = ,1 and % = ,3 .

Since the variation with speed is orderly, and since the
theoretical model indicates the type of variation that each
coefficlent should exhibit (flat or parabolic), reliable
extrapclation to higher airspeeds ought to be possible, The -
question is: "How well can the coefficilents be evaluated from
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measured response data?" The circled polnts on figure 16(a)
represent estimations from response data, and will be dis-
cussed further in a subsequent section.

Results of the form presented in figures 16(a) and 16(b)
may have a special significance in predicting what type of
flutter may be encountered, that 1s, whether flutter will be
of the mild type or of the explosive type. Part (a) appliles
to a mild type flutter, see curve of figure 14(d). The
variation of the coefficient wgth airspeed is seen to be
slight. By contrast, part (b), which apilies to an explosive
flutter case (see Bo curve in figure li4(a)), shows a much
greater change of the coefficients with alrspeed, especially
the a5 and ao coefficients. Marked changes in the
coeffifients therefore appear to be a clue or a "tip-off"
that explosive-type flutter can be expected.

Frequency response results,- Figure 17 presents repre-
sentative results for frequency response as obtained from the
theoretical model. Some results that were obtained from the
analog computer are also indicated. The following table serves
to show the parameters that apply to each figure:

e, e
Fig. v = %Y. e £ 0
17(a) 60 d -.1 A
17(b) 100 1 -1 .]_} Anal:%Sgesults
17(c) 100 1 1 1
17(a) 100 A 1.3
17(e) 100 .3 .1 .1

The general intent is to show the variation in the frequency
response function as brought about by changes in air speed,
elastic axis positlon, and 1n the locations of the applied ex-
citation force and the measuring transducer.

Filgures 17(a) and (b) also include the results that were
obtained from the analog computer set-up of the system. The
results indicate that the analog syostem duplicates the theo-
retically exact equatlons of motion quilte accurately.

Figure 18 shows the nature of the plots that are obtained
when use is made of the impedance values éﬁ angd E@ , rathevr
. c= C ,
than A and B . The contrast with rigure 4, which applies to
a simplt second-order system, is to ve noted., The loops in the

impadance locl plots are assoclated with the higher frequency
Todes o the higher ordere flutier system., Damping is measured
oy the closeness O tne lound to tha origin., Flutter occeurs

whon & loop passes through the origin, thereby indicated zerc

damuin.s
pie GRIGINAL PAGE S
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Figure 19(a) presents impedance results in the form of %—

L.

)

(AN

(see equations (16)) versus frequency. The dips or valleys in
the curve are of special signficance, since the horizontal
position indicates a mode resonant frequency, while the distance
of the dip from the horizontal axis indicates the damping of the
mode, The right side of the figure indicates the manner of

using these valleys to extrapolate to the flutter speed. 1In

this case, an extrapolated value precisely the same as the exact
value is indicated. This figure is considered a significant type
plot, since it gives a fairly complete picture of the developmert
of a flutter mode, allows both damping and frequency to be tracked
readily, and leads to a fairly direct extrapolation to predict
flutter. Figure 19(a) applies to a "mild" flutter case. The
question naturally arises as to whether a similar type extrapo-
lation procedure would be valid for an "explosive'-type flutter
situation. In figure 19(b) results are given for an explosive
case, specifically, the case covered by figure 14(a). The marke!
curvature of the curve is perhaps & clue that the flutter may be
of the explosive type. It 1s seen that the variation of the
% curve is not as gradual as for the mild flutter case of

2
figure 19(a); the variation is not nearly as abrupt, however, a3
is noticed for the B, damping curve of figure 1l4(a). Thus,
this extrapolation procedure shows promise of applying to the
explosive cases as well as the mild flutter cases.

sin wot )
A ——TE;E—— VANE FORCE GENERATOR

Oscillating vanes attached to the wing structure are used
quite often as a means for generating an excitation force for
subcritical flutter testing. The vanes are usually driven in a
swept sine fashion to produce a swept sine force. By means of
the simple form offered by equation (45), it is possible to de-
rive an equation for vane motion which allows the generation of
various prescribed excitation forces.

Consider equations (39) and (40) in application to a vane
executing rotary motion only about some axis (see sketch pre-
ceding equation (39)). The total 1ift on the vane is set equal
to the desired vane force F , thus

L =1L + L2 = F

1
From this equation the following relation may be gerived

L. +b.L. +L. +b,L. =F + b.F

1 171 2 172 1
Through meansg of equations (40) and (45), and the equation for
Y following equation (43) 2with the y motion suppressed),
this equation may be written

ONGINAL PAGE
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c (L , . .\ , 1 o .P)' : ! : .
?V(F + Ja9r2)¢ +-(42 t b, P rt)p + byo = PET (F + blE)

(51)

Solution of this equation for ¢ for a stipulated F yields
the vane rotational motion that is necessary to produce F .
Equation (51) thus leads to a ready means for generating an
impulsive sine excitation. 1In this case F 1is set equal to
sin w_t

fg_ ; the associated solution describes the vane motion

w
o}

that is required to produce a vane excitation force of

sin w t

——Tq;fl— . Tt is noted that this development applies for the

case of a fixed wing; application to the case cof a flexible

or movable wing should be satisfactory, however, as long as

the force being applied to the wing 1s measured,

DEDUCTION OF SYSTEM RESPONSE CHARACTERISTICS

This section outlines the develoupment of various tech-
niques for identifying the basic response characteristics ot
a subcritical flutter system. Attention is focused mairl:y “r
the frequency response function H , and the impulse responc
function h . A primary objective of forced excitation
testing is to derive such functions accurately so that

a) damping and frequencies can be identified reliably,

b) or that a much more detailed system identification
may be made, such as the reliable evaluation of the
coefficients of the governing equation of motion.

One of the biggest problems of flutter testing is that of
coping with an unknown "noise" input, such as due to atmospheric
turbulence in flight flutter testing, or due to tunnel noise in
wind tunnel testing. Since noise excitation represents such a
serious obstacle in deducing accurate and reliable response
characteristics, considerable attention was directed towards
developing means for eliminating or masking noise effects., Ftor
this effort, use was made of an analog computer in conjunction
with various input force generators and system response
analyzers., This analog simulation proved invaluable, since many
different schemes could be investigated rather quickly and
repeatedly. .

Surprisingly, a number of different ways for coping with
the nolse problem were found, each having different merits.
In the development of the procedures, the following inter-
related questions were kept in mind (it is suggested that these
points also be kept in mind as the results are read).
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1 What type of input is required?

2 What record durations are required?

3. Can reliable results be obtained from a single record?
4

. Should results be obtained in the form of a single
record of relatively long duration, or should the
analysis be based on numerous records of short
duration?

5. How much time is required to analyze the results?

Point 5 is, of course, of prime concern in flight flutter anad
wind tunnel testing. Shut-down time, or ground time, between
test points to await data analyses is not considered desirable
in general, The desire is to make a test, analyze the results
in a matter of seconds or minutes so that tests can proceed
almost immediately to the next point.

The following section describes the analog simulation
system that was used, 1In the subsequent sections results
obtained from the analog simulation study are described. The
ideal situation of no noise in the input is described first.
The following sections then describe 11 different schemes that
were developed to eliminate, or at least minimize, the noise
problem; 4 deal with discrete-frequency testing, 5 with time-
varying excitation, and 2 deal with the use of response infor-
mation alone due to noilse (ironically, noise response can be
used to establish noise-free response characteristics).

Analog Set-Up and Associated Excitation and
: Measuring Equipment

This section gives a brief description of the analog set-
up that was used to simulate subcritical flutter testing of
an airplane; whether the tests be in flight or in a wind tunnel.

Figure 20(a) is a block diagram indicating the various
pleces of equipment used, Four types of excitation input were
used, a sine wave generator, a swept sine generator, a tape re-
corder which could supply any specified input such as the
sin wt

[
input was treated as an unknown (nonmeasurable) quantity. The
analog system was a representation of equations (46). Low-pass
filters were used on both the input and output signals to ensure
that the spectral content of the signhals did not go beyond a
certain frequency (to avoid aliasing)., The Fourier analyzer was
used as a ready means for processing the signals. The scope
display and strip charts allowed for a "quick look" date analysis,

function, and a noise generator. In general, the noise
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The printer and plotter allowed for the recording of data.
Figure 20(b) shows the analog schematic that was derived from
equations (46), and which was 'ised for wiring the analog
computer.,

FPigure 21 is a picture of the simulated flutter testing
system, set up at the Langley Research Center of NASA. While
equipment from a number of different sources would be suitable
for use, the following listing indicates the specific hardware
used.

EAI PACE TR-48 Analog/hybrid computer
Hewlett-Packard 5451 Fourier Analyzer
5466A Analog to digital converter
5475A Control unit
2100A Computer
HO1-3722A Noise generator
5460A Display unit
H51-18A Oscilloscope
ASR35 Teletype Corp. printer
TOU6A x-y recorder
5323A Automatic counter
3403C True rms voltmeter
Sangamo Sabre III tape recorder
Tektronix R564B Storage oscilloscope
Spectral Dynamics SDl1l1l2 Voltmeter log converter
SD127 MZ/TFA control
SD104A-5 Sweep oscillator
SD109B Co/Quad analyzer
SD105B Amplitude servo/monitor
SD122 Tracking filter
Rockland 1022F Dual Hi/Lo filter
Detagraph 5-510 CEC Strip chart recorder
1-511 CEC D.C. preamp.

The following sections deal with results obtained from the
analog simulation Just described. Most of the results glven
are for the following choice in parameters

2v

V== 100
e——-
=t
eO
E_—:: .l
e
f _
E__— ol

Cases which depart from these values are so indicated. Because
of the limited storage capacity of the Fourier analyzer used,
most of the runs involving the use of the Fourier analyzer were
made covering a duration of 5 seconds only. Swept sine studies
were therefore restricted to fast sweeps only.
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Noise-Frew Inpﬁts

Four techniques are described here for establishing H or
h when the input is free of noise.

Dwell.- Figure 22 illustrates the frequency response re-
sults that were obtained by a frequency dwell technique., 1In
this case, the excitation force is set at a certain level and
at specified frequencies. The response and input force are
analyzed jointly by means of a Co-Quad analyzer to yield A ,
the component of the response in phase with the sinusoidal
excitation force, and B , the component 90 degrees out of
phase. This is a good technique if the time of dwell at each
frequency is not a limiting factor.

Swept sine input with Co-Quad analyzer.- Figure 23 is
typical of the results That are obtained by use of a swept
Since force input and the use of a Co-Quad analyzer to es-
tablish A and B as in the dwell case. The main troublc
with this method is that results depend on the sweep rate,
and whether the sweep .is vp or down. Generally, a sweep up
tends to distort peaks Lowards the right of the correct value,
while a sweep down distorts peaks to the left., Damping indi-
cated is higher than actual. To avoid distortion, a very slow
sweep rate must be used, and in such cases the dwell technique
might just as well be use<d,

Fourier transform approach using a swept sine input.- The
basis for this approach is equation (11). A swept sine input,
which covers the frequency range of interest, is used for
excitation purposes. The frequency response function is then
evaluated from the Fourier trancforms of F and y according
to the equation -

P
R (52) .

Results generally do not depend on the rate of sweep.

Figure 24 illustates some analog results that were dgduced
by this procedure. The top sketch applies to Ho , and h , as
might be obtained through acceleration measurements., The second
sketch from the top applies to H and h , as would be obtained
from strain gage measurements., The sketch near the center
illustrates a novel way to evaluate the function w® . If the
functions HP and H are perrfectly formed, then the ratio
H -~ .

2 -

e should evaluate to w , see equations (9 ). The sketch

shows the ratjo as obtained t'rom the analog results; the near-
ness to an a“ variation is not bad, considering that no
attempt was made to establish H, and H as accurately as
possible. Both Hp and H  are of interest in practice; the
lower frequency modes tena to ve emphasized by the H
function, while the higher {requency modes are emphasized by
Ho . The bottom sketch on the flgure applies to Hl and h
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Impulsive sine excitation.- Figare 25 shows the nature of
the résponse that was cotained trom an impulsive sine excitation.
Figure 26 shows the hg function that was obtained for a
slightly impure impulsive sine force input; also shown is the
associated frequency response function. The rather sharp cut-
off of the function due to the use of an impulsive sine input
is noted.

Discrete Frequency Testing with
Nolse in the Input

Frequency dwe:ll,- Figure 27 showg resultsc obtained using
the (o-Quad analyzer. Noise causes the A.. (Co) and Bp
(Quad) evaluntions to be time varying, Results {rom tests at
discrete frequerncies thus lead to vertlcal marke, or ink blots,
as shown. Time of dwell at each froquency was from 30 to 60
seconds, Statistlcally, 1t seems reasonable that the centroid
of each ink blot should correspond to the nolse-free situatlon.
Results for no noiss are indlcated by horizontal tics and,
indeed, these tics appear associated with the centroid location.

The cnrves on the figure are the regult off sweep up and
sweep down teats, using a Co-Quat analyzer to entablish A. anu
B, . Tt is seen that, with input noise presen’, such tests are

of 1ittle value.

Figure 8 shows reenlts chtained by using ditizrent
averaging times in fhe Co-@Quad analyzer, The cnrves represent
transfer loct obtained by sweeping up and cwesping down with no
noise present, The "random walk" patterns shown below arc vue
to a noisy daput and roepresents cesuite that wousld appear st
the specific locations A and T o the fresncrer loens 1
frequency dwe:lls wore conaueted at the (requerciss indicated,
It is seen that ino ressed averaging time greatly reduses the
size ol the random walk patiern cbvtuined; thece results thus
show the effecl ol using longer record lengths to "average out”
nolse efrects, Qhe consequence, of course, is o much lncreased
testing time, Brrors due to sweep rate and averaging time of
the Co-Quad analyrzer are treated in reference 107,

correlation of input and output,- The top sketch o figure
29 denotes a discrete rreguincy input excitation., The second
sketch 1s the response recorded; 1t 1s composed of the response
to as well as the response due to the unknown noise ex-
citatlion, If the noilse and applied force are uncorrelated,
which they should be in this case, then the technique of rformu-
lating the cross-correlatlon functlon between the input focrte
F  and the rocponse  y  should lead to noise eliminstion. The
bottom sketoeh 1o ths cross-corcelation function found., It is
seen to be quife clear and raegular., A comparison of RF, wiin

Fooin Lturn adiows tor Lhe accurate evgluaticn of A and B Jor
the Droquency conddered,  Those results ars tror only 5 second.s
of rocord,  Longer time durations wonld lead to even better
reaults ot YT
Y ORIGINAL PAGE 18
OF POOR QUALITY
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Peak shifting.- In figure 30, F denotes a discrete fre-
quency input force; y represents the measured response., If
the sinusoidal curves were not present on the figure, y would
seem to be a response to noise only; it contains, however, a
definite sinusoidal component. The concept of using peak
shifting or peak enhancement can be stated with reference to
F . Consider first the trace as given, next consider a like F
function and shift it so as to align peak b with a , consider
another like F' function and shift to make peak ¢ align with
a4 , and so on; then add all the results. The result is the
trace labeled X F . Note, shifting on the Fourier analyzer
system is such to cause the information that is shifted off the
left side to spill around in belt fashion and appear on the
right side, Summations in the overlap region are thus not valid;
because of this overlap problem, the ends of the 3 trace have
been cleared, Next, do the same operations with the y function,
using precisely the same shifts as for the F function. The
result is I y . Frequency response information can then be
evaluated from the X F and X y functions.

The concept in this technique is that the shifting and
adding operations causes the meaningful or intelligent part of
the record to be enhanced, amplified, or reinforced, while tlie
noise level remains the same, Note, the addition of a number
of uncorrelated noise records should give a result which iIs
similar to any one record. Thus, if an average value of the
summation is formed, then the peak level should be the same as
the original peak level, but the noise content should be de-

creasing as % s Where n 1is the number of samples involved.

The establishment of a fairly clean sine wave, as indicated
by the = y , from the rather noisy function y indicates the
nsefulness of this peak shifting technique. The result is for
only 12 additions; a larger number would lead to an improved
quality for the I y .

Ensemble averaging.- This technique is based on the concept
of adding together a number of independently generated records,
with the additions being made so that the input records start
in the same way (phase maintained). As in the peak shifting
technique, the ensemble sum of the output should show a de-
creasing noise content as the number in the ensemble is in-
creased., Figure 31 illustrates the procedure. The top sketch
denotes a single input record, the second sketch the measured
response, The records at the bottom shows the ensemble sum for
F' and y as obtained from an ensemble size of 30. Note how
the noise in the output has been reduced. Frequency response
information follows from the I F and 2 y records.

Time-Varying Excitation with Noise in the Input

The use of é swept sine input and the Fourier transform
relation given by equation (52) leads to results of the type
shown in figure 32 when an unknown noise 1is present in the

Oﬁ‘lu5NA‘. PAE B
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input. This figure should be compared with the no-noise analog
result, figures 22 and 26, and with the corresponding exact re-
sult, figure 17(c). This figure vividly illustrates the problem
brought about by input noise. With results of the type shown,

it is virtually hopeless to deduce meaningful response character-
istics., Techniques for obviating the noise problem are there-
fore of great interest. . '

Clearing or weighting of the h function.- It 1s to be
noted that throughout this report, discussions of H or h are
essentially synonymous, since, as equations (5 ) and (6 ) show,
knowledge of one function automatically defines the other. The
use of equation (52) leads first to H , but h then follows
directly. Certain features in figure 32 are worth noting. The
position labeled a on_ h appears to be the point where the
correct or noise-free h function would have decayed to near
zero, Beyond this point the information shown is mostly due to
noise. In turn, most of the jaggedness in the A, and Bp
functions is due to the erratic behavior of h beyond a point
such as a , The simple technique of clearing the h function
beyond the point a 1s thus suggested as an easy means for
vastly improving the nolse problem, reference 13. A rectangular
truncation 1s implied, having unity out to a selected time, and
zero thereafter. Figure 33 i1llustrates results of this type
clearing process. The results on top is another example of the
type of results shown in figure 32, and are for the raw data.
Clearing the h function beyond & point corresponding to a on
figure 32, and then rederiving H 1leads to the results shown in
the middle., A great improvement 1s noted; noise effects are still
present, but at least some indications of frequencies and damping
are present, The bottom sketch applies to the no-noise case and
is included for comparative purposes.

References 3 and 13 indicate the use of an exponential
weighting function on the raw h function, and then re-
evaluating H , as a means for minimizing noise. Figure 34
shows results obtalned by this approach. Thils technique appears
to be quite effective in eliminating noise effects. The intro-
duction of a weighting function of course causes distortions in
the derived H function. Corrections that account for the
weighting function must subsequently be made to the deduced
damping values. Fortunately, these correctlons are easy to
make when an exponential function is used, since the correctiocn
is simply to subtract out the apparent damping that has been
added by the weighting function. Other weighting functions are
not recommended, since the corrections are not known or cannot
be made.

Cross-spectrum between F and y .- The theory for this
technlque 1s as follows., The response due to an applied ex-
citation and due to the noise environment may be written as

y=yp +t V¥, =\/\(F + Fn)h(t - T)dT (53)
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where Fn 1s the unknown input noise and yn 1s the associated
noise contamination in the response, The Fourler transform of
y 1is

o= + = (Fo +
y = Fy, *Fy = Fp * Fp

JH
If this equation is multiplied through by the complex conjugate

FF » then the followling spectrum equation is indicated

*ry, * Pry = (¢p + "’FFn)H (54)

Because there is no correlation between F and Fp , however,

both the cross spectra ¢py and ¢FFn should vanish. The
equation then yields n ¢

Fy
H = 1512 (55)
F

which appears as a completely noise-free result. The technique
is thus to form the cross-spectrum ¢ between the applied
input and the measured response, and %g divide by the input
spectrum ¢F to obtain H .

Typical results are shown in figure 35 for the case of a
swept sine excitation. A substantial improvement is noted.
The illustration is not a fair test of the approach, however,
because of the very short record lengths that had to be used.
The results shown in figure 35 represent only 2.5 seconds of
data, because correlation was involved. In spite of this
limitation, a marked improvement in the nolse problem is noted.
It 1s felt that record lengths of about 30 seconds (a moderate
sweep) are needed for this correlation technique, and that if
such lengths were involved, then almost perfect results would
be obtained., The author considers this to be one of the best
techniques available for eliminating noise effects.

Peak shifting.- A peak shifting technique similar to that
described under discrete frequency testing with noise in the
input is also possible for a swept sine input excitation., 1In
this case, shifts are based on the peaks of the swept sine in-
put function; the shifts for the response are taken ldentical
to the shifts of the input. The sum of the input shifts is
treated then as a single input function, and the sum of the
shifted output functions is treated as a corresponding single
response function. Note, the concept that solutions for linear
systems may be linearly added is involved. The summed results
are treated by equation (52) as though they represented a single
response run. Results obtained are shown in figure 36. Rela-
tive to figure 32, a vast improvement is found., Here again
though, as with the correlation example, the test of the tech-
nique is not fair. The short record length available allowed
only a small number of peaks to be summed. Thus, enhancement
of the meaningful signal part was not sufficient to "average
out" the noise, Record lengths of around 30 seconds (moderate
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sweeps) should allow construction with many peak shifts and
should make this a powerful technique,

Ensemble averaging.- The previous techniques are based on
the use of a single record only. By contrast, an ensemble
averaging technique involves the use of many sweep runs, The
idea is simply to evaluate H or h for each of the runs and
then to add the results to form an ensemble average. The con-
cept 1s that noise effects will "average out" to zero. Results
for an ensemble of 20 sweep runs, each of 5 seconds duration,
are shown in figure 37. The figure gives the results for both

h and h , and for values of v = Al 60, 80, 100, and 110 .

The value of v for flutter is 117 . This technique is seen
to be very effective in leading to reduced noise effects; the
penalty is the problem of having to make many repeated runs.

If 20 to 30 runs, each of 5 seconds duration are needed,
then a total test time of 100 to 150 seconds is implied for
each test point (one speed), not counting reset times between
runs. A total time of 150 seconds approaches but is still
smaller than the sweep duration runs of 4 minutes that are
often used in flight tests. The question is raised: "Would a
single run of only about 50 seconds, analyzed by the corre-
lation or peak shifting technique, be better?" Unfortunately,
this question can not be answered at the moment. :

Figure 37(a) also includes the result for |H2!2 , which
also represents the spectrum of h , This function is seen
to be quite clean, and of all the functions shown, allows for
the easiest evaluation of system damping and frequency. The
frequency is indicated by the location of the peak, the damping
by the width at half-peak height, see figure 3.

Combined ensemble averaging and h weighting.- Some of
the methods described here can of course be used in combination.
Figure 38 shows the results obtained by an ensemble averaging
of only 5 runs, with the subsequent use of the exponential
weighting function technique. The resulting curves are quite
smooth, but correction of the data must of course be kept in
mind; the results shown should be compared with the exact re-
sults shown in figure 17(c).

Ensemble averaging using response to noise only.- The
treatment following equation (19) indicates That the auto-
correlation function of the response to white noise is the
same as the autocorrelation function of the impulse function
h . This fact suggests that a useful result might be derivable
by working with noise response records only. Autocorrelation
functions of the response to noise alone were established for a
number of individual runs. The result of adding together 20
such functions 1s shown in figure 39. The agreement with the
result shown in figure 37 is remarkable. Damping and frequency
appear to be readily identifiable. The Fourier transform of
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the autocorrelation function is shown as the second function
from the top. The smoothrness of this function indicates that
the results are essentially noise-free response results for the
system. The Fourier transform of the right half of Ry is
often of interest. This result is shown at the bottom” of the
figure,

Use of the randomdec technique.- The randomdec technique
is another means for deriving sysftem response characteristics
from noise response information only. The technique described
in figure 7 was applied to the noise response of the flutter
system. Results are shown in figure 40; these results are to
be compared with the h results shown in figure 24,

The randomdec technique may be applied to acceleration
noise response results, but the construction does not lead to
a system physical function., The reasons is that the Dirac
function usually found with h functions, see figure 5, are
not accounted for properly. The randomdec signature found
from acceleration should give, however, an indication of
system frequency and damping.

SYSTEM PARAMETER IDENTIFICATION

Most of the techniques used for evaluating frequency and
damping of the various modes of a multimcde system are based
on the behavior of a single degree of freedom system. When the
modal frequencies are well separated, reasonably good estimates
of frequencies and damping probably result, but even in such
cases, the values deduced are really only "pseudo' estimates of
the true values. When frequencies are clouse ftogether, identi-
fication becomes uncertain or impossible, or estimates may be
in large error. The identification of the parameters of a
system in greater detail is therefore desirable. The establish-
ment of the coefficients of the governing differential equation
of motion (see equation (13)) rrom response measurements is,
for example, an extended step tu better system identification.
With these coefficients, all response characteristics of the
system can be evaluated, whether frequencies are close together
or not. The accuracy of the determination of the coefficients
is of course a factor.

This section describes three means for evaluating system
parameters in greater detail from response measurements,
References 14 through 17 represent noteworthy treatments of the
subject.

Collocation using the irequency response function.- Assume
that the system under consideration is & 5th-order system, so
that equation (13) applies. The frequency response equation
for displacement response indicated by this equation is

REPRODUCLGI 1Y U 1a1a
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[U.)ua,u_ - (023-2 + ao + i ())5 - (1)38,3 4+ aﬁl>](A + iB) =

- afba + bo -+ i(-w3b3 + mbi) (56)
which when expanded leads to
b 2 ~ 2 _ 2
a>Aaq - a>Aa2 + Aa  + w3Ba3 - wBa; + o b, - b, = w’B (57)
4 2 Bnn .+ ada. - - - 8
a)Bau_-a)Ba2+Bao—ana3i-a)Aa,l+w3b3 ab, = -a’A  (58)

The multiplicagion fZhrough of equation (56) by A - iB and
division by ce = A€ + B leads to the following two
alternative forms

L 2 3 B 2 A B A _
w al‘L - W a2 + ao + w = b3 4+ w == b2 - w-—§ bl - = bO = Q
C C C C
(59)
ol 3 A _ 2B A B - -
w a3 + wal + 5 b3 w - b2 - W= bl + 5 b w

The collocation solution proceeds by using these equations
singly or jointly to solve for the ap and bp coefflcients.
Consider equation (57) for example; five ap and two bp coef-
ficients appear in this equation. Measured values of A and
B are substituted in this equation at seven different values of
w , leading to seven linear simultaneous equations with unknowns
an and b, . Solution is then made for these coefficients.

Or, five frequency values may be used in equation (57) and four
in equation (58), giving nine simultaneous equdtions in terms of
the total of nine unknown coefficients.

A test of the approach was made by using values of A and
B as obtained from the exact solution, equation (49). The
coefficients evaluated were in good agreement with the original
coefficient used to obtain the A and B values; this compari-
son is shown in figure 16, where the circled points refer to
the coefficients as evaluated by the collocation procedure.

This comparison indicates that the scheme works, at least in
principle.

Analog values of A and B were also used to check the
procedure, Some of the results obtained were good, some were
bad, depending on the frequency locations chosen. Flgure 41
indicates a few of the results obtained, and shows the quasi-
roots that were obtained from the deduced coefficients 1n
comparison to the exact quasi-roots. The results indicate
that perhaps the best procedure to use is to evaluate the
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coefficients several times for different frequency choices (the
evaluation is very quick since only a few simultaneous linear
equations are involved) and then to average the results,

To check further on the collocation procedure, a sensi-
tivity study was made to establish how sensitive the coef-
ficients ap and b, were to assumed changes in A and B
Figure 42 indicates the results of this study. The study
started with the exact values f A and B . These values
were given random variations through use of a random number
generator. With the varied values, solution was made for the
an and bp coefficients. This, experiment was repeated 100
times. The op value in figure 42 represents the standard
deviation of all the variations of the A and B values; the
Og value, the standard deviation of all the variations found
for the a, and b values, This figure shows that the
coefficients are qu?te sensitive to the A and B values
used (roughly, a magnification in errors of 200) .

Least squares difference equation approach.- The

difference equation equivalent of equation (13) may be written
as

Yn+s * 8u¥nn * B3¥n4g * 8o T 8 Vnyy T 3V, T

bMFn+4 + ban+3 + b2Fn+2 + ban+l (o)

where the y's and F's represent equally spaced values witlh
interval e . The ap and b, coefficients used here are not
the same as the coefficients in equation (13), but rather are
some combination of these coefficients. Assume the ypn and
Fn values are measured values as obtalned frcm a test, and re-
write equation (61) in the form

Yn+s eyt t 23Vn43 T AVnip *t BVny T &Y,

= byFngy 7 PaFis - BoF e - Py F g =gy

where €, represents a possible error because the yp and
Fn values are not exact. The coefficients ap and bp are
now found using a least squares process involving the error

€ .+ The problem statement appears as

n
.E =Z ei = min.

Minimization yields

k
ok ¥ ¢ - v
da_ —Z;l “n¥n+m 0 (62)
m =
<L ¢ F = 0 (63)
S0 n n+m
bm n=1



thus leading to nine linear simultaneous equations in nine un-
knowns. Solutior. yields the desired values of a, -
With the solution for the a values, the roots of the
char: teristic equation of the di?ference equation may be found.
Assume the right-hand side of equation (61) is zero and let

y = ert eXng ; the result is
p5 + aLLpLL + a3p3 + a?_p2 +ap+a =0 (64)
Ae

where p = e . Solution of this equation yields the roots

- +
Pp = ¢, * 14y,

Roots which approximate the roots of the characteristic equation
of equation (26) may be now established as follows. Let
A =8 Tiw represent these approximate roots; then

(anfiw e

e B sp st id, (65)

Solution for 5n and @, yields

d

n B

tan w € = o (66)
n
2p. €

n- _ 2 2 -

e = ¢ +d_ (67)
- Application of this least squares procedure was made to the

h, Ry and Rp functions, as given in figure 37. Since these
functions represent homogeneous solution of equation (13), no

Fn terms had to be considered; that is, equations (63) were not
involved. ©Note, the initial values of the functions were not
used so as to avoid the problem of their Dirac function type
beginning. Results obtained for W, and B for the value of
v = 110 are shown in the following table, Ehe estimates for
the first mode show a considerable variation; second mode values,
however, are in good confirmation. It should be kept in mind
that these limited results do not represent a fair test of this
difference equation approach. First, the spacing ¢ was rather

large; a value of ¢ = .02 sec. was used, and thus one cycle of
the higher frequency mode is represented by only six points.
Second, the maximum number of poinls used was only 6/, And,

thirdly, there is very little response of the first mode present
in the h functions.
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Differential cquation solution by least squares.- An
interésting Icast oquare: .olullon can Te made In the time plane,
but which makes use ot froequency plane information. Conslder
equation (13) in the following form

V lV son .. . . [ . el A .
yoorayy +agy tay ey tay - b3F - b,F - byF - b F = e(t)

' (68)

where ¢ represents an error due to the use of measured y and
F values. Assume that the response data have been processed to
lead to y = h_  , see equation (17). The function hg corre-

i sin w_t

< a + = . o

sponds to the response due to F = '"ng’“ , and falls out in a
straightforward natural way when processing is made on the basis
of the Fourier transtorm relation, equation (52). Note, this
analysis, although presented in terms of h and
) sin wbt S
F = —F is not restricted tc these functions alone.

e}

The coefficients a, and b, are now evaluated through
use of a least squares statement involving € , thus

t‘)
[4% r)
E —_f €€ (t)dt = Min. (63)
tl
t .
- z n
E ) . 70
%;;— - 4L gt = 0 (70)
n £ ot
1
4, n
SE S Y S
nog At
‘1

Equations (70) and (71) give similtaneous linear equations in
terms of the a, and bp coefficients, which then allows their
evaluation to be made.

Equations (70) and (71) may be converted to a more amenabl-
form as follows., With limits extending from t = - » to t - « ,
the integrals which appear in the simultaneous equations may be
written in three general forms
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Use is now made of two significant Fourier

(72)

J

transform theorems,

namely
. . . dnl . n.,
1. Th: Fourier Lrancform of = is i1w) B where I
s LY
d'*n A2 y
Pl
is the Fourier transform of y
00 o
A 'Fl(f)FP(f £)df = /qyl(t)y;($ t)dt where o = 2nf
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For the y = h_ function, let
") o iy
- . . < v = - &
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1
v 3
sin'ukt
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Equations (73) thus become simply

[ ]
m n
A = 3—%;31— h/‘ap+n02dw s
o

0 s

o0
m n
B = Ehéfél— \/NQP+nA dw >
o o}

m+l n
TR

o o
- 1B-1)r 1 m+n+l

mn m+n+l Qo s
(o]

= 0 R

even

odd

even

odd

even

odd

Through means of equations (721)through (T4), it is

to write equations (70) and (7
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where D = ZquCé dw

1 m+n+1
n m+n + o}

Solution of these equatlons leads to the differential equaviun
coefficlents a, and by, . The symmetry of equations (75),
and repeated appearance of the D, , E5 and Fp coefficients
should be noted. 1In all, only 14 such coefficients need
evaluation (the four F, values are known% One of the
appealing merits of this approach 1s that the Dp's and Ep
mey be evaluated automatically by the Fourier analyzer that is
being used to analyze the response., Solution for the ay
values should therefore be quite easy and quick.

A minor test of equations (75) was made using only approxi-

mate values for Dp , En and F, ; results for ap were,

however, in reasonable agreement with the corresponding exact
values. Further study of the soundness of this least squares
technique 1s worthwhile.

CONCLUDING REMARKS

Main emphasis in thls report has been on the development
of improved subcritical flutter testing technigues, whether in
flight or in the wind tunnel, and particularly in reflerence t«
the situation where input noise is present. Dlscussion was
glven to a certain extent as the material was presented, Some
additional observations are made here in the form of concludirn
remarks,

Frequency and damping evaluation:

A number of different schemes were outlined for deducing
frequency and damping from response measurements, Mode fre-
quency 1s identified quite well by most all of the techniques.
Damping determination, however, is more nebulous, The transfer
locus scheme, which hopefully leads to identifiable circles, 1s
pépularly gqucted but the author does not favor this approach

too highly. The diameter of a circle obtained from acceleration

measurements 1is, for example, é 7 (assuming of course that

m
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behavior is that of a single degree of freedom system). Thus,
explicit g evaluation from the diameter 1s precluded because

the unknown % is also involved (m , in general, is some

generalized mass value). Actually, it would be better to use
equation (38) to evaluate g (if the center of the apparent
circle can be fixed), and then to use the diameter to evaluate
% . The methods preferred are those shown in figure 3, and
particularly the scheme involving use of the width of the
spectrum peak at half power. This scheme is simple and direct,
and subjective interpretation 1s a minimum. (Note, with g

established by the width of the peak, the height in turn may be
used to estimate % .) The scheme of deducing damping from a

randomdec signature 1s also considered good and reliable. It

is to be noted that all of the schemes are subject to a common
problem; specifically, all the methods for deducing frequencies
and damping are open to question for the situation where two

(or more) frequencies of the system are close together. Means
of being able to detect when frequencies are close together and,
in turn, of deducing the frequencies and damping are in need of
further development.

beduction of H or h

As indicated, a number of methods may be used for obviating
the input noise problem., The ensemble averaging technique 1s
attractive but requires a substantial number of repetitive runs.
The use of exponential weighting of the h function appears
satisfactory, but schemes which do not lead to distortion of ih.
data, which then require correction, are judged preferable. ‘[n<=
cross-correlation approach (equation (21) and equation (55)),
and the peak shifting technique seem the most appealing on the
overall, The technique of using the response only, as obtairied
from a "white" noise environment, and forming the autocorrelation
function, with ensemble averaging, is quite Intriguing and should
be used where possible; in this case, a function representing the.
autocorrelation function of h d1s found. 1In general, randcmded
signatures may be interpreted as h only for displacement
response, Randomdec signatures obtained from velocjty or
acceleration response are not strictly the h or h funcliong
because step functions or Dirac functions at the origin are nou
reproduced (see h and h 1n figure 52. Damping and frequencies
as established from the randomdec signatures for veloclty or
acceleration response should, however, be representative of
actual system response characteristics.

System identification:

A variety of possible system identification schemes were
developed, but attention was restricted herein to three
approaches. The collocation scheme 1s quite simple but suffers
from the fact that the frequency values chosen for response
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matching is so arbitrary. The question of how tc handle the
two equations in combination (one associated with the real
part of the solution, one with the imaginary part) is some-
what of a mystery. The difference equation approach is con-
sidered good and quite attractive. An analogous scheme,
reported in references 2 and 13, appears to be highly regarded.
The differential equation approach, which makes use of fre-
quency plane information, needs more corroborative study, but
is considered quite promising.

A final word is given with respect to subcritical flutter
testing techniques which differ from the type discussed herein.
Tacit in the schemes mentioned in this report 1s the assumption
that the air density is constant, and that tests proceed on an
incremental increase in air speed basis. Reference 17 describes
procedures for testing on an increase of air density basis,
holding speed essentially constant. Figure 43, taken from this
reference, shows the excellent success that was cobtained in
extrapolating to flutter through use of a density increase
approach. This technique is still considered to be a good and
useful approach and should be kept in mind in any further
development studies of subcritical flutter testing.

Application to the space shuttle:

Flight of the space shuttle will represent a situation of
a time-varying system, since dynamic pressure and Mach number
in particular will change rapidly with time, see figure 7, of
reference 1. The. question that naturally arises is whether
the methods discussed in this report, which apply mainly to
time invariant systems, can be used for subcritical flutter
evaluation of the shuttle system. With respect to the various
methods, the following recommendations are made. During the
transonic region of flight (where the dynamic pressure will be
nominally about 75% of Qpax), the random forcing input associ-
ated with the transonic flow will probably be strong enough tc
excite a sizable random response. It follows then that two of
the methods discussed herein might be useful in evaluating the
shuttle response characteristic. One is to break the record
up into 5-second segments (on the assumption that the system
is nearly time-invariant during such an interval) and then to
form the autocorrelation function of the response for each seg-
ment. The second approach is to form the randomdec signature
from the random response record.

At maximum dynamic pressure, the Mach number will nominally
be around 1.5. It is not known at this time whether the flow
during this period will be rough enough to cause random
excitation. If tests indicate that the flow should still be
"rough," then the same two means for analyzing the data should
be used.
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To ensure that system excitation can be obtained over all
regions of flight, it is desirable to have aerodynamic vanes
or lnertial shakers installed., The excitation recommended is
to go through a sine sweep, first up, and then down, in
continuous succession. Sweep durations of 5 seconds are
suggested. Each five seconds of response information could
then be analyzed to deduce H and h through means of the
method involving the Fourier transform of the output response
to the Fourier transform of the 1lnput force, In this case,
the procedure involving the peak shifting technique would
appear ideally suited. Note, the time-varying aspect more or
less precludes any ensemble averaging approach. The auto-
correlation of the response due to the sweeps should also be
obtained as an additional means for evaluation of the response
characteristics.

In summary, three approaches appear useful for subcritical
flutter test evaluation of the space shuttle system, namely

1) The autocorrelation of sysfem response, whether the
response is due to a natural random excitation or
due to a controlled force excitation.

2) The randomdec signature approach.

3) The use of the peak shifting approach.
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f) Swept sine (same as d4)

g) Swept triangular wave

h) Swept square wave

Fig. 1.- (Concluded)
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response function or from the decaying free oscillation.

Fig. 3.- Frequency and damping as obtained from the frequency
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Fig. 8.- Results for 2nd-order system due to swept sine wave
(sweep down).
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FPig. 9.- Results for 2nd-order system with zero damping
due to swept sine wave (sweep up).
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Fig. 10.- Results for U4th-order system with two frequencies close
together due to swept sine wave (sweep up).
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Fig. 26.- Frequency response function and hg
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obtained from an impulse sine input.
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Fig. 36.- Use of peaking shifting technique for swept sine
run to eliminate noise.
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c) v =80 ; average of 20 runs

Fig. 37.Z (Cont.)
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v = 100 .

Fig. 38.- Combination use of ensemble averaging and weighting
of h function to eliminate noise,
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