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ABSTRACT

An analytical investigation was conducted to examine the applica-

bility of a method based on the Stokes potentials (vector and scalar

potentials) to computations associated with the aerodynamics of jets.

The principal merits of the method were found to he that the aero-

dynamic field near the nozzle could be well represented and that

the influence of a nonuniform velocity profile at the nozzle exit

plane could be explicitly determined. Other aspects of the computa-

tions indicated accuracy comparable with other methods but at the

expense of more complexity in the computations. An additional

benefit of the theory was that it provided the rationale for de-

veloping useful approximate analytical models for computations of

the type considered.

Computations were made for an axisymmetric jet exhausting into

a quiescent atmosphere for the purposes of exploring the computational

aspects of the method and for comparison with tile available experimental

data and other theories. It was found that the velocity profile at

the exit of the nozzle and the integral moment of vorticity in the

jet flow were the most significant factors in the computations. The

latter is shown to be in agreement with the asymptotic form of the

theory. Those factors suggest that knowledge of the velocity at the
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exis of the jet, touether with the location of the half-velocity points

alono the jet are sufficient to yield reasonably accurate aerodynamic

field computations for the particular flowfield considered. Computa-

tions support that conclusion.

One of the approximate analytical models considered in the study

essentially replaced the jet flowfield by a conical vortex sheet.

That model was the simplest considered and yielded accurate results.

It is, accordingly, recommended for computational purposes.

The comparison with experimental data showed agreement within

t}_e scatter of the available data. The theory indicated clearly the

inconsistercy among the different theoretical characterizations of

jet flowfields, and suggests the need for more accurate relations.



I. INTRODUCTION

A numberof problems in fluid mechanics involve the interaction

between viscous and inviscid flows. For most purposes, as in boundary

layer theory, the inviscid flow is determined without consideration

of the viscous flow region whereas the effects of the inviscid flow

on the flow in the viscous layer are considered. More recent interest

in the aerodynamics of jets, the "strong interaction" problems, separat-

ing and reattaching flows, etc., have placed more emphasis on the

mutual interactions of the two regions. Analytical models for such

flows are in various stages of development. One analytical method,

applicable to incompressible flows or for aerodynamic purposes,

based on the Stokes potentials (scalar and vector potentials),has not

yet received much attention.

It is the purpose of this investigation to examine the latter

method in the context of problems associated with the aerodynamics of

jets. Such flows are of considerable significance in the aerodynamics

of V/STOL aircraft, the dispersion of pollutants, etc. Analytical

methods for handling them are not yet well developed. The emphasis

in this connection is on the influence of a turbulent jet in inducing

an aerodynamic flow. The flow in the turbulent jet is presumed known

either from experimental data or from other theoretical considerations.

As part of the investigation, the properties of the turbulent flow

...w_m_+i-_,,,,u_,,_,o,_-1in computing the aerodynamic field were evaluated
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Asymptotic relations were developed to yield greater insight into the

method. In the interest of simplifying such computations, several

approximate models were examined. Numerical computations were made

for the case of an axisymmetric jet exhausting through a plane baffle

plate, serving to further classify the advantages and disadvantages of

the method.

The use of the scalar and vector potentials arises naturally from

the fundamental theorem of vector field theory. Most applications

have been associated with electromagnetic field theory; applications

in fluid mechanics have been rare. Since the concept is not familiar

to those with prime interests in fluid mechanics, a brief review of

the relevant aspects of vector field theory have been included in

the text.

The results of the investigation show that the method offers

unique advantages in the computation of the induced aerodynamic field,

particularly close to the origin of the jet. At more distant posi-

tions, the method yields results comparable to those obtained by other

less complicated methods. An additional benefit provided in the appli-

cation of the method is that it offers an independent means for com-

paring the consistency of different representations of the turbulent

jet flow. The examination of approximate models for the jet flow

showed that quite reasonable approximations for the induced aerodynamic

field could be obtained from knowledge of only the centerline velocity

and the positions of points in the jet at which the velocity is half

that on the axis.



II. ANALYSIS

Since the basis for the analytical methods to be considered lies

in vector field theory, an introductory description of the relevant

elements of that theory is presented in the first part of this section.

The remaining parts of this section present discussions of solenoidal

fields, time dependent fields, axisymmetric fields, and Green's

function, respectively.

A. Vector Field Theory

1. Fundamental Theorem

Consider a vector field U (3) which depends upon the position X

in space. The field U may be uniquely defined in a simply connected

region _ by specifying the divergence and curl of U throughout _

and the normal component of U on the surface S bounding the region _.

A proof of uniqueness, following Lass 1, is as follows: Let T be

another vector field with divergence and curl equal to those of U,

and with T " dS = U " dS on S.* Select a vector Q which is the

vector difference between U and T, Q _ U - T. This vector is

irrotational, solenoidal, and its scalar product with dS is zero.

*dS = n dS, where n is the unit outward normal vector of the surface

element, and dS is the differential surface element.



v • - = v x (U - T) = (U - T) - dS = 0

The vector Q, since it is irrotational • may be represented in terms of

a scalar function ¢ such that

_=-v¢

The solenoidal condition then yields

÷ 2
v .Q=-v ¢=0

Applying Green's theorem in the first form yields

[¢v2¢ + (re)2] dT = ¢ v¢ • d = ¢ Q .dS=O

and therefore the volume integral of (re)2 is zero. Hence• v¢ = 0

inside 3• and Q =-v_ = O, so that U = T inside _. For an infinite domain•

1/R 1 + Ethe condition that U ÷0 as as R _ ® with c > 0 is required. 2

2. The Scalar and Vector Potentials

Explicit representation of the vector field in terms of the volume

distribution of its divergence and curl, and its normal component on

the surface may be obtained by introducing the Stokes potentials 3,

normally called the scalar and vector potential of the field. Follow-

ing Morse and Feshbach 4(a) let

] U1 (Xl)
(X) = _ R (-_ _1 )

dT 1 (I)

ORIGI_AL PAGE IS
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where R = IX - XII

X = the field point position vector

XI = the source point position vector

d_ I = the volume element with respect to

integration over the source field

Refer to Fig. 1 for the geometry associated with this representation.

Equation (I) represents a solution of the vector Poisson equation

v2; =- Thus,

"+ V2 -" .+ ..,,.u = - w =- v (v • W)+ v x (v x W) (2)

Equation (2) yields a representation of the vector field U in terms

of the negative gradient of a scalar and the curl of a vector. Let

and

¢_= v • W, (3)

A_= vxW (4)

The scalar ¢ and the vector A are the scalar and vector potentials of

-+

the vector field U, respectively. The general representation of a

vector field as the sum of an Irrotational field and a solenoidal

field has been attributed to Helmholtz. 4(a) Denoting the irrotational

field by UI and the solenoidal field by US, then,

where

U=UI+ US

Ul=-V_b

Us=VXA



DOMAIN I"
FIELD POINT

ORIGIN OF
COORDI NATES

SOURCE POINT

SURFACE OF DOMAIN S

FIGURE I. GEOMETRY ASSOCIATED WITH

THE VECTOR NOTATION

L



Taking the divergence of Equation (I) with respect to the field

point coordinates X yields*

where the operator v is with respect to the field point X. Because of

the symmetry of R with respect to X and X1, however, one has

(s)

where the operator vI is with respect to the source point X1. Thus,

Noting the U1 • vI ( ) = vI (_ U1). 1 Vl " U1 and making use of the

Gauss divergence theorem, the scalar potential may be finally written

(6)

Equation (6) relates ¢ to the divergence of U in T and to the normal

component of U on S.

*Variables with a subscript I denote evaluation at the source point XI.

0I_IGINAt, pAG_ IS

oF poor
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Taking the curl of Equation (I) yields

A = - T_-_ UlXV

Using the identity, Equation (5), results in the expression

By employing the vector identity

+ 01
UI x VI (_) = _V 1 x UI - V 1 x (_-),

the integrand may be expressed in the form

A = - _ vI x (_--) - R dT 1

Making use of the appropriate vector integral theorem related to the

Gauss theorem, one has

U1 f UI x dS I
v 1 x (g--) dT 1 = - R

S

which yields, finally

UI x dS 1

R
(7)



Equation (7) relates the vector potential to the curl of _ throughout

-L and to tile tangential components of U on S.

Taking the negative gradient of Equation (G) _.litll respect to the

field point X, and using the identity

l R

v R- i 13

one obtains

__ _ R l _ ÷
- v ¢ : + (Vl Ul) _-_dTl - 4--_ (Ul • nl) _dS l (8)

S

Equation (8) shows the irrotational field is related to the divergence

of U throughout T and to the normal components of U on S.

Taking the curl of Equation (7) yields

v x A- 4_ (v 1 x Ul) x--_dT 1

_ S

Equation (9) sho_vs the solenoidal field is related to the curl of U

throughout T and to the tangential components of U on S.

Equations (6) and (7), and (8) and (9), respectively express

the potentials and the field values in terms of the volume distribution

of the divergence and curl of U and the components of U on the boundary

of the domain.

ORIGI!qAI_ PAG_ Im

OF pO01_ QUALIT_
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3. Field Components on the Boundary

The representation given by Equations (8) and (9) does not

correspond with the statements made in Sec. II A I. in the sense

that the surface integral in Equation (9) involves the tangential

components of U on S rather than the normal components alone. It

may be shown, however, that the combination of the surface integrals

in Equations (8) and (9) give rise to a field that is irrotational

and solenoidal, so that specification of the divergence and curl of

the field throughout the region, together with only the normal compo-

nent of U on the surface of a simply connected region is sufficient

to define the field to within a constant vector.

To demonstrate the latter, consider the vector field to be repre-

sented by the sum of three velocity fields in the region T and on its

surface.

U = UIT+ USl + Ep (10)

where

+UIT -- T_-I (Vl " U1) R dTI (11)

Us,-"_ (vlx u1)x R dTI

and

(12)

is /s-_ mR ")" R

Let the region exterior to T and extending to infinity contain no sources

for the field, that Is, v • U = v x U - 0 outside T. Since the field
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in _ due to a given distribution of sources in space does not depend

on the particular choice of _, let a new domain T'be defined to include

T and part of the region exterior to 3. For any point in T, then,

the volune integrals yielding Uit and US.t do not depend on the choice

for T'. Thus, the remaining field E and therefore the surface
P

integrals which determine Ep must be independent of the choice of _:

Taking _" sufficiently large, the surface integrals vanish subject to

the condition that U + 0 sufficiently fast 2 as R + _, and so they

vanish identically. Thus, Ep = 0 for this case. For the general

situation, then, the surface integrals may be seen to represent the

contribution to U of all sources (v " U, v x U) outside _. Invert-
.+

ing the domains in the foregoing example, let v • U = v x U = 0

within T, and non-zero in some bounded region exterior to t. Thus,

Ep is then solenoidal and irrotational within z and may be represented

by a harmonic function given in terms of its normal components over S,

I"

Ep - _ J. v G (X, Xl) Ul • dS1 (14)
S

where G (X +, Xl) is Green's function of the second kind 5 for T. This

problem of finding a potential function, harmonic in a region _,

bounded by a surface S, and having normal derivatives given on the

boundary is known as PJeumann's problem. The general representation

of the field as given by Equation (10) is also described by Batchelor 6(a)

B. Solenoidal Fields

Most of the discussion in the following section is concerned with

incompressible flow, for which the divergence of the velocity field is

ORIGINAL PAGE IS

OF POOR QUALITY
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/('ro. Ihuf;, Lhe vr}lul_m jntr.,ural JnvolvJn!j the (livr_rrlr, ncr: r)f Lh_

,;()ur(.(, lield IquaLion (11) for this Lase will be z(:ro. Ihr: velo(.il4

field z,ay then be expressed as

U = Us_ + Ep (15)

Thus, the determination of a solenoidal field is completely determined

by evaluating a volume integral of the curl of the vector field and

then solving the appropriate problem in potential theory. It is this

problem that is of principal concern in the following sections.

C. Time Dependent Fields

In many situations in fluid mechanics, time-varying phenomena

must be considered. Frequently, this phenomena is in the form of

turi_ulence. As long as one is not concerned with relativistic theory

and relativistic effects, time may be regarded merely as a parameter

of the vector field. For that case, all of the above relations are

valid for a time varying field U (X, t). Because of the linear char-

acter of the vector equations, the time averaged field is simply that

computed from the time averaged divergence, curl, and surface normal

components of the field. Stating this another way, the time averaged

field is that field computed from the divergence and curl of the time

averaged field and the surface norn_l components. Thus, time averaged

equations have the same form as the steady state equations.
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b. Axisxmmetric Fields

For axisymmetric fields with no tangential component

= +UziU Ur ir z (cylindri cal coordinates )

or

then

or

LI= Uo ip + U¢ i@ (spherical coordinates )

__ a Ur a Uz .+
vxU= (_z _r ) io (cylindrical coordinates)

ap U aU
vxu I( , E) ÷= - • - -- i

p a p _@ 0 (spherical coordinates)

and

-_ ")" -I, -IF --I, -_- . .-I-

R = [Xr ir + Xo io + Xz iz] " [Xrl irl + Xol iol + Xzl izl]

(cylindri cal coordinates )

+ X i@+ ] - [Xpl ip + X¢ i + 1 ]i Xo Io 1 I ¢I Xol ol

(spheri cal coordi nates )

The geometry of the fields are shown in Figs. 2 and 3. The coordinates

with subscript I correspond to a source point and the nonsubscripted

coordinates correspond to a field point.

E. Green's Function for a Semi-lnfinite Domain

Assuming the divergence, the curl, and the normal component of a

vector field U are specified within a given domain, it can be useful

to employ Green's function of tilesecond kind to determine the

l_ , • ,,i Jl _

component of the vector field denoted by Ep tLqua1_lon 141.
S_ ....I I'l I.;_

oP3GI_qAL pA.G]_ tB

oF poo Q
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Ep is irrotational it may be represented by the gradient of a scalar _.

Thus, it follows from Equation (14) that

,: G(X, ) •

with v2 _ = 0 throughout the domain.

Consider a simply connected finite region T. To obtain the Green's

function for this region, the following vector function is used.

l 1

where 'I is harmonic within the domain _.

the second form

IT - IT *I) d_l = (Ol--_n IT 3n • "

Express Green's theorem in

(16)

The volume integral involving v2 _I is zero. Solving the left side

of Equation (16) for field points within the region _, it follows that

* = - (*1 ( ) 1 _¢1.) dS 1 (17)R _n

since v2 I/R = 0 except at R = 0 where it takes on a value of - 47.

Equation (17) appears to indicate, that to obtain a solution for _,

both _I and a¢i/Dn must be known on the surface. This is contradictory

to Equation (14) which requires only the normal derivative (Ul • dSl

- _n dS1)" It is possible to express the integrand of Equation 07)

in terms of _I/;)n alone.
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In accordance with the presentation by Kellogg 5, consider a func-

tion II which is harmonic in T, and form the vector function ¢IvH

- H V,pl analogous to that shownabove for H : I/R. Thus, Green's

theorem in the second form for this vector function yields

_)H _I0 : - _ ('/'I D-_- 11 _) dS1 (I 8)

Addition of Equations (17) and (18) yields

¢ = - _ [_Pl _ ( + H) _n ( + H)] dS I. (19)

1

lhe combined scalar (_ + H) is called Green's function of the

second kind. The scalar potential may be eliminated from the

integrand by requiring that the normal derivative of Green's function

on the surface be zero.

The function H must differ from - I/R, in general since H is

harmonic at all points within T whereas I/R has a singularity within _.

It may be noted that the surface integral of _-- l_ is -47 and the
_n R

surface integral of the normal derivative of the harmonic function H

@ l
is zero. If BH/Bn differs from- _ _ by a constant at points on the

surface, the surface integral involving _I yields a constant. With

that choice for Bll/Bn, Equation (19) provides a relation for _ in

terms of B_I/Bn on the surface to within a constant. The determination

of Green's function G (X, Xl) then reduces to solving the following

problem.

•x,)=-+it(x, xI) (20)
• I
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where H is a harmonic function in _ satisfying the boundary conditions

DH a IIR (X, XI)
_n - + C (21)

Bn

on the surface of the domain where C is a constant.

As an example, consider the semi-infinite domain shown in Fig. 4.

The point P1 is the image with respect to the plane Z = 0 of the

source point rI. If H is given the harmonic value I/Jr - PlJ, and

substituted into Equation (21), the results obtained are

Thus

1 _ _ I

Bn i "_ -_ _rr- Pll Dn Jr- rlJ
__ on S1 (22)

1
G- 1 + _ +

_iI Ir - PII
(23)

Note that the quantities Ir - rll and Jr - PlJ are equal whenever rI

is on Z = O. The required Green's function for the semi-infinite

domain is then simply 2/R. For an infinite domain the appropriate

Green's function degenerates to I/R. Green's functions for various

domains are discussed at length in Reference 4 (b).
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III. THE AERODYNAMIC FIELD OF A JET

Referring to Fig. 5, a jet exhausting into an airstream has the

property that most of the turbulent flm_ remains confined within a

relatively narrow, curved column. There generally will be a turbulent

wake behind the jet, but for this discussion, it is convenient to

consider the entire flow field to be comprised of two parts: the

jet flow, and the flow outside the jet, or the aerodynamic field.

The jet flow occupies that region containing any significant vorticity.

The vorticity in the aerodynamic field, then, is presumed to be neg-

ligible. Experimental data for jet flows support such a separation

of the flowfield based upon the absence or presence of vorticity 7.

Tile vorticity within the jet flow will consist of strean_lise components

as well as peripheral components, in general. The surface bounding

the two regions is not a streamtube because the turbulent mixing

action of the jet flow results in entrainment of air from the aero-

dynamic field.

Consider the simply connected region _ containing a jet. The

velocity field U is uniquely defined by its divergence and curl

throughout the region and the normal component of U on the surface

bounding the region. For most purposes in aerodynamics, the field

may be presumed to be solenoidal (incompressible)*. This solenoidal

field U, as previously shown (Equation (15)), may then be expressed

_F
The entire flowfield is here assumed to be incompressible, which

would be a reasonable approximation for low-speed jets. For near

sonic or supersonic jets, this would be clearly untenable.
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as the sum of tile two component fields

U = UST + Ep (15)

The field LISt depends on the distribution of vorticity throughout the

renion. IIowever, the vorticity is confined to the jet flow. Thus,

US_ is solely dependent upon the sources within the jet flow. The

remaining component field depends only on the distribution of the

normal component of U on the surface of the region.

It is possible to determine the aerodynamic field in two ways.

The first makes use of only the scalar potential, and the second

utilizes both a scalar and a vector potential. In the following

discussion, the symbol ¢ will be employed to denote the scalar potential

of the aerodynamic flow field when the field is completely determined

by only the scalar potential. The symbol ¢ will denote the scalar

potential for a flow field characterized by both a scalar and a vector

potential. In the latter situation, the scalar potential _u alone does

not entirely characterize the flow field.

A. Method Gased on the Scalar Potential

Consider a domain chosen in such a way as to exclude the jet flow.

Refer to Fig. 6. Tile boundary (I) of the domain then contains the

surface of the jet flow as one of its parts. Since the aerodynamic

field within the domain is entirely irrotational and solenoidal, it

may be completely represented by the potential field component E of
P

Equation (I0). Recalling Equation (14), the relation for E is
P

Ep vG (X, ) • (14)
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Any sol,Jtion for E in the subject domain requires specification

of the normal component U1 . dSl on the surface of the domain. For

most applications, such values may be obtained for the parts of the

surface not bounding the jet flow. For those parts of the surface

boundinn the jet, values for U1 dS I are available only with a rather

.high degree of uncertainty, even for simple jet configurations. [hat

is true of data obtained either analytically or experimentally 8.

Furthermore, even if the boundary conditions on the surface of the jet

could be obtained with acceptable accuracy, the solution of the potential

problem (either by evaluating Green's function for the domain, or by

alternate methods) remains complex except for problems with simple

sy_mletry.

B. Method Based on the Stokes Potentials

Consider a boundary (II) taken around the region containing

both the jet flB,1 and the aerodynamic field (Fig. 6). This defines
-_ -). -+

a domain for which the velocity field U is represented by US_ + EP

since the vorticity within the jet fl_r is not zero. This choice

for the d_ain eliminates the requirement for knowing the normal

component of U along the surface of the jet flow. In other words,

the surface of the jet flow is no longer a boundary of the domain.

The field in the region exterior to the jet flow is irrotational.
-I_

lhus, the volu11_ integral for the determination of USx in Equation (15)

is taken only over the region occupied by the jet flow.

The formulation of this probler_ is somewhat more involved than

tile method of the scalar potential. Rewriting Equation (15), the
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relationship for U is

= (vI x ul) x
R 1 _ _

dTI VG (X, ) • dS 1l.i - Xl Ul
S

(24)

Now, the solution for UST involves the vorticity distribution

within the jet region. Certainly the distribution is not known with

precision for any turbulent jet. Nonetheless, the integral is the

value required rather than the vorticity distribution proper, so that

the uncertainty of the integrand may not be a serious problem in some

circumstances. That is, if the integrand is only approximated, it

_t_y still be possible to obtain accurate values for the integral.

This ,,_illbe considered in Section IV. As far as the evaluation of

the Green's function for the domain is concerned, there is more flexi-

bility compared _,_iththe method in the preceding subsection. The

choice of the d(_T_aincan be made in any convenient way without requir-

ing the boundary of the jet flow to be a part of the boundary of the

domain.

C. Vorticity in the Jet Flow

The vorticity distribution in a turbulent jet is strictly a time-

varying function. As noted in Sec. II, however, when only the time

averaged vector field is to he determined, specification of the tittle

averaged vorticity field and time averaged boundary conditions are

sufficient to determine the solenoidal field (Equation (15)). This

is due to the linearity of the vector field equations.

For most jets the principal tir:le-averaged vorticity component

is peripheral, or normal to the strean_ise direction of the jet fl_v.
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That is, the peripheral component of vortex lines form closed curves

about the axis of the jet. For a jet in a cross-flow, there will be

in addition, to this peripheral component, components of vorticity

in the strean_ise direction along the jet. The vorticity lines, re-

sulting from the peripheral and streamwise components, will then be of a

helical character. It is advantageous, for the purposes of discussion

and for computations as well, to consider the vorticity field as

separated into the sum of peripheral components and a streamwise

component. Thus, for the vorticity field _I'

where _
P

: + R (25)
_I _p z

is the peripheral component and lies in a surface normal to

the streamwise direction, and Rz is the streamwise component.

The magnitude of the peripheral component of vorticity in the jet

flow has a distribution such as that illustrated in Fig. 7. The

vorticity on the axis of the jet is zero, and the vorticity approaches

zero asymptotically near the edge of the jet. Maximum values of

vorticity are reached at positions bet_leen the axis and the edge of

the jet flow.

Computations of the aerodynamic field induced by a jet by means

of Equation (15) requires specification of the vortici ty throughout

the jet flow region. As mentioned before, precise data for the vorti-

city are not available, either from experimental data, or from analyt-

ical relations, even for jet flows of the simplest symmetry. However,

there is not actually a need for precise vorticity data to obtain

reasonably accurate data for the aerodynamic field, because only an

ORIGI2q_L IpAG_ 1_
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integral of the vorticity is involved in the computations. It is then

possible to obtain acceptable approximations for the computation of

the aerodynamic field if only certain integral properties of the vorti-

city distribution are known, that is, providing the field points of

interest are not close to the surface of the jet. At field points

extremely close to the jet, of course, more accurate data become

necessary.

When field points are sufficiently far from the jet flow region,

the value of I RI in Equation (12) does not vary much over a cross

section of the jet flow. The integral, then, can be reduced in an

approximate way to a simpler relation involving only the integral

of the vorticity and itsmoments over finite volume elements of the

jet flow. This approximation leads to useful computational simplifi-

cations. For some proble_, the integral of the vorticity for the

region can be related to data for the jet flow that is known with

considerable accuracy. Aerodynamic computations for such jet flows

employing these methods might be expected to be of comparable or

higher accuracy than computations previously made with other methods.

To illustrate the foregoing remarks, consider the contribution

to the velocity at a field point X due to the vorticity within a small

section of the jet flow. Refer to Fig. 8. The dimensions of the

section of the jet flow under consideration are presumed to be small

in comparison with the distance from the element to the field point.

The section is a plane slice of the jet flow field of infinitesimal

thicknesS. The extension to finite elements of the jet flow will be

considered later.
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Equation (12) may be expressed in the form

US_ = " _I x v dT 1

Expanding I/R as a Taylor's series in _I' yields6(b)

(26)

-_+ :_-Xli ( )
IX-XII _i ( ) + X1iXlj aX i>)Xj

where X = IXI

The subscripts denote components and the summation convention is

implied. If only the first and second terms are retained, then in

vector form

÷÷ - X-- Xl -v

IX-X]l

Substituting for I/R in Equation (26), yields the approximate equation

Us_ aI x v _I "v (v ) d_1

.-),

Since X is not a function of the source coordinates, X1, this equation

can be expressed as

UST v x nI dT1 + 51 x Xl • v (v ) d_ l (27)

However, the integral of the first term can be expressed as

i f f_1 dTl = _Zli dtl = Vl (Xli Ill) dTl

ORIGINAL PAGE IS
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From the divergence theorem, then

Vl (X1i _I ) dTl = Xli _I " dSl (28)

Considering Equation (28) and the expression for the vorticity

in Equation (25), yields for the integrand of Equation (28)

.+ .,X1i eI • dS 1 : Xli + ]z ) d_ l (29)

It can be concluded that since _Ipis everywhere tangent to the surface

S of the element then the contribution from the peripheral component

of vorticity in Equation (29) is zero. If the streamwise component

of vorticity, _z' is non-zero, then the first term of Equation (27)

yields

(30)

Since the first term yields no contribution of the peripheral

component to USI, the second term of Equation (27) must l)e used to

evaluate its contribution. Likewise, if the integral of the stream-

wise component in the first term is also zero, then the higher-order

approximation must be obtained, using the second term of Equation (27).

Consider now the case where the vorticity is entirely peripheral,

-).

_ - O. The first integral in Equation (27) is zero. The expression
Z

for US_ in Equation (27), using the vector identity

v x (CA) = Cv x A + (v_) x A
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then becomes

(31)

Rewriting the dyadic RI Xl in the integrand in terms of skew-symmetric

and symmetric parts, yields for the integral in Equation (31)

Noting that the second integral on the right can be rewritten as

and since

+ Xlj Rli ) dT (X1i Xlj _i) d_ 1 = O_(Xli _lj

only the first integral (skew-symmetric part) contributes to US_ in

this case. Using the vector identity

B (C.A) - A (C.B) = - C x (A x B)

the skew-symmetric integral can be written as

Substituting this value for the integral in Equation (31) and using

the vector identities
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vx (A x 13)= B.vA - A.vI] + Av.B - Bv-A

v (A-B) : A.vB + B.vA + Ax (vx B) + Bx (v x A)

finally yields,

US_ v (v ) . _I x _I dTl (32)

Equation (32) shows that for tile conditions considered, that of peri-

pheral vorticity only, the significant term remaining involves only

the integral of the monw_ntXl x _I' over the volume element of the jet.

It is possible to relate the latter integral to the circulation about

a vortex ring or an element of a vortex sheet, and then to the velocity

in the jet flow. If one considers the more general case for v v _r "

f )(X 1 x s_1) d,r 1 it is possible to relate this term to either a com-

bination of a source doublet and a vortex doublet.

For computational purposes, it is possible to replace the volume

distribution of vorticity in the element of the jet by a discrete,

closed line vortex of appropriate properties. The properties of the

line vortex corresponding to the volume distribution of vorticity may

be evaluated as follm_s.

For a plane closed curve C, the line integral

Al: XlxdXl (33)

yields a vector normal to the surface of a magnitude equal to the area

enclosed by the curve C (Fig. 9). The circulation, r, is defined as

..).

the line interlral of U! around a closed curve C bounding an arbitrary
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surface in the flow. Thus

_here dL 1 is an eler(mnt of the curve.

relation between circulation and vorticity may be expressed as

dsl- u1"dL1-

By employing Stoke's theorem the

(34)

where the surface integral is over the surface bounded by the curve C.

Considering one-half times the integral of Equation (32) and using

Equations (33) and (34), yields for a closed ring vortex in the plane

non_lal to the axis of the jet.

XI x _I d_l = (X1 x dXl) _ dS1
P

where the surface element dS l is that of the cross section of the vortex

ring and dXl denotes the differential line elelnent along the vortex ring.

The above expression ir,ay be written

(X1 x dXI) _p • n dS l = r Al

where _ is the vorticity of the closed rlng vortex in the direction
P

dX 1 and A1 is the area enclosed by the ring. gy considering a series

of vortex rings along the axis of the jet, an element of a vortex sheet

is obtained.

Considering finally v v g. (X1 x i) d_ 1

integral term be represented by m, yields

and letting the
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v(V_--i_)=(,;"v)
-+

X -_ .),

" _ 1 I (re'v) X
x3 - x [,i. (v x-_ )] + x_

and expanding the above, results in an expression for the field of a

dipole sinqularity.

1 ,n)- 3 X (X m) m
v(v* • x5 + x_

Thus, Equation (32) can also be expressed as a velocity field induced

by a dipole of strength m equal to the integral of the moment X1 x c_1.

The streamvise component of vorticity _z is more difficult to

treat analytically, but the following might be noted. Considering the

first order approximation expressed by Equation (30), this yields for

an equivalent line vortex

T_-V _x s2z dT I : _-_V xx 1

v T

-j.

where dX 1 is a vector element of the line vortex. When r is zero (no

net rotation of the jet), the second term involving _z in [quation (27)

must be considered. Uy analogy with the foregoing for _p, it may be

anticipated that the contribution will be equivalent to that of a

vortex doublet.

All of the above approximations are for large R. As previously

stated, more accurate approximations may be required for points of

the aerodynamic field close to the jet fl_. The foregoing approxi-

mations provide insight into the nature of the analysis, as will be

shown in the following sections.
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IV. THE AXISYII_IETRICJET IN A QUIESCENT ATMOSPHERE

As an application of the methods discussed in the foregoing sections,

the most elenmntary situation with regard to jet flows is that of the

axisymmetric jet exhausting into a quiescent environment. The vorticity

in a jet of that type is entirely peripheral. No streamwise vorticity

is present, except in the turbulent motion of the fluid. Since only

the time averaged properties of the flow field are of significance in

computations of the steady aerodynamic field, turbulent fluctuations

do not enter the computations. Before examining the computational

aspects of determining the induced aerodynamic field, the nature of

an axisyrTnetric jet is briefly reviewed below. A synopsis of some of

the literature pertinent to such jets is included in Appendix A.

A turbulent jet exhausting into a quiescent atmosphere is generally

considered to comprise three regions (Fig. lO). Region I, the potential

core region, is characterized by a central region of uniform "potential

flow,"* separated from the aerodynamic field by a turbulent mixing layer.

The n_ixing layer grows in thickness downstream from the lip of the

nozzle. At the end of the potential core region the inner boundary of

Such a characterization presumes the dominant flow from the nozzle is

essentially uniform. There will always be boundary layers present

adjacent to the wall. In some situations, the flow from the nozzle

_light have the appearance of a fully dew!oped turbulent pipe flow:
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the mixing layer reaches the axis. The growth of the mixing layer is

observed to be approximately linear and the velocity profiles, as a

function of a radial difference normalized with respect to the width

of the mixing layer, exhibit similarity. 9(a) At some point downstream

from the end of Region I, the flow becomes developed in the sense that

the radial profiles of axial velocity exhibit similarity (Region III).

That is, the radial distribution of velocity, normalized with respect

to the velocity at the centerline of the jet becomes a function of

r/r_ only. The radius r½ is the radius at which the velocity is half

that at the axis of the jet. In Region Ill, r½ increases linearly with

distance in the downstream direction. The velocity at the centerline

decreases as ]/Z where Z is the streamwise coordinate along the jet.

Region II, between Regions I and Ill, termed the transition region,

has been found to exhibit non-similar velocity profiles. The decay

of the centerline velocity begins in the transition region. For

nw_st purposes, the transition region may be considered to be rather

short, on the order of 2 nozzle diameters in length.

The boundary of the jet flow, introduced in Sec. Ill, was defined

to enclose the region containing significant time-averaged vorticity.

The instantaneous position of a jet surface has the appearance shown

in Fig. lO. The jet surface separates regions of irrotational fluid

from those of turbulent, rotational fluid. The above definition of

the jet boundary, then, would be a surface enclosing the extreme positions

of the instantaneous surface of the jet flow.

The mass rate of flow, associated with the jet flow, increases in

the downstream direction. Thus, the boundary of the jet flow is not
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jet.

as

a streamtube since fluid from the environment crosses the boundary to

become entrained in the jet flow. In the developed flow region of an

axisymmetric jet, the rate of increase of the mass flow rate per unit

length along the jet becomes constant. This rate of increase in the

mass rate of flow in the jet per unit length of the jet is termed the

mass entrainment rate, Em. The mass entrainment rate is simply related

to the normal component of velocity at points on the boundary of the

For an axisymmetric jet, the mass entrainment rate may be expressed

Em = 27 r° Un p

where ro is the radius of the boundary and Un is the component of

velocity normal to the boundary and directed inward toward the jet

axis. Recalling that the boundary conditions required for determining

the aerodynamic field by means of the scalar potential (Sec. ILIA) in-

volved specification of the normal component of velocity on the bound-

ary of the jet flow, it is apparent that those boundary conditions

are equivalent to specification of the Em.

Now, as noted in Sec. ILIA, Em is known for jet flows only with

a rather high degree of uncertainty. That is true from both analytical

and experimental viewpoints. For example, Ricou and Spalding lO examined

the available data and analytical relations finding that if the entrain-

ment were expressed as

Em - K1 /IT_ (35)

where N is the momentum flux and p the mass density of the jet fluid,

then values for K1 were found to range from 0.22 to 0.404. Experiments
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by Ricou and Spalding lO to obtain the value of the entrainment rate

yielded a value of 0.282 for the mixing of an air jet with air. On

the other hand Wygnanski II has found the higher value for Kl, corres-

ponding to the Schlichting profile, of 0.404 yielded agreement with

data he obtained. Other studies appear to show similar uncertainties

in the entrainment rate. 8 Such uncertainties might be expected because

of the sensitivity of the entrainment to regions of the jet near its

edge, where measurements are difficult to obtain with accuracy and

where theoretical relations there may not be expected to be accurate,

that is, at least in the boundary layer approximation.

From the foregoing remarks, it is apparent that however accurately

the geometry of the problem of computing the aerodynamic field may be

treated, the boundary conditions are known only with a high degree of

uncertainty for methods based on the use of the scalar potential alone.

The following discussion, then, is concerned with similar computations

based on the use of the Stokes potentials. The use of the Stokes

potentials for the computation involves data for the jet flow known

with higher accuracy. Thus, its use might be expected to yield more

accurate results under some conditions.

A. Formulation of the Problem

Consider an axisymmetric, incompressible, turbulent jet exhausting

normally through an infinite plane baffle plate into a quiescent

atmosphere. U is uniquely defined in the semi-infinite, simply connected

region _ by specifying the curl of U throughout T and the normal compo-

nent of U on the surface S bounding the region 3. Since the time-

averaged flow is assumed to be axisymmetric and without swirling action,
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the vorticity has only one component_0 (cylindrical coordinates), as

shownin Sec. lID. The vorticity is solely peripheral. This implies

that the aerodynamic field is also axisymmetric with only r and z

components. The entire domain of vorticity will be assumedto be that

of the mixing region around the potential core and of the fully

developed region of the jet flow. The transition region of the jet

flow is not considered separately in this formulation. That is, the

fully developed part of the jet flow is simply presumedto start at

the end of the potential core.

As discussed in Sec. II the aerodynamic velocity field may be
-H_ -_

separated into the sum of two fields US_ and Ep. The boundary condi-

tions to be satisfied for the domain are that the normal velocity

component on the plane baffle plate be zero; it will be presumed that

the normal velocity component at points of the plane within the cir-

cumference of the jet orifice is uniform and equal to Uj, the jet

velocity. The velocity at distant points approaching infinity must,

of course, approach zero. The simplest means for satisfying those

boundary conditions for this problem is to use the method of images.

An image of the jet flow is placed along the negative Z axis. Con-

tributions to the normal component of velocity at the baffle plane due

-+

to UST for the sum of the jet flow and its image thus vanish. The

normal boundary condition remains to be satisfied by the Ep field*.

*Strictly speaking, to be consistent with the discussion of Sec. Ill, one
should regard I_n as the sum of the contributions of the image of the re-

g'oni of vortici_y plus the _p field actually considered, for the semi-
infinite domain. There is no fundamental difference involved, however,

so there should be no confusion in the matter.
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The normal componentof Lp is zero at points in the baffle plane outside

the circumference of the jet orifice, and Uj at points in the plane

within the circumference of the jet orifice.

The aerodynamic velocity field-U for the axisymmetric jet has two

components (r and z) in cylindrical coordinates. Recalling Equations

(12) and (15) the contributions to the r and z componentsof U due to

the vorticity in the jet flow USTmaybe expressed as

(z-z I)

cos 01 R(I R-T rl drl dzl dOl (36)

f (rl-r cos Ol)US_ z =" _-_ s_1 R3 rI drI dzI d01 (37)

where the notation corresponds with that for cylindrical coordinates

discussed in Sec. liD. The nonsubscripted variables refer to the field

-+

point X, and the subscript 1 denotes values evaluated at the source

point XI. The geometry associated with the Equations (36) and (37) is

illustrated in Fig. 11. A small segment of the jet is shown in Fig. 11

as a truncated cone. The integrals of Equations (36) and (37) are

taken over the points within the jet flow and its image. The value R

in Equations (36) and (37) indicates the magnitude of R = X - Xl, as

shown in Fig. 11.

The irrotational and solenoidal part of U, denoted by Ep, satisfies

the boundary conditions for the semi-infinite domain and is represented

by Equation (14). For the present application, the equations may be

written in component form as follows.

Uj f (r-rI cos oI)

_pr = 2_ 'IS _ r1

dr. do.
I I

(38)



X

... \
r X R \

\

\

rl I

Z

Y

FIGURE II. GEOMETRY ASSOCIATED WITH THE

VOLUME INTEGRALS FOR Us_:



45

u. J_S (z-z1)Epz : 2-_ _ rI drI dOl (39)

where the notation corresponds to that previously discussed. The

geometry for Equations (38) and (39) is shown in Fiq. 12. The surface S

surrounding the domain consists of an infinite plane at z = 0 and the

remaining surrounding surface at infinity. The normal component of

velocity along the boundary is zero except at the orifice. At points

in the plane within the orifice circumference the normal component of

velocity is presumed to be uniform with the magnitude Uj, the exit

velocity of the jet. Thus, the only surface contributing to the surface

integral is a flat disk of radius rj, the exit radius of the jet orifice.

Integrating over the 01 direction and recalling that _01 is indepen-

dent of 0l, the above equations can be written as follows.

J_S _01 (Z'Zl) • I r2 + r_ + (Z-Zl)2US, r= _'F /r* rl)2+i;-Zl )2 (r-rl)2 + (Z-Zl)2

E (k) - K (k)I_dr I dzI
(4O)

1 IS Re1.USTz : - 2-_ _r+r l)2+(z_zl)2

r2-r_ + (Z-Zl)2

(r_rI)2+ (Z_Zl)2
E(k) - K(k)Idr I dzI (41)

EP r: Uj _ rl

Jr /r+rl )2 + z2 (r-rl)2 + z2

E(k) + K(k) dr I (42)
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2 Uj z _r rl E (k) z2]drl (43)
EPZ - _ /(r + rI)2 + z2 [(r-r I)2 +

where K (k) is a complete elliptic integral of the first kind and E (k)

is a complete elliptic integral of the second kind. Derivations of

Equations 140), (41), (42), and (43) are presented in Appendix B. Note

that the integrals in Equations (40) through (43) involve integration

only over the rI and zI coordinates in the jet flow.

B. Numerical t4ethod

The integrals in Equations (40) through (43) may be evaluated

numerically. For the purpose of numerical integration, it is convenient

to transfon_l the variables of integration in such a way that the domains

of integration become rectangular. This may be accomplished in the

following manner. Denote the inner radius of the mixing layer in the

potential core region by rI and the outer radius of the jet by ro-

The geometry for the jet flow is shown in Fig. 13a.

Introduce the transformation for the coordinates (rl, zl) in the

mixing layer of the potential core region to the transformed variables

(xl' Yl )"

xI = (rl-ril)/(rol-ril)

Yl = zl/rj

(44}

where rll = rI (zl),

rol = ro (zl), and
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rj = the radius of the jet orifice

For the developed region of the jet, the transformation from

(rl, zl) to (Xl, yl ) employed is as follows.

x 1 - rl/rol

Yl = Zllrj

The notation corresponds to that described above.

(45)

The coordinates for

the surface integration over the orifice area in the plane zI = O, let

Xl = rl/rj L
(46)

JYl =Zl =0

Finally, for the field point coordinates, introduce the transformation

from (r, z) to (x, y) as follows.

x = r/ro (z)

(4z)
y = z/rj

The transformations (44), (45), (46), and (47) transform the original

domain in the (r, z) plane to the rectangular domain in the (x, y) plane

as shown in Fig. 13. Region I is the mixing region surrounding the core.

The fully developed jet flow is represented by region 2. It should be

noted that the region of integration in the xI direction extends only

from 0 to + _. The region of integration in the Yl direction contains,

in addition to the interval (0, +®), the region of integration over the

image from 0 to -_.

ORIGINAL pAGE IS

OF POOR QUALITY,



50

It is convenient, in addition, to normalize the velocity components

with respect to Uj, and the vorticity component with respect to Uj/rj.

Thus, the appropriate relations are

Ux = US_r/U j Ex = Epr/U j

Uy : USTz/Uj Ey = Epz/U j

c: = li(_rj/Uj I : Uj/Uj

(48)

Substituting the relations (44) to (48) into Equations (40) through

(43) yields the following equations.

_r)_°x 0 / roX + [(rol-ril) xI + rll
2

+ rj (Y'Yl)

( r2 x2 + [( ) Xl + ]2 _ )2o ro1"rll rll + r (Y'Yl

{r ]}2 2 )2 E (kl) - K (kl)ox -[(rol-rll ) xI rll ++ rj (Y'Yl

rj I i II r°] II (YI'Y)

- O/(roX + rolxl )2 + r2j (y-yl)2

dxI dY1

r2 x2 r2x2 r2 )2
o + o l + J (Y-Yl

(roX_rol Xl )2 +' r._ (Y'Yl)2

E (k2) - K (k2) dxI dyI (49)*

*The integration is to be performed over the jet flow (0 to ®) and its

image (0 to -®) It should be noted that Yl is replaced by -Yl and
is replaced by "{i for the image integration:
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+ [(rol-rll) + rill} 2 2 )2
+ rj (Y'Yl

_ + ]2 + r2. (y_yl)2 1

r2X2o [(rol-rll ) Xl rll j

{r ]}2' r_. (y.yl)2 E (kl)" K (kl) dXl dYlox - [{rol-rll ) Xl + rll + 3

rol

2 )2
+ r I x1)2+ rj (Y-Yl

22 2 2 )2
roX -rolXl2 + rj (Y-Yl

(roX_rol Xl)2 + r_ (Y'Yl)2

E (k2) - K (k2) dx I dy I (50)*

I r2x2 r2 2 r2 iI x_,
_r°x 0/ro x + rjxl)2 + rj2y2[(roX_rjxl)2 + r. y2

E (k3) + K (k3) dx I (51)

2 xlY E (k3)

+ rjxl)2 + r_ y2 [(rox_rjxl)2 + 2rj y2]

dx I (52)

where for Equations (49) and (60) the first integrals on the right side

are taken over the core region and the second integrals are taken over

*The integration is to be performed over the jet flow (0 to ®) and its

image (0 to [-.).R It should be noted that Yl is replaced by - Yl andis replaced uy for the image integration.
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the developed region. The moduli kl, k2 and k3 for the complete e11iptic

integral functions are

4 roX [(rol-rll ) xI + rll ]

k_ : - (53)

{roX + [(rol'ri1)x I + rill}2+ r_ (y-yl)2

4 roX rol xl

= +

4 rox rj xI

+ 3y

It should be noted that the transformations employed do not strictly

lead to the integrals in Equations (49) and (50) because the trans-

formed coordinates are not orthogonal. Nonetheless, the error involved

in the approximation of the differential surface element can be shown

to be of negligible order because of the small spreading angles of the

jet. Numerical integration of the equations by this method and by a

different method not involving a transformation of the domain yielded

identical results to four significant figures.

For the purposes of numerical computation, the numerical algorithms

for evaluating the complete elliptic integrals were taken from refer-

ences 12, 13, and 14. Those algorithms were found to be compact and

of demonstrated accuracy to six significant figures. The algorithms are

listed in Appendix C.
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The Integrals tn (quttlens (49) and (50) are of the form

X- "_Sf (xt' y_) dxl dyl (55)

where the variables (x, y) not entertng the tntegrat|on process are

suppressed for ¢oevmtence of notit4on. The method of Integration

adopted for the numrlcal evaluation of the Integrals employed the

tr_oezotdal rule for double Integrals !5. The •1got|thin may be obtatned

as follom. Let f (x 1. yl ) be locally Ipproxtmated by the relat|on

f (xI.yl )-a+eyl + _xl ÷6 xlyl (57)

In • rectaqlulor elmmnt of the doeth of dimensions e and b (Refer to

FtO. 131). Msmm for the IW_lxlse of d4scusstoe that the ortgtn of

cenrdlnetes Is at the lmmr left corer of the element and deftne the
t

fenctQenS fo" fl" f2 'end f3 aS follem.

fo" f (o., o)

.... fl " f (0" o)

The coefficients In Equation (57)ly then be expressed tn terns of

(58)

these vilvis.

°" f• "_" (fl"fo)/'

IS- (f2-fo)/b 6 - (f3-f2-fl+fo)lab

Evalvatton of the tntegrel tn Equetten (56) then results In the a19or4thm

I - _-(fo ÷ fl ÷ f2 + f3 )

where I denotes the mamrlul approximation for A over the small

elemmt41 serrate cwslde_d.

ORIGII'_/_L p__G_ IB
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The integrals in Equations (51) and (52) involve integration;with

respect to a single variable. The trapezoidal rule was adopted for

the numerical integration of those integrals. For an integral of the

fo rm

A' = Ig (XI) dxI

the numerical algorithm for a small increment of length a may be written

I' = (go+ gl)

where go = g (0) and gl = g (a), taking the origin arbitrarily at 0

for the purpose of discussion as before.

The integration method employing the trapezoidal rule, either for
i z

single or double integrals, is of second order, the error decreasing ......

as h2 where h is a characteristic size of the element of the domain 15.

More precisely,

A - I - E = cI a2 + c2 b2

for the double integrals, and

A' - I' : E' = co a2

for the single integrals. This second order behavior of the method has

been found to hold in the computations made in this study, as evidenced

by the changes in the solution occurring when the grid size was succes-

sively halved.

The division of the different regions into a network of elemental

areas was as follows. For the mixing layer of the potential core region

(first integrals in Equations (49) and (50), a square grid was chosen

in the xl, Yl plane. For the fully developed region (second integrals
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in Equations (49) and (50), a rectangular grid with aspect ratio of 10

was chosen, with the longer dimension in the streamwise direction.

Computations for the fully developed region employing aspect ratios

of 5 and 2.5 were also made and compared with the aspect ratio of I0.

These comparisons showed identical results to three significant figures.

C. Computations for Selected Vortlclt}, Distributions

Several theoretical jet velocity profiles were selected for the

purpose of comparing the aerodynamic fields computed according to the

foregoing method. For the mixing layer around the potential core,

the relations suggested by Squire and Trouncer 16 (cosine distribution)

and that of Abramovich g(a) were employed. For the developed region

of the jet, the velocity profiles selected were those of (a) Squire and

Trouncer 16, (b) Schlichtingl7!a_nd (c) the Gaussian dlstributlon 18.

The vorticity distributions employed were determined by differentiation of

radial distributions of the axial velocity. Contributions to the

vorticity due to the radial velocity component can be shown to be

negligible.* Computations were made to determine the radial and axial

velocity components and values for the pressure coefficient, Cp, at

points along the plane baffle plate and at a series of points in the

aerodynamic field away from the baffle plate for each of the representa-

tive velocity profiles.

*For example, the contribution to the vortlclty from the radial velocity

component of the Schllchting profile is less than l percent at rl/r_ <

1.2. The contribution increases to 4 percent for 2.8 < rl/r ½ <__).22an-d

decreases to less than 2 percent at rl/r ½ = 4.0.

._ -,,., A r_ I'_ TC_

ORIGINAL r_ur-

OF POOR QUALITY
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In addition to the above computations, computations were made

for the Squire and Trouncer profiles (both that for the potential core

and that for the fully developed region) to evaluate the sensitivity

of the aerodynamic field to contributions from various regions of the

jet flow. For example, the contributions of different axial elements

of the vorticity in the jet flow were separately evaluated to deter-

mine the range of integration in the axial direction necessary to

obtain accurate values for the velocity components at the field points.

A separate tabulation of the contributions from different regions in

the jet flow was made to indicate those regions making the largest

contributions.

The contributions to U due to the irrotational and solenoidal

-l.

part of the field, Ep, were the same for all the jet velocity profiles

evaluated. A uniform velocity distribution over the area of the Jet

nozzle was employed in determining the E field. To evaluate the
P

influence of nonuniformities in the velocity profile at the nozzle

exit plane, several nonuniform profiles chosen to yield the same mass

rate of flow were examined.

1. Vorticity Distributions Corresponding to

the Selected Velocity Profiles

a. Mixing Layer of the Potential Core Region. The two velocity

profiles considered for the mixing layer around the potential core were

Uzl = _ [I - cos _ n] [Squire and Trouncer] (59)

Uzl = Uj [I - (I - n3/2) 2] [Abramovi ch ] (60)
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where n = (r o - rl)l(r o - rI) and rI <_ rI <_r o. Evaluating the vorticity

distributions corresponding to Equations (59) and (60), neglecting the

contribution to the peripheral component of vorticity due to the term

Urll_ zI, ylelds

Uj sin , n
Rel = - 2 (ro - rl}

[Squire and Trouncer] (61)

and 3 U. (I - n3/2) nI/2

%1 = " J
(r o - r I)

[Ab ramovi ch ] (62 )

For the geometry of the core region, a core length of 12 rj was

used as suggested in Ref. 19. For this core length and assuming rI is

a straight line, an angle of spreadof 4.80 for rI was obtained. Apply-

ing the relation for the conservation of linear momentum to the jet

between the exit of the nozzle and the end of the core region yields

fr o2 _ 2 rl dr1Uj _ r = 2 _ Uzl

0

Substituting the value of Uzl from Equation (59) into the above rela-

tion results in an angle of spread for ro of 6.7 ° .

The results of computations for the radial and axial velocity

components at a series of points in the aerodynamic field are pre-

sented in Tables l and 2. The values shown in Tables l and 2 were

determined for the vortlcity distributions of Equations (61) and (62)

respectively. The values in Tables l and 2 for UCTr/Uj_ and U_Tz/U-J

C C

are for convenience denoted by Ux and Uy respectively. They represent

only the parts of the total velocity components (normalized by Uj) of

ORIGINAL PAGE IS

OF pOOR
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TABLE I. FIELD POINT VELOCITIES - CONTRIBUTIONS FROM

THE MIXING LAYER OF THE POTENTIAL CORE

[SQUIRE AND TROUNCER (COSINE) VELOCITY DISTRIBUTION]*

y=O ro/rj = 1

x Uc
X

l.l -7532.0

2 -1477.0

4 -356.6

12 -30.11

20 -6.427

UC
Y

0

0

0

0

0

y = 12 rolr j = 2.42

4

12

20

C
x Ux

l.l 658.8

2 146.3

20.27

-0.5179

-0.1675

UC

-96.08

-47.46

-19.70

-1.152

-0.1475

y = 24
ro/r j = 4.62

C
x Ux

I.1 6.235

2 6.359

4

12

20

0.2415

-0.02591

-0.0]222

UC

10.57

4.780

-0.2443

-0.09729

-0.01218

y = 36

X

l.l

2

4

12

20

ro/rj = 6.83

UC
X

0.8499

1.007

0.4950

-0.00455

-0.002530

1.724

.948O

0.01292

-0.02083

-0.002620

c= ) uC= (U z/Uj*y : Zlrj x = rlro Ux r/Uj Y

All tabular velocity ratios have been multiplied by a factor of 104 •
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TABLE2. FIELD POINTVELOCITIES- CONTRIBUTIONSFROM
THEMIXINGLAYEROFTHE POTENTIAL CORE REGION

(ABRAMOVICH VELOCITY DISTRIBUTION)*

y = 0 ro/r j - 1

C C

x Ux U_

4

12

20

1.1

2

-7595

-1514

-378.1

-33.55

-7.242

0

0

0

0

0

y = 12 ro/rj = 2.42

C C

x Ux Uy

1.1

2

4

12

20

797.7

168.1

22.64

.5898

-.1900

-127.1

-58.01

-22.74

-1.304

..1671

y = 24 ro/rj = 4.62

C C

x Ux Uy

1.1

2

4

12

20

7.128

7.256

2.742

-.02946

-.01386

12.05

5.432

-.28539

-.1103

-.01382

y = 36 ro/rj = 6.83

C Uc
x Ux y

I.I

2

4

12

2O

.9659

1.147

.5591

-.00521

-.00285

1.960

1.073

.01210

-.02344

-.00294

C
*y = Zlrj x = rlro Ux = USTr/U j Uc = USTz/U j

All tabular velocity ratios have been multiplied by a factor of 104.

Ot_Gllq_L PAGE IS
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the aerodynamic field due to the integration over the vorticity distri-

bution in the mixing layer of the potential core region. In other

words, they represent the first of the two integrals in Equations (49)

and (50). It can be observed that the magnitude of the radial velocity

ratio aecreases in the radial direction. Similarly, at field positions

z = 12 rj and greater the magnitude of the axial velocity ratio de-

creases in the radial direction. The change in the direction of the

velocity in somecases for r/r o > 4 may be noted. Comparingthe com-

puted results for the vorticity distribution of Equation (62) [Abramovich]

with those of Equation (61) [Squire and Trouncer], it can be observed
C C

that the magnitudes of Ux and U; were generally higher, some field

points II percent higher, for the vorticity distribution based upon

Equation (62) [Abramovich].

b. The Developed Region. The three velocity profiles considered

for the developed region were

Uc rI
Uz "2-- (1 + cos,, _--)

1 o
[Squire and Trouncer] (63)

uz :ucExP[-r I(2 [Gausslan] (64)
I

where C2 = .081

Uzl = Uc/(I + 0.125 2)2 [Schlichtlng] (65)

where C = 18.5 rl/zl

In the above equations, Uc is the centerline velocity of the jet. Based

upon a virtual origin of
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e = 1.2 rj

where e is measured from the face of the nozzle exit along the negative

zI axis, the centerllne velocltymay be expressed byIg

Uc = (Uj 13.2 rj)/(z I + e) (63)

Evaluatlng the vorti clty dlstrl butlons correspondlng to these

velocity distributions, again neglecting the contribution to the peri-

pheral component of vorticity due to the term _ Url/_ zI ; yields

Uc _ rl

_(Jl = " _o sin _ r--o [Squire and Trouncer] (67)

= . rl Uc

_cI _ exp (- r2/2 C_ z_)
[Gaussian] (68)

171 Uc r1

_)cl : " z_ (I + 0.125 C2) 3 [Schlichting] (69)

The velocity distributions corresponding to Equations (63) to (65)

and the vorticity distributions corresponding to Equations (67) to (6g)

are shown in Fig. 14. The geometry for the region of vorticity (lateral

spreading of the jet) for the Squire and Trouncer distribution was

based upon the selected virtual origin (e = 1.2 rj) and conservation

of linear momentum for the jet. The angle of spread determined for

ro in the developed region (boundary of the jet flow) was I0.4°.

However, It should be noted that the vorticity distributions for the

Schlichting and Gaussian profiles approach zero asymptotically in the

ORIGINAL PAGE IS
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radtal direction. Thus, a large angle of spread, 20°, was selected

for the jet boundaries of both the Schlichttng and Gausstan profiles.

For this angle of spread, the value of vorttctty on the jet boundary

for the Schlichtlng proflle was less than 5% of the maximum vorticlty

and for the Gausslan profile it was less than O.l) of the maximum

vortlcity. Although the jet boundaries differed, the locus of the

radii (r_2) of the half velocity points was essentially the same for

all three distributions over the range of integration.

The results of computations, using the Squire and Trouncer, Gaussian,

and Schllchting distributions are presented in Tables 3, 4, and 5 respec-

D D represent only those components of the
tively. The values Ux and Uy

total velocity ratio due to the vortlclty distribution in the developed

region. The values tabulated were determined for the vorticlty distri-

butions of Equations (67), (68) and (6g). The values represent the

second of the two integrals in each of Equations (49) and (60).

It should be noted that the value of ro employed to normalize the

radial field position r was based on the lateral spreading of the

Squire and Trouncer vorticlty region. For this selection of ro, the

radial field positions r = l.l and 2.0 fell within and on the nominal

jet boundaries for the cases of the Schllchtlng or Gausslan profiles in

the developed region. Thus, calculations for these field positions

were not made for the Schllchtlng and Gausslan profiles except along

the baffle plate. The results in Tables 3 to 5 show that the smallest

contributions to field point velocities are those associated with the

Squire and Trouncer distribution. The largest contributions come

from the developed region based on the Schllchtlng profile. It may
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TABLE 3. FIELD POINT VELOCITIES - CONTRIBUTIONS FROM

THE DEVELOPED REGION [SQUIRE AND TROUNCER

(COSINE) VELOCITY DISTRIBUTION]*

y=O

X

I.I

2

4

12

20

ro/rj = l

UD
X

-7. 630

-13.51

-24.57

-36.40

-28.92

UyD

0

0

0

0

0

y = 12 ro/rj = 2.42

x UD
X

l.l -839.2

2 -261.2

4 -84.57

12 -22.27

20 -12.92

UD

129.9

50.06

15.23

.3172

-.2799

y = 24
ro/rj = 4.62

4

12

20

l.l

D
Ux

-133.9

-76.31

-37.49

-II.09

-5.884

_ --4--

-ll.15

-5.82

-I.I15

-.6497

-.5461

Iy=36
I

4

12

20

x UD
X

l.l -87.51

2 -48.55

-24.06

-6.857

-3.214

ro/rj - 6.83

UD
Y

-3.129

-2.380

-I.381

-.8861

-.5906

° °* y = Z/rj x = r/r o Ux = U Tr/Uj Uy = US_z/U j

All tabular velocity ratios have been multiplied by a factor of lO4.
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TABLE 4. FIELD POINT VELOCITIES - CONTRIBUTIONS FROM

THE DEVELOPED REGION (GAUSSIAN VELOCITY

DISTRIBUTIONS)*

y=O

4

12

2O

1.1

D
Ux

-8.672

-15.38

-28.08

-42.65

-34.64

rolrj = 0

0

0

0

0

0

y = 24 ro/r j = 4.62

D D

x Ux Uy

y = 12 ro/rj = 2.42

D D

x Ux Uy

4

12

20

-99.19

-27.30

-16.11

21.21

0.8492

-0.2097

4

12

20

-46.86

-13.98

-7.487

0.1710

-0.6453

-0.6502

y= 36
L

X

4

12

20

ro/rj = 6.83

D
Ux

-30.63

-8.741

-4.126

-1.005

-1.043

-0.7379

° °*y = z/rj x = r/ro Ux = U Tr/Uj Uy = USTz/U j

All tabular velocity ratios have been multiplied by a factor of 104.

O_IGINAL p_GE IS
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TABLE 5. FIELD POINT VELOCITIES - CONTRIBUTIONS FROM

THE DEVELOPED REGION (SCHLICHTING VELOCITY

DISTRIBUTION)*

y=O

x UD
X

l.l -11.46

2 -20.37

4 -37.31

12 -57.34

20 -46.53

ro/rj = l

UD

0

0

0

0

0

y=12

4

12

20

D
Ux

-135.3

- 36.46

- 21.43

ro/,j : 2.42

UD
L

27.55

O.9814

-0.3151

y = 24 rolrj = 4.62

X

4

12

20

D
Ux

-62.26

-18.57

- 9.950

-0. 3407

-0.8891

-0.8568

4

12

20

y = 36

D
x Ux

- 40.50

- 11.60

- 5.499

rolrj = 6.83 I

-l.554

-l .375

-O. 9707

o*y zlrj x r/ro Ux U _r/Uj U D= = = : Us_z/Uj

All tabular velocity ratios have been multiplied by a factor of lO4.
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O and D are negative for all profiles atbe also observed that both Ux Uy

the axial position y = 36.

2. Regional Contributions to the Aerodynamic Field

a. Relative Contributions of Different Regions of Vorticit}, alon 9

the Length of the Jet. In contrast with Equations (49) and (50) which

have limits in the axial integrations of 0 to ®, the numerical computa-

tions for Equations (49) and (50) were limited to a finite region of

vorticity. To show the effect of not including more distant regions

D along the baffle platein the integrations, the velocity ratios Ux

(y = O) were computed for a sequence of finite regions of vorticity,

successively extending the region of integration farther downstream.

Table 6 presents the resulting velocity ratios as the region of in-

tegration was extended in the axial direction (yl) and in the image

direction (-yl). The result_ shown in Table 6 indicate that for

points on the order of lO diameters away from the jet in the plane

of the baffle plate, the integration should extend in the neighbor-

hood of lO0 jet diameters downstream for acceptable numerical accuracy.

The requirement to extend the integration in the downstream direction

diminishes for points closer to the jet, and presumably increases for

more distant points.

b. Contributions from Radial Elements of the Distribution of

Vortlclt},. An investigation was conducted to determine which radial

elements (AXl) of the vorticity distribution made the largest contri-

bution to the velocity Ux at different field positions along the

baffle plate. The results of this investigation are shown in Table 7.

ORIGINAL p kG] IS
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TABLE 6. FIELD POINT VELOCITIES - EFFECT OF EXTENDING

THE REGION OF INTEGRATION [SQUIRE AND TROUNCER

(COSINE) VELOCITY DISTRIBUTION]*

y=O Developed Region
ro/rj = l

1.-1

2

6

I0

16

20

(yi-26)

-6.88

-12.22

-28.20

-30.99

-24.48

-19.26

D
Ux (YI=65)

-7.44

-13.22

-31.09

-35.52

-30.77

-26.22

I DUx (Y1"130)

-7.60

-13.45

-31.77

-36.64

-32.48

-28.29

D
Ux (Yl=260)

-7.64

-13.52

-31.98

-36.98

-33.02

-29.16

oC = UC /Uj Ux = U Tr/Uj
*y = z/rj x = r/ro Yl = zl/rj Ux S_r

All tabular velocity ratios have been multiplied by a factor of 104 •
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TABLE7. FIELD POINTVELOCITIES- CONTRIBUTIONS

FROM RADIAL ELEMENTS OF THE JET*

y = 0 Core Region ro/rj = l

0-.]

.]-.2

.2-.3

.3-.4

.4-.5

.5-.6

.6-.7

.7-.8

.8-.9

.9-I .0

C
FOTAL = Ux

- 164.6

- 489.2

- 781.6

-lOlO.

- 26.35

- 81.29

-135.8

-183.7

- 4.57 -0.19

-I5.07 -0.73

-27.]2 -1.56

-39.43 -2.64

-0.03
-0.13

-0.30

-0.53
-1147.

-I175.

-]084.

- 879.9

- 576.9

- 202.4

-2]8.3

-233.6

-225.1

-190.4

-122.9

- 47.07

-50.19

-57.30

-58.63

-52.42

-37.61

-14.19

-3.81

-4.85

-5.44

-5.26

-4.03

-I .60

-0.79

-l .03
-I .]8

-] .16

-0.90

-0.36

= -7510.6 -1472 -356.5 -30.11 -6.41

y = 0 Developed Region ro/rj = ]

0-.1

•l-.2

.2-.3

.3-.4

.4-.5

.5-.6

.6-.7

.7-.8

.8-.9

.9-I .0

D
TOTAL = Ux

-0.00472

-0.05112

-0. 1954

-0.4628

-0.8287

-I .216

-I.506

-I. 562

-I.259

-0.5160

7.602

-O0.Ol
-00.09
-00.34
-00.82
-01.47
-02.15
-02.67
-02.77
-02.44
-00.92

-13.48

-00.01

-00.16

-00.62

-Of .48

-02.66

-03.91

-04.85

-05.05

-04.08

-Of .67

-24.49

-00.02

-00.23

-00.90

-02. ]5
-03.89

-05.74

-07.16
-07.48

-06.08
-02.51

-36.]6

-O0.Ol

-00.18
-00.71

-Of .69

-03.05

-04.51

-05.64

-05.90

-04.81

-Of.99

-28.49

* y = z/rj

All tabular

Ax] : ar]/% x = r/ro aUxc = aU_Tr/U j aUxD = AUDTr/U j

velocity ratios have been multiplied by a factor of 104 .
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The values _Ux for the core region and _Ux for the developed region re-

present only that part of the aerodynamic fteld due to the individual

radial elements AxI in the respective regions. That is, aUCx and AU_

are the results obtained by employing Equations (49) and (50) to in-

tegrate over the individual radial elements in the respective regions.

C D
The total velocity ratios Ux and Ux are also presented in Table 7. It

may be observed that the radial element (AXl) of vorticity making the

largest contribution to the field point velocity shifts within a range

of (.5 - .6) to (.6- .7) for the core regions. For the developed

region it may be observed that the radial element making the largest

contribution is (AXl) = (.7 - .8). In addition, it may be noted that

the contribution to the total field point velocity ratios from radial

element (AX l) = (.9 1.0) varies from 3 to 7% of the total contribution.

3. The Potential Field

The irrotational and solenoidal part of the velocity field UI
-_ -4,

denoted by Ep, satisfies the boundary conditions for U as discussed

in Section Ill A. The results of computations for the radial and

axial velocity ratios of Ep, Ex and Ey respectively, are presented

in Table 8. The values Ex and Ey shown in the table were determined

for a uniform velocity distribution over the area of the jet nozzle

and represent the results of integration of Equations (51) and (52).

It may be noted that the contribution from the potential field to Ex

is significantly lower at y = 12 In comparison with y = 0 and the

contributions continue to decrease as y increases.
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TABLE8, FIELD POINTVELOCITIES- CONTRIBUTIONS
FROMTHEPOTENTIALFIELD*

y = 0 ro/r j = l

x Ex Ey

l.l

2

4

12

20

7396

1390

320. l

34.81

12.51

0

0

0

0

0

y = 12 ro/r j = 2.42

x Ex EY

l.l

2

4

12

20

7.092

ll.08

13.17

4.691

1.957

16.09

13.82

8.199

.9712

.2430

y = 24 ro/r j = 4.62

x Ex Ey

l.l

2

20

1.716

2.711

3.322

1.257

4,059

3,525

2,159

.2723

.5312 .06901

y = 36 ro/r j = 6.83

x E E
x y

l.l

2

4

12

20

.7537

1,194

1.480

.5724

.2428

I.809

l.577

.9763

.1259

.03204

*y = z/ro x : r/r o Ex ffiEpr/U j Ey = Epz/U j

All tabular velocity ratios have been multiplied by a factor of lO4.

ORIGINAL PAGE IS

oF Poor



72

To investigate the effect of a non-uniform velocity distribution

over the area of the jet nozzle, several non-uniform velocity distri-

butions were employed. An equation representing velocity distributions

for turbulent flow in a pipe was selected from reference 17(b) for

this purpose.

r:_r I m

Uzl = Um (-_r_ _)
J

where Um is the peak centerline velocity. Employing the constraint

that the mass flow rate be the same as for the uniform velocity profile

Uj, yields

Um = _ (m2 + 3 m + 2)

The profiles selected for comparison were based on the following values

m = .025 Um = 1.04 Uj

m = .D5 Um = 1.08 Uj

m = .25 Um = 1.4 Uj

Evaluating Equations (51) and (52) with the selected non-uniform pro-

files, the results obtained were as follows. In comparison with the

unifor_ velocity profile, the largest change in field point velocities

Epr and Epz resulted from the profile with the largest peak centerline

velocity of 1.4 Uj representing the largest deviation from the uniform

profile considered. Even though the field position r/rj = l.l, z/rj = 0

showed a 10.4 percent decrease in Epr, at the field position r/rj = 2.0,

of m and Um.
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z/rj = 0 the percent decrease in Epr was only 2.6 percent. At axial

positions (z/rj = 12) the change in field point velocities only

affected the third significant figure. For the other profiles consider-

ed, the deviations from uniformity were considerably less, and the

differences in computed Ep values as compared with those for the

uniform profile were insignificant.

4. Summary of Results for the Selected Velocity Profiles

The combined results for the field point velocity ratios due to

÷C

the mixing layer of the potential core region Us_/U j, the developed

 plujregion , and the potential flow are presented in Tables

9 to II. The field point velocity ratios resulting from a mixing

layer based upon the relation (Equation (59)), suggested by Squire

and Trouncer are the same for all combined results. Likewise, a

uniform, velocity distribution over the area of the jet nozzle was

employed for all results. Thus, Us_/Uj and p/Uj were the same for all

combined results. Variations in the combined results may be attributed

to differences in the vorticity distributions employed for the developed

regi on.

The combined results employing the Squire and Trouncer distribu-

tion, Equation (66), for the developed region are shown in Table 9,

whe re

Ur = Ux + Ex

Uz = Uy + Ey

The values Ux and Uy represent those parts of the total velocity ratios

Ur and Uz due to the vorticlty distribution In both the core and developed

ORIGINAL PAGE IS
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TABLE 9. TOTAL FIELD POINT VELOCITIES

[SQUIRE AND TROUNCER (COSINE)

VELOCITY DISTRIBUTION]*

y = 0 ro/r j --l

x Ux Ex Ur Uy Ey Uz Cp

l.l

4
i

12
I

20

-7539.

-1487.

-381. l

-66.52

-35.34

7396.

1390

320. l

34.81

12.51

-143.

-97.33

-61.07

-31.71

-22.83

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2.04

.948

.373

.lOl

.0521

Uz/U r

0

0

0

0

0

y = 12 ro/rj = 2.42

Ux Ex Ur Uy Ey Uz CpX

I.I

2

4

12

120

-I80.3

-I14.8

-64.30

-22.79

-13.09

7.092

If.07

13.16

4.690

1.956

-173.2

-I03.7

-5l .14

-18.10

-l1.13

33.98

2.600

-4.47

-0.8349

-0.4279

16.08

13.82

¢.199

0.9712

0.243

49.96

16.42

3.728

0.1363

-0.1845

3.25

l.lO

.263

.0328

.0124

Uz/U r

-2883

-1583

-729

-75.3

166

*All tabular velocity ratios

(including Cp and Uz/Ur).

have been multiplied by a factor of lO4
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TABLE 9. (cont.)*

y = 24

x Ux

1 -127.6

2 -69.95

4 -35.07

12 -11.12

?0 -5.896

ro/ i = 4.62

Ex

I.716

2.711

3. 322

I.258

0. 5312

U r

-]25.9

-67.24

-31.75

-9.862

-5.365

U
Y

-0.584

-I .046

-2.959

-0.7469

-0.5583

b
4.059

3.525

2.159

0.2723

0.06901

3.475

2.479

.7997

-0.4746

-0.4892

Cp
, J

1.59

.453

.101

.00975

.00290

Uz/U r

-2760

-3686

-252

481

912

y = 36

xIiUx
1 -86.65

-47.54

-23.56

-6.862

-3.21 7

ro/rj = 6.83

E X

0. 7536

I.194

1.479

0.572

0.243

U r

-85.90

-46.35

-22.08

i-6.289

-2.974

Uy

-I .404

-I .431

-I .367

-0.9070

-0.5932

Ey

1.809

1.576

0.9763

O. 1259

0.03204

Uz Cp

.405 .738

.145 .215

-0.3917 .0488

-.7811 .00402

-.5612 .00092

Uz/Ur

-47.12

-31.19

177

1242

1887

*All tabular velocity ratios have been multiplied by a factor of 104

(including Cp and Uz/Ur).
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region of the jet. That is, they represent the sum of tile integrals

in Lquations (49) and (50). The value Cp represents the coefficient

of pressure

P- P® _ (U2+ U2z)Cp- 2
I/2 p Uj

As previously stated, Ur and Uz are the total velocity ratios due to

both the vorticity distribution and the potential field. The combined

results employing the Gaussian Profile, [quation (68), for the devel-

oped region are shown in Table lO. The values tabulated for Table II

correspond to the Schlichting distribution, Equation (69), for the

developed region. It may be noted that the largest Cp values are

obtained for the Schlichting velocity profile. In addition, it may

be observed that the potential field contribution and the vorticity

field contribution are of the same magnitude and opposite signs at

radial field positions I.I and 2.0 along the baffle plate. For example,

examining Table 9, it may be observed that along the baffle plate,

-p -k

y = O, the ratio of Ep/UsT varies from .98 at x = l.l to .35 at

x = 20. At y = 12 the ratio varies from a minimum .095 at x = l.l to

a maximum of .24 at x = 4 and then decreases to a value of .12 at

x = 20. For the field positions at y = 24 and y = 36, the maximum

ratios .lO and .085 occur respectively at x = 12.

D. Approximate Computational Models

In the interest of making computations of the type discussed in

the foregoing sections less elaborate for engineering purposes, several

approximate models of the vorticity distribution in the jet were

L
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TABLE lO. TOTAL FIELD POINT VELOCITIES

(GAUSSIAN VELOCITY DISTRIBUTION)*

y = 0 ro/rj = 1

Ux Ex Ur Uy Ey Uz Cp Uz/U r
X

1.I

2

4

12

20

-7541

!i-1492

r]-384.6
lm

I -72.76

7396

1390

320.1

34.81

12.51

-145

-I02

-64.5

-37.95

-28.55

0

0

0

0

0

0

0

0

0

0

2.10

1.04

.417

.0815

.0815-41.06

--- /rj = 2.42y 12 r°

0

0

0

0

0

x lJ

4 '

12

?0

Ux

78.91

77.81

16.27

13.16

4.690

1.956

JutII
-65.75

-23.12

-15.21

Uy

1.50

-0.303

-0.357

Ey

8.199

0.9712

0.243

U Z

9.699

0.668

-O.ll4

CP

0.4417

0.0535

0.0231

Uz/U r

-1475

-288.9

74.95

*All tabular velocity ratios have been multiplied by a factor of lO4

(including Cp and Uz/Ur).
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TABLE 10. (cont.)*

y = 24 ro/rj = 4.62

Ex Ur Uy Ey Uz Cp Uz/U rx Ux

4 -46.62

12 -14.01

_0 -7.499

3.321

I.258

O. 5312

-43.31

-12.75

-6.968

-0.0734

-0.743

-0.6624

2.159

0.2723

O.06gOl

2.086

-0.471

-0.593

.188

.0163

.00489

-482

369

851

y=36

x Ux

4 -30.13

]2 -8.746

20 -4.128

Ex Ur

1.479 -28.65

0.572 -8.174

0.243 -3.885

-0.9926

-I.064

-0.740

Ey

0.9763

0.1259

0.03204

ro/r

UZ

-0.0163

-0.9381

-.700

= 6.83

Cp Uz/U__c__

.0821 5.93

.00667 I147

.00151 1822

*All tabular velocity ratios have been multiplied by a factor of 104

(including Cp and Uz/Ur).
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TABLEII. TOTALFIELD POINT VELOCITIES

(SCHLICHTING VELOCITY DISTRIBUTION)*

y=O

il
II

x ii UxI,

II

l.l ::-7543

_ 4 II -393.9
i
:12 11-87. 5

II,20 -52.95
t ,

rolr : 1

Ex Ur Uy Ey Uz Cp Uz/U r

7396

1390

320.1

34.81

12.51

-147

-107

-73.8

-52.64

-40.44

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2.16

l.14

.546

.277

.163

0

0

0

0

0

y = 12 ro/rj : 2.42
r ..........

Lx___ Ux I Ex Ur Uy I Ey_ J Uz Cp IUzZUr

4

12

20

-If5.0

-36.98

-21.59

13.16

4.690

1.956

-101.8 7.851 8.199 16.05 I0.52 1576

0.I043 248

.0386 ll2

-0.1705 0.9712

-0.4626 0.243

0.8007

-0.2196

*All tabular velocity ratios have been multiplied by a factor of 104

(including Cp and Uz/Ur).
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TABLE 11. (cont.)

y = 24

x Ux

4 -62.02

12 -18.59

20 -9.962

rolrj = 4.62
II I

Ex

m I

i3.321
l

l.258

0.5312

-58.7

-17.33

-9.431

-0.5849

-0.986

-0.869

2.159

0.2723

0.06901

l.574 .345

-0.714 .030

-0.800 .0089

-268

412

848

y = 36 ro/rj = 6.83

U
X

-40.0

-l1.61

-5. 501

E
X

1.479

0.572

O.243

Ur

-38.52

-II.04

-5.258

Uy

-1.541

-1.396

-0.973

E
Y

0.9763

0.1259

.03204

U
Z

-0. 565

-1.274

-.941

Cp

.1484

.0123

.00285

Uz/U r

146

I150

1789

*All tabular velocity ratios have been multiplied by a factor of 104

(including C and Uz/Ur).
P
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examined. For comparison purposes, the models were based on the Squire

and Trouncer profiles, assumedfor the purposes of numerical compari-

sons to be exact. The radial distributions of vorticity selected were

(a) a triangular function, (b) a uniform step-function and (c) a

delta function. The latter corresponded to replacing the distributed

vorticity in the jet by a vortex sheet.

The motivation for examining the approximate models was to acquire

some insight into the applicability and use of approximate models which

can reduce the mathematical complexity of Equations (49) and (50). It

should be noted that the ease of computation increases as one proceeds

from the approximate model (a) to the approximate model (c). The cir-

culation strength per unit length, r', based upon the centerline veloc-

ity, was chosen to be the same for all approximate models. The tri-

angular vorticity profile required integration of a point by point

distribution of vorticity, which was also required for the Squire and

Trouncer f4odel. The second approximate model, the uniform vorticity

profile, employed an average vorticity per unit length as opposed to a

point by point distribution employed in the previous model. In the

third model examined, the vorticity was confined to a vortex sheet.

Thus, the region of integration, for Equations (49) and (50) employ-

ing the vortex sheet model was a surface as opposed to a volume.

1. Triangular Vorticity Profile

For this model, the sinusoidal distributions of Equations (61) and

(67) were replaced wlth the following triangular distributions.

ORIGINAL PAGE IS
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:fl_1 : -_m (rl-rl)/(rm'r I) for r I _< r I _< r m

._J : -sim (ro-rl)/(ro-rm) for rm < rI < ro
oI

core
region

(70)

_o = -_m rl/rm for rI _< rm
1

_(_l = "_m (ro-rl)/(ro-rm) for rm < rI _< ro

developed

region
(71)

In Equations (/O) and (71), rm is the value of rI when ;)oi = _m (the

maximum value of vorticity at an axial position). To determine the

value of _)m Equation (34) was employed for both the core and developed

regions.

(34)

where S here refers to a merldional section of the jet from the axis

outward and of unit length along the Jet, and C is a curve bounding

that section. Assuming that only the centerline velocity contributes

significantly to the line integral of Equation (34) and substituting

the values of vorticity from Equations (70) and (71) yields, after

integration over rI

and

rcore ]

¢)m = ro-r I LregionJ

2 UC [developed l

Rm = ro L region J

(7Z)

(73)
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2. Uniform Vortlclty Profile

Employing Equation (34), the average vortlclty in the core region

and the developed region may be expressed as

%1 > _egionJ (74)

UC _eveloped]

< aE)l> ro L region J (75)

where, as in the case of the triangular model, all contributions to

the circulation wlth exception of the centerline velocity are treated

as negligible. The average vorticlty for the core region Equation (74)

extends to the edges of the mixing layer. The average vorticity in

the developed region Equation (75) extends to the edge of the jet.

3. Vortex Sheet Model

Employing Equations (74) and (75), letting (ro-r I) approach zero

but maintaining a constant product of %1 (ro-rl) yields for the core

region and developed region

_2o (ro-r I) = - Uj 6 (rm)
l

[core region] (76)

%1 (r°'r]) = " UC 6 (rm) [developed region] (77)

The strength of the vortex sheet per unit length in the zI direction,

denoted by _, is then given by Uj or UC, respectively. This conical

sheet of vortlcity was placed along the half-velocity line of the jet.

For the core region, the angle of the half-veloclty llne was taken to

ORIGINAL pAGE IS
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be zero. The half-velocity line for the fully developed region was

chosen to diverge from the virtual origin of the jet at a half angle of

50 . These choices correspond approximately with those observed in

turbulent jets.20 The vorticity distributions for the core region

Equations (lO), (74), and (76), and for the developed region Equations

(71), (75), and (77) are shown in Fig. 15. The distributions,

Equations (61) and (67), obtained from the Squire and Trouncer (cosine)

velocity distribution are also shown. The ordinate riB1 (ro-ri)/U j

and the abscissa (ro-rl)/(ro-r I) are for the core region. It should

be noted that the vorticity of the vortex sheet (delta function) is

infinite. It may be observed that the triangular profile represents

the best approximation in comparison with the uniform profile and the

vortex sheet.

4. Result of Computations Based on the Approximate Models

The results of computations, using the triangular profile, the

uniform profile, the vortex sheet model and the Squire and Trouncer

(cosine) reference profile are presented in Table 12. The values

tabulated were determined for the vorticity distributions of Equations

(70), (71), (74), (75), (76), (77), (61) and (67). The values Ux and

U represent both integrals in Equations (49) and (50) respectively.
Y

It may be determined from Table 12 that the ratios of the contributior

of the individual approximate models to that of the Squire and Trouncer

(cosine) veloclty profile have the following trend. For y = 0 the

UI .ref
ratio x/Ux varies from .98 at the point x = l.l to .92 at x = 20.

UII .ref
In contrast, the ratio x /Ux varies from 1.004 at x = l.l to 1.55
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at x = 20. Comparing the vortex sheet model at y = O, the ratio

bill., ref
x lUx varies from .97 at x = l.| to .66 at x = 20.
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TABLE12. FIELD POINTVELOCITIES- CONTRIBUTIONS
FROMTHECOMBINEDMIXINGANDDEVELOPED
REGION*

y = 0 ro/r j = 1

I II .III uxref. UI II IllUx Ux ux y U_ Uy
x

l.l

2

4

12

20

-7412

-1456

-365.1

-61.43

-32.67

-7573

-1525

-414.9

-93.53

-54.8l

-7381

-1393

-326.3

-46.71

-23.33

-7539 0

-1487 0

-381.1 0

-66.52 0

-35.34 0

0

0

0

0

0

0

0

0

0

0

U;ef"

0

0

0

0

0

y = 12 ro/r j = 2.42

O,x oI, xor ,I
x Ux

l.l -160.2

2 -I02.4

4 -58.72

12 -21.26

20 -12.29

-520.3

-265.2

-I16.78

-37.10

-21.06

-94.26

-62.37

-40.48

-16.06

-9.454

-180.3

-114.8

-64.30

-22.79

-13.09

41.51

6.65

-2.95

-0.6307

-0.3603

-19.3

23.33

1.99

-I.009

-.8537

55.63

14.25

-0.36

-0.2105

-0.1940

33.98

2.6

-4.47

-0. 8349

-0.4279

*I = The triangular profile, II = The uniform profile, Ill = The vortex

sheet model, ref. = The Squire and Trouncer (cosine) profile. All
velocity ratios have been multiplied by a factor of lOq.
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TABLE 12. (cont.)*

y : 24

I
x Ux

l.l -121.9

2 -66.40

4 -33.05

12 -I0.48

20 -5.676

-210.4

-119.07

-59.10

-17.79

-8.945

UIII
X

-96.55

-51.92

-25.46

-8.137

-4.366

ref.
Ux

-127.6

-69.95

-35.07

-11.12

-5.896

I

Uy

.763

-.OOl

-.9178

-.6564

-.5178

UII
Y

-9.64

-4.217

-2.527

-I .621

-I .188

ro/rj = 4.62

Ill

Uy

3.881

2.335

-.6743

-.4110

-.3856

Uyel"

-0.584

-1.046

-2.959

-0.7469

-0.5583

y : 36

x UI
X

l.l -82.63

2 -45.25

4 -22.33

12 -6.492

20 -3.048

II
U
X

-144.2

-79.34

-38.98

-I0.52

-4.464

Ill
Ux

-66.30

-36.03

-17.56

-5.092

-2. 396

uref.
X

-86.65

-47.54

-23.56

-6. 862

-2.217

I

Uy

-O.935

-l .002

-l .091

-0.8382

-0.5581

rolri = 6.83

U_ I U_ II

-3.933 0.4525

-3.588 0.1270

-3.062 -0.4048

-I.979 -0.6179

-I.128 -0.4340

U_ef-

-I.404

-I.431

-I.367

-0.9070

-0.5932

*I = the triangular profile, II = The uniform profile,

Ill = The vortex sheet model, ref. = The Squire and Trouncer (cosine)

profile. All velocity ratios have been multiplied by a factor of lOq.
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V. blSCUSSION
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The results of tile computations for the axisymmetric jet serve to

illustrate the character of the method of computation employing the

Stokes potentials. For example, the relative contribution of the

potential part of the field Ep as compared with the part Us_ due to

vorticity is of some interest. In principle, at least, the potential

part may be determined with considerable accuracy, for example, for

more general jet flows, whereas the vorticity contributions are likely

to be less accurately known. Comparisons of the computed results with

the available experin_ntal data and with other theories illustrate the

strengths and weaknesses of the method of computation and of the

existing theoretical velocity profiles for the jet flow.

A. Contribution of Ep Relative to UsT

The results presented in the previous section, Sec. IV, (Tables

9 to ll), show that Ep is opposite in sign to Us. r along the baffle

plate for the example considered. The field point velocity U along

the plate is determined by the difference between the magnitudes of

Ep and Us . If these values, Ep and UsT, are of approximately the

same magnitude, errors in Ep or UsT are magnified in the computed

resultant U. Errors of this type are most significant near the

source, and they become insignificant sufficiently far from the

:n,,rcp_v=..........It may, .........h_nhqprved from Table 9 , for example, that errors of
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this type are likely to be important at X = I.I on the baffle plate.

At this position, a 2 per cent increase in the magnitude of

Ux (Ux = USTr/Uj) increases the magnitude of Ur (Ur = radial component

of U) from 143 to 294, other te_ involved being considered constant.

In contrast to this magnification of error, at field points away from

the source (Table 9) the relative contribution of Ep to the total field

point velocity rapidly decreases. That is, neglecting the contribution

from E entirely at y = 36 results in a maximum error of about 1 per
P

cent in the field point velocity ratio U/Uj.

B. Comparison of Computed Results with

Experimental Data and Other Theories

I. Comparison with Experimental Data

Experimentally determined pressure coefficients on a baffle plate

in the plane of the nozzle may be compared with the theoretical pre-

dictions of the coefficient of pressure for the selected vorticity

distributions. The available experi_nental data include results

obtained by Wygnanski II and by Gentry and Margason 21 The corresponding

experimental and theoretical values of C are shown in Table 13. A
P

2 and C3 with the theoretical
comparison of the experimental data, Cp p'

values for C8 are shown in Fig. 16
p " •

Comparing the experimentally determined pressure coefficients,

the values determined by Wygnanski Cl and C2 are lower than those
• , p p'

obtained by Gentry and Margason C3 and C4 by more than a factor of
' p p'

2 at the points close to the source. This disagreement between the

different experimental data could have been a consequence of differing)
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Table 13. EXPERIMENTAL AND THEORETICAL VALUES OF -C x 104*
P

y = 0 EXPERIMENTAL RESULTS COMPUTED RESULTS ro/r j : 1

X

1

I.I

2

4

8

12

C1 C2 C3 C4 - --Ii

p I P P P I
I16.3 9.6

2.9 1 2.5 6.1 4.4

1.2 I .8 2.0 1.4

1.0 .1

C5
P

I

! 2.04
I

' .948
I

I
.373

I
I

' .I01
I

C6
P

2 .I0

l .04

.417

.144

C7
P

2.16

1.14

.546

.277

C_
P

4.43

2.09

.908

•302

*I Wygnanski's data for Reynold's no. of 53,800

2 ',Jygnanski's data for Reynold's no. of 51,500

3 Gentry's and tlargason's data for a plenum-chamber to ambient

pressure ratio of 1.32

4 Gentry's and ilargason's data for a plenum-chamber to ambient

pressure ratio of 2.04

5 Squire and Trouncer velocity profile (Table 9)

6 Gaussian velocity profile (Table lO)

7 Schlichting velocity profile (Table ll)

8 Schlichting velocity profile for developed region and Abramovich

velocity profile for core region _'T'_,aules 5 and 2)
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velocity profiles at the exit orifice. For example, for the data of

Table 9, a 2 per cent reduction of Ex would yield a C5 value of 9 6p

as opposed to 2.04 at X = I.I and a value of 1.56 as opposed to .948

at X = 2.0. From the results of Section IV 3, showing the sensitivity

of EPr to non-uniformities in the velocity profile at the nozzle exit,

it is apparent that such a change could easily be accounted for,

Changes in theoretical Ex values become less significant as x increases

beyond about 2. Tile different experimental data also tend to show

better agreement at the more distant field points. It may be observed

in Table 13 and Fig. 16 that the theoretical magnitudes of Cp are

generally lower than the experimental values.

8 shows reasonably close agreement withThe pressure coefficient Cp

Wygnanski's data, as might be anticipated because Wygnanski's data

had been found to compare well with other results computed using the

Schlichting profile (Equation (65)) for the developed region of the jet.

The use of the Abramovich relation (Equation (60)) for the velocity pro-

file in the mixing layer in the determining of C8 should be expected to
P

yield more accurate results as compared with the cosine profile of

Squire and Trouncer (Equation (59)). Experimental data for the velo-

city profile in the mixing layer have been found to agree quite closely

with the Abramovich relation 9. It may be noted that the computed C
P

magnitudes close to tile nozzle are significantly smaller for the

cosine profile as compared with that of Abramovich, accounting for

part of the difference between the magnitudes of C5 - 7 and the
P

experimental data, C1 - 4
P
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On the basis of the above comparison, it may be recommended that

computations according to the theory making use of the Stokes

potentials are likely to be reasonably accurate, if

(1) the velocity profile of the jet at the nozzle exit

plane is accurately known,

(2) the Abramovich relation, Equation (60), is employed for

the mixing layer of the potential core region, and

(3) the Schlichting profile, Equation (69), is employed for

the fully developed region of the jet, with compu-

tations involving integration only within a 20 °

half-angle cone.

These recommendations apply, of course, only to the example con-

sidered, that of an axisymmetric jet exhausting normally through a

plane baffle plate. Nonetheless, the sensitivity to those parameters

observed for this case seem likely to be applicable to more general

jet flows.

2. Comparison With Other Theoretical Models

II
Wygnanski , employing a distribution of sinks along the axis of

symmetry to satisfy approximately the boundary conditions on the

boundary separating the jet flow from the aerodynamic field, obtained

the following equation for the pressure coefficient along the baffle

plate.

9 IICp = - _ O. 715

where x = r/r.
3

0.514 I 2[l + (x/12)2] I/2
(78)
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In developinu the model, Wygnanski chose the value of 0.404 for the

numerical constant Kl, in the developed region Equation (35), correspond-

ing to the Schlichting velocity profile. Values for this constant have

been found to range from 0.220 to 0.404 as noted in Sec. IV.

Stewart 22, also examined the irrotational flow field external to

a jet. From similarity considerations, Stewart expressed the mean flow

near the axisymmetric jet boundary as U¢ = C/p, where ¢, p are the

colatitude angle and the radius in a spherical coordinate system

(Fig. 3) with the virtual origin of the jet located at the origin of

the coordinates and with the flow along the Z axis. For a jet emerging

normally through an infinite plane baffle plate, it was found that the

velocity potential ¢ could be expressed by

¢ = C tan ¢o In (p sin ¢) (79)

where ¢o = the half cone angle containing all of the turbulent

region of the jet (about 12.5 °)

Employing Equation (79) and Equation (35) with Kl = 0.404, the correspond-

ing pressure coefficient along the baffle plate (¢ = _/2) may be express-

ed as

CI0 = (-0.252/x) 2 (80)
P

where x = r/rj

A comparison of Wygnanski's results, the results according to

Stewart's theory Equation (80), and the results of computations employing

Stokes potentials with Schlichting's velocity profile for the developed

region is presented in Table 14.
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Table 14. COMPARISON WITH OTHER THEORETICAL MODELS - CpXlO 4.

y = 0 ro/rj = l

l.l

2

4

12

20

C7
P

2.16

C8
P

4.43

9

Cp

8.58

I0

Cp

ll.l

1.14

O.546

0.277

0.163

2.09

0.908

0.302

O.171

2.77

O.755

0.219

O.129

3.34

O. 836

0.093

0.033

*7 Schlichting velocity profile for developed region and Squire

and Trouncer velocity profile for the core region (Table ll)

8 Schlichting velocity profile for developed region and Abramovich

velocity profile for core region (Tables 5 and 2)

9 Wygnanski, Equation (78)

lO Stewart, Equation (80)
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As mentioned in Sec. VB2, the best agreementwith the experimental data

maybe expected for C8p as comparedwith C7 Wygnanski's relationp"

Equation (78) for C9p,yields values which had been shownto fit rather well

his experimental data II, also corresponds well with C8 as might be
P

expected. The results obtained from Equation (80) ClO agree fairly well
' p '

9 at small values of x but decrease in magnitude more rapidly aswi th Cp

9 and lO is mostx increases to larger values. This difference in Cp Cp

likely inherent in the different modeling of the jet. Wygnanski

employed a line of sinks and Stewart's representation corresponded to

application of the boundary conditions on the surface of the jet. The

core region was not represented by Stewart's model at all. Rather,

the developed region was presumedto originate at the point source.

On the other hand, Wygnanski's analysis does not strictly represent

the actual geometry, as does the present theory or Stewart's theory.

Therefore, the values of C8pand Cp9as might be expected show differences

at small values of x.

C. Comparison of Computations for the Approximate Models

with the Computations for the Reference Model

(Squire and Trouncer Profile)

The three approximate models for the radial distribution of

vorticity in the jet (triangular, uniform, and vortex sheet), Section

IV D, were chosen to have identical values for the circulation per

unit length. The common value of r' corresponded to that for the

Squire and Trouncer velocity profiles for both the potential core and

developed regions of the jet. The computed values for C along the
P

baffle plate, Table 12, compared quite well with the reference values

ORIGINAL PAGE IS
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except for the uniform and vortex sheet models at points distant from

the axis. As could be anticipated, the results for the triangular

profile agreed more closely with those for the reference computation

even at the distant points. The agreement of all of the results at

points nearer the axis could be expected because

(a) the Cp values close to the axis depend strongly on the

form of the mixing layer in the potential core region,

and

(b) the circulation per unit length and the moments of the

vorticity distributions for the approximate models of

the potential core layer closely corresponded to that

for the reference profile

On the other hand, for computations downstream and at points far

from the axis, where contributions from the developed region of the

jet become significant, the agreement between results for the approxi-

mate models and for tile reference profile was significantly poorer,

except for those of the triangular profile. The disagreement may be

attributed to the difference between the moments of the vorticity

distributions for the uniform and vortex sheet models, as compared

with that of the reference profile. Those differences were greatest

for the developed region with the geometry chosen for the computations.

_!ith the discussion of Sec. Ill C in mind, the proper choice for the

radial position of the vortex sheet, for example, would be such that

the molT_nt of vorticity distribution is maintained in agreement with

that for the reference profile. The radial position of the vortex

sheet was simply chosen to coincide with the half-velocity points in
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the jet which also corresponded with the points of peak vorticity (Fig.

15). For more accurate results, then, the divergence angle of the cone

joined by the vortex sheet should have been larger.

Even though the approximate modelsyield somewhatdifferent

results as comparedwith those for the reference profile, the agreement

could be acceptable for somecomputational purposes for all of the

approximate models. The triangular profile best represents the data

for the reference profile as could be expected. The vortex sheet model,

even with the poor choice for its geometry, did yield the reference

values to a reasonable approximation. Because the computations for

the vortex sheet model are by far the simplest, the latter comparison

suggests the use of such a model for most computational purposes.

D. Evaluation of the Integral Moment of Vorticity

The vorticity magnitude at a field point has been shown to be

directly proportional to the magnitude of the integral moment of

vorticity

Recal ling

f-_ -).Im = X1 x .el d_l
(81)

Equation (32), one has

Os_ : _ v ( ) ' X1 x eI d_l (32)

Now, for the examples considered in the previous sections, involving

an axisymmetric jet, the vorticity is entirely peripheral. I
m

then be determined as a summation of integrals of the form in

may

Equati on (81)

for small slices of the jet as discussed in Section III C. This enables
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the evaluation of the significance of local contributions of the

vorticity along the jet to the field point velocity.

Considering a small section of the jet flow (refer to Fig. 8) for

the axisymmetric jet, the magnitudes of an integral moment of vorticity

per unit length along the jet may be expressed as

/ 2 drI (82)Im 2_ rl fl01

The small section is considered to be a plane slice of the axisymmetric

jet flow field of infinitesimal thickness.

Introducing the following transformations into Equation (82)

A = _el (ro - rl)IUj

= (ro - rl)/(r o - rI)

]

A = _81 rolUj L

J= rl/r o

yields for the core region

[core region]

[developed region]

I

Im = -/ [I 2 (ro - rI)
2_ Ujro2 ro2

(ro - :i)_ 2
IJ+ ] A d . (83)

z
ro

and for the developed region

I

Im /2 A dlJ
2_Ujro2 =

(84)
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The values of the inte_iral, Equation (83), were calculated for the

mixing layer of tile potential core region based on the Squire and

Trouncer profile, Equation (61), and on the approximate models, Equations

(70), (74), and (76). The values of the integral, Equation (e4),were

calculated for the developed region based on the Squire and Trouncer

profile Equation (67), the approximate models Equations (71), (75), and

(77), the Gaussian profile Equation (68), and the Schlichting profile

Fquation (69). The results of these calculations for the mixing region

were as follows•

_lhere

!

Im ro - rI (ro - rl )2

o_: -I + LF-- Y (85)2_Ujr ro r°

y : .297

.290

•333

.250

[Squire and Trouncer profile]

[Triangular Vorticity profile]

[Uniform Vorticity profile]

[Vortex Sheet]

For the developed region, the results of these calculations were

!

Im

2_Ujro_ = y

(86)

where

y : -.297

-.290

-.333

[Squire and Trouncer profile]

[Triangular Vorticity profile]

[Uniform Vorticity profile]
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-.25FJ [Vortex Sheet]

-.39f) [Gaussian profile]

-.500 [Schlichting profile]

It may be observed for the core region that the magnitude of the

integral moment of vorticity Equation (85) is approximately the same for

all four profiles. Note that the third term on the right side of

Equation (85), differing slightly for the different profiles, makes the

I

smallest contribution to Im. This provides confirmation of the statement

in the previous subsection C concerning the close correspondence of the

I

Im s for the different profiles in the core region.

In contrast to the above results for the core region, the integral

moment of vorticity Equation (86) differs significantly for the six pro-

files considered. This substantiates the explanation presented in sub-

section C for the disagreement among the computations for the different

profiles, where contributions from the developed region of the jet become

siqnificant.

Dased upon the proportionality USI m Im, as previously discussed,

the ratio of the integral moments and the field point velocities for

the developed region for different profiles should be approximately

proportional. Selecting the values of Ux and Uy for the Gaussian profile

Table lO and the Squire and Trouncer profile Table 9 at y = 36, x = 20

yields a ratio of 1.28 for UsT's. The ratio of Im'S for the profiles is

1.31. Thus, the proportionality is fairly close. Selecting other pro-

files similar results are obtained.

Recall that the computed values of Cp as shown in Tables I0 and II

were based upon a half-angle spread of 2) ° in the developed region
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of the jet for both the Gaussian and Schlichting profiles. It should

be noted that a more acceptable half-angle of spread would have been

50g(b)I0 to 1 . llost experimental observations, for example, indicate

the maximum spreading of the jet boundary to lie within that range of

23
half-angles .

In order to evaluate the effect of reducing the half-angle to

correspond more closely with the observations, the half-angle of lO°,

used for the Squire and Trouncer profile, was also employed for the

Gaussian and Schlichting profiles. The spreading angle of the half-

velocity line was left unchanged for the profiles. Reducing the half-

angle of the spreading of the jet boundary, then, had the effect of

neglecting the vorticity associated with the Schlichting and Gaussian

at points outside the boundary. The results of the computations for

both the Gaussian and Schlichting profiles yielded lower Cp values

than those shown in Table 9 for the Squire and Trouncer profile.

It appears that all three of the profiles considered are not

truly representative of the observed vorticity distribution in the

developed region of the jet. The Squire and Trouncer profile with a

reasonable half-angle of spread of lO° yields values of Cp which are

too low in comparison with experimental data (Table 13). The Gaussian

profile, even for a spreading half-angle of 20 0 , yielded results below

the experimental data. The best agreement with the experimental data

employing the Schlichting profile was found for a half-angle of spread

for the jet of 200 . In comparison with typical observed spreading

angles, a i_alf-angle spread of 200 is not reasonable. However, as

previously nlentioned, even at this larg_e angle of spread the value of
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vorticity at the houndary of the jet flow for the Schlichtin(_ profile

is still about 5 per cent of the maximum. A more reasonable profile

with the same general shape for the developed region would be charac-

terized by a vorticity distribution such that the half-angle of spread

is about lO to 15°. In addition, it would be expected that the moment

of vorticity should be larger, either due to a larger peak vorticity

or a redistribution of the vorticity profile.



105

Vl. CONCLUSIOI_S

The following conclusions may be drawn regarding the computation

of the aerodynamic field of a jet according to the method of Stokes

potentials (scalar and vector potentials). The conclusions, for the

most part, are supported by the application of the method to the

axisynwnetric jet exhausting through a plane baffle plate.

(1) The most significant information required for the compu-

tations are the velocity profile at the exit plane of the

nozzle, and the integral moment of vorticity along the jet.

It was found that the potential part of the velocity in the aero-

-2

dynamic field Ep was significant for most of the points computed.

This was especially true for points near the origin of the jet. The

need for the integral moment of vorticity Im was anticipated from

consideration of the aS,mptotic behavior of the theory in Sec. Ill C.

This is strictly true for jets for which the only vorticity present is

peripheral as in the case of the axisymmetric jet. For jets of a more

complex nature, there would also likely be a requirement for knowledge

of the integral moment of streamwise vorticity in the jet. For the

axisymmetric jet, reasonable values for the integral moment of vorticity

could be obtained from values for the velocity on the axis and the

radius of the half-velocity point as functions of distance along the

jet, without further knowledge of the jet velocity profile.
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(2) At field points on the baffle plate within approximately

one diameter from the edge of the jet, the contribution

÷_ due to the developed region of the jet vlas negligible;U t

at all other field points considered, to approximately

20 jet radii from the region of the Jet in either the

streamwise or lateral direction, all three components Ep,

U_ and T were of comparable magnitudes. At more distant

field points, the developed region tends to dominate, as

might be expected.

Since both Ep and t remained relatively large, but of opposite sign,

at distances to approximately 6 jet radii from the edge of the jet,

both must be known with relatively high accuracy for field points on

the baffle plate within that range. This significance of the velocity

profile of the jet at the nozzle exit has been observed experimentally 21.

Theoretical considerations have been heretofore limited to speculations

as to the influence of the jet velocity profile on the mixing layer

and consequent chan.qes in the entrainment rate.

(3) The computations tended generally to underestimate the

Cp magnitudes observed experimentally, except for the

case where the Schlichting profile was employed,

together with an overall spreading half-angle of 20°

for the jet flow, which compared well only with

llygnanski's data.

The comparison with experimental data indicates a need for improvement,

both in the experimental data and in the analytical characterization

of the jet flow. The experimental data available were not consistent,

differing by more than a factor of 2 (perhaps 4, considering the
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Ricou and Spalding results). Moreover, the Schlichting profile,

yielding the most favorable comparison, is not compatible with exper-

imental observations of the spreading angle of the jet boundary. The

analytical results were found to be comparable with both the experi-

mental data and the other theories, within the limit of the state of

the art.

Theories relying on the scalar potential yield acceptable and

simpler relations for the axisymmetric jet. The method of Stokes

potentials however, offers the added benefit of explicitly accounting

for nonuniformities in the initial velocity profile of the jet,

simD1er computations for more complex jet flows, the prospect for

developing simpler vortex sheet models, and less reliance on data

that are difficult to obtain for the more complex flows (for example,

reasonable results may be obtained from measured values for U and
c

r½, as opposed to determinations of entrainment required for the

method employing the scalar potential alone).

(4) The approximate vortex sheet model was found to yield

results comparable to those obtained with the complete

vorticity profiles, and thus may be recommended for

computati onal purposes.

The vortex sheet model might be expected to be useful because (a) it

should yield precise results asymptotically if Im is properly chosen,

and (b) for regions of the jet close to the nozzle, Im is known with

some accuracy because the mixing layer is relatively narrow there and

grows only gradually. The computations for the axisymmetric jet

supported this view. There appears to be little justification, con-

sidering the state of the art, to employ more complex models.
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APPENDIX A

A_nnotated Bibliography on Axis_mmetric Jets

Experimental and theoretical investigations of axisymmetric

turbulent Jets have been far too numerous to attempt a complete review

here. Rather, a synopsis of some of the studies is presented in the

form of an annotated bibliography. More complete discussions may be

found in Abramovich 9 Hinze 19 Townsend 7, and in review papers (e.g, i • ,

Halleen 25, SkifstadS).

I. Taylor, G. I., "Eddy Motion in the Atmosphere", Phil• Trans.

Roy. Soc. London, Series A, Vol. 215, 1915, pp. l - 26.

Tayl or developed a purely phenomenological theory concern, ng

vortex motions• He assumed that the vorticity could be considered

as a transferable quantity• That is, the vorticity would be conserved

along the path of a lump of fluid over a certain distance. Based

upon this assumption, he obtained the relationship

_2 di]-1

where is the coefficient of eddy diffusion for vorticity, _a isEl 2

Taylor's mixing length for vorticity, and _l/dX2 is the time mean value

of vorticity for two-dimensional flow uniform in the x 1 direction. Taylor

extended this theory to three-dimensional flow. This three-dimensional

theory is known as the modified vortlcity-transport theory•



III

o Zimm, W., "Uber die Stromungsvorgange im freien Luft strahl,"

ForschunBsarbeiten aus dem Gebiete des Ingenieurwesens, No. 234,
1921

Zimm conducted an experimental investigation of an axisymmetric

jet issuing into a quiescent atmosphere. In the Zimm experiments

the jet exit velocity was non-uniform, that is

Um/Ucp = I.I

where Um is the peak exit velocity and Ucp is the exit velocity close

to the boundary of the jet. The experimental data for the decay of

the centerline velocity in the developed region of the jet could be

approximated by the expression

Uc/U J = 0.96/(az/rj)

where Uc is the centerline velocity, Uj is the average jet exit velocity,

z is the axial distance downstream from the jet exit, rj is exit radius

of the jet, and a is a numerical constant with a value of 0.070.

3. Prandtl, L., "Uber die ausgebildete Turbulenz," ZAMM, Vol. 5,

1925, pp. 135-139 (also Proc. Ind. Intern:. Cong.-A-p-p-l.Mech.,
Zurich, 1926, pp. 62-75.)

Prandtl introduced a phenomenological theory concerning momentum.

lle assumed that the momentum could be considered as a transferable

quantity. That is, the momentum is conserved along the path of a lump

of fluid over a certain distance. Based upon this assumption he ob-

tained the two-dimensional relationship

I

dU 1
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where Cm is the coefficient of eddy diffusion for momentum, _m is

Prandtl's mixing length for mommntum, and dUl/dX 2 is the difference

in mean velocity, between the end of the path and the start of the path

from where the lump originated, divided by the path length.

4. Tollmeln, W., "Berechnung Turlenter Ausbreitungsvorgange,"
Z_, Vol. 6, 1926, pp. 468-478 (also NACA TM 1085 [1945])

Tollmein published an analytical investigation of the axially

symmetric jet. 14is results were obtained by employing the "mixing

length" concept as introduced by Prandtl. His results showed for

the fully developed jet that

Uc _,II(Z + e)

where Uc is the centerllne velocity, Z is the main flow direction, and

e is the position of the virtual origin measured from the face of the

nozzle exit along the negative z axls. The above results were based

on assuming the pressure in the jet was constant. To improve his

analysis, he considered pressure differences and concluded that the

pressure differences were so small that no modifications of the veloci-

ties were necessary. In addition, Tollmein obtained an analytical

representation of the velocity profile for both the transverse and

longitudinal component of velocity. The use of one empirical constant

enabled hls analytical results to be brought into very good agreement

wlth results of experimental investigations.

5. Townend, H. C. H., "Flow Induced by a Jet of Air," Rept. No. ARC 1934,

June, 1934, British Aeronautical Research Counc41.

Townend experimentally examined the flow induced by a jet of air.

He interpreted his results as consisting of a jet wlth bounding eddies
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constituting discrete vortex rings. In addition, it appeared as if the

jet was alternately accelerated and decelerated as each successive

vortex ring passed downstream. The overall effect was a kind of pump-

ing action.

6. Kuethe, A. M., "Investigations of the Turbulent Mixing Regions Formed

by Jets," J. Appl. Mech., Vol. II, No. 3, 1935, pp. ABl-A95.

Kuethe considered the turbulent mixing surrounding the jet and

obtained a solution for the region surrounding the potential core of

the jet. He assumed no pressure difference between the jet and the

surrounding air. He used as a first approximation to the longitudinal

velocity profile in the mixing layer

Uz = (l - n'3/2)

where n' = (r - rl)/(r o - rI) and r is the radial distance (rI _<r_< ro),

rI is the radius of the potential core, and ro is the jet radius.

7. Abramovich, G. N., The Theory of Turbulent Jets, M.I.T. Press,

Cambridge, Mass., 1963, pp. llT-20B.

Abramovich presented formulas for the core region and developed

region of the jet. He employed for the velocity profile in the mixing

layer surrounding the core the empirical relation

Uz = Uj [l - (l- n3/2) 2]

where n = (ro - r)/(r o - rI) and r is the radial distance (rI _< r _< ro),

rI is the radius of the potential core, and ro is the jet radius. This

relation agreed quite closely with experimental data. Abramovich showed

that the velocity profiles in the fully developed region were affine,
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the increase in the thickness or width of the submerged jet (r o - r I)

was equal to the axial distance (z) times a constant, and the centerltne

velocity of the jet tn the fully developed region was inversely pro-

portional to z. In addition, for the transition he concluded that one

may assume that the equal velocity lines in the transition region were

extensions of the equal veloctty ltnes of the potential core region of

the jet.

8. Howarth, L., "Concerning the Velocity and Temperature Distributions
in Plane and Axially Symmetrical Jets," Proc. Cambrldge Phil. Soc.,

London, Vo1. 34, Pt. 2, 1938, pp. 185-203.

Howarth made calculations of the velocity profile for the developed

region of an axis_nnmetric Jet. He employed Taylor's mixing length for

his calculations. Assuming the eddy velocities of the jet were isotropic

he obtained results equivalent to employing Prandtl's mixing length.

Assuming Taylor's mixing length was homogeneous, he obtained results

equivalent to employing Taylor's modified vorticity transfer theory.

Pressure gradients, radial components of velocity, and derivatives of

radial components of velocity with respect to the axial direction, were

considered negligible for all calculations.

9. I,IcElroy,G. E., "Air Flow at Discharge of Fan-Pipe Lines in Mines-

Part II-Effect of Size and Shape of Pipe and of Adjacent Walls on

Velocity and Entrainment Ratios," Rept. of Invest. No. 3730, Nov.

1943, Bureau of Mines, U.S. Dept. of Int.

_IcElroy conducted an experimental investigation and suggested the

following simple approximate formula for entrainment in the developed

region of the jet

Em' = C Z/D
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where Em = (Q - Qo)/Qo is the ratio of the quantity of entrained air

in the air stream at any cross section, Q - Qo' to the quantity dis-

charged Qo and is called the entrainment ratio, Z is the distance from

the orifice, D is the diameter of the round Jet orifice, and C is a

constant (about .35). lie stated among a number of conclusions:

(I) The velocity at any point in the air stream and the

amount of entrained air in the stream at any section vary

directly with the discharge velocity.

(2) Conditions that increase centerline velocity ratios

generally decrease entrainment ratios and vice versa.

(3) Centerline velocity ratios vary with region. In the

potential core region they are essentially constant. In the

transition region, they decrease as the square root of the

distance; in the developed region, they decrease directly

with distance.

(4) The angle of expansion of the developed jet appears

to be almost 240 .

(5) Velocity distributions vary with regions. In the

mixing layer of the core region, the relation of the mean

velocity to maximum velocity changes rapidly with distance.

In the transition and developed regions, mean velocities

probably approximate 40 percent of the maximum velocities.

(6) Entrainment ratios vary with regions. Analyses of

the experimental data show continuously increasing entrainment

ratios with increasing axial distance.
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lO. Tuve, G. L. and Priester, G. _., "The Control of Air Streams in

Large Spaces," Trans. ASHVE, Vol. 50, 1944, p. 153.

Tuve and Priester conducted an experimental investigation. They

concluded that the maximum air velocity at any cross section of the air

stream beyond 25 diameters downstream varies approximately as follows:

(I) directly proportional to the exit velocity,

(2) directly proportional to the diameter of the outlet, and

(3) inversely proportional to the distance from the outlet.

On the basis of an effective outlet area, they obtained an equation

for entrainment ratio

 -Rz -1.o

where

K = constants of proportionality (tabulated)

R = ratio of maximum velocity to average velocity at any cross

section (range 2.4 to 3.0)

o = average spreading angle of the jet (22.5 ° to 25.40 )

Z z axial distance from outlet

Ae = effective outlet area

II. Squire, H. B., and Trouncer, J., "Round Jets in a General Stream,"

Tech. Rept. No. 1974, Jan. 1944, British Aeron. Research Council

Squire and Trouncer conducted a mathematical analysis of an axi-

symmetric jet with a secondary stream. However, within this analysis

they included the case for a secondary stream of zero velocity. They

examined the flow in the potential core region and the developed region

separately and then fitted the solutions together. They determined
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the inflow induced by the Jet based upon employing cosine distributions

for the longitudinal velocity profiles. For the mixing layer and the

developed region, the respective relations were

UZ = (Uj/2)(I - cos _ n) [mixing layer]

UZ = (Uc/2)[I + cos (_ r/ro) ] [developed region]

where UZ is the longitudinal velocity, Uj is the exit velocity of the

jet, Uc is the centerline velocity in the developed region, n = (ro

-r)/(ro-r I) and r is the radial position (rI _( r _< ro), rI is the

inside radius of the mixing layer, and ro is the outside radius of the

jet. In addition, they made a determination of inflow velocity by

assuming a system of sinks along the jet axis.

12. Cleeves, U. and Boelter, L.M.K., "Isothermal and Non-lsothermal

Air Jet Investigations," Chem. En_r. Progr., Vol. 43, 1947,
pp. 123-134.

Cleeves and Boelter conducted an experimental investigation. They

concluded that the transverse distribution of the axial component of

velocity (Uz) in the developed region can be approximately correlated

by using a dimensionless group. This group was obtained from the

transfer of momentum in the jet, that is Uz/U c versus r/r½, where r½

is the radial position r at Uz/U c = 0.5 and Uc is the centerline velocity

at the radial position.

13. Ribner, H. S., "Field of Flow about a Jet and Effect of Jets on

Stability of Jet Propelled Airplanes," NACA Wartime Report L-213,
(ARC L6C13, 1946).

Ribner conducted a mathematical analysis of an axially symmetric

jet with a secondary flow. He investigated the induced flow effects

on stability and trim of an aircraft as the jet passes near the tail

surfaces. His analysis was only applicable to the developed jet and
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he ignored velocity components induced parallel to the jet axis. For

the spreading of the jet near the origin, he obtained a linear relation-

ship with the axial distance Z. Far from the origin, he obtained an

expression for jet spreading as the one-third power of the axial dis-

tance. In addition, he concluded that the jet-induced flow inclination

varies nearly inversely as the radial distance from the jet axis within

the region between the jet boundary and twice the radius of the jet

boundary at distances greater than 8 orifice diameters downstream of

the jet exit.

14. Liepmann, H. W. and Laufer, J., "Investigations on Free Turbulent

Mixing," NACA TN 1257, Aug. 1947.

Liepmann and Laufer conducted an analytical investigation of two-

dimensional free turbulent mixing. They concluded that the mixing

length theories had lost much of their value in that the main results

of these theories could be obtained by dimensional reasoning.

15. Hinze, J. O. and Van Der Hegge Zijnen, B. G., "Transfer of Heat and

Matter in the Turbulent Mixing Zone of an Axially Symmetrical Jet,"

Appl. Sci. Res., Vol. AI, 1948.

Hinze and Van Der Hegge Zijnen made measurements of the radial

distribution of the mean values of the axial component of velocity, the

temperature, and gas concentration. They compared these results with

previous investigators and found that theories based on a constant

coefficient of shearing stress across the jet flow gave the best agree-

Bent with measured radial velocity distribution in a central zone of

the jet.

16. Albertson, M. L., Dai, Y. B., Jensen, R. A., and Rouse, H.,

"Diffusion of Submerged Jets," Proc. of Amer. Soc. of Civil Enl)r.,

Dec. 1948.
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Albertson, et al., derived the approximate characteristics of the

mean flow pattern for flow from slots and orifices. Experimental data

were used to justify the analytical results and provide the empirical

constants. In agreement with other investigators they found it un-

necessary to make any assumption as to the distribution of turbulence

to obtain an approximate mean velocity distribution.

17. Corrsin, S., and Uberoi, M. S., "Further Experiments on the Flow
and Heat Transfer in a Heated Turbulent Air Jet," NACA TN 1865,

1949.

Corrsin and Uberoi conducted an experiment on a heated jet issuing

in still ambient fluid. They suggested that useful results in shear

flow problems are obtainable with less difficulty by use of integrated

equations of motion and reasonable guesses for the velocity profile.

One conclusion they made was up to a local maximum density ratio,

poo/p min of about 1.3, simple geometrical similarity still exists in

the developed region, within the accuracy of measurements. The minimum

density at a section of the jet was denoted by p min and p® was the

density of the receiving medium. In addition, they concluded that

the pressure and temperature profile functions are basically the

same as in the constant density jet up to p® / pmin = 1.3.

18. Corrsin, S., and Kistler, A. L., "Free Stream Boundaries of

Turbulent Flows," NACA Rept. 1244, 1955.

Corrsin and Kistler completed an experimental and theoretical study

of the free stream boundary separating the turbulent fluid from non-

turbulent fluid. Their suggested theoretical model gave constant mean

vorticity at the boundary, local vorticlty production, and a uniform

suction (induced) velocity. Experimentally they determined for the
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round jet that the mean velocity at the boundary is chiefly radially

inward. The angle of spread for the half-cone of the developed region

was determined to be I0.8° (no-wall).

19. Phillips, O. H., "The Irrotatlonal Motion Outside a Free Turbulent

Boundary," Proc. Cambrld)e Phil. Soc., Vol. 51, lgS5, pp. 220-229.

Phillips analytically considered the irrotational motion of an

infinite fluid when the normal velocity across a plane is a stationary

random function of position. He postulated conditions which corres-

ponded closely to the motion outside a free turbulent boundary.

20. Stewart, R. W., "Irrotatlonal Motion Associated with Free Turbulent

Flows," J. Fluid Mech., Vol. l, 1956, pp. 593-606.

Stewart conducted a theoretical examination of the Irrotatlonal

motion external to a self preserving turbulent wake and jet. He found

a mean flow towards the center of the jet and pointed out that it is

possible for the vorticity free fluid between bulges of turbulent fluid

to obtain the mean velocity of the turbulent fluid. However, he con-

cluded that this was a very short range effect and the motion in the

external region can be considered Irrotational. From similarity consid-

erations, Stewart expressed the mean flow near the axisymmetrlc jet

boundary as U = Cp "l, where ¢, p are the colatitude angle and the

radius in a spherical coordinate system with the jet exit located

at the origin and directed along the z axis. For a jet emerging nor-

really through an infinite plane baffle plate, he found that the velocity

potential ¢ can be expressed by

¢ - C tan ¢o _n (p sin _)
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where _o = the half cone angle containing all of the turbulent region

of the jet (about 12.5°).

21. Miller, D. R. and Comings, E. VI., "Static Pressure Distribution in

the Free Turbulent Jet," J. Fluid Mech., Vol. 3, 1957, pp. 1-16.

I_iller and Comings made measurements of mean velocity, turbulent

stress, and static pressure in the mixing layer of a Jet of air issuing

from a slot (2-D) into still air. Appreciable deviations from constant

pressure conditions were found. They obtained negative static pressure

readings everywhere in the mixing layer except in the potential core

wedge.

22. Ricou, F. P. and Spalding, D. B., "Measurements of Entrainment by

Axis_nnmetrical Turbulent Jets," J. Fluid Mech., Vol. II, 1961,

pp. 21-32.

Ricou and Spalding made measurements of entrainment by means of

a porous-walled, cylindrical chamber. The flow rate through the porous

wall was adjusted until no axial pressure gradients could be detected.

The entrained fluid as a result of the radial inflow was then presumed

to be equal to that of a free jet. For the fully developed jet they

obtained a relationship for the mass entrainment as a function of axial

position. As in previous work by other investigators, they had to

determine a numerical constant (Kl of Equation (35)). Their experimental

value was 0.282 which was within the range of values 0.22 to 0.404,

determined by earlier investigators.

23. Wygnanski, I., "The flow Indueed by Two-Dimensional and Axisymmetric

Turbulent Jets Issuing Normally from an Infinite Plane Surface,"

Aeron. quart., Vol. XV, 1964, pp. 373-380.

Wygnanski made an analytical investigation of turbulent jets.

The pressure distribution on the surface from which the jet was issuing
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was determined. In his analysis, he replaced the jet with a line of

sinks with variable strength. His results agreed with the experimental

data he presented.

24. Gentry, C. L. and Margason, R. J., "Jet-lnduced Lift Losses on VTOL

Configurations Hovering In and Out of Ground Effect," NASA TN

D-3166, Feb. 1966.

Gentry and Margason conducted an experimental investigation of

pressure distribution on a plate from which a Jet flow was exhausting.

The case where the plate was flush with a large wall and the case

where the plate was exposed to the atmosphere on both sides were

studied. Pressure coefficients on the plate were measured in both

cases. In comparing their results for the large wall with those of

Wygnanski, they show that Wygnanski's data is about 25 percent less.

In general, many mathematical analysis and experimental studies

of jets issuing from nozzles with diameters ranging from 0.I02 to 20

inches and with velocities ranging from 13 to I000 ft/sec have been

made. For the developed region, using the concept of similarity,

theories for mean velocity distributions give about the same picture.

However, they yield a velocity distribution which is too sharp an apex

on the jet axis in comparison with experimental results. As is to be

expected, near the jet boundary comparison of the analytical velocity

profile with the experimentally determined distribution show a devia-

tion from the measured distribution.
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APPENDIX B

Derivation of the Equations for the Aerodynamic

Field of an Axisjnnmetric Jet

This Appendix contains derivations of the equations for determining

the aerodynamic velocity field for an axisymmetrlc jet according to the

method which make use of the Stokes potentials. The derivations are for

a semi-infinlte domain where Green's function is given by 2/R. Starting

from Equation (15)

U = UsT + Ep (15)

where

sT (Vl x UI) x _dT 1

and

Since the flow is axisymmetric (Vl x Ul = _Ol iBl)'

for UST can be written as

I _" ROI I01 x R

UsT : _JT R3 i d_ 1

the equation
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For the geometry of Fig. II, noting that 0 may be put equal to zero

without loss of generality, R can be written as

R : (r cos eI - rl) Irl - r sin oI iol + (z-zI) izl

The source point coordinate system Is the appropriate system for the

volume integration.

US_ yields

Substituting this result into the equation for

÷UsT : ____ _el (Z'Zl) irl - _OlR3(r cos el-r I) izl d_l

which can be separated Into r and z components in the field point

coordinate system.

_F_I2_ _ Irl c°s °IRel (Z'Zl) rl drl dZl dOlUS_ r : R3

0 -_ 0

I r,
1 s)Ol

Us_ z : .

0 - 0

(rl-r cos eI)

R3
rI drI dz I dO 1

Flaking use of the identity that

Ep- ( )h""h

the equation for E may be written as
P
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Using the geometry of Fig. 12, noting that 0 may again be put equal to

zero, R can be written as

R = (r cos 01 - rI) irl - r sin 01 iOl + z izl

Substituting this result into equation for Ep along with tlj for

Ul • n yields

+ uir (r cos e1

Ep : 2_

rI) irl - r sin 01 iOl + z izl

R3
dSl

Separating the above relation into r and z components yields

Epr= 2___I2_Irl (r-r 1 cos e1 )R3 rl dr I dO1
0 0

Ujz f2_ _rl r1

EPZ : 2= Jo Jo
drI dO1

Consider next the integral over 01 for UST r

21T

I cos O1 dO1
0 (a-b cos el)3/2

where a = r2 + r_ + (z-z I)2 and b = 2rr I

Let

n dO1iI : 2 )'3/2
0 (a-b cos Bl

oRIGI!',IM-, 9_G_ IS

OF QUM I I

and
m
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_i cos eI de 1
12 = 2

(a-b cos el )3/2

then

a Ii-b 12 = 2 __
0

doI

(a-b cos el)I/'2

Solving this relation for 12, the integral over eI for US_ r

ill
12 = _ d°l

0 (a-b cos oi)3/2
2 S" del

(a-b cos Ol))T2-0

• yields

These integrals may be evaluated in terms of complete e11iptic integral

functions.24 Thus,

where

and

I_ d°l
(a-b cos ei)312

= _ E (A,k)

g = 2/J'a"+-'_, k2 = 2b/(a + b)

A = sin -l /b (l-cos el)/k2(a-b cos ol)

Substituting the value for eI in the relation for A yields A = sin -l

l = _/2. Thus, E (A,k) = E (7/2, k) = E (k) a complete elliptic

integral of the second kind. Now, substituting for g, one obtains

del 4a E (k)

(a-b cos Ol )3/2" = b (a-b) v_a + b
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Similarly,

- _I" d_l _ 4 K (k) ,
0 (a-b cos 01 )I/2 b/ a + b

where K (k) is a complete elliptic integral of the first kind. Sub-

stituting these results for the right side of the equation for 12 yields

12 -
4

b/a+b --_E (k)- K (k)]

Likewise integrating over oI for UST z with

12 = 2 __
0

doI I n cos oI do1
(a-b cos oi)3/2 - 2 0 (a-b cos Ol)3/E

yields

: 4 E (k) 4
12 V_a + b (a-b) bV_a + b

[a--_E (k) - K (k)]

Substituting the respective results into the integrand of the equations

for US_ r and UST z, yields

I Re 1 (z-z 1 )1

User : _ S /(r + rl)2 + (Z-Zl)2

r2 + r_ + (Z-Zl)2

(r-rl)2 + (Z-Zl)2

E (k) - K (k) dr I dz l

Us,z=- [
S/(r+ rI)2 + (z_z I)2

r2-r_ + (Z-Zl)2

(r_rI)2 + (z_zI)2

(40)
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/

E (k) - K (k) / drl dzl (41)

In order to obtain Equations (42) and (43), the equations for Epr

and Epz are rewritten as

Epr" _.,, ...... _ )3/2
0 0 (a-b cos el) 0 (a-b cos eI

Epz = -_
0 0

rI dr I de I

(a-b cos el)3/2

• dr 1 de 1

Integrating over eI , yields

_r I r2 r2 z2

r_l " .1,-

EPr = Uj_ V_r + rl)2 + z2 (r'rl)2 + z2

E (k) + K (k) drI

(42)

Epz:_ _ rl E (k) ,
II lr_r + rl)2 + z2 [(r_rl)2 + z2]

dr I (43)
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APPENDIXC

Algorithms for Complete Elliptic Functions

The following algorithm computes the complete elliptic integral of

the first kind with modulus k12.

K(k) = {[(0.032024666t + 0.054544409)t + 0.097932891]^+

1.3862944} - {[(0.010944912t + 0.060118519)t +

0.12475074]t + 0.5 } In(t)

_lhere t = l - k2

The following algorithm computes the complete elliptic integral of

the second kind with modulus k13.

E(k) = {[_.040905094t + 0.085099193)t + 0.44479204]t +

l.O} - {[(0.01382999t + 0.08150224)t + 0.24969795]t} In(t)

where t = 1 - k2


