ANALYSIS OF CONDITIONS FOR OPERATING THE S193 RAD/SCAT IN SOLAR POINTING MODE

CRES Technical Report 243-3

James Pindar
Aron Sobti

July, 1973

Supported by:
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Lyndon B. Johnson Space Center

Houston, Texas 77058
CONTRACT NAS 9-13331
(NASA-CE-14C187) ANALYSIS CF CONDITIONS N74-34859
FOR OPERATiNG THE S 193 kAD/SCAT IN THE SOLAF POINTING MODE (Kansas Univ.) 39 p

ANALYSIS OF CONDITIONS FOR OPERATING THE SI93 RAD/SCAT IN SOLAR POINTING MODE

James Pintar and Arun Sobti
The University of Kansas Center for Research, Inc. Lawrence, Kansas 66044

Abstract

The 5193 Rad/Scat, although initially programmed for operating in the earth pointing mode, can be operated in the solar pointing mode as well. The usual coordinate systems for describing the S193 in orbit are defined. The instructions for the operation $:^{\prime}$ the Radiometer and Scatterometer are presented in terms of standard Eu'er angles iur these coordinate systems. A sample analysis for the Scatterometer is described. The relationships between the various Euler angles and physically meanirigful orbit parameters is defined.

table Of CONTENTS

Poge
1.0 INTRODUCTION 1
2.0 DEFINITIONS OF COORDINATE SYSTEMS 1
3.0 ANALYSIS. 3
3.1 Euler Angle Transformations 5
3.2 Conditions for Radiometer Operation 8
3.3 Conditions for Scatterometer Operation 10
3.3.1 Simplified Analysis of Scat Operation in CTC 0° Pitch Mode 14
3.3.2 Program Listout and Sample Output 18
3.4 Relationship Between Euler Angles and Skylab Ephemerides. 23
3.5 Minimal Input Simulation Program 27
3.5.1 Listout of SETAI. 28
3.5.2 Listout of SETA2. 29
4.0 CONCLUSION 32
APPENDIXI. 33
APPENDIX II 34
APPENDIX III 35
APPENDIX IV 36

ANALYSIS OF CONDITIONS FOR OPERATING THE S193 RAD/SCAT IN SOLAR POINTING MODE

1.0 INTRODUCTION

The nominal attitude for operating the S 193 is the earth pointing mode. However, under certain conditions it is possible to operate the S193 from the solar pointing disposition. For the radiometer, the condition is simply that the antenna boresight be beneath the horizon. For the scatterometer, a range restriction similar to the above condition must be true. In addition, the doppler return must be within the filter bands for that pitch angle. In general, if the vehicle is in solar pointing mode the latter condition is not met. However, by yawing the vehicle about the solar pointing axis and executing a roll or pitch of the antenna on the gimbal mount it is possible for some positions in the orbit to satisfy both conditions; the CTC mode is most generally applicable.

2.0 DEFINITIONS OF COORDINATE SYSTEMS

Earth Centered Coordinates:* The reference earth centered coordinate system is the Earth Centered Inertial (ECl) in which the origin is the center of the earth, the z-axis points toward the mean north pole of 1950.0, the x-axis points towards the vernal equinox of 1950, and the y-axis completes the right-handed coordinate system. A second Earth Centered Coordinate System is the Earth-Centered True (ECT) with the x-axis through the Greenwich meridian at GMT=0 and the z-axis through the north pole at GMT=0. Note that the z-axis of these two coordinates systems are not coincident. In general, the conversion from ECI to ECT will involve a nutation, a precession, and a rotation of the ECI coordinates. A third earth centered coordinate system can be defined as ECR (Earth Centered Rotating) which rotates with the earth, with the z-axis towards the north pole and the x-axis towards the Greenwich Meridian. ECR can be obtained from ECT by a rotation of the angular displacement of the earth since GMT $=0.0$ about the ECT z-axis. The ECR coordinate axis, shown in Figure 1, will be $\hat{X}, \hat{Y}, \hat{Z}$.
₹ SKYLAB Parameter Formulation Document; change 4, May 29, 1973.

Z-Local Vertical (ZLV): The z-axis points from the center of spacecraft to the center of the earth, the x-axis points along the direction of the tangential compenent of the vehicle's velocity vector in the orbital plane, and the y-axis completes a right handed coordinate system. The ZLV unit vectors, shown in Figure 1 , will be denoted as $\hat{X}_{1}, \hat{Y}_{1}, \hat{Z}_{1}$. For a circular orbit the x-axis and the velocity vector are colinear.

Solar Inertial Coordinates (SI): The z-axis points from center of spacecraft towards the sun, the x-axis lies in the vehicle's orbital plane and the y-axis completes a right handed coordinate system $\hat{X}_{j}^{\prime}, \hat{Y}_{j}^{\prime}, \hat{Z}_{j}$.

Vehicle Coordinates (VEH) This coordinate system is defined in the vehicle itself with the x-axis along the long cylindrical axis of the vehicle $\hat{X}_{2}, \hat{Y}_{2}, \hat{Z}_{2}$. The conversion to VEH coordinates is achieved by the yaw, pitch, and roll attitudes errors from ZLV or SI coordinates.

Gimbal Mount Coordinates (GM): The gimbal mount coordinate system is centered at the gimbal mount and is defined by a misalignment error transformation in yow, pitch, and roll from the VEH axes $\hat{X}_{3}, \hat{Y}_{3}, \hat{Z}_{3}$.

Antenna Line of Sight Axes (ANT): This coordinate system is centered at the antenna with the z-axis pointing in the direction of the antenna boresight: roll being a rotation about the GMx-axis, and pitch being a rotation about the GM y-axis: $\hat{X}_{4}, \hat{Y}_{4}, \hat{Z}_{4}$.

3.0 ANALYSIS

The S 193 has four data taking modes of operation.* In the in-track noncontiguous mode (ITNC), the antenna scans in five discrete steps beginning with a pitch angle of 48° and ending at nadir. The scan period is 15.25 seconds. There is no roll offset.

In the in-track contiguous mode (ITC), the antenna scans continuously from 48° to nadir with 0° roll angle. The scan time including flyback is approximately 4.0 seconds.

For the cross-track non-contiguous mode (CTNC), the antenna scans in five discrete steps beginning with a roll angle of 48° and ending at nadir; the pitch *SRYLAB program, EREP Tnvestigators' Information Book, MSC-07874, April 1973.
offset is 0°. The scan cycle execution time is 15.25 seconds. The antenna slew can be either to the left, the right, or left then right of nadir.

In the cross-track contiguous mode (CTC), there are two submodes. (1) With a pitch offset of 0°, the antenna scans $\pm 11.375^{\circ}$ about a roll offset of $0^{\circ}, \pm 15.6^{\circ}$, $\pm 29.4^{\circ}$. The scan is in roll plus a pitch variation from $+1^{\circ}$ to -1° during the scan to insure that the target cells lie in the cross-track plane. The scan time is 2.2 seconds. (2) With a roll offset of 0°, the antenna executes a roll excursion of $\pm 11.375^{\circ}$ about a pitch offset of $0.0^{\circ}, 15.6^{\circ}, 29.4^{\circ}$, or 40.1°. The $+1^{\circ}$ to -1^{-}pitch variation occurs for the reason sighted above. The sean time is 2.2 seconds.

The RAD and SCAT are operated jointly in the ITNC, ITC, and CTNC modes. In the CTC mode the data acquisition can be operated RAD only, SCAT only, or jointly.

The transformation from VEH to GM coordinate systems involves the mechanical misalignment error. These errors were established during the installation of the S193 onto the SKYLAB vehicle and have a maximum value of 0.15° for each of the three Euler angles. In the analysis to fellow, these misalignment errors will be ignored. Also, the VEH to $G M\left(A_{3}\right)$ transformation involves a translation from the center of the vehicle to the center of the Gimbal Mount. Again, since this distance is small compared to the range of the antenna, it will be ignored.

The other source of error usually associated with the norme! ureration of the S 193 is the vehicle attitude errors, which indicate the misalignment of the vehicle centered coordinctes from ZLV. For the SI operation a similar type of attitude error is present.* In general, this error can involve angles of significant megnitude. To compensate for this deviation onother Euler angle transformation could be introduced separately, or incorporated with the attitude error transformarion from VEH to ZLV to obtain an exact analysis. The critical point in these attitude errors would be the accuracy with which they can be deseribed and also their predictability. All that is required is that they be known to within $\pm 1^{\circ}$ one day before the anticipated use of the S193 SCAT, so that the available doppler angle width can be correctly adjusted.

[^0]
3.1 Euler Angle Transformations

We can move the antenna boresight from one coordinate system to another by applying an Euler angle transformation. A general rotation is defined in the following manner.*

Begin with the coordinate axis $x_{1} y_{1} z$.
Rotate an angle about the z-axis to get ξ, η, z.
Rotate an angle θ about the y-axis to get ξ, η, z ',
Finally, rotate about the z-axis by an angle ψ to get $x^{\prime}, y^{\prime}, z^{\prime}$. For all three rotations, a positive angle is a rotation in the counter clockwise direction. Let A denote the transformation matrix.

If R^{\prime} is some vector defined in the primed coordinate system, we can re-express it in terms of the unprimed coordinates by applying the inverse transformation

$$
\begin{aligned}
& \vec{R}=A^{-1} \vec{R}^{\prime} \\
& A^{-1}=A^{\top} \\
& \vec{R}=A^{\top} \vec{R}^{\prime}
\end{aligned}
$$

Let A_{1} represent the transformation from ECR to ZLV. A_{1} is defined by the Euler angles ${ }^{5}, \theta_{1},{ }_{1}$, and is physically related to the latitude, longitude, and orbital inclination angle of the vehicle. Let A_{2} represent the transformation ZLV to VEH. A_{2} is defined by the Euler angles $\zeta_{2},{ }^{\theta} 2,{ }^{\prime}{ }_{2}$, and is related to the sun angle, latitude and longitude of the sub-solar point together with the SI to VEH attitude errors, or solely by the ZLV ro VEH attitude errors. Likewise A_{3} and A_{4} are defined by rotations into the GM and ANT coordinate systems. In general if we want to express a vector defined in one coordinate system in terms of a second coordinate system we simply premultiply by the proper transformation.

[^1]For example the antenna boresight $\left(\hat{Z}_{4}\right)$ in terms of ZLV coordinate would be

$$
\hat{E}_{4}^{\prime}=A_{2}^{+} A_{3}^{+} A_{4}^{+}\left(\hat{Z}_{4}\right)
$$

in general

$$
\vec{R}_{i}^{\prime}=A_{j}^{+} \ldots A_{i-1}^{+} A_{i}^{+}\left(\vec{R}_{i}\right)
$$

The preceding results are summarized in the following table.

Coordinate System	Unit Vectors	Vector	Transformation to Prese
ELI	$\hat{X}^{\prime}, \hat{Y}_{4} \hat{Z}_{2}$	\vec{R}_{1}	
ZLV	\hat{X}_{1}, \hat{Z}_{1}	\vec{R}_{1}	$A_{1}\left(\zeta_{1}, \theta_{1}, \psi_{1}\right)$
VEH	$\hat{X}_{2}, \hat{Y}_{2}, \hat{Z}_{2}$	\vec{R}_{2}	$A_{2}\left(\zeta_{2}, \theta_{2}, \psi_{2}\right)$
GM	$\hat{X}_{3}, \hat{Y}_{3}, \hat{Z}_{3}$	\vec{R}_{3}	$A_{3}\left(\zeta_{3}, \theta_{3}, \psi_{3}\right)$
ANT	$\hat{X}_{4}, \hat{Y}_{4}, \hat{Z}_{4}$	\vec{R}_{4}	$A_{4}\left(\zeta_{4}, \theta_{4}, \psi_{4}\right)$

Similarly, these four coordinate transformation could be defined in terms of the usual yaw, pitch, and roll transformations. Yaw being a rotation about the z-axis; pitch, a rotation about the transformed y-axis; and roll, a rotation about the transformed x-axis.

$$
A=R P Y
$$

or $\quad \vec{R}^{\prime}=Y^{-1} P^{-1} R^{-1} \vec{R}$.
In general, the type of matrix used to define a transformation is determined by the convenience of incorporating the available ephemeris data.

Earih radius: $R=637 \mathrm{Km}$.
Orbital Height: $H=4.55 \mathrm{~km}$

Figure 2.

3.2 Conditions for Radiometer Operation

The only criterion for operation of the S193 radiometer while the SKY L AB is in solar pointing disposition is that the antenna LOS vector must be below the horizon. The problems of doppler filters and range gates attendant to the Scatterometer are nc: present for operation of the passive device. To optimist $-0.1=$, sormance of the Radiometer, a minimum earth incidence angle is desired. i, is effect: . reduction in the size of the resolution cell. This can be achieved by operating the Radiometer in a CTC mode in conjunction with a vehicle yaw about the solar axis. In the CTNC, ITC, or ITNC modes of operation, the antenna will sweep to a maxirium angle of 48.0° on each scan. The optimum choice will depend upon the attitude of the vehicle relative to the sun and earth.

In the event of no or partial cloud cover, it would be desirable to have the S190 camera employed simultaneously with the S193 Radiometer to provide ground truth information. Also, the cameras would unambiguously identify exactly where the radiometer antenna was pointed since the center of the S 190 picture would locate the GM z-axis. This would be particularly helpful if the exact attitude of the vehicle with respect to ZLV could not be determined. Let η be the angle between the antenna boresight and the tangent at surface of the earth at the point of incidence, see Figure 2. Assuming that the earth is a sphere, to minimize the angle of incidence implies maximizing η. $\operatorname{Cos}(\lambda)$ is the direction cosine between \hat{Z}_{1} and \dot{Z}_{4}.
$\cos \lambda=\hat{z}_{1} \cdot \hat{z}_{4}$

$$
\frac{\sin \lambda}{R}=\frac{\sin \eta^{\prime}}{R+H^{\prime}} \quad i^{\prime}=1+90^{\circ}
$$

$$
\frac{\sin \lambda}{R}=\frac{\sin \left(n+90^{\circ}\right)}{R+H}=\frac{\cos \eta}{R+H}
$$

$$
\begin{aligned}
& \sin \lambda_{\text {MAX }}=\frac{p}{R+H}=0.9361 \quad \text { For nominal } R \text { and } H . \\
& \lambda_{\text {MAX }}=67.5^{\circ} \\
& \lambda \leq 69.5^{\circ}
\end{aligned}
$$

A_{3} represents the misalignment between the vehicle coordinate axes and the GM axes. In general, these errors are small and con be ignored to a first opproximator.

Consequently use A_{3} to represent the SI to VEH attitude errors. Further more, assume that this error consists only of a yaw. A_{2} will be the ZLV to SI transformation.

$$
A_{3}^{\dagger}=\left(\begin{array}{ccc}
\cos \alpha & -\sin \alpha & 0 \\
\sin \alpha & \cos \alpha & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

α is the yow angle about the solar axis.

$$
A_{4}^{\dagger}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \left(\theta_{1}+\tau\right) & =\sin \left(\theta_{1}+\tau\right) \\
0 & \sin \left(\theta_{4}+\tau\right) & \cos \left(\theta_{1}+\tau\right)
\end{array}\right) \times\left(\begin{array}{ccc}
\cos (\gamma+\varepsilon) & 0 \\
0 & 1 & 1+\sin (\gamma+\varepsilon) \\
\theta_{4} \text { is the antenna pitch angle offset } & 0 \\
-\sin (\gamma+\varepsilon) & 0 & \cos (\gamma+\varepsilon .
\end{array}\right.
$$ τ is the pitch excursion of $\pm 1^{\circ}$ (applies only to CTC mode) γ is the roll angle offset t ϵ is the roll excursion of $\pm 11.375^{\circ}$ (applies only to CTC mode).

The general condition is shown in Appendix 1 , and is written for refere

$$
\begin{aligned}
\cos \lambda= & \sin \theta_{2} \sin \psi_{2}\left[+\cos \alpha \sin (\gamma+\varepsilon)-\sin \alpha \sin \left(\theta_{4}+\tau\right) \cos (+\varepsilon)\right] \\
& +\sin \theta_{2} \cos \psi_{2}\left[+\sin \alpha \sin (\gamma+\varepsilon)+\cos \alpha \sin \left(\theta_{4}+\tau\right) \cos (\gamma+\varepsilon)\right] \\
& +\cos \theta_{2}\left[-\cos \left(\theta_{4}+\tau\right) \cos (\gamma+\varepsilon)\right]
\end{aligned}
$$

For ITNC

$$
\begin{aligned}
\tau= & \gamma=\varepsilon=0^{\circ} \\
\theta_{4} & =0^{\circ}, 15.6^{\circ}, 29.4^{\circ}, 40.1^{\circ}, 48^{\circ} \\
\cos \lambda & =-\sin \theta_{2} \sin \psi_{2} \sin \phi \sin \theta_{4}+\sin \theta_{2} \operatorname{son} \psi_{2} \cos d \sin \theta_{4} \\
& -\cos \theta_{2} \cos \theta_{4}
\end{aligned}
$$

For ITC the restraints are same except θ_{4} is now continuous.

For CTNC

$$
\begin{aligned}
r & =\theta_{1}=\varepsilon=0^{\circ} \\
\gamma & =0^{\circ}, 15.6^{\prime}, 29.4^{\circ}, 491^{\circ}, 48.0^{\circ} \\
\cos \lambda & =+\sin \theta_{2} \sin \psi_{2} \cos \alpha \sin \gamma+\sin \theta_{2} \cos \psi_{2} \sin \alpha \sin \gamma \\
& =\cos \theta_{2} \cos \theta_{4} \cos \gamma
\end{aligned}
$$

$$
\begin{aligned}
\gamma= & 0^{\circ} ; \tau= \pm 1^{\circ} ; \varepsilon= \pm 11.975^{\circ} ; \theta_{4}=0^{\circ} 15.6^{\circ}, 29.4^{\circ}, 40.1^{\circ} \\
\cos \lambda= & \sin \theta_{2} \sin \psi_{2}\left[+\cos \alpha \sin \varepsilon-\sin \alpha \sin \left(\theta_{4}+\tau\right) \cos \varepsilon\right]+\sin \theta_{2} \cos \psi_{2} \\
& x\left[\sin \alpha \sin \varepsilon+\cos \alpha \sin \left(\theta_{4}+r\right) \cos \varepsilon\right]-\cos \theta_{2} \cos \left(\theta_{4}+r\right) \cos \varepsilon
\end{aligned}
$$

$\theta_{4}=0^{\circ} ; \quad \gamma=0^{\circ}, \pm 15.6^{\circ}, \pm 29.4^{\circ}$
$\cos \lambda=\sin \theta_{2} \sin \psi_{2}[+\cos \phi \sin (\gamma+\varepsilon)-\sin \alpha \sin \tau \cos (\gamma+\varepsilon)]+\sin \theta_{2} \cos \psi_{2}$

$$
x[1 \sin \alpha \sin (\gamma+\varepsilon)+\cos \alpha \sin \tau \cos (\gamma+\varepsilon)]-\cos \theta_{2} \cos (\gamma+\varepsilon) \cos \tau
$$

The Euler angles Θ_{2} and ' 2 are functions of the vehicle orbital position and the position of the sun.

One simple criterion for selecting the optimum mode is to select that which minimizes the resolution cell, that is, minimizes the angle λ. Another possible criterion would be to select λ, such that the incidence angles for the radiometer lie within a specified bound, ie. angle λ is equal! to a threshold value.
3.3 Conditions for Scatterometer Operation

The two conditions affecting the operation of the scatterometer in SP mode are the doppler bandwidth and the range gates. The range gate sets an upper limit on the angle; (as defined in Section 3.2) which will be less than the 69.5° limit established by the earth's radius and the orbital height.

As mentioned in the introduction, the second restriction on the operation of the scatterometer pertains to the doppler filter banks. In general, if the antenna boresight is oriented such that there is a component of signal propagation along the direction of motion, the frequency of the signal will be doppler shifted by an amount proportional to the cosine of the angle between the antenna LOS and the di. action of motion. There will be a similar shift for the signal return. To provide for this, the SCAT employs filter bands each with a finite bandwidth centered on the doppler
shifted frequency. The selection of the filter bank used is determined by the pitch angle of the antenna LOS. The bandwidth of the filter bank defines a doppler angle width about the pitch argle. Any signal which is transmitted and received beyond these limits is atterivated excessively.

Consider the following example: Suppose that the antenna has been moved to a pitch position of 15.6°. Assume that the doppler angle width is $\pm 5^{\circ}$. If the vehicle is in the ZLV position then the doppler angle will be the complement of the pitch angle or 74.4°. For the SP operation the centroid of the doppler filter banks is still determined by the pitch angle of the antenne on the Gimbal Mount. However, this pitrh angle is no longer equal to the complement of the doppler angle (the angle between antenna LOS and the direction of motion). In the SP mode the only degree of freedom available which can correct this discrepancy is a yaw about the solar axis. This procedure is more readily applied to the CTC mode of cperation. It must be insured that the entire $\pm 11.375^{\circ}$ roll excursion lies within the doppler angle width.

The doppler bandwidith and doppler angle widths are determined by the 3 dB points of the filter banks (given in the table below).

Pitch Angle	Doppler Bandwidth*	Filter Bandwidth	Angle Width
0.0°	17.055	153	$5.45{ }^{\circ}$
15.6°	16.627	149.6	$5.54{ }^{\circ}$
$29.4{ }^{\circ}$	15.040	138.2	$5.66{ }^{\circ}$
40.1°	13.200	125.4	5.895°
48.0°	11.562	111.2	6.00°

Column 4 of this table includes a margin for the antenna beamwidth, which is taken to be 1.5°. For the sake of convenience, the doppler angle width can be assumed to be constant for all pitch ongles at $\pm 5.5^{\circ}$.

Once again, ignoring the misalignment errors between the vehicle and the gimbal mount, the doppler condition requires that the angle between the antenna boresight and the direction of motion be equal to the complement of the antenna pitch angle. Here we have assumed a circular orbit.

[^2]\[

$$
\begin{aligned}
& \hat{z}_{4}^{\prime} \cdot \hat{X}_{2}=\sin \theta_{4} \\
& \hat{x}_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \\
& \hat{z}_{4}^{\prime}=A_{2}^{+} A_{3}^{+} A_{4}^{+}\left(\hat{z}_{4}\right)
\end{aligned}
$$
\]

The general relationship is shown in Appendix 1 , and is written below for reference:

$$
\begin{aligned}
\sin \sigma=\hat{x}_{1} \cdot \hat{z}_{4}^{\prime}= & {\left[\cos \psi_{2} \cos \zeta_{2}-\cos \theta_{2} \sin \zeta_{2} \sin \psi_{2}\right]\left[+\cos \alpha \sin (\gamma+\varepsilon)-\sin \alpha \sin \left(\theta_{4}+\tau\right)\right.} \\
& \times \cos (\gamma+\varepsilon)]+\left[-\sin \psi_{2} \cos \zeta_{2}-\cos \theta_{2} \sin \zeta_{2} \cos \psi_{2}\right] \\
& \times\left[+\sin \alpha \sin (\gamma+\varepsilon)+\cos \alpha \sin \left(\theta_{4}+\tau\right) \cos (\gamma+\varepsilon)\right] \\
& +\left[\sin \theta_{2} \sin \zeta_{2}\right]\left[-\cos \left(\theta_{4}+\tau\right) \cos (\gamma+\varepsilon)\right]
\end{aligned}
$$

$$
\begin{aligned}
\tau: \gamma=\varepsilon= & \theta^{\circ} j \theta_{4}=48^{\circ} \rightarrow 0^{\circ} \\
\sin \left(\theta_{4}+\delta\right) \geq & {\left.\left[\cos \psi_{2} \cos \zeta_{2}-\cos \theta_{2} \sin \zeta_{2} \sin \psi_{2}\right]_{[}^{r} \sin \phi \sin \theta_{4}\right]+\left[-\sin \psi_{2} \cos \zeta_{2}^{6}\right.} \\
& \left.-\cos \theta_{2} \sin \zeta_{2} \cos \psi_{2}\right]\left[\cos \alpha \sin \theta_{4}\right]+\sin \theta_{2} \sin \zeta_{2}\left[-\cos \theta_{4}\right] \\
& \geq \sin \left(\theta_{4}-\delta\right)
\end{aligned}
$$

For fixed $\psi_{2}, \zeta_{2}, \theta_{2},{ }^{x}$, this relationship must be true for θ_{4} from 0° through 48°. δ is the doppler angle width as defined in the table above.
For CTNC

$$
\begin{aligned}
\tau=\theta_{4}= & \varepsilon=0^{\circ} \\
\gamma= & \pm 48^{\circ} \rightarrow 0^{\circ} \quad \text { or }+48^{\circ} \rightarrow-48^{\circ} \\
\sin \delta \geq & \mid\left[\cos \psi_{2} \cos \zeta_{2}-\cos \theta_{2} \sin \zeta_{2} \sin \psi_{2}\right]\left[+\cos \alpha^{\prime} \sin \gamma^{\circ}\right] \\
& +\left[-\sin \psi_{2} \cos \zeta_{2}-\cos \theta_{2} \sin \zeta_{2} \cos \psi_{2}\right]\left[\sin \alpha \sin \gamma^{\prime}\right] \\
& +\left[\sin \theta_{2} \sin \varphi_{2}\right][-\cos \gamma] \mid
\end{aligned}
$$

For fixed : 2 , r_{2}, C_{2}, and x, this relationship must hold for all γ 's.

For CTC

$$
\begin{aligned}
& \gamma=0^{\circ} \\
& \sin \left(\theta_{1}+\delta\right) \geq\left[\cos \psi_{2} \cos \zeta_{2}-\cos \theta_{2} \sin \zeta_{2} \sin \psi_{2}\right]\left[\cos q \sin \varepsilon-\sin \alpha \sin \left(\theta_{4}+r\right) \cos \varepsilon\right] \\
&+\left[-\sin \xi_{2} \cos \zeta_{2}-\cos \theta_{2} \sin \zeta_{2} \cos \psi_{2}\right]\left[\operatorname{tin} q \cos \varepsilon+\cos \alpha \sin \left(\theta_{4}+\tau\right) \cos \varepsilon\right] \\
&+\left[\sin \theta_{2} \sin \zeta_{2}\right]\left[-\cos \left(\theta_{4}+\tau\right) \cos \varepsilon\right] \geq \sin \left(\theta_{4}-\delta\right)
\end{aligned}
$$

Must hold for

$$
\varepsilon=-11.375^{\circ} ; \tau=+2^{\circ}
$$

and

$$
\varepsilon=+11.375^{\circ} ; \quad \tau=-1^{\circ}
$$

For CTC
$\sin \delta \geq \mid\left[\cos \psi_{2}=\cos \zeta_{2}-\cos \theta_{2} \sin \zeta_{2} \sin \psi_{2}\right][+\cos \alpha \sin (\gamma+\varepsilon) \sin \phi \sin \tau \cos (\gamma+\varepsilon)]$ $+\left[-\sin \psi_{2} \cos \zeta_{2}-\cos \theta_{2} \sin \zeta_{2} \sin \psi_{2}\right][+\sin \alpha \sin (\gamma+\varepsilon)+\cos \alpha \sin \tau \cos (\gamma+\varepsilon)]$
$+\left[\sin \theta_{2} \sin \zeta_{2}\right]\left[-\cos \tau \cos \left(\gamma^{2}+\varepsilon\right)\right] \mid$
Must hold for
$\gamma \geq 0^{\circ}$
$\varepsilon=+11.325^{\circ} ; \tau=+1^{\circ}$
$\varepsilon=-1 / .375^{\circ} ; \tau=-1^{\circ}$
and for

$$
\begin{aligned}
& \gamma \leq 0^{\circ} \\
& \varepsilon=-11.375^{\circ} ; \tau=+1^{\circ} \\
& \varepsilon=+11.375^{\circ} ; \tau=-10
\end{aligned}
$$

Inspection of these conditions indicates that the CTC zero pitch mode is most generally useful, while the use of ITC and ITNC is marginal.

The range condition on the scatterometer is determined by the transmit-receive timing sequence. The maximum angle 1 (as defined in Figure 2) for full signal integration time is 54.1° for a pitch angle less than 48°, and 55.9° for a pitch angle of 48°. See Appendix II for details.

3.3.1 Simplified Analysis of Seat Operation in CTC 0° Pitch Mode

A detailed analysis has been carried out for the operation of the Scatterometer in the CTC 0° pitch mode. In this treatment the mechanical misalignment errors, as well as the $\pm 1^{\circ}$ pitch excursion have been ignored. Furthermore, this analysis was performed using coordinate axis different from those defined in Section 2.0 of this paper. Other than confusing the point, this discrepancy makes no difference in the results. The results of the analysis are parameterized in terms of two angles which are independent of the coordinate system used to define them.

These two angles were μ, the sun angle and $\Omega 2$ (this angle will be used again in Section 3.4 with the same definition), the angle between the direction of motion and the x-axis of the vehicle. In standard coordinates the second angle is defined as
$\cos \Omega=\hat{X}_{1} \cdot \hat{X}_{2}^{\prime}$
Since the Scat has a zero pitch offset, the doppler angle will be 90°. This leads to the condition for determining the yow necessary to achieve this condition.

$$
-\tan \gamma=\frac{\cos M \sin \Omega}{\sin \Omega+\sqrt{\cos ^{2} \Omega-\cos ^{2} M} \cos \alpha+\cos ^{2} \Omega \sin \alpha}
$$

The requirement that the roll excursion remain within the doppler width angle: leads to

and the range condition is expressed as

$$
\begin{aligned}
\cos \lambda_{\text {MAX }} & \leq \cos \lambda=\left[\sqrt{\cos ^{2} \Omega \cdot \cos ^{2} \mu} \cos \phi-\sin \Omega \sin \alpha\right] \sin \gamma+\cos \mu \cos \gamma \\
\lambda_{\text {max }} & =54.1039^{\circ} \delta=5.5^{\circ}
\end{aligned}
$$

A computer program was written to investigate the usable region in Ω, μ space for Scat operation which would satisfy the above conditions.

The range of the two parameters were

$$
\begin{aligned}
& 0^{\circ}<\Omega \leq 90^{\circ} \\
& 0^{\circ}<\mu \leq 90^{\circ}
\end{aligned}
$$

this range of μ implies that the local time as determined at the vehicle was restricted to the period from 6:00 to 18:00 hours. It is the range restriction which renders the
other 12 hours in the vehicle day useless. The range of s ? from 0 to -90° is a mirror image of the one investigated. Figure 3 and Figure 4, show the results of the study. The shaded area indicates the usable values of $: 1$ and 3 . The doppler restriction can be solved analytically and is shown as one of the bounds on the usable area. The range restriction was more complicated and the boundary shown was determined numerically. The program stepped through the angles in one degree increments and is therefore precise to one degree. However, it was designed to illustrate the capability of the Seat rather than to provide usable information for a real time operation.

The listing of the program appears in Section 3.3.2, as well as a sample of the output which ineludes the yaw required to achieve zero doppler shift and the earth incidence angle of the resulting antenna LOS.

Figure 3. Values of Ω and u For Which S 193 Scat Can Be Used In CTC Pitch 0 , Roll 15.6 Mode.

Figure 4. Values of Ω and $:$. For Which 5193 Scat Can Be Used in CTC Pitch 0°, Roll 29.4° Mode.

REPRODUCIBILITY OF THE
 ORIGIITAL PAGE IS POOR

\circ
玉
$\stackrel{\circ}{\circ}$

REPRODUCLuhan (n alk ORIGINAL PAGE IS PUUR

 OGOM,

3.4 Relationship Between Euler Angles and Skylab Ephemcrides

In order to use the preceding relationships effectively it is necessary to express the Euler angles for transformations A_{1} and A_{2} in terms of available orbit information.

Often, and in particular, for post flight analysis, the SKYLAB ephemerides data will be available or at least obtainable. In this case all the angles necessary to completely describe the position and orientation of the vehicle would be available. A detailed analysis could then be conducted. However, for preflight analysis, accurate SKYLAB Data is generally not available. What is presented below is a first order approximation of the ECR to ZLV to SI transformations based on the assumption of a circular orbit with nominal inclination and reasonat sledge of the vehicle's anticipated orbit in terms of latitude, longitude, and : :

The transformation A_{1} from ECR to ZLV coordinare system has been defined in terms of the Euler angles ${ }^{[} 1,{ }^{\theta}, \psi_{1}$. These can be further defined with respect to the vehicle's latitude, longitude and orbital inclination angle, Figure 1.

In terms of the Euler angles the ZLV unit vectors in ECR coordinates are

$$
\begin{aligned}
& \hat{x}_{1}=\binom{\cos \psi_{1} \cos \zeta_{1}-\cos \theta_{1} \sin \zeta_{1} \sin \psi_{1}}{\cos \psi_{1} \sin \varphi_{1}+\cos \theta_{1} \cos \zeta_{1} \sin \psi_{1}} \\
& \hat{\operatorname{r}}_{1}=\binom{-\sin \psi_{1} \sin \psi_{1} \cos \zeta_{1}-\cos \theta_{1} \sin \zeta_{1} \cos \psi_{1}}{-\sin \psi_{1} \sin \zeta_{1}+\cos \theta_{1} \cos \zeta_{1} \cos \psi_{1}} \\
& \hat{z}_{1}=\left(\begin{array}{c}
\sin \theta_{1} \sin \theta_{1} \varphi_{1} \psi_{1} \\
-\sin \theta_{1} \cos \zeta_{1} \\
\cos \theta_{1}
\end{array}\right)
\end{aligned}
$$

In terms of spherical polar coordinates they can be expressed as

$$
\begin{aligned}
& \hat{X}_{1}^{\prime}=\left(\begin{array}{ccc}
\sin a & \cos & b \\
\sin a & \sin & b \\
\cos a &
\end{array}\right) \\
& \hat{Y}_{1}^{\prime}=\left(\begin{array}{c}
\sin c \cos \alpha \\
\sin c \sin \alpha \\
\cos c
\end{array}\right) \\
& \hat{Z}_{1}^{\prime}=\left(\begin{array}{c}
\sin e \cos f \\
\sin e \sin f \\
\cos e
\end{array}\right)
\end{aligned}
$$

By equating the entries of these two vectors we find.

$$
\begin{gathered}
\cos \theta_{1}=\cos e \\
\sin \theta_{1}=\sin e \\
\cos \zeta_{1}=\sin f \\
\sin \zeta_{1}=\cos f \\
\cos \psi_{1}=\frac{\cos c}{\sin 2} \\
\sin \psi= \pm \sqrt{1-\cos \psi_{1}^{2}}
\end{gathered}
$$

(Note: this choice of signs, was arbitrary).
(Note: $\sin (\mathrm{e})$ can never be zero for the SKYLAB orbit).
(Sign determined by ascending or descending pass).
$e=90^{\circ}+$ latitude
$f=180^{\circ}+$ longitude
$c=180^{\circ}$ - orbital inclination angle
(North latitudes are positive; south latitude ore negative)
(East longitudes are positive; west longitudes are negative)

Expressing the Euler angles of A_{2} in terms of the orbit ephemerides produces additional difficulties. To facilitate this discussion, assume that the ray from the sun to the center of the earth is parallel to the ray from the sun to the vehicle. The validity of this approximation is demonstrated in Appendix III. This implies that the two rays (the second of which is Z_{2}) have the same orientation in ECR coordinates.

Consider the following equivalent representation of the transformation A_{2}^{+}: rotate 180° about \hat{X}_{1} to get $\hat{X}_{1}, \hat{Y}_{1}, \hat{Z}_{1}$.
rotate an angle Ω about \hat{Y}_{1} to get $\hat{X}_{2}, \tilde{\hat{Y}}_{1}, \hat{\hat{Z}}_{1}^{\prime}$ (this leaves X_{2} in the orbital plane)
finally rotate an angle ζ about \hat{X}_{2} to ge: $\hat{X}_{2}, \hat{Y}_{2}, \hat{Z}_{2}$

In terms of these rotations

$$
A_{2}^{+}=\left(\begin{array}{ccc}
\cos \Omega & +\sin \Omega \sin \rho & +\sin \Omega \cos \rho \\
0 & -\cos \rho & \sin \rho \\
+\sin \Omega & -\cos \Omega \sin \rho & -\cos \Omega \cos \rho
\end{array}\right)
$$

By equating the entries of the two forms for A_{2}^{+}we find

$$
\begin{array}{ll}
\cos \theta_{2}=-\cos \Omega \cos \rho & \sin \theta_{2}=+\sqrt{1-\cos { }^{2} \Omega \cos { }^{2} \rho} \\
\cos \varphi_{2}=\frac{-\sin \rho}{\sin \theta_{2}} & \sin \rho_{2}=\frac{\sin \Omega \cos \rho}{\sin \theta_{2}} \\
\cos \psi_{2}=\frac{-\cos \Omega \sin \rho}{\sin \theta_{2}} & \sin \psi_{2}=\frac{\tan \Omega}{\sin \theta_{2}}
\end{array}
$$

The angles Ω and ζ can now be expressed in terms of the sun angle (μ), the sun's latitude and longitude, and the other orbit information mentioned above. The sun angle is actually a redundant, though useful parameter. How this angle is related to the other ephemerids is demonstrated in Appendix IV. The sun's latitude and longitude actually refer to the location of the point of incidence at the surface of the earth with the ray joining the centers of the earth and sun.

Denoting \hat{Z}_{2} in terms of E \quad.I spherical polar coordinates as $\hat{Z}_{2}^{\prime \prime}$

$$
A_{1} \hat{z}_{2}^{\prime \prime}=\hat{z}_{2}^{\prime}=\left(\begin{array}{c}
-\sin \Omega \cos \rho \\
\sin \rho \\
-\cos \Omega
\end{array}\right)
$$

where \hat{Z}_{2}^{\prime} is the same unit vector expressed in ZLV coordinates. From the sun's latitudes and longitudes we define

$$
\mathbf{i}=90^{\circ} \text { - latitude } \quad \text { North latitude is positive }
$$

South latitude is negative
$j=$ longitude
East longitude is positive
West longitude is negative
Then

$$
\hat{z}_{2}^{\prime \prime}=\left(\begin{array}{cc}
\sin i & \cos j \\
\sin i & \sin j \\
\cos i
\end{array}\right)
$$

Using the definition that

$$
\hat{z}_{1} \cdot \hat{z}_{2}^{\prime}=-\cos 4
$$

or

$$
-\cos y=-\cos \Omega \cos \rho
$$

This equation plus the equality of the x and y components of the vector above yield after some algebra

$$
\begin{aligned}
& \sin \rho= \frac{\sin i}{\sin e}\left[\cos a \sin \left(f_{j}\right)-\cos e \cos c \cos \left(f_{j} j\right)\right]+\cos c \cos i \\
& \cos a=\sin e \sin 4 \\
& \cos \rho= \pm \sqrt{1-\sin ^{2} \rho} \\
& \cos \Omega= \cos 4 / \cos ^{2} \rho \\
& \sin \Omega= \pm \sqrt{1-\cos ^{2} \Omega}
\end{aligned}
$$

where i, j, e, f, c, ψ_{1}, are defined earlier in this section. The signs of the functions can be determined by inspection of the sun unit vector in ZLV coordinates.

3.5 Minimal Input Simulation Program

To achieve the capability of providing pre-flight analysis for solar pointing operation, a simulation program was developed. Essentially, the program consists of a stripped down version of the SKYLAB simulation program available at the University of Kansas. It incorporates the transformations from ANT to ECR coordinates and tests the doppler and range conditions for SCAT mode. The progrom inputs consist of the predicted latitude, longitude, and GMT of the vehicle, the sun's declination and equation of timi: (approximate numbers are obtainable from any physical geography text), the antenna pitch and roll angles desired, and the user's best guess as to what the vehicle attitude errors will be. To provide approximate analyses from this minimum of input data several assumptions were made. These included a circular orbit, spherical earth, and nominal earth radius, orbital radius, and orbital inclination angle (although the latter parameters can be convienently varied). The important features of the program are contained into subrcutines: SETA. 2 and SETA2. The listings appear in the following sections.

REPRODUCIBILITY OF Tile ORIGINAL PAGE IS PUUii

3.5.1 Listout of S.TAI.

$A 2 F O R$ SI MODE

4.0 CCNCLUSION

This analysis demonstrates the wide range of flexibility available for operating the S193 RAD/SCAT. Although originally designed to be specifically used in the ZLV mode, the instrument can also be used in the solar pointing mode. The RAD can surcessfully take data for greater than half of each orbit even in SP mode; the SCAT is functional over a somewhat smaller range.

Since the CTC mode has a RAD only option, continual RAD can be acquired from before vehicle sunrise to after vehicle sunset with a minimum of operator attention. Occasionally, the pitch or roll offset would have to be changed to maintain the antenna LOS below the horizon. Due to the complication of the doppler condition, the SCAT can only be operated over specific targets for a short duration of time during a non-ZLV pass. However, it seems reasonable that some scan mode can be at least partially successful in covering any target during a daylight pass.

This paper also presents the relationships between the Euler angles characterizing the ECR to ZLV and ZLV to SI transformations in terms of the orbit ephermides most readily available for preflight analysis. This facilitates determining the location of the target cells andl likelihood of satisfying the doppler condition on the SCAT.

What cannot be determined accurately preflight are the vehicle altitude errors, which in some cases can be quite sizable. However, an iterative approach spanning a range of yaw, pitch, and roll angles can be used to evaluate the probability for successful SCAT operation.

APPENDIX 1

The direction cosines associated with the range and the doppler angle are defined as follows:

Let \hat{Z}_{4}^{\prime} represent the antenna boresight in ZLV coordinates
Let $\boldsymbol{\sigma}$ be the doppler angle
$\sin \sigma=\hat{x}_{1} \cdot \hat{z}_{u}^{\prime}=\left[\cos \psi_{2} \cos \zeta_{2}-\cos \theta_{2} \sin \zeta_{2} \sin \psi_{2}\right]\left[+\cos \phi \sin (\gamma+\varepsilon)=\sin \alpha \sin \left(\theta_{1}+\tau\right)\right.$

$$
x \cos (\gamma+\varepsilon)]+\left[-\sin \psi_{2} \operatorname{cas} \zeta_{2}-\cos \sigma_{2} \sin \zeta_{1} \cos \psi_{2}\right]
$$

$$
x\left[\operatorname{tin} \alpha \sin (\gamma+\varepsilon)+\cos d \sin \left(\theta_{4}+r\right) \cos (\gamma+\varepsilon)\right]
$$

$$
+\left[\sin \theta_{2} \sin \zeta_{2}\right]\left[-\cos \left(\theta_{4}+\tau\right) \cos (\gamma+\varepsilon)\right]
$$

$$
\begin{aligned}
& A_{2}^{+}=\left(\begin{array}{ccc}
\cos \psi_{2} \cos \zeta_{2}-\cos \theta_{2} \sin \zeta_{2} \sin \psi_{2} & -\sin \psi_{2} \cos \zeta_{2}-\cos \theta_{2} \sin \zeta_{2} \cos \psi_{2} & \sin \theta_{2} \sin \zeta_{2} \\
\sin \theta_{2} \sin \psi_{2} \theta_{2} \cos \zeta_{2} \sin \psi_{2} & -\sin \psi_{2} \sin \zeta_{2}+\cos \theta_{2} \cos \zeta_{2} \cos \psi_{2} & \sin \theta_{2} \cos \zeta_{2} \\
\sin \theta_{2} \cos \psi_{2} & \cos \theta_{2}
\end{array}\right) \\
& A_{3}^{+}=\left(\begin{array}{ccc}
\cos \alpha & \sin \alpha & 0 \\
\sin \alpha & -\cos \alpha & 0 \\
0 & 0 & -1
\end{array}\right) \\
& A_{4}^{+}=\left(\begin{array}{ccc}
\cos (\gamma+\varepsilon) & 0 & \tan (\gamma+\varepsilon) \\
\operatorname{tsin}\left(\theta_{4}+\tau\right) \sin (\gamma+\varepsilon) & \cos \left(\theta_{4}+\tau\right) & -\cos \left(\theta_{4}+\tau\right) \cos (\gamma+\varepsilon) \\
-\cos \left(\theta_{4}+\tau\right) \sin (\gamma+\varepsilon) & \sin \left(\theta_{4}+\tau\right) & \cos \left(\theta_{4}+\tau\right) \cos (\gamma+\varepsilon)
\end{array}\right) \\
& \left.\cos \lambda=\hat{z}_{1}-\hat{z}_{4}^{\prime}=\sin \theta_{2} \sin \psi_{2}\left[+\cos \alpha \sin (\eta+\varepsilon)=\sin q^{\prime} \sin \left(\theta_{4}+r\right) \cos (\gamma+\varepsilon)\right]\right] \\
& +\sin \theta_{2} \cos \psi_{2}\left[\tan d \sin (\gamma+\varepsilon)+\cos d \sin \left(\theta_{1}+r\right) \cos (\gamma+\varepsilon j]\right. \\
& +\cos \theta_{2}\left[-\cos \left(\theta_{4}+r\right) \cos \left(\gamma^{2}+\varepsilon\right)\right]
\end{aligned}
$$

APPENDIX II

Maximum range as determined by scat transmit-receive timing. For full signal integration the first pulse transmitted must be the present over the entire integration slot.

TIME: $T=$ (Scat Integrate start) - (Scat Transmit Start)
RANGE: $R=0.50 \times T \times C$
Where C speed of light $=3 \times 10^{8}$ meters $/ \mathrm{sec}$.
Lambda: $\lambda=\arccos \left[\frac{(\mu+h)^{2}+R^{2}-\mu^{2}}{2(r+h) r}\right]$
$h=$ orbital height $=6371 \mathrm{~km}$
$r=$ earth radius $=435 \mathrm{~km}$
$\theta_{4} \neq 48^{\circ}$ *

$$
\begin{aligned}
& \mathrm{T}=5.339-0.019 \mathrm{msec} \\
& \mathrm{R}=798 \mathrm{~km} \\
& \lambda=54.1039^{\circ}
\end{aligned}
$$

$$
e_{4}=48^{\circ}{ }^{\circ}
$$

$$
T=5.649-0.019 \mathrm{msec}
$$

$$
R=844 \mathrm{~km}
$$

$$
\lambda=55.8894^{\circ}
$$

[^3]APPENDIX III

The definition of the sun angle 11 is illustrated in the figure below

R is the distance from the center of the sun to the vehicle
R_{v} is the distance from the center of the earth to the vehicle
R_{s} is the distance from the center of the sun to the center of the earth

Using the law of sines and then the law at cosines we find

$$
\begin{aligned}
\frac{R}{\sin \mu} & =\frac{R_{s}}{\sin \alpha} \dot{j} \quad \alpha=180^{\circ}-\mu^{\prime} \\
R & =\frac{R_{s} \sin \mu}{R_{1}^{\prime}} \\
R_{s}^{2} & =R_{v}^{2}+R^{2}+2 R_{e} R \cos \mu^{\prime} \\
\cos M^{\prime} & =\frac{R_{s}^{2}-R_{e}^{2}-R^{2}}{2 R_{e} R^{2}} \\
& =\frac{\cos \mu-R_{v} / R_{s}}{\sqrt{1+\left(R_{v} / R_{s}\right)^{2}-2 R_{V} / R_{s} \cos \mu}}
\end{aligned}
$$

Now the cos u^{\prime} can be approximated by a Taylor series expansion

$$
\cos _{\mu}^{\prime}=\cos \mu+\left(R_{v} / R_{S}\right)(1+\cos \mu)+\left(R_{v} / R_{S}\right)^{2}\left(3 \cos ^{2} \mu+1\right)+\cdots
$$

The ratio $\left(R / R_{s}\right)$ is approximately of the order of 4×10^{-5}.

APPENDIX IV

The sun angle can easily be determined from the vehicle latitude and longitude, the sun latitude and the Greenwich Mean Time.

$$
\begin{aligned}
\theta_{1}=90^{\circ} \text {-latitude of vehicle } & \text { North latitude is positive } \\
& \text { South latitude is negative }
\end{aligned}
$$

$$
\begin{array}{ll}
\zeta_{1}=\text { longitude of vehicle } & \text { East longitude is positive } \\
& \text { West longitude is negative }
\end{array}
$$

$$
\theta_{2}=90^{n} \text { latitude of sun } \quad \text { Same convention as above }
$$

$$
\zeta_{2}=\text { longitude of sun }=-(\text { GMT -12.00 hr. and Delta }) \times 15 \mathrm{deg} / \mathrm{hr} . *
$$

Using these definition in ECl coordinates

[^4]\[

$$
\begin{aligned}
& -\hat{z}_{1}=\left(\begin{array}{ccc}
\cos & \theta_{1} & \cos \xi_{1} \\
-i n & \theta_{1} & c_{1} \\
\cos & b_{1} \\
\cos & \theta_{1}
\end{array}\right)
\end{aligned}
$$
\]

$$
\begin{aligned}
& u=\arccos \left[\sin \theta_{1} \sin \theta_{2} \cos \left(\beta_{1}-\zeta_{2}\right)+\cos \theta_{1} \cos \theta_{2}\right] .
\end{aligned}
$$

[^0]: *Private communication with Aldo Bardano NASA-JSC-FCD.

[^1]: *Goldstein, Herbert; CTassical Mechanies, pp. 107-109, Addison Wesley; Reading, Massachusetts, 1905.

[^2]: * For a beamwidth of 1.54°.

[^3]: * G. E. Colibration Data Report Flight Hardware, Vol. IA, RevD, 22 March 1973.

[^4]: *Delta $=$ difference between the appare nt and mean solar times, often referred to as the equation of time. Delta varies from +17 to -17 minutes during the year.

