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ABSTRACT

This report presents two simplified methods to estimate the test criteria of primary structures
at component attachment points subjected to broadband random acoustic excitations. The
current method utilizes a constant smeared component mass attenuation factor across the
frequency range of interest. The newly developed method indicates that the attenuation
factor is based on a frequency dependent ratio of the mechanical impedances of both the
component and primary structures. These procedures to predict the structural responses are
considered as the present state-of-the-art and will provide satisfactory prediction
results. Example problems were used to illustrate the application procedures of these two
methods and to compare the significant difference. It was found that the lower test criteria
can be obtained by the impedance ratio method and this is due to the results of considering
the effects of component/primary structure interaction.
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The work performed consisted of the developmen® and illustration of the impedance ratio
concept. Efforts were also made to evaluate the impedance ratio concept and the constant

mass attenuation method with structural exomple problems. The computation of input impedances
of component and primary structure were based on nomograms and design charts developed under
Contract No. NAS8-25811.
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1.0 INTRODUCTION

Research in seeking practical techniques or methods for predicting vibration environments of
space vehicles subjected to random acoustic pressure has gained considerable attention in
recent years. As a result, seve-al methods and techniques have been developed for dynamic
environment predictions. Of thase methods, Barrett (Reference 1) used a standardized
approach to predict vibro~acoustic environments with sufficient conservatism to meet design
and test requirements. This approach or so-called constant mass attenuation method is based
upon the fact that similar structures have similar response characteristics but do not account
for the component-primary structure coupling effects and the characteristics of frequency
variations, However, it does provide a means to estimate the response of highly complex
structures with only o few simple computations. Other methods such as described in References
2 and 3, vutilize mechanical impedance concepts to predict broad frequency range vibration
criteria. The impedonce method was derived from a one-dimensional mathematical

model and the prediction equation is expressed in terms of four types of parameters at com-
ponent mounting locations. These parameters cc sist of input impedance of primary structure,
input impedance of component package, acoustic mobility and blocked pressure spectrum.
The predicted environments obtained from this method have been shown to be accurate and
conservative within acceptable tolerance limits.

The objective of this report is to present the above two prediction methods and to compare
their predicted results. A description of these methods is presented in Section 2.0, In
Section 3.0, the approximate equations used to compute the four impedance parameters for
the impedance prediction equation are described. The approximate equations were further
converted into nomograms and computation charts and the resultants, and its application
guidelines are given in Section 4,0, In Section 5.0, example problems are used to demon-
strate the application procedures and to compare the difference of these two methods.
Finally, a summary of the mechanical impedance method and the concluding remarks are
described in Section 6.0. The development of the impedance prediction equations are
described in detail in Appendices A, B and C,



2.0 METHODS FOR PREDICTING ENVIRONMENTS

2.1 Constant Mass Attenuation Method

The equation for predicting the vibration environment of acoustically susceptible structures

is (Reference 1):

where:

2 2
P p_h
G =¢6 (2= SSLEN I 2.)
: ' P pnhn

the vibration response of the new vehicle structure at a
particular location. The term G is the acceleration due
to cyclic motion divided by the acceleration of gravity.
Since rocket vehicle vibrations contain many frequencies
the response magnitude (G) is specified in mean square
spectral form.

the known vibration response of a reference vehicle
structure. This veluz has been determined by measurements
and is also presented on a spectral basis.

the thickness of the skin associated with Gr.

the skin weight density of the reference structure.

the impinging acoustic pressure which is driving the
reference structure.

the skin thickness associated with Gn
the skin weight density associated with Gn

the acoustic pressures impinging upon the new vehicle
structure. This pressure must be predicted.

a factor which accounts for the attenuation effects produced
by incorporating additional mass into the existing system.

The ~bove equation applies to random rms composite values or to sinusoidal values. The
cor. - ot used to derive this equation is based on the assumption that similar structure
exhibits similar dynamic characteristics. Once the frequency and amplitude characteristics
of o typical type of structure have been adequately defined, these results may then be
utilized as a basis for predicting the vibration environment of like structures.



The foregoing equation is applicable to localized vibratory environments and is valid for

all materials. It is invalid when considering large sections of vehicle structure (i.e., entire
cylindrical tank). However, the static loading of these large sections is the critical design
factor and localized dynamics thereby produce only negligible effects.

In Equation (2.1), the expression indicates that for a constant driving power the structural
response decreases as the weight dersity increases. For an item of component to be mounted
on the structure in which the vibration environment has previously been defined, the

vibration responses will be decreased by a factor of F. Therefore, the loaded response spectra,
Gc' of the structure with component attached can be expressed as:

(2.2)

where: W

. effective weight of primary (support) structure.

Wc = component weight.
When determining the effective weight of structures, the radial distance should not exceed
three times the distance between rings. This is because the dynamic characteristics of thin
plates remain essentially constant above aspect ratios of three. In the preliminary develop-
ment period, the weight of the basic structure or component may not be known and the attenua-
tion factor is considered as unity. This will result in an estimate of the vibration environment
which may tend to be conservative.

2,2 Impedance Ratio Method

The response prediction equation is derived based on a one-dimensional structural model.
By applying Thevenins' and Norton's theorems to this model, the relationship between the
unloaded and loaded response spectra is obtained and can be shown to have the following
expression (References 2 and 3):

Z (w) 2

¢C'¥(w) = ¢a(u) . mﬁ (2.3)

where: ¢ ' (w) = Power Spectral Density (PSD) of loaded response spectrum.
o



¢Ly(u) = PSD of unloaded structural response spectrum.
Zs(w) = Input impedance of primary support structures.
ZL(w) = Input impedance of component package.

w = Frequency parameter.

An anolytical approach to compute the unloaded response spectrum has been established
(Reference 4 ), and the equation is given as follows:

= . 2
6 = o0 | aw | (2.4
where: ¢p(u) = Blocked sound pressure spectrum,
a(w) = Acoustic mobility of the structure.

The derivation of Equations (2.3) and (2.4) is presented in Appendix A. Equation (2.3)
shows that the loaded respornse spectrum is equal to the response spectrum of the
unloaded structure multiplied by the ratio of the impedances. The term | Zs(u) / Zs(w) +

ZL'u) I serves as a magnification factor for both the unloaded and the corresponding loaded

spectra and its value will approach unity when the structural impedance, Zs(w), becomes

infinite. The impedances expressed in Exuation (2.3) can be obtained directly from measure-
ments on the actual structure. Nevertheless, all of the above quantities can be obtained through
analytical prediction techniques. The equations and guidelines for predicting the input
impedance and unloaded response spectra of structures are presented in the subsequent sections.
The computation of the loaded response spectrum is illustrated by an example problem as described
in Section 5.0 of this report. A flow chart indicating the computation sequence is shown in
Figure 2.1.



3.0 IMPEDANCE DESIGN EQUATIONS

3.1 Prediction of Structural Impedances

Input impedances, ZL(u) and Zs(u), in the impedance ratio equation are specified in terms

of the "force/velocity" format. Input impedance of component package, wiy,  d=fined
as an idea! damping, spring and mass system, ond is described in Append . 57 The - imary
support structures considered herein consist of basic cylindrical shells, longitudinal srringers
and ring frames. The cylindrical shells are stiffened by stringers in the axia’ direction, and
ring frames are attached inside the shell wall, The direction of vibratory respons. under
consideration is referred to as that normal to the skin which is excited by impinging acoustic
pressures. The stiffeners are not directly excited by acoustic forces but are driven by the
motion of adjacent panels. The approximate equations for predicting the input impedance of
these three structural components have been reported in detail in Reference 4 and are briefly
summarized in Appendix C. For the sake of completion in the presentation, this report encom-
passes all the pertinent equations from the reference necessary to compute the input impedance
of structures. The approximate equations are given in Table 3.1 in three different frequency
ranges as defined below (Reference 5):

) Low freq. ncy range or frequancies below the fundamental
frequency of the shell,

° Intermediate frequency range, and

° High frequency range or frequencies above the ring
frequency of the shell.

The evaluation of the stiffened shell impedances, Zs(u), is then obtained for the above

three frequency ranges as follows:

Low Frequency Impedances — The static stiffness is the predominant factor which
influences the input impedance. Due fo the lack of theoretic.| expressions for input
impedances of stiffened cylindrical shells, it is assumed that at low frequencies the input
impedance at any location follows the stiffness iine, this stiffness being equal to the summa-
tion of the stiffness of the individual structural elements that are present in that location.
Two cases are considered in this frequency range, namely:

° If the stiffness of the ring is small in comparison to the stiffness of the
stringer or the unstiffened shell, the overall stiffness can be computed
by adding the stiffness of the properly modeled structural elements
that are present at the input location, as follows:



= \
K K, +3° Ky +3, Ke Q.1

where:
Ks = static stiffness of shells
KB = static stifiness of beams or stringers
KR = static stiffness of rings

Thus the input impedance of a stiffened cylindrical shell at low frequency
follows a stiffness line whose value can be computed from the sum of stiffnesses
of structural elements at that point.

) For a stiffened cylindrical shell, if rings are sufficiently stiff in comparison
with the entire shell, these rings act like the boundary of structure panels.
Then the characteristic impedance .f the shell can be determined from the
length of the spacing between two adjacent rings.

= + .2

K K+ 2Ky 3.2)
The characteristic impedance represents the impedance of o str of such
a length that reflections from the boundaries are negligible. s .r words,

the resonance modes of a structure with any non-dissipative bourdury conditions
are identical to the resonance modes of a supported structure whose length is
equal to the distance between the node lines.

Intermediate Frequency Impedances — Within the intermediate frequency range,
which extends from the fundamental frequency to the ring frequency, the input impedances of
the test specimens can be evaluated as the combination of the characteristic impedances of the
primary structural components. The equation is written as:

= + +
z Zs ) ZB 3 ZR (3.3)
where: Zs = characteristic impedance of shells
ZB = characteristic impedance of stringers
ZR = characteristic impedance of rings

6



High Frequency Impedances —  The input impedance of a stiffened shell at high
frequencies depends on the location of a measurement point and is evaluated by the following
rules:

° Unstiffened (skin) Point — The input impedance approaches that
of an infinite plate of the same thickness.

° Stiffened Point — The skin and the stiffener(s) decouple dynamically
at high frequencies, therefore, the input impedance approaches that
of the stiffener(s).

) Stiffened Intersection Point — The input impedance at the centers of
short stiffeners segments are generally higher than those of longer
stiffener segments; and the impedance at an intersection of the
stiffeners is approximately equal ro the sum of the individual impedances
of the two stiffeners — the ring impedance and stringer impedance.

3.2 Prediction of Acoustic Mobility

Acoustic mobility, «(w), is defined as the ratio . ¢ the mean-square spectral density of the
velocity to the mean-square spectral density of the fluctuating pressure driving the structure.
This quantity is expressed by Equation (3.4) as follows:

(3.4)

where SG(Q) has units of (in./sec)2 /Hz, and Sp(w) is the blocked pressure spectral density

having units of (psi)2 /Hz. The blocked pressure includes the effects of reflection and thus
accounts for the pressure doubling effect when an object is immersed in a random pressure field.

Generally, the acoustic mobility for a given structure would be calculated based uyen modal
anolysis or statistical energy anclysis. However, for the purposes of presenting sin.plifiad
design techniques, empirical curves may be used for defining acoustic mobiliiy. The develop-
ment of these empirical curves from a broad range of available vibro-acoustic data is described
in detail in Appendix C of Reference 4. Only the main results will be presented in this report.
The besic design curves for acoustic mobility are shown in Figure 3.1 for two values of
damping: Q =20 and Q =200. In this figure, the normalized acoustic mobility derived

from the measurements is expressed as:

S% [ m\?
a'lv) - T <T3-> (3.5)



and has units of (in./sec) /in2 The abscissa of this figure is fD, i.e., frequency times
cylinder diameter in units of Hz - in,

In order to use the empirical curves of Figure 3.1, an estimate of the structural damping,
Q, must first be obtained. Then by stustituting for vehicle diameter, D, and surface
weight, m, the acoustic mobility S, /Sp (or @) may be determined as a function of

u

frequency, fHz. For structural G values other than those shown in Figure 3.1, the
acoustic mobility term may be intersolated since an increase in Q by 2 factor of 10
results in an increase in the acoustic mobility term of one decade.

3.3 Evaluation of Blockad Pressure

The blocked pressure spectrum, ¢P(u), is defined as the effective acoustic pressure acting

on a primary structure. The pressure is equivalent to that acting on a rigid cylinder which
has the identical geometrical dimensions as the piimary structure. This pressure can be
determined from the far-field sound pressure measi.rement and is given by (References 6 and
7):

r Pz ] (e 0]
3= Lblek) _ AkR2 D). € I H' (kR) | 2 (3.6)
p? ] m=0 ™
. far |
where: [ Pfor ] = measured sound pressure levels without the presence
of flexible structures
k = wave = 2wf/c
c = speed of sound in acoustic medium; for air
¢ = 13,400 in./sec
R = radius of cylinder = D/2
€. = Neumann factor = 1 for m=0,2for m>0
H;n(k R) = derivative of Hankel function of order, m



The foregoing equation is derived from an infinite panel and does not account for diffraction
effects of structures with finite length. However, the error due to diffraction effects is
considered as insignificant and will not influence the final results. In the frequency range
of interest, the rms blocked sound pressure is approximately 40 percent higher than the
measured sound pressure and such a conversion factor generally leads to conservative
estimates of the force spectra.

The curve representing the expression of Equation (3.6) versus fD is shown in Figure 3.2
and can be used to evaluate the blocked pressure spectra on the surface of cylinders ina
reverberant acoustic environment.



4.0 COMPUTATION CHARTS AND GUIDELINES

In order to minimize manual efforts in performing response computations, it is necessary
to reduce the derived equations described in Section 3.0 into the form of nomograms or charts
so that lengthly computations can be avoided.

All equations in Table 3.1 contain a frequency dependent and a frequency independent terms.
Therefore, by evaluating the frequency independent term, and later, combining with the
frequency dependent term, the impedance curve can be easily constructed. The approaches,
which are based on the separation of the frequency dependency to simplify the impedance
prediction, are presented below.

4.1 Nomographic Charts

A nomograph, in its simplest and most common form, is a chart on which one can draw a
straight line that will intersect three or more scales in values that satisfy an equation or a
given set of conditions. The equations summarized in Table 3.1 were converted into
nomographic forms, and are shown in Figures 4.1 through 4.6. Figure 4.1 evaluates the
static stiffness of the ring frame. By knowing the values of radius, R, and the flexibility,
El, of the ring, and connecting these two values on the R scale and the El scale with o
straight line, the intersection point in the K scale represents the computational resuit of
the given equation.

Figures 4.2 and 4.3 perform similar computations for static stiffness of beams and the
frequency independent part of beams and ring frames which is defined as:

1

Z =242 pa & 4.1
. p oA 4.1)

Figure 4.4 is a four-variable type nomogram for evaluating static stiffness of unstiffened
cylinders. By using one additional axis, T, which lies between the [ and R axes and need
not be graduated, the equation was broken into two three-variable equations and are handled
as the preceding way, i.e., connecting the £ scale and the R scale with a straight line,
then joining the intersection point on the T axis and the h scales with another straight line,
the intersection point on the K scale is the resulting value.

Figure 4.5 is used to evaluate the frequency independent part of the shell impedance as
defined below:

1

4 : [£ [(E)"
ZF = 7——3—— ph ;E <?> (4.2)



Figure 4.6 is used to evaluate the infinite plate impedance, Z , according to the expression
shown in Table 3.1. P

4.2 Charts for Computing Structural Impedance

The impedance of an ideal damping, spring and mass system may be represented by three
intersection lines. By using this approach, the driving-point impedance for beams and rings
based on the equations of Table 3.1 were represented by two sets of intersection lines varying
with the frequency as shown in Figure 4.7. In this figure, the line representing the proper
stiffness value is obtained either from the result of Figure 4.1 or 4.2 for rings and beams,
respectively, and the line defining the proper Zr value of the structure is determined from

Figure 4.3. The stiffness lines represent the impredance at low frequencies and the Zr lines

represent the impedance at high frequencies. The intersection of these two lines determines
the fundamental resonant frequency of the structural system. In this figure and the following
figures, a scale factor is used to obtain correct scale values for the standard diagrams.

The driving-point impedance for unstiffened cylindrical shells is shown in Figure 4.8, where
the Zr lines are replaced by the Zf lines. The lines represented the proper stiffness, Zf and

infinite-plate impedance are obtained from Figures 4.4, 4.5 and 4.6, respectively. At low
frequencies, the impedance of cylinders follows a stiffness line and ot high frequencies the
impedance is equal to the impedance of an infinite plate which has a constant value. Within
the intermediate frequency range, the input impedance may be represented by the Zf line.

The fundamental frequency and the ring frequency of cylinders are determined by the inter-
section of these three characteristic lines.

The impedance of the stiffened cylinder is equal to the I* ear summation of these component
curves and is obtained in the following manner:

° The logarithmic summation chart (LSC) shown on the upper portion
of these charts w?ll be used to compute the linear summation of
two impedance cur ves.

° At any frequency point, measure the difference of two impedance
values and use this length as the abscissas value in the LSC.

° The ordinate corresponding to the abscissas in the LSC is the resulting
value for these two curves in logarithmic summation.

° Add the length of the ordinate to the upper impedance curve, the
resulting curve denotes the linear combination of these two
impedances.



Figure 4.9 represents the impedance lines for the component package which are defined as an
ideal damping, spring and mass system. The graph shown on the upper portion of this computa-
tional chart will be used to compute the logarithmic ratio of two impedance curves. The
application of the LSC is similar to the procedure as described before except that the length of
the ordinate obtained from the LSC is subtracted from the lower impedance curve. The usage
of the LSC is demonstrated in Section 5.0.

4.3 Charts for Computing Blocked Pressure

The conversion of a far-field sound pressure spectrum into a corresponding blocked pressure
spectrum is achieved by multiplying the far-field pressure spectrum by the correction
coefficient, 3, as shown in Figure 3.2. To obtain the ‘, 3 -coefficient for a particular

cylinder in the frequency scale, it is accomplished by shifting the fD scale in Figure 3.2 to
the left for the amount corresponding to the cylinder diameter, D. For example, if the diameter

of a cylinder is 48 inches, the \/ 3 -coefficient for that cylinder is obtained by shifting the
fD scale by a factor of 48 to the left, as shown by the \, 3 -curve in Figure 4.10. The blocked
pressure spectrum of the far-field pressure spectrum is then obtained by adding the \’ 3 length

values at each frequency point to the far-field sound pressure.

4.4 Charts for Computing Response Spectrum

The unloaded response spectrum is obtained by the product of the blocked pressure spectrum
obtained from Figure 4.10, and the velocity acoustic mobility. The normalized acoustic
mobility curves as shown in Figure 3.1 must be converted to | o? l versus frequency format

for use in response computation. The conversion can be accomplished graphically by shifting
the abscissas scale to the left corresponding to the diameter of a cylinder, D; and shifting
the ordinate scale upward or downward corresponding to the quantity (m/D)? . For example,
by app|yin? the abovz procedures to an aluminum cylinder with D =48 inches, Q =20,
and (m/D)* =3.34 x 108 Ib/in3, the acoustic mobility for the cylinder is obtained and is
shown in Figure 4.11. The unloaded velocity resporse spectrum is obtained by summing up
legarithmically the velocity acoustic mobility curve and the blocked pressure spectrum as
xplained in Figure 4.11,

The impedance ratio and the unloaded response spectrum obtained from Figures 4.9 and 4,11,
respectively, are again plotted on a new computation chart for final computation. This chart
has the same form as Figure 4.11. At any frequency point the sum of these two curves shown
on the chart is the resulting loaded response spectrum for the design structural system.

Note that all charts developed in this section are in same length scale and the transfer of data
curves from one chart to the next chart can be easily done by overiay technique. Example
problems to illustrate this simplified technique to predict vibratory environments for space
vehicles are explained in detail in the following section.

12



5.0 EXAMPLE PROBLEMS FOR COMPARISON

To aid in understanding the computation procedures and to compare the results of these two
prediction methods described in Section 2.0, example problems are illustrated in this section.
The specimen used in the prediction consists of a basic cylindrical shell, four longitudinal
stringers and two circumferential ring frames. The basic cylindrical shell has overall
dimensions of 96.0 in. (length) x 48.0 in. (diameter) x 0.08 in. (thickness). All structural
elements were made of aluminum. The ring frames are built-up channel sections which are
attached to the inside surface of the shell wall by means of rivets; and, the stringers are
angle sections which are similarly attached to the outside surface of the shell wall, The
dimensions of the curved panels formed by the stiffeners were 32.0 inches and 37.7 inches.
Two heavy end rings consisting of angle sections were welded to the inside surface at the
two ends of the shell wall; and, thick circular plywood bulkheads were bolted to the end
rings, and are used to provide radial constraint at the ends of the shell wall, Its structural
configuration is shown in Figure 5.1. Overall dimensions of the cylindrical structure are
listed in Table 5.1. Details of structural configuration and corresponding test results can be
found in Reference 3.

The computations of static stiffness, Zr and Z ¢ for the primary structure components have

been evaluated previously as shown in Figures 4.1 through 4.6. The impedance computations
for the configuration with two ring frames and four stringers are illustrated in Figures 5.2 and
5.3. In the computation, it was assumed that these two rings act like end bulkheads with

high structural rigidity so that the effective length of cylinder becomes the length of the
middle segment which is equal to 32 inches., In Figure 5.2, the impedance for one stringer
and four stringers are plotted based on the values obtained from Figures 4.2 and 4.3.
Similarly, the impedance curve representing the unstiffened cylindrical shell is plotted in
Figure 5.3, in which the impedance representing the sum of four stringers is also shown,
except that at high frequencies where the structural system decouples dynamically and the
impedance approaches that of one stiffener only. In Figures 5.2 and 5.3, the plotting scale

is 10 times the correct value as indicated by Factor = 0.1. Based on the procedure of the LSC
as described in Section 4.2, the impedance of the stiffened shell which is equal to the linear
summotion of these two component impedances is obtained and is also shown in Figure 5.3.
Figure 5.4 shows the measured impedance data from Reference 5 along with the computed
impedance for comparison. Generally speaking, the comparison is considered quite satisfactory
both in low frequency and high frequency ranges. Fair agreement is also observed for frequen-
cies just below the ring frequency. Some discrepancies are observed in the intermediate
frequency region. Such discrepancies are attributed to the errors incurred in summing the
impedances of the stringers. Further refinements in predicting techniques to achieve a higher
degree of accuracy inthis frequency range are needed. However, it may be concluded that
the equations and guidelines outlined in Section 3.0 are adequate for determining the structural
impedances for design purposes.

The simulated component package consisted of a 1/2 inch aluminum plate with lateral
dimensions of 8.0 in, x 8.0 in. The plate was supported by four sets of leaf springs at its
corners. The bottom of each spring was fitted with a load washer assembly, The total we'ght
of the component package was 3.81 pounds; the resonances of the package were measured at

13



110 Hz and 1200 Hz, respectively. The latter frequency is the fundamental resonance of the
1/2 inch plate. Detailed descriptions of the structural configurations can be found in
Reference 3.

The impedance of the component package was estimated and is presented in Figure 5.5 The
predicted impedance for the stiffened cylinder is also shown in the same figure. These two
impedance curves are combined to form the combined impedance curve according to the
procedure as described in Section 4.2, The curve shown on the bottom of Figure 5.5

represents the length difference between the component impedance and the combined impedance
at any frequency point. The resulting curve given is the impedance ratio term in the computation
of the loaded response spectrum.

The blocked sound pressure and the acoustic mobility shown in Figures 4.10 and 4.11, respectively,
were adopted to this example problem and the unloaded response spectrum is the vector sum of
these two curves, and is also shown in Figure 4.11,

Based on the impedance ratio shown in Figure 5.5, the unloaded response spectrum of Figure
4,11 is converted into the loaded response spectrum, i.e., by summing these two individual
curves. The final computation was performed on Figure 5.6, and the resulting test criteria
is shown by the dashed line.

As discussed previously, the loaded response spectrum for this example problem can be obtained
by the constant mass attenuation method. The equation for predicting the loaded response

environment, Gc’ of a component on the cylindrical structure is described in Section 2.1,
Thus:

G =G —_— (6.1

in which these parameters were obtained as follows:

W 0.1 x (32 x 37.7 x 0.08) = 9.65 (lb)

n

W

C

3.81 (Ib)

Substituting the calculated values into Equation (5.1) results in:

G = 072G (5.2)
c n

14



Now, the resultant response environments, Gc’ can be obtained by multiplying the ratio, as

indicated by 0.72, by the unloaded response spectrum of Figure 4,11, Results of this
computation along with the predicted response spectrum obtained by the impedance ratio
method are presented in Figure 5.7. Note that this figure can also be used as the conversion
chart to convert the acceleration PSD into velocity PSD and vice versa. The velocity response
is read-off from the vertical scale of the left-hand side and the acceleration response is read—
off from the right-hand side. As can be seen from this figure, predicted response obtained
from the constant mass attenuation method is much too high in the intermediate frequency
range (40 ~400 Hz), i.e., the vibration criteria established by this method, which ignores
effects of component/primary structure coupling may provide too much conservatism to satisfy
design and test requirements and there is a strong possibility that the specimen would be over-
tested under such criteria. This method is valid only when the impedance of a primary
structure is sufficiently higher than that of the attached component.

15



6.0 SUMMARY AND CONCLUSIONS

Two simplified methods were used to predict the loaded response spectrum of a component and

its support structure (space vehicle) which is subjected to broadband random acoustic excitations.
The newly developed method was derived from a one-dimensional impedance model and the
computation is performed by way of nomograms and design charts. These techniques presented
herein are considered indicative of the present state-of-the-art and will permit satisfactory
environmental estimates of highly complex requirements with minimum amount of manual
computations, However, the lower test criteria can be obtained by the impedance ratio

method and this is due to the results of considering the effects of component/primary structure
interaction,

A summary of the computation procedures of the impedance ratio method is presented below
in outline form for quick reference.

STEP 1: Determine and compute the geometrical and material
properties of cylinders and their components.

STEP 2: Evaluate the parameters of structurai impedances of
primary structural components, employing Figures
4.1 through 4.6, These pedances are summed in
accordance with the guidelines described in Section
3.1 by using Figures 4.7 and 4.8,

STEP 3: Estimate the impedance of the component package and
construct the component impedance curve by Figure
4.9. This curve is combined with the impedance curve
obtained from Figure 4.8 to form the impedance ratio curve.

STEP 4: Determine the blocked pressure spectrum by means of the
chart as shown in Figure 4,10. The unloaded response
spectrum is computed by utilizing the chart as shown
in Figure 4,11, or the response spectrum may be obtained
from the experimental measured data.

STEP 5: Plot the unloaded response spectra and the structural
impedance on the same chart. The loaded response
spectrum for the design system is obtained by summing
these two individual curves.

16
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TABLE 5.1. SUMMARY OF DIMENSIONS, STIFFINESS AND MASS PROPERTIES
OF CYLINDER AND ITS COMPONENTS

Property

Dimension

Structural Items

Ring Stringer Shell
Mean Radius, R (in.) 23,0 -—- 24.0
Overall Length, £ (in.) 144.5 96.0 96.0
Shell Skin Thickness, h (in.) --- —-—- 0.08
Cross-section Area, A (in.z) A5 0.123 -—
Moment of Inertia, 1 (in¥) 35 | 0.012 ---
Weight per Unit Volume, p (Ib/ind) 0.1 0.1 0.1
Modulus of Elasticity, E (b/in2) 107 107 - 107
Weight per Stiffener * (Ib) 3.10 1.18 116.0
Total Weight of Structure (Ib) 126.92
Weight for Unit Surface (Ib/in".' ) 8.7673x1073

*  Two rings spaced at 32" in the longitudinal direction and eight longitudinal
stringers spaced at 18.8" in the circumferential direction.
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1. Two flat circular plywood bulkheads
2. Two angle section end rings

3. Four angle section stringers

4. Two channel section ring iromes

5. Pop rivets

6. Upper axial weld lines

7. Lower axial weld lines

8. Circunferential weld line

Figure 5.1. Geometry and Dimensions of Cylindrical Structure
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APPENDIX A
DERIVATION OF IMPEDANCE PREDICTION EQUATION
1.0 INTRODUCTION

The one-dimensional force-spectrum equation is derived based on Thevenin and Norton's
theorems (Reference 1). The equation relates the driving force spectrum to external excitation
forces, component impedances and dynamic properties of support structures (input impedances and
acoustic mobilities). In the subsequent sections, equations which govern the force spectrum of

a one-dimensional structural system are presented. The relationship between this system and its
analogous vibro-acoustic systems are then established and measurement approaches ro acquire
needed data are described,

1.1 One-Dimensional Impedance Model of a Structural System

It is assumed that dynamic responses of a structural system subjected to excitations by external
forces are predominantly one-dimensional; thus the dynamic characteristics of the structure
could be represented by a one-dimensional impedance model as shown in Figure A-1, in which
the basic unloaded structure is replaced by an equivalent structural "black box"; external
loads are applied at Terminals | and Z, and component packages which are treated as load
impedances, ZL(u), are attached to Terminals 3 and 4. The corresponding velocities and

interaction forces at the attack ..ent points are indicated by V (w) and FL(u), respectively.

L
The structural impedance model, as shown in Figure A-1, can be represented by the equivalert
constant-force model (Thevenin's model) and the constant velocity model (Norton's model)} as
shown in Figures A-2 and A-3, respectively. The dynamic characteristics at the attachment
points (Terminals 3 and 4) are represented by Zs(u), which is defined as support-structure

impedance or source impedance. That is, the impedance looking back to the left of Terminals
3 and 4 without any loads attached.

Based on Figure A-2, the force, FL(u), which drives the component ZL(u), can be expressed
by the following equation:

ZL(U)

FL(u) = m

Fo (w) M

Where F0 (w) is the equivalent driving force (blocked force) developed at Terminals 1 and 2 if

the load impedance at the attachment points (Terminals 3 and 4) were infinite, i.e., if Terminals
3 and 4 were fixed to a rigid foundation. The corresponding velocity VL(u) of the attached
load is:

A-1



F (w)

0
ZL(u) + Z (w) @

VL(u) =

But the blocked force F (w) is not a readily measurable quantity, therefore, it is necessary
0

to find an equivalent term which is suitable for measurement,

By definition, the constant source velocity, V (w), is the velocity at the attachment terminal
0

with no loads attached. Thus, by setting Z (w) in Equotion (2) to zero, the source velocity
is determined by the following equation:

Fo (W)
V0 (w) = Zs("’) (3)
or
Fo (w) = V0 (w) - Zs(w) (4)

Substituting Equation (4) into Equation (2), and the resulting equation for load velocity VL(u)
becomes:

1
Vi = v '[ 1 +ZL(w)/Zs(u)] )

Equation (5) shows that the load velocity spectrum is equal to the velocity spectrum of the
unloaaed structure multiplied by the impedance ratio of the support structure to the component
package. The term 1/[ 1 + ZL(u) /Zs(u) ] serves as a magnification factor and its value

will approach unity when the source impedance Zs(u) becomes infinite. All of the above

quantities can be obtained through measurement techniques.
1.2 Structural Responses to Acoustic Excitations

Responses of structures to acoustic excitations, as shown in Figure A-4, can be expressed by
the following equations (Reference 2):

A-2



¢ ()@ (). A
Tw = = 7 2 6
0.7 = 0 T T % @ @ ©)
m m m n 0
where
¢,.((_r', w) = Velocity power spectral density at point r
® (v = Power spectral density of reference sound pressure which is assumed
Po to be constant over the surface of component mounting locations
A = Surface area
Zm(u) = Modal impedance
Km w \° i W

) e ()]
Zn(u) * = Complex conjugate of Zn(u)
J";"n(u) = Joint acceptance function of the mnfh mode

¢m(5)¢n(s ) jP(sls/u) - -
= ff ds ds
A:‘ ¢ (U)
s s Po

d?, d s—" = Infinitesimal area vectors
Op(?, ?', w) = Cross-power spectral density of the sound pressure field
¢m(?), ¢m(?) = Normal mode at r and s, respectively
Km = Generalized stiffness

_ th i}
@ = m  natural frequency = K / Mm

- . - - 2 — —
Mm Generalized mass f p(s)¢m(s) ds

s
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Generalized dynamic magnification factor

o
"

Surface mass density

©
L}

By rearranging terms in Equation (6), the acoustic velocity mobility is obtained:

¢ (r, w) S (lr)¢(r .
° W EZ Z W Z, (@ szn(“) 7

0

'( )
o] "u

In practice, velocity responses of a complex structure subjected to acoustic excitations may be
expressed as follows:

¢i('r‘, w) = ¢p(}‘, v)

-
a).((r, w)

where OP(?, w) is the blocked sound pressure spectrum at T .

To determine the acoustically induced response spectra ¢L(F7 w) at attachment points,

it is necessary to transform o vibro-acoustic system to an equivalent one-dimensional impedance
model, so that Equation (5) can be applied directly to determine ¢L(r w). Such a transfor-

mation is illustrated in Figure A-5 . _The equivalent one-dimensional model is represented by
a support »..uctural impedance, Zs(r, w) , the component impedance, ZL(r, w) , and an

equivalent blocked force spectrum, ¢L (v, w). Applying Equations (4), (5) and (8) to the
above system, the blocked force spectra equation is obtained:

2
Blocked Force Spectra:

¢ (Lo = .(ru- I Z (r, v

and the load velocity response spectra is presented as follows:

[
—

— —

¢,.((r,u) = ¢p(r,w) .

-4
a, (r, w)
X
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APPEND!X B
IMPEDANCE OF PAYLOAD STRUCTURE

The Payload structure can be assumed as a lumped-moss system. The mathematical model is
shown in Figure B-1 and the differential equations of motion can then be written as:

]
o

Mx + C(x-§) + K(x -y)
)

iwt

Clk-y) + K(x-y) = -Fe

in which M represents the total mass, K is the stiffness, and C denotes the damping of the
system. The frequency of the steady-state motion is the some as the force excitation frequency,
w , therefore, the mechanical impedance of the system is obtained as follows:

Z Fe"." _ I
B y ] R )
ioM C+ _K_
)

T2\, ) @
02 Q \y,

w
where
W, = JE/—M = resonance frequency of undamped system
Q = JE—M/C = dynomic magnificant factor

For the region, w« W, - Equation (2) can be approximated by:

B-1



Z >~ iuM 3)

Equation ( 3 ) shows that the impedance is a purely mass line. For the region, W>>E it

is possible to obtain on approximate formula for the impedance and this opproximation yields
the following impedance formula:

K i w B K
Z:W [|+6(?)]—C*—m— “4)

At high frequencies, the impedance became asymptotic to a constant value and ‘s equal to the
damping valve.

Z = C (5)

A typical example of the component impedance plot is shown in Figure B-2 as a function of the
frequency of the driving force. The approximated curve is also shown in the same figure for
comparison.
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Figure B-1. Mass-Spring ~ Dashpot Model
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APPENDIX C

APPROXIMATE EQUATIONS RELATED TO
DYNAMIC CHARACTERISTICS OF STRUCTURES

Brief discussions of approximate equations on input impedances, resonant frequencies and modal
densities are given in this appendix. The structural elements considered in the derivation
consist of the following categories:

° Beoms (or stringers),
° Circular ring frames, and
° Unstiffened cylindrical shells.

The derivation of the approximate equations is based on the assumption that the thickness of
cylindrical shells is small such that the thin shell theories are valid and the direction of
vibratory response under consideration is referred to as that normal to the skin. The evaluation
of the input impedances may be subdivided into three different frequency ranges as below:

° Low frequency range or frequencies below the fundamental
frequency of the shell,

[ Intermediate frequency range, and

° High frequency range or frequencies above the ring
frequency of the shell.

Beam (or Stringer) Impedances — The static stiffness of a beam defines the input
impedance af frequencies below the fundamental resonant frequency of the beam. The static
stiffness at the mid-length point of a simply supported beam is given by:

K = 48 £
r (1)
where
E = Young's modulus of elasticity
I = moment of inertia of stringer cross-section
|l = effective length of stringer*

* Note: If the distance ¢, between two adjacent supports is different from the entire length
of a stringer, the stiffness should be computed in according to the shortest support

distance.

C-1



Then the input impedance is obtained as:
Z = K/iu 2)

where

il

W circular frequency
i = q -1

The fundomental resonance frequency of the beam can be computed from the following equation:

_ 1 2
L= o (f) A @)
where

mass density

P

A cross~section area of stringer

At high frequencies or frequencies above the fundomental frequency, the overage input imped-
ance can be opproximated as the characteristic impedance of an infinite beam and is given by

Cremer (Reference 1) as follows:
//
4
Z = 2(1+i)pA (%};) Vo )

The impedance curve defined by the above equation is represented by the line that passes
through the points of inflection of the impedance curve as shown in Figure C-1. The peaks
and valleys are proportional to the damping coefficient, Q, and are located above or below
the average impedance line; their amplitudes, in respect to the average impedance line,
decrease with increasing frequency and the order of reduction in relative amplitudes is

g roportional to 1 /{— . The equation used to compute the ratio of peak values is defined
!

Z Y
ool I(ENt .
'zovgl 4ﬁ ! (PA) Vi ©)



Ring Impedances — The in-plane static stiffness of a simply supported ring is given
by (Reference 2):

K = —& (6)

0.15R3

where

moment of inertia of ring cross=section area

R

I}

median radius of ring

However, the low frequency response of a free ring is associated with rigid-body motion which
is along the mass line in the impedance plot and is given by:

Z = juM (7)

where M is the total mass of the ring and is expressed as:

M 21 pRA

A

cross-section area of ring

The lowest resonant frequency of the fundomental mode of rings is defined as follows:

f, = 0.427 — - (8)

at frequencies cbove the fundamental frequency, the impedance curve approaches the impedance
of an infinite beam whose value is given by:

Va
Z = i242 pA [%] N[y ©)

Similarly, the peck responses ot resonance frequencies are proportional to structural domping
and its peak /average ratio is obtained as:
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The impedance curve obtained from the approximate equations is illustrated in Figure C-2
along with the analytic solution.

Shell Impedances — The static input stiffness of a simply supported cylindrical shell
defines the input impedance at frequencies below the fundamental resonant frequency of the
shell. The static point input stiffness at the mid-length of a cylindrical shell can be estimated
by the following approximate formula (Reference 3):

R ‘/2 h 74
K = 2.5 Eh(z-) (‘R‘) an
where
h = thickness of shells
R = radius of shell
1 = effective length of shell
E = Young's modulus of elasticity

The fundomental frequency of a thin shell with simply supported ends is

C 1
- L h\%
fL = 0.375 —-1—- (-R—) 12)

where

C, = speed of sound in shell wall

- E
V p (1-v2)



and

P mass density

V = Poisson's ratio

At high frequencies, the impedance becomes asymptotic to o constant value and is given by
the expression:

z - A oo (13)

p NG L

which is identical to the impedance of o semi-infinite plate of width srR . The frequency for
which the corresponding mode shape shows no dependence on the axial direction is defined as
the ring breathing frequency. The equation used to compute the ring frequency is given by:

C
o L
R T T (14)

Within the intermedicte frequency range, which extends from the fundamental frequency to the
ring frequency, the impedance curve can be approximated by the straight line which joins two
points representing the input impedances at the fundomental frequency and the ring frequency,
respectively . The expression which describes this impedance curve was derivated and is
expressed below .

Q

lz| =z - (fR/f)"?

p

4 3
el c? /% (15)

An alternate theoretical method employing the concept of the modal density can also be used

for estimating the impedance at intermediate frequencies. The modal density of o structure is
defined as the average number of resonant frequencies that occur within a unit frequency band.
The inverse of the modal density is equal to the average separation between resonant frequencies.
Heckle (Reference 4) derived a closed form expression for the modal density of a uniform cylin-
drical shell using a simple approximation to the frequency equation; and these expressions are
used to obtain the average separation between resonant frequencies (see also Reference 5) as
follows:

C-5



8m

Af =
93

for f<f (16)

~f

and the input impedance can be opproximated by the follow:.., equation (Reference 6).

e 2MAf * M
m

L]
q)r

| z|

1]

3,
9:’% ph? cLz/isu (17)

in which Mm represents the modal mass ard is approximotely equal to one=-quarter of the torc!

mass of shell.

Comparison of Equations (15) and (17) shows that the theoretically derived expression in
Equation (13) is essentially the same result as the empirical equction obtaired by t tting the
desired curve. A comparison of the resuiting impedances outained eithcr from the approximate

ond analytical equations is shown in Figure C-3.
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