LOCRHEEX ELECTIINICS CIMPANY, INC.

Ref: 642-1351
Job Order 73-215
NAS 9-12200
NASA CR.
140264

TECHNICAL MEMORANDUM

SKYLAB S-191 SPECTROMETER
SINGLE SPECTRAL SCAN ANALYSIS PROGRAM

By
E. L. Downes

Approved:

Distribution:
JSC/L. F. Childs
T. L. Barnett
A. L. Grandfield
W. E. Hensley
R. D. Juday
A. E. Potter

LEC/O. N. Brandt
C. L. Hughes
R. E. Tokerud
J. O. File

Technical Library
REDAF (3)

(NASA-CR-140264) SKYLAB S-191 SPECTROMETER SINGLE SPECIONics CO.) 42 p PROGRAM (Lockheed Electionics CSCI O9B

LEC-3246

September 1974

CONTENTS

Section Page
1.0 PURPOSE. 1
2.0 INTRODUCTION 2
3.0 OPERATING INSTRUCTIONS 3
3.1 General Discussion. 3
3.2 System Setup. 4
3.3 Log-in Procedures 4
3.4 Loading the Program 4
3.5 Program Options 5
3.6 Input 6
3.7 Output 7
3.8 Logout Frocedures 9
4.0 ADDITIONAL REMARKS 10
APPENDIX
A LISTING OF ALGORITHMS. A-1
B LISTING OF PROGRAM SYMBOLICS B-1
C SAMPLE OUTPUT C-1
Example 1 - Long wavelength tables 1 and 2; calculations for wavelengths $8.1,9.3$, and 14.1 micrometers; and use of contingency interrupt C-1
Example 2 - Short wavelength table 3 C-6
Example 3 - Near infrared table 4 C-7
APPENDIX Page
D FLOW DIAGRAMS. D-1
E SO42-5 SAMPLE INPUT SOURCE LISTING E-1

1.0 PURPOSE

The purpose of this Technical Memorandum is to provide documentation and user information for the S-191 Single Spectral Scan Analysis Program. A breakdown of the computational algorithms is supplied in appendix A, followed by the program listing and examples of sample output in appendices B and C, respectively. Appendix D contains a copy of the flow chart which describes the driver routine in the body of the main program segment.

2.0 INTRODUCTION

The program is written in XTRAN to be run in a standalone fashion on the COM-SHARE time sharing system. As nearly as possible, it features a self-prompting operation, enabling it to be operated with minimum knowledge of the internal software logic or system design. Incorporated in its structure are the basic Production Processing Requirements Equations from PHO-TR524. Most calibration data is from MSC-07744.* The set of resolvable wavelengths that can be tested, have been selected from memo TF3-088. Configuration Board Directive update S\&AD-081 is included, as are the six wavelength dependent algorithms furnished by Richard Juday (TF3), which are used to compute the ramp voltages.

Input to the program is raw data values from S042-2 and SO42-5. Output produces the SO42-3 quantities generated by DSAD. Detector temperature ratios, emissivities, dichroic, and mirror reflectivities are generated internally by table lookup single and double linear interpolations as appropriate. A skeleton scheme of program logic flow is given in appendix D.

[^0]
3.0 OPERATING INSTRUCTIONS

3.1 General Discussion

A general discussion follows:

- The program may be run from any terminal having access to the COM-SHARE time sharing system.
- The input to the program consists entirely of numeric data and may be keyed in free format. For example, any legitimate manner of representing FORTRAN data types will be recognized.
- Where the program requests two or more data items to be input, keying in an incomplete data set will cause the program to prompt for additional input. However, inputting spurious or extra data will likely generate false output.
- In the event the terminal sets idle after apparently keying in a correct response to a request by the program, a status check can be made on the system without interrupting the program by simultaneously depressing the "control" and "shift" keys and "L." The system generally will respond with an R, D, or T. Their meaning is as follows:
$R=j o b$ is presently active within core
D = I/O disk transfers are taking place
$\mathrm{T}=$ waiting for terminal innut Most commonly, T means the user has failed to keyin a "carriage return" after inputting data.
- Internally accumulated noise will be reflected by spurious symbols appearing on the output hardcopy. Before entering data, this noise should be cleared by keying successive (control A).
- The program will be operated under control of the XTRAN subsystem whose ready symbol is "+." Whenever the plus sign appears as the first symbol of a line, the system is waiting for an XTRAN command, NOT data.
- Any operation may be aborted at anytime by hitting the "escape" key.

3.2 System Setup

Because this procedure is flexible and subject to change, information regarding this area will not be included in this memorandum, but may be obtained by contacting Ed Downes at 483-3155 or by mail code C-09, and a copy of the current documentation will be forwarded under separate cover.

3.3 Log-in Procedures

See 3.2 above.

> 3.4 Loading the Program

See 3.2 above.

3.5 Program Options

Discussion:

There are two means whereby the user may control and guide the sequence by which the program processes data. The first is by responding appropriately to the self-prompting commands generated within the hard-wired logic flow. This includes the selection of channel number, ramp length, etc. This also covers the reread capability whereby the program outputs a message such as:

```
Keyin " 0 " to continue, "L" to change line "L" = . . .
```

In the event an error has been made in entering a data set, inputting " L, " where " L " is the line number to be changed, will cause the program to backup to allow a new datum to be keyed in. This continues until a zero is entered to continue.

The second means to alter program flow is external to the normal logic and is applicable when a system error has aborted the program or when the "escape" key is hit. Both actions return control to the XTRAN system which is verified by the appearance of a plus sign (+) as the first character of the output line. At this point entering the XTRAN command "go line carriage return," where "line" refers to the circled numbers on the flow chart in appendix D and the statement labels in appendix B. Executing this command will reenter the program at that line with all indexes and registers set at the same values as when program control was lost or abandoned. The most common use of this command will
be when nonsequential data sets are processed. See appendix C for a sample output which demonstrates this capability.

A special option allows the processing of channels 3 and 5 simultaneously. A prompt mode instructs the user for input.

3.6 Input

Discussion:
Input parameters are generally a function of the channel selected; however, common to all channels are the following items in the order requested by the program:

- Scan day-hour, minute, second
- Ramp length (in counts)
- Channel number

1 = long wavelength negative (HgCdTe)
2 = near infrared (PbS)
3 = short wavelength (Si \#1)
4 = ramp counts
5 = short wavelength (Si \#2)
6 = long wavelength positive (HgCdTe)

Also common to all channels are the following:

- Eleven sequential A4 raw count values from SO42-5
- Five sequential A (channel) raw count values from SO42-5

Additional input required for long wavelength channels:

- Scan dichroic temperature from SO42-2 data
- Scan reference temperature frum SO42-2 data
- Scan ambient temperature from S042-2 data
- Scan sphere temperature from SO42-2 data
- Scan heated cal temperature from SO42-2 data
- Scan detector temperature from SO42-2 data

Additional input required for near infrared calculations:

- Scan detector temperature from SO42-2 data

A demonstration of input parameters can be seen in the appendix C model output.

3.7 Output

Discussion:
Output is a function of channel selection and is treated separately as follows:

- Long wavelength (for each wavelength)
(1) Table 1 which contains the wavelength associated row number, wavelength, wavelength ramp voltage referenced to a 4.86 volt (971 count) ramp, the actual ramp voltage used in calculation, and the actual ramp voltage converted to counts
(2) A printout of the scan temperature parameters
(3) Table 2 which contains the wavelength associated row number, wavelength, responsivity, emissivity, dichroic reflectivity, mirror reflectivity, and detector temperature ratio
(4) The linear equitions output by the ieast. squares fit of the 11 and 5 inputted S042-5 raw data values, respectively
(5) VCHAN, which is the output of the Configuration Board Directive SGAD-018 calculations
(6) VBAR as described in appendix A
(7) Blackbody radiances for the dichroic, reference, ambient cal, sphere, and heated cal temperatures
(8) Refcrence radiance calculation
(9) Source radiance at the chopper cal for the ambient source
(10) Source radiance at the chopper cal for the heated cal source
(11) Channel number
(12) Radiance at the chopper
(13) Radiance at the calibration source
(14) Radiance at the aperture
(15) Scan time of computed values
- Short wavelength (for each wavelength)
(1) Table 3 which contains the same type of information provided in table 1 (see 3.7, number 1), plus the responsivity
(2) Scan time of computed values
(3) The linear equations output by the least squares fit of the 11 and 5 inputted SO42-5 raw data values, respectively
(4) VCHAN, which is the output of the Configuration Board Directive S\&AD-018 calculations, is shown in both volts and counts
(5) SWLI, the short wavelength radiance
(6) Channel number
(7) Responsivity
- Near infrared (lead sulphide)
(1) Table 4, similar to table 3, with the addition of the detector temperature ratio
(2-7) See 2 through 7 above.
(8) Detector temperature ratio

3.8 Logout Procedures

To logout simply:

- Keyin "escape" (system responds with "+")
- Keyin "control G" (system responds with "-")
- Keyin "log carriage return"
- Disconnect handset from the acoustic coupler when the carrier light goes out.

4.0 ADDITIONAL REMARKS

- The SO42-2 ambient temperature is used for the sphere temperature.
- The S042-2 package temperature is used for the lead sulphide detector temperature.
- Caidulations for the shor: wavelengths in the range of 1.1 to 1.4 micrometers have not been programmed, but may be included at a later date.
- Appendix E was included to show how the S042-5 values were selected for the sample output shown in appendix C.
- It should be noted that the responsivities in the sample output in appendix C have all been set equal to one. This is not the normal case, but is due to the fact that at this writing, the correct responsivities have not been received. Upon their receipt, they will be included to the program and output appropriately.

APPENDIX A

LISTING OF ALGORITHMS

A.1. Algorithms used to compute channel A4 voitage

A.1.A. Select wavelength = "L"
A.1.B. Choose coefficients (A1, A2, A3) from A.l.C. through A.1.H.
A.1.C.

$$
0.40<\text { L" < } 0.71
$$

$$
A 1=1.1+527
$$

$$
A 2=3.41492 \quad \text { Segment } 2
$$

$$
A 3=0.0237844
$$

A.1.D.

$$
0.72<" L "<1.36
$$

$A 1=2.67633$

$$
A 2=1.52349 \quad \text { Segment } 3
$$

$$
A 3=0
$$

A.1.E.

$$
1.38<" L "<2.48
$$

$$
\begin{array}{ll}
A 1=-1.64778 \\
A 2=0.966462 & \text { Segment } 1 \\
A 3=0.265708 &
\end{array}
$$

A.1.F. $\quad 6.00<" L "<9.20$

$$
A 1=0.975941
$$

$$
A 2=0.266592 \quad \text { Segment } 6
$$

$$
A 3=0.00798181
$$

A.1.G.
9.20 < "L" < 12.7

$$
\begin{aligned}
& A 1=-3.12383 \\
& A 2=0.490235 \\
& A 3=-0.00932054
\end{aligned} \quad \text { Segment } 4
$$

A.1.H.
12.7 < "L" < 16.0

$$
\mathrm{A} 1=-2.04175
$$

$$
A 2=0.288636
$$

$$
\text { Segment } 5
$$

$$
A 3=0
$$

$$
\text { A.1.I. Compute V'A4 }=A 1+A 2 \cdot L+A 3 \cdot L^{2}=(4.86 \mathrm{ramp}
$$

A.1.J. V'A4 - ramp/4.86 = channel A4 voltage for wavelength "L" and ramplength "ramp."
A.2. Algorithm used to compute blackbody radiances Description of parameters:
$B T(K)=$ blackbody radiance for "K"
$\mathrm{K}=1=$ dichroic
$K=2$ = reference
$K=3=$ ambient
$\mathrm{K}=4=$ sphere (ambient used)
$K=5=$ heated cal
$\mathrm{T}(\mathrm{K})=$ temperature in degrees kelvin for " K " $\mathrm{VV}(1, \mathrm{~L})=$ wavelength responsivity
A.2.A. $B T(K)=\frac{11909.0}{(\operatorname{VV}(1, L))^{5} \cdot\left(e^{(14388.0 /(V V(1, L) \cdot T(K))}-1\right)}$
A.3. Algorithm used to compute reference radiance Description of parameters:
$\mathrm{BT}(2)=$ reference blackbody radiance
BT(1) = dichroic blackbody radiance
RHOC = chopper reflectivity
A.3.A. $\mathrm{RI}=$ reference radiance $=\mathrm{RHOC} \cdot \mathrm{BT}(2)+(1-\mathrm{RHOC}) \cdot$ BT (1)
A.4. Algorithm used to compute the source radiance at the chopper cal for the ambient source (RISA) Description of parameters:

```
VV(3,L) = wavelength emissivity
VV(4,L) = wavelength dichroic reflectivity
```

BT (3) = ambient blackbody radiance
B' ${ }^{\prime}(1)=$ dichroic blackbody radiance
BT (4) = sphere blackbody radiance
N.4.N. RISA $=\operatorname{VV}(3, L) \cdot \operatorname{VV}(4, L) \cdot B T(3)+(1-V V(4, L)) \cdot$ $\mathrm{BT}(1)+(1-\mathrm{VV}(3, L)) \cdot \mathrm{VV}(4, L) \cdot \operatorname{BT}(4)$
N.5. N1gorithm used to compute the source radiance at the chopper cal for the heated cal source (RISH) lescription of parameters:
$\operatorname{VV}(3, L)=$ wavelength emissivity $\operatorname{VV}(4,1)=$. wavelength dichroic reflectivity B'I (1) = dichroic blackbody radiance BT (4) = sphere blackbody radiance BT(5) = heated cal blackbody radiance
A.S.A. RISII $=\operatorname{VV}(3,1) \cdot \operatorname{VV}(4, L) \cdot B T(5)+(1-V V(4, L)) \cdot$ $\mathrm{BT}(1)+(1-\mathrm{VV}(3, L)) \cdot \mathrm{VV}(4, L) \cdot B T(4)$
A.6. Algorithm used to compute "VBAR" Description of parameters:

VCIII = output of equation A.l computations after being massaged by Configuration Control Board Directive S\&AD-018 algorithms
$B(I)=$ bias for channel "I"
$\mathrm{VV}(6, \mathrm{~L})=$ wavelength detector temperature ratio
A.6.A. $\operatorname{VBAR}=(V C H I-B(I)) \cdot V V(6, L)$
A.7. Algorithm used to compute the radiance of the chopper
Description of parameters:
VBAR $=$ (as in A. 6 above)
I = channel number
$V V(2, L)=$ wavelength responsivity RI = reference radiance
^.7.^. LWLIC $=(-1)^{\prime} \cdot \operatorname{VBAR} / \operatorname{VV}(2, L)+R I$
A.8. Algorithm used to compute the radiance at the calibration source
liescription of parameters:
I.WIIL $=$ radiance at the chopper

VV(4,L) = dichroic reflectivity
BT(1) = dichroic blackbody radiance
A.8.N. LWLIS $=(L W I I C C-(1-V V(4, L)) \cdot B T(1) / V V(4, L)$
N.9. Nlgorithm used to compute the radiance at the aperture
Description of parameters:
L.WIIS = radiance at the calibration source $\operatorname{VV}(5, \mathrm{l})=$ mirror reflectivity

BI (3) = ambient blackbody radiance
A.!.A. LWLIF = (LWILS - (1-VV (5,L)) $\operatorname{BT}(3) / V V(5, L)$
A.10. N1gorithm used to compute short wavelength radiance for channels 3 and 5 Description of parameters:

VCIII $=$ (as in A.6)
$B(I)=$ (as in A.6)
$\mathrm{VV}(2, \mathrm{~L})=$ wavelength responsivity
A.10.A. $S W L I=(V C H I-B(I)) / V V(2, L)$
A.11. Algorithm used to compute short wavelength radiance for channel 2
Description of parameters:
$\mathrm{VCHI}=$ (as in A.6)
$B(I)=$ (as in A.6)
$\mathrm{VV}(6, \mathrm{~L})=$ lead sulphide detector temperature ratio
$\mathrm{VV}(2, \mathrm{~L})=$ wavelength responsivity

```
^.11.N. SWLI(PBS) = (VCIII - B(I)) • VV (6,L)/VV (2,L)
```


APPENDIX B

LISTING OF PROGRAM SYMBOLICS

```
C& THIS PROGPAM IS DESIGNED TO ACT M& M mINGLE SPEGTRAL EUAN ANALYEER
C: AND UTILICES THE PHO-TRS2A RRODUCTION PHOCESSINO nECUIREMENTS EQUA-
C: TIONS, MSC-OT7MA LALIGRATION DATA, MEMU IFJ-URB WAVLLEHBTHS, AND CON-
C: FIGURATION BOARD DIRECTIVE SAAD OIf UPDATE TO REPNODUCE THE 50 48-3
C: DUTPUT VALUES BENEPATED BY D.S.A.D. USING RAY DATA "SO 48-2", AND
C: "SO 42-5", INPUT. ALSO INCORPORATED ARE THE SIX YAUELENOTH DEPENDENT
C: AIGONITHMS PROVIDED BY RICHARD JUDAY, (tF3), TO COMPUTE THE RAMP DF.-
C: PENDENT CHANVEL VOLTAGES.
C:
DESCRIPTION OF PAPAMETEPS:
BT(1,R,3,4,5) = BLACKMODY ECUATIONS FOR.........
T(l) = TD = DICHROIC TEMPEPATUPE
T(?) = TT = PEFERENCE TEMPERATUPE
T(3) = TA = AMBIENT TEMPEPATUP.T
T(4) - TS = SPHEPE TEMPEPATUPE.
T(5) = TH = HEATED CAL TEMPEPPATJPF
'M(!) = L.AMBDA (W'AVELENGTH IN MICPOMETERS)
Vリ(2) = FESPONSIUITY
vy(3) = EMISSIUITY
yツ(4) = DICMPOIC EEFLECTIV; IY
VU(5) = MIPFOD. P.FFLF.CTIUITY
OV(G) = DFTF.CTOF TFMPEPATUPE PATIN
VU(7) = VAVELENGTH UOLLTAGE PEFEPEVCED TO 4.RR UOLT PAMP
U'J(R) = WAVELENGTH UOLTAGE PEFFPENCED TO ACTUAL PAMP
UV(9) = UAMELFNGTH COINTS PEFFPEVCFD TO ACTUAL, PAMP
Y: MAIV PP\capGIRAM DATA APPAY (STOPFDD EYTFPVAI, TO PROGPAM)
V = TABIE L.OOKJP ARPAY FOF FWISSIVITY/PHOD/PHOM/
            V(1-2.1-35) = EMISSIVITY
            O(3-4.1-38) = DICHPNIC PFFLFCTIVITY
            J(5-K,1-11) = MlPFO!? PFFLFCTIUITY
            Y((1,3,5),1-38) = WAUEI_FNGTM
            TFRR = DATA APRAY FIP DETF.CTOF TEMPEFATUPFF PATIO COMPITTATION
            Y = CUAVVFI RIAS APPAY
            S = I.ITEPAL APSAY FOP TEMPEPATIIPF NAMES
            PHOC =.29 = CHOPPET PFFFLFCTIVITY CALCULATION
            CNT = .PO530%.44 = VOLT PEF COINT P.ATIO
            \GammaEM = 273.2 = CFNTIGIADF TN KFLVIN COYSTAVT
            CnmaMnN B(R), "Y(O,9a), \because(R,38)
            STTIVN S(5)
            DIMEVSINN TEPP(R,4)
            DIMENSIOM T(5), BT(5), DAY(4)
            DATA TE.:P /1.,1.,1.,1.,1.,1.,1.11.1.11.1.11.1.11,1.12,2.1,
            1.2R,1.2K,1.2,_,1.2R,1.32,4.3,1.4R,1.4R,1.4R,1.4R,1.45,7.2,
            DATA E, PHOC, CNT, DFG
```



```
    DATA S /'DICHPNIC TENPFPATL'FF', 'PEFFFENCF TEMPEPATUPF',
    'AMBIENT CAI. SOITCFF TEMPFPATIPF','SPHEPF. TEMPFPATIIPF',
    'HEATED CAL SOIPCE TYMPEPATIPFF,/
99 FORMAT (9F13.7)
9R FORMAT (I S.EX,FK.R,5Y,FK.R,RY,FR.5,4X,F7.5,3X,FQ.7, FX,FIA.,R)
97 FORMAT(FK.2,1X,FR,G,FR.5,1Y,F7.5,1Y,F9.7,1X,F4.R,1Y,FR.3,FR,3,FR.3
                                    )
* FOTMAT (I3,2X,FR.P,FIM.5,PX,FII.,R,4X,FI3.R)
95 F\capENAT (K(F7.3,PX))
```

```
    94 FORMAT (6(F7.3.2X).15)
    93 FO!MAT (13,2X,FR.2,F10.5,2X,F11.G,4X,F13.R.5K,F7,1)
    92 FORMAT (I3, &X,FK.2,F10.5,2X,FII.6,AX,F13.8.F9.0.fili.7)
        OPEN (2,INPUT,/VV/)
        OPEN (3.INP(JT,/V/)
    17 READ (2,99) VV
    FEAD(3,95) ((V(J,J2),J=1,6),J2=1,38)
    12 DISPLAY ........ S-191 SINGLE SPECTPAL SCAN ANALY7EF. . . .
-''
    DISPLAY , COMPILE DATE: .,.CDATE.
```



```
**申#####
    IV=1
    DISPLAY 'KEYIN SCAN DAY,HP,MIN,SEC = .."
    ACCEPT DAY
    DISPLAY ' KEYIN PAMP LENGTH IN COIJNTS = "."
    ACCEPT FAMP
    DISPLAY - KEYIN CHANNEL = .,*
    ACCEPT 1
    FOR L=1,90:CALL. UA4(UV(1,L),VU(2,1.),VU(7,L),UV(R,L&,PAMP,YM(9,L),I
                V
    GO 3 = gHORT VAUELENOTH--GO 2 = LONG WAVELENGTH--GON 1 = NEAR I.F.
    a Gก TO (2.1.3.r - 2) I
G ENTEF LOM, :AITFI.FNGTH SECTION....
    a IISPLAY
    DISPLAY - LONE VA'VELENGTH TABLE 1'
    OISPLAY 'EOW:--LAMBDA--PEF UNLTS--ACTUAL. UNLTS--PELATIUE COIMT'
    WF.ITE (O,9R) (L,OVU(1,L),(VU(N,L),M=7,9),L=1,33)
    DISPLAY
    14 DISPLAY 'INPIJT TD,TF,TA,TS.TH, IV DFGPEES CFNTIGPADF.'
        DO 5 K = 1.5
    A IIISPLAY 'KF.YIN SCAN ',*S(K)," = ',*
        ACCEPT T(!S)
    5 CONTINUE
    7 DISPLAY 'RFYIV DFTFCTOP TEMPEFATUFE IN DEGPEES KFLUIN = ",*
        ACCEPT TEMP
        DISPLAY 'TD,TF,\A,TS,TH,TEMP =', T,TEMP
        F\capF K=1,5: T(K) = T(K) + DEG
            COMPUTE. INTERPOI.ATED DETECTOF TEMPFRATIPE.
    IT = 1
    IF (TEMF.GT.90.) 12=2
    IF (TEMP.fT.95.) 12=3
    II=1
    DO 33 N = 1,33
    IF (JU(I,N).GT.R.@) Il = 2
    IF (UU(1,V).GT.12.) I! = 3
    IF (UV(I,N).GT.13.) an Tn 44
    CALL INTFE:I (I2,TEMP,TEFP(II,I2),TFFFP(II,IP+1),VU(R,N))
    GO TO 33
44 11 = 4
    IF (UU(1,V).OT.15.) II= = 
    CALL INTETI (I2,TEMP,TF!F(II,I2),TFFP(Il,I2+1),VU(R,V))
    VI = YV(G,V,
    CALL INTEE1 (10,TFMP,TETF(11+1,12),TFEP(11+1,12+1),VY(R,N))
    va = VU(f,V)
    CALL [NTE:? (UI,V?,OU(I,V),II,VY(R,N))
    33 CONTIN!TM
```

:
i
C:
C:

```
C
C COMPUTE EMISSIVITIES, AND REFLECTIVITIES
C
    J1 = l
    DO 83 J=3,5
    JE = l
    DO 84 K = 1,33
    86 IF(IUV(I,K).GE.V(JI,JR)).AND.(VV(I,K).LE.V(JI.,J&+1))) GO T0 85
    J2 = \2 + 1
    GO TO 86
    85 X1= V(J1,J2)
    x2 = v(J1, J2+1)
    Y1=V(J1+1,S2)
    Y2=V(J1+1,J2+1)
    DX = X2 - X1
    EY = YR - Yi
    DA = VV(I,K) - XI
        VV(J,K)=Y1 + (DA*DY)/DX
    R4 CONTINUE
        J1 = Jl + 2
    a3 CONTIVUE
C:
C:: virite oitt tn printep the input data array.
C:
    21 DISPLAY
        DISPLAY ' LONG WAVELENGTH TABLE 2'
        DISPLAY •FOLI-LLAMRIȦ--RESPONSIVITY--EMISSIVITY--DICHPOIC----MIPPOR.
---FDET.TEMP'
        - *
    WRITE (0,9R) (J,(VTj(M,J),M=1,G),J=1,33)
```



```
= C= = = = = = = '
        DO 10 L = 1,33
    9-1)1SPLAY ' SCAN DAY-HF:MIV:SFC = '"DAY(1),'-',NDAY(2),':',"DAY
3),':',"DAY(4)
    CALL INPUT (L,I,VCHI,VCH2,IV2)
    4 VEAP = (VCHI - E(I)) * VY(K,L)
        DISPLAY ' CONPUTFD YBAF =',"VBAF
        [ISPLAY 'LANBLA/ FESF / EMISS. / RHOT. / PHOM. /RHOC// TI /
Tr . / TA'
    \becauseS.ITE (A,97) (VU(1,1,,L),LL=1,5),PHOC,T(1),T(2),T(3)
    F\capF K=1,5:BT(K)=(119^9./(VV(1,L)**5*(EXP(143RR./(VN(1,L)*T(K))) - - 
)"
    FO: K=1,5:DISPLAY BT(K),' = RLACKBOLY P.ADIANCE FOR P,*S(K)
    RI = PHOC*BT(2) + (1,-RHOC)*BT(1)
    RISA = VY(3,L)*VU(4,L)㠽(3) + ((1,-VV(4,L))*BT(1))
                +(1,-VV(3,L))*VV(4,L)*BT(4)
    FISH=VV(3,L)*VV(4,L)*BT(5) + ((1.-VV(4,L))*BT(1))
                    + (1.-VV(3,L))*VV(4,L)*BT(4)
    WLLIC = (-1.)**I*VBAR/VU(2,L) + P.I
    WLLIS = (VLIIC-(1.-VV(4,L))*BT(1))/VU(4,L)
    WLLIF = (VLI.1S-(1,-VV(5,L))*ET(3))/UJ(5,L)
    DISPLAY FEI, = PEFEFFNCF PADIANCE CALCULATION.
    DISPLAY *PISA," = SOUFCE PADIANCF AT THE CHOPPEF CAL FIP THF AMFIF
T SOHFCE.
                            N
            DISPLAY #PISH,' = SOUPCF PANIANCF AT THE CHOPPF.F CAL FOP THF HFATF
    CAL SOUPCE: D
    DISPLAY 'LAMBDA =',*VU(1,I)," CHAVYFL =',*I," LKLIC =',*MTIIC
    DISPLAY 'LVLIS =',"VLIIS," LWHIF =',"WILIF
```



```
=
    1. CONTINTF.
```

00 TO 1月

```
C
C ENTER SHORT WAVELENSTH SECTION....
3 DISPLAY 'ememememmem=emSHORT WAVELENATH CALCULATIONS FOLLOWEm=E=e=
    DISPLAY . SMORT WAUELENATM TABLE 3'
    DISPLAY 'ROW--LAMBDA--REF VOLTS-*ACTUAL UNLTS--RELATIUE COUNT--PFS
nNSIUITY'
    WRITE (0,93) (N,VU(I,N),((VU(M,N),M=7,9),VU(R,N)),N=34,R2)
```



```
=A:A=A=A=.
                            *
            DO 20 L = 34.62
```



```
),':',&DAY(4) 3
            CALL INPITT (L,I,VCHI,VCHR,IVR)
            IT = I
        11SHLI - (VCHI - B(IT)) / VU(R,L)
```



```
                -RESP =',*(M'(P.1.)
        IISPLAY * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* * * * *'
            IF (IVR.GT.O) IT = IV?
            IF (IVR.GT.B) VCHI = VCHE
            IF (IVR.GT.Q) GO TO II
    pa continue
            GO tO 1&
:
C ENTEII LEAD SIH.PhIDE SECTION.....
U
```



```
==== *
    DISPLAY 'KFYIN DFTECTOR TEMPERATLRE IN DEGREES CENTIGRADE E **
    ACCEPT TEMP
    FOR! L=R3.9(4: CALI. FDET1 (UU(1,L),TFMP,VU(R,I.))
    DISPLAY " LFAN SULPHIDE TABLF. 4*
    DISPLAY 'ROU'-LAMRDA--PEF UNLTS--ACTI'AI. UNLTS--PFLATIUF COUNTS--PE
-.--FIFTITFMP.
                            S
    W?!TE (G,92) (N,UU(1,N),((UU(M,N),M=7,9),VY(2,N),VU(K,N)),N=RT,9(1)
```



```
            DO 39 L %63.90
```



```
),':', DAY(4)
                            3
    CAL,L INPIIT (L,I,VCHI,VCHE,IVR)
    SWLI = (VCH! - [,(I)) (VU(B,L) / UV(R,L)
```



```
    DISPLAY 'FDFT =', NV(R,L),' RESPONSIUITY **OUV(R,L)
    DISPLAY * 电 * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* * * * *'
    30 CONTINUE
    IR DISPLAY "KFY IN I TO PECYCLF. - A TO TFPMINATE. PUN......".*
        ACCEPT ISET
        IF(ISET.EO.I) ती TO I?
```



```
    @iO TO 2?
    GR (IN EFROF:77
```



```
    ACCEPT NEW
    L NEW
        ON ERROP: SYSTEM
        HO TO (9, 31,15, 1, 15,9) 1
    n:% Ealn
```


Page 5 of 9

```
        SUBROUTINE "INTERI" PERTORMS A SINQLE INTERPOLATION OF A
        POINT "T" HITH RESPECT TO POINTS "TI".AND "TE"
    USABE: CALL INTERI i MO TS TIO TEO VG )
        DESCRIPTION OF PARANLTERS
    M = LONER BOUND OF TABLE ARRAY "Y" VALUT. I.E. (TABLE(X,Y))
    T = POINT TO BE INTERPOLATED
    TIE LOWER BOUND TABLE POINT
    TR= UPPER BOUND TABLE MOINT
    VG = RETURN VALUE OF INTERPOLATED NOINT
SUEHOUTINE INTERI (M,T,TI,TE,VG)
DELT = TE - T1
TEP = (850 つ*(M-1)) - T
A - UELLI - TEP / 5.
VK=T1-X
REIURN
END
```

 SUBROUTINE INTERE PERFORMS INTERFULAIION OF
 IHE OUTPUT OF SUBIUUTINE INTERI
 USAGE: CALI. INTERE (VI, VR, V, II, VT)
 DESCRIPTION OF PARAMETERS
 VI - IST OUTPUT OF IVTERI
 VE - 2ND OUTPUT OF INTERI
 \(V\) = WAUELENGTH INPUT
 11 = LOWER BOUND OF TABLE ARRAY "X". I \& E. (TABLE (X,Y,))
 リT : PETURN UALIJE OF ITER.2
 SIBBROUTINE INTEF:2 (VI.V2,V.II,VT)
DIF $=2$.
IF (II.EO.5) DIF=1.
D1 = V2 - $\because 1$
$D 2=U-15$.
IF (II.EO.4) DP = $\because=13$.
$X=D 1$ * D (DIF
$V T=V I+X$
RETUPN
END
SUBROUTIVE LINFIT
PUPPOSE
MAKE A LEAST-SOIIEFS FIT TO DATA WITH A STEAITHT LINE
$Y=B * X+A$
USAGE
CALL LINFIT (Y,Y,SIGMAY,NPTS,MNDE, SIGMAA, R,SIGMAB, P, VL, ICH)
DESCPIPTION OF PAF:AMFTF.PS
X - ARPAY OF DATA POINTS FO? INDEPENDENT VAPIABLF.
Y - ARPAY OF DATA POINTS FO? DFPFRNENT VARIABLE
SIGMAY - APPAY OF STANDAPD DEVIATIONS FOP Y DATA PNIथTS
NPTS - NUMBFR OF PAIRS OF DATA POINTS
MODE - DETFPMINES METHOD OF WEIGHTIVI LEAST SOUAPES FIT
+1 (INSTSIMENTAL) VEICHT(I) =1./SIGMAY(I) \&
A (NO VEICHTING) WEIGHT(I) = 1.
-1 (STATISTICAL) WFIGHT(I) =1./Y(I)

Page 6 of 9

```
C A - Y INTERCEPT OF FITTED STRAIGHT LINE
C SIGMAA = STANDARD DEVIATION OF A
C B - SLOPE OF FITTED STRAIAHT LIN
c
c
C
C
C:
C: LINFIT - LEAST SQUARES LINEAR FIT.
C:
4)
    SIJBPOUTINE LINFITIXI,YI,SIGMAYI,NPTS,MEDE,A,SIGMAA,B,SIGMAB,R,VL,I
    DOUBLE PRECISION SUM,SUMX,SUNTY,SUMXI, SUMXY, SUMYZ
    DOUBLE PRECISION XI,YI, WFIGHT, DELTA, UARNCF.
    COMMON /C/ X(11). Y(11). Siq. :-ill)
c
C
    | SIJM = 0.
    SUMX = 日.
    Sumy = B.
    SUMX2 =0.
    SUMXY = 0.
    SIJMY2 =0.
    2.1 DN 50 I=1,NPTS
    YI = X(I)
    YI=Y(I)
    IF (MODE) 31, 3R. 3R
    31 IF (YI) 34, 3K, 32
    32 KEIGHT = 1./ YI
    GO TO 4!
    34 WEIGHT =1. / (-YI)
        GO TO 41
    3a WEIGHT = 1.
    GO TO 41
    3R WEIGHT = 1. / SIGMAY(I)**?
    41 SUM = SITM + VEICHT
    SIJMX = SIJMY + VEITHHT*YI
    SIJMY = SUMY + WEIGHT#YI
    SUMX2 = SIJMYP + WFIGHT*XI*XI
    SIJMXY = SUMYYY + VFIGHT#XI कYI
    SUMY2 = SUMY? + VEITHT*YI*YI
    57 CONTIVUF.
C
C
    51 DELTA = SIJM*SIJMXR - SIMMY*STMMX
    A = (SUMYR*S(IMY - SIMY&SUMXY) / DELTA
    53 y = (SUMYY*SUM - SIMM*SUMYY) / DELTA
    DISPLAY
```



```
z=玉%"
```



```
=\Sigma='
    DISPLAY
    PETIJRN
    E.NT
```

SUBROUTINE VAA CALCULATES THE CHANNEL 4 REFERENCE VOLTAGE ASSUMING A A．86 VOLT RAMP LENGTH AND STOPES IN VU（7，L）FOR EACH WAVELENHTH．VU（7，L）IS THEN CON－ UFPPTED TO THE ACTUAL VOLTAGE，AND RELATIVE DIGITAL COUNTS，USING THE ACTUAL RAMP LENGTH AND STORES IN U（R，L），AND V（9，L），RESPECTIVELY

USAGE：CALL VA4（V1，U7，V8，R，V9，IV）
DESCRIPTION OF PARAMETEPS
UI ：INPUT WAVELENGTH
V2－RESPONSIVITY
V7＝WAVELENGTH PEFERENCE VOLTAGE（4．XA VOLTS）RAMP LENGTH
V8＝WAVELENGTH ADJUSTED VOLTAGE（ACTUAL VOLTS）PAMP LENGTH
VQ＝WAUELENGTH PELATIUF．COUNTS TO ADUUSTED VOLTAGE
$R=$ PAMP UNLTAGE LENGTM INPIJT
IV＝ALGOPITHM COUNT OPTIMI PEP．
SUBPDUTINE UA4（VI，v2，V7，VR，R，V，IU）
DIMENSION A（3， A$)$
DATA A，VPK，CVT

－1．64778，0．96イ462，0．265708，0．97594i，0．266592，A．0日79R1R1，

4．RK． 0.005 の9244／
n．$=8: C N T$
IF（VI．LT．．71）IV＝ 1
1 IF（VI．GT．．71）IV＝ 2
2 IF（VI．GT．1．3K）IV $=3$
3 IF（U1．fT．2．4R）IV $=4$
4 IF（VI．GT．9．20）IU $=5$
5 IF（U1．GT．12．7）IV $=6$
6 V7 $=(A(1,1 V)+A(2, I V) * V 1+A(3.1 V) * V 1 * V 1)$
$V R=U 7 * F .2$ ，UPK
V＇9＝UR／CNT
， $2=1.0000$
reTIJRN
EVD
SUbroutire＂Input＂acts as a driver rnitive to INPUT THE RECEIPT OF THE STAVDARD DATA SET PER WAVELENGTH OF 11 CHANNEL 4 VALUES AND 5 CHANNEL U（J）VALUES FOT CHANNEL＂I＇，FROM THE TEFMINAL． alteenatively，if ive is uneoijal to zefo．then TKO CHANVELS OF DATM CAV SF SIMULTAVEOUSLY PPO－ CLDSER FOF THE SAMF VAYELEvGTH．

USAGE：CALL INPIIT（L，I，VCHI，VCH2，IVR）
UF．SCAIPTION OF PATAMFTETS
L＝WATEIFPNGTH ASSOCIATFE APPAY POV．I．E．＂UVCX，L．＂
$I=$ INPUT CHANNEL NUMBEF
VCHI＝PFTUPN VALIE FIT CHAVNFL＂I＂

IUR＝NFTINVAI，CHA＂JFL VINEEF＂IVP＂
SUBPDOUTINE INPUT (L. 1, VCHI. VCHE, IVE)
COMMON B(6): VU(9,RE)
COMMON /C/ D(li), V(1i), SIGMAY(11)
DIMENSION C(II)

VCH2 $=0$.
IV2 $=0$
DISPLAY

DISPLAY 'KEYIN 11 POINTS AROUND' , ©UU(9,L), COUNTS'
$V L=V U(1, L)$
DO 11 J - 1.11

ACCEPT V(J)
$C(J)=v(J)$
$V(J)=V(J) \cdot$ ©VT
DRJ) $=(J)$
11 CONTINJE
3 DISPLAY •SAMPLE COUNTS APP.AY $=$, C
1 DISPLAY "KEYIN " σ " TO CONTIVUE, " J " TO CHA"JGE SCAN "J" ",
ACCEPT K
IF (K.GT. 0) GO TO 2
IF (DClo).EQ.a) in TO 4
CALL LINFIT (D,V,SIGMAY,11, $\theta, A, S I G M A A, B O, S I G M A B, R, V L, 4)$
TLAN $=(V U(R, L)-A), B O$
TCHAN $=$ TLAM $+(4 .-1) / 8$.
KCHAN $=$ IFIY(TCHAN +.5$)$
$12=1$

1) IF (IVR.GT.0) $12=1 \mathrm{~V}$
DO $12 \mathrm{M}=1,11$
$C(M)=\theta$.
$D(M)=0$.
$v(M)=0$.
12 Continue
DISPLAY' KEYIN 5 CHANVFL., 120° VALUES AROUND PELATIVE SCAN LINE',
rC:4
DO $5 \mathrm{~J}=1.5$
R JJ $=$ KCHAN $+(J-3)$
DISPLAY 'KEYIN "J" = ', "J, V VALUE FOF SCAN', "JJ," = •, "
ACCEPT V(J)
$C(J)=v(J)$
$V(J)=V(J) * C V T$
$D(J)=(J J)$
5. Contivue
ro TO 3
4 CALL LINFIT (TR, VR,SIGMAY,5, O,A,SIGMAA, BO,SIGMAB, P, VU(1,L), I)
JCHAN $=$ En * TCHAY + A
UCNTS $=$ UCHAN / CNT
IF (IV2.EJ. の) YC4I = UCHAN
JCH2 = VCHAN

DISPLAY \cdot VCHAN(COINTS $)=$-*UCNTS
DISPLAY
DISPLAY "KEYIN "a" IN COVTIVUE, "I" TO INPUT CHANNEL "I" DATA •,"
ACCEPT IVE
IF (IVZ.CT.A) an TO 1 a
rin TO 5

ACCEPT C(K)
$V(K)=C(K) * C N T$
no Tn 1
a PETUPV
FND

Page 9 of 9

```
C SUBROUTINE FDETI COMPUTES THE DNURLE LINEAR
C
C
C
C
C
C
C
C
        INTEPPDLATION OF VALUES POR THE LEAD SULPHIDE
        dETECTOF TEMPERATUPE RATIO.
    USAGE: CALL. FDETI (VI,T,VG)
    DESCRIPTION OF PARAFETERS:
        VI = UAVFLENATH
        T - DETFCT\capP TEMPEPATIJPE IN DEGREES CENTIGRADE
        V6 = PFTTUPNED VALIJE PATIO
    SIJBROUTINE FDETI (V1,T,V6)
    HIMENSIOV PAS(5,G), P(2)
    DATA PBS /A.0,17.4,23.3,2R.5,34.0.1.1,1.0.1.17.1.34.1.53.
        1,6,1.0,1.10,1.24,1.44,2.0,1.0,1.10,1.24,1.44,
        2.4,1.0.1.19.1.44, 1.80,2.5,1.0.1.2125,1.49.1.89/
    kl = 2
    kP = 2
    2 IF((T.GE.PBS(K2,1)).AND.(T.LE.PBS(K2+1,1))) GO TO 1
    KP = S2 + 1
    G0 TO 2
    | IF((VI.GF.,PBS(1,KI)).AND.(VI.LE.PBS(1,K1+1))) GO TO 3
    K1 = K1 + 1
    nO TO 1
3 к3 = к2
    DO 4 K = 1.2
    XI=PBS(1,k1)
    x2 = PBS(1, K1+1)
    Y1 = PBS(K3,K1)
    YP = PRS(K3,K1+1)
    DY = YR - XI
    EY= Y2 - Y1
    DA = V1 - XI
    P(K)=Y1 + (DA*[Y)/DY
    K3 = K3 + 1
    4 CONTINUE
    X1 = PBS(K2,1)
    X2 = PRS(K2+1,1)
    Y1 = P(1)
    Y2 =P(2)
    DX = X2 - \1
    DY = Y2 - Y1
    DA =T - M1
    VK = Y1 + (D;:DY)/DY
    RETUPN
    E.vD

Page 1 of 5


Long wavelangit table 1
ROW－LAMBDA－－REF VOLTS－－ACTUAL VOLTS－－RELATIUE COUNT
\begin{tabular}{lllll}
1 & 6.00 & 2.86284 & 2.867182 & 573.15869324 \\
2 & 6.30 & 2.97227 & 2.976778 & 595.66530558 \\
3 & 6.60 & 3.08314 & 3.987814 & 617.26155880
\end{tabular}
\begin{tabular}{lllll}
3 & 6.60 & 3.08314 & 3.087814 & 617.26155880 \\
4 & 6.90 & 3.19544 & 3.200288 & 639.74545271 \\
5 & 7.20 & 3.30918 & 3.314201 & 662.51698 .440
\end{tabular}
\begin{tabular}{lllll}
5 & 7.20 & 3.36918 & 3.314261 & 662.51698746 \\
6 & \(7.5 月\) & \(3.4243 K\) & 3.429554 & 685.57616287 \\
7 & 7.80 & 3.54097 & 3.546345 & 708.922979.
\end{tabular}
\begin{tabular}{lllll}
7 & 7.80 & 3.54697 & 3.546345 & 788.92297912 \\
8 & 8.19 & 3.65962 & 3.664575 & 732.557436 .15 \\
9 & 8.40 & 3.77951 & 3.784243 & 756.47953398
\end{tabular}
\begin{tabular}{lllll}
9 & 8.40 & 3.77851 & 3.784243 & \(756.4795339 R\)
\end{tabular}
\begin{tabular}{lllll}
10 & 9.70 & 3.89943 & 3.905351 & \(780.6 R 927257\) \\
11 & \(9.9 n\) & \(4.021 R \cap\) & 4.027898 & 805.18665195 \\
12 & 9.30 & 9.62922 & 9.638177 & \(125.9738686 ?\)
\end{tabular}
\(9.30 \quad 0.62922 \quad 0.630177 \quad 125.97386862\)
9.50 0．72345 0．724543 144．93796372
\(9.90 \quad 0.81599 \quad 183.31722 R \quad 1897417\)
\(10.200 .99686 \quad 0.908234 \quad 181.55819992\)
\(10.50 \quad 0.99605 \quad 0.997559 \quad 199.41454114\)
\(10.80 \quad 1.38356 \quad 1.085294 \quad 216.93499765\)
\(1.10 \quad 1.16939 \quad 1.171169 \quad 234.11956952\)
\(11.401 .25355 \quad 1.255454 \quad 250.96825675\)
11.791 .336931 .338058 － 267.48185933 283． 55797726 299．49901055 315．09415920 336．67689942 354．01287646 371.34885349 3RR．RR \(\triangle\) R3M53 496．AR．ดRの757 417．57812559 434．914102к2 \(452.259079 \times 7\) 4R9．5RAD5R7日 481．14337473
```

INPIT TD,TR,TA,TS,TH, IN DEOPEFS CENTITPCDE
KF.YIN SCAN DICHENIC TFMPFEATUFE = 2.4.893
!EYIN SCAN REFEPENCE TEMPERAT'JFF = -15.252
KEYIN SCAN AMBIENT CAL SOUPCF TEMPERATURF. = 23.PR!
KFYIN SCAN SPMEPF TEMPFRATURF = 23.2R1
KEYIN SCAN HEATED CAL SOUPCE TEMPEPATUPE = 49.025
KEYIN DETECTOR TEMPFPATUPE IN DETPEEES KFLUIN = 86.205
TR,TR,TA,TS,TH,TEMP = 2.4.893 -15.252 23.2R1 23.2.31
49.925 8K.205

```

Example 1．－Long wavelength tables 1 and 2；calculations for wavelengths 8．1，9．3， and 14.1 micrometers；and use of contingen \(2 y\) interrupt．
\[
\mathrm{C}-1
\]

Page 2 of 5
LONG WAVELENGTH TABLE \(\varepsilon\)

\(=\theta=\theta=\theta=\theta=\theta=\theta=\theta=0=0=\theta=\theta=\theta=\theta=\theta=\theta=\theta=\theta=\theta=\theta=\theta=\theta=\theta=\theta=\theta=\theta=\theta=\theta=\theta=\theta=\theta=\theta=\theta=\theta=\) دL＇AV リAY－HI：MIV：SFC \(=254-14: 0: 44\)

Ine！T FOR－
ESC：（INPUT）9＋1
＋r：ก 77

FIFOE（77）INTEFPUPT，L \(=1\) ，KFYIN VF．V \(L=R\)
\[
\mathrm{C}-2
\]

Page 3 of 5

\(\because C H A N(Y O L T S)=1.992542439=8.0032 E-03 * 5.94 R 217598+1.944777 \pi\)
VCHAN (COUNTS) \(=399.34914 R 2\)


Page 4 of 5
```

 SCAN DAY-HR
 ESC: (INPUT)9
+G0 77
EPROR(77) INTERRUPT, L = 9, KEYIN NEW L = 12
INPUT FOR LAMBDA 9.3, CHANNEL 6, ROW = }1
KFYIN 11 POINTS AROUND 125.9738686 COUNTS
KEYIN 9.3 SCAN(1) = 118
KEYIN 9.3 SCAN(2) = 120
KEYIN 9.3 SCAN(3) = i21
KEYIV 9.3 SCAN(4) = 123
KEYIN 9.3 SCAN(5) = 12.4
KEYIN 9.3 SCAN(6) = 126
KEYIN 9.3 SCAN(7) = 127
KEYIN 9.3 SCAN(R) = 129
KEYIN 9.3 SCAN(9) = 130
KEYIN 9.3 SCAN(10) = 132
KEYIN 9.3 SCAN(11) = 133
SAMPLE COUNTS ARRAY = 118 120 121 123 124 124 120
127 129 130 132 133
KEYIV "Q" TO CONTINUE, "J" TO CHANGE SCAN "J" Ø

```

```

 VOLTAGE(9.3.4)= 7.503E-03 * SCAN + 0.583869818
    ```

```

KEyin 5 Channel 6 values afotind pelative scan line f
KE,YIN "J" = 1 VALIIE FOR SCAN 4 = 554
KEYIN "J" = 2 YALUE FOF SCAN 5 = 560
KEYIN "J" = 3 U'ALUE FOR SCAN R = J62
KE.YIN "J" = 4 YALIF FOP SCAN 7 = 5AO
:SEYIN "J" = 5 UALUE FOR SCAN R = 557
SAMPLE COUNTS ARPAY = 554 5K@ \& 5RB 557 \&

- O O O O
MFYI!J "g" TO CONTINIE, "J" TO CHANGE. SCAN "J" 3
OLI SCAN 3 = D, KEYIN NEW SCAN 3 = 562
KEYIN "@" TO CONTINUE, "J" TO CHANGE SCAN "J" @

```

```

 YOLTAGE(9.3, K) = 3.0012E-03 * SCAN + 2.77611
    ```

```

VCHAN(VOLTS) = 2.7938R24R = 3.0012E-03 * 5.921784774 + 2.77611
VCHAN(COUNTS) = 558.5530709
KEYIN "の" TO CONTINUE, "I" TO INPUT CHANNFL "I" DATA D
COMPUTED UBAP = 2.6626462R4
LAMSTR/ FESP / EMISS. / [HOD. / PHOM. /RHOC/ TD / TF / TA
9.30 1. 0.9R0日0 0.76200 0.89090日0 0.99 298.093 257.948 29R.4R1
0.5919R2R4=E-04 = BLACKBODY RADIANCE FOR DICHROIC TEMPERATUPE
L:263530757E-94 = BLACKBODY RADIANCF. FOR REFEKENCL IEMPEPATUPEF
9.323621744E-04 = BLACKBODY KANIANCE FOF AM!IENT CAL SOUPCE TEMPERATURE
Y.323621744E-04 = BLACKRODY RADIANCE FOK SPHEPE TEMPERATURE
1.418631423E-03 = BLACKBODY PADIANCE FOT HEATED CAL SOURCE TEMPERATUFE
4.316815078E-D4 = REFERENCE PADIANCE CALCULATION
9.387480927E-04 = SOUPCE RADIANCE AT THE CHOPPER CAL FOP THE AMBIENT SO
HCE U
1.301875117E-(J3 = SOIIPCE PADIANCE AT THE CHOPPER CAL FOR THE HEATED CAL
snumce
LAMEDA = 9.3 CHANNEL = 6 LWLIC = 2.063077964
LNLIS = 3.494553382 LWLIF=3.92238372K

```

    C-4

\section*{Page 5 of 5}



Example 2. - Short wavelength table 3.
C-6

GO 1
 KEYIN DE＇CECTOR TEMPEPATUPE IN DEGREES CENTIGRADE \(=24.6623\) LEAD SULPHIDE TABLE 4
FON－－LAMBDA－－PEF VOLTS－－ACTUAL VOLTS－－RELATIUE CSUNTS－－RESP．－－FDETITEMP
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 4.3 & 1.40 & 0.22605 & 0.2286397 & 45.25740927 & 1. & 1.1678211 \\
\hline R4 & 1.44 & 0.29490 & 0.295345 & 59.84015624 & 1. & 1.1615923 \\
\hline 65 & 1.48 & 0.36459 & 0．365144 & 72．99313128 & 1. & 1.1553436 \\
\hline 66 & 1.52 & 0.43513 & 0.435794 & 87．11633438 & 1. & 1.1491348 \\
\hline 67 & 1.56 & 0.50653 & 0．50729R & 101.40976557 & 1. & 1．1429061 \\
\hline 6R & 1．60 & 0.57877 & 9．579850 & 115．87342482 & 1. & 1．13A6773 \\
\hline \(\alpha 9\) & 1.64 & 0.65187 & 0.652855 & 130.50731215 & 1. & 1．136R773 \\
\hline 70 & 1．68 & 0.72591 & 0.726912 & 145．31142755 & 1. & 1.1368773 \\
\hline 71 & 1．7？ & 9．RABAL & \(0.8918 p 0^{\circ}\) & 1月0．28577102 & 1. & 1．1368773 \\
\hline 72. & 1.75 & 0.87625 & 9．R77580 & 175.43034256 & & 1.1366773 \\
\hline 73 & 1.80 & 0.95275 & 0.954191 & 199.74514217 & 1. & 1.13667773 \\
\hline 74 & 1.84 & 1.03009 & 1.031654 & 206．23016986 & 1. & 1.1366773 \\
\hline 75 & 1．88 & 1.10829 & 1.109969 & 221．R85A2561 & 1. & 1.1366773 \\
\hline 76 & 1.92 & 1.12733 & 1.189335 & 237．71090944 & 1. & 1.1366773 \\
\hline 77 & 1.96 & 1.26723 & 1.269152 & 253．7ana2134 & 1. & 1.1366773 \\
\hline 78 & 2.00 & 1.34792 & 1．35amel & 269．R725a132 & 1. & 1．1366773 \\
\hline 79 & 2.04 & 1.42957 & 1．43174？ & 2RK．2ART293R & 1. & 1.1425591 \\
\hline 9.9 & 2.78 & 1.51292 & 1.514314 & 302．7151254R & 1. & 1．1594409 \\
\hline 91 & 2.12 & 1.59532 & 1.597738 & 319．391749RR & 1. & 1.1723227 \\
\hline 98 & 2.14 & 1.67947 & 1.682913 & 336．23R60192 & 1. & 1．1842945 \\
\hline 83 & 2.20 & 1.74446 & 1.767149 & 353．2556R225 & 1. & 1．19ABR63 \\
\hline 94 & 2.2 .4 & 1．85931 & 1.953119 & 37M．4429906R & 1. & 1．29796R0 \\
\hline 85 & 2.28 & 1.93781 & 1.939949 & 387．90052713 & 1. & 1.2198498 \\
\hline pr & 2.32 & 2.02456 & 2．027イ3の & 405．32R29168 & 1. & 1.231731 h \\
\hline \[
87
\] & \(2 \cdot 36\) & 2.11298 & 2.116164 & 423．0268R430 & 1. & 1.2436134 \\
\hline ar & 2.40 & 2.20221 & 2.295548 & 440.89450498 & 1. & 1.2554952 \\
\hline 09 & 2.44 & 2.29231 & 2.295785 & 498．93295375 & \(1 \cdot\) & 1．9．67377a \\
\hline 00 & 2.49 & 2．3832 & 2.3 SRR72 & 477．14183积 & 1. & 1.2792598 \\
\hline
\end{tabular}

Example 3．－Near infrared table 4.
\[
\text { C- } 7
\]

APPENDIX D

FLOW DIAGRAMS

S-191 single splectral scan analysis program


S-191 CONTINGEN:ZY INTERRUPT OVERLAY


\section*{APPENDIX E}


\footnotetext{
*See appendix \(C\), example 1 , wavelength \(=8.1\) micrometers for an application of this source listing and the use of the relative scan line numbers.
}```


[^0]:    *MSC-07744 is Earth Resources Experiment Package (EREP) Calibration Data.

