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Compressible Seal Flow Analysis Using the Finite
Element Method With Galerkin Solution Technique

by

John Zuk
NASA -Lewis Research Center

ABSTRACT
High pressure gas sealing involves not only balancing the viscous
force with the pressure gradient force but also accounting for fluid
inertia--especially for choked flow. The conventional finite element
method which uses a Rayleigh-Ritz solution technique is not convenient
for nonlinear problems. For these problems, a finite element method
with a Galerkin solution technique (FEMGST) was formulated. One
example, a three-dimensional axigymmetric flow formulation has non-
linearities due to compressibility, area expansion, and convective
inertia. Solutions agree with classical results in the limiting

case8. The development of the choked flow velocity profile is shown.
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cross-sectional area, in.“; m

basis function geometric coefficient
Table 2

coefficient expression used in GADE,

basis function geometric coefficient
Table 1

coefficient expression used in GADE,

undetermined coefficient

basis function geometric coefficient
Table 1

unknown coefficient matrix

coefficient expression used in GADE,

coefficient expression used in GADE,

linear basis function

basis function of an element m

coefficient expression used in GADE,
coefficient expression used in GADE,

film thickness (gap), in.; m

total number of mesh points
an integer

2
static pressure, psi; N/m

basis function integral defined in Table
basis function integral defined in Table
basis fun-cion integral defined in Table
basis function integral defined in Table

tasis function integral defined in Table

evaluated in

defined in Table 2

evaluated in

defined in Table 2

evaluated in

defined in Table 2

defined in Table 2

defined in Table 2

defined in Table 2

s & &= F F




leakage flow Reynolds number in radial direction, pUh/u

modified Reynolds number, Re(h/AR)
radial direction coordinate
dimensionless radial coordinate, r/AR
temperature, 0F; K

dimensionless temperature, T/ATref

leakage flow reference velocity, ft/sec; m/sec

velocity in r-direction or x-direction, ft/sec; m/sec
dimensionless velocity, u/U

dependent variable identification number

number of dependent variable

coordinate in pressure gradient direction
basis function integral defined in Table L
basis function integral defined in Table L
basis function integral defined in Table
basis function integral defined in Table 4
coordinate across film thickness

dimensionless coordinate, z/h

dependent variable

basis function
area of triangle

error, global or series trunkation

absolute or dynamic viscosity, (1bf)(sec)/in.2;
(N) (sec) /m2

kinematic viscosity, ft2/sec; mz/sec
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P density, (lbf)(secz)/in.a; kg/m3
o* dimensionless density, p/po
T shear stress, 1bf/in.2; N/cm2
{¢1Fn} basis function integral defined in Table 3
Subscripts:
i vertex number of triangle element
h vercex number of triangle element or dependent variable number
3 vertex number of triangle element
L triangle element identification
m mean or triangle sub-element region
N location along flow leakage length
n vertex number
U triangle element identification
v variable number
X vertex location coordinate, axial direction
y vertex location coordinate, radial direction
a vertex identification of triangle element
B vertex identification of triangle element

Superscripts:

X vertex lccation coordinate, axial direction
Y vertex location coordinate, radial direction
bad dimensionless quantity
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INTRODUCTION

A purpose of this paper is to devel -p a numerical analysis tool
which will enable analysis of complex seal problems. The numerical
method of solution utilizes a new procedure--the finite element method
with a Galerkin solution technigue (FEMGST) rather than the method of
finite differences. Utilization of this FEMGST should enable the fluid
film analysis to be readily integrated with solid mechanics and dynamics
finite element analyses which are carried out by existing computer pro-~
grams. Also, the Galerkin solution procedure can solve nonlinear
problems which cannot be solved using the conventional finite element
method which uses a Rayleigh-Ritz solution procedure (1).

In pressure balanced face seals and self-acting lift pad seals (2)
(Figs. 1 and 2), the flow can choke. Thus fluid inertia must be ac-
counted for in a flow analysis. Since inclusion of fluid inertia makes
the flow equations nonlinear, the flow is currently solved using an
approximate integrated average model (3).

These approximate seal analyses may not yield satisfactory results
when the nonlinearity becomes large. Further, these approximate methods
also do not yield cdetailed distribution information about the flow field,
Thus it is necessary to utilize a numerical solution scheme. A finitc
element method with a Galerkin solution technique is used. A finite
difference scheme could have been used. However, it was felt that
ultimately a finite element seal flow analysis would be a powerful

analysis tool.



Some of the advantages of the finite element method over the finite
difference method are:

1. Boundary conditions need not coincide with coordinate lines.'

2. Layout of nodal points is more flexible.

3. Boundary conditions of abrupt geometric changes, such as step
changes in film thickness, do not require finding a special interfacial
boundary condition such as mass flux continuity (4).

4. The method can yield numerical solutions more rapidlv. Studies
on a transient one-dimensional heat ~onduction problem show that this
method is about six to 60 times faster than the finite difference method,
depending on the desired accuracy (5).

The disadvantages of using this method are:

1. The solution is an average value over the element rather than
an exact solution at every point in the region; however, this is
satisfactory for most engineering problems. Better accuracy can be
obtained by decreasing the element size.

2. Programming is also more difficult. A larger software effort
may be required.

3. The coefficient matrix for the nonlinear flow problem is non-

diagonally dominant due to the momentum equation.

Although seal flow problems, in particular, have not been analyzed
using finite element techniques, other lubrication flows have been
analyzed using the finite element method. Reddi (4) and (6) has solved
some incompressible and compressible bearing lubrication problems using
the finite element me~hod with the Rayleigh-Ritz approximate solution

procedure. The Reynolds lubrication equation .s in quadratic functional




form and thus is an admissible form to a Rayleigh-Ritz solution.

Recently Oh and Heubner (7) have applied the finite-element techniques

to solve the elastohydrodynamic finite journal bearing problem. The
Reynolds' equation for the fluid film and the three-dimensional elasticity
equations for the bearing housing were solved simultaneously using an
iteration scheme.

The usual finite element method, which is based on a Rayleigh~Ritz
approximation, has been extended to other continuum problems such as
heat conduction and dynamics (1). This means that a variational principle
must be found; e.g., the total potential energy of a system is stationary.
However, in fluid mechanics such a principle may not be readily found
in a workable form. Also, the classes of nonlinear problems that can be
solved are very limited. The problem must be reducible to a quadratic
functional. Such problems are described in equations which are sometimes
called "quasi-harmonic" equations. The heat conduction equation with
variable conductivity, irrotational flow of ideal fluids, Lagrange's
equation, and the compressible Reynolds lubrication equation are examples
of "quasi-harmonic' equations. The compressible Reynolds' equation,
however, neglects convective inertia forces whose retention along with
the viscous forces changes the character of the equation so that it is
no longer "quasi-harmonic'.

The Galerkin method (8) by itself could be used. Cheng and Pan (9)
applied Galerkin's method in solving the nonlinear unsteady Reynolds
equation. It allowed the reduction of Reynolds equation directly from
a partial differencial equation to a system of first-order, ordinary,
differential 2quations, which together with the equations of motion

of the journal bearing, yielded a tractable stability analysis of



finite plain journal bearings. Unfortunately, in many problems the
series is unworkable when the variables are changing rapidly. Many
terms are required fn order to have a satisfactory solution. This
problem may be overcome by using the Galerkin method with piecewise
continuous derivative basis functions. Thus the formulation in this
paper is essentially the Galerkin method with finite elements as the

basis functions.



The Finite Element Method With Galerkin Solution Technique (FEMGST) 9
RESULTS AND DISCUSSION

The finite element method with Galerkin solution procedure will be used to
solve 3-dimensional axisymmetric and 2-dimensional seal flow problems. An
overview of the technique will be presented by outlining the general procedure.
The method is basically as follows:
1. Subdivide the region into triangular ring elements as shown
in Fig. 3.
2. Define an '"irregular pyramid" basis function Fn(x,y) at
each nodal point. (A linear basis function ~ first order splines.)
See Fig. 4. Within each triangular element, Fn 1s a linear
function of distance such that Fn =1 at n = (x,y) and Fn =0
on the boundary. Outside of the region aefined by the triangular
elements touching the point (x,y), Fn = Q.
Where: n 1is the nodal peint number, n = 1,--., N:(x,y)
describe the nodal points in terms of their radial
and axial locations. That is, x 1is the radial
direction nodal point number, x = 1,°*-, X = M,
while y 1is the axial direction nodal point num-
ber, y = 1,:*", Ymax = N

3. let
N

-\
IPJ(X.y) =/ anFn(x,y) 1]

n=1
Where: j 1is the dependent variable number, j = 1,° -, J
4. Place the piecewise continuous series into the governing
equations.

Ly, (x,y)) = gy [2)

3

Where: 1 1is the equation number, i = 1,-++, J
5. Orthogonalize the global error to each basis function as re-

quired by the Galerkin method.

,[e F dA =0
i'n

Ua
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6. Place the boundary conditions on the appropriate nodal
points.
7. Solve the resulting NJ linear cr nsnlinear algebrar. eq -

tions for NJ unknowns.

The details of the finite element method with Galerkin solution
technique will now be discussed. The domain of interest is subdivi-
ded into triangular subregions as seen in Fig. 3 (a plan view of
the r-z plane). Consider a triangular subregion with vertices 1,
j, and k as seen in Fig. 5.

Let the dependent variables wl, wz, w3, ... wv be linearly

varying in this triangular subregion; i.e., let

<«
]

a, + blr + c

179 z

1

b, = a, + bzr +c,2 [3]

+ bvt + c,,2

v % v
The linearly varying field assures continuity between elements
since '"lines which are initially straight remain straight in their

displaced position'. The nodal or vertex values of are defined

)
Yy
uniquely and continuously throughout the region; however, the first
derivative is discontinuous, hence, this function with piecewise

continuous derivatives i1s a first order spline. At the nodal points

¢f any triangular element, a dependent variable can be expressed as
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= a + blri + chi

- . 4
vy a + blrj + 52, [4]

= a +br +c.z

which in matrix form becomes

(v, ) = [D{a} [5)
n
or
(a} = [01% (v, 3 [6]
n
where
al‘k
{a} = bl (7]
-~

Hence, the unknown coefficients from EQ. [1] have been expressed
in terms of the vertex position and dependent variable values at
these nodal (vertex) peints. The inversion of the coefficient ma-
trix, [D), is shown in (10). Hence, it can be readily shown

that the resulting form of the dependent variable in a triangular

subregion m is:

1
Yy(m) " ZTm[(’i thyr ey ¥ lay bt ocylyyy

+ (ak + bkr + ckz)kaj 8]
™
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The values for a, b, and ¢ are shown in Table I. The basis
function can also be expressed in the above form. The basis func-
tion equation is deveioped in (10) and is

-
F (ai + bir + Ciz)Fi + (a

" = 78 + b.,r + ¢, 2)F

i 3 NN

+ (ak +br+ Ckz)Fk 191

k
where the basis function may have one of the following combinations:

{Fisl, F,=0, F =1, F

3 k-o}, {Fi=0, )

K= 0}, {Fiso, Fj=0. Fk=1} [10]

3
A given basis function whose value is unity at nodal point XY, will
have an irregular pyramid's base as its region of definition. he
convention that is used results in six member triangular subele-
ments - which comprise the region of definition of a basis function

located a% an interior mesh point. See Fig. 5.

fi + ﬁir + cjz ak + ckz a + bkr
F, = 74 Y1 17
L-1 L L+1

a, +b,r a, +c,z a, +b,r +c,z2
i i i i ] i i i ]
* [ 28 M T + 26 [11)
U-1 U U+1

As previously described, the piecewise continuous derivative
representation of each dependent variable, [8], 18 placed into the

governing Eq. [2]

Li{‘l’j(xo)')} = 'i
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Then the global error is orthogonalized to each basis function as

required by the Galerkin method, Eq. [3]

feiFndA =0
A

Since the basis functions, Fn’ are zero outside of the irregu-

lar base pyramid region, Eq. [3] can be written as

M,N
E eiFndA = 0 [12]

n=(x)Y)=(1)l) A

Thus, a term of the sum in [12] becomes the following for the
basis function that has a value of unity at n = X,Y, the apex of

the pyramid.

e F _dA + e, F dA + e,F dA + e,F dA
i xy i xy i xy i xy
L-1 L L+1 U-1

+ einydA + einydA =0 [13]

U U+l

At a point of any triangular region of the pyramid base, a
dependent variable is influenced by the values at its vertices.

This can be expressed as

b= CFy + CF + R [14]
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Since Ci = ¥, etc., Eq. [14] can be expressed as
p = Fiwi + Fij + kak

where: Fi’ Fj’ Fk are basis functions that have the apex = unity

at vertices 1, j, k, respectively; wi, V. wk are the magnitudes

]
of the basis vectors which describe the plane (equal to the magni-
tude of the variable at the vertex). .

Dy wiiliziug linear Lasls fuuciluns, tue resuliani sviuiiun
vector (where the coefficients have been determined) describing the
triangular plane will remain a plane; at the interface of the tri-
angular element (boundaries) the functions are continuous but not
the derivatives (since the basis function is a first order spline).
The whole volume of each basis function can be geometrically inter-
preted as an irregular hexagonal based pyramid function,

See Fig. 5 for a plan view ~f the region of definition ot a typ-
ical basis function, Fn. Fig. 6 illustrates a 3-dimensional geo-

metric interpretation of the function space. Note, the bases are

irregular to show a variable mesh situation.
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SEAL FLOW EQUATION FORMULATION

The compressible seal leakage flow will not be analyzed using the
finite element method with Galerkin solution technique (FEMGST).
The proper dimensionless governing equations where "quasi-fully
developed", parallel flow exists, using shear stress as a dependent
variable, are:

1. Conservation of mass

5%; (p*r*ut) = 0 [15]

2, Conservation of momentum

* * *
du* . 9P 3T

Re*ou* aex * 3w “3gw = 0 [16]

3. Perfect gas relation
D*T* - Pk = 0 [17]

4. Shear stress-velocity relation

T3~ T*x=90 {18]

h
Re* = Re ——
] (RZ-RI)

Only isothermal flow cases will be considered.

where

FEMGST Form of Equations
The procedure for forming the Galerkin approximation equations for

the above set of partial differential equations will not be presented

N e e

using the procedure described in the previous section. Details of this !

procedure can be found in (10).
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The equations governing isothermal compressible leakage flow in
FEMGST form at nodal point XY are

1. Conservation of mass

U+1
é Xy (By XY xv (by .

[Dam <2A ) PyYy + 13othuoLpB, * Dim (ZA UPal = 0 [19]
= m m

2. Conservation of momentum

U+l
E : b
* [y Xy XY, _ XY |,
[Re <2Am) uYBaBmuapB * Ectmpm Emm a 0 [20]
m=L-1

3. Shear stress~velocity relation

Uf%\
XY XY
5__/ (E(xmua - AamTa> =0 [21]
m=L-1
4. Equation of state
U+1
NN OXY LY
{ ;(BaBmDaTB - Aampa) =0 [22]
m=L-1
XY _XY XY XY _XY XY
The functions Aam’ BaBm’ Dam’ Eam’ chm’ and Gam are defined

in Tables 2, 3 and L.

A typical seal flow region subdivided into triangular ring elements
is shown in Fig. 3. The flow is treated as axisymmetric. Basically,
FEMGST is the Galerkin method with finite elements as basis functioms.
As previously mentioned, at each nodal point an "irregular pyramid"

basis function Fn(r,z) is defined (see Fig. 4).

PrU——]
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DISCUSSION

As a starting point, the first case studied in detail was incom-
pressible radial Poiseuille flow. This flow is simpler in nature than
the cases of interest. For this case Eqs. [15}, [16], and [18] are
solved with Re* = 0 and p* = 1,

Figure 7 shows the model and conditions used for solving incom-
pressible radial Poiseuille flow. Figures 8, 9, and 10 compare the
numerical solutions with the exact analytical solutions at various
radial locaticns for velocity, pressure, and shear stress, respectively.
Note, there is excellent agreement for the mesh size chosen.,

In order to check the compressible flow formulation of FEMGST,

a special inviscid flow problem was solved. The modified Reynolds
number Re* was a parameter varied in this study. The inviscid flow
problem had all of the salient features of the general compressible

flow seal leakage problem. That is, nonlinearity due to compressibility,
area expansion, and convective inertia. However, the problem is simpli-
fied because the shear stress 1s everywhere zero. The radial velocity
distribution is shown in Fig. 11. There is excellent agreement between
the exact and FEMGST solutions.

A compressible seal flow case of practical interest was then solved.
A seal was studied with a radius ratio of 0.8 (see Fig. 12). The
transverse velocity profiles at the seal exit are shown in Fig, 13,
whereas the radial pressure distributions at the dimensionless trans-
verse gap value of 0.25 are shown in Fig. 14. The modified Reynolds
number again was a parameter, but its value here is a measure of

the convective inertia effect in the flow. For Re* = 0 the results can
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be compared with the exact viscous compressible flow solution. Note

the good agreement of FEMGST with the exact solution. For Re* # 0 there
is no exact solution for comparison; however, the results are physically
expected, The solutions were terminated at Re* = 12, At Re* = 12, the
results indicate that the limiting exit sonic velocity conditions had
been reached at the centerline., The solution had to be terminated
because results indicated that the formulated set of equations was no
longer valid. The radial pressure distribution in Fig. 14 shows that
the exit pressureschange the most with Reynolds number. This is expected;
since the velocity increase is the greatest in the exit region, the
density (pressure for this isothermal case) must correspondingly de-
crease, This can be seen by examining the compressibility terms in

the mass conservation equation.

To use FEMGST, a new computer technique had to be developed. The
system of equations from FEMGST could not be solved by the usual
iterative solution methods. Thus, a direct method algorithm was
developed and used to reduce the large, sparse, nonsymmetric band
matrix. This method greatly reduced machine storage requirements and is

described in (10).
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Table I. ~ Values of Geometric Basis Function

Coefficients
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Table II. ~ Coefficient Expressions Used in Galerkin Approximation
Difference Form (GADE)

Variable Form GADE Form
Wy xy % foxy
or Em ™ 73 \m
T m
awa XY Ca XY
Sz Fm " 22 {fm
m
" JR.S UD S A P G T 2
a am ZAm m a m al  m

ry D =

bt
oo e L) m ) ofn)
o) ) o)
we e () o) o)
+bc{m}+bb{,zyy} ol )
o) el vt
) ) o)

XY
I rb A b
Note: v L. _Boam _§ DXY
a 3r ZAm
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Table III., - Basis Function Integrals For a Basis Function Whose
Apex (Unit Value) is at Nodal Point a

1. L-1 Eiement; a = j, therefore, F, = 1

3

Y| _ 1 = o2 2
%zl" 1} = 7 [aij +bjR Z+ chz ]

L-1
< — — ——
rzrﬁl} s 2A1 [aJRZ + bjR3 + cszz]
L-1
[ 2 xy 1 2. . T2 .73
QFL-]} = 'i-z;‘: [ajZ + bjRZ + CJZ ]

Repeat above calculations for:

2. L Element; except a = k, Fk =1

3. L+ 1 Element; except o = k, Fk =1

v
—

4. U -1 Element; except a = {, Fj =
5. U Element; except a = i, Fi = ]

6. U + 1 Ilement; except a = i, Fi =1



Table IV, - Values of Basis Function Integrals

n
//" rdrdz = drA
v

(]
/.' zdrdz = d A
- z

m}
L]

o3
]

-

2 I2 b R =2, =2 2
R 1/‘,'/ r drdz 13 (r1+rj+rk) +Adm
- n .

2 _ ]2 A= w2 =2 2
2 (/\./ z"drdz 13 (zi + zj + zk) + Adzm
25 . nn - _A- —_— - -
RZ ] / rzdrdz 12 (rizi + rjzj + rkzk) + Adrmdzm
3 /’/’ 3
R = rdrdz

J
2, fﬁ 2
R'Z= r zdrdz
J
Rzz = //7 rzzdrdz
u
Z_3 = 'n/) z3drdz
b/’u
!1 ri zi
A = ff drdz = L 1 r 2z
. 2 hi 3
!1 T zZ,




1)3

J 2°dzdr =
A

J zzrdzdr =
A

+ &Sl

+

+

[A:i(rk - ri) + A;k(rj- rk) + Ai‘sri - rj)

2Ak18k1(r§ -r ) + 2Aj3k jk( j - rlzc)+2A3j313(rf' rj)
222 82 (2 - x4 2A§kB§ (r3 —rk)+2A§j f*. D - rg)

T TORENE Ajkaak ? s Aijsfj('?"’:)
Lotied - e e hab el - el Lt - D

111 .3 2 2 1.3 2 2 1,3 ,.2 2

'5[‘2 Aki( - ri) +3Ajk( 3 - rk) +-2-A1j(ri - l'j)
2 3 2 3 2 3 3

+ Akiski( Kk~ F ) + AjkBjk(rj =T ) + AijBij rj)

3 2 4 2 4 4
ML WL TAS i 1)* : Aty - 1)

3 2 .04 4. .1.3,5 5 13,5 5
YAl T S B ) g BL Gy - )
-1 ——
] s T3
S ORI

Table IV, - Continued
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2 1/1,2,3_ 3 .1,2,3_ 3 .1.2,3 3
(Af:r dzdr 2 [3 Aki(rk - ti) + 3 Ajk(rj rk) + 3 A1j(ri ry)

1 & 4. .1 4
P AR T 3 AJkBjk('J Y

1.2 S 5
+ 5 By (] rj)j = ZR
"arr = [La (b oy e ey Ry (! - Y
4 YkiTk T Ty 4 ‘fy°rF 5 ‘T4 T Ty
A
1 5 1 5 5
PE By ln m T FE B0y - )
1 5 5 )
- - \ =
+ 5 Bij(ti rj,; R
vhere:
i 2y + zl + zk. 4 r, + rl +r
z 3 ’ r 3
rizj - rjzi akcicj rjzk rk71 aicjck
Aij STy, T r T i Ajk r., - r -c
1t 5 k k 1
z1 -Afj bkcicj zj -z bicijck
Bij T, -1, ¢ g Bjk T, -r -c
1 k 37 Tk i
Ak ) rkz1 - rizk ajcick 5 i zk - zi bjcick
i LIV -Cj ki L ri -Cj

Table IV. - Continued
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FEMGST

SOLID OF REVOLUTION

TRIANGULAR -~ SURFACE NO. 2
RING ELEMENT —~_ o 7,’,74
7 N\ ,
T
N\ h
; |
Ry Ra

“SURFACE NO. 1

Figure 3. - The finite element idealization of flow through a
qas film seal,

(@) THREE-DIMENSIONAL REPRESENTATION OF THE BASIS FUNCTION.

(X-INY+1) X(Y+1)
]
U-1 U+l
(X-1)Y > (X+1)Y
Xy—
L-1 L+]
L

X(Y=-1)  (X+1NY-1)

(b) BASE OF IRREGULAR PYRAMID USED TO DEFINE BASIS
FUNCTION.

Figure 4. - Geometric interpretation of an
irregular hexagonal based pyramid function,
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Figure 5. - General pattern of irregular pyramid basis “unction (IHB PF).
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Figure 6. - Geometric interpretation of function space (irregular hexagonal based pyramid
basis functions).
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Figure 7, - Incompressible radial Poiseuille flow sample problem.
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EXACT SOLUTION

o  UNIFORM JAESH
a  VARIABLE MESH} FEMGST
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Figure 11, - Comparison of exact inviscid flow solution with
FEMGST for velocity distribution and Rex =1, 1.5, 5, and
100.
NSNS
| ]
| |
! |
I [
I
{ .
| |
1 -0 _ ]
o 2] ~¢ I
ul | |
pt | |
SPECIIED{ & | !
X} !
e | |
T | ]
| |
| |

R
1.03 !
R ]

Figure 12, - Domain and boundary conditions for compressible seal leakage
problem.
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Figure 13. - FEMGST solution for exit velocity profile for a range of Reynolds num-
bers (0-12); 11 x 17 uniform mesh,
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Figure 14, - FEMGST solution for radial pressure dis-
tribution at an axial location of z*= 0. 2500 for a NASA-Lewis

range of Reynolds numbers (10-12),





