NAGA TECHNICAL MEMORANDUM

NASA TM X-64884

AN ELLIPSOMETER WITH VARIABLE ANGLE OF !NCIDENCE FER STUDIES IN ULTRAHIGH vACUUM

By H. U. Walter, T. A. Weitzenkamp, and P. N. Peters

Space Sciences Laboratory

August 30, 1974

NASA

George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama
(NASA-IM-X-64884) AN ELLIPSOMETER WITH
VARIABLE ANGLE OF INCIDENCE FOR STUDIES
IN ULTRAHIGH VACUUM (NASA) 21 P MC
$\$ 3.00$

TECHNICAL REPORT STANDARD TITLE PAGE

An ellipsometer that is designed for studies in ultrahigh vacuum is described. The windows of the vacuum chamber are incorporated into the optical bench system by means of flexible bellows. This allows measurements to be made over a large range of angle of incidence. The angle of incidence can be chosen so that maximum sensitivity is obtained. The principal angle of incidence can be determined, and straightforward corrections for strain birefringence of vacuum chamber windows can be made.

Atomically clean surfaces of sodium chloride and lithium fluoride were investigated to verify the performance of the system. Submonolayer and monolayer coverage of water on these surfaces could be detected. On cleavage planes of NaCl , a first monolayer of adsorbed water is complete at about 1 torr only.

1. KEY WORDS	18. DISTRIGUTION STATEMENT Unclassified-unlimited$\mathcal{F}_{a} \operatorname{lin}_{2} \text { in Fiterat }$	
19. SECUR.TY CLKS F. (d Phat roport) Inclassified	20. SECURITY CLASSIF. (ot inis Dagn)Unclassified $\|$21. NO. OF PAGES 21	$\begin{array}{r} \text { 22. } \begin{aligned} \text { PRICE } \\ \text { NTIS } \end{aligned} \end{array}$

ACKNOWLEDGMENT

The authors would like to thank Mr. R. Eakes (Teledyne-Brown Engineering, Huntsville, Alabama) and Mr. A. Eglitis (The University of Alabama in Huntsville) for design work.
H. U. Waiter gratefully acknowledges the award of a Postdoctoral Research Associateship by the National Academy of Sciences - National Research Council, Washington, D. C. during which tenure this work was carried out.

TABLE OF IONTENTS

Page
SECTION I. INTRODUCTION 1
SECTION II. APPARATUS 2
A. Mechanical and Optical Arrangement 2
B. Window Arrangement for Variation of Angle of Incidence 5
SECTION III. CORREC TIONS FOR SYSTEMATIC ERRORS AND COMPUTATION 5
SECTION IV. RESULTS AND DISCUSSION 9
SECTION V. CONCLUSION 12
REFERENCES 13

LIST OF ILLUSTRATIONS

Figure Title Page

1. Variable angle of incidence ellipsometer with ultrahigh vacuum chamber and accessories 3
2. Optical arrangement and variation of angle of incidence 4
3. Window assembly 6
4. Parameters of polarized light determined byellipsometry7

AN ELLIPSOMETER WITH VARIABLE ANGLE OF INCIDENCE FOR STUDIES IN ULTRAHIGH VACUUM

I. INTRODUCTION

Ellipsometry has been widely used for the study of optical constants of surfaces and thin zilms. Film thickness tip to tens of thousands of angstroms can be determined by ellipsometry within about 1 percent $\mid 1]$; the instrument is sensitive enough to detect submonolayer coverage; and an accuracy of $<1 \AA$ can be obtained $|2-4|$.

For investigation of uncontaminated surfaces, film deposition, physisorption and chemisorption, ultrahigh vacuum or an extremely well controlled gascous environment is required. This necessitates making optical measurements through vacuum chamber windows. Ellipsometers adapted to vacuum systems have been described by several authors $|5-8|$. Because fixed windows were used in these systems, measurements could be made only at a single angle of incidence.

Sensitivity considerations indicate that maximum experimental sensitivity is obtained at a specific angle of incidence, usually within $\pm 10 \mathrm{deg}$ of the principal angle [9-11]. Determination of the Brewster angle or the principal angle of incidence for substrate or film is a simple means of obtaining refractive indices $|12-16|$. For nonabsorbing isotropic media, the difference of phase shifts, Δ, for the components of the electric vector in the plane of incidence and normal to it is $\pi / 2$ at the Brewster angle, which can easily be determined by ellipsometry if the angle of incidence can be varied.

Since a single set of ellipsometer readings determines two quantities only, readings at various values of an independent variable such as wavelength, film thickness, substrate optical constants, refractive index of surrounding media, or angle of incidence have been considered by various authors \{17-20| as a means of obtaining real and imaginary parts of the refractive index and film thickness by ellipsometry only. Of the several possibilities, variation of angle of incidence is experimentally and physically most appropriate. Shewchun and Rowe [9] have shown the viability of this approach; substrate optical constants, surface film thickness, and surface film optical constants were determined for metal/metal oxide systems.

Systematic crrors in ellipsometry are generally diue to (1) incorrect settings of polarizer, analyzer, and quarter wave plate; (2) an imperfect compensator; (3) multiple reflections between the variou optical components; and (4) strain birefringence of cell windows. In the case of variable angle of incidence vacuum ellipsometry, strain birefringence of cell windows can only be eliminated if the light beam reproducibly probes a defined area of the windows for each measurement.

After consideration of the various advantages and possibilities of variable angle of incidence ellipsometry fcr surface studies in a controlled gaseous environment, an ellipsometer adapted to an ultrahigh vacuum system was designed and constructed. The apparatus allows for variation of angle of incidence and for corrections of window effects.

II. APPARATUS

A. Mechanical and Optical Arrangement

The basic experimental arrangement is illustrated in Figures 1 and 2. Figure 1 shows the ellipsometer frame (1)' plus optical components (2-7) attached to one of the two 15.24 cm (6 in .) top flanges of an ultrahigh vacuum chamber (8). The frame consists of two optical benches (9) welded ${ }^{2}$ to a cylindrical adapter (10). Both ellipsometer arms can be rotated concent: 'zally and independently by means of large (28 cm (11 in .) diameterl precision ball bearings. The adapter is mounted to the top of the vacuum chamber by a central socket ball joint (11); three set screws (12) allow tilting of the apparatus with respent to the chamber. The sample to be studied is positioned in the chamber with its surface coincident with the axis of rotation of the ellipsometer arms; misalignment of up to 5 deg can be compensated by tilting the ellipsometer.

Figure 2 shows a schematic of the optical arrangement; a hellum neon laser (1) $(\lambda=6328 \AA)$ was used as the light source, and a photomultiplier (2) and picoammeter were used as the detector. Ellipsometer-grade GlanThompson prisms (3) were used as the polarizer and analyzer; a mica quarterwave plate (4) was used as the compensator. The polarizer could be set to a $\pm 45 \mathrm{deg}$ position relative to the plane of incidence; the comnensator and analyzer

1. The numbers in parentheses correspond to the same designations on the figures.
2. 6061-T6 aluminum alloy construction; dimensions determined by load testing and stress analysis to provide negligible deflection and mechanical instabilities.

Figure 2. Optical arrangement and variation of angle of incidence.
were mounted in divided circles readable to 10 sec of arc. As indicated in Figure 2, a PSCA (polarizer-sample-compensator-analvzer) configuration was chosen.

Auxiliary equipment, such as an ion pump (13), a mass spectrometer (14), a gas supply system (15), and an ionization and thermocouple pressure gaige (16), is indicated in Figure 1. Figuse 2 shows the tungsten filament (.) for electron bombardment heating and the ion bombardment gun (6) for cleaning simples. A turbo molecular pump with an associated mechanical roughing pump) Was usel to reach 10^{-6} tori or better. Final pressures of the order of 10^{-10} lorr were obtained by means of a conventional ion pump.

B. Window Arrangement for Variation of Angle of Incidence

To reduce systematic errors, variable angle of incidence ellipsometry requires correction for strain birefringence of chamber windows. Since strains are known to vary across a window, simple and accurate corrections can only be made if all measurements are taken through the same region. For measurements at various angles of incidence, this condition can only be met if the windous are incorporated in the optical bench system. This was achieved by mounting the windows to the ellipsometer arms and sealing the windows to the vacuum chamber by means of flexible bellows as illustrated in Figures 1 and 2.

Figure 3 shows details of the window assembly. Optically flat $(\lambda / 20)$ and plane parallel (<1 second of arc) Pyrex dises (1) were sealed to 0.63 cm (0.25 in.) diameter Pyrex tubing (2) with Kovar seals (3) After annealing, the windows were examined between crossed polarizers for strain. The two best window assemblies (of six constructed) were vacuum-iorazed to stainless steel bellows (4). The bellows were heliarc-welded to conical stainless steel ariapters (5) with Varian type ultrahigh vacuum flanges (6). The windows were 1 igidly attached to the optical benches (8). With a r - ortangular chamber geametry, the angle of incidence could * us be varied from 27.5 to 65 deg. Figure 1 shows the 1 m diameter divided circle (17) and vernier scales (18) that allowed measurement of the angle of incidence to 0.0125 deg .

III. CORRECTIONS FOR SYSTEMATIC ERRORS AND COMPUTATION

An alignment procedure as suggested by McCrackin et al. [21] was used to obtain polarizer, compensator, and analyzer zero-settings. The vacuum chamber windows were inserted after zero-settings were obtained and treated as optical components of the system.

Figure 3. Window assembly.

The relative attenuation, $\tan \psi$, and the difference of phase shifts, Δ, for the components of the electric vector in the plane of incidence and normal to it were obtained by determing α and γ (Fig. 4) and using the following equations |22|:

$$
\begin{align*}
& \cos 2 \psi=\cos 2 \gamma \cdot \cos 2 \gamma \tag{1}\\
& \tan \Delta=\frac{\tan 2 \gamma}{\sin 2 \alpha} \tag{2}
\end{align*}
$$

CONVENTIONS USED: R.H. MULLER, SUPFACE SCIENCE, VOI. 16, 1839, P. 14 : © COMPENSATOR AZIMUTH
r: DIFFERENCE BETWEEN ANALYZER AND COMPENSATOR AZIMUTH.

LEGEND

(1) INCIDENT, LINEARLY POLARIZED UNDER 45 dog
(2) REFLECTED, ELLIPTICALLY POLARIZED
(3) AFTER PHASE COMPENSATION

Figure 4. Parameters of polarized light determined by ellipsometry.

The compensator (mica quarter-wave plate) was calibrated by derrat it methor $\left\{231\right.$; phase compensation was determined to be $31.215+0.00: 3$ deg. ${ }^{3}$ The clata, therefore, had to be corrected by applying the following equation:

$$
\begin{equation*}
\tan 2 q=\tan 2(\alpha+\gamma) \cos \delta \tag{3}
\end{equation*}
$$

where q is the correction required for compensator setting and δ is the compensation of the imperfect quarter-wave plate.

Incorporation of the vacuum chamber windows as optical components into the optical bench system allows determination of and correction for birefringence effects caused by localized strain in the windows. The first window war checked in the straight-through position; it was found to contribute 0.00581 to the relative amplitude attenuation, $\tan \psi$. Incorporation of the second window resulted in a change of 0.00029 at atmospheric pressure and of 0.00034 after the chamber was evacuated to ultrahigh vacuum. Respective phase shifts were -0.5970 deg and +0.4718 deg for the two windows and +0.1252 deg for the combined effect after evacuation of the chamber. Total values of i_{t} and Δ_{t} with the sample are then described as follows:

$$
\begin{equation*}
\tan \psi_{1} \exp \left(1 \Delta_{1}\right)=\tan \psi_{1} \exp \left(i \Delta_{1}\right) \tan \psi_{2} \exp \left(1 \Delta_{2}\right) \tan \psi_{3} \exp \left(1 \Delta_{3}\right) \tan \psi_{1} \exp \left(1 \Delta_{1}\right) . \tag{4}
\end{equation*}
$$

where ψ_{1}, Δ_{1} and ψ_{2}, Δ_{2} are ellipticities produced by the two windows at atmospheric pressure and ψ_{0}, Δ_{3} are contributions from both windows with the chamber evacuated. ${ }_{4}, \Delta_{s}$ describe the sample under investigation.

Solving equation (4) for the renlectivity of the sample gives

$$
\begin{equation*}
\tan \psi_{s} \exp \left(i \Delta_{s}\right)=\frac{\tan \psi_{t} \exp \left(i \Delta_{t}\right)}{\tan \psi_{n} \exp \left(i \Delta_{n}\right)} \tag{5}
\end{equation*}
$$

where ψ_{n}, Δ_{a} represent window contributions. Within error, no further contributions of window strains could be detected below 10 torr. Changes from 1 atmosphere to 10 torr were found to be reversible; therefore, evidently only elastic effects are involved.
3. Commercially available $\lambda / 4$ plates are accu'ate only within 3 percent.

If no corrections were made, the errors due to strain birefringence of the windows would be of the order of ± 0.0 : for refractive indices and absorption coefficient, and up to $5 \AA$ for film thickness.

After correction for inaccurate compensator and window birefringence, major sources of error are caused by analyzer (A), quarter-wave plate (Q), and angle of incidence (φ) setiings [24]. An uncertainty of angle of incidence of ± 0.0125 deg results in an uncertainty in i^{\prime} of $\pm 0.01 \mathrm{deg}$ and in Δ of ± 0.0015 deg. The accuracy of azimuth readings for the quarter-wave plate and analyzer $(\pm 10 \mathrm{sec}$ of arc) was sufficient to determine ψ to $\pm 0.003 \mathrm{deg}$ and Δ to ± 0.002 deg. The maximum total crror in Δ and : would, henec, be of the order of 0.005 deg and 0.02 deg , respectively.

Data analysis was done by several computer programs: (1) ψ and Δ were calculated from experimental data and corrected for window birefringence as described in equation (5), (2) a second program was used to determine real and imaginary components of the refractive index of a film-free substrate, and (3) with n and k of the substrate known, two of the three parameters of a thin film (n, k, and film thickness d) could be computed. The approach was \mathfrak{f} e usual directud trial-and-error procedure for a single value of ψ and Δ.

Computation of substrate optical constants, surface film thickness, and surface film optical constants of a film-covered substrate from a single set of ellipsometer readings at various angles of incidence as suggested by Shewchun and Rowe [91 could not be done. The required reproducible angular readings to 0.001 deg were not possible with the conventional photomultiplier detection system used. To obtain systematic readirgs of greater accuracy, a Faraday modulator and lock-in amplifier would have to be added, and measurements of angle of incidence would have to be improved to ± 0.001 deg.

IV. RESULTS AND DISCUSSION

For NaCl and LiF , values for ψ and Δ were computed using bulk values for the substrate ($\mathrm{NaCl}: \mathrm{n}=1.5415, \mathrm{k}=0$ [25]; LiF: $\mathrm{n}=1.3910, \mathrm{k}=0$ [26]; both at $6328 \AA$ and $20^{\circ} \mathrm{C}$) and assuming films with refractive index from 1.3 to 1.6. A film thickness of $3.0 \AA$ was assumed for these calculations.

The properties of such films would be comparable to those of a monolayer of adsorbed water. Variation of φ from 27.5 deg to 87.5 deg in increments of 2.5 deg indicates that changes in Δ and ψ caused by the films are greatest
at reflection near the Brewster angle (57.02 deg for NaCl and 5.4 .29 deg for Li F). Computed values for a $3 \AA$ thick, nonabsorbing film with $n-1.3$ on a NaCl substrate are given in Table 1 for 50 deg $-\psi \div 60$ deg. With a transparent film, ψ is not sensitive to the presence of a film; changes in Δ are more exaggerated, particula 'ly around the brewster angle. With an absorbing film, this behavior i. reversed; again, best expermmental sensitivity is ohtained near the principal angle.

Film-frec (100) surfaces of NaCl and LiF were obtained by cleaving single cinstals in thtrahigh vicuum and balonout at $350^{\circ} \mathrm{C}$ for 12 hours. Measurements were taken from 40 to 65 deg angles of incidence. Surface opticit constionts were computed as follows: $\mathrm{n}_{\mathrm{NaCl}}=1.555+0.007, \mathrm{k}_{\mathrm{NaCl}}=0.014$ $+0.003 ; n_{L i F}=1.402 \pm 0.007, k_{L_{i F}}=0.008+0.003$.

Since the difference between measured and bulk values could not be explained by systematic errors, it may be concluded that the lattice of alkalihalides is distorted in the surface region. Calculations of ion displacements of alkalihalides bounded by (100) faces by Benson et al. $\lceil 27,28 \mid$ and successful correlation between such surface distortions and surface reactivities by Takaishi et al. $|29|$ suppor! this assumption. Similar effects are present with polished surfaces, polish lavers, and leached-out regions with layer thicknesses of several hundred angstroms, and opticai properies different from bulk properties have been detected by Yokota et al. [141. Optically flat surfaces of clear fused quartz investigated in this study also indicate the presence of a surface laver with different optical properties. It seems that this situation is the common one rather than the exception; the frequently used practice of applying bulk valites of substrates for computation of film properties may, therefore, lead to the misinterpretation of experimental data.

Admission of water vapor into the system did not alter ellipsometer readings in the pressure range 10^{-3} to 10^{-4} torr. The first monolayer of water is only compieted at about 1 torr, which is in agreement with data obtained by' volumetric measurements 「30|. Since no variation in Δ and ψ could be detected over six orders of magnitude of pressure, a film-free surface when investigated by ellipsometry can be assumed within this range. On the other hand, a large number of investigations prove that adsorption of water on cleavage planes of alkalihalides alters the surface properties with respect to heterogeneous nucleation, etc., even at pressures below 10^{-4} torr. These effects can be explained by a submonolayer coverage of water and masking of potential nucleation sites that are associated with points of higher free surface energy on energetically heterogeneous surfaces. More detailed results and interpretations on this subject will be presented separately.

TABLE 1. COMPUTED VARIATION OF ELIIIPSOMETRIC PARAMETERS
\checkmark AND 4 WITII ANGLE OF INCIDENCE φ FOR A SODIUM
CHLORIDE SUBSTRATE (BULK CONSTANTS: $n_{3}=1.5415$, $k_{3}=0$) WITH 'TIIN SURFACE FILM ($n_{2}=1.30, k_{2}=0$, $\left.t_{2}=3 A\right)$. CHANGES $a \psi$ and $a \Delta$ CAUSED BY FILM AS COMPARED TO Δ AND \downarrow FOR FILM-FREE SUBSTRATE ARE ALSO INCLIDED.

Angle of Incidence ω (deg)	(deg)	$\begin{gathered} \Delta \\ (\operatorname{deg}) \end{gathered}$	$\begin{gathered} a! \\ (\mathrm{deg}) \end{gathered}$	$\begin{gathered} \partial \Delta \\ (\operatorname{deg}) \end{gathered}$
50.0	10.687	179.842	0.000	-0. 158
50.5	9.953	179.829	0.000	-0.171
51.0	9.213	179.814	0.000	-0.186
51.5	8.468	179.796	0.000	-0.2.:
52.0	7.718	179.774	0.000	-0. 26
52.5	6.965	179.748	0.000	-0. 252
53.0	6.207	179.716	0.000	-0. 284
53.5	5.446	179.674	0.000	-0. 326
54.0	4.681	179.618	0.000	-0.382
54.5	3.914	179.541	0.000	-0.459
55.0	3. 144	179.426	0.000	-0.574
55.5	2.371	179.236	0.000	-0.764
56.0	1.597	178.861	0.000	-1.139
56.5	0.821	177.778	0.001	-2. 222
57.0	0. 054	143.518	0.010	-36.482
57.5	0.736	2.491	0.001	+2.491
58.0	1.515	1.212	0.000	+1.212
58.5	2. 294	0.801	0.000	+0.801
59.0	3.073	0.598	0.000	$+0.598$
59.5	3.852	0.477	0.000	$+0.477$
60.0	4.630	0.397	0.000	$+0.397$

v. CONCLUSION

A variable angle of incidence ellipsometer that is adapted to an ultrahigh vacuum chamber has been described. Incorporation of the vacuum chamber windows into the optical bench system allows for straightforward correetion of window effects. Rewster angle or principal angle can be measured directly; reffectivity measurements can be taken at angles where maximum sensitivity is obtained - usually around Brewster or prineipal angle. Computed values for Δ and if a function of angle of incidence for thin films on alkalihalides show that for thin films, sufficient sensitivity to detect the presence of a film can only be obtained in the proximity of the brewster angle. The system described allows investigation of uncontaminated surfaces in ultrahigh vacuum. Adsorbed or deposited films can be studied under controlled gaseous conditions.

REFERENCES

1. Bechmamn, K. H1.: Angew. Chem. so dahrg., 196s, p. 213.
\therefore Bayh, W.; and Fflug, H.: Z. Angew. Dḥ̣s., vol. 25, 1968, p. 358.
2. Archer, R.d.; and Goboli, G. W.: J. lhys. Chem. Solids, vol. 2G, 1965, μ. 343.
3. Bootsma, G. A.; and Meyer, F.: Surface Sci., vol. 14, 1969, p. 52.
4. Dettorre, J. F. ; Knorr, I. G. ; Hartman, N. F.; and Cocks, G. G.: Rev. Sci. Instr., vol. 35, 1964, p. 503.
5. Archer, R.J.: J. Opt. Soc. Amer., vol. 5थ, 196:, p. 970.
6. Muller, R.H.; Steiger, R.F.; Somorjai, G. A.; and Morabito, J. M.: Surface Sci., vol. 16, 1969, p. 23H.
7. Archer, R.J.: Phys. Rev., vol. 110, 1958, p. 354.
8. Shewchun, J.; and Rowe, E. C.: J. Appl. Phis. vol. 41, 1970, p. 4128.
9. Schueler, D. G.: Surface Sci., vol. 16,1969, p. 104.
10. Smith, R. C.; and Hacskaylo, M.: Ellipsometry in the Measurement of Surfaces and Thin Films. Symposium Proceedings, Washington, 1963, ad. by R. Passaglia, R. R. Stromberg, and J. Kruger, National Bureau of Standards Miscellaneous Publication 256,1964 .
11. Pfund, A. H.: J. Opt. Soc. Amer., vol. 26, 1936 , p. 453; vol. 31, $19+4$, p. 679.
12. Kinosita, K.; and Nomura, S.: J. Phys. Soc. Japan, vol. 13, 1958, p. 1485.
13. Yokota, H. ; Saknta, H. ; Nishibori, M.; and Kinositn, K.: Surface Sci., vol. 16, 196n, p. 265.
14. Sissingh, R.; and Groosmuller, J. T.: Physik 7., vol. ©7, 1926, 1. 51%.

REFERENCES (Continued)

16. Passaglia, E.; and Stromberg, R. R.: J. Research N. B. S. - A. Phys. and Chem., vol. 68A, 1964, p. 601.
17. Masing, L..; Orme, J. E.; and Young, L.: J. Electrochem. Soc., vol. 108,1961, p. 428.
18. McCrackin, F.L.; and Colson, J. P.: Ellipsometry in the Measurement of Surfaces and Thin Films. Symposium Proceedings, Washington, 1963, ed. by E. Passaglia, R. R. Stromberg, and J. Kruger, National Bureau of Standards Miscellaneous Publication 256, 1964, p. 61.
19. Burge, D.K.; and Bennett, H. F.: J. Opt. Soc. Amer., vol. 54, 1964, p. 1428 .
20. Vedam, K. ; Knausenberger, W.; and Lukes, F.: J. Opt. Soc. Amer., vol. 59, 1969, p. 64.
21. McCrackin, F. L. ; Passaglia, F.; Stromberg, R. R.; and Steinberg, H. I.: J. Research N. B. S. - A. Phys. and Chem., vol. 67A, 1963, p. 363.
22. Vasicek, A.: Ellipsometry in the Measurement of Surfaces and Thin Films. Symposium Proceedings, Washington, 1963, ed, by F. Passaglia, R. R. Stromberg, and J. Kruger, National Bureau of Standards Miscellaneous Publication 256, 1964, p. 25.
23. Jerrard, H. G.: J. Opt. Soc. America, vol. 42, 1952, p. 159.
24. Azzam, R.M.; and Bashara, N.M.: J. Opt. Soc. Am., vol. 61, 1971, p. 600.
25. Kohlrausch, F.: Praktische Physik, 18th edition, vol. 2, Mary S. Rosenberg, New York, 1947, pp. 528-529.
26. Tilton, L. W.; and Myler, E.K.: J. Res. N. B. S., vol. 47, 1951, p. 25.
27. Benson, G. C. ; and Claxton, T. A.: J. Cl. \cdot m. Phys., vol. 48, 1968, p. 1356 .

REFERENCES (Concluded)

\therefore K. Benson, (i, r.; Balk, P.; and White, P.: J. Chem. Phys., vol. 31, 1959, p. 109.
:9. T.akaishi, T.; and Sensui, Y.: Surface Science, vol. 19, 1970, p. 339.
:31. Walter, II.1.: 7. Phys. Chem. N.F., vol. 75, 1971, p. 287.

APPROVAL

AN ELLIPSOMETER WITH VARIABLE ANGLE OF INCIDENCE FOR STUDIES IN ULTRAHIGH VACUUM

By H. U. Walter, L. A. Weitzenkamp, and P. N. Peters

The information in this report has been reviewed for security classification. Review of any information concerning Department of Defense or Itomic linergy Commission programs has been made by the MSFC Security Classification Officer. This report, in its entirety, has been determined to be unclassified.

This document has also beon reviewed and approved for technical accuracy.

CHARIESA. UUNDQUIST
Director, Space Sciences Laboratory

