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FOREWORD

This report summarizes the work conducted by McDonnell Douglas Astro-
nautics Company-East (MDAC-E) in St. Louls, Missouri for the NASA Langley
Research Center under Contract NAS1-1:901. Mr. James C. Dunavant was the
NASA Technical Monitor for this study. L. A. Haas (MDAC~E) made a signifi-
cant contribution to those parts of this study which involved the lateral
heat conduction investigation and application of the developed flow model.
Using his method, R. B. Dirling (MDAC-W) calculated the average heat transfer
values which are presented herein,
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1.0 SUMMARY

The results of an experiiental program to evaluate heat transfer and
pressure distributions on corrugation roughened flat plates in thick turbulent
boundary layers have been correlated and compared with similar data and cor-
relations for thin boundary lsvers, The experimental program consisted of
tests in the tunnel wall boundary layers of the Langley Unitary Plan Wind
Tunnel (UPWT) and Continuous Flow Hypersonic Tunnel (CTHT) at free-stream Mach
numbers of 2.5, 3.5, 4.5, and 10.3. Tests in the UPWT were conducted at a
free-stream Reynolds number/cm of 0.108 x 106 and in the CFHT, at a Reynolds
number/cm of 0.033 x 106 and 0.013 x 106. The test configurations consisted
of 50.8 cm x 50.8 cm panels with corrugated beads of two different peak ampli-
tudes, 0.61 cm and 0.29 cm. The angle of the corrugated beads relative to
the flow direction was varied between 0° (aligned) and 90° (normal). The peak
and average heating were found to be strong functions of the Mach number and
Reynclds number. The better correlations of the thick boundary layer data
incorporated an internal parameter in the undisturbed boundary layer (total
temperature at the height corresponding to the roughness amplitude) and bound-
ary layer bulk parameters (8* and 8) in addition to the boundary layer edge
and geometric parameters. In general, poor agreement of the presert results
with the correlations and data of previous investigators was noted. This is
not unexpected since the roughness elements tested in this study were deeply
submerged in the boundary layer, whereas the previous investigators had a
more limited data base obtained in thin turbulent boundary layers.



2.0 INTRODUCTION

The effect of surface corrugations and surface irregularities on boundary
layers has received much attention in the last ten years (References 1 to 5).
Most of the results obtained in these investigations are summarized by Bertram
in Reference 6. Bertram's work, although quite extensive, did not include
data for which the boundary layer was orders of magnitude thicker than the
surface corrugation height. This is an important practical problem because
very thick turbulent boundary layers are often encountered under certain
"flight conditions., The present study is concerned with heat transfer when
the corrugations are deeply submerged in a thick turbulent boundary layer.

The flow conditions for which heating distributions have been measured
on corrugated surfaces ahd wavy walls in turbulent boundary layers are shown
in Figure 1, which gives the ratio of the displacement thickness to the rough-
ness height versus the local edge Mach number for an equivalent smooth sur-
face. The present data are seen to greatly extend the range of data available
on corrugated surfaces in turbulent boundary layers. These data were obtained
by testing fullscale corrugation roughened panels in the wall boundary layer
of a supersonic and hypersonic wind tunnel.

In this report, the experimental program used to obtain the data is des-
cribed. The data are analyzed and correlated in terms of the pertinent flow
and geometric parameters, The developed correlations are compared with the
available thin boundary layer data, and the present data are also compared
with previously published correlation technjques,



3.0 MODEL AND INSTRUMENTATION

Two corrugation roughened flat panels were tested in this study. Both
plates were 50.8 cm x 50.8 cm x 2.54 cm and were fabricated from nominally
0.043 cm thick 321 stainless steel. A photograph of one of the panels is
shown in Figure 2, and a drawing of the panel shape is presented in Figure 3.
The two panels were identical in shape except for the wave amplitude, as shown
in Figure 3. The peak amplitude was 0.61 cm for one panel and 0.29 cm for
the other panel. For both panels the maximum amplitude was a maximum and
essentially constant over an 18.8 cm section in the center, and tapered to
zero at 1.91 cm from the panel edge. Each plate contained 12 1/2 corrugations
(wave cycles) which ran the entire length of the model. With the corrugations
aligned parallel with the flow (configuration termed @ - 0°), the corrugations
were composed of parabolic segments. With the corrugations aligned normal to
the flow (termed @ = 90°), the corrugations were constructed of circular arcs
connected by straight line segments. For both plates, the wavelength was equal
to 3.66 cm.

Wave shapes (or corrugation shapes) for the two panels as a function of
the flow angle relative to the corrugations are shown in Figures 4 and 5, and
the surface distances along the waves in the direction of the flow are pre-
sented in Figures 6 and 7. The wave shape is greatly influenced by the flow
angle. The local surface angle alcng the wave, o, is shown in Figure 8 for
both panels for @ = 90°. For the larger corrugation, the maximum angle is
+ 60°, and for the smaller corrugation, the maximum surface angle is + 22°.
As the angle @ decreases, the angle a also decreases so that * 60° and * 22°
represent the maximum and minimum surface angles for all values of §.

Both corrugated models were instrumented with thermocouples and pressure
orifices. With the waves normal to the flow direction, the 2nd, 6th, and
10th waves were instrumented with thermocouples along the mndel centerline in
the direction of the flow (Figures 9 and 10). In the same fashion, the pressure
taps were located on the 2nd and 10th waves slightly off the centerline
(Figures 11 and 12). .

A smooth flat plate (50.8 cm x 50.8 cm x 2.54 cm) was also fabricated
from 321 stainless steel (0.127 cm thick). This model was instrumented with
thermocouples only. Flat plate heating data were measured so that the heating
data obtained on the corrugation roughened panels could be referenced to local
measured flat plate values,



4,0 TEST PROGRAM

The two corrugated panels and the flat plate were tested in the turbulent
wall boundary layer of the Langley Unitary Plan Wind Tunnel (UPWT) and the
Continuous Flow Hypersonic Tunnel (CFHT). The panels were attached to an
adapter plate which was mounted flush with the wind tunnel wall as shown sche-
matically in Figure 13. For the UPWT teats, the adapter plate contained a
mechanical actuator assembly so that the corrugation orientation angle rela-
tive to the free-stream direction could be varied from 0° to 90°., For the
CFHT tests, the corrugations could only be tested from 0° to 15° and {rom 75°
to 90° due to the arrangement of the injection mechanism.

The flow and geometric conditions for the present study are listed in
Table I. The flat plate was also tested at the five different Mach number
and Reynolds number combinations. The boundary layer parameters for the
turbulent wall boundary layers are listed in Table II. The displacement
thickness and momentum thickness for the CFHT were calculated from measured
pitot and total temperature profiles through the boundary layer by assuming
a constant free-stream static pressure through the boundary layer. At the
time of these calculations, no static pressure measurements through the bound-
ary layer were available. For the UPWT, §* and 6 were obtained by calculating
the boundary layer development on the wind tunnel wall using the numerical
method described by Keller and Cebeci (Reference 7). This method has been
extended to compressible flows by Cebeci, and this latter computer program
wags used for the present calculations. Good agreement was obtained in a
comparison of the velocity profiles predicted by this method and the experi-
mental velocity profiles measured by Couch (Reference 8). Beckwith's corre-
lation (Reference 9) was used to calculate the laminar sublayer thickness for
the CFHT. This correlation, however, did nct contain data in the range of
interest for the UPWT test conditions. Therefore, for the UPWI conditions,§

was calculated from the following equation (Reference 10): 8

§ = lluw aw
s (1)
YB M ‘, E_Cf

where Cf was taken from the boundary layer solution. &g values calculated in
this manner are superimposed on Beckwith's correlation (Figure 14). Fairly
good agreement exists between these calculations and an extrapolation of the
Beckwith correlation.



5.0 EXPERIMENTAL RESULTS

In this section the heating and pressure distributions on corrugation
roughened surfaces deeply submerged in thick turbulent boundary layers are
presented. External flow and geometric conditions were varied so that the
effect of Mach number, Reynolds number, flow angle, and roughness height could
be determined.

Flat Plate Distributions - The measured spanwise heating distributions on
the flat plate, shown in Figures 15 and 16 , revealed gradients in the wall
boundary layers of both the UPWT and CFHT in the vertical direction. These
gradients are due to the manner in which the boundary layer develops in the
nozzle. The gradients in the UPWT wall boundary layer are less severe than in
the CFHT. This is probably due to the fact that the constant area test section
of the UPWT is located approximately 7 feet downstream of the end of the nozzle.
This constant area section allows the gradients in the boundary layer to dampen
out. The axial gradient in the flat plate heating distributions was negligible
for both the UPWT and the CFHT.

Elimination of Spanwise Gradient Effects - Data taken on the corrugated
panels exhibited similar spanwise heating gradients to those observed on the
flat plate. FHowever, analysis of the corrugated heating data showed that the
effects of the nonuniform boundary layer could be eliminated by referencing
the corrugated heating data to the local flat plate value, as shown in Figure
17, 1In this figure, nondimensionalized heating distributinns on a wave at
three spanwise locations (y=0, 16.51, and -16.51 cm) are shown for the case
in which the corrugations were normal to the flow. Normalizing the corrugated
panel heat transfer coefficiants by the local flat plate value collapses the
three different spanwise distributions. For this reason all the distributions
on the corrugation roughened surfaces reported in this study are nondimension-
alized and correlated with the local flat plate value.

Flow Angle (Corrugation Angle) Effect - Heat transfer and pressure dis-
tributions for supersonic flow (M_ = 3.5, Re /cm = .108 x 106) are presented
in Figure 18 for flow angles of 09, 159, and 90° and are presented for hyper-
sonic flow (M_ = 10.3, Re,/cm = .033 x 106) in Figure 19 for flow angles of
0°, 159, 75°, and 90°. Results are for the larger amplitude panel. Both heat
transfer and pressure are ratioed to measured flat plate values. The largest
heating and pressure increases occur when the flow is normal to the corru-
gations. For all flow angles heating is much more affected than pressure.
The largest changes in heating occur between @=0 and 15°. These trends are
similar to those observed for thin boundary layers (Reference 6). 01l flows
indicated that these distributions were caused by flow separation in the
valley and subsequent reattachment on the following wave. The surface pres-
sure is essentially equal to the flat plate pressure except in the region of
flow reattachment. The same effect of flow angle was measured on the smaller
amplitude panel.




Mach Number Effect - During the supersonic tests in the UPWT, the Mach
nunber was varied while the Reynolds number was held constant at Re /cm = ,108
x 106, As can be seen in Figure 20, the Mach number has a big effect on the
heating distribution and only a slight effect on the pressure distribution.
These results are for the flow normal to the corrugations having a peak
amplitude of 0.61 cm. The free-stream Mach number had the same effect on the
panel which had a peak amplitude of 0.29 cm.

Reynolds Number Effect ~ As with the Mach number, the Reynolds number
strongly influences the heating distribution and only slightly changes the
pressure distribution (Figure 21). This case is for che free-stream flow
direction normal to the deep corrugation. These trends were measured in CFHT
in which the Mach number was held constant at M_ = 10.3 and the Reynolds
number was changed from Re_/cm = .013 x 108 to .033 x 106. Again, similar
results were obtained with the shallow wzve panel in that peak heating and
pressure increased with Reynolds number in the same magnitude relative to the
respective flat plate value. It should be nuted that this trend differs from
the thin boundary layer data. The thin boundary layer data of Cary (Reference
4) indicate that the peak heating is inversely proportional to the Reynolds
number, whereas the current data indicate a direct proportiomality.

Wave Amplitude Effect - The present tests on the effect of corrugation
height (amplitude) in thick turbulent boundary layers yielded results which
ar- radicelly different than those for thin boundary layers. In the present
study, heat transfer and pressure were found to be relatively insensitive to
the wave amplitude for all flow conditions investigated. This observation,
demonstrated in Figures 22 and 23, indicates that the effect of wave
height is much less than the effect of Mach number and Reynolds number. This
result can prove to be very important in the sizing of corrugated heat shield
panels designed for vehicle application in very thick boundary layers. For
example, using the data of Cary for thin boundary layers which were obtained
for approximately the same free-stream conditions and geometric parameters
as for the present supersonic test, the effect of increasing the wave height
by a factor of two would be to increase the peak heating by a factor of nearly
three. This result shows that caution must be exercised in extrapolating
thin boundary layer data to predict the heating for currugation roughened
surfaces designed for use in very thick boundary layers.

Wave Cycle Effect - In previous results, peak heating and pressure on
multiple waves in thin turbulent boundary layers were found to decrease with
increasing wave cycle. These decreases were not found for the present data
in thick turbulent boundary layers. In fact no decay in peak heating or pres-
sure was detected for the present tests for a succession of corrugationms.

This result is clearly seen in Figures 24 and 25 which present heating
distributions over the 2nd, 6th, and 10th waves and pressure distributions
over the 2nd and 10th waves. It is clear from these figures that for a given
set of flow conditions, the heating and pressure distributions for the entire
panel are independent of wave cycle. This result suggests that surface
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roughness deeply submerged in the boundary leyer has a small effect on the
external flow, In fact, the external flow adjusts so rapidly to the dis-

turbance of the wave that each succeeding wave experiences the same incoming
temperature and velocity profile as the preceding wave. This was verified
from pitot profiles taken through the boundary layer at the end of the
corrugated panels which were almost identical to the smooth wall pro€ '}

On
the other hand, wave cycles located in thin boundary layers drastici:.y e. ot
the external flow conditions (References 4 and 6) which results ir ignific.nt
decreases in heating and pressure.
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6.0 CORRELATION OF PRESENT TEST RESUL"3S

The maximum and average wave heating measured during this study are
summarized in Tables III and IV. Maximum value:s were obtained from careful
fairings of the data. The average heating is based on the projected (flat
plate) area and not the true surface area. These average values were obtained
by integrating the area under the heating distributions and applying a surface
area correction. For almost all flow conditions, s{ uificant increases in peak
heating occur for all flow angles greater than 0°. For hypersonic conditions,
the average heating is less than the flat plate value for several flow angles.
However, for the supersonic tests, all average heating values were observed
to be greater than the flat plate value except when the corrugations were
aligned in the free stream flow direction.

Theoretical Flow Model - 0il flow patterns were obtained during both the
supersonic and hypersonic tests. These photos did not reveal detailed sur-
face flow patterns, but indicated flow separation just aft of the wave peak
and reattachment on the following wave for even small wave angles (the smallest
wave angle for which oil flows were taken was 15°). A flow model (Figure 26)
consistent with the oil flow patterns was postulated in hope that the heating
distribution on complets wave could be predicted. In this model, flow
separation is assumed t. occur near the top of the wave and an upstream and
downstream attached boundary layer are assumed to initiate at the reattachment
point (which is approximated by the location of the measured peak pressure).
Edge stagnation conditions for the two new boundary layers are aasumed to be
those at the reattachment point. These stagnation conditions are used in con-
junction with the measured surface pressures to define local edge conditione
which are used as input to a nonsimilar compressible turbulent boundary °
solution for a flat plate (see Test 'rogram for discussion of the solu’.

The stagnation pressure at the reattachment point 1is obtained by the f: ag
technique. First, the static pressure on the streamline at reattachmen
assumed equal to the free-stream flat plate pressure. Second, the total ,res-
sure on this streamline is estimated. The surface pressure at the reattach-
ment point is then calculated and compared with the measured surface pressure.
This procedure is repeated until the calculated pressure equals the measured
pressure. The total temperature at the reattachment point is assumed to
correspond to the total temperature in the undisturbed (flat plate) boundary
layer at the vertical location for which the local stagnation pressure

equals the stagnation pressure at the reattachment polint.

Prediction of the heating distribution using the flow model is shown in
Figure 27 for a supersonic case (M_= 4.5, Re_/cm = 0.108 x 10°) with the flow
normal to the waves. The theory follows the trend of the data, but the pre-
dicted values are higher than the measured values. It was found that the pre-
dicted heating distribution was primarily a function of the tntal temperature
at the reattachment point. Certainly more analysis is needed to improve and
agsess the range of validity of the flow model.



Correlation of Peak Heating - One of the main objectives of this in-
vestigation was to correlate the peak heating data in terms of the flow
conditions and geometric parameters. Preliminary sensitivity studies showed
that the peak heating for the flow normal to the waves could be correlated in
terms of the local Mach number in i{ne flat plate boundary layer evaluated at
the maximum wave amplitude (Figure 28). Also, experience with the flow model
indicated that a dominant factor in the theory which centrolled the magnitude
of the heating prediction was the total temperature at the reattachment point,
These two findings suggested that an internal boundary layer temperature
parameter evaluated at the peak amplitude would be useful in correlating the
data. The parameter decided upcen is

= ¢ v (2)

A similar parameter was employed to change the heat transfer coefficient pre-
dicted using the theoretical flow model from oze based on the temperature at
reattachment to one based on the free-stream temperature (with the exception
that T was used instead of the T, 1in the actual conversion).

TRP Te

The first attempt at correlating the data in terms of the temperature paraueter

@ proved quite successful, as shown in Figure 20. With the term
1

hmax/hFP 0
as the deperdent variable, the present data for the flow normal to the waves
are directly proportional to the Mach number, shape factor, and the square
root of the wave amplitude/wave length and inversely proportional to the
Reynolds number based on the wave amplitude. Some of the Cary data, shown
in Figure 29, also agree with thir correlation. (T-~ 8 used for Cary's data
was 1). However, comparison of thls correlating form .ith the present data
for other flow ungles showed that different forms of th goveirning parameters
would be needed.

An automated multiple regression technique designed to fit multiple
variables was employed to help sort out the important parameters and obtain
consistent nonbiased correlating equations. The computer program, which is
described in detail in Reference 11, is a stepwise Multiple Regression
Analysis (MRA) which provides information as to the adequacy of candidate
correlation functions and the equation coefficients. The MRA computes a series
of multiple linear regression equations in a stepwise manner. At each step,
one parameter is added to the equation. The variable that is added is the
one whichh makes the greatest reduction in the variance about the mean.

J—



Several good fits to all the present data were obtained with h___/h 1
max’ FP §
as the dependent variable.

However, these data fits were found to be in poor
agreement with the other data sets. Further analysis showed that if

1
(hmax/hF? 8 -1
was used as the dependent variable, all the present data could be modelled and

much better agreement existed between the correlations and the other data sets.
The following equations were found to give good fits to the present data:

.898
feax 1,9 (s) (6_*) A
hep B M;615 L Reé607 L ( %>1.043 (3)
.147 1.57 .882
:—m'é 1= ngs (%) 1203 (%:) -
FP M Ry,

—_ (i)
8 1.393
T

Note that 8 was an independent variable in the derivation of Equation (4).

Equation (3) is compared with the present data for all flow angles in
Figure 130. A good fit to the data was alsc obtained by Equation (4).

During the course of the correlation activity, it was discovered that
another important geometric parameter was the sine of the local surface angle
at reattachment.

It could intuitively be expected that a parameter represent-
ing a normal component to the surface at reattachment would play a role in
correlating the data.

It was found that by including sine a as a variable,

10
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the temperature parameter 8 could be eliminated from the list of variables.
Two correlations developed using the sine are:

1.097 .42 .148

L. LG ) R B 20104 . .
e T4 T eI () e
FP Mw1 45 e 206 ec L 8 1.387 (sin a) .196
L L
(6)
.
where C3 = 6.614
e
1

Again, Equation (6) was derived assuming sin o was an independent variable.

The sine of the surface angle at reattachment is listed in Table V along
with the sine cf the maximum surface angle which is also listed for comparison.
As example of the data fit obtained, Equation (5) is compared with the
33 data points in Figure 31. Equally good agreement between correlation
and data points was also obtained by Equation (6).

Equations (4) to (6) show vastly different sensitivities to the individual
parameters. Yet each equation represents a good fit of the data. This result
is due to a lack of data obtained in experlments for which the parameters were
varied independently.

1




7.0 COMPARISON WITH OTHER DATA SOURCES AND CORRELATIONS

The thin turbulent boundary layer data available on surface corrugations
and surface irregularities are listed in Table VI and are compared with the
vresent data set in this section. Comparison of these other data sets with
Equations (3) through (6) showed that only one of the correlations gave a pre-
diction which was in the ball park for all these data sets. The disagreement
of the thin boundary layer data with the present results is demonstrated in
Figure 32, which is a comparison with Equation (3). The Shore data (Refer-
ence 1) and the Stallings data point (Reference 2) agree fairly well with the
correlation. However, all the other data sets fall well below the correlation,
The best agreement with the other data sets was obtained with Equation (5) and
this equation is compared with all the data in Figure 33. Although there is
conaiderable scatter, the data do tend to group around this correlation.

Bertram (Reference 4) found that Jaeck's correlation (Reference 3) gave
a fair to good estimate of the maximum heating tr¢nds for thin turbulent
boundary layers. Jaeck's correlation is compared with the present data ob-
tained in thick turbulent boundary layers for various Mach numbers (Figure
34) and Reynolds numbers (Figure 35) as a function of the flow angle, @.
Jaeck's correlation greatly underpredicts the data for thick boundary layers
for all flow conditions and all flow angles. Also shown in these figures
are distributions predicted by Equation (3) which closely represent the data.
Based on these results, it appears Jaeck's correlation is not valid for cor-
fugation toughened suriaces deeply submerged in thick boundary layers where
flow separation occurs. As discussed by Cary (Reference 4), Jaeck's thecry
gave a good estimate for thin boundary layers except when the boundary layer
was separated prior to the wave. Where there was extensive separation, the
theory seriously underestimated the maximum heating, as in the present case.

Average heat transfer to rough surfaces for reentry conditions has
received much attention in the past few years. As a result, several corre-
lations of rough surface average heat transfer have been proposed. A simple
approximate turbulent heating formulation developed by Powars (Reference 12)
was believed to be one of the more reliable approaches.

Average heat transfer values from the present experiments are compared
with the Powars correlation in Figure 36. The equivalent sand grain rough-
ness, ke, used in this correlation was calculated using Dirling's analysis
(Reference 13). It is seen that the data fall well below the Powars equation
for 10ke/8g >10., This surprising disagzreement led to a further analysis of
the average heating data using the recent method proposed by Dirling. It was
found that for the flow normal to the shallow waves, the average heating
could be predicted within a few percent using Dirling's method. However, it
was also found that the deep wave data could only be predicted if the equiva-
lent sand grain roughness height was based on the wave half-height. Using
this half-height, the average heating could also be predicted within a few

12
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percent. The reason for this phenomenon is not completely understood and needs
more investigation. A summary comparison of the present average heating data
and the Dirling theory is shown in Table VII.

The variation in the heating rate with the local pressure is shown in
Figure 37. This correlation reveals two separate relationships. In the
separated region (P > Ppp), the heating is independent of pressure. In the
attached flow regime, the heating ratio is approximately proportional to the
square of the pressure ratio rather than the eight tenths power, which more
nearly represents the reattachment heating for thin turbulent boundary layers.
Therefore, for roughness deeply submerged in a turbulent boundary layer, the
increase over flat plate heating is much greater than the corresponding in-
crease over flat plate pressure.

13




8.0 CONCLUSION

An extensive set of tests has been conducted on corrugation roughened
surfaces in the thick turbulent wall boundary layers of the Langley Unitary
Plan Wind Tunnel (UPWT) and the Continuous Flow Hypersonic Tunnel (CFHT),
Tests in the UPWT were conducted at free-stream Mach numbers of 2.5, 3.5,
and 4.5, and a free-stream Reynolds number/cm of 0.108 x 106, Tests in the
CFHT were conducted at a free-stream Mach number of 10.3, and free-stream
Reynolds numbers/cm of 0,033 x 106 and 0.013 x 106. Analysis of the data
obtained in this study yielded the following conclusions:

1.

Large increases in heating were measured for all corrugation
angles greater than 0°. As with thin boundary layers, the
largest changes occurred for small sweep angles.

Significant effects of Mach number and Reynolds number were detected.
The present peak heating data indicated a direct proportionality to
Reynolds number, whereas the thin boundary layer data were inversely
proportional to Reynolds number.

In contrast to the data for thin boundary layers, the heating
distributions for the flow normal to the waves were found to be
essentially independent of wave amplitude/wave length and wave
cycle,

The local heating was found to be proportional to the square of

the pressure, rather than the eight tenths power which approximates
the thin boundary layer reattachment relation. For the present
data changes in pressure were much less than the corresponding
changes in heating due to the corrugations,

A flow model was postulated to predict the entire wave heating
distribution., For a supersonic case (Mx = 4.5), the flow model
followed the trend of the data, but the predicted values were
higher than the measured values.

Based on a total temperature in the undisturbed boundary layer at
the wave height, the maximum heat transfer coefficient data for the
flow normal to the waves correlated with

* .
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10.

For all flow orientation angles, the peak heating data were
correlated in terms of bulk boundary layer, internal boundary
layer, and geometric parameters. Data for thin boundary layers
were found to group around one of the correlations developed
from the present thick boundary layer data.

Jaeck's correlation greatly underpredicted the maximum heating
data for all flow conditions and all flow angles.

Average heating values were found to fall well below the Powars
correlation.

Dirling's method was found to predict the average heating within
a few percent for the smaller amplitude wave. Also, by using an
equivulent sand grain roughness based on the wave half-height,
this unethod also matched the average heating values for the
larger amplitude wave,

15
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11.
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Rew

Re
€

10.0 LIST OF SYMBOLS

speed of sound

skin friction coefficient

Continuous Flow Hypersonic Tunnel
heat transfer coefficient

equivalent sand-grain roughness height
wavelength in di.ection of flow
free-stream Mach number

static pressure

free-stream Reynolds number, p_ U_

i

Reynolds number based on wave amplitude, p_U_e

uw
surface distance measured from top of wave
temperature
Unitary Plan Wind Tunnel
velocity

axial distance measured from top of wave

spanwise distance along tunnel sidewall; also wive
vertical coordinate

local wave surface angle

ratio of specific heats

maximum wave amplitude (See Figure 3~C)
laminar sublayer thickness
displacement thickness

boundary layer thickness

momentum thickness
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temperature parameter (See Equation (2))

molecular viscosity

angle of corrugations relative to free-stream flow direction
(See Figure 3-A)

density
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¢= 90°

( )TOTAL

SUBSCRIPTS

stagnation conditions

wall conditions

average

flat plate

maximum

evaluated at maximum wave amplitude

free-stream conditions

reattachment point

evaluated for flow normal to corrugatioa

total distance

20
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APPENDIX A

CONDUCTION CORRECTIONS FOR THE UPWT DATA

Because of the technique used to obtain the heat transfer coefficients
in the UPWT (Reference 2), coupled with the thickness of the panel skin and
the small size of the waves, lateral heat conduction corrections were found
to be significant. The UPWT data reduction procedure used to evaluate con-
duction crrrections (Reference 2) assumed that the cross-sectional ¢.ea be-
tween thermocouple nodes was constant., However, due to the process used to
fabricate the corrugated panels, the cross-sectional area was not uniform
for the deep panel. Tor this reason, the effect of non-uniform area on the
lateral heat conduction correction was investigated for the UPWT data.

A comparison of the Langley calculations and the present analysis
(Reference 14) for one-dimensional heating (i.e., using the measured tempera-
ture-time histories directly without including lateral heating) is shown in
Figure A-1 for the heating distribution over the wave for M, = 4.45 and the
fiow normal to the waves. This case was chosen because it was felt that it
was the most severe with regard to the importance of heat conduction since it
represented the largest heating gradient for the UPWT test. Both sets of
calculations give essentially the same wave heat distribution. The effect
of lateral heat conduction on these distributions is shown in Figure A-2 which
compares the Langley and the present calculations. Again both sets of cal-
culatious agree very closely. Also, the variable area effect is quite small,
Pased on these results, it was concluded that the Langley calculations, which
included lateral heai conduction and assumed a constant area between the
nodes, gave an accurate representation of the wave heating distribution.

21



"STIAOW HLO09 Y04 WO 99°¢ = HIONJT IAVM :FION

UNSSTUI
OTXET 0 anv 62°
oc* 4OTXEE0" £°0T . 06°SLST'D . WAISNVEL IVAH 19°
FANSSTIL
. aw
18° (OTX80T° | S vise‘s 2 06°0E°0 ¥AISNVEL IVAH 62"
’ WSS
06 anv
18" GOTXBOT" | S w5 €°5°Z | ‘09°0€*ST S L 0 ¥AISNVEL IVIH 19°
“img /" oy “R 03G ‘¢ VIVQ 30 FdAL w ‘IROTAH FAVM

SNOTL11GNOD 1531 i 37avi

22




16170
660°0
(A
v°0
Zv°0

|WOEZ 0=

Fo o w k R R i

3

WY IR

$8Z°0
LT1°0
705°0
?05°0

705°0

L)

wd19°0=3

i99°0 €8°0 £9°11
£18°0 78°0 95" 11
L£0°0 84°0 ne'n
0Z0°0 %9°0 £9°€
0100 €80 (g°z
SYILIWVHVJ ¥IAVI AUVANNOS |1 378VL

(V-] [V.] (V.Y V.Y O

01 X €£0°0
0l x £10°0
ol x goL°0
0l x g01°0

01 x goiL°0

wd \BO&

£°01
£°01
S°H
S°¢
5T

23



TABLE 111  MAXIMUM WAVE HEATING

e~ g

M fen

TR Mt b s,

s samitathalin
'

e= 0,61 cm e = 0,29 em
Re_/cm M_ ¢ (deg) hmax/hFP hmax/hFP

0.013 x 10° 10.3 0 1.01 .95
15 1.7 1.53
.75 1.85 1.55
90 2.0 1.75
0.033 x 10° 0 1.06 1.03
' 15 2.3 1.70
75 2.3 1.90
Y 90 2.4 2.10
0.108 x 10 2.5 0 .9 1.03
3.5 ¢ .95 .98

4.5 1.20 1.0

2.5 7.5 1.4 *

3.5 Jr 1.5 *

4,5 2.1 *

2.5 15 1.5 *

3.5 } 1.7 .

4.5 2.4 *

2.5 30 1.7 1.6

3.5 l 1.9 1.8

4.5 2.5 2.5

2.5 60 1.9 *

3.5 i 2.1 .

4.5 2.7 *

2,5 90 2.0 1.9

3.5 ‘L 2.3 2.2
Y 4.5 2.9 2.85

* No Data Taken
24
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TABLE IV AVERAGE WAVE HEATING

¢ w0.61 cm e =0.29 cm
Re_/cm M_ 6 (deg) hav/hFP b hEp
0.013 x 10® 10.3 0 .762 .773
I 15 .957 1.01
75 .899 .923
Y 90 .959 .980
0.033 x 10° 0 1.07 .998
15 1.35 1.05
75 1.00 .923
{ 90 1.04 1.02
0.108 x 10° 2.5 0 .758 .956
3.5 .986 .947
4.5 \L 1.20 .965
2.5 7.5 1.04 X
3.5 1.00 %
4.5 l 1.34 *
2.5 15 1.07 *
3.5 l 1.18
4.5 . 1.54 *
2.5 30 1.12 1.04
3.5 1 1.23 1.06
4.5 1.49 1.30
2.5 60 1.24 *
3.5 ¢’ 1.15 *
4.5 1.33 *
2.5 90 1.20 1.19
3.5 ¢ 1.31 1.19
] 4.5 1.44 1.35

* No Data Taken
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TABLE V. SURFACE ANGLE AT REATTACHMENT AND MAXIMUM SURFACE ANGLE

f e = .61 cm € = ,29cm
Re_/cm M ‘ ¢, DEG' SIN a SIN o SIN a SIN o
{ : 1
i.owuof’ 10.3 ' 15 .087 .41 .056 .105
| l 75 .303 .858 .225 .365
l . 30 .259 .866 .292 .376
.033x10° 115 .087 -410 .003 .105 )
l 75 .303 .858 .225 .365 |
l ' 90 - .334 .866 " .259 .376 !
.108x10° 2.5 7.5 . .099 .22 ‘ * * |
15 .208 .41 * * ’
' 30 .357 i .655 . 365 .199
. 60 .599 L .832 * | *
90, .643 .866 .375 .376
3.5 7.5 .083 .22 * *
| 15 :.195 .41 Lk *
30 .357 .655 ; 365 1199
| 60 :.599 832 L *
90 .629 .866 P .315 .376
; 6.5 ' 7.5 .099 .22 Lo *
i | 15 '.195 .41 * *
l 30 .357 .655 | 365 .199
60  1.599 .832 i * *
Y [ 90 |.643 .866 | .375 .376

* NO DATA TAKEN
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TABLE VI

FLOW CONDITIONS AND DATA FROM OTHER SOURCES

REFERENCE e/L M_ Re_/cm '.l‘w/T,r°° 6*,cm 9, cr 8 in o hmm/hFP
W w055 3 .46 .55 .42 11 265 2.0€

.046 .219 1,87
.045 .238 1.82
.041 .211 1.:5
.026 .146 1.55
(2) .043 3.51 .13 .81 3.63 .64 .145 1.30
(3) 029 6.67 .119 .3 254 .020 .180 2.0
.032 .254 .020 .197 3.3

.050 .254 .020 .299 3.5

.067 .254 .020 .388 5.1

(4) .085 4  .386x10 .6 .126 .020 471 4.0
.201 .142 .022 4.1

7y o .176 .028 4.35

6 .272 .211 .0155 5.7

.142 241 .0179 6.7

' .063 .297 .0223 t 7.6

.043 272 .211 .0156 .258 3.1

| .142 .241 .0179 ' 3.6

Y .063 .297 .0223 v 4.1

.021 .272 211 .0156 131 2.1

142 .241 .0175 2.4

'y .063 .297 .0223 ; 2.6

.067 4  .386 .063 .0068 .388 3.2

| .244 .068 .016 3.5

Y .126 .085 .0133 3.9

6 .272 + 115 .0085 5.1

Y ! .169 .130 .0096 5.9
&) .03 6.9 .52 A .018 .0012 .206 4.0
+ J 5.8 .37 * .053 .0049 { 4.0
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TABLE VI

M Re_/cm

2.5 .108x10
2.5
3.5
3.5

4.5

4.5

10.3  .013x10°

.013x106

.')33x106

.033x168

COMPARISON OF AVERAGE HEATING WITH DIPLING®S PREDICTIONS

.61
.29

.61

p(DEG)

90

h

AV

TP__MEAS

1.19
1.20
1.19
1.31
1.35
1.44
.98
.959
1.02

1.04

h

av/hFP PRED

1.29
1.48
1.23
1.38
1.14
1.37
1.00

.93
1.00
1.04

TABLE VII COMPARISON OF AVERAGE HEATING WITH DIRLING'S PREDICTIONS
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FIGURE 2 PHOTOGRAPH OF BEADED PANEL, WAVE HEIGHT = 0.61 cm
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FIGURE 6 - SURFACE DISTANCE AS A FUNCTION OF THE FLOW ANGLE, ¢ = 0.29 cm
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FIGURE 7 - SURFACE DISTANCE AS A FUNCTION OF THE FLOW ANGLE, ¢ = 0.61 cm
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T/C# 19-27 T/C# 32-100 T/C# ‘45-53

.2ND PEAK 6TH PEAK IOTH PEAK
TCH X{(cm) TC# X (cm) TCH X (cms
19 0.020 32 0.404 45 0.013
20 0.396 33 0.787 4  0.467
21 0.927 34 1.047 47 9.935
22 1.339 35 1,283 48 1.369
23 1.709 36 1.798 Lg 1.829
24 2.286 37 2.286 50 2.332
25 2.784 38 2.78 51 2.753
26 ' 3.279 -39 3.183 52 3.195
27 3.703 4o 3.602 53 . 3.668

FIGURE 9 - THERMOCOUPLE LOCATIONS, ¢ = 0.29 cm
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T/C# 19-27 T/C# 32-40 T/C# 45-53

2ND PEAK _6TH PEAK 10TH PEAK
19 -0.046 32 0.005 4 0.03)
20 - 0.536 33 0:582 46 0.452
21 0.978 3% 1.05h 47 0.937
22 1.318 35 1.428 b8 1.5
23 1.829 36 1.829 b9 1.768
24 2.314 37 2.286 0 2.324
25 2.687 38 2.769 51 2.690
26 3.216 ' 39 3.226 52 3.165
27 2.693 _ 4  3.680 53  3.675

FIGURE 10 - THERMOCOUPLE LOCATIONS, e = 0.61 cm
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PF 3-9 P# 10-16
. X , X ..

2ND PEAK 10TH PEAK

UPWT TEST CFHMT TEST

PE X{cm)
B Xem) X(em) 10 -0.028
3. -0.056  -0.081 0 0,566
h  0.622 0.587 12 1.232
5 1.161 1.092 3 1.809
6 1.821 1.803 W 2.377
7 2.451 2.487 15. 3.005
8  3.038 3.11{ 6 1.569
9 3.625 3.584

FIGURE 11 - PRESSURE TAP LOCATIONS, € = 0.29 cm
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P# 3-9

FIGURE 12 - PRESSURE TAP LOCATIONS, & = 0.61 cm
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TEST PANEL
ROTATIONAL PLATE

FIGURE 13 - NIDEL INSTALLATION
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FIGURE 27 - COMPARISON OF EXPERIMENTAL AND THEORETICAL HEATING DISTRIBUTION
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FIGURE A=2 - EFFECT OF VARIABLE AREA ON HEAT CONDUCTION CORRECTION,

study

€=0.6lcm, M = L.5, ¢ = 90°
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