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FRACTURE AND CONTACT PROBLEMS
FOR AN ELASTIC WEDGE®*

by
F. Erdogan and K. Arin
Lehigh University, Bethlehem, Pa.

Abstract

The paper deals with the plane elastostatic contact problem
for an infinite elastic wedge of arbitrary angle. The medium is
loaded through a frictionless rigid wedge of a given symmetric pro-
file. Using the Mellin transform formulation the mixed boundary
value problem is reduced to a singular integral equation with the
contact stress as the unknown function. With the application of
the results to the fracture of the medium in mind, the main empha-
sis in the study has been on the investigation of the singular
natnre of the stress state around the apex of the wedge ard on the
determination of the contact pressure.

1. INTRODUCTION

The importance of the stress concentration around internal
sharp corners in de: ign has long been recognized and the related
problems have been extensively studied (e.g., [1]1). In most of
these studies concerning the "notch effect" it is generally assumed
that the radius of curvature of the notch is greater than zero.
Considering the sound design practice, this assumption is fully
justified. However, in components where the expected mode of
failure is brittle fracture, for the application of the related
fracture criterion it may be more convenient and perhaps even nec-
essary to study the limiting case of the problem in which the notch
radius of curvature .s zero. This would mean approximating the
medium around the notch by a wedge-shaped domain with a given
snyle. The traction boundary value problem for elastic wedges also

has been rather extensively studied (e.g., [2-11]).

*This work was supported by NSF under the Grant GK 42771X and by
NASA under the Grant NGR 39-007-011.
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(d)

Fig. 1. Geometry and notation for contact problems in wedges.



The problems which have not been looked into are the so-called
contact problems in wedge-shaped domains where the external loads
are applied to the medium through a rigid wedge of a given profile
(Fig. 1). Typically, these are mixed boundary value problems in
which in addition to the contact stresses the contact area itself
may be unknown. In this paper we will consider the plane elasto-
stacic contact problem for a wedge with arbitrary angle loaded by
a rigid frictionless symmetric wedge with an arbitrary profile.

The main objective of the study is the determination of the contact
pressure and the singular nature of the stress state in the immedi-

ate neighborhood of the wedge apex.

2. FORMULAT(ON OF THE PROBLEM

The problem undar consideration is described in Fig. 1. 1It is
assumed that an infinite elastic wedge (0<r< =, -905_65_60,
0< Bofjﬂ is subjected to an external resultant load of magnitude
Po througl a rigid splitting wedge (or vise) of known profile, Py
acts along the line 6 =7, the profile of the wedge is symmetrical
with respect to the 6 =7 plane, and the contact between the rigid
wedge and the elastic medium is frictionless. Thus, because of
symmetry it is sufficient to consider one half of the medium.

Defining the following stress and displacement combinations

o(r,0) = Ure + lO'ee ’
v(r,0) = g% (u,. + iue) , (la,b)

using the standard Mellin transform, and, for example, referring to
the derivation given in [11], for an infinite wedge one may easily

obtain



,Allrzo] = Zi(s+1)[Aseise + B(s+l)ei(s+2)e - §é_1(5+2)9] ¢
V{Z[rzv] = - §%£ [Aseise + B(s+l)ej'(5+2)6 + Kﬁé-i(s+2)e] , (2a,b)

where (r,0) are the poiar coordinates (Fig. la), and the Mellin
transform of a function f(r), (0 <r<~) and its derivatives, and

the inversion integral are defined by

AL1£) = [ £ 5 ar
(o]

© .n
[ &L ptstlay o pn L) gey
o dr

(s) Vv
1 CHie -s
£(r) = =% £-iJ1Z[f]r ds , (3a-c)

provided the strip of regularity containing ¢ is selected in such
a way that, considered together with the behavior of f£(r) as r+ 0
and r +«, the integrals in (3) exist. This means that the regular-
ity conditions as r+ 0 and r+ » determine the strip of regularity

and the constant c¢. In (2) u and x are the elastic constants of

3-v
1+v

for plane stress, v: Poisson's ratio). The complex "integration

the medium (u: shear modulus, k= 3-4v for plane strain, k =

constants” A and B are functions of the transform variable s, and
are determined from the boundary conditions given along e==$eo (oxr

along 6=0 and 6= 60 if the problem has symmetry).

In particular consider the elastic wedge of angle 260 subjected
to (symmetric concentrated) tractions

o(r,eo) = (fl-fifz)é(r— ro) . (4)

The functions A(s) and B(s) may be determined from the boundary

conditions given by (4) and by the following conditions specified
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along 8 =0:

Im{v(r,0)] = 0 , Re[o(r,0)] = 0 . (5a,b)
After some manipulations it may easily be shown that A and B are
real and are given by

gl(s+2)sin(s+2)60 - g,s cos(s+2)60

sA(s) =
(s) A (s) ’
g, cos s6_ - g, sinsb

B(s) = 2 o 1 o ’

A(s)
A(s) = (s+1)sin29° + sin2(s+1)6c> '

rStl(s 4 if.)

g, +ig, = 21 2 (6a-d)
1 2 2i(s+1)

Since the friction is neglected, letting fl =0, the basic solution
found above may be used as the Green's function to find the solu-
tion for distributed tractions oee(r,ﬁo) = f2(r), (a<r<b). 1In
the formulation of the present mixed boundary value problem the
quantity of primary interest is the displacem .t derivative Sue/ar
for 6=06_ which is found to be

(o]
22 (8)—?f')dr L .
T+c¢ © 37 Y9'f % —a 255 77T

c+i® ¢ s+l sin seo sin(s+2)eo

(=% ds , (0 <r<w), (7)
* i-im r’ A (s)

If now the profile of the rigid stamp is a given function U(r)

along the contact area a<r<b, substituting
p d _
E“e(r'eo’ =a—r-U(r) = h(r) , (a<r<bh) (8)

in (7) we obtain an integral equation to determine the unknown
function fz(r). In order to evaluate the kernel in (7) the strip

of reqularity containing ¢ has to be determined. Let Sy be the
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roots of the characteristic equation A{(s) =0, (6c), i.e., let
A(s,) =0, (k=%1,%¥2,...),

Re(s_j_1)~<Re(s_j)< c < Re(sj)< Re(sj+l), (3=1,2,...). (9)

Thus, the kernel may be expressed as the sum of residues at Sy
(k=1,2,...) for r,<r and at S_k ¢ (k=1,2,...) for r,>r, the
strip of regularity containing c being Re(s_l)< Re (s) < Re(s+l).

On the other hana from the physical conditions that

dug 1

H‘~Fi' (x < 1) for r+~0,

Bue y 1

5T 8’ (8>1) for r »=, (10)

and from (7) it is easily seen that s+l=-1 and s_; is the first

root of A(s) to the left of Re(s) =-1 line.

Since the resulting infinite series giving the kernel in (7)
cannot be summed in closed form, and since the kernel is expected
to have a singular part, in order to bring out the distinctive fea-
tures of the integral equation the following technique will be used
to evaluate the kernel. Noting that Re(s_;) < c<-1, for numerical
convenience the line of integration Re(s) =c¢ in (7) may be replaced

by letting c=-1 and indenting the contour to the left. Thus

defining
. Yo
s+l = iy , 1og(3?) =90, (11)
and using (8), after some routine manipulations from (7) we obtain
2
b msin“o
- A =1 o
1+ thir) = m g f(ro)dro l290+sin200

coshzeoy-cosze

D(y) sinpydy 1, (a<r<b) (12)

|



where

f(xr) fz(r) R

D(y) = ysinzeo + sinhzeoy . (13a,b)

It may be shown that as r,* r the infinite integral in (12) becomes
divergent. Since the integrand is bounded everywhere in (0<r<«),
the divergence will be due to the behavior of the integrand at
infinity and the divergent part may easily be separated by consid-

ering the asymptotic behavior of the integrand as y +«, giving

b wsinze
4u 1 1 (o]
= h(r) = = [ f(r )dr_{ - -
1+ T o' "o rlog(ro/r) 57260+-51n260)
© cosh26 y - cos26
+ [« Q © _ 1) L sinpyay1,
° D(y) r
(a<r<b). (14)
From
% -1
1 o1 -1n" To _,n
rlog(r /T) ~ o- 1) (1 + g =1 (5 1))
- 1 Yo _
= Fo% [1+ 0(2-1)] (15)

it is seen that at r,=r the kernel in (14) has a simple Cauchy-

o

type singularity. The singular integral equation (14) must be

solved under the condition that

b P,
£ f(r)dr = P = ~ -z-é-ls—né-; (16)

which will have to be used in the determination of the unknown con-

stants arising from the solution of (14).

3. THE STRESS INTENSITY FACTOR

From the viewpoint of fracture of the material an important

aspect of the problem is the study of the singular behavior of the
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stress state in the close neighborhood of the apex r=0. In par-
ticular, it is important to evaluate the cleavage stress around

r=0 as a function of the extzrnal load and the geometrical param-
eters. In the symmetric problem under consideration the plane of

the maximum cleavage stress o is known to be 6 =0 [10]. Thus,

66
using f1==0, fz(r)=:f(r) from (la), (2a) and (6) we obtain

b 1 c+iw rg s+ G(s)
roee(r,O) = £ f(ro)dro mi-lw(—r— H—ds, (0< r< eo),
G(s) = (s+2)sin(s+2)6o - ssinseO . (17a,b)

For r<a in (17) closing the contour to the left and considering

(9) we find
® G(s_) b l+s_y
Togg(r,0) = 1 mif(r)( ) dry , (0<r<a),
A'(s) = sin26  + 260c052(s+1)9o . (18a,b)

We now observe that (l18a) is of the following form

- ( 2+S_k)

Ogglr,0) =] Cr (19)

where Cl,Cz,... are known constants. S_)r (k=1,2,...) are the
roots of the following characteristic equation:

A(s) = (s+l)sin26O + sin2(s+l)6O =0 , (Re(s) < ~1). (20)

It should be noted that (20) is the same as the characteristic
equation found in previous studies (e.g., [3, 4, 10, 11]). For

%-geo;in from (20) it may be shown that s_,; is always real and
0 < (2+s_l) < 0.5, Re(2+s_k) <0, (k=2,3,...). (21)

This means that in (19) only the first term may be singular at

r=0. Thus, defining the stress intensity factor for the wedge as



k(0) = lim r“o..(r,0) = C W = 2+s (22)
r«’o ee 1 1 e _l 4
from (18) and (19} we obtain
G(s_,) b l+s_
K(0) = 2o | £(r)r “lar . (23)
A (s—l) a

For some selected half-wedge angles 90 Table 1 shows the power w

of the stress singularity at the apex r=0. In the special case

of concentrated applied 1«

oee(r,eo) = Pd(r-rl)

]

the stress intensity factor becomes

1+s_, G(s_;)

k(0) = Pr1

where G and A' are given by (17b) and (18b), respectively.

AT (s ) '

(24)

(24)

After

determining k(0) the results may be applied to study the fracture

of brittle and semi~-brittle solids by using an appropriate fracture
criterion (such as, for example, that based on the notion of criti-
cal cleavage stress at a characteristic distance from the singular

point described in [12]).

Table 1. The power w of the stress singularity in an elastic
wedge of angle 20, under symmetric loading.
8o (°) 920 99 108 117 120 126
W 0 0.16631 | 0.28220 | 0.36327 | 0.38427 | 0.41886
8o (°) 135 144 150 165 172.% 180
w 0.45552 | 0.47829 | 0.48778 | 0.49855 | 0.49982 0.5

4. SPECIAL CASES: ©60g=m, 0= 1/2

In the special cases where the wedge degenerates into a
cracked plane (65 =m) or a half space (8g=1/2) the kernel of the
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integral equation {(14) may be evaluated in closed form. For exam-

ple, for 60==ﬁ the kernel in (14) becomes

_ cosh2m 1 _ 1 _.
K(r,r)) = f( 51nF§%§m— 1) = sinpydy
= 1/2
= ro (x /r) ' .26)
giving
/E 1 b s dr,
1+K [h(x) ]=;T-£[ r, flr))] F -1’ (a<r<b). (27)

The solution of (27) may easily be obtained once the profile of the
rigid wedge is specified. If this wedge has plane boundaries and
sharp corners (a thin rigid block with rectangular cross-section),
h(r) =0, and the s¢ ution of (Z7) subject to the equilibrium con--

dition (16) becomes

£(r) = B/b (a<r<b), (28)

2K (k) /T r-a) (b-r

where K(k) is the complete elliptic integral of the first kind with
the modulus

2 _ b-a

k < (29)

In limit if we let b+», a»~ for a fixed b~-a -~ 2c, (28) reduces to

the following known result of a rectangular punch on a half plane

- P _ b+a
f(r) = —— , (t=r- =, -c<t<c). (30)
m/c2 - ¢2
In this special case of semi-infinite crack s_q1 = -3/2, and

the stress intensity factors at r=0 given by (23) and (25) become

k(0) = lim VE 04q(x,0) = %f £(r)r Y %ar
r+0 a
= - P/b b dr - - P , (31)
2k (k) 3 rv/(r-a) (b-r) 2/a K(k)

9



for the rectangular wedge problem, and

P

m/ry

k(0) = - (32)

for the concentrated load P applied at r=ry.

In the wedge problems in . eneral and in the semi-infinite
crack problem in particular another quantity of special physical
interest may be the displacements on the wedge su: face, particu-
larly the rigid body displacement of the splitting wedge. Noting
that the basic equations (7), (12), (14), or (27) give the dis-
placement derivative Bue(r,eo)/ar for a<r<b as well as outside
this interval, once the unknown function f(r) i3 determined, aue/ar
and ue(r,eo) may easily be evaluated. For example, in the crack

problem substituting from (28) into (27) and using (8) for 0<r<a

we find
g% ue(r,n) ) ﬁﬂf ZE{E) /r(a-i)(b-r) ' oscx<al
ug (r, 1) = .1;—:‘(—(1-’}?)- F(k',a) , (ug(0,m = 0), (33a,b)
k*=1-2, x'?=1-x*=2, sina=/r/a, O0<r<a,

where F(k',a) is the elliptic integral of the first kind. The
relationship between the resultant wedging force P and the half
thickness d0 of the rigid wedge may ke obtained from (33b) by

letting r=a which gives

=

k")

- P - (34)

_ _ 14k
ue(a,'ﬂ) = do = I

Rt

In terms of the half wedge thickness do the stress intensity factor

given by (31) becomes

10



2udo
k(0) = - . (35)

(1+c)va K(k'}

For b>> a (and if the wedge faces remain in contact) (35) may be
approximated by

4ud
k() = - — 2 | (36)

(l1+k) mva

Similarly, for 80:=n, the integral equation (14) may be shown

to reduce to

b
4y 1 1 1 .
Tre h(r) = i (ro_r - ro+r) f(ro)drO ’ (a<r<hb). (37)

Solving (31) for a flat rectangular punch (h(r) = 0) under the con-
dition (16) we obtain
£(r) = 2Pr ,  (a<r<b). (38)
m/(r?' - a2) (b2 - r2)

This is the known solution for the contact stress in a half plane

loaded by two symmetrically located punches [13].

5. SOLUTION AND RESULTS

In this section the solution of the problem will be described
and some results will be given for three different types of ricia
splitting wedge profile, namely, (a) "the flat-ended wedge with
sharp corners" for which a and b are known (insert in Fig. 2},

(b) "the circular wedge" for which a and b are both unknown (Fig.
lc), and (c) "the wedge with one sharp corner" for which one end
point of the contact region is known and the cther is unknown

\Fig. la, b, d). IMathematically tnese three cases are characterized

by the index of the singular integral equation (14). The integral
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equation is the same for all three cases except for the input func-
tion h(r) which describes the profile of the rigid wedge (8). 1In
the first case the index of the problem is +1, and the solution of
the integral equation (14) contains an arbitrary constart which is
determined from the equilibrium condition (16) [l14]. For the case
of the circular wedge the index is -1 and the unknowns a and b are
determined from (16) and the consistency condition of the integral
equation [14]. Finally in the third case *he index is zero and the
unknown a or b is determined from (16). 1In all three cases the
integral equation is solved by using the simple numerical method
described in (15) and [16]. Hence, in this paper we will present

only the numerical results.

(a) The flat-ended wedge with sharp corners.

This problem is described by the insert in Fig. 2. 1In the
problem, in addition to the stress intensity factor defined by (22)
and given by (23), other quantities of interest are the contact
stress f(r) and the constants describing the nature of the stress
singularities at the corners a and b of the rigid wedge. For this
problex h(r) = 0 and the solution of (14) may be expressed as

fo(r) F(x)

f(r) = = ’
Y (r-a) (b-r) A - %2

(r=cx+d, c=b;a, d=b;a, a<r<b, -l<x<1l), (39)

where fo(r) ard F(x) are bounded in the respective closed intervals
for r and Xx. The constants characterizing the strength of the sin-
gularity of the contact stress oee(r,eo)= f(r) at r=a and r=>b may

be defined by

12



k(@)
k(b)

o 90° 80

Fig. 2. The ratio of the strength of stress singularities at the
sharp corners r=a and r=b of a rigid wedge pressed into
an elastic wedge-shaped medium.



k(a) = lim Y2 (r-a) f(r) ,
r+a

k(b) = lim v/2(b-r) f(r) . (40a,b)
r+b

Table 2 shows the stress intensity factor k(0) defined by (22) and
the constants k(a) and k(b) for various wedge angles 290 and ratios
d/c representing the relative dimensions. The normalizing factor
P/(n/c) given for k(a) and k(b) is the strength of contact stress
singularity for the half plane obtained from (30) and (40). The
power of the stress singularity w at r=0 for the wedge angles

ﬂ/2‘<90:iﬂ is given by Table 1. Most of the results given in Table

2 refer to the case w/2'<eo_§ﬂ for which at r=0 the stresses are

Table 2. Stress intensity factors for the flat-ended
rigid wedge.
a/c 6,(°) k(°)l_ k (b) k(@)
P/(ra~"“) | P/(n/C) P/ (1/C)
150 1.1168 0.7838 1.4637
4/3 165 1.2582 0.6815 1.6651
172.5 1.2918 0.6666 1.7108
15 1.3239 0.6619 1.7513
o r. ____________________
10 0.5209 0.5156
30 0.8610 0.7628
60 1.1249 0.7831
90 1.2251 0.7091
2 120 0.4989 1.0965 0.8779
150 0.9607 0.8575 1.2194
165 1.0634 0.7931 1.3140
172.5 1.0873 0.7777 1.3351
180 1.094s8 0.7741 1.3408
L _— - -}- ————— L e e e — — b - = - - — o b - — — — =
150 0.9032 0.9260 1.0906
4 165 0.9934 0.8932 1.1297
172.5 1.0138 0.8859 1.1384
180 1.0204 0.8837 1.1408
L — o - e o mm e - I N e }- ————— -
150 0.8897 0.9691 1.0332
10 165 ; 0.9770 0.9556 1.0481
172.5 | 0.9968 0.9526 1.0511
: 1890 I 1.0031 0.9516 1.0521
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singular. However, for 4 =2c some results for 0 < Bof_n/z are also
included (Fig. 1d, where both corners of the rigid "vise" are

sharp) .

From the half plane solution given by (38) (6 =90° in Table
2) it may be observed that k(b) > k(a) and k(a) =0 for a=0. This
means that if the punches are disconnected, they may tend to tilt
and slide outward and away from each other. Figure 2 shows an
interesting result obtained from Table 2, namely that 60= 130°
seems to be a critical wedge angle. For 60 >130% k(a) > k(b), and
for 90< 1309 k(a) <k(b). For small and large angles this behavior
is, of course, expected. However, it appears that (even though it
is difficult to prove) this value of the wedge angle for which
k(a) =k(b) (implying an approximately symmetric pressure distribu-
tion under the wedge) is independent of the relative dimensions as

characterized by d/c.

To give an idea about the contact str. 3 distribution Table 3
shows some calculated results at a limited number of locations for
various values of the wedye angle and for d= 2c. The variable x

and the function F(x) shown in the table are defined in (39).

Table 3. The measure of the distribution of contact stress,
F(x)/(p/d) for d=2c (see Eq. (39)).

8 X 1 0.6494 0.2334 |-0.2334 |-0.6494 -1
10° 0.3316 0.5961 0.8208 0.9062 0.8215 0.3282
30 0.5481 0.6226 0.7092 0.7612 0.6976 0.4857
60 0.7162 0.7022 0.6801 0.6415 0.5823 0.4985
90 0.7800 0.7429 0.6911 0.6190 0.5371 0.4515
120 0.6981 0.6819 0.6595 0.6285 0.5938 0.5589
150 0.5459 0.5653 0.5944 0.6392 0.6983 0.7763
165 0.5049 0.5336 0.5763 0.6414 0.7263 0.8365
172.5 0.4958 0.5266 0.5723 0.6419 0.7325 0.8499

14



(b) Rigid circular wedge.

This problem is described in Fig. lc where the input
function is (8)

h(r) = [r - Rcot(n—eo)]

Wi -

(L+yx) - cot(n-0_) ,  (y=%)

(a<r<b, -1l<x<1). (41)
The new variable x and the unknown constants c and d appearing in
(41) are defined by (39). The problem as formulated by (14) is
linear in f(r) and 4 and is highly nonlinear in y. Hence it is
solved in an inverse manner by pre-selecting vy, solving for f(r)
and d, and then through (16) determining the corresponding P.

Table 4 shows some calculated results for various values of y.

Table 4. The results for the rigid circular wedge,
y = (b-a) /(b+a), 6o5=31/4 (Fig. 1lc).

a b _ 14k 3j_ k(o) Tc
A R R Fir Px10 P/(an—w) 2P fmax
0.01 0.989996 1.009996 0.1571 0.7215 1.0000
0.05 0.949909 1.049899 3.9258 0.7217 1.0001
0.10 0.899662 1.099575 15.6891 0.7224 1.0004

The results confirm what one might have quessed prior to solving
the problem, namely that in this case the contact pressure would
be very close to that obtained from a rigid circular punch on a
half plane and the stress intensity factor k(0) would be close to
that obtained from a concentrated force solution as given by (25).

The solution for the circular punch on half plane is

2 4
f(t) =1—T—c%/cz-x2, (-c<x<qa),
_ 2P
Emax = mc ° (42)

15



This is seen to be almost the same result given in the table. Also
numerical results indicated that f£(r) obtained from (14) was very
nearly symmetric with respect to the point r=d4. For 90==13S° the
stress intensity factor for the concentrated load P acting at

r, = Rcot(n-9°)==R may be evaluated from (25) and is found to be
k(0) = -0.7215 B/(7R1™") which is the same as that obtained for
Yy=0.01. Even though in this case no extensive numerical work is
warranted because of the availability of the closed form solution
for the concentrated loads, for splitting wedges having a relative-
ly large radius of curvature around the contact area (b-a)/(b+a)
may be sufficiently large so that the concentrated load solution
may not be representative. In such cases the technique described

in this paper would give the solution.

(c) Rigid wedge with one sharp corner.

The particular examples considered in this group are
described by Figs. la, 1lb, and 1d. Table 5 gives the results for
the problem shown in Fig. 1lb. Here oy is the half angle of the
rigid wedge. The half angle of the elastic wedge is assumed to be
90==l65°. Thus, for ao< 15° a is known, b is unknown and the con-
tact stress is of the following form

- b-r _ 1-x
f(r) = fo(r) a - F(x) 1¥x '

(r = cx+d, c¢= (b-a)/2, d= (b+a)/2). (43)
For a, > 15°, b is known, a is unknown, and

- r-a _ 1+x
f(r) = fo(r) b'—_'E = F(X) -i—_—x- . (44)

The Table shows only cne set of results obtained for (2¢/L)= 0.1

16



Table 5.

The results for a rigid wedge with one sharp corner.

(6o =165°, (2¢c/L) =0.1).
a P S k (0) _F(1) F(-1)
o auL p/ (rL1-w) P/ (nc) P/ (nc
5° (L=a) 0.02831 0.9622 0.9989 1.0004
10° (L=a) 0.01405 0.9622 0.9939 1.0004
20° (L=b) 0.01341 0.9867 1.0005 0.9984
25° (L=b) 0.02703 0.9867 1.0005 0.9984

and for various values of age The stress intensity factor corre-
sponding to the concentrated applied load P acting at r=1L is
k(0) = -0.9770 P/(7L1™¥). The solutions of the related problem of

an inclined rigid punch on a half plane corresponding to (43) and

(44) are
_ P b-r _ P 1-x
£(r) = mc ¥ r=a ~ Tc 1+x *
f(r) = & r-a _ P /lix (45a,b)

@c ¥ b-r ~ Tc 1I-x '
where in both cases F(+1) = P/(nc). It is seen that, unless the

wedge angles uo and n-eo are very close to each other, in this r:ase
too the concentrated load solution (in conjunction with the half

plane solution (45)) may be quite adequate.

The second example in this group is described by Fig. la. In
this case it is assumed that the nose of the rigid wedge is blunted
by two circular arcs tangent to the straight wedge boundaries.

Note that even though the arcs have the same radius R, they are not
necessarily concentric.

In the example it is assumed that 90= 165°,

and b, R and a_ (the length of the straight line profile of the

o

wedge) are known constants with (ao/R)==2 and (b/R) =3. The con-

tact stress is of the form
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_ /r-a _ x
f(r) = fo(r) b=t F(x) I—x '

(r=cx+d, 2c =b-a, 2d =b+a). (46)
The problem is again solved in an inverse manner by assuming the
contact area as known and calculating the corresponding load P.
The contact area is characterized by
Y = (ao-a)/R . (47)
Table 6 shows some of the calculated results. The coordinate x

and the contact streés coefficient F(x) shown in the Table are

defined by (46).

Table 6. The results for a blunted rigid wedge. Y= (ag-a)/R,
(ag/R) =2, (b/R) =3. The quantity shown for various
values of x is the contact stress coefficient

102F (x) (1+k) /(4uR) (see (46)).

~ Yy o] o.05 0.10 0.20 0.30 0.40
1 o | o0.388 | 1.063 | 2.761 | 4.929 | 7.113
0.665 o | 0.479 | 1.316 | 3.489 | 6.136 | 9.052
0.265 o | 0.656 | 1.812 | 4.854 | 8.633 | 12.88

-0.190 o | 1.082 | 3.022 | s8.286 | 15.15 | 23.33

-0.606 o | 2.397 | 6.951 | 20.83 | 46.67 | 63.44

-1 o | 32.39 | 43.10 | 62.79 | 80.99 | 97.37
1+

- fx® |0 |o0.0139 | 0.0396 | 0.1130 | 0.2123 | 0.3312
k(0) 0o | 0.6252 | 0.6278 | 0.6334 | 0.6390 | 0.6449

'——TH’—- - . . . -

P/ (nR™"Y)

The last example in this group is the problem of an elastic
wedge of angle 260 =30° pressed into a rigid vise shown in Fig. 1d.

In this example it is assumed that (a/R) =4, (by/R) =6, Y==(b—bo)/R

and
_ b-r _ 1-x _ b-a b+a
f(r) = £ (r)/ s = FX)/ 5%+ (r==-x+ =), (48)

where R again is the radius of the vise profile at the blunted end
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and b -a is the length of the straight line portion of the contact

region. The results are shown in Table 7.

Table 7. The results for the elastic wedge pressed into a rigid
vise. y = (b-bg) /R, (a/R) =4, (bg/R)=6. The quantity
shown for various values of x is the contact stress
coefficient 104F (x) (14x)/(4uR) (see (48)).

X 1 0.606 0.190 |-0.265 |-0.665 -1 - 1tk P
Y [ - . - m"
0 0 0 0 0 0 0 0
0.03 3822 93.83 52.57 35.11 24.13 l6.02 0.0119
0.05 4550 219.1 122.3 81.62 56.07 37.13 0.0277
0.10 6006 619.2 342.5 228.6 156.7 103.6 0.0787
0.20 8845 1797 974.4 649.7 443.5 287.6 0.2297

It should be pointed out that in practical applications the
friction between the rigid wedge and the elastic medium may not be
negligible as assumed in this paper Also as a result of excessive
wedging load cracking may take place at the apex of tle wedge.

These two aspects of the problem will be dealt with in a forth-

coming paper.
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