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A VECTOR-DYADIC DEVELOPMENT OF THE EQUATIONS
OF MOTION FOR N-COUPLED RIGID BODIES
AND POINT MASSES

Harold P. Frisch
Goddard Space Flight Center

INTRODUCTION

The design and analysis of most spacecraft attitude-contro} systems is usually based upon
the assumption that the spacecraft itself can be modcled adequately as one body or as a
collection of contiguous rigid bodies.

When, in the analyst’s judgment, two or more bodies are required for representative
modeling, the derivation of the system’s equations of motion becomes laborious and
subject to numerous errors in SIGN and judgment. The general-purpose digital program

N-BOD has been developed to relieve the analyst of this time-consuming and error-prone
task.

N-BOD assumes that the spacecraft can be modeled as a topological tree of rigid bodies,
momentum wheels, and point masses. It also assumes that:

® All momentum wheels are symmetric and embedded within rigid bouies and that
point masses exist only at limb ends.

® Unless otherwise directed by the user, all gyroscopic interaction torques are
significant.

® All contiguous rigid bodies are connected by either zero-, one-, two-, or
three-axis gimbals and point masses have either zero, one, two, or three degrees
of relative translational freedom.

N-BOD provides the user with two modes of output:

® It may be used to derive and to output in vector-dyadic form on a line printer the
complete nonlinear equations of motion of the system described to it.

® It may be used to solve numerically the equations of motion and to output any
set of system-state variables.

Several techniques are given in the literature for deriving the equations of motion for an
arbitrary number of interconnected rigid bodies: namely, References 1 through 6.



In each of the formalisms cited, the N-coupled rigid bodies must form a topological tree;
that is, no closed paths are permitted in the system.

Two basic approaches are developed in the literature which show how formalistic methods
can be evolved which will ultimately define the torque-free dynamics of an arbitrary
N-coupled-body system.

Hooker and Margulies (Reference 2), and Roberson and Wittenburg (Reference 4) choose
to write the equation of motion of each individual body of the connected system, taking
into account in a very formalistic manner the interaction forces between adjacent bodies.
Velman (Reference 1) uses what he refers to as a nested-body approach; that is, rather
than having N-vector equations, one for each of the N bodies, the bodies ar: grouped into
N nests and the equation of motion of each nest is then defined.

While the first method is well documented in the open literature, the nested-body method
of Velman is outlined only in Reference 1. The equations of the nested bodies can,
however, be derived from Velman's discussion and basic principles defined in most texts
on rigid-body motion; for example, see Reference 7.

In Reference 3, Hooker comes to the realization that by making use of the nested-body
concept, the method used by both himself in his first paper and by Velman in Reference |
for handling constraints can be vastly simplified. Rather than switch from the discrete-
body to the nested-body approach as Hooker does in Reference 3. one may attain con-
siderable simplification simply by starting from the nested-body concept.

The purpose of this report is to combine the best features of Hooker’s discrete-body
approach and Velman’s nested-body approach into a computationally efficient formalism.
Material in this report will concentrate exclusively upon the theoretical development of
the equations programed in N-BOD.

BASIC SYSTEM

The basic system to be studied can be defined as an arbitrary numoer of rigid bodies,
momentum wheels, and point masses coupled together in such a manner as to form a
topological tree (no closed paths).

Contiguous rigid bodies are assumed to be connected together by either a zero-, one-, two-,
or three-axis gimbal; point masses are assumed to have either zero, one, two, or three
degrees of relative translational freedom; momentum wheels are assumed to be symmetric
about their spin axes and to be imbedded within rigid bodies. Rigid bodies which contain
momentum wheels are referred to as gyrostats.

Let
N = total number of rigid bodies, gyrostats, and point masses

M = total number of imbedded momentum wheels.
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To define the system mathematically, each body, momentum wheel, point mass, and hinge
point must be assigned a unique label. The set of consecutive integers will be used. Let
body 1 be the principal body of the system. All other bodies are given distinct integer
labels ranging from 2 to N inclusive. For simplicity of computation, it is convenient for
the labeling of the bodies to he such that, along any topological path from body 1 to its
end, the body labels are of increasing numerical magnitude.

As a direct consequence of this labeling convention, the connection topology of the N-body
system can be uniquely defined by the N X 1 connection matrix J (\), where

J(1) = 0,and
J(A\) = label of the body contiguous to and inboard of body A\,A=2,3,.. ., N,
All hinge points must be assigned unique labels. It is efficient to define them such that:

Hinge point A - 1 is the point of connection between the contiguous bodies
J(N)and A.

All momentum wheels are given distinct integer labels from 1 to M inclusive. These may
be randomly assigned.

Let
MO(m)= body label of the gyrostat in which momentum wheel m is imbedded.

In order to distinguish between rigid bodies and point masses in the system, two sets of
body labels are defined:

Sg = set of all body labels associated with rigid bodies, and

S, = set of all body labels associated with point masses.

The union of S; and S, is the set of all body labels S; that is,
$=8, US, . (1)

To define the equations of motion of the entire N-body system, the system is broken
up into N distinct nests of bodies. The equation of motion for each nest is then defined
and solved simultaneously with the equations for all other nests.

The nests are each given distinct integer labels from 0 to N - 1, inclusive, such that:

S = set of all body labels associated with those bodies which, relative to body
1, are outboard of hinge point k - 1 of body k. The elements of

S,., define the bodies which make up the nest k - 1.

k-1

To define the motion of body A relative to a reference frame fixed at the origin of the
nest S, ,, the bodies lying along the topological path from hinge point k - 1 to the
center-of-mass of body A must be known. This information is given by the connection



B

matrix J(A); however, it is notationally efficient to define the sets of body labels

Sy-1,a1 Such that

= set of all body labels associated with those bodies lying on the
topological path from hinge point k - 1 to the center-of-mass of
body A.

As an aid to the visualization of the contents of each set of body labels defined, a
particular example is given which is general enough to bring out the salient features of
the notation defined.

Sk-l.’\-l

Figure 1 defines a particular 10-body system with each body and hinge poiri: given a
distinct integer label. Note in particular, that the body labels are of increasing numerical
value along any topological path beginning at hinge point 0; furthermore, momentum
wheels can be numbered randomly.

BODY LABELS ARE NOT CIRCLED.
HINGE POINT LABELS ARE CIRCLED.
MOMENTUM WHEEL LABELS ARE SHOWN WITHIN THE WHEELS.

Figure 1. Labeling Scheme for 10-body Example
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From the figure it can be seen that the contents of each set defined are:

Sk =

L

{1,2,3,4,5,6,9,10}

{7, 8}
{1,2,3,4,5,6,7,8,9, 10}
{1,2,3,4,5,6,7,8,9,10}
{2,3,4,5,6,7,8}

{38}
{4,5,6,7}
{s.7}
{6}

{7}

{s}

{o}
{10}
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The elements of the set S

are given in the following example.

k-1,A-1
A-1 12 |3 4 5 6 7 |8 |09

k-

0 1211,2311,24]1,245] 1,246 (1,245,711 1,238 191,10

1 2 2,3 1 24 | 245 | 246 | 2,457 | 238

2 3 38

3 4 4,5 4,6 45,7

4 5 5,7

5 6

6 7

7 8

8 9

9 10
All undefined sets in the above table are to be taken as empty sets. Physically,
S = }implies that body A is not contained in the nest k - 1.

Each rigid body of the system is assumed to have nonzero mass and rotational inertia.

Each point mass is assumed to have nonzero mass and zero rotational inertia.

Let

m

d

w

A

A

= jnertia tensor of momentum wheel m about its center-of-mass.

= total mass of body A plus that of all momentum wheels imbedded in it,

= total inertia tensor of body A plus that of all despun momentum wheels imbedded
in it, about the composite body center-of-mass, and

To define the linear or angular momentum of each body or nest of bodics in the system,
position vectors locating hinge points and centers of mass must be given.

Let

[

o

R}

A

= position vector from hinge point X - | to the center-of-mass of body A.

= position vector from origin of inertial reference to hinge point 0 of body 1,

= position vector from hinge point J (X\) - 1 to the hinge point A - 1 of body A, and
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The exact position and labeling of each of these vectors is shown in figure 2 for the
standard 10-body example.

INERTIAL
REFERENCE

Figure 2. Positions and Labeling of Hinge-point and Center-of-mass Location Vectors

The vectors and dyads appearing in the equations of motion are most naturally defined
relative to certain body fixed-reference frames.

Let

inertially fixed frame of reference having its origin at ihe
inertial origin,

Reference frame 0

]

body A fixed Fraume of reference having its origin at the hinge
point X - 1. If body A is a point mass, the reference frame A
is taken to be fixed relative to reference frame J(A) and have
its origin at hinge point A - 1.

Reference frame A

To avoid explicit definition of coordinate systems and their associated kinematics, all
equations are written in terms of vectors and dyads. Inevitably, this leads to the necessity
of differentiating, relative to an inertial reference frame, vectors which are more easily

S saaht i dtberot s SRR | o

e e

)
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where

<O
0

expressed in some other moving frame. Extensive use is made of the identities from
vector differential calculus that

@

=g eved

L XV, )

vector to arbitrary point P from origin of reference frame i,
velocity of P with respect to the inertial frame,

velocity of P with respect to moving reference frame i,

('5, = angular velocity ~f moving reference frame i with respect to the inertial frame,
I')" = inertial velocity of the origin of reference frame i,
and
B3 h .y ., Q00
vl=p‘+w‘Xv+w|X(wiX'\7')+2win+v, 3)
where
'\’ = acceleration of P with respect to the inertial frame,
7}: = inertial acceleration of the origin of reference frame i,
(';.Fi XV = linear acceleration of P due to angular acceleration of reference
frame i,
@, X (B, XV) = centripetal acceleration of P due to rotation of reference frame i,
23X = Coriolis acceleration of P, and

P

apparent acceleration of P relative to reference frame i.

EQUATIONS OF MOTION (VECTOR-DYADIC FORM)

The entire N-body system is free to translate and rotate relative to a fixed inertial origin.
All contiguous rigid bodies are free to rotate relative to each other, point masses are free
to translate relative to their respective contiguous bodies, and all momentum wheels are
free tn rotate about their axis of symmetry relative to the gyrostat in which they are

imbedded.
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Let
Em = linear momentum of body A relative to the inertial origin,
-l.’,“ = angular momentum of body X relative to the inertial origin,
‘l.-’l"1 = angular momentum of momentum wheel m relative to the inertial origin,
-F’A = resultant of external forces acting on body A,

= resultant of external torques acting on body A, and

iﬂt S
]

resultant of externa! torques acting on momentum wheel m,

Then from Newton’s three fundamental laws of motion, the equations of motion for each

body A and each momentum whee} imbedded therein are given by

- ->

w=F

O -

A?

> o

Lin=9y

->

H =$wm ,  mMO(m)=X,

m
where

m:MO(m) = \ = all m such that MO(m) =\,

Similarly, the equations of motion for the nest of bodies k - 1 are

IIEROIL
C,, = det ¥,

L
Sy AeSy.y

Z i Z 3
N A?
k-1 MSy g

> -
H, = ¢wm y m:MO(m)eS, ,,

where

Z =  sum over all bodies A contained in the nest k - 1, and

Sy,

4)

()

(6)

n

®)

9



m:MO(m) €S, | = ali m such that MO(m) is contained in the nest k-1,

The equations of motion for the entire N-body systzm are obtained by solving
simultaneously 2N + M vector equations. These equations may be either in the discrete-body
form of Equations (4), (5), and (6) or in the nested-body form of Equations (7), (8), and

(9). This analysis follows the nested-body form.

Between each pair of connected contiguous bodies, forces and torques of constraint exist
which limit the number of degrees of relative freedom from six to, at most, three,

Let

-
F , resultant force of constraint acti.ig on body k through hinge pointk - 1,

b1 resultant torque of constraint acting on body k through hinge pointk - 1, and

%

resultant torque of constraint acting on wheel m preventing motion about
any axis normal to its spin axis.

For most problems of practical interest, mechanisms such as springs, dampers, motors,
and so forth exist between the contiguous bodies.

Let
-
F:“_, = resultant force acting on body k due to all mechanisms existing between
bodies J(k) and k at hinge pointk - 1,
3{"_, = resultant torque acting on body k due to aJl mechanisms existing betv =
bodies J(k) and k at hinge point k- 1, and
(i = resultant torque acting on momentum wheel m duc to all mech

existing between it and body MO(m).

It st.ould be noted that at every hinge point of the system (with the exception of hinge
poirt 0), the forces and torques defined above exist in equal and opposite pairs. Thus, for
any nest of bodies containing the hinge point k - 1, these forces and torques are internal to
the nest and have a resultant effect of zero, At the hinge point of the nest, however, they
are external.

External forces may be present which act on the N-body system. These may be locally
applied, distributed throughout, or applied only over selected portions of the system. (It
is assumed that external forces are not applied directly to momentum wheels.)

Let

?‘{'g = resultant external force applied to point i of body A, and
K,‘ 4 = Vector from center-of-mass of body A to the point i at which the force

* . 3
) is applied.

10
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For Newton’s laws of motion to be applied, motion must be defined relative to the
inertial origin.

Let

77’, A = position vector from inertial origin to center-of-mass of body A, and

771-1.& =  position vector from hinge point k-1 to center-of-mass of body \.

From the definitions given in *' e previous section, it follows that

2> -
Tia= 51 * Yon (10)
I N
and S an
i#® k

From these definitions, the resultant of tlie external forces acting upon the nest k-1 is
given by
Z-f?'\'?:nﬂ‘ + ZE F{”l, (12)
AeS, : s Tl M

while the resultant of the external torques acting upon the nest k-1, measured relative to
the inertial origin, is

- - -
; ¢A = 3:! + 31:-! + Gl.k ° ak) X (F;-l + Fll’:-l) “3)
k-1
) D
¢ b G Rn

and the resultant torque acting upon momentum wheel m is
-

2. -
w '¢wm +CL . (14)

The vector equations which completely define the motion of the nest k-1 are obtained by
direct substitution of Equations (12,, (13), and (14) into Equations (7), (8), and (9).

ZE;' «Fl o+ Fe +2-I-!‘°) 15
MH LA k-1 k-1 M8, A? (15)

11
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= gH - H
E Lia =8y ¥ 0 O - @) X (Fey * Fi))

AeS,
- - (16)
© ()
+";k-x GLAXF: +¢:)’
and )
ﬁm = 3;, + (ﬁ,m m: MO(m)€ S, , » 17)

where, for the sake of notation compression, the following definitions have been made:

i:’(:) = 2 : i:’;a , (18)

ieA

and
o Tt
¢;(\e) ey R X FJ(\:) (19)

The inertial momentum for each body A and wheel m may be defined in terms of their
respective mass and inertia properties and the system-state variables.

Let
3;\ =  jnertial angular velocity of body A,
—>
w, = angular velocity of body A relative to body J(A),
@, = inertial angular velocity of momentum wheel m,
m
-
&N = angular velocity of momentum wheel m relative to body MO(m), and
z m
H, = angular momentum of wheel m about its own center-of-mass, relative to body

MO(m).
From definitions provided in virtually all texts on rigid-body dynamics, it follows that:

a. Body A, a point mass, rigid body, or gyrostat

(22}
4

(20)

A M7

G\ = m, 77’1,:\ .

12
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b. Body A, a point mass

-l:l.k = 7|.x X mx?u (22)
zm = 77’1.;\ X mx?l.x‘ (23)
c. Body A, a rigid body
T = d D +5. X 3 24)
Las® o vy, Xm,
5 ) .
Li,=% " S, + 3 X @, + 77.1.)\ X mk‘-;l.)\' (25)
d. Body A, a gyrostat
- . E 2
_ - -+ <>
Lot v, X m, + b= H, (26)
MO(m)= A
5 : . it
> - -> -»> -
Lia=® m @, v 0, X - @ +7, Xm7, + — Hp. @n
MO(m)=A
e. Momentum wheel m
= -
H, = lwm T Ww (28)
- = -
Hm =Hm +lwm "w)\ (29)
5 = 5> o L2
Hm - Hm + 'wm *wy tw, X 'wm Wy 30)

It has been assumed that the composite N-body system has at most six degrees of freedom
relative to an inertial reference, contiguous bodies have at most three degrees of relative
freedom, and momentum wheels have only one degree of relative freedom. Thus, there
exists at most 3(N + 1) + M degrees of freedom for the N-body system, and its motion

can be completely defined by exactly N + 1 + M coupled-vector equations.

These coupled-vector equations are given by the following:

13
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a. For keS,

This condition implies that body k is either a rigid body or a gyrostat and that the
nest k-1 has at most three degrees of relative rotational freedom. The interaction
force between bodies k and J(k), which constrains relative translational motion, is
given from Equation (15) by

- - > - n
Fla t F}:-x = z (G!..\. - Ff\.e))' 31 s

Msk-l

The rotation equation for all nestsk-1 having keS, is obtained by substituting
Equations (21), (27), and (31) into Equation (16):

_ . >
> > -
E By Wy YN X MY, Z H

usk_l m:
MO(m)=2A

- -> -.I-l - . - - —b() _)( )l
=0y PO ¥ uz:s l‘wk X & - w, +7,,,X P +¢].

32)

b. For keSl_

This condition implies that the nest k-1 contains only the point mass labeled body k,
and that the nest k-1 has at most three translational degrees of relative freedom. The
translational equation for the nest k-1 is from Equations (15) and (21):

5 _2H - -
my T = Feq tFL, F F. (33)
¢. The composite system is free to translate relative to the inertial reference. The

translation equation for the composite system is from Equations (15) and (21):

) m 7, =P+ B4 > 7o, G4

MSo MSO

d. Momentum wheels are defined to have one degree of relative rotational freedom.
The relative momentum equation for momentum wheel m contained in body A,
derived from Equations (17) and (30), is given by

: S =B, X1, -3 +CL_+g

Hp + lwm TN T A w9 m ¢wm' (35)

These equations of motion must now be put into a computationally efficient form.

PPN

B e
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Accordingly, the inertial acceleration of the center-of-mass of body A can, by making use
of Equations (2), (3), (10), and (11), be written as

Y > : - >

T =B, ¢ 2 (@yq) X B, *+ By X @, X B
: 36
3, XT3, x @, X3 as, OO

oo . (]
- - - - - -, -> -y
a, +W,,, X a, + 2w1()‘) Xa, + 2PN X (wl(k) X a,) AeS,

where the open dot implies differentiation with respect to the reference frame A fixed at
hinge point A-1.

Considerable symmetry in the final form of the equations of motion is obtainable if the
inertial angular acceleration vectors are expressed in terms of the rclative angular
acceleration vectors. From the definitions of inertial and relative angular velocities

- z : = 37)
(:;A = W, AESR Iy
and hence

TPIEY (38

. i
neso',‘_l

Substitution of Equation (38) into (36) along with a rearrangement of terms leads to

EW
w; X Tiaa 7\eSR

. ieS
S 4 0,A-1
Tia =Bt
_" o0
E ; ~ —> -
e W X Vgt AeSy
€S0 ,A-1
P#A

15
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- -
+ Z By X @y X )

ieso‘)‘_l
il

@ X @, X &) NSy (39)
- 5 - - -
2“’1(?\) X a, + @, X (w,m X @,) AeS, .

It is also convenient to make use of Equations (2) and (28) to write

=1

N -
m =y @yt @ XHp, (40)

m m

where MO(m) = A and, again, the open dot implies differentiation with respect to the body
A fixed reference frame.

Substitution of the vector identities given by Equations (38), (39), and (40) into the
system equations of motion, along with a rearrangement of terms yields:

a. Rotation equation for the nest k-1, keS,

. s,
Y. Xm F + I, @
Y.
sy | Tt APy p— we “w
MO(m)=A
+ E l— E 2 - 2
¢-w.+27 X m, (@ X 7, ,)
A i k-1,A A (@) i1,A
ieSo k-1 l-"‘sk-n AeSy g
%k s,
( A
E 2 E - 2 .
P W + Y Xm, (w, X7 ieS
e Y T Ay Tt A @ i-1,0) R

AeSy
+
4 4
ieS, |
-X-]
Z 4 Xma ieS

16
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-p
- - -+ - s
= E w, Xo cw + E w, XH
}“Sk-l A A A m: A m
MSL MO(m)=A

- - E : - —»
E Tian X My Oyp X @y X 31)

NS, Sg \4
i1
&y X (@, X ) AeS,
+
° - - e
-> ->
2“"1()\) Xa + Y X (wj('\) X a,) AeS

- -
+4c + 3}:-1 + Z [7“_m X F}f) + zgf)] .

b. Translation equation for the nest A - 1, AeS,

.- oS co
E : = > >
m, 3, + WX g ta

A
€Sg a1
%A

- - —» - - -
= .m, Z By X @y X )+ By X @By X &) + 284, X

eSg a1
-1
-» -> -
[ H (e)
+ Fx-n + F,\_1 + F,‘ .

e i PR ‘

(41)

(42)
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~rwn=-r-~~‘-

¢. Translation equation for composite system

. 1
Z m, (@, X 71-1.;0 ieSg

)IEND D e
m + 9 y
7\31 pry

MeSy o
co
-
Z m, «
A %A .
AeS | ieS; 4
E E @, X (@, X d,) AeS,
- -> -
s, ™ €S g a1 “10 X (0 X 5 -+ 3, = - >
‘“‘ Zme Xa + @50 X (w,m X a,) S,
+ ?;' +F§+ E FO.
AeS, (43)

d. Momentum equation for wheel m:MO(m) = A
lwl'n ) wwm +hso Al lwm Biat B! X (lwm et * Hm) * CLm * ¢€vm. 44)

It is desirable to condense these vector equations eventually into a concise matrix format.
To do this, however, severa] vector operations must be replaced by equivalent vector-
dyadic, scalar-product operations. In particular, one can make use of the following:

a. Multiplication of a scalar and a vector

m B, =m1-8, (45)
ma, =m1-3, (46)

where
1= unit dyad.

b. Vector product of two vectors

ey

*
~ -
W XYy, =T )

1, (I 47)

18
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?k-l,k X-ﬁl = Tean B, (48)
o0 :o
Tian X & = Tyyn 8 49)
where
Fran =‘7’6k-1.x), (50)

and & is the tensor operator which transforms vectors into skew-symmetric tensors
of rank two (dyads). If V'is an arbitrary vector with components { V)V, v,} , then

0 vy -V,
9’(\7’) =1-vy 0 v
v, Y 0
(51)
c. Vector triple product
2 2
?k-l.k X m, (w; X ?HJ\) = Ga-n.m ) (52)
where
A - .= - -
Glyia = ™ [Gk-l.k V) V- Ya Teaal (53)

To establish symmetry conditions, it must be noted that the components of the

pseudo-inertia tensors G}, |, and G}, , »when written in the same coordinate system,

obey the following matrix transpose relationship:

G} 144) = [th,k-xlT' G4

The vector-dyadic form of the equations of motion is obtainable by substitution of
Equations (45) through (52) into Equations (41) through (44). That is:

a. Rotation equation for the nest k-1, keS,

‘Zml‘, B'+Z Z¢+ZGQ_‘, .
AeS A Sk-1,A 1 A mk.l 1,1

k1 Sg k1 | M8y
i*k M8,

€U-
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[

-
E ) +2 el @ ieS
A k-1,-1 i R
S, | AeS, |
P 2 2 i
+ + L 2
* W
w
usk_l Msk_l m: m m
MO(m)=A
- -
l s A Pean * & ieS,
11
= E b~
- -»> -> ->
w X & - w + Z w, X H
Msk-l A A A m: A m
S, MO(m)=A
- E - E : - -
v Tian X M Sgoas Wiy X (@5 X B)
%1
- - -
w, X (w, X a,) AeSp
+
-]
- - -> - -
2w,m X a, + 2PN X (w,m X a,) NS,
2, 2H z : 2 7© )
toL, oy, t vy [71‘-1,)‘ X Fg‘e + ¢§f] (55)
-1
b. Translation equation for the nest A-1, AeS,
e _" -X-3
~ -+
m, |1° 3‘ +“SZ I‘H'k cw t1e a,
0,1
LYY
) :
-> - -» - - - -
= -m, ot @54 X (""J(i) X 3,) t Wy X (‘“J(A) X a,)+ 2«..:,(,0 X a,
1] "
%1
-bH —b()
+ ?;’1 tFat F)\. . (56)
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¢. Translation equation for composite system

D> -
m, l‘i_m * W ieSR

4

. MSH Z
E - E = .
l’“A t Bl + L > r“A

AzS ieS

(] 0
[-X-]
- .
Z m, 1-a, 1eSL

us“

X @y X B) +

-5 - - -> -
2‘°J(A) Xa, + “yn X (wm) Xa,) AeS;

- - -
+ F¢ + FH +E FO).
ot Fo Ty

d. Momentum equation for wheel m:MO(m) =\

-
~ -> -
= .3, X (v S, +H )+ CL, o

EQUATIONS OF MOTION (MATRIX FORM)

W

57

(58)

In the previous section, the equations of motion of the coupled N-body system have been
derived in vector-dyadic form from the principles of linear and angular momentum. A

cursory examination o1 tquations (55) through (58) is sufficient to note that terms

associated with the same gyroscopic effects have been grouped together. In putting the
equations into a matrix format it is convenient to make use of partitioned matrices so as

to retain this separation of effects.

Accordingly, one may define:

{5 } = (N+1) X1 column matrix of relative acceleration vectors. The vector

element &, in row k is

a. Body k a rigid body keS_

7Mse.nmamm P

b]

(59)
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b. Body k a point mass keS_

@y = &, (60)
c. Total system k=N+1
@, = Hl' (61)

-]
[ ‘:"w ]= M X 1 column matrix of momentum-wheel relative angular acceleration
vectors. The vector element in row m is

w_ (62)
[X]- (N + 1) X (N + 1) symmetric matrix of pseudo-inertia tensors. The tensor
element in row k, column i (i » k) is from Equations (55), (56), and (57), given by

a. keSR' ieSk_l’ ieSy (Nest i-1 is a nest of at least one rigid body within the nest k-1).

Xui = z P, + z G’I:-n.i-n'
(63)
MeS, |

kSH
AgS.
1 %)

Fork = i, X, , is the inertia tensor of the nest k-1 about the hinge point k-1. For
k # i, it defines an inertia cross-coupling te- -or between nests k-1 and i-1.

b. keS, ieS,, ieS, (Nesti-l isa nest of one point mass within the nest k-1.)

Xy =m0 (64)

X, 4 is the tensor form of the mass moment of the nest i-1 relative to the hinge point
k-1,

c. keSR. ieS, | (Nest i-1 is not contained within the nest k-1.)

X, =0 (65)

d. keS,_' i=k (Nest i-1 is identical to nest k-1 and contains one point mass.)
X, =m1. (66)

Xk g is the tensor form of the mass of the nest i-1.
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e. keSL' S, , (Nest i-1 is not contained within the nest k-1.)

X, =0. 67
f, keSR. i=N + 1 (Nest k-1 has at least one rigid body.)
Z m, Fyyae (68)
AeS,

X,
k-1.

is the tensor form of the mass moment of the nest k-1 relative to the hinge point

g keS ,i=N+ 1 (Nest k-1 has one point mass.)
)(k'l =m 1. (69)

X, 4 is the tensor form of the mass of the nest k-1.

E mk‘l. (70)

MSO

h.k=N+1,i=N+1

X.c

X, i is the tensor form of the total system mass.

It should be noted that when the tensors defined above are all expressed relative
to a common frame of reference, the matrix [X] is symmetric. This is easily
proven by application of Equations (50), (51), and (54).

|_l°J = (N + 1) X M, rectangular matrix of momentum wheel inertia tensors. The
tensor element in row k, column m is from Equations (55) and (56) given by

a. MO(m) €S, | (The rigid body in which momentum wheel m is imbedded is within
the nest k-1.)

Rm =l - (7

b. MO(m) £S, | or k = N+1 (Momentum wheel m is not within the nest k-1.)

Bm =0 (12)

LEEJT = M X (N + 1), rectangular matrix, the transpose of [I¢].

[l'] = M X M, square matrix of momentum wheel inertia tensors. From
Equation (58), the tensor element in row m, column n is given by
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a m=n

Bon = bv_» (73)
b. m+*#n
Bon =0 (74)

{n°} = (N+1) .1, column matrix of forces and torques associated with
centripetal and Coriolis acceleration effects. Note that the force
associated with the mass of body A and its combined centripetal and Coriolis
acceleration can be expressed as
& X (@, x T NSy

-,
Ca = m, &:’,(0 X (&)’m) X 73") +
“So a1

o
a
%1

-5
Zw,m X a,

+ By X @y X T AeSy
(75)
From Equations (55), (56), and (57) the vector element n inaowkis
a. keSy (The nest k-1 has at least one rigid body.)
2 7
" 'Z 77’&-1.:\ X Cye (76)
€Sy,

n; is the resultant torque at hinge point k-1 due to the centripetal and Coriolis
acceleration of each body in the nest k-1.

b. keS, (The nest k-1 contains one point mass.)
-
n: = -C" . (77)
¢ k=N+1
"« . 'ZE»- (78)
AeS,

N+, is the resultant force acting on the composite system due to the centripetal
and Coriolis acceleration of each body.
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{n'}

(N + 1) X 1, column matrix o1 torques associated with the inertial

angular velocity of the body fixed reference frames and the inertial
angular momentum of the rigid bodies and gyrostats about their respective
centers-of-mass. Note that tiie inertial angular momentum of body A
about its own center-of-mass is given by

g - 2 (79)
LA.A'Q’A'“A*; Hp,-
MO(m)=A

From Equation (55) the vector element ), in row k is

a. keS, (Nest k-1 contains at least one rigid body.)

m = ‘E S, X Ix.;\ : 50y

Sy

M5

n}‘ is the rate of change of angular momentum of all rigid bodies and gy-ostats in
the nest k-1 about their own cente: s-of-mass due to the inertiai angulir velocity
of their respective body 11.-ed-reference frames.

b. keS, ork =N+ 1

{n*} -

1 /
n, * 0. 81)
M X 1, column matrix of torques associated witii the inertial angular
velocity of the gyrostats fixed reference frames and the inertial angular
momentum of each momentum wheel about its respectivc center-of-mass.
Note that the inertial angular momentum of momentum wheel m imbedded
in body A about its own center-of-mass is given by

-

L J S +H
= ‘W .
WoWo W A m (82)
From Equation (58) the vector element in row m is
AT SV (83)
T = W) X me.wm .

n: is the rate of change of angular momentum of momenti..m wheel m about its own center-

of-mass due to the inertial angular velocity of the refcrence frame fixed in the gyrostat
in which it is imbedded.
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‘dzc‘ } = (N +1) X 1, column matrix of the forces and torques of constraint,
H
¢ ‘} = (N +1) X1, column n.atrix of the forces and torques associated with
) mechanisms existing between contiguous bodies, and
b}
¢E" =  (N+1) X 1, column matrix of the forces and torques associated with

causes external to the N-body system.

The vector element in row k of
() + o+ o)

a. keS, (Nest k-1 contains at Jeast one rigid body.)

is

. H Ey = - 2K E - ->(e) -
Bt + o =0, t ot AeS [71(-1,}\ X FX7 + ¢§:) ‘ (84)
k-1

'This is the resultant torque external to the nest k-1 about the hinge point k-1.

b. keS, (Nest k-1 contains one point mass.)

ARE SRR S RS R e (85)

This is the resultant force external to the nest k-1.

c. k=N+1

- >
¢§) + ¢:|l + ¢El = F; + l-g +Z Fge). (86)
MSO

This is the resultant force external to the composite system.

c
{¢ 2 } = M X 1, column matrix of the constraint torques acting on the momentum
w!.eels, and
H . . . . . as
{¢ 2 } = M X 1, column matrix of the torques associated with mechanisms existing
be. ween the mnomentum wheels and the bodies in which they are
imbedded.

The vector element in row m of
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is

€2 4+ ¢gH2 = 3¢ 4 c-i .
¢m ¢m ¢Wm m (87)
This is the resultant torque external to and acting on the momentum wheel m.

Making use of the above notation, the simultaneous vector-dyadic equations of motion
given by Equations (55) through (58) may be expressed in partitioned matrix form as

X
-
.
-
3]
aﬁ
a—
S
©
©

-3
=
Elo

3
=

=3

€
-3
~

°

~
(=]

(88)

To colve these equations numerically, they must be put in the form of a set of
simultaneous, scalar-differential equations. The difficulty with this step is in solving for
or eliminating the unknown forces and torques of constraint.

In theory, if the N-body system has a total of N degrees of freedom and N, holonomic
conditions of constraint, then it is possible to generate a set of

Ng =N, - N, (89)
generalized coordinate equations which are independent and completely define the systen:
dynamics.

In Reference 2, Hooker and Margulies present a method for constraint elimination. The
method essentially derives expressions for the constraint torques in terms of system
parameters and then substitutes them into the equations of motion. From a computational
viewpoint, this method is cumbersome since the order of the system of equations

remains unchanged and several additional matrix inversions are required.

In Reference 3, Hooker presents another method for constraint elimination which s
well suited for digital computation. The method defines a set of N free coordinate
vectors which span the N dimensional vector space in which motion is possible. By
application of orthogonality conditions, forces and torques of constraint can be
eliminated and a set of N simultaneous scalar equations derived which completely
define the system’s motion in the N dimensional vector space.

To accomplich this, Hooker notes that at every hinge point it is possible to define a triad
of linearly-independent free and locked coordinate vectors. Physically, if one imagines
that contiguous rigid bodies are connected by either a zero-, one-, two-, or three-axis
gimbal, the free coordinate vectors correspond to unit vectors fixed along the gimbal
axes, and the locked coordinate vectors correspond to unit vectors fixed along axes about
which motion is totally constrained.
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Since the equations of relative motion are vector equations, at each hinge point the
relative vclocity vector is expressible in terms of a linear combination of the fre:
coordinate vectors while the constraint torque is expressible in terms of a linear
combination of the locked coordinate vectors. These vectors are orthogonal to each other.
By forming the appropriate vector scalar products, the scalar equations which define

the components of motion about or along each free coordinate vector can be obtained
and the need for evaluating the ~onstraint torques circumvented.

To apply Hooker’s technique, several kinematic related definitions must be introduced.

KINEMATICS OF THE N-BODY SYSTEM

The subject of kinematics to which this section addresses itself is concerned exclusively
with determination of the relative orientation and rate of each body in the N-body system.
The causes to which relative motion may be ascribed are not of interest. User convenience
and computational efficiency have been the primary factors used in determining which
kinematic methods should be applied.

It is the author’s opinion that there is no one kinematic techniquc which is best for all
possible problems. Accordingly, the program N-BOD has been programmed to give the
user a limited selection of kinematic options. Unless directed otherwise, direction cosine
methods are applied. No attempt is made to artificially orthonormalize the computed
transformation matrices. At the user’s option, an algebraic quaternion method can be
used. This is simply a generalization of standard Euler angle techniques. Selective use of
both direction cosine and algebraic quaternion methods should permit the user to
circumvent the common kinematic problems of orthogonalization and gimbal lock.

At the inertial origin and at every hinge point of the N-body system a reference frame
has been defined;

[xe x x3)
[x % %)

reference frame 0, fixed inertially at the inertial origin, and

reference frame A, fixed at hinge point A-1 of body A;
if body A is a point mass, the coordinate axes are respectively
parallel to those of reference frame J(\).

It is desirable to provide the user with the ability to specify an arbitrary “at rest,” or
“nominal zero internal stress™ orientation for each reference frame. Accordingly let

[':g} (A)] =  transformation matrix which takes vectors from body J(\) fixed
coordinates into body A fixed coordinates when the system is at rest
in the nominal zero internal stress state.

To completely define the at-rest state of the N-body system, translation aprd momentum
wheel orientation conditions also must be defined.
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a. The entire N-body system is frze to translate relative to the inertial origin;

B: = vector from the inertial origin to the origin of reference franie i
(the center-of-mass of body I).

b. Point masses may be given an at-rest position relative to their respective
contiguous bodies;

—’
"a)‘ =  vector from hinge point A-1 to the at-rest position of the poin.
mass A.

¢. The rotation angle through which a momentum wheel] has rotated can be
important for special cases. Rather than introduce a wheel-fixed reference frame,
it is defined that the at-rest angle of the wheel, relative to the body in which it is
imbedded, is zero. There is no loss of generality here since all momentum wheels
are by definition symmetric.

In order to eliminate the forces and torques of constraint in the equations of motion, a
triad of unit coordinate vectors is defined at every point in the system about or from
which relative motion is measured.

Let

No = total number of coordinate vector triads. For a system of N coupled

bodies and M momentum wheels
Ny =N +1+M. (90)

N = total number of free coordinate vectors; these span the N dimensional
vector space in which motion is possible,

N, = total number of locked coordinate vectors; these span the N, dimensional
vector space in which motion is totally constrained.

- > -

{ql,qz,. ce qNF} = set of unit free coordinate vectors which span the N
dimensional vector space in which motion is possible.

[—’, f\: e 6iqL = set of unit locked coordinate vectors which span the N,
dimensional vector space in which motion is totally constrained.

{0l 0,..., ONF} =  set of scalar parameters wiich at any instant of time
define the relative displacement about or along each respective free
coordinate vector (analogous to Euler angles).

{é. éz cee éNF } = set of scalar parameters which define the time rate of

change of the respective displacement parameters (analogous to
Euler angle rates),
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To uniquely define each of the free and locked coordinate vectors, several definitions
must be made. In principle the vectors may be randomly labeled; however, for
computational purposes it is advantageous to choose a particular numberi:g scjuonce.

Each triad of coordinate vectors may be assigned a label. The origin of the triad is the
point from or about which relative motion is measured. That is:

a. To measure the relative rotation of rigid body k, the triad k is defined to ha, .
its origin at hinge point k-1.

b. To measure the relative translation of point mass k, the triad k is definec to have
its origin defined a. .is at-rest position.

¢. To measure the relative translation of the center-of-mass of vody 1 relative to the
inertial reference, the triad N + 1 is defined ‘o have its origin at the inertial origin.

d. To measure the relative rotation of momentum wheel m, the tiad N+ 1 + m is
defined to have its origin at the center-of-mass of mor ientum wheel m.

The mix of free and locked coordinate vectors in each triad is defined by the integer
function P (A) where

P(A\) = total number of locked coordinate vectors in the triad A.
The free and locked coordinate vectors which make up triad A are:

a. P(QA) = 0 Three degrees of freedom
- - ->
{qj’ qj+1’qj+2}’
b. P(A) = 1 Two degrees of freedom
- = -
quv qj+| H P‘ } ’

c. P(A) = 2 One degree of freedom

Lffj,ﬁ'i,ffm}, and
d. P(\) = 3 Zero degrees of freedom

g =>

{pl’ Pisys Pi+2} ’

where forany A, A=1,2,...,N,

j=1 +Z (3-P@), o

30



Caowg e

i_\

i=14+ Z P®), ©2)
z:s 0. (93)
=1

If body A is a point mass, the free and locked coordinate vectors of the triad A are
mutually orthogonal and fixed with respect to the reference frame A.

and

If body A is a rigid body, then by definition it is connected at hinge point A-1 to body
J(N\) by either a zero-, one-, two-, or three-axis gimbal. The numerical ordering of the free
coordinate vectors is defined by the following convention:

a. For a one-, two-, or three-axrs gimbal, the first rotation is about q through the
angle 0 The free vector q is fixed with respect to the reference frame J(N).

b. Far a two- or three-axis gimbal, the second rotatxon is about @, i1 through the
angle 0 . For a two-axis gimbal, the free vector g, i is flxed with respect to
reference frame A. For a three-axis gimbal, the free vector q, 1 is defined by the
vector cross-product

- >
q.,, X g,

e =—_’,—_——:J: . 94
qj+2 X qil

¢. For a three- axns gimbal, the third rotation is about g i+ through the angle 0
The free vector @, 1+2 is fixed with respect to the reference frame A.

If body A is a rigid body, the numerical ordering of the locked coordinate vectors at the
hinge point is arbitrary. With the exception of the case of a two-axis gimbal, locked
coordinate vectors are fixed in reference frame A. For a two-axis gimbal, the locked
vector P, must be orthogonal to both free vectors a; and ﬁ: +,- Thus, it is defined by the
vector cross-product

- -
9 X Dje1

et %3
Iqi X 944

If A= N + 1, the free and locked coordinate vectors are fixed with respect to the inertial
reference frame. They are defined by convention to be aligned respectively with the
X9, X9, and XJ coordinate axes.
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If A= N+ 1 + m, the free vector is aligned with the spin axis of momentum wheel m which
is fixed in reference frame MO(m). The two locked coordinate vectors are fixed normal
to each other and to the spin axis in a wheel fixed-reference frame.

INITIAL ORIENTATION OF THE N-BODY SYSTEM

In defining the relative orientation of the bodies in an N-body system at time zero, it is
undesirable to start from the hypothesis that the elements of the initial transformation
matrices are given. If the response of a complex system under different initial conditions
is to be studied, the computation of initial transformation matrices can be tedious. It is
desirable to define a set of physically realizable, independent parameters which can be used
to construct internally the initial conditions necessary for computation.

The scalar parameters which define relative displacement and rate about and along the free
coordinate vectors provide a desirable set of parameters to work with,

Since relative motion takes place only about or along the free coordinate vectors, the
initial orientation can be given by stipulating exactly N independent relative displacement
parameters, one associated with each free coordinate vector. These parameters are taken
relative to the nominal zero stress position.

Let

[;,,7-, (A)] =  transformation matrix which takes vectors from body J()) fixed
coordinates to body A fixed coordinates at time zero.

To compute all initial transformation matrices [g.i;m], A=1,2,...,N,itisnot
possible to assume that all gimbal axes will be parallel to body fixed-coordinate axes. It
is therefore most convenient to mzke use of the quaternion techniques reviewed briefly
in the appendix to compute the initial transformation matrices.

Making use of the matrix operator .# and the quaternion operator .2 defined in the appendix,
the initial value of the transformation matrix [ 2'71(7\)] ,A=1,2,..., Nis given by

a. One-axis gimbal, reference frame I, aligned with body A fixed axes

~ -7 T T _
(i) = (1N§11) NANY (96)

b. Two-axis gimbal, reference frame I, aligned with body A fixed axes

_ - -\ T ~
[g"’l(k)] =F (lell ‘1§’z) [ J(A)]’ 97

32



¢. Three-axis gimbal

J _ - = -, T
[g'];(x)] ~'F(l g'll llrlz lzfA) [;\qg;(x)],

N (98)
where
'NE', = cos 8, /2 +,~;»2( {E{m} ,N) sin 6, /2 99)
llglz N cosom”/z t2 ( {3m+l} ll ) Sinem‘ll/2 (100)
SR +Q( {c‘;’,,,ﬂ} ,2) sing_./2, (101)

SYSTEM ORIENTATION VIA DIRECTION COSINES

To integrate the equations of motion of the system it is convenient to refer all vectors and
dyads to a common frame of reference. Depending upon application, this may be either the
inertially fixed frame of reference or the coordinate axes fixed in body 1. Generality is
retained since the system can always be relabeled so that body 1 does contain the com-
puting frume of reference.

Let

[A."'c] =  transformation matrix which takes vectors from the computing frame
of reference into body A fixed coordinates at time t;t =0, A =
1,2,...,N,

-
To transform the vector R given relative to the computing frame coordinates into body A

fixed coordinates apply
- -
UNIEACS (102

To transform the tensor R given relative to the computing frame coordinates into body A
fixed coordinates apply

(Rl = 7] IRl [F,], (103)
where
7] = [,(‘{]T. (104)
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If the computing frame is chosen to be the inertial-reference frame, then ¢ = 0 and

a1 e Fra), (105)

L, !
keaO,A-l

where

“‘75:].;-1 [k‘i;(k)] = [A‘y;(h)] [~J(A)'i;(1(x))]---[l‘i;]- (106)

If the computing frame is chosen to be the body ! fixed-coordinate frame, then c= 1 and

7] = ﬂ e Zsa0] -

KeSgy .1 (107

k#1

Since the components of the N-direction cosine transformation matrices [xi c] are time
varying, they must be continually updated. An expression is required to define the time
rate of change of tlie components of [}\ .fc] . These quantities can then be integrated
and the time histories of the matrices defined.

Let

-ﬁ arbitrary vector fixed in body A, and

angular velocity of the body A fixed-reference frame relative to the
computing frame of reference.

—>
cwl\

From vector differential calculus

-
dt dt <“r X R, (108)

where the presuperscript on the d/ _Qt operator defines the reference frame in which
differentiation is referenced. But R is fixed in body A, therefore

->
[
L 3. X R. (109)
dt [t N
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frame, and

column matrix of the components of f{ relative to the computing

{c Z:’A}c = column matrix of the components of | 55,‘ relative to computing frame,

Recall that if

P )
)
£
AR
o
n
€
[3) -
-

w

<

0 w, -w,
’?({ cJA]c) = -w3 0 wl 4
w -Ww 0

and vector Equation (109) can be written in matrix notation as

(&) -2 (la}) .

where the dot over the matrix implies differentiation of each matrix element with
respect to time.

From the definition of [Aﬂ' c] note that

(&) - o (7).

Since R is fixed in body A
>
{R A\ =0,

R, = 430" {®], = 10" 1 {R)..
(¥}

and

(110)

(a1

(112)

(113)

(114)

(115)
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It follows from Equations (112) and (1 14), since the vector ﬁ is arbitrary and fixed in
body A, that

. T - ) N
WARNARRAt N B (116

Take the transpose of both sides and premultiply these by [,-7 ] to obtain

WARIVARZU AN (17

Note that since

T
NAREIWA

’ (118)

Equation (117) can also be expressed as

[.7] = °-7’({c3;\}c) (4], (119)

Equation (117) defines nine differential equations, one for each direction cosine. To
completely define the relative orientation of the N-body system, this implies that 9N
direction cosine equations must be solved simultaneously with the system equations of
motion.

Due to the orthonormality of the direction cosine matrix, only six of the nine equations
need be integrated. The solution to these equations can then be used to compute
algebraically the three remaining quantities.

SYSTEM ORIENTATION VIA QUATERNION METHODS

The computation of transformation matrices may be accomplished by either integrating
a set of kinematic differential equations, such as direction cosines, or algebraically by
application of quaternion methods. Rather than set up a series of quaternion differential
equations, as is commonly done, it is possible to make use of the free coordinate vectors
and the respective angles of rotation to simply construct the required transformation
matrices algebraically. It becomes a debatable question as to which technique is
optimum for all problems.

To apply quaternion methods, the same procedure used to obtain the initial orientation
of the N-body system is used.
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That is, from

L7 = LeFiy] LoyZed

(120)
and Equations (96) through (101) it follows that
P = r T N ;7 P
7e) = 16 8L [X 0] Loyl (121)
where
‘Nf’n one-axis gimbal i, = A
Iy f,‘ = lNEll llflz two-axis gimbal l2 =X (122)

S 15, L5 three-avis gimbal ,

1t should be noted that the above equations reduce to one, two, or three successive
Euler-angle rotations when the free coordinate vectors are aligned with coordinate axes
in the at-rest state.

RELATIVE RATE AND DISPLACEMENT

At any hinge point k-1, the relative angular or linear rate between the contiguous bodies

J(k) and k can be expressed as
= Z b 3, (123)

kK mek1 m'm

(X1

where the summation is carried over all free coordinate vector indices defined at the
origin of the triad k.

If body Kk is either a point mass having one, two, or three degrees of relative translational
freedom or a rigid body having one or two degrees of rotatio_rlal freedom, the relative
displacement parameter 6 ,; along or about the free vector q,,,, is obtained from the

equation
0., =/"m+; dt, (124)
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where

Opet = Qmat * @ 120,1,2, (125)
If body k is a rigid body hinged to body J(k) by a three-axis gimbal, then since the three,
free-coordinate vectors are not always mutually orthogonal, the relative rotation param-

eters§ .. (i=0, 1, 2) must be derived as follows.

Let
- . .
ﬁ’m ‘W, = Qm = Om + cOm". (126)
- .
a’mﬂ " = nmﬂ = 0m+| » (127)
-5 . .
Tmez " @ =y, =, +0, .., (128)
- . -> =
and in Amez = C (129)
From a simultaneous solution of the above
Oy ‘/"M ¢t i=0,1,2, (130)
where
é Qm - cnmn
BT o—e—mm—— Y
m 1oc? (131)
Omer = L (132)
and
. _ Qunz 'cnm
Opyg S (133)
1-¢2

ELIMINATION OF CONSTRAINT TORQUES

The partitioned matrix form of the simultaneous vector-dyadic equati uns of motion for
the coupled N-body systam are from Equation (88) given by

~ 4 z

X, r P n° 7 o 0! ¢!

-=r==1 Yot = 4§t - ¢ {e==) ¢ (===} ¢ {a=-
T ° H

e By 0 ¥ 62 62 0
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To obtain a solution of this equation, the forces and torques of constraint, defined by
the elements of the matrices {¢c'} and {q)c’ }, must be either analyically defined or

the equations restructured so as to eliminate them. The latter approach, used by Hooker,
is adopted here.

To restructure the equations and eliminate the necessity for evaluating the forces and

torques of constraint, the procedure outlined on page 27 in the section entitled Equations
of Motion (Matrix Form) is followed.

From Equation (123),

3,‘:26 > k=1,2,...,N,N+1, (134)

m@k-{
where k = N 4 | implies the inertial origin. In a paralle! manner
w =0,.q,. m=l.....M, (135)

where the index j is defined by Equation (91),

Differentiation yields

> . o (136)
W, = E 0.3, +0_ g ’

and

w_ =63 (137)

m

where the closed and open dots imply, as before, differentiation with respect to the
inertially fixed and locully fixed reference frames, respectively.

In order to put Equaticns (134) through (137) into the inatrix format required for
substitution into Equation (88), the following definitions are made.

I_qJ = (N +1) X (Ng - M) rectangular matrix of the free coordinate vectors.
The vector element in row Kk, column m is

q. m if free vector m is defined between bodies J(k) and k
I.m 0 if not , (138)



b.k = N+1

Ifm if free vector m is defined at the inertial origin 139)
= (
Wm = 1o if ot

[h] = M X M square matrix of th> free coordinate vectors existing along
momentum-wheel spin axes. The vecto. elcment in row m, column n is
- . .
qNF M+m ifm=n
o = ) (140)
0 im#un,

o}

(Ng-M) X1 column matrix of scalar ratcs about or along the free
coordinate vectors existing between bodies and at the inertial reference.
The scalar element in 1Ow m is Om .

{éw}= M X 1 column matrix of momentum-wheel relative rates. The scalar

element in row m is ew .
m

Making use of the matrix notation, one mav write

l .
5 6
l_ii_]= l_‘L;LP_J l-] (141)
Wy 01 h]ji6y,

and

Sl

To eliminate the forces and torques of constraint, note that at every point from or about
which relative motion is measured, the constraint vector is normal to all free coordinate
vectors defined there. Thus it follows that the matrix vector-scalar product equation

q:O T et 0
s B '0‘ (143)
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can be used to eliminate the forces and toraues of constraint from Equation (88) and
restructure it into a set of simultaneous scalar equations.

Direct application of Equations (141) through (143) in Equation (88) yields

B ESNRSIA

+l."'. ] . {ﬁ‘} + {ff“ o
v o 0 l )

Equation (144) defines the N scalar equations which completely define the motion of the
coupled N-body system. These equations have been programmed for numerical solution
and form the basis for the digital computer program N-BOD.,

By intent, the only elements in Equation (144) which have not been extensively discussed

are the elements of the matrices
e o)

The elements of these matrices cannot in general be generalized. They define the forces
and torques due to mechanisms existing between contiguous bodies, such as springs,
dashpots, motors, and so forth and the forces and torques associated with effects external
to the N-body system. The inclusion of several effects often encountered will be discussed
in the following sections.

FORCES AND TORQUES DUE TO NONGYROSCOPIC EFFECTS

Most problems of practical interest involve the inclusion of one or more nongyroscopic
effects into the equations of motion. For example:

a. Contiguous bodies may be viscoelastically coupled at their respective hinge
points.

4]



b. Control systems may exist which, based upon a given set of control laws,
activate motors that drive contiguous bodies relative to each other or alter the
angular rates of momentum wheels.

c. Thrusters controlled by an active control system may exist at various points in
the N-body system.

d. The system may be disturbed by one or more forms of environmental loading
such as that due to gravity, gravity gradient, thermal, solar pressure,
aerodynamics, etc.

It is a relatively simple matter to include any or all of these effects in the matrices

)6 1
defined in Equation (144).

ELASTIC COUPLING OF CONTIGUOUS BODIES

Springs can be placed between any pair of contiguous bodies. These restrict relative
rotational motion for rigid bodies and relative translational motion for point masses. The
springs may be either linear or nonlinear; however, for simplicity, this discussion
considers only linear springs which restrict motion about or along free coordinate axes.

Consider the nest k - 1. Note that at every hinge point between bodies contained within
the nest k - 1 spring forces and torques appear in equal and opposite pairs and thus
exactly cancel each other. At hinge point k - 1, however, the reactive spring torque
(force) is external to the nest k - 1 and must be treated as an external disturbance.

Assume that 'q‘)m is a free coordinate vector defined at hinge point k - 1 and that the
motion about or along G’m is restrained by a linear spring.

Let
K. =  spring constant of the linear spring which restrains motion about
or along the free coordinate vector (Tm s
then
-K_, 6, ﬁ’m =  spring torque (force) associated with the relative angular

(translational) displacement 6 of the contiguous bodies k and
J(k) about (or along) the free coordinate vector q"rn .

It follows that the net reactive spring torque (force) at hinge pointk - 1 is

- - (145)
E Knb,d, k=1,2,...,N+Il,

m@k-1
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where the summation extends over all free coordinate indices m defined at hinge point

k - 1 of body k, for k = N + i the free coordinate indices defined at the inertial origin
are used.

This vector quantity must be added to the k™ row of {¢H‘} .

Similarly, if the momentum wheel n is elastically coupled to the body in which it is
imbedded, the spring torque

Ky Oy Ty (146)

where

m=N.-M+n, (147)

must be added to the n'® row of {¢H2} .

DISSIPATIVE COUPLING OF CONTIGUOUS BODIES

Dampers can be placed between any pair of contiguous bodies to retard relative motion.
For simplicity, only linear viscous-type damping mechanisms are considered. Nonlinear
dissipative devices such as hysterisis or Coulomb friction dampers can be incorporated
in the formalism; however, their modeling can become quite complex.

Consider the nest k - 1. As in the case of springs, the only reactive damper force or
torque acting external to the nest is the one defined at hinge point k - 1,

Assume that Efm is a free coordinate vector defined at hinge point k - | and that the
relative motion about or along Q. m is retarded by a linear viscous damper.

Let

D, = damping coefficient of the linear viscous damper which retards
motion about or along the free coordinate vector ﬁ’m;

then

-D,, ém ?fm damping torque (force) associated with relative angular (translational)
velocity 6 - of the contiguous bodies k and J(k) about (along) the
free coordinate vector q. m

It follows that the net damping torque (force) at hinge pointk - 1 is

-".@Zk-l Dméma’m k=1,2,...,N+1, (148)
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This vector quantity must be added to the k** row of {¢ ‘} .
Similarly, if the momentum wheel n is dissipatively coupled to the body in which it is
imbedded, the damping torque

-6, T, (149)

where
m=N.-M+n,
(150)

must be added to the n** row of {¢H2} .

MOTOR COUPLING OF CONTIGUOUS BODIES

Motors may be used to actively control the relative orientations ot contiguous bodies;
they may also be used to control the relative rates of momentum wheels. In most
practical problems of interest, the motor torques are defined as the outputs of an active
control system; the control system makes use of various system state variables and control
laws to define the appropriate motor torques required to achieve a predefinable

objective,

Let 6’m be the free coordinate vector between bodies J(k) and k about which a motor
exists. Furthermore, let

CL,, = scalar magnitude of the motor torque to be applied by the motor
about the free coordinate vector q_;

then
CL, ch = motor torque applied about free vector ﬁ’m to body k.

It follows that the net motor torque at hinge point k-1 is

Z CL, T, k=1,2,...,N+1. (151)

m@k-1

H
This vector quantity must be added to the k** row of {¢ ‘} .

Simnilarly, if the momentum wheel n is coupled by a motor to the body in which it 1s
imbedded, the motor torque

L @ (152)
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where
m=N.-M+n,
(153)

must be added to the n®™* row of [¢H2}.

LOCALLY APPLIED FORCES

The type of locally applied forces which most often occur in satellite simulation are those
attributable to gas jet firings. The location and force of these gas jets are definable. Let

-ﬁ,", = radius vector from the center-of-mass of body A to gas jet J which is
located on body A.
_l*!(}f)J = force associated with gas jot J of body A when fired.

It is perfectly admissible for the firing of these jets to be governed by a control l]aw which
is a function of the relative attitude motion of the system. It is also admissible for the
force to build up as some definable function of time.

From Equations (32), (33), and (34) it can be seen that the thruster acting on body A
produces a force which is external to every nest of bodies containing the body A. The
vector quantity which must be added to row k of {q& ‘} is

f >
0 if AeS, |
7O if A d k
) FA,J if AeS, , and keS;
G + R )X FO  ifXS.  and keS (154)
k-1,A A,J AJ k-1 R
.
) L=
{ Fo, ifk=N+1

wherek=1,2,...,N+1,

DISTRIBUTED FORCE FIELD

Environmental loading due to gravity, aerodynamics, solar pressure, and so forth produces
a force field which is distributed over the N-body system.

From Equations (18) and (19) let

'F){') = resultant force acting on body A due to the distributed force
field, and
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3)“" = resultant torque acting on body A due to the distributed force field.

Again, it follows from Equations (32), (33), and (34) that the vector quantity which must
be added to row k of {¢%1} is

[ F© A=k, keS,

. -,
Z [Ty’k_l.}‘ X F® + ¢{°’] keSg

y J\GSk_l (155)

) -
Z Fé k=N+1,

AeSo

\

For the particular example of an earth based system subject to a uniform gravitational
force field, the gravity force acting on body \ is

->» ->
FO© _ A (156)
A=-mgf,,
where
g = acceleration of gravity,
7
B, = unitvector directed from the earth’s center to the center-of-mass of

the composite N-body system.

Furthermore, since the gravitation force is distributed uniformly through the entire
volume of each body,
2() _

#x = 0.
(157)

In this situation, B: is measured from the inertial origin which does not necessarily have
-
to be at the earth’s center. @0 is simply a unit vector, which can be expressed in any

coordinate system that is constant in the inertial reference frame.

ORBIT DEFINITION

To incorporate into the formalism the ability to study gravity-gradient effects or to
include earth, sun, or star sensors in an active on-board control system simulation, a
rudimentary definition of the orbit must be made.
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Assune that the satellite is in an elliptic orbit around a spherical earth (see figure 3).
To define the orbit, the following quantities must be given:

a = semi-major axis of elliptic orbit,
e = orbit eccentricity, and
T, = time of perihelion passage.

From these quantities and elementary orbital mechanics, one may compute

By

distance from earth center to composite system center-of-mass,

v = true anomaly.
ELLIPTIC ORBIT
/ b
PERIHELION
v
]
i
|— g ———]
Figure 3. Elliptic Orbit Notation
Let
G, = earth’s gravitational constant;
then the orbit period P, is
3
P =2m =, (158)
Ge
the mean motion 7, is
2n
n, ==, (159)
PQ
and the mean anomaly M, is
M, =7, -T). (160)
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From Kepler’s law, the eccentric anomaly E, is given by

M, = E, -esinE,. (161)

It has been shown in various texts that

g, =ad £y= 20 162
p =a(l - ecosE, Tt ooy’ (162)
and
" A 1 +e E
or
cosEe-e
cosv = ———, (164)
l-ecosEe
and V1 - etsinE,
gfiny = — . (165)

1 - ecosEe

The problem is to obtain E, as a function of M,. By the method of Lagrange, Moulten
(Reference 8) shows that

2
e
Ee = Me + esinMe +-; sin2Me

03 2 .
+ (3°sin3M_-3sinM,))
3122

(4*sind4M_-4-2%sin2M,)

(S*sinSM, -5+ 3%sin3M, +10sinM,)

(65sin 6M, -6+ 45 sind4M, +15+ 25 sin2 M) +...
(166)
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The expression converges rapidly for small values of eccentricity and can be suitably
truncated in application,

In any reference frame fixed in time, relative to an earth fixed-reference frame, the vector
30 from the earth’s center to the composite center-of-mass of the N-body system may be
written as
s
By =Byl
o Polo (167)

-
where the magnitude of f, is defined above and the components of the unit vector ﬁo
are trigonometric functions of v, the true anomaly.

GRAVITATIONAL FORCE FIELD FOR ORBITING SPACECRAFT

For large orbiting spacecraft, it is improper to assume that the gravitational force is
uniformly distributed through the entire structure. For a significant class of problems,
gravity-gradient effects can influence the attitude dynamics of the spacecraft.

-
From Newton’s law of gravitation, the gravitational force Ffi acting upon the mass
element m, 5 of the body A in the N-body model of the spacecraft is

-
>0 T
Fg, = -G m,, T (168)
Gy * Tiad
where
G, = earth’s gravitational constant,
77'1 ai © vector from the earth’s center-of-mass to the mass element m, i
Let
Ho = vector from the earth’s center-of-mass to the composite N-body system’s
center-of-mass,
-8; = vector from composite N-body system’s center-of-mass to the center of
mass of body A, and
-
R,; = vector from the center-of-mass of body A to the mass element m, ; .
Then
- e 169
Tiag = Bo + 64 * Ry, (169)
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By substitution of a truncated binomial-series expansion for the denominator of

Equation (168) it follows that

@+ G, + R,

L

¥G = 3
FY = -Gomy,hy ["3

Conversion to vector-dyadic notation and deletion of second-order terms yields

- - ->
G = PG G
Fya = Fad + 8F

where

260 2
F\? "Gemx,iBBz"o

»

and

—’G - -3 ? —K . - ->
AF = -G m, 8" (1-38,85) < (6, + R, ).

] ' (30“5,\'*11,“,)

(170)

(171)

(172)

(173)

The resultant gravitational force and torque acting on body A is obtained by a summation

over all mass elements contained within the body.

ree] _‘E :"c = 23
F}\O—‘ F o = 'Gemxao Bo

A

26 . ; 2 3 z 7 -
AFy = ‘;‘JAFM =-G,m, 8" (1 - 3B,By) * 8,

”G_z:" 2Go <
¢o0 = RMXFA'?-O

ieA '

-,
5 - 2% x aie, 36420, x o,
A Rk.i X AFAJ 3Ge 60 60 X d)k EO

ieA
where
E - . - -
¢ = e my IRy, "Ry )1 -R, (R ]
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(178)
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and

m, 'Em“- (179)

fex

For any simulation problem in which gravitational effects must be considered, two
approaches are available.

a. The inertially fixed reference is chosen to be fixed at the earth’s center-of-mass.

Then recall
Z?: =  vector from inertial origin to center of mass of body 1,
hence
g, =8, -%
() 1 1 (180)
From Equation (154), the vector quantity to be added to row k of { () 'l is
7o + AFO A=k, keS,
- -> -
| &2 Taa X (B0« 88D + 681 keSy (181)
_s_ oo
[ AeS, k=N+1.

This approach simultaneously solves for both the orbit and the attitude dynamics of the
modeled spacecraft. It should be recognized, however, that digital solutions may be
subject to significant numerical error, since the orbit parameters will differ from the
attitude-dynamics parameters by several orders of magnitude.

b. The inertially fixed reference is chosen to be fixed at the composite system
center-of-mass. In this approach, the orbit position vector , is defined by
Equations (162) through (166), and

3‘ =5 . (182)
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Since 30 is known,FA % must be deleted from Equation (181) to ob*ain the
perturbing force due tu gravity-gradient cffccts‘;nlonc. Then from Equation (181),
the vector quantity to be added to row k of {¢" } is

)
- . - -
AFS A=k, keS,
{ (183)
- . -
Z [T, 5 X OFS + 207 | keS,,
AeSy o
0 k=N+1.

THERMALLY iNDUCED MOTION

The effects of appendage deformation due to time-vary.ng thermal gradients can under certain
conditions adversely influence the attitude dynamics and at times even the attitude stability
of spacecraft. For example see Reference 9.

In a directional (solar) thermal field thermal gradients across the diameter of an appendage are
not ¢stablished instantancously, but grow exponentially to a steady state value with a specif-
ic thermal time constant. The thermal gradient distribution along with the thermal expan-
sion properties of the appendage define an instantancous position of thermal equilibrium,

If the appendage has finite mass and stiffness characteristics the rate at which it will actually
move to the thermal equilibrium position wiil be governed by its natural frequencies of
vibration.

Virtually all spacecraft attitude dynamics problems attributable to the effects of thermally-
induced deformation stem from the fact that, relative to the appendage, the direction and
magnitude of the solar thermal field changes at a system natural frequency. This change in
thermal input can be caused by such effects as three-axis rotational motion of the space-
craft, shadowing, or torsional motion of a torsionally weak boom.

To investigate su.ch problems a crude model of thermal deformation is usually sufficient for
worst case type enalyses. The particular modeling tool which has been successfully em-
pluyed by the author, within the confines of N-BOD., is a thermal spring: that is. a spring
which has a time-varying thermal equilibrium position.



Assume that body k has a tendency to thermally deform and that the deformation can
be adequately modeled as an angular rotation of the body about the free coordinate vector

Let

0:1 (t) = angular amount body k must rotate at time t about free coordinate
vector a’m to be in a staie of thermal equilibrium.

Furthiermore let the positic:: of thermal equilibrium 0; be governed bv the solution of the
heat conduction equation

ST
% o7 +-Tl: 0:'=73 @0y ) (15)
where
Tm =  thermal time constang;
93,1 =  asteady state angle of thermal deformatior about a’m (calculated
assuming constant thermal field normal to ﬁ’m ). and
f,.. @,,....0y F) =  afunction of kinematics which defines the changing magnitude and
direction of the thermal field relative to the body k fixed reference.
Then if
K, = spring constant of the linear spring which restrains motion about the

. -
free coordinate vectorq_ ,

- Ty . . .
Kn @, - 6,) Iy thermal spring torque about the free coordinate vector Ei’m which tends

to drive body k to its position of thermal equilibrium.

It follows that the net reactive thermal spring torque at ninge point k-1 is

-E K, 6. -60)d, k=1,2,..,N (185)
m@k-1

This vector quantity must be added to the k* row of {¢"l} .

Goddard Space Flight Center
Natiunal Acronautics and Space Administration
Greenbelt, Maryland January 1974
630-21-75-01-51
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SYMBOLS

Semimajor axis of elliptic orbit

Force associated with the mass of body A and its combined
centripetal and Coriolis acceleration

Control torque about free coordinate vector G’m

Damping coefficient of linear viscous damper which retards motion
about free coordinate vector ?fm

Eccentric anomaly

Eccentricity of elliptic orbit

Resultant of external forces acting on body k

Resultant force of constraint acting on body k through hinge point
k-1

Resuliant force acting on body k due to all mechanisms existing
between bodies J(k) and k at hinge point k-1

Resultant external force applied to point i of body k
Resultant of all external forces applied tuo body k

Matrix operator which uses the components of quaternion AE, o to
define transformation matrix [,\,f]m)].

Earth’s gravitational constant

Pseudo-inertia tensor of body A with respect to the origin of nest k - 1
and the hinge point i- |

Linear momentum of body X relative to the inertial origin

Acceleration of gravity

Inertial angular momentum of momentum wheel m
Relative angular momentum of momentum wheel m

(M X M), square matrix of free coordinate vectors along momentum
wheel spin axes
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Inertia tensor of momentum wheel m about its center-of-mass

(N + 1) X M, rectangular matrix of momentum-wheel inertia tensors
M X M, square matrix of momentum-wheel inertia tensors

Body label of the body to which body X\ is attached at hinge
point A-1

Spring constant ¢’ linear spring which restrains motion about free
coordinate vector §_

Inertial angular momentum of body A relative to the inertial origin

Inertial angular momentum of momentum wheel m relative to its
conter-of-mass

Inertial angular momentum of body X relative to its center-of-
mass

Total number of momentum wheels
Body label of the gyrostat in which momentum wheel m is e.nbedded
Total mass of body A

Mass of mass element i of body A
Mean anomaly

Total number of rigid bodies, gyrostats, and point masses

Total number of free coordinate axes

Total number of locked coordinate axes

Total number of coordinate vector triads

Total number of free and locked coordinate axes
Orbital period

Total number of constrained axes at hinge point A-1 of body A

Set of unit locked coordinate vectors which span the N, -dimensional
vector space in which motion is totally constrained

Set of unit free coordinate vectors which span the N -dimensional
vector space in which motion is possible

Quaternion operator, which maps vectors into quaternions
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[X]
(X2, X2, X?)

X, X3, X3)

(N+1)X (Ng - M), rectangular matrix of free coordinate vectors

Position vector from center-of-mass of body A to mass point i of
body A

Set of all rigid-body, body labels
Set of all point-mass body labels

Set of all body labels

Set of all body labels of those bodies outboard of hinge point k - 1,
relative to body 1. Body labels of those bodijes in nest k - 1

Set of all body labels associated with thosc bodies lying on the
topological path from hinge point k - 1 to the center-of-mass of
body A

Tensor operator which maps vectors into skew symmetric tensors of
rank 2, dyads

Time of perihelion r.ussage

Transformation matrix, takes vectors from computing frame to
body A fixed coordinates

Transformation matrix, takes vectors from body J(A) to body X fixed
coordinates in the nominal zero stress state

Transformation matrix, takes vectors from body J(A) to body A fixed
coordinates at time zero

True anomaly
Dyad in *he k™ row, i column of [X]
(N + 1) X (N + 1), matrix of inertia and pseudo-inertia dyads

Coordinate axes defined at inertial origin
Coordinate axes fixed in body A at hinge point A ~ 1

Position vector from hinge point A - 1 of body A to the
center of mass of body A

Position vector from hinge point A - | to nominal position of
point mass A

Position vecter from inertial origin to composite N-body system
center-of-mass
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Unit vector aligned with 30
Position vector from inertial origin to hinge point 0 of body 1

Position vector from hinge point J(\) - 1 to hinge point A - 1 of
body A

Position vector from inertial origin to center-of-mass of body A
Position vector from hinge point k to the center-of-mass of body A\
Skew symmetric tensor form of the vector ¥, ,

Position vector from composite N-body system center-of-mass to the
center-of-mass of body A

Rotation quaternion
Mean motion

(N +1) X 1, column matrix of forces and torques associated with
centripetal and Coriolis acceleration effects

(N + 1) X 1, column matrix of torques associated with the inertial
angular momentum of rigid bodies about their own centers-of-mass

M X 1, column matrix of torques associated with the inertial
angular momentum of momentum wheels about their own centers-
of-mass

Displacement about or along free coordinate vector Efm

(Ng - M) X 1, column matrix of all ém m=1,2,...,N.-M
(M X 1), column matrix of all§, m=N, -M+1,..., N,
Inertia tensor of body A about its center-of-mass

Resultani torque acting on body k due to external causes

Resultant of external torques acting on body k

Resultant of external torques acting on momentum wheel m

Resultant torques of constraint acting on body k through hinge
point k - 1
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Resultant torque of constraint acting on momentum wheel m
Resultant torque acting on body k due to all mechanisms existing
between bodies J(k) and k at hinge point k - 1

(N + 1) X 1, column matrix of forces and torques of constraint
acting between bodies

M X 1, column matrix of constraint torques acting on momentum
wheels

(N+1) X 1, column matrix of forces and torques due to mechanisms
acting between bodies

M X 1, column matrix of torques due to mechanisms acting on
momentum wheels

(N + 1) X 1, columr. matrix of forces and torques external to total
system acting on rigid bodies and point masses

Angular velocity of body X fixed coordinates relative to the
computing frame fixed coordinates

Angular velocity of body A fixed coordinates relative to inertially
fixed coordinates

Angular velocity of body A fixed coordinates relative to body J(A)
fixed coordinates

(N +1) X 1, column matrix of quantities &,,A=1,...,N+1
-
(N +1) X 1, column matrix of quantities &, ,A=1,...,N+1

Inertial angular velocity of momentum wheel m
Relative angular velocity of momentum wheel m

Column matrix
Square matrix
Rectangular matrix

-
Vector R

—)
3 X 1 matrix of components of vector R relative to body A fixed
coordinates

—
Quaternion of vector R relative to body A fixed coordinates
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R Time derivative of vector R relative to inertial fixed reference frame
Q "
R Time derivative of vector R relative to local reference frame i
5
R Same as R when no confusion as to which local reference frame
differentiation is with respect to
1 Unit dyad
Summation over all indices i contained in the set S, |
ieS, ,
Summation over all indices i of vectors defined at hinge pointk - 1
i@k-1
Multiple product over all indices k contained in set S, , in
decreasing order of magnitude
“‘So,;\-n
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APPENDIX
QUATERNION TECHNIQUES

The quaternions of Hamilton constitute a four-dimensional vector space, over the field of
real numbers, with respect to a basis of four special vectors denoted by

(LE.58}.

The algebraic operations for quaternions are the usual two vector operations of vector
addition and scalar multiplication, plus the operation of quaternion multiplication.

In four dimension vector space the quaternion { can be defined as

£
P
;
%
¥
13
%
!
H
!

f=°o+e1§1+°2§2+"'3§3’ (A-1)

Pp—

where
(5.58)

is the set of four linearly independent basis quaternions and
{eo, €,€,, e, }

are real numbers. The product of any two of the basis quaternions is such that 1 acts as
the identity and the multiplication table

£ =.1i=1,2,3 (A-2)
EE =-LE =§, (A-3)
LY, =-5E =§ (A-4)

, LY =-LL =% (A-5)

! e

i is satisfied.

: Quaternions are most commonly used in conjunction with vectors to describe the effect

) of either a rotation of a vector or a transformation of coordinates. Accordingly, an

; operator is defined which takes vectors into quaternions and vice versa.

|

!

;
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Let
&£ = quaternion operator which takes vectors into quaternions
and
2! = inverse quaternion operator which maps quaternions into vectors
If
X
- = :
{R} w S = column matrix of the components of the vector R relative to
the body J(A) fixed coordinate axes,
1)
(6]
(A-6)
then
2 =y - * _’ 13
2( {R] i = Ry = quaternion representation of the vector R given (A-7)
relative to body J(A) fixed coordinates
where
Ry =%, +y, E +2,F
J(A) 1™ 132 1*3 (A‘S)
and
+ ® - i)
27 Ry = Rlsgy (A9)

Euler has shown that an arbitrary rotation of a rigid body about a fixed point is always
equivalent to a rotation about a line passing through the point. 1t follows that the relative
orientation of the coordinate axes fixed in body J(A) and in body A can be completely
defined by specifying the direction of the line about which and the angle through which
the coordinate axes § X!, X}, X’s(”} must be rotated so that its axes are respectively
parallel to those of the coordinate axes { X}, X}, X} } .

Let

@ = The unit vector aligned in a right handed sense along the axis about which

the coordinate axes {X’l‘”, XM, X’s(")} are rotated, and
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-

6 =  Angle through which the coordinate axes {X’I("), X0, X;‘”} are
rotated about Ff s0 as to be respectively aligned with the coordinate
axes {X3, X3, xA}.

—
Several texts have shown that the components of R relative to body A fixed coordinates
can be obtained from the quaternion equation

.RJ(M = J(A)fx ﬁx J(A)fi (A-10)
where
J(A)EA = cos0/2 + "[({‘T}J(A)) sin 0/2 (A-11)
J(A‘F: = cos /2 - "2({6}10\)) sin 9/2 (A-12)
and
X
27V (R = {_)] -
2TRO = AR =y (A13)
i\

By expressing J(?\)EA as

8 T8 t ek e .gz + ek, (A-14)

it is shown by the direct quaternion multiplication of Equation (A-10) that

Xk ty Er s
2 2 . a2 2 F
[(e0 tel-e; -e3) x +2 (e -eoes)y+2(clc3+coe2)z] £
2 2 2 2 i3
+ [2(eoe3 tee)xt(eg-elte -el) yt 2(c, e, -e e) z] £,

2 2 .2, .2
+ [2(e; e, - ege,) x + 2(e ey +ege) y +(eg -e] -5 +¢3) z] Es,

(A-15)
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or in matrix notation

2 2 _ .2 _ o2 .
eqg t ey ~e; - ey 2(e, e, - eye,) 2(e, ey T epe,)
- -
= - 2 - -
lR}m) 2egey teye)) G-t - 20 et ggey) {R}A
L) . 1 2 L2 2
2(e, ¢, €y €,) 2(e,e, tege, eg - €y - ey tey

- -
= a4l {R}A
(A-16)
where

transformation matrix which takes vectors from body A fixed
coordinates into body J()) fixed coordinates.

[J(A)"'A]

From this development it can be seen that a matrix operator .# can be defined such that
for the quaternion

T=ep e f, +e,F + ek, (A-17)
eg+ef-e§-e§ 2(e, ¢, - ey€y) 20, ¢, + ege,)
FE@) = 2(epey €, ¢,) eg - ef + eg - e§ 2(e, ¢, - €5€,) (A-18)
2(e, ¢, - ege,) 2(e ¢, + ege,) el - el - ¢ L
Note that from the above definition
FGadn) = Loy Al (A-19)

In many practical problems it is infeasible to define the particular eigenvector q and angle
6 which takes body J(A) fixed axes directly into body A fixed axes. It is possible, however,
to define several successive rotations through given angles and about given axes which will
bring the two coordinate axes into alignment.

Suppose for example that m coordinate rotations are required to conveniently rotate
tody J(A) axes into body X axes. The rotations are as follows:
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a. Rotate body J(A) axes about Ffl thru angle 6, into intermediate reference
frame 1,.

b. Rotatc framc i, about Ei’: thru angle 9, into intermediate reference frame 1.

-
¢. Proceed sequentially until frame I, is rotated about (Tm thru angle 6 into
body A fixed frame.

In quaternior. notaiion this rotation sequence is given by

i = by by e S R TR SERN R

R 2 m-1 ) w\)fl'l ’ (A-20)

where

By = eos0y2 ¢ y({a’i},i_l) sin 0,2 (A-21)

and
-
(@)
4

The resultant quaternion which takes body J(A) axes directly into body X axes is
therefore given by the quaternicn product

components of vector ff, relative to the intermediate reference frame ||
-1

J(A)Z:A = J(A)?l, l?l I (A-22)

The application of quaternions to the development of coordinate-transformation matrices
has been demonstrated in the preceeding paragraphs. Quaternions are also used to define
vector transformation matrices; that is, a quaternion equatnon can be defined whuh
describes the effect of the rotatlon of an arbntrdry vcctor R about an cigenvector q

through the angle 6 into a vector R If both R and @ are defined in the body X fixed
coordinates, then

1, ¢ (A-23)

where

T =cos0/2 + ,J.)({(T}A)sin 0/2, (A-24)
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-
Note that the components of the vector R are given relative to the same reference
. ¢ - . ! . . .
frame in which R and @ are given. Furthermore, by making use of the matrix operator

; F(§) defined by Equations (A-18), Equation (A-23) can be expressed in matrix notation
as

“ el i )

% A ‘ 1) A (A.:'])
%

; Dircct comparison of Equations (A-16) and (A-27) reveals that the transpose of the

: coordinate transformation matrix is the vectcr transformation mutrix.

i

i

i
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