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OPTIMIZATION OF SELF-ACTING HERRING BONE-GROOVED JOURNAL 

BEARINGS FOR MAXIMUM STA BILlTY 

by David P. Fleming and Bernard J. Hamrock 

Lewis Research Center 

SUMMARY 

Groove parameters were determined to maximize the stability of herringbone- 
grooved journal bearings. Parameters optimized were groove depth, width, length, and 
angle. Optimization was performed by using a small-eccentricity, infinite-groove anal- 
ysis in conjunction with (1) a previously developed Newton-Raphson procedure for bear- 
ings with the smooth member rotating or with the grooved member rotating at low com- 
pressibility numbers and (2) a newly developed vector technique for bearings with the 
grooved member rotating at high compressibility numbers. 

The design curves in this report enable one to choose the optimum bearing for a 
wide range of operating conditions. These include (1) compressibility numbers from 0 
(incompressible) to 80, (2) length-to-diameter ratios from 1/4 to 2, and (3) rotation of 
the smooth or grooved member. 

Compared with bearings optimized to maximize load capacity, bearings optimized 
for stability (1) allow a thousandfold increase in bearing-supported mass in some cases 
before onset of instability (the most pronounced increases a r e  for bearings with small 
length-to-diameter ratios operating a t  high compressibility numbers) and (2) lose no 
more than 77 percent of their load capacity in any case studied. Stability is much 
greater when the grooved member rotates. 

INTRQDUC TIQN 

More than any other factors, self-excited whirl instability and low load capacity 
limit the usefulness of gas-lubricated self-acting journal bearings. The whirl problem 
is the tendency of the journal center ,to orbit the bearing center a t  an angular speed less 
than or equal to half that of the journal about i t s  own center. In many cases the whirl 
amplitude is large enough to cause destructive contact of the bearing surfaces. 



The low load capacity of self-acting gas-lubricated journal bearings is also a seri-  
ous concern in many applications, largely because of the low viscosity of gases. Also, 
unlike a liquid lubricant, a gaseous lubricant changes i t s  density as it passes through 
the bearing. This so-called compressibility effect results in a "terminal9' load condi- 
tion. That is, the load capacity does not increase indefinitely with speed, but quickly 
approaches a fixed value. 

In quest of a bearing which would overcome the two problems of self -excited whirl 
instability and low load capacity, Vohr and Chow (ref. 1) theoretically investigated a 
herringbone-grooved journal bearing. They obtained a solution for bearing load capacity 
valid for small displacements of the journal center from the bearing center. An addi- 
tional assumption was that the number of grooves was large enough that local pressure 
variations across a groove-ridge pair could be ignored. One of the conclusions obtained 
from the Vohr and Chow analysis is that, in contrast to the behavior of a plain bearing, 
the load capacity of a herringbone-grooved journal bearing increases without limit with 
increase in speed. Furthermore, the herringbone-grooved journal bearing may not suf - 
fer  from the self -excited whirl instability that is normally associated with unloaded 
plain bearings. Malanoski (ref. 2) and Cunningham, Fleming, and Anderson (refs. 3 
and 4) experimentally verified these conclusions of Vohr and Chow. 

Therefore, the self-acting herringbone journal bearing has at least two highly de- 
sirable characteristics, namely, high load capacity and the capability of operating in a 
whirl f ree  condition. A remaining problem i s  that of obtaining optimum herringbone 
journal bearing configurations for a wide range of bearing operating conditions. Ham- 
rock and Fleming (ref. 5) determined groove parameters to maximize the radial load 
component of the herringbone bearing. The objective of the present work is to determine 
groove parameters which will maximize the stability of the bearing, or the resistance 
to self-excited whirl. This will be done by utilizing the analysis of Vohr and Chow 
(ref. 1 )  Results a r e  to be applicable for operating conditions ranging from incompres- 
sible to highly compressible lubrication (A = 80) and for bearing length-to-diameter ra- 
tios of 1/4 to 2. 

SYMBOLS 

A, B numerical factors 

bg 
width of groove 

br width of ridge 

C coefficient in differential equation 

Id diameter of journal 



change in groove parameter vector 

eccentricity of journal 

dimensionless radial load component, fr/cpaLD for compressible lubricant, 
3 

,UE LD w for incompressible lubricant 

radial and tangential load components of bearing 

complex function of Z 

film thickness ratio, h /h 
g r 

film thickness in groove region when journal is concentric 

film thickness in ridge region when journal i s  concentric 

length of journal 

total axial length of groove 
5 dimensionless stability parameter, mpa(hr/R) /2L , u ~  for compressible lubri- 

3 cant, 3x1 w(hr /~)  /L ,LL = Mcomp A for imcompressible lubricant 

mass  supported by bearing 

number of grooves 

pressure 

ambient pressure 

radius of journal 

rea l  part of expression 

time 

axial coordinate 

groove width ratio, b /(b + b,) 
g g 

groove angle 

groove length ratio, L1/L 

eccentricity ratio, e/hr 

angular coordinates 

2 2 bearing compressibility number, 6 , U ~ R  /pahr 

dynamic viscosity of lubricant 

groove rotation indicator, +1 for smooth member rotating, -1 for grooved mem- 
ber rotating 

rotational speed 



w whirl speed 
P 

V gradient operator 

BEARING DESCRIPTION 

Figure 1 shows the bearing to be studied. Note that the bearing has angled, shallow 
grooves in the journal surface. The grooves can be partial as shown or extend the com- 
plete length of the bearing. Also, the grooves can be placed in the rotating or non- 
rotating surface. The purpose of these grooves is to pump fluid toward the center of the 
bearing and thereby increase the lubricant pressure in the bearing. This self- 

pressurization can increase the load capacity over that of a smooth bearing; it  is also 
responsible for the good stability of the herringbone bearing. The herringbone bearing 
is unidirectional; that is, it pumps inwardly for only one direction of rotation. 

From figure 1 the film thickness in the groove region is h and in the ridge region 
g 

is hr. Also, the groove width is defined a s  b and the ridge width is defined a s  br. 
g ' 

The analysis to be described indicates that the groove parameters to be optimized a r e  
(1) Film thickness ratio H, which is equal to the film thickness in the groove region 

divided by the film thickness in the ridge region when the bearing is concentric 
(H = h /h ) 

g r 
(2) Groove width ratio a, which is equal to the width of the groove region divided 

by the width of the groove-ridge pair ( a  = b /(b + b,)) 
g g 

(3) Groove angle /3 

(4) Groove length ratio y, which is equal to the length covered by grooves divided 
by the overall length of the bearing (y = L1/L) 

ANALYSIS 

Equations for Her ringbone -Grooved Bearing 

Vohr and Chow (ref. I), by assuming a large number of grooves, obtained relations 
for a "smoothed" pressure in the bearing film. That is, they dealt with an overall 
pressure rather than treating separately the pressure in the grooves and that over the 

ridges. To conveniently obtain solutions for steady whirling, which a r e  needed for the 
stability analysis, they introduced a rotating coordinate system by 



where w is the frequency of steady circular whirling. They next assumed that the 
P 

smoothed pressure p(B*, Z) could be represented by 

This is the well known small-eccentricity perturbation solution. 
When equation (2) is substituted into the expressions for smoothed pressure, and 

terms a re  collected according to the powers of E ,  separate expressions result for po 

and pl: 

L2 a2p1 L apl  L a2p1 c4 apl c5 a2p1 
C1 -- +C2--+C3--+--+-- + C6 sin 8* + C7 cos 8* = 0 

pa az2 pa az pa az a@* pa ae* pa ae*2 (4) 

The coefficients C and C1 to C7 a re  given in the appendix. They differ slightly 
P 

from the coefficients appearing in reference 1 because only one bearing member 
(grooved or smooth) is in motion. Equation (3) may be integrated directly. Equation (4) 
may be reduced to an ordinary differential equation by using the product solution 

i8 ie Since cos 8 = Re(e ) and sin 8 = Re(-ie ), the substitution of equation (5) in equa- 
tion (4) results in 

Equation (6) may be integrated numerically by a forward difference scheme such as 
Runge-Kutta. Further details on the solution procedure a r e  given in references 6 and 7. 

These equations were derived for gas lubrication. However, they may also be used 
for incompressible lubricants by setting C2, C4, and C7 equal to zero. 

In figure 1 the number of grooves is six. However, the Vohr and Chow analysis 
(ref. 1) assumes essentially an infinite number of grooves. Reference 6 develops the 
following criterion for a minimum number of grooves such that the infinit&-groove anal- 
ysis yields valid results: 



3 3 2 2 < r ( l  - o ) ~  + a; l r~  + ~ ( l  - @ ) ( ~ 3  - 1) sin p] 
2 2n[H3 + o ( l  - CY)(H~ - ~ ) ~ ] a ( l  - o)(H - 1)sin p 

where 

A bearing compressibility number, 6 p w ~ 2  

N number of grooves 

The numerical value of the right side of inequality (7) is typically between 5. 5 and 8.0. 
Therefore, the minimum number of grooves to be used can be represented conserva- 
tively by 

Stability Determination 

Once equations (2) to (6) a r e  solved for the pressure p, the bearing load may be 
calculated for any whirl frequency w Stability is then determined by using the spec- 

P' 
t r a l  analysis method of Pan (ref. 8). In this method, the assumed whirl frequency is 
varied until the bearing tangential force f t  equals zero. (It is this tangential force 

which causes an unloaded bearing to begin whirling - see fig. 2. ) The bearing neutral 
stability condition is then found by equating the centrifugal force, due to the whirling 
bearing mass (i. e., the mass  supported by the bearing), to the bearing radial force: 

2 mew = f 
P r  

It is convenient to define dimensionless bearing masses according to 

for a compressibly lubricated bearing and 

for an incompressibly lubricated bearing. 



OPTIMIZING PROCEDURE 

The problem is to maximize the bearing stability M by optimizing the groove pa- 
rameters H, a, p, and y. As mentioned in the last section, the small-eccentricity 
analysis of Vohr and Chow (ref. 1) is used. Stability is then determined for a particular 

configuration by the spectral analysis method of Pan (ref. 8). Basically, two different 
optimizing procedures a r e  used, depending on the characteristics of the particular bear- 
ing being optimized. 

Zero Derivative Method 

For the bearing having the smooth member rotating and for the bearing with the 
grooved member rotating with low compressibility numbers, the method of reference 5 
was used. In this method, one determines groove parameters such that 

by using the Newton-Raphson procedure of solving simultaneous equations. This proce- 
dure is described in reference 9; in addition to i ts  use in reference 5, it  was used in 
optimizing a Rayleigh step thrust bearing (ref. PO). Briefly, the method consists of 
letting 

- - - 
where H, a, p, and 7 a re  initial estimates of the optima to satisfy equation (ll), and 
AH, Aa, Ap, and Ay a re  correction terms. Substituting equations (12) into equa- 
tion (11) and expanding these equations by Taylor's theorem for a function of four vari- 
ables while neglecting second-order and higher order terms give the following: 



The partial derivatives in equation (13) can be expressed in terms of a finite-difference 
formulation. The correction terms AH, A a, Ap, and Ay a re  then found by using de- 
terminants. Additional corrections can be obtained by repeated application of equations - - - 
(12) and (13), where the initial values H, a ,  p, and y a re  then the values of H, a, 6, 
and y given by equation (12) of the preceding evaluation. 

When the smooth member of the bearing rotates, or  the grooved member rotates 

with low compressibility number A, the stability decreases monotonically with increas- 

ing A, a s  shown in figure 3(a). With the grooved member rotating, stability is not al- 

ways monotonic at higher A, as shown in figure 3(b). (These characteristics a r e  also 
shown in ref. 2. ) Thus, if one imposes the requirement that a bearing must operate at 
al l  A values less than the value in question (as the bearing must certainly be started 
and stopped occasionally), it follows that a proper optimization must maximize the - min- 
mum value of stability from A = 0 to the A of interest. This being the case, the 
Newton-Raphson method a s  used previously will not produce the desired results. 

Two cases present themselves. In the first, for moderate compressibility numbers 
(e. g. , A = 10 for L/D = 2) the optimum stability curve is of the form shown as the 
long-and-short-dash curve in figure 3(b). If one needs to operate a t  a maximum A 

of 10, the minimum stability at A = 5.6 is the governing factor. In this case, the 
Newton-Raphson optimization can be applied a t  the A value where the minimum stabil- 
ity occurs. Since a change in groove parameters may change the A value where mini- 
mum stability occurs, this A value is recomputed a t  each iteration by using a Newton- 
Raphson root finder . 



Vector Method 

For operation a t  high compressibility numbers a completely different technique is 
required, a s  will be illustrated. Refer to the solid curve of figure 3(b). For these 
groove parameters, stability decreases with increasing A at  low values of A. A rela- 
tive minimum is reached a t  A = 6; M then increases and becomes unbounded near 
A = 26. Another relative minimum occurs at A = 38, and M is again unbounded near 
A = 54. Stability then decreases rapidly with increasing A. 

In attempting to optimize the bearing, one finds that, if  the groove parameters a re  
adjusted to increase the relative minimum at A = 6, the stability at A = 80 decreases. 
Thus, one must look simultaneously a t  the stability a t  the A of interest and at any rel-  
ative minima within the range. 

The methods of vector analysis a re  used here. The greatest rate of change of a 
function occurs along the gradient of that function. Refer again to the solid curve of 

figure 3(b) and denote by and Mm the compressibility number and stability at the 
relative minimum (A = 6 in fig. 3(b)). Denote by Al and M1 the compressibility 
number and stability at the compressibility number of interest (A = 80 in this example). 
In light of the foregoing discussion, it  is evident that maximum stability over the range 
0 to A1 will be attained when M, = MI.  The technique is then to calculate the gradient 
of M at  A = 11, and A = Al. A change is then made in the vector of independent 
variables (H, a, p, and y) by taking a linear combination of the two gradients just cal- 
culated so that the new Ni, and M1 will be equal and increased over the original val- 
ues. This procedure is applied repeatedly, until further application no longer increases 
P/I, and MI. 

The specific expressions to carry out this technique will now be presented. Denote 
by A!$ the new value of M at Al and Am, and denote by E the change in the vector 
of independent variables. Then 

where the gradient VM is given by 

But E is to be a linear combination of the two gradients: 



where A and B a r e  scalars. Equations (14) and (16) a r e  combined and solved for B: 

In the computer program used to perform the calculations, A is first  chosen equal to 
1 and E calculated by equations (17) and (16). The magnitudes of the components of E 
(AH, Aa, Ap, and By) a r e  then compared with a maximum change to be allowed. If any - 
components exceed these maxima, A is adjusted and E recomputed. The maxima a r e  
reduced as the solution approaches the optimum. A 5-percent change in groove param- 
eters was generally the maximum allowed at  the beginning of the optimization procedure. 
At each iteration, Am is recalculated by using a Newton-Raphson root finder. 

RESULTS 

Tables I and II present optimum herringbone groove parameters (H, a, p, and y) 
to maximize stability over the range from A = 0 to the A value listed in the tables. 
Table I is for bearings with the smooth member rotating, and table I1 is for bearings 
with the grooved member rotating. The tables cover an operating range from incom- 
pressible lubrication (A = 0) to A = 80 and length-to-diameter ratios of 1/4, 1/2, 1, 
and 2. In addition to the resultant stability, the tables show the calculated radial load 
component Fr and the ratios of stability and load to the respective quantities of the 
maximum-load bearings of reference 5. Figures 4 to 9 a r e  plotted from the data in ta- 
bles I and 11. The maximum groove depth ratio considered was H = 4, and the maximum 

groove width ratio was a = 0.6. These were considered to be reasonable upper limits 
for practical bearing manufacture. 

Tables I and I1 show that the improvement in stability over that of the maximum- 
load bearing generally increases with compressibility number and decreases with in- 
creasing length-to-diameter ratio. Stability improvement is greater for the bearing with 
the grooved member rotating. For A = 80 and L/D = 1/4 and 1/2, the stability in- 

crease is over three orders of magnitude. 
For the case of L/D = 1 with the smooth member rotating, two local optima were 

observed at A = 80. The one shown in table I is that which gave the greater stability. 
It is possible that more than one local optimum exists for other cases as well. It was 
considered impractical to survey the entire possible range of all of the four parameters 

(H, a, p, and y) to determine optimum values. Instead, the optimization procedure was 
started from the maximum-load solution (ref. 5) for the incompressible case. For 
A = 1 and higher, the optimization was started from the stability solution for the next 



lower A. It is felt that the use of this method is justified by the results, since the 
groove parameters determined yield bearings substantially more stable than the 
maximum-load bearings of reference 5. 

Radial load capacity, relative to the maximum-load bearings, decreases with in- 

creasing compressibility number. In contrast to the thousandfold increase in stability, 
however, the greatest loss in load capacity is 77 percent. 

Figure 4 shows the stability attained by the optimized bearings. Stability with the 
grooved member rotating is always higher than with the smooth member rotating. The 
difference becomes greater a t  higher compressibility numbers. The greatest differ- 
ence is at  A = 80 for L/D = 1, where the stability of the bearing with the grooved 
member rotating is some 77 times that of the bearing with the smooth member rotating, 

There a r e  horizontal portions in each of the stability curves for the grooved mem- 
ber rotating. These occur because of the nonmonotonic behavior of the stability with 

compressibility number, a s  illustrated in figure 3(b). For compressibility numbers just 

to the right of the relative minimum in the curve, the governing stability over the range 
from 0 to the A of interest is the stability a t  the minimum, as discussed in the sec- 
tion OPTIMIZING PROCEDURE. 

As shown by the solid curve of figure 3(b), stability changes very rapidly with com- 
pressibility number at high A. This means that, practically, there is a limiting com- 
pressibility number beyond which instability ensues for any value of M. To the authorsP 

knowledge, instability in this region of the stability map has not been observed experi- 
mentally. Reference 11 does report several cases of sudden seizures of bearings oper- 
ated near this stability boundary. However, the causes could have been factors other 
than instability, such as loss of clearance due to thermal growth of the journal. 

It should also be noted that stability is quite sensitive to changes in groove param- 
eters. The greatest sensitivity appears to be to groove length. For example, for the 

bearing optimized for L/D = 1 and A = 80 with the grooved member rotating, a 0.4- 
percent decrease in groove length produces a 27-percent increase in stability a t  A = 80. 
Because of this sensitivity and the manufacturing tolerances that must be allowed, a 
conservative design (M less than the theoretical stability limit by a factor of 2 or more) 
is recommended for bearings with the grooved member rotating at high A. 

Radial load capacities of the optimized bearings a r e  shown in figure 5. In common 
with the maximum-load bearings of reference 5, the optimized bearings show generally 
increasing radial load capacity with increasing length-to-diameter ratio and higher val- 
ues when the smooth member rotates. 

Figures 6 to 9 plot the optimum groove parameters a s  a function of compressibility 

number. I t  may be noted that, except for groove length ratio y, the parameters for the 

bearing with the grooved member rotating generally vary over a much wider range than 
those for the bearing with the smooth member rotating. Again, this is believed to be the 

result of the nonmonotonic behavior of the stability curves, as discussed previously. 

11 



Groove length ratio is an exception to this wider variability. The fully grooved bearing 
(y = I) was optimum for nearly all the cases studied when the grooved member rotated. 
Experimental data (ref. 3) appear to verify this result. 

CONC LUDIMG REIMARKS 

Optimum groove configurations were determined to maximize the stability of 
herringbone-grooved journal bearings. Design curves presented enable one to find the 
optimum herringbone bearing for a wide range of operating conditions. These range 
from incompressible lubrication to gas  lubrication a t  high compressibility numbers for 
either the smooth o r  grooved member rotating and for length-to-diameter ratios of 
1/4, 1/2, 1, and 2. 

Bearings with the grooved member rotating a r e  substantially more stable than those 
with the smooth member rotating, especially at  high compressibility numbers. The 
bearing configurations derived in this report a r e  also much more stable than bearings 
optimized for load capacity. Again, the stability increase is greater a t  higher com- 
pressibility numbers. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, August 1, 1974, 
506-24. 



APPENDIX - COEFFICIENTS FOR HERRINGBONE BEBRSNG EQUATIONS 

The following equations define the coefficients used in equations (3), (4), and (6): 

C2 = a ( l  - a)(H3 - 1)(H - 1)sin cos p A 

a + ( 1  - a)H3 

2 
C3  = 2 5 a ( l  - a,)(H3 - 1) sin 0 cos p - 

a, + ( I  - a )H  3 Pa 

3c2(H2 - 1) 
C7 = 

2 2 2 R [H (H + 1) + a,( I - a)(H3 - I)% sin p] - 
[or + (1  - o)H3](H3 - I)  L 
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TABLE I. - HERRINGBONE GROOVE PARAMETERS TO MAXIMIZE STABILITY 

WITH SMOOTH MEMBER ROTATING 

Solution 

Length-to-diameter ratio L/D, 1/4 

Film 
thickness 

ratio, 

H 

Incompressible 

Compressible, 
for AC of - 

1 
5 

10 

20 

40 

80 

Groove 
width 
ratio, 

LY 

2.68 

2.67 

2.62 

2.57 

2.52 

2.47 

2.5 

Length-to-diameter ratio L/D, 1/2 

Groove 
length 
ratio, 

v 

0.469 

0.466 

.454 

.441 

.421 

.397 

.38 

0.98 

0.97 

.96  

.95  

.93 

.80  

.55  

Groove 
angle, 

6, 
deg 

0.764 

0.755 

.720 

.678 

.604 

.481 

.32  

Incompressible 

Compressible, 
for of - 

1 

5 

10 

20 

40 

80 

Length-to-diameter ratio L/D, 1 

Stability, 
M 

18.6 

18.5 

18.4 

18.3 

18.2 

17.8 

18 

' 1.04 

1.05 
1.08 

1.15 

4.27 

72 

100 

2. 54 

2. 53 

2.47 

2.44 

2.42 

2.48 

2.12 

9. 32 

9. 14 

1.70 

,783 

.336 

. 129 

,0406 

0.653 

0.0667 

.354 

. 7 18 

1.29 

1.85 

2.08 

Incompressible 

Compressible, 
for ilc of - 

1 

5 

10 

- 20 

40 

80 

Radial 
load 

capacity, 

Fr 

5. 16 

5.11 

.977 

.464 

,210 

.0884 

.0329 

0. 475 

0.471 

,453 

,436 

.411 

,392 

.34  

26.0 

25.7 

24.5 

23.2 

20.7 

19.4 

9.7 

2.37 

2.36 

2.31 

2.30 

2.32 

2.52 

3.77 

Length-to-diameter ratio L/D, 2 

Stability 
ratioa 

0.0366 

0.0366 

. 182 

. 3  59 

.686 

1.20 

1.77 

0. 736 

0.721 

,663 

,600 

,493 

,339 

.26 

14. 3 

13. 9 

2. 50 

1. 12 

,463 

. 170 

,0510 

Load 
ratiob 

21. 3 

21. 1 

20.6 

20.1 

19.1 

18.2 

15 

0.493 

0.488 

, 4 7 1  

,454 

.425 

. 398 

. 158 

0.99 Incompressible 

Compressible, 
for AC of - 

1.07 

1.09 

1.15 

1.30 

2.44 

155 

57 1 

0.0992 

0. 116 

,735 

1. 33 

1 .91  

2.47 

2 .81  

0.685 

0.663 

,591 

,516 

.410 

.263 

.268 

2.24 0.528 0.607 32.1 15.4 - 0.57 

1.43 

a~tabi l i ty  of maximum-stability bearing/stability of maximum-load bearing. 
b ~ a d i a l  load capacity of maximum-stability bearing/radial load capacity of maximum-load 

bearing. 
 earin in^ compressibility number. 

0.96 

0.96 

.94  

.92 

.88  

.80 

.66 

2.25 

1.02 

1. 10 

3. 13 

1.06 

2.86 

6 .91  

3.83 

0.98 

0.96 

.84  

.98 

.93 

.76 

.50  

0. 528 0.636 32.6 16. 1 0. 112 1.02 



TABLE 11. - HERRINGBONE GROOVE PARAMETERS TO MAXIMIZE STABILITY 

WITH GROOVED MEMBER ROTATING 

[ ~ a x i m u m  H considered, 4; maximum a considered, 0.6.1 

a~tabi l i ty  of maximum-stability bearing/stability of maximum-load bearing. 

b ~ a d i a l  load capacity of maximum-stability bearing/radial load capacity of maximum-load 
bearing. 

 earin in^ compressibility number. 

Solution Film 

thickness 
ratio, 

H 

Length-to-diameter ratio L/D, 1/4 

Groove 
width 
ratio, 

CY 

Incompressible 

Compressible, 
for AC of - 

1 

2 

5 

10 

20 

40 

80 

Groove 

length 
ratio, 

v 

Stability 

ratioa 

4 

4 
4 

4 
4 

2.40 

1.99 

1.94 

Groove 

angle, 
p, 

deg 

Load 
ratiob 

Length-to-diameter ratio L/D, 1/2 

0.6 

0.6 

v 

Incompressible 

Compressible, 

for AC of - 
1 

2 

5 

10 

20 

40 
80 

Stability, 

M 

Radial 

load 
capacity, 

Fr 

1 

1 

r 

2. 59 

2.99 

I 
Length-to-diameter ratio L/D, 1 

11.4 

11.7 

11.9 

12.2 
12. 2 

32.4 

59.0 

74.4 

0. 6 

0.6 

. 6  

.6  

. 567 

, 3 6 1  
.295 

,317 

Incompressible 

Compressible, 
for of - 

1 

2 

5 
10 

20 

40 

80 

8.64 

9.79 

5.71 

4.41 
4.41 

1.37 

,450  

. 125 

1 

1 

1 

2. 17 

2.25 

2.37 

2. 54 

2.54 

3. 10 

3.06 

2.77 

Length-to-diameter ratio L/D, 2 

0.0314 

0.0313 

,0626 

. 155 

. 305 

,647 

,750 

,733 

23.4 

19.6 

13.7 
14.0 

11.8 

11.8 
10.0 

8.69 

0.6 

0.6 

,478 

Incompressible 

Compressible, 

for A' of - 
1 

2 
5 

10 

20 
40 

80 

1. 38 

1. 52 

1.73 

3.43 
5. 12 

2.03 
417 

1640 

11.9 

13. 1 
8.02 

7.28 

5.74 

2.30 

1.14 
, 9 5 1  

2.06 

2. 12 

2 .22  

2.46 

2. 50 

2. 54 

2.68 

2.68 

0. 83 

0.82 

. 8 2  

. 8 0  

.79  

.85  

. 5 4  

. 3 1  

0.89 

0. 79 

. 6 1  

. 4 9  

. 4 9  

.37  

.37  

.68  

1 

1 

f 
. 904  

0.0629 

0. 0592 

,0865 
. 210 

,368 

,638 
,960 

1.32 

0.6 

0.6 

P 

36.0 

36.2 

35.6 

34 .1  
34. 1 

22.0 

21.8 

24.2 

1. 14 

1.24 
1.50 

6.26 

5.58 

3.66 
467 

3880 

0. 8 3 1  

0. 900 

,976 
1 

1 

1 
1 

.949 

0.94 

0.86 
. 6 1  

.57  

.50  

.49  

.48  

.45  

16.6 

18.4 

10.6 

6.61 
8 .61  

6.44 

6.39 

3.94 

43. 1 

46.6 

50.3 

54.4 

55.0 

57.6 

63.7 

66.1 

0.0899 

0.0973 

. 194 

.424 
,654 

,694 

,997 

2.87 

1. 10 

1.39 
m 

13.6 
8, 52 

9.47 ' 
299 

779 

17. 7 

18.6 

10.0 

6.19 

6.14 

5.99 

4.71 

3.72 

0. 107 

0. 150 

,278 

, 4 6 1  

,626 

,830 

1.00 

1.69 

1.04 

.. 
m 

3.31 

5.29 

10. 1 
- 19.4 

42.7 

0 .94  

0.42 

.37  

.35  

.35  

. 3 2  

.24  

.23 



Figure 1. - Schematic of concentric herringbone journal 
bearing. 
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Figure 2. -Whirling journal bearing. 
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Figure 4. -Maximum stabil ity of herringbone-grooved bearings. 

Figure 3. -Typical stability curves for optimized bearings. 
Length-to-diameter ratio, 2. 
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( b )  GROOVED MEMBER ROTATING. 
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Figure 5. - Radial load capacity of maximum-stability 
bearings. 








