IL mPROVED

5
 umbrical

T. ISHIMOTO and L.C. FINK

JUNE 1971

NASA Contract 9-10435

Systems Improved Numerical Differencing Analyzer Engineering-Program Manual

T. Ishimoto and L. C. Fink

June 1971

NASA Contract 9-10435

Prepared En r:
National Aeronautics and Space Administration
Manned Spacecraft Center
Under Contract NASA 9-10435

Prepared by:

Approved by:

R. G. Payne, Program Manager

Approved by:

Approved by:

$$
x^{n} \cdot x \cdot \frac{1}{x}
$$

R. L. Dotes

NASA Technical Monitor
NASA Manned Spacecraft Center

ACKNOWLEDGEMENT

This engineering-program manual includes the efforts of several individuals who in no small way contributed to the publication of this document. Many thanks are due to:
J. D. Gaski, who as the prime mover behind the SINDAS (SINDA, CINDA-3G and CINDA, provided valuable counseling on the inner workings of the program, expecially the execution routines. Many or the computational features in these routines are original with him; it is through his cooperative assistance that the writing of this document became a reasonable venture.

- R. L. Dotts, who must be given special mention not because of his position as NASA/MSC technical monitor but because of his sincere interest in the use of SINDA and his willingness to provide assistance whenever and wherever possible.

Mrs. Dorothy Gramlich, who typed this manuscript with a cheerful, professional attitude and technique that made this phase of the program a more pleasant one.
table or CONTENTS

	ACKNOWLEDGEMENT	Page iii
	Preface	xiii
1.	NOMENCLATURE AND MNEMONICS	1-1
1.1	Nomenclature	"
1.2	Mnemonics	1-2
1.2 .1	Control Constants	"
1.2 .2	Numerical Solution Routines	1-4
1.2 .3	Options	"
1.2 .4	Routines and Subroutines of Preprocessor	1-5
1.2 .5	Others	1-7
2.	BACKGROUND ON SINDA	2-1
3.	GENERAL SINDA PROGRAM DESCRIPTION	3-1
3.1	SINDA Operating System	"
3.2	Use of Lumped-Parameter Concept	"
3.3	Pseudo-Compute Sequence (PCS)	3-2
3.3 .1	Long Pseudo-Compute Sequence (LPCS)	3-5
3.3 .2	Short Pseudo-Compute Sequence (SPCS)	3-6
3.3 .3	Second Long Pseudo-Compute Sequence (LPCS2)	3-8
3.3.4	Pseudo-Compute Sequence One (PCS1) and Pseudo-Compute Sequence Two (PCS2)	"
3.4	Data Logistics	3-9
3.4 .1	Relative Numbers	"
3.4 .2	Storage Requirements and Dynamic Storage Allocation	"
3.5	Order of Computation	3-10
4.	PREPROCESSOR	4-1
4.1	General Description	"
4.2	Description of Subroutines	4-5
4.2 .1	Routine Name: SINDA	4-6
4.2 .2	Routine Name: PREPR \emptyset	4-7
4.2 .3	Subroutine Name: ALPINT	4-8
4.2 .4	Subroutine Name: BLKCRD	4-9
4.2 .5	Subroutine Name CøDERD	4-10

Page

4.2 .6	Subroutine Name: CøNVRT	4-11
4.2 .7	Subroutine Name: DATARD	4-12
4.2 .8	Subroutine Name: ERRMES	4-13
4.2 .9	Subroutine Name: FINDRM	4-14
4.2 .10	Subroutine Name: GENLNK	4-15
4.2 .11	Subroutine Name: GENUK	4-16
4.2 .12	Subroutine Name: INCøRE	4-17
4.2 .13	Subroutine Name: MXTDFN	4-18
4.2 .14	Subroutine Name: NøDEDA	4-19
4.2 .15	Subroutine Name: PCS2	4-20
4.2 .16	Subroutine Name: PRESUB	4-21
4.2 .17	Subroutine Name: PSEUDめ	4-22
4.2 .18	Subroutine Name: QDATA	4-23
4.2 .19	Subroutine Name: RELACT	4-24
4.2 .20	Subroutine Name: SEARCH	4-25
4.2 .21	Subroutine Name: SETFMT	4-26
4.2 .22	Subroutine Name: SINDA4	4-27
4.2 .23	Subroutine Name: SKIP	4-28
4.2 .24	Subroutine Name: SPLIT	4-29
4.2 .25	Subroutine Name: SQUEEZ	4-30
4.2 .26	Subroutine Name: STFFB	4-31
4.2 .27	Subroutine Name: TYPCHK	4-32
4.2 .28	Subroutine Name: WRTDTA	4-33
4.2 .29	Subroutine Name: WRTPMT	4-34
4.2 .30	Subroutine Name: WRTBLK	4-35
4.3	Labeled Common Variables	4-36
4.3.1	Labeled Common Map	"
4.3.2	Definition of Labeled Common Variables	4-38
4.3 .3	Dynamic Storage Structure	4-42
4.4	SINDA "Tapes" and Their Formats	4-46
4.4.1	LB3D - Program Data "Tape"	"
4.4.2	LB4P - Program FøRTRAN "Tape"	4-47
4.4 .3	INTERN - Preprocessor Scratch "Tape"	"
4.4.4	LUT1 - Dictionary "Tape"	"
4.4 .5	LUT3 - Parameter Runs "Tape"	4-48

		Page
4.5	Overlay Structure	4-49
4.6	Structure of Pseudo-Compute Sequences	4-51
4.6 .1	Descriptions	"
4.6 .2	Structure of PCS1 a	"
4.6 .3	Structure of PCS2	4-53
4.7	Other Information	"
4.7 .1	Subroutine Lengths	"
4.7 .2	Maximum Thermal Problem Size and Maximum Data Value Size	"
5.	review of lumped parameter equations and basic NUMERICAL SOLUTIONS	5-1
5.1	Lumped-Parameter Representation	5-2
5.1 .1	Some Thoughts on Lumped-Parameter Errors	5-3
5.1 .2	Lumped-Parameter Equations	5-5
5.2	Basic Finite Difference Formulations	5-6
5.2 .1	Forward Finite Difference Explicit Method	5-8
5.2 .2	Implicit Finite Difference Method	5-9
5.2 .3	Steady State	5-11
5.2 .4	Some Comments	"
6.	SINDA NUMERICAL SOLUTION ROUTINES	6-1
6.1	Objective and Presentation Format	"
6.2	General Computational Procedure and Features	6-2
6.2 .1	Order of Computation	"
6.2 .1 .1	Finite Difference Algorithm	"
6.2 .1 .2	Updating of Optionally Specified Properties	6-5
6.2 .2	Operations Blocks	"
6.2 .2 .1	EXECUTION Operations Block	6-9
6.2.2.2	VARIABLES 1 Operations Block	"
6.2 .2 .3	VARIABLES 2 Operations Block	"
6.2 .2 .4	ØUTPUT CALL Operations Block	6-10
6.2 .3	Control Constants	"
6.2.3.1	Alphabetical Listing and Brief Description of. Control Constants	"
6.2.3.2	User Specified and Optionally User.Specified Control Constants	6-16

6.2 .4 Time-Step Calculations 6-22
6.2 .5 Computation of Temperatures 6-25
6.2.5.1Transient Explicit Routines"
6.2.5.2 Transient Implicit Routines 6-29
6.2.5.3 Steady State Routines 6-34
6.2 .6 Radiation Damping 6-37
6.2 .7 Acceleration of Convexgence by Extrapolation 6-39Technique
6.2.7.1 Extrapolation Technique "
6.2.7.2 Programing Considerations 6-41
6.2.7.3 Routines Using Acceleration of Convergence "
6.2 .7 .4 Comment on Acceleration of Convergence "6.2 .8
Other Characteristics of the SINDA Numerical 6-42 Solution Routines
6.2.8.1Units"
6.2.8.2 General Comments on Computational Features "
6.3 Transient Explicit Solution Routines 6-43
6.3.1 Subroutines: CNFRWD and CNFRDL 6-45
6.3.4.1 General Conments "
6.3.4.2 Finite Difference Approximation and Computational 6-46Algorithm
6.3.1.3 Comments on the Computational Procedure 6-47
6.3.1.4 Control Constants 6-48
6.3.1.5 Error and Other Messages 6-49
6.3.2 Subroutine: CNFAST 6-55
6.3.2.1General Comments"
6.3.2.2
Finite Difference Approximation and Computational Algorithm
6.3.2.3 Comments on the Computational Procedure 6-56
6.3.2.4 Control Constants "6.3.2.5
6.3 .3Error and Other Messages6-57
6.3.3.1Subroutine: CNEXPN6-60
6.3.3.2General Comments"
Finite Difference Approximation and Computational Algorithm
6.3.3.3 Comments on the Computational Procedure 6-61

Page

6.3.3.4	Control Constants	6-62
6.3.3.5	Error and Other Messages	"
6.3.4	Subroutine: CNDUFR	6-66
6.3.4.1	General Comments	"
6.3.4.2	Finite Difference Approximation and Computational Algorithm	"
6.3.4.3	Corments on the Computational Procedure	6-68
6.3.4.4	Control Constants	"
6.3.4.5	Error and Other Messages	6-69
6.3 .5	Subroutine: CNQUIK	6-72
6.3 .5 .1	General Comments	"
6.3.5.2	Finite Difference Approximation and Computational Algorithm	"
6.3.5.3	Comments on the Computational Procedure	6-73
6.3.5.4	Control Constants	6-74
6.3 .5 .5	Error and Other Messages	"
6.4	Transient Implicit Solution Routines	6-78
6.4 .1	Subroutine: CNBACK	6-80
6.4.1.1	General Comments	\%
6.4.1.2	Finite Difference Approximation and Computational Algorithm	"
6.4.1.3	Comments on the Computational Procedure	"
6.4.1.4	Control Constants	6-82
6.4.1.5	Error and Other Messages	6-83
6.4 .2	Subroutine: CNFWBK	6-86
6.4.2.1	General Comments	"
6.4.2.2	Finite Difference Approximation and Computational Algorithm	"
6.4.2.3	Conments on the Computational Procedure	6-88
6.4.2.4	Control Constants	6-89
6.4.2.5	Error and Other Messages	.
6.4 .3	Subroutine: CNVARB	6-93
6.4.3.1	General Comments	"
6.4.3.2	Finite Difference Approximation and Computational Algorithm	,
6.4.3.3	Comments on the Computational Procedure	6-95

6.4.3.4 Control Constants 6-95
6.4.3.5 Error and Other Messages "
6.5 Steady State Routines 6-98
6.5.1 Subroutine: CINDSS 6-101
6.5.1.1 General Comments "
6.5.1.2 Finite Difference Approximation and Computational 6-102Algorithm
6.5.1.3 Comments on the Computational Procedure 6-103
6.5.1.4 Control Constants 6-104
6.5 .1 .5 Error and Other Messages "
6.5.2 Subroutine: CINDSL 6-107
6.5.2.1 General Comments "
6.5.2.2 Finite Difference Approximation and Computational "Algorithm
6.5.2.3 Comments on the Computational Procedure 6-109
6.5.2.4 Control Constants "
6.5.2.5 Error and Other Messages "
6.5.3 Subroutine: CINDSM 6-113
6.5.3.1 General Comments "
6.5.3.2 Finite Difference Approximation and Computational " Algorithm
6.5.3.3 Comments on the Computational Procedure 6-114
6.5.3.4 Control Constants 6-115
6.5.3.5 Error and Other Messages "
7. REFERENCES
APPENDICES
A. Computer Listings of SINDA Explicit Solution Routines
CNFRWD A-2
CNFRDL A-13
CNFAST A-24
CNEXPN A-33
CNDUFR A-44
CNQUIK A-55

Page

Computer Listings of SINDA Implicit SolutionRoutines
CNBACK B-2
CNFWBK B-14
CNVARB B-26Computer Listings of SINDA Steady State SolutionRoutines
CINDSS C-2
CINDSL C-11
CINDSM C-20

Figure No.		Page
3.3-1	Thermal Circuit for a One-Dimensional System	3-4
4.1-1	SINDA Preprocessor - Major Logic and Interface with the User Specified Problem	4-2
6.2-1	General Order of Computation for Numerical Solution Routines	6-3
6.2-2	Computation Pattern for Numerically Solving Explicit and Implicit Finite Difference Algorithm	6-4
6.2-3	Evaluation of Nonlinear Capacitance, Source or Conductance	6-26
6.2-4	Method of Extrapolation to Accelerate Convergence	6-40
6.3-1	QSUM and GSUM for "Block" Diffusion Node Temperature Calculation, CNFRWD and CNFRDL	6-52
6.3-2	Calculation of Arithmetic-Node Temperature by "Successive Point" Iteration	6-53
6.3-3	Functional Flow Chart for CNFRWD and CNFRDL	6-54
6.3-4	Functional Flow Chart for CNFAST	6-59
6.3-5	Functional Flow Chart for CNEXPN	6-65
6.3-6	Functional Flow Chart for CNDUFR	6-71
6.3-7	Functional Flow Chart for CNQUIK	6-77
6. 4-1	Functional Flow Chart for CNBACK	6-85
6.4-2	Functional Flow Chart for CNFWBK	6-92
6.4-3	Functional Flow Chart for CNVARB	6-98
6.5-1	Functional Flow Chart for CINDSS	6-106
6. 5-2	Functional Flow Chart for CINDSL	6-112
6.5-3	Functional Flow Chart for CINDSM	6-118

Table Mo.		Page
3.2-1	Tabular Identification of Conductor and Adjoining Node Munbers	3-5
3.3-1	Example of Conductor Connections	3-7
3.3-2	Long Pseudo-Compute Sequence (LPCS) for the Example of Table (3.3-1)	"
3.3-3	Short Pseudo-Compute Sequence (SPCS) for the Example of Table (3.3-1)	\because
4.1-1	Terminology used in Description of SINDA Preprocessor Routines	4-2
6. 2-1.	Optionally Specified Capacitance Expressions	6-6
6.2-2	" " Impressed Source Expressions	"
6.2-3	"" . $"$ Coefficient Expressions	6-7
6.2-4	Definition of Symbols for Tables 6.2-1 through 6.2-3	6-8
6.2-5	Characteristics of User Specified Control Constants	6-11
6.3-1	Basic Computational Steps for CNFRWD and CNFRDL	6-51
6.3-2	Basic Computational Steps for CNFAST	6-58
6.3-3	Easic Computational Steps for CNEXPN	6-64
6.3-4	Basic Computational Stepe for CNDUFR	6-70
6.3-5	Basic Computational Steps for CNQUIK	6-76
6.4-1	Basic Computational Steps for CNBACK	6-84
6.4-2	Basic Computational Steps for CNFWBK	6-91
6.4-3	Basic Computational Steps for CNVARB	6-97
6.5-1	Basic Computational Steps for CINDSS	6-105
6.5-2	Basic Computational Steps for CINDSL	6-111
6.5-3	Basic Computational Steps for CINDSM	6-116

The present SINDA computer program has evolved from the CINDA-3G program, which in turn evolved from the CINDA program, etc. With each major program revision an updated user manual was generated, but a more in-depth presentation of programing considerations and the theoretical development of the numerous subroutines were not generated. This SINDA program manual represents a preliminary effort to fill some of the existing void by describing the program structure, by identifying the major functions of each processor routine with a functional flow chart, and by a more in-depth mathematical description of the numerical solution subroutines. It is not the intent of this engineering-program manual, however, to provide sufficient detailed information for a user to make modifications and/or additions to the existing subprograms.

1. NOMENCLATURE AND MNEMONICS
1.1 Nomenclature

$a_{i j}$	$\begin{aligned}= & k(A / l)_{i j}, \text { conduction coefficient between nodes } I \\ & \text { and } j .\end{aligned}$
A	= array
A	= area
$(\mathrm{A} / \ell)_{i j}$	```= effective ratio of cross-secticnal area to distance between nodes i and j.```
$b_{i j}$	$=$ radiation factor between nodes i and. j (composed of radiation interchange factor and area)
C_{i}	= capacity of ith node
\bar{C}_{i}	$=C_{i} / \Delta t$, capacity of ith node divided by time-step
DD	$=1$ - DN (allows certain fraction of "old" temperature to be included as part of temperature change for current time-step, refer to Section 6.2.5.1)
DN	```\equivDAMPA (user control constant, refer to Sections 6.2.5.1 and 6.2.3.2)```
F, F1, F2	```= multiplying factors, either user constants or literals, refer to Tables 6.2-1, 6.2-2 and 6.2-3).```
$G_{i j}$	$=a_{i j}+\sigma b_{i j}\left(T_{i}^{2}+T_{j}^{2}\right)\left(T_{i}+T_{j}\right)$
G_{k}	$=a_{i j}$ or $\sigma_{i j}$, conduction or radiation coefficient.
k	$=$ thermal conductivity
L	= a literal multiplying factor
N	$=$ number of variable temperature nodes (NNA + NND)
NNA	= number of arithmetic-nodes
NND	$=$ number of diffusion nodes
R	$=$ resistance
P	= total number of nodes
q_{i}	$=$ impressed heat load into the ith node
t	$=$ time
$\Delta \mathrm{t}$	$=$ time-step
$t_{\text {m }}$	$=($ TIME $\emptyset+$ TIMEN $) / 2.0$, mean time
T	$=$ temperature (${ }^{\circ} \mathrm{F}$ or ${ }^{\circ} \mathrm{R}$)
T_{m}	$=\left(T_{i}+T_{j}\right) / 2.0$, mean temperature (${ }^{\circ} \mathrm{F}$ or ${ }^{\circ} \mathrm{R}$)

Subscripts

i	$=$ ith node
j	$=\mathrm{j}$ th node
ij	$=$ between nodes i and j
i, n	$=$ updating of ith temperature, source, etc. at timestep n.
i,k	$=$ updating of ith temperature, etc. at kth iteration.
ij, n	$=$ updating of coefficient between nodes i and j at time-step n
ij,k	$=$ updating of coefficient between nodes i and j at kth iteration
m	$=\text { mean } \quad \frac{1}{2}<^{2}$

1.2
 Mnemonics

1.2.1 Control constants (refer to Sections 6.2 .3 .1 and 6.2.3.2)

ARLXCA $=$ allowable arithmetic node relaxation temperature change
ARIXCC = calculated maximuil arithmetic node relaxation temperature change
ATMPCA $=$ allowable arithmetic node temperature change
ATMPCC $=$ calculated maximum arithmetic node temperature change
BACKUP = back switch
BALENG = specified system energy balance
CSGFAC = time-step factor
CSGMAX $=$ maximum value of $C_{i} / \Sigma G_{i j}$
CSGMIN $=$ minimum value of $C_{i} / \Sigma G_{i j}$
CSGRAL $=$ allowable range between CSGMIN and CSGMAX
DAMPA = arithmetic node damping factor
DÀMPD = diffusion node damping factor
DRLXCA = allowable diffusion node relaxation temperature change
DRLXCC $=$ calculated diffusion node relaxation temperature change
DTIMEH = allowable maximum time-step
DTIMEI = specified time-step for implicit solutions
DTIMEL $=$ allowable minimum time-step
DTIMEU $=$ contains computed time-step
DTMPCA $=$ allowable diffusion node temperature change
DTMPCC = calculated maximum diffusion node temperature change
ENGBAL = calculated system energy balance
ITEST = contains dummy integer constant
JTEST = contains dummy integer constant
KTEST = contains dumny integer constant
LAXFAC $=$ number of iterations for linearized lumped parameter system, CINDSM only.
LINECT $=$ line counter location for program output
LФøPCT = contains number of iterations performed
$\mathrm{N} \emptyset \mathrm{C} \emptyset \mathrm{PY}=$ contains no copy switch for matrix users
$\mathrm{NL} \varnothing$ P $=$ number of specified iteration loops
ØPEITR $=$ output each iteration switch
PAGECT $=$ page counter location for program output

```
RTEST = contains dummy floating point constants
STEST = contains dummy floating point constants
TIMEM = (TIME& + TIMEN)/2.0, mean time for computational interval
TIMEN = TIMEN + DTIMEU, new time at the end of computational interval
TIMEND = problem stop time
TIME\emptyset = old time at che start of the computational interval
TTEST = contains dummy floating point constants
UTEST = contains dummy floating point constants
VTEST = contains dummy floating point constants
1.2.2 Numerical Solution Routines (refer to Sections 6.3-6.5)
CINDSS = steady state routine, refer to Section 6.5.1
CINDSL = steady state routine, refer to Section 6.5.2
CINDSM = steady state routine, refer to Section 6.5.3
CNBACK = implicit routine, refer to Section 6.4.1
CNDUFR = explicit routine, refer to Section 6.3.4
CNEXPN = explicit routine, refer to Section 6.3.3
CNFAST = explicit routine, refer to Section 6.3.2
CNFRDL = explicit routine, refer to Section 6.3.1
CNFWBK = implicit routine, refer to Section 6.4.2
CNFWRD = explicit routine, refer to Section 6.3.1
CNQUIK = explicit routine, refer to Section 6.3.5
CNVARB = implicit routine, refer to Section 6.4.3
1.2.3 Options (used in Tables 6.2-1 - 6.2-3)
BIV = Bivariate Interpolation Variable
DIT = Double Interpolation with Time as variable
DIV = Double Interpolation Variable
DPV = Double Polynomial Variable
DTV = Double interpolation with Time and Temperature as Variables
SIT = Single Interpolation with Time as variable
SIV = Single Interpolation Variable
SPV = Single Polynomial Variable
```


1.2.4 Routines and Subroutines of Preprocessor

SINDA = routine that specifies overlay of preprocessor to system allocator. PREPRD = main routine for preprocessor; initializes counters and FøRTRAN logical units; sets length of dynamic storage array and controls major logic.

ALPINT $=$ subroutine that accepts an integer in alphanumeric format and converts it to integer format; determines relative number of this actual number and converts it back to alphanumeric format. BLKCRD $=$ subroutine that formats the five generated FめRTRAN routines (SINDA, EXECTN, VARBLI, VARBL2, and фUTCAL) in 507 word blocks. $C \varnothing D E R D=$ Subroutine that reads and checks the block header cards for the data blocks.

CøNVRT $=$ subroutine that converts Hollerith data to integer data.
DATARD $=$ subroutine that scans the data block card images under an A format and determines appropriate format to reread the card images.
ERRMES $=$ subroutine that prints most of the error messages generated within the data blocks.
FINDRM = subroutine that moves the data in the dynamic storage array either up or down by 100 words.
GENLNK $=$ subroutine that generates the driver ($F \emptyset$ RTRAN routine named SINDA) for the user's program.

GENUK $=$ subroutine that generates user constants.
INCøRE $=$ subroutine that reads data into the dynamic storage array for the parameter-runs option.
MXTDFN = subroutine that processes data for the " m " option (converts card images from mixed FøRTRAN/SINDA notation to FØRTRAN notation.

NØDEDA $=$ subroutine that processes data for node and conductor data blocks.
PCS2 = subroutine that packs the F \emptyset RTRAN addresses for the array and constants locations required by the second pseudo-compute sequence.
PRESUB $=$ subroutine that reads and checks the block header cards for the operations blocks and generates the non-executable FøRTRAN cards for each of the operations blocks via a call to BLKCRD.

$$
1-5
$$

PSEUD $=$ subroutine that forms the first and second pseudo-compute sequences.

QDATA $=$ subroutine that checks and processes all data input in the source data block.

RELACT $=$ subroutine that finds the relative node numbers from the actual node number; computes the FORTRAN address for arrays and user constants from the actual number.

SEARCH = subroutine that retains a relative number for nodes, conductors, user constants, and arrays, given the actual number.

SETFMT $=$ subroutine that processes the card for the "new format" option; that is, it sets up the format for data cards as specified by the cards with an " N " in column one.

SINDA4 $=$ subroutine that reads and processes the user input cards from the operations blocks.
SKIP = subroutine that is used when a problem is RECALLED; it positions the tape to the proper problem as specified on the first card of the data deck.

SPLIT $=$ subroutine that reads the data from the RECALL tape and splits the RECALL information onto the proper data "tape" and the dictionary "tape."

SQUEEZ $=$ subroutine that compresses the specified data groups in the dynamic storage array.

STFFB $=$ subroutine that fills out a card image in array KBLK with Hollerith blanks.

TXPCHK $=$ subroutine that checks the input from the data blocks for the correct type (integer, floating point, or alphanumeric.

WRTDTA $=$ subroutine that writes the program data "tape" in the format required by INPUTT or INPUTG.

WRTPMT $=$ subroutine that writes the required data for parameter runs on the parameter "runs" "tape" and the dictionary "tape."

WRTBLK $=$ subroutine that writes the 507 word blocks contained in array KBLK on the program FØRTRAN "tape."

```
2.2.5 Others
SINDA = Systems Improved Numerical Differencing Analyzer
LPCS . = Long Pseudo-Compute Sequence
SPCS = Short Pseudo-Compute Sequence
LPCS2 = Second Long Pseudo-Compute Sequence
PCS1 = Pseudo-Compute Sequence One
PCS2 = Pseudo-Compute Sequence Two
TSUM = elapsed time from-last printout
TPRINT = time of last printout.
```

The original CINDA ${ }^{*^{1}}$ (Chrysler Improved Numerical Differencing Analyzer) computer program was developed by the Thermodynamics Section of the Aerospace Physics Branch of Chrysler Corporation Space Division at NASA Michoud Assembly Facility and was coded in FORTRAN-II and FAP for the IBM-7094 computers. CINDA was the product of an intensive analytical, engineering and programing effort that surveyed numerous thermal analyzertype programs and studied several in-depth. The foundation for CINDA was the storage and addressing of information required only for the network solution and the systems features which allowed the re-utilization of core storage area and brought into core only those instructions necessary for the solution of a particular problem. A systems compiler computer program that automatically optimized the utilization of computer core space was developed. This meant the generation of an integrated operation of relative addressing, packing features, peripheral tape storage units and overlay features.

CINDA evolved into CINDA-3G ${ }^{2}$ which was developed by the same group that generated CINDA with a major portion of the work done under contract NASA/MSC NAS9-7043. CINDA-3G represented (essentially) a complete rework of CINDA in order to take advantage of the improved systems software and machine speeds of the 3 rd generation computers. CINDA was unsuitable for standard operation on third generation computers since it was virtually a self-contained program having its own Update, Monitor and Compiler. On the other hand, CINDA-3G consisted of a preprocessor (written in FORTRAN) which accepted the user input data and the block data input. The user input data was converted into advanced FORTRAN language subroutines and block data input was passed onto the system FORTRAN Compiler. This required a double pass on data where previously only one was required, but the increased speed and improved software of the third generation machines more than compensated for the double pass.

SINDA ${ }^{3}$ (Systeins Improved Numerical Differencing Analyzer) was developed by the Heat Transfer and Thermodynamics Department of TRW Systems Group, Redondo Beach. Most of the improvements and subroutine additions to CINDA-3G was done as part of the NASA/MSC contract NAS 9-8389, * Superscript numbers refer to the literature cited in the Reference Section.
entitled, "Development of Digital Computer program for Thermal Network Correction." Programming and systems integration were directed to the UNIVAC-1108 computer.

SINDA relied quite heavily on CINDA-3G and data deck compatibility was rigorously followed; as a result, CINDA-3G data decks should, in the main, be directly operational on the SINDA program although some differences exist. For example, properties are updated before VARIABLES 1 call in CINDA-3G, whereas the properties are updated within the numerical solution routines after VARIABLES 1 call in SINDA. The primary differences between SINDA and CINDA-3G are: (1) elimination wherever possible of assembly language coding; (2) increased memonic options to aid the program user In data input; (3) inciusion of a second pseudo computer sequence for evaluation of nonlinear network elements; and (4) additional subroutines such as STEP (sensitivity analysis) and KALøBS-KALFIL (Kalman filtering). Most of the changes and additions to CINDA-3G were required in order to integrate the thermal network correction subroutine package into the existing CINDA-3G program.

During the development of SINDA a number of useful improvements became apparent. As a resulc, modifications to SINDA were made a part of the NASA/MSC contract NASA 9-10435 entitled, "Development of an Advanced SINDA Thermal Analyzer System." These changes that include a variable input format, simplified parameter runs, and generated user constants were made by the same group that developed SINDA. These improvements are reported in an updated SINDA users manual. ${ }^{4}$

3.1 SINDA Operatiag System

SINDA is more like an operating system rather than applications program. SINDA is programmed as a preprocessor in order to accommodate the desired operations relative to overlay features, data packing, dynamic storage allocation and subroutine library file, but yet be written in FøRTRAN. This preprocessor operates in an integral fashion with a library of numerous and varied subroutines, ${ }^{3}$, ${ }^{4}$ which may be called in any desired sequence but yet operate in an integrated manner. The preprocessor reads the input data, assigns relative numbers, packs this information, forms a pseudo-compute sequence(s) (which will be described briefly in a later paragraph of this section and is described in more detail in Section 4, called Preprocessor), and writes the operations blocks on a peripheral unit as FøRTRAN source language with all of the data values dimensioned exactly in labeled common. In turn, dontrols are shifted to the system FØRTRAN compiler which compiles the constructed subroutines and enters execution. The FDRTRAN allocator has access to the SINDA subroutine iibrary and loads oniy those subroutines called by the problem being processed.

As a result of this type of systems operation SINDA is extremely dependent upon the systems software. However, once the program is operational on a particular computer, the user-prepared problem data deck can be confined to the control cards and deck set-up requirements at a particular installation.

It should be recognized that the use of a preprocessor provides a computer with a large capability and considerable flexibility, but because of the numerous options that are generally offered, user instructions are more difficult than other thermal analyzer-type programs which have less flexibility.
3.2 Use of Lumped-Parameter Concept

Use of SINDA is based on a Iumped parameter representation of a physical system. This means that SINDA does not solve a set of partial differential equations that represents a distributive system, but rather SINDA numerically solves a set of ordinary (and in general) nonlinear
differential equations that represent a lumped parameter system. The procedure for the formulation and the numerical solutions of the 1 umped parameter equations are reported extensively in literature and basic considerations are presented in Section 5. For the discussion to follow on the pseudo compute sequence it is convenient to indicate a general set of ordinary linear differential heat balance equations,

$$
\begin{align*}
& \frac{d T_{i}}{d t}=\frac{1}{C_{i}}\left[q_{i}+\sum_{j=1}^{p} a_{i j}\left(T_{j}-T_{i}\right)\right] \tag{3.2-1}\\
& i=1,2, \ldots, N \text { (number of variable temperatures) } \\
& T_{j}=\text { constant, } N<j \leq p
\end{align*}
$$

where, $\quad C_{i}=$ the $i t h$ nodal capacity

$$
\begin{aligned}
q_{i} & =\text { the heat load into node } i \text { (impressed) } \\
a_{i j} & =\text { the conduction coefficient between nodes } i \text { and } j\left[=k\left(\frac{A}{\ell}\right)_{i j}\right] \\
t & =\text { time }
\end{aligned}
$$

Suppose an implicit numerical method as discussed in Section 5.2.2 of chis manual is chosen; the implicit finite difference form becomes after letting,

$$
\begin{align*}
& d T_{i} / d t \cong\left(T_{i, n+1}-T_{i, n}\right) / \Delta t, T_{j}=T_{j, n+1} \text { and } T_{i}=T_{i, n+1}, \\
& \frac{c_{i}}{\Delta t}\left(T_{i, n+1}-T_{i, n}\right)=q_{i}+\sum_{j=1}^{p} a_{i j}\left(T_{j, n+1}-T_{i, n+1}\right) \tag{3.2-2}
\end{align*}
$$

where, $\quad T_{i, n}=$ temperature at time point t_{n}

$$
\begin{aligned}
T_{i, n+1} & =\text { temperature at time point } t_{n}+\Delta t \\
\Delta t & =\text { time-step }
\end{aligned}
$$

Rearrangement of equation (3.2-2) yields,

$$
\begin{aligned}
\left(\bar{C}_{i}+\sum_{\substack{j=1 \\
j \neq i}}^{p} a_{i j}\right) T_{i, n+1}-\sum_{\substack{j=1 \\
j \neq i}}^{N} a_{i j} T_{j, n+1} & =q_{i}+\bar{C}_{i} T_{i, n}+\sum_{j=N+1}^{p} a_{i j} T_{j, n} \\
i & =1,2, \ldots, N \\
T_{j, n} & =\text { constant, } N<j \leq p
\end{aligned}
$$

where, $\quad \bar{C}_{i}=C_{i} / \Delta t$, average capacity of node i over Δt time-step
3.3 Pseudo-Compute Sequence (PCS)

A pseudo-compute sequence as generated by the SINDA. preprocessor

$$
3-2 \text { g }<
$$

is a list of numbers that indicates the position of required data values in various arrays such as conductance, temperature and capacitance. This meaning will become clearer by formulating equation (3.2-3) in a matrix form. The matrix formulation is straightforward since temperatures at time-step $n+1$ are the unknowns and terms on the right side of equation (3.2-3) represent the forcing function. Let us expand equation (3.2-3) to show this,

$$
\begin{gathered}
\left(\bar{C}_{1}+\sum_{j=1}^{p} a_{1 j}\right) T_{1, n+1}-a_{12} T_{2, n+1}, \ldots,-a_{1 N} T_{N, n+1}=q_{1}+\bar{C}_{1} T_{1, n}+\sum_{j=N+1}^{p} a_{1 j} T_{j, n}, \\
-a_{21} T_{1, n+1}+\left(\bar{C}_{2}+\sum_{j=1}^{p} a_{2 j}\right) T_{2, n+1}, \ldots,-a_{2 N} T_{N, n+1}=q_{2}+\bar{C}_{2} T_{2, n}+\sum_{j=N+1}^{p} a_{2 j} T_{j, n} \\
\cdot \\
\quad \cdot \\
-a_{N 1} T_{1, n+1}-a_{N 2} T_{2, n+1}, \ldots,\left(\bar{C}_{N 1}+\sum_{j=1}^{p} a_{N j}\right) T_{N, n+1}=q_{N}+\bar{C}_{N} T_{N, n}+\sum_{j=N+1}^{p} a_{N j} T_{j, n}
\end{gathered}
$$

Thus the matrix form of equation (3.2-3) becomes,

$$
\begin{equation*}
[\beta]\left\{T^{\prime}\right\}=\{Q\} \tag{3.3-1}
\end{equation*}
$$

where,

The matrix represented by equation (3.3-2) appears to be a full matrix (very small number of elements that are zero), but in reality most

$$
4<3-3
$$

of the off-diagonal elements are zero. Thus, if equation (3.2-3) was to be solved by a matrix inversion technique, all elements including zeros must be stored. Since the number of elements varies as N^{2} (N is the number of nodes), the required number of data locations would vary as N^{2} and the computer time required for matrix inversion would be pzoportional to N^{3}.

The explicit and iterative implicit numerical methods (refer to Section 5) of solving equation (3.2-1) lend themselves for optimizing the data storage area required and for reducing the solution time. If the conductors are numbered and related to the appropriate adjoining nodes as indicated in Table (3.2-1), retention of adjoining node number for each conductor provides a means of identifying element position in the coefficient matrix. This can be seen by considering the one-dimensional heat conduction example pictured in Figure (3.3-1).

Figure 3.3-1. Thermal Circuit for a One-Dimensional System

The set of equations associated with the problem of Figure (3.3-1) may be readily expressed as,

$$
\left[\begin{array}{cccc}
\left(\bar{C}_{1}+G_{1}\right), & -G_{1}, & 0, & 0 \tag{3.3-5}\\
-G_{1}, & \left(\bar{C}_{2}+G_{1}+G_{2}\right), & -G_{2}, & 0 \\
0, & -G_{2}, & \left(\bar{C}_{3}+G_{2}+G_{3}\right), & 0 \\
0, & 0, & -G_{3}, & 0 \\
0, & 0, & -G_{3}, & \left(\bar{C}_{4}+G_{3}+G_{4}\right), \\
0, & -G_{4} \\
0, & -G_{4}, & \left(\bar{C}_{5}+G_{4}\right)
\end{array}\right]\left\{\begin{array}{l}
T_{1} \\
T_{2} \\
T_{3} \\
T_{4} \\
T_{5}
\end{array}\right\}=\left\{\begin{array}{l}
Q_{1} \\
0 \\
0 \\
0 \\
0
\end{array}\right\}
$$

By comparing the element position of equation (3.3-5) with the tabular identification in Table (3.2-1) it is seen that elements with zero values need not be stored. The main diagonal term is never zero and is a composite of capacitance and off-diagonal conductors.

Table（3．2－1）Tabular Identification of Conductor and Adjoining Node Numbers

Conductance Number G\＃	$\begin{gathered} \text { ith } \\ \text { Node } \\ \text { N\# } \end{gathered}$	Adjoining Node Number N／	Comment
1	1	2	G1 is conductor $\$ 1$ between nodes 1 and 2.
1	2	1	G1 is conductor $⿰ ⿰ 三 丨 ⿰ 丨 三 一 1$ between nodes 2 and 1.
2	2	3	G2 is conductor \＃2 between nodes 2 and 3.
－	－		
4	5	4	G4 is conductor 非 4 between nodes 5 and 4.

It is of interest to note that the use of a pseudo－compute sequence is only one of a number of ways to store data efficiently．For example， TRW TAP ${ }^{5}$ does not employ a pseudo－compute sequence because of other user requirements．However，from a data storage standpoint，it appears that the use of a pseudo－compute sequence utilizes computer core most efficiently．

More than one pseudo－compute sequence is formed by SINDA．Both a so－called long（LPCS）and a so－called short（SPCS）pseudo－compute sequence as used in CINDA－3G ${ }^{2}$ are formed and in addition a second long pseudo－compute （LPCS2）required for thermal network correction is also formed in SINDA．A detailed discussion of these pseudo－compute sequences will be presented in Sec－ tion 4．6，but is of interest here to indicate the characteristics of these ＂sequences：＂

3．3．1 Long Pseudo－Compute Sequence（IPCS）

A long pseudo－compute sequence identifies the position and value of all off－diagonal elements of the coefficient matrix．This is done by operating on adjoining node numbers which have been assigned relative node numbers by the preprocessor．Since nodal temperatures are calculated sequentially in ascending numerical order，the conductor and adjoining node number are searched until node one is found with the conductor number and the other adjoining node number stored in a single core location．In addition， several indicators are stored in this single core location．These

Indicators are : (1) var C (indicates the input of a capacitor as a variable); (2) var G (indicates the input of a conductor as a variable); (3) rad (indicates the input of a radiation conductance); (4) Q (indicates the input of a source in the source data block); (5) one-way (indicates the input of a one-way conductor); and (6) last G (indicates the last conductor to a particular node). Order of indicator storage is indicated in Table (3.3-2).

Search is continued until all node-one's have been located and characteristics processed. The procedure is repeated for all node-two's and so forth sequentially until all nodes have been processed. The Important consideration of a LPCS is the encounter of each conductor of the coefficient matrix twice. Formation of a pseudo-compute sequence for the example shown in Table (3.3-1) is given in Table (3.3-2). A pseudocompute sequence starts with node one and advances the node number by one each time a last conductor indicator (last G) is passed. The conductor and node numbers identify the position of the conductor value in an array of conductor values and the position of the temperature, capacitor and source values in arrays of temperature, capacitor and source values respectively.

A long pseudo-compute sequence is well-suited for "successive point" iteration (refer to Section 5.2 .2 for a discussion of this) of the implicit finite difference equations because all elements of the coefficient matrix are identified. Thus, when a row of the coefficient matrix is processed and a new value of temperature obtained, the new temperature can then be used in the calculation procedure of succeeding rows.

3.3.2 Short Pseudo-Compute Sequence (SPCS)

The short pseudo-compute sequence identifies each conductor only once and since the coefficient matrix (equation 3.3-1) is symmetrical, all sparsity and off-diagonal elements of the coefficient matrix are accounted for. The node being processed and the adjoining node number reveal temperature- and source-value locations. The short pseudo-compute sequence for the example in Table (3.3-1) is formed in Table (3.3-3). By placing a minus sign on the initially encountered other-adjoining nodes, these nodes are not recognized on a second encounter. A short pseudo-compute sequence

3-6

$15<$

$$
3-7
$$

is well-suited for explicit numerical solutions methods which calculate the energy flow through the conductor, add it to the source location of the node being processed and subtract it from the source location for the adjoining node. The SPCS can be used for implicit methods of solution but the "block" iterative procedure (refer to Section 5.2.2 for a discussion of this) must be used since succeeding rows of conductor and adjoining node numbers do not contain the necessary element information.
3.3.3 Second Long Pseudo-Compute Sequence (LPCS2)

The second long pseudo-compute sequence (LPCS2) as a user input option flags a non-linear conductor between two diffusion nodes twice; LPCS flags the non-1inear conductor only one. LPCS2 is required for the thermal network correction of a sparse network by the use of subroutine KAFIL (refer to Reference 3 or 6).

3.3.4 Pseudo-Compute Sequence One (PCS 1) and Pseudo-Compute Sequence
 Two (PCS 2)

PCS 1 and PCS 2 are not user options but are fixed internally. The contents of PCS 1 and PCS 2 are governed by the user input of LPCS, SPCS or LPCS2). PCS 1 contains two relative addresses (conductor and adjoining node locations), two non-1inear type indicators, and an impressed source indicator. Indicators are keyed through a simple counter to a second pseudo-compute sequence (PCS 2) which contains integer addresses or relative constant and array starting locations necessary for evaluation of temperature varying coefficients and time varying coefficients for sources. When the input data contain literal values in SIV type calls, the preprocessor stores the values as extended user constants and supplies the relative constant address to the second pseudo-compute sequence. Detailed discussion on PCS 1 and PCS 2 is presented in Section 4.6.

3.4 Data Logistics

3.4.1 Relative Numbers

Both the long and short pseudo-compute sequences require the storage of only the finite values in the coefficient matrix, thereby taking advantage of matrix sparsity. If the short pseudo-compute sequence is used, the advantage of symmetry is accounted for. Conductors with the same constant value may share the same conductor number and value. The storage efficiency of the pseudo-compute sequences requires the sequential numbering of the nodes and the conductors. Since the numbering of thermal math-models is arbitrary and not sequential, the SINDA program assigns relative numbers. (starting from one, sequential and ascending) to the actual numbers of the incoming node data, conductor data, constants data and array data in the order received. Thus, numbers not used in the actual numbering system are neither identified nor required.

3.4.2 Storage Requirements and Dynamic Storage Allocation

All numerical solution subroutines require three locations for each diffusion node data (tenperature, capacitance and source), two iocations for each arithmetic node data (temperature and source), one location for each boundary data (temperature) and one location for each conductor value. In addition intermediate data storage ranging from zero to three locations per node may be required for the storage of temperatures and temperature differences; acceleration of convergence (refer to Section 6.2.7) used in the implicit and steady state routines (except CINDSS) requires three locations. Storage requirements for conductances depends upon the problem. For example, each internal diffusion and arithmetic node of a three-dimensional conduction system with rectangularnodalization will be connected with only three being unique; thus, each diffusion node (or arithmetic node) in a three-dimensional conduction system requires from six to nine storage locations for data values (temperature, capacitance, source, three conductors and up to three intermediate locations). Now each of the conductors for the short pseudo-compute sequence requires a single core location that contains two integer values (conductor and adjoining node numbers) and six indicators (refer to Section 3.3.1 for description). Each of the conductors between variable temperatures for the
long pseudo-compute sequence requires two core locations since the conductors are used twice during the computational process. This means that each internal node of a three-dimensional conduction system will require six data addressing locations for the long pseudo-compute sequence and, on the average, three data addressing locations for the short pseudocompute sequence.

Thus for a three-dimensional conduction system (no radiation), the number of required core locations per node can vary from nine (temperature, capacitance, source, three unique conductors and three data addressing locations) to fifteen (temperature, capacitance, source, six conductors and six data addressing locations) exclusive of the second pseudo-compute sequence which is required for variable coefficients, capacitance and sources.

The user must allocate an array of data locations which is to be used for intermediate data storage and initialize the array start and length indicators. Each subroutine that requires intermediate storage area has access to this array and the start and length indicators. During a subroutine execution a check on the sufficiency of space is made and start and length indicator are updated. If a subroutine calls upon another subroutine that requires intermediate storage, the called subroutine repeats the check and update procedure. Whenever any subroutine terminates its operation, the start and length indicators are returned to their entry values. This process is termed "Dynamic Storage Allocation" and allows subroutines to share a common working area.

3.5 Order of Computation

A network data deck consists of four data blocks (node, conductor, constants, and array), one optional data block (source) and four operations blocks which are preprocessed by the preprocessor and passed on to the system FøRTRAN compiler. Non-network problems require no node or conductor data blocks. The operations blocks are named EXECUTIめN, VARIABLES 1, VARIABLES 2 and OUTPUT CALLS: the SINDA preprocesscr constructs these blocks into individual subroutines with the entry names EXECTN, VARBL1, VARBL2 and ØUTCAL, respectively. After a successful FøRTRAN compilation, control is passed to the EXECTN subroutine. This means that the order of computation depends on the sequence of subroutine calls placed in the EXECUTIめN block
by the program user. No other operations blocks are performed unless called upon by the user either directly by name or indirectly through a subroutine call. The numerical solution subroutines described in Section 6 internally call upon VARBL1, VARBL2 and фUTCAL; The internal order of computation for these routines is similar with the primary difference being the numerical solution method. A general flow diagram of the numerical solution routines, as well as a detailed description of each is presented in Section 6.

4.1 General Description

The SINDA preprocessor reads and analyzes the user input deck and from this information constructs a program tailored to the user's requirements.

The rationale for a preprocessor is flexibility and speed. Flexibility is achieved by providing the user with a library of routines to solve problems, manipulate data, and print selected values. In addition, the user may insert non-SINDA routines into the constructed progran. Speed (defined here as minimal execution time) is achieved by structuring the data in an efficient manner.

The SINDA preprocessor consists of thirty routines with seven overlay links. All of the routines are written in FめRTRAN except for one assembly language routine which writes a "tape" in a format acceptable to the FøRTRAN compiler. These routines provide the user with a number of major options in the type of problem to be solved and the form of the data to be used. Henceforth these major options are designated as "major logic" of the preprocessor. See Figure 4.1-1 for a flow chart of the major logic of the preprocessor and its interface with the user program.

The major logic consists of the five following options: (1) NASA
MSC EDIT feature; (2) RECALL option; (3) generation of a THERMAL problem; (4) generation of a GENERAL problem; (5) and PARAMETER RUNS option. The primary features of each item of the major logic is discussed below.
(1) EDIT feature: The first card of the deck is checked for the user request of the EDIT feature. If the EDIT feature is requested the input "tape" is changed from the system input "tape" to the EDIT "tape" and control is transferred to subroutine EDIT for processing. On return a branch is made to the THERMAL or GENERAL section as specified by the data on the EDIT "tape." If the EDIT feature has not been requested, the check for RECALL is made.
(2) RECALL option: The first card of the deck is checked for user request of the RECALL option. If the RECALL option

$$
4-1
$$

Figure 4.1-1. SINDA Preprocessor - Major Logic and Interface with the User Specified Problem

$$
4-2
$$

is requested, control is transferred to subroutine SPLIT for processing. On return a branch is made to the PARAMETER RUNS section. If the RECALL option has not been requested, the second card of the deck is checked for the type of problem, THERMAL or GENERAL.
(3) THERMAL problem: The type of pseudo-compute sequence requested is noted, the title block is read, the data blocks are read and processed, the pseudo-compute sequence is formed, the driver for the user program (SINDA) is written on "tape," the operations blocks

- are read and processed and their FøRTRAN equivalents are written on "tape," and finally a check is made for the user requests of the PARAMETER RUNS option.
(4) GENERAL problem: This section is identical to a THERMAL problem except that only constants data and array data of the data blocks are read and processed; a pseudo-compute sequence is not formed.
(5) PARAMETER RUNS option: A check is made for the user request of the PARAMETER RUNS option. If the PARAMETER RUNS option is requested, the appropriate data blocks are read and processed. If not, the preprocessor is terminated.

Description of SINDA preprocessor routines is presented in the sections to follow. Terminology used in the description is listed and defined in Table 4.1-1.

Table (4.1-1) Terminology Used in Description of SINDA Preprocessor Routines

(1) DATA BLOCKS: The five user input blocks which contain data rather than instructions; these DATA BLOCKS are NODE DATA, CONDJCTOR DATA, CONSTANTS DATA, ARRAY DATA and the optional blocks SOURCE DATA.
(2) OPERATIONS BLOCKS: The four user input blocks which contain instructions on problem solution, as opposed to data contained in the DATA BLOCKS. These OPERATIONS BLOCKS are EXECUTI $\varnothing N$, VARIABLES 1, VARIABLES 2 and ØUTPUT CALLS.
(3) Non-fatal error: An error that does not terminate the preprocessor immediately. That is, the preprocessor will continue scanning the remaining cards of the input deck for errors. However, the user program will not be executed.
(4) Fatal error: An error that terminates the run immediately.
(5) N/A: Means not applicable.
(6) "TAPE": The term "tape" in quotes is used to signify any external storage device. That is, any piece of computer hardware, excluding the central processor, on which data can be stored and retrieved. The three most familiar examples are: magnetic tape, drum and disk.
(7) Dictionary: A list of the actual SINDA numbers in relative order. For example, the actual node number corresponding to the kth relative node number is the kth item of the node number dictionary.
(8) Data group: A data group composed of the pertinent information extracted from a particular data block. For example, the two groups derived from the constants data are: the user constants numbers and the user constants values.
(9) Bit manipulation: Terminology that implies the ability to store and access information within a computer word. This capability is also called packing and unpacking.
(10) Routine: A general term used to describe any program element.
(11) Subroutine: A special type of program element that is callable from a routine.
(12) Fixed constants: The term used in the preprocessor for control constants.

$$
4-4
$$

4.2
 Description of Subroutines

Sections 4.2 .1 through 4.2 .30 below describe the 30 routines of the SINDA preprocessor. The descriptions are based on the UNIVAC 1108 computer under the EXEC II operating system; it should be understood, however, that much of the information is machine-dependent and is dependent upon the facilities operating system. Note that the element named SINDA (Section 4.2.1) and the element named PREPR \varnothing (Section 4.2.2) are not subroutines in the technical sense of the word; hence, these two elements are referred to by the more general term "routine."

Each element of the preprocessor is described by the following eleven subtitles:
(1) SUBROUTINE NAME - this specifies the name of the element.
(2) PROGRAMMING LANGUAGE - This may be FøRTRAN, ASM, or MAP. FØRTRAN implies FøRTRAN V, ASM stands for assembly language (sometimes called SLEUTH II) and MAP is a special language which defines the overlay structure.
(3) PURPOSE - This gives a brief statement of the functional capabilities of the element.
(4) RESTRICTIONS - This gives an indication of where the input parameters come from, the form of the input parameters and the placement of the output parameters.
(5) "TAPES" USED - This represents a list of each FDRTRAN logical unit referenced within this element.
(6) SPECIAL FEATURES - This specifies programming features that are unique to a particular machine.
(7) OTHER SUBROUTINES CALLED - This represents a list of the external references.
(8) CALLING SEQUENCE - This gives a list of the subroutine arguments, if any, and a brief discussion of their use.
(9) ERROR PROCEDURES - This discusses the steps taken when an error is encountered.
(10) STORAGE REQUIRED - This gives the octal and decimal storage required for this element.
(11) LABELED COMMON - This represents a list of each labeled common name used in this element.

$$
\approx 5<\quad 4-5
$$

4.2.1 ROUTINE NAME: SINDA

PROGRAMMING LANGUAGE: MAP
PURPOSE: This routine specifies the overlay structure of the preprocessor to the system allocator (loader).

RESTRICTIONS: N/A
"TAPES" USED: N/A
SPECTAL FEATURES: N/A
OTHER SUBROUTTNES USED: N/A
CALLING SEQUENCE: N/A
ERROR PROCEDURES: N/A
STORAGE REQUIRED: N/A
LABELED COMMON: N/A

4.2.2 ROUTINE NAME: PREPRø

PROGRAMMING LANGUAGE: FØRTPAN

PURPOSE: This routine is the main routine (i.e., the driver) for the preprocessor. It initializes the counters and FORTRAN logical units, sets the length of the dynamic storage array, and controls the major logic. The major logic includes: (1) the EDIT feature (NASA MSC only); (2) the RECALL of a stored problem; (3) setup of a new user problem; (4) and preprocessor termination procedures.

RESTRICTIONS: N/A
"TAPES" USED:

System input "tape"	NIN
System output "tape"	NDUT
Problem data "tape"	LB3D
Problem FORTRAN "tape"	LB4P
Dictionary "tape"	LUT1
Parameter runs "tape"	LUT3
Recall "tape"	LUT7
Internal scratch "tape"	INTERN

SPECIAL FEATURES: System error termination - the problem data unit (LB3D) and the problem FORTRAN unit (LB4P) are flagged to stop before the data scan begins in the event that a system error terminates the preprocessor prematurely. The reason the problem data unit is flagged to stop is that for a RECALL problem the problem FORTRAN unit must not be written on.

OTHER SUBROUTINES USED: CøDERD, GENLNK, PRESUB, PSEUD $\emptyset, ~ S I N D A 4, ~ S P L I T ~ a n d ~$ WRTBLK.

CALLING SEQUENCE: N/A
ERROR PROCEDURES: The error termination procedures are controlled by three flags named ERDATA, PRØGRM, and ENDRUN. The three flags are in the labeled common block named DATA. ERDATA is used to flag non-fatal errors encountered while reading the data blocks, while PRøGRM performs the same function for the operations blocks. See Section 4.7.2.

STORAGE REQUTRED: 443 octal words $=291$ decimal words. See Section 4.7.1.
LABELED COMMON: BUCKET, CRDBLK, DATA, LøGIC, PLøGIC, and TAPE.

$$
4-7
$$

4.2.4 SUBROUTINE NAME: BLKCRD

PROGRAMMING LANGUAGE: FDRTRAN
PURPOSE: This subroutine formats the five generated FøRTRAN routines (SINDA, EXECTN, VARBL1, VARBL2, and $\emptyset U T C A L$) in 507 word blocks, which are acceptable to the FDRTRAN compiler. This information is stored in labeled common block CRDBLK, array KBLK. A complete discussion of the required tape format is found in UNIVAC 1108, EXEC II, Programmers Reference Manual, UP-4058 C, Appendix D. 4 entitled, Program Elements on Magnetic Tape (via CUR).

RESTRICTIONS: The input is Hollerith card images with a 14 A 6 format. It is transmitted either through the array IMAGE in labeled common CRDBLR, or through "tape" INTERN.
"TAPES" USED: Internal scratch "tape" INTERN
SPECIAL FEATURES: None
OTHER SUBROUTINES USED: STFFB and WRTBLK
CALLING SEQUENCE: BLKCRD
ERROR PROCEDURES: none
STORAGE REQUIRED: 753 octal words $=491$ decimal words. See Section 4.7.1.
LABELED COMMON: CRDBLK and TAPE.

4.2.5 SUBROUTINE NAME: CøDERD

PROGRAMMING LANGUAGE: FøRTRAN

PURPOSE: This subroutine reads and checks the block header cards for the data blocks. It also performs the following functions: (1) the second data card of the deck is checked for a thermal or general problem, and if it is a thermal problem the type of pseudo-compute sequence specified is noted; (2) the title block is read and processed; (3) the actual array and constant numbers from the automated options are converted into FgRTRAN addresses; and (4) the parameter run block header cards are read and checked.

RESTRICTIONS: None
"TAPES USED: System input "tape" NIN
System output "tape" NøUT.
FøRTRAN V reread 30

SPECIAL FEATURES: The FØRTRAN V intrinsic function FLD is used for bit manipulation.

GALLING SEQUENCE: CØDERD
ERROR PROCEDURES: In general, the errors checked for in this subroutine are of the fatal type; for example, data blocks out of order. The result of a fatal error is that the facal error flag (ENDRUN) is set to 1.0 and control is returned to PREPRO for immediate termination.

STORAGE REQUIRED: 3213 octal words $=1675$ words decimal. See Section 4.7.1.

LABELED COMMON: BUCKET, DATA, LøGIC, PLØGIC, and TAPE.
4.2 .6 SUBROUTIME NAME: CØNVRT
PROGRAMMING LANGUAGE: FØRTRAN
PURPOSE: This subroutine converts Hollerith data to integer data.
RESTRICTIONS: The Hollerith data must be contained in one word and con-sist of only the ten decimal digits.
"TAPES" USED: None
SPECIAL FEATURES: The FØRTRAN V intrinsic function FLD is used for bit
manipulatiow.
OTHER SURROUTINES USED: ERRMES
CALLING SEQUENCE: C 1 NVRT (IST, IEND, ITEMP, CRDERR)
IST is the pointer to the first bit of the first character.
IEND is the pointer to the first bit of the last character.
ITEMP is the word containing the Hollerith data on entry andthe integer number on return.
CRDERR is a logical error flag which is set true if an erroris encountered during the conversion.
ERROR PROCEDURES: If a non-integer is encountered, an error message isprinted and CRDERR is set to true.STORAGE REQUTRED: 150 octal words $=104$ decimal words. See Section 4.7.1.
LABELED COMMON: None

4.2.7 SUBROUTINE NAME: DATARD

PROGRAMMING LANGUAGE: FФRTRAN

PURPOSE: This subroutine scans the data block card images under an A format and determines the appropriate format (of the form Fn , In , or An) to reread the card image. The card images are then reread under the generated format. In addition, the constants data block and the array data block are processed.

RESTRICTIONS: None
"TAPES" USED: System input "tape" NIN
System output "tape" N N UT
F \varnothing RTRAN V reread $\quad 30$

SPECLAL FEATURES: The FORTRAN V intrinsic function FLD is used for bit manipulation.

OTHER SUBROUTINES USED: ERRMES, FINDRM, GENUK, NめDEDA (and its entry point C \varnothing NDDA), SETFMT, SQUEEZ, and TYPCHK.

CALLING SEQUENCE: DATARD

ERROR PROCEDURES: A11 errors checked for in this subroutine are non-fatal. An error message is printed either internally or from subroutine ERRMES and the data blocks error flag (ERDATA) is set to 1.0.

STORAGE REQUIRED: 5344 octal words $=2788$ decimal words. See Section 4.7.1.
LABELED COMMON: BUCKET, CHECKD, DATA, FLAGS, LØGIC, PLØGIC, PØINT, and TAPE.

$$
4-12
$$

4.2.8 SUBROUTINE NAME: ERRMES

PROGRAMMING LANGUAGE: FØRTRAN
PURPOSE: This subroutine prints most of the error messages that can be generated within the data blocks.

RESTRICTIONS: None
"TAPES" USED: System output "tape" NøUT
SPECTAL FEATURES: None
OTHER SUBROUTINES USED: System subroutine EXIT
CALLING SEQUENCE: ERRMES (JUMP , I, J, K)
JUMP is an integer that points to the appropriate error message via a computed $G \emptyset T \emptyset$ statement
I) are data words which allow a maximum of three printed

J data words per error message.
K
ERROR PROCEDURES: If the number of error messages printed exceeds 199, the preprocessor is terminated by a call to EXIT.

STORAGE REQUIRED: 2166 octal words $=1142$ decimal words. See Section 4.7.1.
LABELED COMMON: DATA and TAPE
4.2.9 SUBROUTINE NAME: FINDRM

PROGRAMMING LANGUAGE: FØRTRAN
PURPOSE: This subroutine moves the data in the dynamic storage array either up or down by 100 words. In the process it may delete certain groups of data that are no longer needed.

RESTRICTIONS: None
"TAPES" USED: System output "tape" NØUT
SPECIAL FEATURES: None
OTHER SUBROUTINES USED: SQUEEZ, and system subroutine EXIT.
CALLING SEQUENCE: FINDRM (LØCNØ,M)
LDCN $\emptyset \quad$ is a pointer to a portion of the dynamic storage array where the data group that needs more room resides. $M \quad$ is the address where the next data value is to be stored.

ERROR PROCEDURES: If the dynamic storage array is full, an error message is printed and the preprocessor is terminated via CALL EXIT.

STORAGE REQUIRED: 407 octal words $=263$ decimal words. See Section 4.7.1. LABELED COMMON: BUCKET LØGIC PØINT, and TAPE.

```
4.2.10 SUBROUTINE NAME: GENLNK
PROGRAMMING LANGUAGE: F\emptysetRTRAN
PURPOSE: This subroutine generates the driver, FORTRAN routine name and
SINDA, for the user's program.
RESTRICTIONS: None
"TAPES" USED: Internal Scratch "tape" INTERN
SPECIAL FEATURES: None
OTHER SUBROUTINES USED: BLKCRD
CALLING SEQUENCE: GENLNK
ERROR PROCEDURES: None
LABELED COMMON: CRDBLK, DATA, LøGIC, PL \(\emptyset G I C\), and TAPE.
```

4.2.11 SUBROUTINE NAME: GENUK
PROGRAMMING LANGUAGE: FøRTRAN
PURPOSE: This subroutine is used to generate user constants.
RESTRICTIONS: The input data is taken from array TEMP in labeled common
CHECKD and the output data (i.e., the generated user constants) is put
into array B in labeled common BUCKET.
"TAPES" USED: None
SPECIAL FEATURES: None
OTHER SUBROUTINES USED: ERRMES, FINDRM, and TYPCHK.
CALLING SEQUENCE: GENUK (IWRDS)
IWRDS is the number of words to be processed in array TEMP.ERROR PROCEDURES: The input data is checked and if an error is found,control is transferred to subroutine ERRMES.
STORAGE REQUIRED: 451 octal words $=297$ decimal words. See Section 4.7.1.
LABELED COMMON: BUCKET, CFECKD,.DATA, and PøINT.
4.2.12 SUBROUTINE NAME: TNCDRE

PROGRAMMTNG LANGUAGE: FดRTRAN
PURPOSE: This subroutine reads data into the dynamic storage array for the parameter runs option.

RESTRICTIONS: None
"TAPES". USED: Dictionary "tape"
Parameter runs "tape" LUT3
SPECTAL FEATURES: None
OTHER SUBROUTTNES USED: None
CAILING SEQUENCE: INCめRE(ITEST)
ITEST is an integer flag which determines the data group group to be read.

ERROR PROCEDURES: None
STORAGE REOUTRED: 600 octal words $=384$ decimal words. See Section 4.7.1.
IABELED COMMON: BUCKET, DATA, I母GIC, PLDGIC, POTNT, and TAPE.
4.2.13 SUBROUTINE NAME: MXTYAFN

PROGRAMMING LANGUAGE: FФRTRAN
PURPOSE: This subroutine processes the data for the " M " option. That is, it converts card images from mixed FøRTRAN/SINDA notation to FøRTRAN notation.

RESTRICTIONS: The input (array THDLL) and output (array JHøLL) are both in labeled common CIMAGE and they are both in an 80A1 format. The FøRTRAN from array JHめLL is copied to array IMAGE under a 14A6 format for processing by the FDRTRAN compiler.
"TAPES" USED: None
SPECIAL FEATURES: The FORTRAN ∇ intrinsic function FLD is used for bit manipulation.

OTHER SUBROUTINES USED: ALPINT and BLKCRD
CALITING SEQUENCE: MXTØFN
ERROR PROCEDIJRES: None
STORAGE REQUIRED: 522 octal words $=338$ decimal words. See Section 4.7.1.
LABELED COMMON: CTMAGE and CRDBLK
4.2.14 SUBROUTINE NAME: NøDEDA
programming language førtran
PURPOSE: This subroutine processes the data for the node and conductor data blocks.

RESTRICTIONS: The input is received via labeled common CHECKD: array TEMP and the processed data are stored in the dynamic storage array.
"IAPES" USED: None
SPECIAL FEATURES: This subroutine has a second entry point named CøNDDA. Also, the FøRTRAN V intrinsic function $F L D$ is used for bit manipulation. OTHER SUBROUTINES USED: ERRMES, FINDRM, RELACT, and TYPCHK

GALLING SEQJENCE: N $\varnothing D E D A(J U M P, I W R D S)$
or CøNDDA(JUMP,IWRDS)
JUMP is a flag which indicates which code option (columns 8, 9 , and 10 of the data card) the user has selected.

IWRDS is the number of data values in array TEMP to be processed.

ERROR PROCEDURES: If an error is detected while scanning the input data, control is transferred to subroutine ERRMES.

STORAGE REQUIRED: 7030 octal words 3608 decimal words. See Section 4.7.1.
LABELED COMMON: BUCKET, CHECKD, DATA, FLAGS, and PøINT.
4.2.15 SUBROUTTINE NAME: PCS2
PROGRAMMING LANGUAGE: FDRTRAN
PURPOSE: This subroutine packs the FDRTRAN addresses for the array and
constants locations required by the pseudo-compute sequence.
RESTRICTIONS: None
"IAPES" USED: None
SPECIAL FEATURES: The FDRTRAN V intrinsic function FLD is used for bit
manipulation.
OTHER SUBROUTINES"USED: None
CALLING SEQUENCE: PCS2 (IB, IPCS, LITA)
IB is the word in the dynamic storage array where theaddresses are found.
IPCS is the word into which the addresses are packed.
LITA is a flag that is set to 1 if the array address wasinput as a literal and therefore has been added tothe constants data.
ERROR PROCEDURES: None
STORAGE REQUIRED: 54 octal words $=44$ decimal words. See Section 4.7.1.
LABELED COMMON: None
4.2.16 SUBROUTINE NAME: PRESUB

PROGRAMMING LANGUAGE: FDRTRAN
PURFOSE: This subroutine reads and checks the block header cards for the operations blocks and generates the non-executable FøRTRAN cards for each of the operations blocks via a call to BLKCRD.

RESTRICTIONS: None

"TAPES" USED: | System input. "tape" | NIN |
| :--- | :--- |
| System output "tape" | NфUT |

SPECIAL FEATURES: None
OTHER SUBROUTINES USED: BLKCRD
CALLINE SEQUENCE: PRESUB(N)
N is an integer from 1 to 4 which indicates which operations block is being processed.

ERROR PROCEDURES: If the card read is not the correct block header card, an error message is printed and the fatal error flag is set to 1.0 .

STORAGE REQUIRED: 200 octal words $=128$ decimal words. See Section 4.7.1.
IABELED COMMON: CRDBLK, DATA, LøGIC, and TAPE.
4.2.17 SUBROUTINE NAME: PSEUD \varnothing
PRCGRAMMING LANGUAGE: FØRTRAN
PURPOSE: This subroutine forms the first and second pseudo-compute
sequence. See Section 4.6.
RESTRICTIONS: The necessary input is extracted from the dynamic storagearray and the output (the two pseudo-compute sequences) is placed in thedynamic storage array.
"TAPES" USED: NфRT
SPECIAL FEATURES: The FøRTRAN V intrinsic function FLD is used for bitmanipulation.OTHER SUBROUTINES USED: FINDRM, PCS2 and WRTDTA.
CALLING SEQUENCE: PSEUD \emptyset
ERROR PROCEDURES: If an error is encountered while forming the pseudo-compute sequences, an error message will be printed and the non-fatalerror flag (ERDATA) is set to 1.0 .STORAGE REOUIRED: 2244 octal words $=1188$ decimal words. See Section 4.7.1.LABELED COMMON: BUCKET, DATA, LøGIC, PL $\emptyset G I C$, and TAPE.

4.2.18 SUBROUTINE NAME: QDATA

PROGRAMMING LANGUAGE: FoRTRAN
PURPOSE: This subroutine checks and processes all data input in the source data block.

RESTRICTIONS: The input is received from the calling sequence and labeled common CHECKD. The processed data is placed in the dynamic storage array. "TAPES" USED: None

SPECIAL FEATURES: The FØRTRAN V intrinsic function FLD is used for bit manipulation.

OTHER SUBROUTINES USED: ERRMES, FINDRM, RELACT, and TYPCHK.
CALLING SEQUENCE: QDATA (CøDE,IWRDS)
CDDE is the three letter option from columns 8, 9, and 10 of the data card.

IWRDS is the number of words in array TEMP to be processed.
ERROR PROCEDURES: If an error is encountered, control is transferred to subroutine ERRMES.

STORAGE REQUIRED: 1655 octal words $=941$ decimal words. See Section 4.7.1. LABELED COMMON: BUCKET, CHECKD, and PoINT.

4.2.19 SUBROUTINE NAME: RELACT

PROGRAMMING LANGUAGE: FØRTRAN
PURPOSE: This subroutine finds the relative node number from the actual node number. In addition, it computes the FøRTRAN address for arrays and user constants from the actual number.

RESTRICTIONS: This subroutine is used in conjunction with the data blocks.
"TAPES" USED: None
SPECIAL FEATURES: The F\&RTRAN V intrinsic function FLD is used for bit manipulation.

OTHER SUBROUTINE USED: ERRMES
CALLING SEQUENCE: RELACT (K,MM, J, JJ)
K determines the path through the program via a computed $G \emptyset T \emptyset$ statement.

MM is the actual number on entry, and the FøRTRAN address on return.
$\left.\begin{array}{l}J \\ J J\end{array}\right\}$ are print variables for subroutine ERRMES.

ERROR PROCEDURES: In the event an error is encountered, control is transferred to subroutine ERRMES.

STORAGE REQUIRED: 311 octal words $=201$ decimal words. See Section 4.7.1.
LABELED COMMON: BUCKET, DATA, and PøINT.

4.2 .20 SUBROUTINE NAME: SEARCI

PROGRAMMING LANGUAGE: FØRTRAN

PURPOSE: This subroutine returns a relative number for nodes, conductors, user constants, and arrays, given the actual number.

RESTRICTIONS: This subroutine is used in conjunction with the operations blocks.
"TAPES" USED: None
SPECIAL FEATURES: The FORTRAN ∇ intrinsic function FLD is used for bit manipulation.

OTHER SUBROUTINES USED: None
CALLING SEQUENCE: SEARCH (N, IA, NDIM, LøC)
N is the actual number.
IA is the first word of the dictionary of actual numbers to be searched.

NDIM is the number of words of IA to be searched.

LوC is the relative number returned to the caliing program.

ERROR PROCEDURES: If the input actual number is not found in the dictionary, LめC is set to zero.

STORAGE REQUIRED: 101 octal words $=65$ decimal words. See Section 4.7.1.

LABELED COMMON: None

4.2.21 SUBROUTINE NAME: SETFMT

PROGRAMMING LANGUAGE: FФRTRAN
PURPOSE: This subroutine processes the cards for the "new format" option;
that is, it sets up the format for data cards as specified by the cards with a N in column one.

RESTRICTIONS: The input/output array is passed through the calling sequence argument.
"TAPES" USED: FøRTRAN v reread 30
SPECIAL FEATURES: None
OTHER SUBROUTINES USED: None
CALLING SEQUENCE: SETFMT (JUMP, B)
JUMP is an integer flag that determines the path through the code.

B is an array which contains the card images.
ERROR PROCEDURES: None
STORAGE REQUIRED: 221 octal words $=145$ decimal words. See Section 4.7.1.
LABELED COMMON: None
4.2.22 SUBROUTINE NAME: SINDA4
PROGRAMMING LANGUAGE: FDRTRAN
PURPOSE: This subroutine reads and processes the user input cards from theoperations blocks.
RESTEICTIONS: None
"TAPES" USED: Systen input "tape" MIN
System output "tape" NめUT
Internal scratch "tape" INTERN
FøRTRAN V reread 30
SPECIAL FEATURES: None
OTHER SUBROUTTNES USED: BLKCRD, MXTØFN, and SEARCH.
CALLING SEQUENCE: SINDA4 (NAME)
NAME is an integer flag that tells the subroutine whichoperations block is being processed.ERROR PROCEDURES: In the event an error is encountered while processingthe operations blocks, an error message is printed and the error flag
PROGRM is set to 1.0 .
STORAGE REQUIRED: 2372 octal words $=1274$ decimal words. See Section 4.7 .1 .
LABELED COMMON: BUCKET, CIMAGE, CRDBLK, DATA, LøGIC, PL申GIC, P \varnothing INT, andTAPE.

4.2.23 SUBROUTINE NAME: SKIP

FROGRAMMING LANGUAGE: FØRTRAN
PURPOSE: This subroutine is used when a problem is being RECALLed. It positions the tape to the proper problem as specified on the first card of the data deck.

RESTRICTIONS: The data is read from tape R. There is no output.
"TAPES" USED: RECALL "tape" LUT7
SPECIAL FEATURES: None
OTHER SUBROUTINES USED: None
CALLING SEQUENCE: SKIP
ERROR PROCEDURES: None
STORAGE REQUTRED: 324 octal words $=212$ decimal words. See Section 4.7.1.
LABELED COMMON: TAPE

4.2.24 SUBROUTINE NAME: SPLIT

PROGRAMMTNG LANGUAGE: FDRTRAN
PURPOSE: This subroutine reads the data from the RECALL tape and splits the RECALL information onto the program data "tape" (LB3D) and the dictionary "tape" (LUTI).

RESTRICTIONS: The input is from the RECALL "tape" and the output is placed on the program data "tape," the dictionary "tape," and the parameter runs "tape."
"TAPES" USED: RECALL "tape"

Program data "tape" LB3D
Dictionary "tape" LUT1
Parameter runs "tape" . LUT3
SPECIAL FEATURES: None
OTHER SUBROUTINES CALLED: SKIP
CALLING SEQUENCE: SPLIT (ID)
ID is the RECALL name punched in the first card of the data deck.

ERROR PROCEDURES: None
STORAGE REQUIRED: 746 octal words $=486$ decimal words. See Section 4.7.1.
LABELED COMMON: BUCKET, DATA, and TAPE.
4.2.25 SUBROUTINE NAME: SQUEEZ
PROGRAMMING LANGUAGE: FØRTRAN
PURPOSE: This subroutine compresses the specified data groups in thedynamic storage array. The compression is accomplished by placing thedata groups sequentially in the dynamic storage array.
RESTRICTIONS: None
"TAPES" USED: None
SPECIAL FEATURES: None
OTHER SUBROUTINES USED: None
CALLING SEQUENCE: SQUEEZ (IST, IEND)
IST is the data group number where the compression is tostart.IEND is the last data group number for this compression.
ERROR PROCEDURES: None
STORAGE REQUIRED: 115 octal words $=77$ decimal words. See Section 4.7.1.
LABELED COMMON: BUCKET and PDINT

4.2.26 SUBROUTINE NAME: STFFB

PROGRAMMING LANGUAGE: FØRTRAN
PURPOSE: This subroutine fills out a card image in array KBLK with Hollerith blanks.

RESTRICTIONS: The pointers to the words to set to blank are in the calling sequence, and the array containing the card images is in labeled common CRDBLK.
"TAPES" USED: None

SPECIAL FEATURES: None
OTHER SÜBROUTINES USED: None
CALLING SEQUENCE: $\operatorname{STFFB}(I, J)$
I is the first work in KBLK to set to blank.
J is the last word in KBLK to set to blank.

ERROR PROCEDURES: None
STORAGE REQUIRED: 41 octal words $=33$ decimal words. See Section 4.7.1.
LABELED COMMON: CRDBLK.
4.2.27 SUBROUTINE NAME: TYPCHK

programming language: førtran

PURPOSE: This subroutine checks the input from the data blocks for the correct type; type means integer, floating point, or alphanumeric. Also, it regulates the conversion of the A 's and K 's for the automated options via a call to CøNVRT.

RESTRICTIONS: The input and output are transferred through the calling sequence arguments and labeled common CHECKD.
"TAPES" USED: None
SPECIAL FEATURES: The FØRTRAN V intrinsic function FLD is used for bit manipulation.

OTHER SUBROUTINES USED: C \varnothing NVRT and ERRMES
CALLING SEOUENCE: TYPCHK (JUMP, IERR,J)
JJMP indicates what type the word should be.
IERR tells subroutine ERRMES which error message to print if the word is not of the type indicated by JUMP.

J is a pointer to the word type in array KFLHX.
ERROR PROCEDURES: If a word is not of the proper type control is transferred to subroutine ERRMES to print an error message and the logical flag CRDERR is set to true.

STORAGE REQUIRED: 233 octal words $=155$ decimal words. See Section 4.7.1.
LABELED COMMON: CHECKD

PURPOSE: This subroutine writes the program data "tape" in the format required by INPUTT or INPUTG.

RESTRICTIONS: The data to be written on "tape" is found in the dynamic storage array.
"TAPES" USED: Program data "tape" LB3D
SPECIAL FEATURES: None
OTHER SUBROUTINES USED: None
GALLING SEQUENCE: WRTDTA(JUMP)
JJMP is an integer flag that indicates which data block to write and what format to use.

ERROR PROCEDURES: None
STORAGE REQUIRED: 645 octal words 421 decimal words. See Section 4.7.1.
LABELED COMMON: BUCKET, DATA, L $\emptyset G I C$, PL $\phi G I C$, P $\phi I N T$, and TAPE
4.2.29 SUBROUTINE NAME: WRTPMT

PROGRAMMING LANGUAGE: FØRTRAN
PURPOSE: This subroutine writes the data that is needed for parameter runs on the parameter runs "tape" and writes the dictionary "tape."

RESTRICTIONS: The information that is written on the "tapes" is found in the dynamic storage array.
"TAPES" USED: Dictionary "tape" . LUT1
Parameter runs "tape" LUT3
SPECIAL FEATURES: None
OTHER SUBROUTINES USED: None
CALLING SEQUENCE: WRTPMT (JUMP)

> JUMP is an integer flag that indicates to WRTPMT which set of information to write.

ERROR PROCEDURES: None
STORAGE REQUIRED: 401 octal words $=257$ decimal words. See Section 4.7.1.
LABELED COMMON: BUCKET, DATA, LøGIC, PØINT, and TAPE.

$$
4-34
$$

```
4.2.30 SUBROUTINE NAME: WRTBLK
PROGRAMMING LANGUAGE: Assembly Language
PURPOSE: This subroutine writes the }507\mathrm{ word blocks contained in array
KBLK on the program F\emptysetRTRAN "tape."
RESTRICTIONS: None
"TAPES" USED: Program F\emptysetRTRAN "tape" LB4P
SPECIAL FEATURES: None
OTHER SUBROUTINES USED: None
CALLING SEQUENCE: WRTBLK
ERROR PROCEDURES: None
STORAGE REQUIRED: }14\mathrm{ octal words = 12 decimal words. See Section 4.7.1.
LABELED COMMON: CRDBLK
```

The SINDA preprocessor uses nine labeled common blocks to pass data and flags between the various subroutines. Labeled common names, in alphabetical order, are:

BUCKET	CHECKED	CIMAGE
CRDBLK	DATA	FLAGS
LØGIC	PLØGIC	PØINT

Note that the UNIVAC 1108 version does not utilize blank common. The two sections that follow give: 1) a map of the labeled common usage by subroutine name and by overlay link; 2) a definition of the variables used within each labeled common block; and 3) dynamic storage structure.

4.3.1 Labeled Common Map

The map below gives the labeled common name, a list of the overlay links that use it by link number and a list of the routines that use it.

LABELED C \varnothing MM \varnothing N NAME	ФVERLAY LINK NAMES	RøUTINE NAMES	
BUCKET	0, 1, 2, 4, 5	ALPINT	CøDERD
		DATARD	FINDRM
		GENUK	INCDRE
		NØDEDA	PREPR \varnothing
		PSEUD \emptyset	QDATA
		RELACT	SINDA4
		SPLIT	SQUEEZ
		WRTDTA	WRTPMT
CHECKD	1	DATARD	GENUK
		NØDEDA	QDATA
		TYPCHK	
CIMAGE	4	ALPINT	MXTØFN
		SINDA4	
CRDBLK	0, 3, 4	BLKCRD	GENLNK
		MXT \quad FN	PREPR \varnothing
		PRESUB	SINDA4
		STFFB	WRTBLK

LABELED CDINM NAME	\emptyset VERLAY LINK NAMES	RøUTINENAMES	
DATA	0, 1, 2, 3, 4, 5	ALPINT	CDDERD
		DATARD	ERRMES
		GENLINK	GENUK
		INCøRE	NøDEDA
		PREPR $\chi^{\text {d }}$	PRESUB
		PSEUD \emptyset	RELACT
		SINDA4	SPLIT
-		WRTDTA	WRTPMT
FLAGS	1	DATARD	NøDEDA
LDGIC	0, 1, 2	CDDERD	DATARD
		FINDRM	INCøRE
		PREPR \varnothing	PSEUD \emptyset
		WRTDTA	WRTPMT
PLDGIC	0, 1, 3, 4	CDDERD	DATARD
		GENLNK	INC \varnothing RE
		PREPR \varnothing	SINDA4
		WRTDTA	
PøINT	0, 1, 2, 4	ALPINT	CODERD
		DATARD	FINDRM
		GENUK	INCøRE
		NøDEDA	PREPR \varnothing
		PSEUD \varnothing	QDATA
		RELACT	SINDA4
		SQUEEZ	WRTDTA
		WRTPMT	
TAPE	0, 1, 2, 3, 4, 5	ALPINT	BLKCRD
		CøDERD	DATARD
		ERRMES	FINDRM
		GENLNK	INCøRE
		PREPR \emptyset.	PRESUB
		PSEUD \emptyset	SINDA4
		SKIP	SPLIT
		WRTDTA	WRTPMT

4.3.2 Definition of Labeled Common Variables

(1) Labeled common name BUCKET.

BUCKET is the dynamic storage array (see Section 4.3.3).
(2) Labeled common name CHECKD

CHECKD is used to temporarily store and check the user's input data.

VARIABLE NAME DESCRIPTION
TEMP (35) A temporary storage array, which contains or ITEMP the user's input data as read from the data cards.

XGEN (35)
or IGEN

KFLFX (35)

CRDERR
A temporary storage array used to store a copy of TEMP when the user is generating data.

An indicator used to check the data array which contains one of the following numbers:
$1=$ floating point number
$0=$ integer number
$-1=$ Hollerith word
A logical flag: Set true if and only if an error was found on the data card now being processed.
(3) Labeled common name CIMAGE

CIMAGE is used to store and manipulate Hollerith card images for the ' M ' option.

VARIABLE NAME DESCRIPTION
IH $\varnothing \mathrm{LL}(80) \quad$ The input card image, read under an 80A1 format.

JHøLL (160) The constructed card image, also an 80A1 format.
(4) Labeled common name CRDBLK

CRDBEK is used to construct the five generated FgRTRAN routines.

VARIABLE NAME DESCRIPTION

LSTART A logical flag that signals the start of a new routine if set to true.

LECARD A logical flag that signals the end of a routine.

LCめPY A logical flag that tells the program to copy the card image (14A6) found in IMAGE to the next available slot in KBLK.

Is a counter whose value is the next available word in KBLK.

KBLK (507) An array that contains FøRTRAN card images of the generated routines.

An array that contains one card image to be copied into KBLK.
(5) Labeled common name DATA

DATA is used to store the counters that indicate (to the program) how many of each data type has been encountered. In addition, it contains three error flags.

VARIABLE NAME DESCRIPTION

NND The number of diffusion nodes.

NNA

NNB

NNT

NGL The number of linear conductors.

NGR

NGT

NUC
NEC1 The number of added constants from automated options in the node data block.

$$
4-39
$$

NEC2	The number of added constants from the automated options in the conductor data block.
NCT	The total number of constants.
LENA	The total number of words used in the array data block.
ERDATA	The non-fatal error flag for the data blocks. ERDATA $\neq 0.0$ means an error has been found.
PRøGRAM	The non-fatal error flag for the operations blocks. PR ϕ GRAM $\neq 0.0$ indicates an error condition.
ENDRUN	The fatal error flag for the preprocessor. ENDRUN $\neq 0.0$ signals the program to terminate immediately.
LSEQ1	The length of the first pseudo-compute sequence.
LSEQ2	The length of the second pseudo-compute sequence.
LDNG	A logical flag set to true if the user is requesting the long pseudo-compute sequence.
Labeled common name FLAGS	
FLAGS contains three flags that are used to go to the proper block of coding in subroutine NØDEDA.	
VARIABLE NAME	DESCRIPTION
LEAP	Used with the GEN option.
NøNLIN	Flags a set of multiply connected conductors as radiation, if set to true.
INDX	Determines path when muitiply connected conductors require more than one data card.
Labeled common name LøGIC	
LøGIC contains a number of logical flags and the fifty fixed constants.	

VARIABLE NAME
LNØDE
LC \varnothing ND

LC \emptyset NST

LARRAY
LPRINT

KBRNCH

FIXC(50)
or IFIXC
KTPRNT

AYPRNT

GENERL
LQ

DESCRIPTION
Set to true if any node data was processed.
Set to true if any conductor data was processed.

Set to true if any user constants were processed

Set to true if any array data was processed.
Debug print flag, set to true if there is an asterisk in column 80 of the BCD 3 THERMAL/GENERAL card.

An integer that specifies which data block is being processed.

The array that contains the fixed (control) constants.

Optional print flag for a list of relative versus actual user constant numbers. Set time if there is an asterisk in colum 80 of the BCD 3C \varnothing NSTANTS DATA card.

Optional print flag for a list of actual array numbers versus FøRTRAN address. Set true if there is an asterisk in column 80 . of the BCD 3ARRAY DATA card.

Set true for a general problem.
Set true if any data was processed from the source data block.
(8) Labeled common name PLøGIC

PLøGIC contains a number of logical flags that are used in conjunction with parameter runs.

VARIABLE NAME DESCRIPTION
PARINT Set true for initial parameters run.
PARFIN Set true for final parameters run.
PNøDE \quad Set true if node data was processed.
PCØND Set true if conductor data was processed.
PCØNST Set true if user constants data was processed.

PAPRAY

PTITLE
PCHGID

Set true if array data was processed. Set true if a new title was input.

Contains the alphanumeric word INITIAL or FINAL to be used as the run identification on "tape" LB3D.
(9) Labeled common name PøINT

POINT is used in conjumetion with dynamic storage array BUCKET. See Section 4.3.3.

4.3.3 Dynamic Storage Structure

Dynamic storage represents one of the techniques of maximizing problem size with a computer with finite core. In dynamic storage each data set is placed sequentially into one array end-to-end. This eliminates the wasted core inherent with the traditional system of dimensioning each variable at some fixed length. However, the price paid for the additional core is the extra time required to compute the address of a variable.

The SINDA preprocessor used three arrays to store and address the data sets. The data sets are stored in an array named B, or IB, or BB. This array resides in labeled common BUCKET. The length at which B can be dimensioned depends on the system that the computer facility uses. At NASA MSC approximately 30,000 words are allocated to B. In addition, in labeled common PфINT there are two arrays named LøC and LEN, each dimensioned at 20. LDC (I) contains the starting location in B for the Ith data set and LEN (I) contains the length of the Ith data set.

The information below gives, in detail, the contents of the dynamic storage array for each data block as it exists just after the data block has been processed.
(1) Node data block
data set 1:
bit 1, automated option flag
bit 2, Q from S申URCE DATA flag
bits 16-35, actual node number
data set 2:
bits 0-35, temperature value
data set 3:
bits 0-35, capacitance value
data set 4:
bits 0-5
bit 6,
bits 7-20,
bit 21,
bits 22-35,
data set 5:
bits 0-35, \quad literals encountered in 4.
non-linear capacitance type
literal array flag
actual array number
1iteral constant flag
actual constant number
(2) Source data block
data set 2 (first word of group):
bits 0-5, source option type
bits 6-20, relative node number
bits 21-35, not used
data set 2 (second word of group):
bits 0-5, not used
bit 6, literal array flag
bits 7-20, actual array number
bit 21, literal constant flag
bits 22-35, actual constant number
data set 3:
bits 0-35, literals encountered in 2
(3) Conductor data block
data set 6:
bits 0-35, actual conductor number
data set 7:
bit 0, unulti connections flag
bit 1, radiation flag
bit 2, automated option flag

- bit 0,
bits 3-5, not used
bit 6, 1 way flag for NA
bits 7, 20, relative node number NA
bit 21
1 way flag for NB
bits 22-35, relative node number NB
data set 8:
bits 0-35, conductance value
data set 9:
bits 0-5, conductor option type
bit 6, literal array flag
bits 7-20, actual array number
bit 21,
literal constant flag
bits 22-35, actual constant number
data set 10:
bits 0-35, 1iterals encountered in 9(4) Constants data block
data set 11:
bits 0-35, actual constant number
data set 12:
bits 0-35, constant value
(5) Array data block
data set 13:
bits 0-35, actual array number
data set 14:
bits 0-35, array length
data set 15:
bits 0-35, array value(6) Pseudo-compute sequences
data set 16 (1st pseudo-compute sequence):
bit 0, last conductor flag
bit 1, automated capacitance flag
bit 2, automated conductance flag
bit 3, radiation conductance flag
bit 4, \quad from source block flag
bits 5-20, relative conductor number
bit $21 \quad 1$ way conductor flag
bits 22-35, relative adjoining node number
data set 17 (second pseudo-compute sequence):
bits 0-4, automated option type
bit 5, not used
bits 6-21,
bit 22,
bits 23-35,
FøRTRAN address for array
not used
relative constant number
The bit numbering convention above conforms to the UNIVAC standard notation, where each 36 bit word is numbered 0 through 35 from left to right. Each of the 1 bit flags above is querried in the following manner: 0 means NO, and 1 means YES. If the literal array flag or the literal constant flag is set to 1 , then the bits immediately to the right of the flag do not contain the actual array or constant number. Instead, they contain a pointer to the next data set where the literal value is stored. In those data sets that store information for the automated options it is sometimes necessary to use more than one word per option. When this is the case, the automated option type (bits 0-5) is set to 0 .

4.4 SINDA "Tapes" and Their Formats

The SINDA program in its normal operating mode utilizes six "tapes." Five of these "tapes" are assigned by the program and the remaining one contains the program; it is assigned via control cards. The store and recall options require one additional "tape" each and the NASA edit feature requires two additional "tapes." The following paragraphs contain information on the five normal SINDA "tapes."

4.4.1 LB3D - Program Data "Tape"

This "tape" is set up by the preprocessor (WRTDTA) and read by INPUTT, for a thermal problem, or INPUTG, for a general problem, just prior to performing the instructions of the execution block. The contents of this unit are:
(1) Problem identification.

WRITE (LB3D) RUNID
(2) Title information (20 words).

WRITE (LB3D) (TITLE (I) , $I=1,20$)
(3) The number of: diffusion nodes, arithmetic nodes, and total nodes; followed by a temperature value for each node; then a capacitance value for each diffusion, if any.

WRITE (LB3D) NND, NNA, NNT, ($\mathrm{T}(\mathrm{I}), \mathrm{I}=1, \mathrm{NNT}$)
IF (NND. GT. 0) WRITE (LB3D) (C (I) , $I=1, N N D$)
(4) The total number of conductors followed by a conductor value for each one.

WRITE (LB3D) NGT, (G(I), $I=1, N G T)$
(5) The total number of user constants are followed by the 50 control constant values; then the user constants values, if any.

WRITE (LB3D)NCT, (FIXC (I), $I=1,50$)
IF (NCT. GT . 0) WRITE (LBJD) (K (I) , I=1, NCT)
(6) The total number of arrays and the overall length of the array data; then the array values, if any.

WRITE (L B3D)NAT, LENA
IF (LENA.GT.0)WRITE (A (1) , $I=1$, LENA)
(7) The lengths of the first and second pseudo-compute sequences, followed by the data for the first pseudo-compute sequence; then the data for the second pseudo-compute sequence, if any. WRITE (LB3D)LSEQ1, LSEQ2, (P1 (I), $\mathrm{I}=1$, LSEQ1) IF (LSEQ2.GT.0) WRITE (LB3D) (P2 (I) , I=1, LSEQ2)

Note that (3), (4), and (7) above apply only to a thermal problem. 4.4.2 LB4P - Program FøRTRAN "Tape"

This "tape" is especially formatted in 507 word blocks as required by the FDRTRAN compiler. Where:

KORD 1 on the first block of each routine contains the name of the routine.

WORD 2 contains the integer number of card images in the block.

WORDS 3-506 contain the card images
WORD 507 is set to to except on the last block of each routine where it is set to -0 .
4.4.3 INTERN - Preprocessor Scratch "Tape"

Generally INTERN is used to pass card images to subroutine BLKCRD under a 14A6 format.
4.4.4 LUT1 - Dictionary "Tape"

This "tape" contains a list of the actual SINDA numbers in a relative order. That is, the actual node number corresponding to the kth relative node number is the kth item of the node number dictionary. The format of this "tape" is:
(1) The total number of nodes, followed by an actual node number for each node.

WRITE (LUT1) NNT, (NN(I), $\mathrm{I}=1, \mathrm{NNT}$)
(2) The total number of conductors, followed by the list of actual conductor numbers.

WRITE (LUTI)NGT, (NG (I) , I=1, NGT)
(3) The number of user constants, the total number of constants, followed by a Ifst of the actual constant numbers.

WRITE(LUTL)NUC, NCT, (NK (I) $, \mathrm{I}=1, \mathrm{NCT})$
(4) The total number of arrays followed by a list of the actual array numbers, then the total number of arrays followed by a list of the length of each array.

WRITE (LUT1) NAT, (NA (I) , I=1, NAT)
WRITE(LUT1)NAT, (LA (I) , $I=1, N A T)$
4.4.5 LUT3 - Paraneter Runs "Tape"

This "tape" contains some data from" the original problem. It is required by the initial parameters capability. The format of "tape" LUT3 is:
(1) The original title.

WRITE (LUT3) (TITLE (I) , $I=1,20$)
(2) A list of original temperature and capacitance values.

WRITE (LUT3)NND, (T (I) , $\mathrm{I}=1$, NNT)
IF (NND.GT. 0) WRITE (LUT3) (C (I) , I=1, NND)
(3) A list of the original conductor values.

WRITE (LUT3) ($G(I), I=1, N G T)$
(4) Lists of the original fixed and user constants.

WRITE (LUT3)NUC, NCT, (FIXC (I) , $I=1,50$)
IF (NCT . GT. 0) WRITE (LUT3) (K (I) , $I=1, N C T$)
(5) The original array values.

WRITE (LUT3)NAT, LENA
IF (LENA , GT.0) VRITE (LUT3) (A (I) , $I=1$, LENA)

4.5 Overlay Structure

The SINDA preprocessor has an overlay structure composed of a main link (designated LINKO below) which is always in core and five sublinks (designated LINK1, LINK2, LINK3, LINK4, LINK5, and LINK6 below) which overlay one another as they are brought into core.

Note that the first subroutine listed above in each of the sublinks serves as the driver for that sublink and it is also the subroutine called from PREPRø.
. Another approach to overlay specification is to think of each link as a functional unit, hence the graph below.

4.6 Structure of Pseudo-Compute Sequences

4.6.1 Descriptions

The use and structure of the two pseudo-compute sequences generated by the SINDA preprocessor appear to be rather confusing and mysterious. The term "pseudo" itself leads to inmediate interpretation difficulties. Suppose that an element G_{k} between nodes i and j is to be identified for the ith node; by specifying explicitly i, j, and k the element is completely defined. On the other hand, SINDA explicitly specifies j and k but i is implicit in the $D \varnothing-L \emptyset \emptyset P$; hence, the description pseudo-compute sequence (PCS) arises. Confusion also arises from the lack of information regarding the need for the (PCS) and the difficulties in reading the packed information. In short, the PCS as used in SINDA is simply two lists of relative numbers which are ordered in a specific manner. The two lists of relative numbers form the heart of the PCS, although other information pertinent to the computation must also be considered.

The PCS is necessary because the data as input by the user does not lend itself efficiently to the computational capabilities of FXRTRAN. As a result, the preprocessor scans the user input data and places the relative numbers (FøRTRAN addresses) into an array in the order in which the data will be used at a later time by the user selected numerical solution routine.

Packing of the data is a technique that conserves computer storage by placing two or more pieces of information in one computer word. This allows the user to execute a larger problem than the one that can be accommodated if the traditional one computer word for each piece of information approach. The penalty for this larger problem capability is an increase in execution time required for the extraction of information each time it is used.

4.6.2 Structure of PCS1

The first PCS, designated PCSI, contains the following information:

bit 0	last G for this node flag
bit 1	automated C option flag
bit 2	automated G option flag
bit 3	radation G flag
bit 4	Q from source data flag
bits $5-20$	relative G number
bit 21	1 way G flag
bits $22-35$	relative adjoining node number

The 36 bits of each computer word are numbered 0 through 35 from left to right. All of the 1 bit flags are set such that 0 means $N \varnothing$ and 1 means YES.

PCS1 is stored in an array named NSQ1 and is ordered by relative node number. That is, for relative node number 1 the conductor data is scanned and each time a conductor connected to node number 1 is encountered the PCS1 information is stored in NSQ1. When all of the conductor data has been scanned, the 0 bit of the latest word of PCS1 information is set to 1 . This process is repeated for relative node numbers 2, 3 , etc., until all diffusion and arithmetic nodes have been processed. PCS1 will be formed as either long or short as specified by the user on the BCD 3THERMAL card. This option is applied to diffusion nodes only since arithmetic nodes are always formed under the long option. The difference between the long PCS and the short PCS is that in the long PCS, each conductor will be listed twice, whereas in the short PCS each conductor will be listed once. This assumes the conductor connects two diffusion nodes. If one or both of the nodes is arithmetic, then the conductor will be listed twice, and if one of the nodes is a boundary the conductor will only be listed once. For example, given conductor number k which connects diffusion nodes i to j, where $i<j$. The long PCS would contain the k, j information for the processing of node i, and the k, information for the processing of node j; whereas, the short PCS would only contain the k, j information. The short PCS thus has the advantage of requiring less computer storage than the long PCS, but a block iterative method (refer to Section 5.2.2) must be used; in general, the short PCS requires more iterations to converge than the successive point iterative (refer to Section 5.2.2) method which requires the long PCS.

4.6.3 Structure of PCS2

The second PCS is designated PCS2. The following information is stored whenever bit 1, bit 2, or bit 4 of PCS1 is set to one.
bits 0-4 automated option code
bit 5
bits 6-21
not used
FضRTRAN address of the array or relative constant number.
bit 22 not used
bits 23-35 Felative constant number

If the automated option is a doublet type, like DIV, and therefore requires two words to store the information, the automated option code on the second word is set to zero. In the event that more than one of the flag bits (bits 1, 2, or 4) of PCS1 is set to one, then the following order is imposed on PCS2: the capacitance information is stored first, the source block information second and finally the conductor information.

The PCS2 information is stored in array named NSQ2. This array is the same under the long PCS1 ox the short PCS1 since automated conductors are only flagged on their first encounter.

4.7 Other Information

This section contains miscellaneous information that may be of interest to the user.

4.7.1 Subroutine Lengths

The storage required by a particular routine will vary depending on the type of computer and the system being used. The routine lengths given in Section 4.2 are based on compiler listings made on 23 January 1971 at Jacobi Computation Center.* The machine is a UNIVAC 1108 with a highly modified system. The numbers represent the sum of the computer storage for computer instructions, constants, and simple variables.
4.7.2 Maximum Thermal Problem Size and Maximum Data Value Size

A short formula for estimating the maximum thermal problem size that can be run on SINDA, and a list of the maximum size of the various data values is given below.

Now called Computation and Systems Corporation, Los Angeles, Califormia.
Estimation of Maximum Problem Size
$\mathrm{NNT}+3 * \mathrm{NGT}+\mathrm{NCT}+4 * \mathrm{NA} \Phi \leq$ LENBKT
where,
NNT is the total number of nodes.
NGT is the total number of conductors.
NCT is the total number of constants (userconstants plus literals from automated options).NAØ is the number of automated options specified.

- LENBKT is the length of the dynamic storage array asset in routine PREPR \varnothing.
Maximum Size of Data Values
Actual node number
Core storage $2^{33}-1$
Print out 999,999
Relative node number
Core storage 16,383
Temperature
Core storage $\pm 10^{38}$
Capacitance
Core Storage $\pm 10^{38}$
Relative conductor numberCore storage$2^{35}-1$
Actual user constants number
Core storage 32,767
Automated options 16,383
Relative user constants number
Core storage 32,767
Automated options 8,191

User constant vaiues
Integer
Floating point
Alphanumeric

$$
\begin{aligned}
& \therefore 2^{35}-1 \\
& \pm 10^{38} \\
& \quad 6 \text { characters }
\end{aligned}
$$

Actual array number
Core storage
$2^{35}-1$
Automated options 16,383
Print out 99,999

Relative array number
Core storage $2^{35}-1$

Automated options 65,535

Print out 99,999

Array values
Integer
$\pm 2^{35}-1$
Floating point
$\pm 10^{38}$
Alphanumeric
6 characters

Note that some of the maxima, such as the relative conductor number of $2^{35}-1$, are strictly academic since the dynamic storage array is considerably smaller than the indicated maximum data value size.

The use of SINDA as mentioned in a previous section is based on 2 lumped parameter representation of a physical system. ${ }^{7}$. Thus SINDA solves numerically a set of ordinary (in general nonlinear) differential equations that represent the transient behavior of a lumped parameter system or a set of nonlinear algebraic equations representing steady state conditions. Numerous numerical solution techniques are raported in literature; a few of these are listed in the Reference Section. ${ }^{8-24}$ These numerical methods are based on finite difference algorithms as opposed to finite element methods which have received considerable attention recently. ${ }^{25-29}$ For problems that are generally encountered in spacecraft thermal design, use of the finite element method appears to be inappropriate because of the nonlinearity presented with radiation heat transfer and because of complex geometric configurations.

Variations of the basic finite difference algorithms are numerous because no single numerical solution technique is optinum for all the endless types of thermal problems that can be encountered. Furthermore, because of the nonlinearity of the problems, a specific set of criterions to indicate solution accuracy and stability is not available and does not appear to be forthcoming. As a result, the user is placed in a rather awkward and confused position of not knowing which subroutine to use if a choice is available. Some thermal analyzer-type computer programs allow no choice, as a result, user decision is not necessary. SINDA represents a computer program at the other extreme of user decision flexibility by providing a number of numerical solution methods.

The intent of this Section 5 is to review and formulate the basic numerical solution methods with the presentation (from an engineering standpoint) of the characteristics of each SINDA numerical solution routine deferred to Section 6. In addition to place the use of SINDA in a proper perspective relative to accurate temperature prediction of a physical system, difficulties associated with lumped-parameter representation are discussed here.

Reduction of a distributive (physical) system to a lumped system whirin can be represented as an equivalent thermal network is a rather important phase of thermal analysis. From a temperature accuracy standpoint lumping (or nodalization) of the physical system may be far more important than a numerical solution technique that is used in a computer program. The latter is often given undue attention with apparent ignorance of other error sources which may be far more important. A general discussion on lumped parameter representation is not intended for presentation here since the subject material is extensively covered in technical literature, but it is convenient for continuity to indicate basic considerations.

For simple geometries and linear problems, it is rather straightforward to solve the partial differential equations of the type,

$$
\begin{equation*}
\frac{\partial T}{\partial t}=\alpha \nabla^{2} T+Q \tag{5.1-1}
\end{equation*}
$$

where, $\quad \alpha=$ thermal diffusivity (k / C)
I = temperature
$Q=$ source
$\nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}} \quad$ (two dimensional)
Numerous analytical solutions of (5.1-1) for different types of boundary conditions and geometries are available. ${ }^{30}$, ${ }^{31}$ Finite difference algorithms formed directly from the partial differential equations are also abundantly reported in literature.12,14 These finite difference formulations were generally developed for well-defined geometries and symmetrical discretization. For these problems, the so-called nodal connections or resistances are immediately available and, in general, automatically generated by the computer program. Thus, the need for a lumped parameter representation does not exist. For these types of problems, inaccuracies due to truncation and solution stability are specifically established.

For complex geometries and nonlinear problems such as those that include thermal radiation exchange, analytical solutions of thermal problems are limited. ${ }^{32,34}$

As a result, it is a common practice because of practical considerations to nodalize a physical system directly with-
out undue consideration of inaccuracies. Thus, a user merely represents the block,

$$
\begin{equation*}
q_{i j}=\left(T_{i}-T_{j}\right) / R_{i j} \tag{5.1-2}
\end{equation*}
$$

where, $\quad R_{i j}$ represents an effective resistance between adjoining nodes \mathbf{i} and \mathbf{j}.

It should be particularly noted here that SINDA employs the concept of conductance in lieu of resistance which is common with most network-type computer programs. Thus the heat flow is represented as:

$$
\begin{equation*}
q_{i j}=G_{i j}\left(T_{i}-T_{j}\right) \tag{5.1-3}
\end{equation*}
$$

where, $G_{i j}$ is the conductance between node i and node j.
The proper value of $G_{i j}$ (or $R_{i j}$) for an arbitrary nodalization is (and shculd be) of concern to the user but because of the multitude of variables that must be considered, any discussion here would be incomplete. An excellent article on asymmetrical finite difference networks is presented in Reference 35.
5.1.1 Some Thoughts on Lumped Parameter Errors

Reduction of a physical system to a topological model consisting of a network with resistors and capacitors requires considerable engineering judgment. More often than not, nodal size of a model is governed by budget and schedule constraints. As a result, the discrete areas larger than desired are often used. This does not necessarily mean, however, that the use of a large number of ncdes will always yield realistic results since the uncertainties of the input parameters can be appreciable. ${ }^{36}$

Spatial truncation errors are controlled by selecting the grid size so that nonlinear temperature distributions lie within required accuracy by linear interpolation between nodal points, and that variation of temperaturedependent properties over the volume of each node is within required limits of the average values determined for the nodal point. The assumption of linear temperature distribution assumed for the lumped-parameter equations. (equation 5.1-6) leads to a spatial truncation error of the order $0\left(\Delta x^{2}\right)$ only if all nodes are symetrically located. ${ }^{27}$ If a non-uniform grid is used, the accuracy of computation is only $0(\Delta x)$. Spatial truncation errors are thus inherent in the mathematical model and beyond user control once inputted into

SINDA. For a two-dimensional problem with symmetrical grids, the spatial truncation error can be expressed for typical explicit and implicit methods) $05,22,27$

$$
\begin{equation*}
E=-\frac{(\Delta x)^{2}}{12} \frac{\partial^{4} T}{\partial x^{4}}-\frac{(\Delta y)^{2}}{12}-\frac{\partial^{4} T}{\partial y^{4}}+0\left(\Delta x^{4}\right) \tag{5.1-4}
\end{equation*}
$$

Temperature distribution other than linear can also be formulated; ${ }^{38}$ however, most thermal analyzer-type computer programs such as $T R J M P^{39}$ and including SINDA are based on the linear assumption.

Time truncation errors are directly dependent upon the time-step since the error for the typical explicit and implicit method is,

$$
\begin{equation*}
E=-\frac{\Delta t}{2} \frac{\partial^{2} T}{\partial t^{2}} \tag{5.1-5}
\end{equation*}
$$

Normally the time step is dependent upon a particular criterion chosen by the user. A more detailed discussion on user control of the time step will be given for each numerical solution routine within the SINDA subroutine library. ${ }^{3}{ }^{4}$

Another approximation error which is due to discretizing is the assumption of constant radiosity for the discrete areas. Inaccuracies can be expected to affect the level and distribution of temperature. The analysis of thermal radiation exchange has received considerable attention in recent years because of its importance in spacecraft thermal design. ${ }^{40}, 52$ The influence of non-uniform local heat flux on overall heat transfer between a gray differential area parallel to a gray infinite plane is examined in Reference 43; the assumption of uniform local heat flux appears to be reasonable for this geometry and for the evaluation of the overall heat flux calculations. A method of analysis suitable for engineering applications is developed in Reference 50 for computing local radiant flux and local temperature of opaque surfaces in a space environment. A study evaluating the validity of commonly used simplified methods of radiant heat transfer analysis is reported in Reference 48. A study directed at improving the understanding and prediction of orbiting spacecraft thermal performance is presented in References 46 and 49. A method presented in Reference 51 provides a means of evaluating the uncertainties associated with thermal radiation exchange. For an excellent status review (as of 1969) on radiation exchange between surfaces and in enclosures, the reader should consult Reference 52 .

$$
\begin{equation*}
\frac{d T}{d t}=\frac{1}{C_{i}}\left[q_{i}+\sum_{j=1}^{p} a_{i j}\left(T_{j}-T_{i}\right)+\sum_{j=1}^{p} \sigma b_{i j}\left(T_{j}^{4}-T_{i}^{4}\right)\right] \tag{5.1-6}
\end{equation*}
$$

where, $\quad C_{i}=$ the ith nodal capacity which may be a function of temperature
$q_{i}=$ the heat into node i and may be a function of time and temperature (impressed)
$a_{i j}=$ the conduction coefficient between nodes i and j; it may be a function of time and temperature
$b_{i j}=$ the radiation coefficient between nodes i and j; it may be a function of time and temperature
$\sigma=$ Stefan-Boltzmann constant
Coefficients $a_{i j}$ and $b_{i j}$ are SINDA input quantities with the temperature factor of equation (5.1-6) calculated internally by the program. Both $a_{i j}$ and $b_{i j}$ may be variables. Conductance updating is a subject for discussion in a later paragraph. The user requirement to input the coefficients, $a_{i j}$ and $b_{i j}$, provides considerable program flexibility, but at the same time user generation of these input quantities presents, in some instances, rather difficult engineering judgment decisions.

Radiation coefficient $b_{i j}$ is, in essence, a radiation interchange factor, $f_{i j},{ }^{53-55}$ (also known as script F) between nodes i and j. Generation of this quantity analytically can be quite difficult and inaccurate. A number of methods and computer programs (see, for example,

Reference 56) are available for evaluating the shape factors which represent an important part of determining script F. A direct generation of script F is normally through the use of the Monte Carlo technique, ${ }^{49}$ but a recent development utilizes a matrix formulation for determining the script F in an enclosure containing surfaces with arbitrary emission and reflection characteristics. ${ }^{57},{ }^{58}$ An experimental technique is reported in Reference 59.

5.2 Basic Finite Difference Formulations

The various numerical solution techniques differ in the finite difference formulations for the time-derivative (refer to equation 5.1-6); since the thermal equation is of the parabolic type, the transient heat transfer problems are of the initial value type. This means that at some time point, $t=n \Delta t$ (n is the number of time steps, Δt) all values of T_{i} are known. Thus,

$$
T_{i, n+1}=T_{i, n}+\left[\frac{d T_{i, n}}{d t}\right]_{t_{n, n+1}} \Delta t
$$

$$
i=1,2, \ldots, N
$$

where $t_{n, n+1}$ represents the time interval between $t=n \Delta t$ and $t=(n+1) \Delta t$
It is apparent that the selection of the proper value to $\left(d T_{i, n} / d t\right) t_{n, n+1}$ cannot be explicit and its selection identifies one numerical method from another. Although many finite difference formulations of the parabolic differential equation are available, two general classifications are commonly denoted as explicit or implicit. These numerical methods are well-documented in literature; the reader should refer to Reference 12 for a comprehensive discussion on various finite difference approximations. Explicit methods also discussed in References 14, 17, 19 and 20, among others, are step-by-step in time and equations.

Explicit methods include:
(1) Forward-difference explicit approximation ${ }^{12,14}$

This is an Euler method that computes temperatures in a step-by-step fashion. The requirement of stability places an upper limit on the time increment. SINDA subroutines CNFRWD, CNFRDL and CNFAST fall within this
categury. CNFAST is a modified version of CNFRWD which allows the user to specify the minimum time step to be taken. Refer to Sections 6.3.1 and 6.3.2 for details.
(2) Dufort-Frankel approximation ${ }^{9}$, 12,17

The Dufort and Frankel finite difference formulation is a three level formula that appears to be unconditionally stable. SINDA subroutine CNDUFU uses the Dufort-Frankel finite difference algorithm (refer co Section 6.3.4 for a detailed discussion).
(3) Exponential approximation 1,17

The exponential approximation is found by integrating the heat balance equations after making linear and constant coefficient assumptions. This method is unconditionally stable for linear systems but may be unstable for some types of nonlinear problems. SINDA subroutine CNEXPN employs this method and is discussed at length in Section 6.3.3.
(4) Alternating direction approximations ${ }^{17}$

This technique employs two formulations, one on odd time levels and the other on even time levels and is unconditionally stable.

The implicit finite difference formulations require a simultaneous computational procedure. In addition to Reference 12 , implicit methods are aiso discussed in References 8, 10, 17, and 20, among others. Implicit methods include:
(1) Backward difference implicit approximation ${ }^{12}$ The backward difference weights only the flux terms at $t=(n+1) \Delta t$. As a result, the method is stable for all values of $\triangle t$. SINDA subroutine CNBACK employs this method and is detailed in Section 6.4.1.
(2) Crank-Nicolson approximation ${ }^{8}$

The Crank-Nicolson method uses the arithmetic average of the heat flux at the two time levels, $t=n \Delta t$ and
$t=(n+1) \Delta t$. The method is unconditionally stable. SINDA CNFWBK uses this method and is discussed in Section 6.4.2.

Steady state analysis also requires an implicit method of
solution. SINDA steady state subroutines are called CINDSS, CINDSL and CINDSM which are detailed in Sections 6.5.1, 6.5.2, and 6.5.3.

5.2.1 Forward Finite Difference Explicit Method

By replacing the first derivative of temperature with respect to time, $\mathrm{dT} / \mathrm{dt}$, with the forward first difference quotient, equation (5.1-6) becomes,

$$
\begin{align*}
& c_{i} \frac{\left(T_{i, n+1}-T_{i, n}\right)}{\Delta t}=q_{i}-\sum_{j=1}^{p} a_{i j}\left(T_{j, n}-T_{i, n}\right)+\sum_{j=1}^{p} \sigma b_{i j}\left(T_{j, n}^{4}-T_{i, n}^{4}\right) \tag{5.2-1}\\
& t=n \Delta t \\
& i=1,2, \ldots, N \\
& T_{j, n}=\text { constant, } N<j \leq p
\end{align*}
$$

where, the second subscript on T represents the time level such that

$$
I_{ \pm, n}=T_{i}(n \Delta t)
$$

Equation (5.1-6) is represented in the form expressed by equation (5.1-3) by letting,

$$
\begin{equation*}
G_{i j}=a_{i j}+\sigma b_{i j}\left(T_{i}^{2}+T_{j}^{2}\right)\left(T_{i}+T_{j}\right) \tag{5.2-2}
\end{equation*}
$$

It is interesting to note that the finite difference form of (5.1-6) (and thus 5.2-1) represents a second central-difference quotient of $\nabla^{2} T$ (refer to (5.1-1).

The computational procedure for the forward difference formulation is rather straightforward since only a single unknown temperature at each time step, $T=n \Delta t$ for each equation is present. Note that the averaging of $\mathrm{dT}_{\mathrm{i}} / \mathrm{dt}$) assigns a weighting factor to the heat flux terms only (terms on the right side of equation (5.1-6) at $t=n \Delta t$). Along with the computational simplicity, however, is the stability constraint which places an upper limit on the time increment, Δt, that can be used in the numerical procedure. The stability criterion for the explicit finite difference method

$$
5-8
$$

is (for the most limiting node), ${ }^{12,14}$

$$
\begin{equation*}
\Delta t<C_{i} \sum_{j=1}^{p} G_{i j} \tag{5.2-3}
\end{equation*}
$$

$$
i=1,2, \ldots, N
$$

A modified stability criterion that allows for a larger time step which results in a conditionally stable temperature for the most limiting node is reported in Reference 23. Since the stability criterion will govern the maximum time step that can be used, it is thus particularly important that a user gives some attention to those factors that compose the condition of stability when nodalizing a physical system.

- In the discussion presented so far, arithmetic nodes (nodes with no heat capacity) have not been mentioned. Normally, the computational procedure treats arithmetic nodes separately from the diffusion nodes; arithmetic-node temperatures are solved implicitly. Detailed discussion on the general procedure will be presented in a later paragraph as well as in Section 6 which discusses the various SINDA numerical solution routines.
5.2.2 Implicit Finite Difference Method

The implicit difference equations can be constructed for heat transfer problems in many ways (see, for example, References 12 and 20).

Replacement of equation (5.1-6) with the backward time difference yields,
$C_{i} \frac{\left(T_{i, n+1}-T_{i, n}\right)}{\Delta t}=q_{i}+\sum_{j=1}^{p} a_{i j}\left(T_{j, n+1}-T_{i, n+1}\right)+\sum_{j=1}^{p} \sigma b_{i j}\left(T_{j, n+i}^{4}-T_{i, n+1}^{4}\right)$

$$
\begin{align*}
1 & =1,2, \ldots, N \tag{5.2-4}\\
T_{j, n+1} & =\text { constant, } N<j \leq p \\
T_{i, n} & =T_{i}(n \Delta t)
\end{align*}
$$

The computational procedure for the backward difference formulation must necessarily be re-iterative because of the need to solve a set of simultaneous non-linear equations.

In view of the importance of iteration techniques (such as method of
successive approximation), it may be of interest to formulate equation (5.2-4) into an interative form. If we let $C_{i} / \Delta t \equiv \bar{C}_{i}$, use equation (5.2-2) in equation (5.2-4) and solve the resultant expression for $\mathrm{I}_{\mathrm{i}, \mathrm{n}+1}$, this yields the recurrent equation for a given time increment, Δt, and time-step, n,

$$
\begin{equation*}
T_{i, k+1}=\frac{\bar{C}_{i, k} T_{i, k}+\sum_{j=1}^{p} G_{i j, k} T_{j, k}+q_{i, k}}{\bar{C}_{i, k}+\sum_{j=1}^{p} G_{i j, k}} \tag{5.2-5}
\end{equation*}
$$

where, $\quad \bar{C}_{i, k}=C_{i, k} / \Delta t$

$$
G_{i j, k}=a_{i j, k}+\sigma b_{i j, k}\left(T_{j, k}^{2}+T_{i, k}^{2}\right)\left(T_{j, k}+T_{i, k}\right)
$$

$$
T_{j, k}=\text { constant, } N<j \leq p
$$

$k=k t h$ iteration (note that $\bar{C}_{i, k}, q_{i, k}, a_{i j}$ and $b_{i j}$ are shown to be updated every iteration; SINDA routines update these quantities once each time-step)

The iterative pattern is initiated by assuming "old" temperatures $\left(T_{i, k}\right.$ and $T_{j, k}$) on the right side of equation (5.2-5) to evaluate a "new" set of temperatures ($\mathrm{T}_{\mathrm{i}, \mathrm{k}+1}$) on the left side of the equation (5.2-5); this single set of calculations represents an iteration. By replacing all of the "old" temperatures ($T_{i, k}$) on the right side of equation (5.2-5) with the just calculated "new" set of temperatures ($T_{i, k+1}$), a second iteration can be made. The iteration procedure is continued until a termination criterion such as the number of iterations or the maximum absolute difference between $T_{i, k}$ and $T_{i, k+1}$ is less than some prespecified value has been satisfied. It should be noted that $G_{i j}, C_{i}$ and q_{i} are shown to be updated every iteration. This iterative process is termed "block" iteration since the "old" temperatures on the right side are replaced in a "block" (a set of temperatures) fashion with the "new" temperatures.

Another iterative technique is to utilize on the right side of equation (5.2-5) each "new" temperature as soon as it is calculated. This iterative method is termed "successive point" iteration and appears to yield solutions about 25% faster than the "block" iteration method.

Equation (5.2-5) can be expressed in a "successive point" form as follows:

$$
T_{i, k+1}=\frac{\bar{C}_{i, k} T_{i, k}+\sum_{j=1}^{i} G_{i j, k} T_{j, k+1}+\sum_{j=i+1}^{p} G_{i j, k} T_{j, k}+q_{i, k}}{\bar{C}_{i}+\sum_{j=1}^{p} G_{i j, k}}
$$

where,

$$
\begin{aligned}
& G_{i j, k}=a_{i j, k}+\sigma b_{i j, k}\left(T_{j, \ell}^{2}+T_{i, k}^{2}\right)\left(T_{j, \ell}+T_{i, k}\right) \\
& \quad(\ell=k \text { if } j \geq i \text { and } \ell=k+1 \text { if } j<i) \\
& T_{j, k}=\text { constant, } N<j \leq p \\
& k=\text { kth iteration (note that } \bar{C}_{i, k} q_{i, k}, a_{i j}, \text { and } b_{i j} \text { are shown to be }
\end{aligned}
$$

- The iterative method as used in SINDA follows a fixed, predetermined sequence of operations in contrast with a relaxation procedure which is also one of successive approximations but is not processed out in a predetermined sequence. The relaxation procedure seeks and operates on the node with the maximum temperature difference between the "old" and the "new." Prom a programing standpoint, the search operation requires as much computational time as the temperature calculation itself.

5.2.3 Steady State Method

Standard steady state equations follows directly from equation (5.2-5) for block iteration or from equation (5.2-7) for successive point iteration by letting $\bar{C}_{i}=0$ in these equations. The comments made in Section 5.2.2 are equally applicable here.

5.2.4 Some Comments

The finite difference expressions presented in this Section 5.2 represent standard formulations and thus do not show computational techniques and artifices which are used, some more or some less, in all programs. SINDA numerical solution routines contain many computational features (many original with J. D. Gaski) which enhance problem solution. The various computational aspects of the numerical solution methods as used in the SINDA routines are discussed in rather lengthy detail in Section 6.
6.1 Objective and Presentation Forrat

SINDA has available to the user a number of numerical solution routines which employ various numerical methods. A brief description of these routines with the required SINDA input quantities and format are contained in the SINDA users manual; ${ }^{3,4}$ a general review of numerical methods was presented in Section 5. Unfortunately, the brief description is not sufficient for a casual SINDA user to make a selection decision from among several routines that are available and for a serious user to fully understand the computational procedure as well as to understand the role of the various control constants that are employed in each routine.

It is the intent of this section to fill wherever possible and practical the description void that presently exists with the numerical solution routines by detailing the characterisitcs of each. It is not the intent here to provide sufficient detailed information for a user to make modifications and/or additions to the existing subprograms, but rather to provide information that will aid the user in assessing the various numerical solution routines and in evaluating the numerical resulis.

Each of the numerical solution routines is detailed from a theoretical as well as from a computational standpoint. Control constants and their role are described and indicated in a step-by-step verbal flow computational procedure. Details of many of the numerous computational checks have purposely been omitted because of the complex interactions. Minute details of each routine can be obtained only from the individual computer listings; a computer listing of each of the SINDA numerical solution routines is presented in Appendices A, B and C. General computational procedure and features that apply to most, if not all of the SINDA numerical solution routines are assembled in a single section (6.2) in order to eliminate undue repetition. The description of each routine is heavily dependent upon, and coupled to, the general description of Section 6.2. The routines have been categorized as steady state or transient with.the latter subcategorized as explicit or implicit in order to allow for an orderly presentation as well as to simplify future additions.

Each of the SINDA numerical solution routines employs a particular finite difference approximation of the Iumped parameter heat balance equations. In spite of the uniqueness of each routine, portions of the computational procedure used in each are similar. Also, many of the routines have identical features such as the acceleration of convergence and the use of control constants. As a result, it is convenient to place in this section repetitious material. In some instances material presented here is repeated in the discussion of a particular numerical solution routine.

6.2.1 Order of Computation

It was reported in Section 3.5 that the order of computation depends on the sequence of subroutine calls placed in the EXECUTIDN block by the program user. No other operations block is performed unless called upon by the user either directly by name or indirectly from subroutines which internally call upon them. Numerical solution subroutines internally call upon operations blocks VARIABLES 1, VARIABLES 2, and ØUTPUT CALLS. The internal order of computation for these numerical solution routines is similar with the primary difference between one routine and another being the finite difference approximation employed in a particular routine. A flow diagram indicating the general order of computation for the numerical solution routines is depicted in Figure 6.2-1.

6.2.1.1 Finite Difference Algorithm

Although each of the SINDA numerical solution routines employs a particular finite difference approximation which is detailed for each numerical solution routine, the computational pattern is similar. Within the box depicted as SFDA in Figure 6.2-1, solution of the finite difference algorithm occurs. The computational sequence for transient solutions follows one of two patterns: (1) one for explicit finite difference methods; and (2) one for implicit finite difference methods; steady state solutions follow closely the implicit pattern. Both numerical flow pictures are depicted in Figure 6.2-2; details within the flow pictures are different for each routine and are described separately under the individual SINDA numerical solution routines (refer to Sections 6.3-6.5).

Figure (6.2-1) General Order of Computation for Numerical Solution Routines

* For CINDA -3G users, it should be noted that the updating of properties occurs within the numerical solution routine after VARIABLES 1 call. CINDA-3G evaluates the variable properties before VARIABLES 1 call.

Figure 6.2-2. Numerical Computational Pattern for Explicit and Finite Difference Algorithms

6.2.1.2 Updating of Opeionally Specified Properties

Optionally specified properties are defined here as those items which result in pointers being set in the second pseudo compute sequence (refer to Section 3.3.4). The term optional refers to memonic options that are available for different types of variable proper:ies., ${ }^{4}$ The properties are updated in all SINDA numerical solution routines the same way. This definition is used here in lieu of stating that optionally specified properties are time and/or temperature varying properties since source data may be specified to be constant. The pointers are set by one or more of the following user input quantities:
(1) All capacitances, C_{i}, specified as $f(T)$ or $f(t, T)$ in NODE DATA BLOCK:
(2) All data, q_{i}, entered in the SOURCE DATA BLOCK:
(3) All coefficients, G_{k}, specified as $f(T)$ or $f(t, T)$ in CONDUCTOR DATA BLOCK. It should be noted here that the term coefficient as used here requires amplification. The conductance, $G_{i j}$, may be for conduction or for radiation; that is,

$$
\begin{aligned}
G_{i j} & \equiv G_{k}=a_{i j} \text { (for conduction conductance) } \\
G_{i j} & =\sigma b_{i j}\left(T_{i}^{2}+T_{j}^{2}\right)\left(T_{i}+T_{j}\right) \text { (for radiation conductance) } \\
& =G_{k}\left(T_{i}^{2}+T_{j}^{2}\right)\left(T_{i}+T_{j}\right)
\end{aligned}
$$

Thus, note that the calculated conduction conductance $G_{i j}$ is identical to the updated G_{k}, whereas for the calculated radiation conductance only ${\sigma b_{i j}}^{\text {is equivalent to the updated } G_{k} \text {. }}$
The type of optional properties is identified by the integer stored in the first six bits of the second pseudo compute sequence which indicates to the program which option is in effect. Optional property types are listed and described for the three categories of input quantities in Table 6.2-1 for capacitance, Table 6.2-2 for impressed source, and Table 6.2-3 for coefficients with the definition of symbols listed in Table 6.2-4.

6.2.2 Operations Blocks

In a previous paragraph, it was mentioned that the sequence of subroutine calls placed in the EXECUTION block by the user determines the

TABLE 6.2-1 OPTIONALLY SPECIFTED CAPACITANCE EXPRESSIONS

ODtion	Type	Expression
SIV	1	$C_{i}=F\left(A^{i}: T_{i}\right)$
DIV	2	$C_{i}=F 1\left(A_{1}^{i}: T_{i}\right)+F 2\left(A_{2}^{i}: T_{i}\right)$
DIV	3	$C_{i}=F 1(L)+F 2\left(A^{i}: T_{i}\right)$
DIV	4	$C_{i}=F 1\left(A^{i}: T_{i}\right)+F 2(L)$
SPV	5	$C_{i}=F\left(A^{p}: T_{i}\right)$
DPV	6	$C_{i}=F 1\left(A_{1}^{p}: T_{i}\right)+F 2\left(A_{2}^{p}: T_{i}\right)$
DPV	7	$C_{i}=F 1(L)+F 2\left(A^{P}: T_{i}\right)$
DPV	8	$C_{i}=F 1\left(A^{P}: T_{i}\right)+F 2(L)$
BIV	9	$C_{i}=F\left(A^{b}: T_{i}, t_{m}\right)$

Notation: Refer to Table 6.2-4.

TABLE 6.2-2 OPTIONALLY SPECIFIED IMPRESSED SOURCE EXPRESSIONS

Option	Type	Expression
blank	1	$q_{i}=q_{i}+F$
SIV	2	$q_{i}=q_{i}+F\left(A^{i}: T_{i}\right)$
SIT	3	$q_{i}=q_{i}+F\left(A^{i}: t_{m}\right)$
DIT	4	$q_{i}=q_{i}+F 1\left(A_{1}^{i}: t_{m}\right)+F 2\left(A_{2}^{i}: t_{m}\right)$
DIT	5	$q_{i}=q_{i}+F 1(L)+F 2\left(A^{i}: t_{m}\right)$
DIT	6	$q_{i}=q_{i}+F 1\left(A^{i}: t_{m}\right)+F 2(L)$
DTV	7	$q_{i}=q_{i}+F 1\left(A_{1}^{i}: t_{m}\right)+F 2\left(A_{2}^{i}: T_{i}\right)$
DIV	8	$q_{i}=q_{i}+F 1(L)+F 2\left(A^{i}: T_{i}\right)$
DTV	9	$q_{i}=q_{i}+F 1\left(A^{i}: t_{m}\right)+F 2(L)$

Notation: Refer to Table 6.2-4.

Table 6.2-3. Optionaily Specified Coefficient Expressions for Conduction and Radiation

Mnemonic Options

SIV
SIV

DIV (conduction)
(radiation)
DIV (conduction)
(radiation)
DIV (conduction)
(radiation)
SPV

SPV
DPV (conduction)
(radiation)
DPV (conduction)
(radiation)

DPV (conduction)
(radiation)

BIV

SIV

SPV

Type Expression
$1 \quad G_{k}=F\left(A^{i}: T_{m}\right)$
$2 \quad G_{k}=F\left(A^{i}: T_{i}\right)$
$3 \quad G_{k}=1.0 /\left[1.0 / F 1\left(A_{1}^{i}: T_{i}\right)+1.0 / F 2\left(A_{2}^{i}: T_{j}\right)\right]$ $G_{k}=\left[F 1\left(A_{1}^{i}: T_{i}\right)\right]\left[F 2\left(A_{2}^{i}: T_{j}\right)\right]$
$4 \quad \mathrm{G}_{\mathrm{k}}=1.0 /\left[1.0 / \mathrm{Fl}(\mathrm{L})+1.0 / \mathrm{F} 2\left(\mathrm{~A}^{i}: \mathrm{T}_{\mathrm{j}}\right)\right]$
$c_{k}=[F 1(L)]\left[F 2\left(A^{i}: T_{j}\right)\right]$
$5 \quad G_{k}=1.0 /\left[1.0 / F 1\left(\mathrm{~A}^{i}: T_{i}\right)+1.0 / \mathrm{F} 2(\mathrm{~L})\right]$
$G_{k}=\left[F 1\left(A^{i}: T_{i}\right)\right][F 2(L)]$
$6 \quad G_{k}=F\left(A^{P}: T_{m}\right)$
$7 \quad G_{k}=F\left(A^{P}: T_{i}\right)$
$8 \quad G_{k}=1.0 /\left[1.0 / F 1\left(A_{1}^{p}: T_{i}\right)+1.0 / F 2\left(A_{2}^{P}: T_{j}\right)\right]$
$G_{k}=\left[F 1\left(A_{1}^{P}: T_{i}\right)\right]\left[F 2\left(A_{2}^{P}: T_{j}\right)\right]$
$9 \quad G_{k}=1.0 /\left[1.0 / F 1(L)+1.0 / F 2\left(A^{P}: T_{j}\right)\right]$

$$
G_{k}=[F 1(L)]\left[F 2\left(A^{P}: T_{j}\right)\right]
$$

$10 \quad G_{k}=1.0 /\left[1.0 / F 1\left(A^{P}: T_{i}\right)+1.0 / F 2(L)\right]$

$$
G_{k}=\left[F 1\left(A^{P}: T_{i}\right)\right][F 2(L)]
$$

$11 \quad G_{k}=F\left(A^{b}: T_{m}, t_{m}\right)$
12. $\quad G_{k}=F\left(A^{i}: T_{j}\right)$
$13 \quad G_{k}=F\left(A^{P}: T_{j}\right)$

Notation: Refer to Table 6.2-4; note $G_{k} \equiv \sigma_{i j}$ (for radiation) $\equiv a_{i j}$ (for conduction)

Table 6.2-4. Definition of Symbols for Tables 6.2-1 - 6.2-3
)

Symbols	Definition
c_{i}	Capacitance of ith node.
F, F1, F2	Multiplying factors, either user constants or literal
$\epsilon_{k}\left(=a_{i j}\right)$	Conduction coefficient.
$G_{k}\left(=\sigma b_{i j}\right)$	Radiation coefficient.
L	A literal multiplying factor.
q_{i}	Heat load into the ith node. (impressed)
Δt	Time-step
$t_{\text {ma }}$	Mean time, (TIME $\phi+$ TIMEN)/2.0
Tm	Mean temperature, $\left(T_{i}+T_{j}\right) / 2.0$
	Interpolated value of array A using t_{m} as the independent variable.
($A^{i}: T_{i}$)	Interpolated value of array A using T_{i} as the independent variable.
$\left(A^{B}: T_{i}, t_{m}\right)$	Interpolated value of the bivariate array A using T_{i} and t_{m} as independent variables.
$\left(A^{b}: T_{m}, t_{m}\right)$	Interpolated value of the bivariate array A using T_{m} and t_{m} as independent variables.
Mnemonic Options	
BIV	Bivariate Interpolation Variable
DIT	Double Interpolation with Time as variable
DIV	Double Interpolation Variable
DPV	Double Polynomial Variable
DTV	Double interpolation with Time and Temperature as Variables
SIT	Single Interpolation with Time as variable
SIV	Single Intexpolation Variable
SPV	Single Polynomial Variable
Subscripts	
1	Indicates the ith node.
j	Indicates the jth node.
2	Indicates two (array).

order of computation. Operations blocks number four, EXECUTION, VARIABLES 1, VARIABLES 2, and OUTPUT CALLS. These operations blocks are described in the SINDA Users Manual ${ }^{3},{ }^{4}$ but their role insofar as the numerical solution routines are concerned may be of particular interest.

6.2.2.1 EXECUTION Operations Block

The EXECUTION operations block provides the user considerable flexibility in the use of SINDA calls and FøRTRAN operations. Combinations of SINDA calls and FøRTRAN operations are innumerable since the user is actually programming. Now all instructions contained in the VARIABLES 1, VARIABLES 2. and ØUTPUT CALLS are performed each iteration or on the output call interval. Thus, if an operation being performed in VARIABLES 1 utilizes and generates non-changing constants, the operation should be placed in the FXECUTION block (prior to the numerical solution call) so that it will be performed only once and thus eliminate repetitious nonchanging calculations. Operations of this type are conveniently performed in the EXECUTION operations block. Note, however that a constant impressed source should be placed in the optional source data block for SINDA and VARIABLES 1 block for CINDA-3G.

6.2.2.2 VARTABLES 1 Operations Block

The VARIABLES 1 operations block provides the user with a means of specifying at a point in the computational sequence, as shown in Figure 6.2-1, the evaluation of nonlinear network elements, coefficients and boundary values not considered by the various memonic codes utilized for node, conductor and source data. It is seen from Figure 6.2-1 that VARIABLES 1 operations occur just prior to entering the numerical solution phase in order to define the network completely.

6.2.2.3 VARIABLES 2 Operations Block

VARIABLES 2 operations are post-solution operations in contrast to the VARIABLES 1 operations which are pre-solution operations as shown in Figure 6.2-1. VARIABLES 2 provides the user with a means to examine the characteristics of the numerical solution and make corrections. For example, the heat flow from one node to another can be evaluated or a temperature(s) determined without material phase change can be corrected to account for the phase change by using the VARIABLES 2 operations block.

6.2.2.4 OUTPUT CALL Operations Black

The OUTPUT CALL operations block provides the user with a means of calling any desired subroutine with the operation performed on the output interval. In addition to various subroutines for printing output, several plotting subroutines are available. ${ }^{3,4}$

6.2.3 Control Constants

Control constants number forty-nine and have alphanumeric names. Control constant values are communicated through program comon to specific subroutines which require them. Whenever possible, control constant values not specified are set internally to acceptable values. If a required control constant value is not specified, an appropriate error message is printed and the program terminated. Each of the SINDA numerical solution routines employs a number of control constants which fall under the categories as: (1) user specified; (2) optionally user specified; (3) internally set by program; and (4) dummy. These control constants are listed alphabetically with a brief description of each in Section 6.2.3.1 followed by a detailed description of user specified control constants in Section 6.2.3.2; nominal values of these control constants that must be specified or are optionally specified for each SINDA numerical solution routine are indicated in Table 6.2-5. Specification of these control constants is detailed under the discussion of each SINDA numerical solution routine.

6.2.3.1 Alphabetical Listing and Brief Description of Control Constants

ARLXCA (control constant 19)
Maximum arithmetic node relaxation temperature change allowed between iterations; this check occurs after each iteration. Specification is required for the implicit and steady state routines (except CINDSM) and if not specified an error message is printed if the number of arithmetic nodes is greater than zero. Specification is not required for explicit routines and if not specified, ARLXCA is set to 1 . $\mathrm{E}+8$.

ARLXCC (control constant 30)
Maximum arithmetic node relaxation temperature change calculated by program; ARLXCC \leq ARLXCA check is made.
lable bed-5. Characterintice of twer spectiled lonatril cuantant.

: ame	sumber		cindss	crinds.	cindsy	(:FRW)	cisfod.	cipast	cnexrs	Cxictr	cipuc	сsback	cnerisk	cmvarb
ARLXCA	19	Allowable arithmeitic node relaxation temperature change	**	**	-	1.E.+8	1.1.+8	1. $\mathrm{F}+8$	$1 . \mathrm{E}+8$	1.E+8	1.£+8	**	**	**
ampca	11	Allowable aritimetic node temperature change		-	-	"	"	-	"	"	"	$1 . \mathrm{E}+8$	1.E+8	1.E+8
backup	12	Backup switch	-	-	-	0.0	0.0	0.0	0.0	$0.0{ }^{\circ}$	0.0	0.0	0.0	0.0
Bal.enc	33	System energy balance	-	-	*	-	-	-	-	-	-	-		
csgrac	4	Time-stef factor for explicit rout ines	-	-	-	1.0	1.0	-	1.0	1.0	1.0	-	-	-
dMMPA	9	Arlthmetic-node dampling factor	1.0	1.0	-	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
DAMPD	10	Diffusion-node damplng factor	1.0	. 0	1.0		-	-	-		-	1.0	1.0	1.0
drixca	26	Allowable diffusion-node relaxation temperature change	***	***	***	-	-	-	-	-	-	***	***	***
DTIMEH	8	Maximum time-step allowed	-	-	-	E+8	1. $\mathrm{E}+\mathrm{B}$	1.E+8	1.E+8	1.E+B	1. $\mathrm{E}+8$	1. $\mathrm{E}+8$	1.E+8	1.E+8
dtimei	22	Specified time-step for implicit rout ines	-	-	-	-	-	-	-	-	-	*	*	
dTIMEL	21	Minimum time-step allowed	-	-	-	0.0	0.0	*	0.0	0.0	0.0	-	-	-
dTimpea	6	Allowable diffusion-node temperature	-	-	-	$1 . \mathrm{E}+\mathrm{B}$	1. $\mathrm{E}+\mathrm{B}$	-	1.E+8	1.c+8	$1 . \mathrm{E}+8$	1. $\mathrm{E}+8$	$1 . \mathrm{E}+8$	1.E+8
laxfac	49	Number of iterations for linearized s;stem	-	-	*	-	-	-	-	-	-	-	-	-
MLDQ ${ }^{\text {P }}$	5	Number of desired fteration loops	*	*	*	1	1	1	1	1	1	*		
durpus	28	The interval for activating gutput calls	-	-	-	*	*	*	*	*	$*$	*	*	
timend	3	Problem stop-time	-	-	-	****	****	****	****	****	****	****	****	****
TIMED	13	Old time of problemi start time	-	-	-	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
pcs		Pseudo Compute Sequence	spcs	LPCS	Lecs	SPCs	LfCs	SPCS	SPCS	SPCS	SPCS	LPCS	LPCS	Lics
Dynamic srorage requirements			NxD	2 (NND)	3 (and)	nnd	*ND	nND	nad	2 (NND)	2 (NND)	3 (NND)	3 (NND)	3 (NND)
				+2(NMA)	+3 (nNa)	+nNA	+nNA		+NNA	+nNa	+ Na	+NNA	+N: ${ }^{\text {a }}$	+NNA
					+ngt							+NNB	+NME	+nn

when NiNA >0.

 : Woryivon

ATMPCA (control constant 11)
Maximum arithmetic node temperature change allowed between time steps for transient routines; the check occurs after the specified number of iterations. If not specified or if specified to be ≤ 0.0, ATMPCA is set to 1. $\mathrm{E}+8$.
(control constant 15)
Maximum arithmetic temperature change calculated by program; ARMPCC \leq ATMPCA check is made.
(control constant 12)
Backup switch that is checked after VARIABLES 1 and VARIABLES 2 calls. Initialized at zero. If specified to be non-zero, the completed time step is erased and repeated.
(control constant 33)
A user specified system energy balance to be maintained; this control constant is presently used only in CINDSM. If not specified, an error message will be printed.
(control constant 4)
Time step factor for explicit routines except CNFAST. If not specified or if specified to be less than 1.0 , CSGFAC is set internally to 1.0 .
(control constant 23)
Maximum value of $C_{i} / \Sigma \dot{G}_{i j}$; this value aids in the checkout of the thermal network and is calculated only by the output subroutines, CSGDMP and RCDUMP.
(control constant 17)
Minimum value of $C_{i} / \Sigma G_{i j}$; this value is used to limit the computational time step for explicit methods of solution. If CSGMIN is calculated to be ≤ 0.0, an error message is printed.

DAMPD (control constant 10)
Diffusion node damping factor for implicit and steady state routines; if not specified or is specified to be ≤ 0.0, DAMPD is set to 1.0 . (Refer to equation 6.2-20.)

DRLXCA (control constant 26)
Maximum diffusion node relaxation temperature change allowed between iterations for implicit and steady state routines; this check occurs after each iteration. If not specified an error message will be printed when the number of diffusion nodes is greater than zero.

DRLXCC (control constant 27)
Maximum diffusion node relaxation temperature change calculated by the program; DRLXCA \leq DRLXCC check is made.

DTIMEH (control constant 8)
Maximum time step allowed; applies to transient routines. If not specified or if specified to be ≤ 0.0, DTIMEH is set to 1. E-8.

DTIMEI (control constant 22)
Specified time step for implicit solutions; if not specified, an error message will be printed and the "run" terminated.

DTIMEL (control constant 21)
Minimum time step allowed for explicit routines. If not specified for CNFAST, an error message will be printed and the "run" terminated. If DTIMEU is less than DTIMEL the routines will
teminate with an error message, except for CNFAST which will do a steady state solution on the offending node. For all routines DTIMEL is initially set at 0.0 internally.

DTIMEU

DTMPCA

DTMPCC

ENGBAL

LAXFAC

LINECT (control constant 28)
A line counter location for program output (integer).
Lめ \emptyset PCT (control constant 20)
Contains number of iterations performed (integer).
NめCØPY (control constant 34)
Contains the no copy switch for matrix users.
NLøøP (control constant 5)
Number of specified iteration loops. Must be specified for the steady state and implicit routines; if not specified, an
error message is printed and the "run" is terminated. Optional specification for solution of the arithmetic nodes in the explicit routines; if not specified, NLøøP is set to integer 1.
ϕ PEITR

фUTPUT

PAGECT

TIMEM

TTME \varnothing (contro1 constant 7)

Output each iteration if \emptyset PETTR is specified to be non-zero; if not specified, \emptyset PEITR is set at zero. May be switched on and off during a run.
(control constant 18)
Time interval for activating \varnothing UTPUT CALLS of transient routines; if not specified, error message is printed and the "run" terminated. May be addressed by user and modified during a run in VARIABLES 2. Can be used in steady state routines for a series of steady state solutions.
(control constant 29)
A page counter location for program output (integer).
(control constant 14)
Mean time for a computation interval; TTMEM $=\frac{\text { TIME } \varnothing+\text { TIMEN }}{2.0}$. (control constant 1)

New time at the end of the computational interval. TIMEN $=$ TIME $\varnothing+$ DTIMEU.
(control constant 3)
Problem stop time for transient analysis. Must be $>$ TIME \emptyset for all routines; if not, an error message is printed and "run" terminated. May be addressed by the user and modified during a run.
(control constant 13)
O1d time at the start of the computational interval. Also used as the problem start time and may be negative; if not specified, TIME ϕ is set at zero.

Itest, JTEST, KTEST, LTEST, MTEST (control constants 39, 40, 41, 42
and 43 , respectively)
Contain dummy integer constants.
RTEST, STEST, TTEST, UTEST, VTEST (control constants 44, 45, 46, 47, and 48 , respectively)

Contain dummy floating point constants.
(Control constant 31)
Problem type indicator, $0=$ THERMAL SPCS, $1=$ THERMAL LPCS, 2 = GENERAL.
(Control constant 35)
Contains relative node number of CSGMIN.
(Control constant 36)
Contains relative node number of DTMPCC.
(Control constant 37)
Contains relative node number of ARLXCC.
(Control constant 38)
Contains relative node number of ATMPCC.

6.2.3.2 User Specified and Optionally User Specified Control Constants

The availablity of control constants which must be specified or which can optionally be specified provides the user with considerable flexibility to alter the computational criteria and hence the calculated temperatures. On the other hand, this flexibility presents the user with the problem of imputting control constant values if the nominal values are not suitable. An attempt will be made here to provide some guidelines on control constant values based on rather limited data presently available, but it should be recognized that suitable values to be used are dependent on the problem to be solved and often a trade-off must be made between accuracy and computational time. This normally can be obtained only through the use of the numerical solution routines.

ARLXCA
This control constant must be specified for the implicit routines if any arithmetic node is present and for the steady state routines except CINDSM. For the explicit solution routines, ARLXCA may be optionally specified; if not specified ARLXCA is set to 1.E+8. ARLXCA represents a maximum temperature change convergence criterion for the arithmetic nodes; ARLXCA is checked each iterative step. It is used in conjunction with control constant NLOøf. Satisfaction of either NLDøP or ARLXCA during any iterative step terminates the arithmetic node temperatures calculation for that time-step with computation proceeding on to the next one. Typically, an ARLXCA value is 0.01 , but its value is dependent upon the magnitude of expected-temperatures. The 0.01 value tries for 5 th digit accuracy for temperatures in the hundreds. An ARLXCA value of 0.0001 would try for seventh digit accuracy. Since the computer will not yield 8 digit accuracy, an ARLXCA value $<.0001$ will always result in NL $\varnothing \phi$ P iterations being performed.

ATMPCA (Allowable Arithmetic Node Temperature Change)
This control constant may be optionally specified by the user for the impiicit routines and for the explicit routines except CNFAST. If not specified, ATMPCA is internally set at 1.E+8. ATMPCA represents an allowable arithmetic-node temperature change criterion between one timestep and another with the calculated temperature change stored in control constant ATMPCC. If the maximum arithmetic-node temperature change is greater than ATMPCA, the time-step, Δt, is shortened to,

$$
\Delta t=.95 * \Delta t \quad(A T M P C A / A T M P C C)
$$

and the arithmetic-node and diffusion-node temperatures re-set to former values. The computational procedure is repeated with the smaller time-step. Specification of ATMPCA prevents a rapid temperature change between timesteps with the value to be specified dependent upon the problem. Thus, the user should estimate the number of time-steps and the range of the temperature to arrive at a reasonable value. For typical spacecraft-type thermal problems an ATMPCA of about $10^{\circ} \mathrm{F}$ is typical.

Control constant BACKUP provides the SINDA user with the means to utilize any thermal numerical solution subroutine as a predictor program. A11 of the numerical solution subroutines set control constant BACKUP to zero, just prior to the call on VARIABLES 2. Then immediately after the return from VARIABLES 2, a nonzero check on BACKUP is made. If BACKUP is nonzero, all temperature calculations for the just completed time-step are eliminated, the old temperatures (temperatures calculated at the previous time-step) are placed in the temperature locations and the control is routed to the start of the computational sequence.

It should be noted that the user must provide the necessary check and criterion in VARIABLES 2 if the iteration is to be repeated. Thus, if the iteration is to be repeated, BACKUP must be nonzero and a criterion that can be met in subsequent passes established. For example, the criterion may require the correction of a parameter used by the network solution. Further, if other calls in VARIABLES 2 are not to be performed FøRTRAN instructions must be generated to bypass these calls.

It should be noted that BACKUP is sometimes checked after
VARIABLES 1. However, for the present this use should be ignored since BACKUP check after VARIABLES 1 is planned for future additions of special boundary calculation subroutines.

BALENG (User Specified System Energy Balance)
This control constant is presently used in the steady state routine CINDSM but not in the other SINDA numerical solution routines. BALENG must be specified, otherwise the "run" is terminated with an error message printout; the value of BALENG is a criterion that represents an acceptable net energy balance (energy in minus energy out) of the system in the calculation of steady state temperatures. A value for BALENG depends upon the magnitude of system energy under consideration. As a guideline $1 / 2 \%$ of the total energy into the system (including heat flow from the boundary) is a reasonable value.

CSGFAC (Time Step Factor)
This control constant may be optionally specified by the user
for the explicit routines except CNFAST and it provides the user with some control on the compute time-step as indicated in Section 6.2.4. If CSGFAC is not specified or is specified to be less than one by the user, it is internally set at 1.0. For subroutines CNFRWD and CNFRDL which are conditionally stable CSGFAC is a divisor; a value of CSGFAC greater than one is used to obtain higher accuracy. For subroutines CNEXPN, CNDUFR and CNQUIK, which are unconditionally stable, CSGFAC is a multiplier (refer to page 6-24); a value of CSGFAC greater than one is used to decrease the computational time. A question may be raised, why a value of CSGFAC less than one is not allowed for CNEXPN, CNDUFR and CNQUIK? The reason for this is that it is more accurate to use CNFRWD (or CNFRDL) if a smaller time-step than the one associated with CSGFAC equal to one is desired.

DAMPA (Damping Factor for Arithmetic Nodes)
This control constant may be optionally specified for all of the SINDA numerical solution routines; if not specified, of if specified to be <0.0, DAMPA is set to 1.0 . In the development of the finite difference expressions as reported in technical literature, little (if any) mention is made about the so-called damping factor. The damping factor does nothing more than to allow a certain fraction (1.0 - DAMPA) of the "old" temperature (temperature at the previous time-step or iteration) to be included as part of the temperature change for the current time-step or iteration. The value to be used is dependent upon the problem and to some extent upon the routine. Typically, a value of 0.6 is used but a value as small as 0.01 has been used with CINDSL for a thermal radiation-dominated problem. In general, a choice for DAMPA becomes a trial and error procedure. DAMPA is used only with arithmetic nodes (refer to equation 6.2-6).

DAMPD (Diffusion Node Damping Factor)
This control constant may be optionally specified for the implicit and steady state routines; if not specified or if specified to be ≤ 0.0, DAMPD is set to 1.0. DAMPD serves the same purpose for the diffusion nodes as DAMPA provides for the arithmetic nodes (refer to equation 6.2-21).

DRLXCA (AIIowable Diffusion-Node Relaxation Temperature Change)
This control constant must be specified for the implicit routines and for the steady state routines except CINDSM. DRLXCA serves the same
purpose for the diffusion-nodes as control constant ARLXCA does for the axithmetic nodes. Thus, the discussion on ARLXCA equally holds true for DRLXCA. It may be asked, why ARLXCA and DRLXCA? The reason for this is that it provides greater computational flexibility.

DTIMEH (Maximum Time-Step Allowed)
This control constant may be optionally specified for the explicit and the implicit routines. DTMMEH represents the maximum time-step allowed during the computational process. One use of DTIMEH is the prevention of a single large and a single small computational time-step during an output interval by specifying DTIMEH as a fraction of the output interval. If DTIMEH is not specified, DTIMEH is set to 1.0E+8.

DTMEI (Specified Time-Step for Implicit Routines)
This control constant must be specified for the implicit routines and is not used by the other routines. If not specified, the "run" terminates with an error message printout. DTIMEI represents a specified time-step and is arbitrary, but the governing criterion should be minimum computational time with satisfactory temperature accuracy. This means that DTIMEI should be specified in conjunction with control constant NLDфP which represents the maximum number of computational iterations allowed during each time-step. Since each iterative calculation is essentially equivalent to a time-step calculation, DTIMEI should be normally greater than NLøфP*CSGMIN, where CSGMIN is the time-step used in the explicit routines. If savings in computational time cannot be met with the same accuracy by using the implicit routines, it is more reasonable to use the explicit routines.

DTIMEL (Minimum Time-Step Allowed)
This control constant must be specified for subroutine CNFAST and is optional for other explicit solution routines. If not specified for CNFAST, the "run" terminates with an error message printout. DTIMEL represents the minimum time-step allowed; for all the explicit routines except CNFAST, if the calculated time-step is less than DTIMEL, the "run" terminates with an error message printout. For subroutine CNFAST, if the calculated time-step of any node, as expressed by $C_{i} / \Sigma G_{i j}$ and stored in CSGMIN, is less than DTIMEL, the temperature of the nodes not satisfying DTIMEL are calculated
using the steady state equations without computational iterations (refer to Section 6.3.3 for details on the CNFAST routine). The purpose of this control constant for CNEAST is to shorten the computational time; the danger in its use is that with a large DTIMEL a large number of diffusion nodes will receive the steady state equations without iterations. As a result, the temperature inaccuracies can be expected to be large. DTMPCA (Allowable Diffusion Node Temperature Change)

This control constant may be optionally specified by the user for the implicit routines and for the explicit routines except CNFAST. DTMPCA represents a diffusion-node temperature change criterion between one timestep and another. If the maximum diffusion-node temperature change which is stored in DTMPCC is greater than DTMPCA, the time-step is shortened to,

$$
\Delta t=.95 * \Delta t \quad(\mathrm{DTMPCA} / \mathrm{DTMPCC})
$$

and the diffusion-node and arithmetic-node temperatures re-set to former values. The computational procedure is repeated with the smaller timestep. DTMPCA serves the same purpose for the diffusion nodes as control constant DRLXCA provides the arithmetic nodes.

LAXFAC (Number of Iterations for Linearized Lumped Parameter System)
LAXFAC is used only in the steady state routine CINDSM and represents the number of iterations to be performed on a linear lumped parameter system with no updating of elements during a set of LAXFAC iterations. The system elements are re-evaluated for the new set of temperatures and in turn temperatures are recalculated for another set of LAXFAC iterations with a more severe relaxation criterion. The number of iterations will not exceed control constant $N L \emptyset \emptyset \mathrm{P}$ which represents the total number of iterations. NL $\varnothing \varnothing \mathrm{P}$ will not be met only if relaxation criteria are met during an fterative loop and between iterative loops and if the system energy balance as stored in BALENG is satisfied (refer to Section 6.5.3 for details). NL $\phi \phi P$ (Number of Iteration Loops)

This control constant must be specified for the implicit and the steady state routines; if not specified, the "run" terminates with an error message printout. NLøøP may be optionally specified for the explicit routines since it is used for the arithmetic nodes; if not specified, NLøøP is set to 1 . The value of $N L \emptyset \varnothing \mathrm{P}$ to be used depends upon the problem
to be solved. For a steady state problem it is not unusual to have NLøøP equal to several hundred, whereas for a transient problem the implicit routines NLøøP should be specified as discussed for control constant DTTMEI. In general, a trial and error procedure is required to arrive at a suitable value of NLøめP.

OUTPUT (Time Interval for Activating oUTPUT CALLS)
This control constant must be specified for all numerical solution routines except steady state routines since the first time-step used is generally set to 狂UT. The input value is left to the judgment of the user. Normally, the output interval is gauged by the length of the run and the expected temperature response characteristics. As a "rule-of-thumb" the output interval lies between CSGMIN and CSGMAX, with GUTPUT being several times larger than CSGMIN. The values of CSGMIN and CSGMAX can be obtained from the output subroutines CSGDMP and RCDUMP. ${ }^{3},{ }^{4}$ Subroutines CSGDMP and RCDUMP are designed to aid in the checkout of thermal problem data decks and should be used before making a transient computer rum.

TIMEND (Problem Stop Time)

The use of this control constant is self-explanatory. For the subroutines as they are presently coded, TIMEND must be specified as larger than TIME \varnothing, otherwise an error message is printed and the "run" terminated. For the explicit routines, if TIMEND is not larger than TIME \varnothing a time-step of zero will result and the "TIME STEP TOO SMALL" error message will be printed. The implicit routines will print the error message, "TRANSIENT TIME NOT SPECIFIED." If a solution is to be terminated by the use of a criteria, but the run is not to be terminated, this can be accomodated by setting TIMEND=TIME \varnothing when the criteria is met.

TIMEØ ("Old" Time or Problem Start Time)
This control constant represents the "old" time or the problem start time for the transient routines. If not specified, TIME \emptyset is set to 0.0. An important consideration in the use of TIME \varnothing is that TIME \varnothing may be set to negative.
6.2.4 Time-Step Calculations

Each numerical solution routine requires the use of a time-step that depends upon many considerations, such as the output interval, the end
of the problem time, the stability criterion for explicit routines, etc. In spite of the unique solution procedure of each of the numerical solution routines, the overall time-step calculation procedure for the transient routines is essentially identical. The numerous time-step checks, as well as the selection of the time-step, are indicated below (for definition of control constants refer to Section 6.2.3):
(1) Check that elapsed time, t, does not exceed problem end time.

```
If: TIME \(\emptyset+\varnothing\) UTPUT > TIMEND
```

Set: \emptyset UTPUT = TIMEND - TTME \varnothing
TTME \varnothing is the old time
фUTPUT is the output time interval
TIMEND is the problem stop time
(2) Set initial time-step, Δt, which is stored in DTTMEU (control constant for time-step). The initial time step for the SINDA numerical routines is as follows:

Numerical Routines		Initial Time-Step
EXPLICIT	CNFRWD	ØUTPUT
EXPLICIT	CNFRDL	ØUTPUT
EXPLICIT	CNEXPN	ØUTPUT
EXPLICIT	CNDUFR	ØUTPUT
EXPLICIT	CNQUIK	ØUTPUT
EXPLICIT	CNFAST	DTIMEL (minimum time-step allowed)
IMPLICIT	CNBACK	DTIMEI (specified time-step)
IMPLICIT	CNFWBK	DTIMEI
IMPLICIT	CNVARB	DTIMEI

(3) Check Δt (stored in DTIMEU) against maximum allowable time-step.

If: DTIMEU > DTIMEH
Set: DTIMEU = DTIMEH
(4) Check sum of elapsed time since last printout, TSUM, and timestep, DTTMEU, against ØUTPUT.

If: TSUM + DTIMEU > ØUTPUT
Set: $\quad \Delta t=\emptyset U T P U T-T S U M$
If: \quad TSUM $+\Delta t<\emptyset U T P U T$
and if: \quad TSUM $+2(\Delta t)>\emptyset U T P U T$
Set: $\quad \Delta t=1 / 2$ (OUTPUT -TSUM)
(5) Store

Set: \quad DTIMEU $=\Delta t$
(6) Check DTIMEU against minimum allowable time-step.

If: DTTMEU < DTIMEL
Result: An error message is printed and the "run" terminated except for CNFAST, CNBACK, CNFWBK and CNVARB.
(7) Set new time (TIMEN)

Set: \quad TIMEN $=$ TPRINT + TSUM $+\Delta t$ TPRINT is the time of the last printout. TSUM is the time from the last princout.
(8) Set mean time (TIMEM)

Set: \quad TIMEM $=1 / 2$ (TIMEN + TIME \varnothing)
(9) Calculate (or specify) time-step.

The calculated (or specified) time-step for the SINDA numerical routines is as follows:

Numerical Routines Calculated Time-Step
EXPLICIT CNFRWD 0.95 * CSGMIN/CSGFAC

EXPLICIT CNFRDL 0.95 * CSGMIN/CSGFAC
EXPLICIT CNEXPN 0.95 * CSGMIN * CSGFAC
EXPLICIT CNDUFR 0.95 * CSGMIN * CSGFAC
EXPLICIT CNQUIK 0.95 * CSGMIN * CSGFAC
EXPLICIT CNFAST larger of CSGMIN or DTIMEL
IMPLICIT CNBACK DTIMEI
IMPLICIT CNFWBK DTIMEI
IMPLICIT CNVARB DTIMEI
$\operatorname{CSGMIN}=C_{i} / \Sigma G_{i j}$ (minimum value, $i=1,2, \ldots$, NND)
where: $\quad C_{i}$ is the capacitance of the ith node
$G_{i j}$ is the conductance from node i to node j
CSGFAC is the time-step factor (see above).
(10) It should be recognized that individual routines may have slight variations to the time-step calculations.

6.2.5 Computation of Temperatures

The actual calculation of temperatures, be it for diffusion nodes or for arithmetic nodes, represents the end result of a long computational procedure with many checks and criteria. Nevertheless, if one confines the discussion to the $\mathrm{D} \emptyset$ loops of nodal types, a rather compact but general computational pattern becomes apparent. More details are presented in the individual sections describing each numerical solution routine. (Sections 6.3-5.5)

6.2.5.1 Transient Explicit Routines

For the explicit routines the diffusion and arithmetic nodes are treated separately. Diffusion-node temperatures are calculated explicitly, whereas the arithmetic-node temperatures are computed implicitly. This means that at each time-step an iterative loop is set-up for the arithmetic nodes; none is required for the diffusion nodes.

Diffusion-Node Temperatu-es

Calculation of the diffusion-node temperatures follows the VARIABLES 1 call; the computational pattern is:
$D \emptyset-L \emptyset \emptyset P(I=1, N N D)$ on the diffusion nodes is established.
The functions associated with the variable capacitance C_{i}, the variable impressed source q_{i}, and the variable coefficients $G_{k}\left(a_{i j}\right.$ for conduction and $\sigma b_{i j}$ for radiation), between diffusion-diffusion and diffusion-arithmetic nodes are updated at the beginning of each time-step. These functional types are described in Section 6.2.1.2 and the computational pattern is indicated in the flow chart of Figure 6.2-3.

Using the updated C_{i}, q_{i} and G_{k}, the branch heat flow sum, $Q_{s i}$, and conductance sum X_{i}, are calculated (refer for example to flow chart of Figure 6.3-1).

* Variable capacitance (c_{i}),
impressed source (q_{i}), or
variable coefficient (G_{k}).

Figure 6.2-3. Evaluation of Nonlinear Capacitance, Source or Conductance

$$
\begin{equation*}
Q_{s i i}=\sum_{j=1}^{p} G_{i j, n}\left(T_{j, n}-T_{i, n}\right)+q_{i, n} \tag{6.2-1}
\end{equation*}
$$

$$
\begin{equation*}
x_{i}=\sum_{j=1}^{p} G_{i j, n} \tag{6.2-2}
\end{equation*}
$$

where, $\quad \mathrm{p}=$ total number of nodes; $\mathrm{n}=$ time-step old $c_{i}, q_{i}, a_{i j}, b_{i j}=$ optionally specified (refer to Table 6.2-1-6.2-4) $G_{i j, n}=a_{i j, n}+\sigma b_{i j, n}\left(T_{j, n}^{2}+T_{i, n}^{2}\right)\left(T_{j, n}+T_{i, n}\right)$ Stability criterion $C_{i} / \sum_{j=1}^{p} G_{i j, n}$ is computed and the smallest value is stored in control constant CSGMIN. If CSGMIN ≤ 0.0, an error message is printed and the "run" terminated.

Diffusion-node temperatures are calculated by using the appropriate finite difference expression associated with each routine. These routines and algorithms are identified as:

CNFRWD and CNFRDL (Section 6.3.1), uses standard forwarddifference algorithm.
CNFAST (Section 6.3.2), uses a modified CNFRWD computational procedure to decrease the computational time.

CNEXPN (Section 6.3.3), uses the exponential prediction method.
CNDUFR (section 6.3.4), uses DuFort-Frankel method.
CNQUIK (Section 6.3.5), uses half DuFort-Frankel and half exponential prediction metnod.

Symbolically, the expression for the diffusion-node temperatures may be written as,

$$
\begin{equation*}
T_{i, n+1}=T_{i, n}+\frac{\Delta t Q_{s i}}{C_{i}} \tag{6.2-3}
\end{equation*}
$$

Except for CNFAST the maximum diffusion-node temperature change which is stored in DTMPCC is checked against the allowable diffusion node temperature change which may be specified by the user via the control constant DTMPCA (if not specified DTMPCA $=1.0 \mathrm{E}+8$). If DTMPCA is not satisfied, the time-step is decreased to,

$$
\Delta \mathrm{t}=.95 * \Delta \mathrm{t}(\mathrm{DTMPCA} / \mathrm{DTMPCC})
$$

and all temperatures re-set to former values. The computational procedure Es repeated with the smaller time-step. CNFAST does not allow for the recalculation of diffusion-node temperatures.

Axithmetic-Node Temperatures
Calculation of the arithmetic-node temperatures always follows the computation of the diffusion-node temperatures and uses "successive point" iteration. The computational pattern is as follows:

Arithmetic-node damping factors DN and DD are established.
DN = DAMPA (optionally specified user constant, if not specified DAMPA $=1.0$; factor for the current time-step temperature change)
$D D=1.0-D N$ (factor that allows a certain fraction of the "old" temperature to be included as part of the temperature change for the current time-step)

Iterative $D \emptyset-\mathrm{I} \phi \emptyset \mathrm{P}$ ($\mathrm{K}=1, \mathrm{NL} \phi \not \subset \mathrm{P}$) is established ($\mathrm{NL} \phi \varnothing \mathrm{P}$ is the number of
iterations specified by the user, if not specified, NLøøp = 1).
$\mathrm{D} \varnothing-\mathrm{L} \phi \not \emptyset P(\mathrm{I}=\mathrm{NND}, \mathrm{NND}+\mathrm{NNA})$ for the arithmetic nodes is established.
Impressed source q_{i} and coefficient G_{k} ($a_{i j}$ for conduction and $\sigma b_{i j}$ for radiation) are updated once for each time-step.

Using the updated G_{k} and q_{i}, the branch heat flow sum $Q_{s i}$ and the conductance sum X_{i} are calculated (refer to flow chart of Figure 6.3-2).

$$
\begin{align*}
Q_{s i} & =\sum_{j=1}^{p} G_{i j, n}\left(T_{j, k}-T_{i, k}\right) \tag{6.2-4}\\
X_{i} & =\sum_{j=1}^{p} G_{i j, n} \tag{6.2-5}
\end{align*}
$$

Arithmetic node temperatures are calculated for each iterative loop by using the following "successive point" expression, which is employed in all of the routines,

$$
\begin{aligned}
& T_{i, k+1}=D D^{*} T_{i, k}+D N *\left(\frac{q_{i, n}+\sum_{j=1}^{i} G_{i j, n} T_{j, k+1}+\sum_{j=i+1}^{p} G_{i j, n} T_{j, k}}{\sum_{j=1}^{p} G_{i j, n}}\right)(6.2-6) \\
& \text { where, } \quad i=(N N D+1),(N N D+2), \ldots,(N N D+N N A) \\
& \left.T_{j, k}=\text { constant, (NND }+N N A\right)<j \leq p \\
& \mathbf{p}=\text { total number of nodes } \\
& T_{i, k}=\text { temperature at kth iteration } \\
& G_{i j, n}=a_{i j, n}+\sigma b_{i j, n}\left(T_{j, \ell}^{2}+T_{i, k}^{2}\right)\left(T_{j, \ell}+T_{i, k}\right) \\
& \text { (} \ell=k \text { if } j \geq i \text { and } \ell=k+1 \text { if } j<i \text {) } \\
& \left(a_{i j, n} \text { and } b_{i j, n} \text { mean updating at time-step, } n\right. \text {) } \\
& q_{i}, a_{i j}, b_{i j}=\text { optionally specified (refer to Tables 6.2-1 - 6.2-4) } \\
& \text { DN } \equiv \text { DAMPA (arithmetic node damping factor) } \\
& \mathrm{DD}=1.0-\mathrm{DN}
\end{aligned}
$$

The maximum arithmetic-node relaxation temperature change is calculated and checked against the allowable arithmetic-node relaxation temperature change which may be specified via the control constant ARLXCA. This relaxation convergence check is made during each iterative step calculation and is used in conjunction with control constant NL $\varnothing \varnothing \mathrm{P}$. Satisfaction of either ARLXCA or NLめゆP during any iterative step terminates the arithmeticnode temperature calculation.

For each time step, except for CNFAST, the maximum arithmetic-node temperature change which is stored in control constant ATMPCC is checked against the allowable arithmetic-node temperature change which may be specified via the control constant ATMPCA (if not specified, ATMPCA $=1.0 \mathrm{E}+8$). If ATMPCA is not satisfied, the time-step is decreased to,

$$
\Delta t=.95 * \Delta t(\text { ATMPCA } / \text { ATMPCC })
$$

and all temperatures re-set to former values. The computational procedure is repeated with the smaller time-step. CNFAST does not allow for recalculation of arithmetic-node temperatures.

6.2.5.2 Transient Implicit Routines

Both diffusion-node and arithmetic-node temperatures are calculated by "successive point" iteration. Although these calculations are performed

Cn the same iterative pass, diffusion node temperatures are evaluated on its own computational loop using a specified algorithm associated with a particular implicit routine. Calculation of the arithmetic-node temperatures is also done on its own computational loop and is identical in all the implicit routines. As a matter of fact, arithmetic-node temperatures are calculated in the same manner in all the SINDA numerical solution routines. Use of a separate computational loop for the diffusion nodes permits the extrapolation of diffusion-node temperatures provided acceleration of convergence criterion is met (refer to Section 6.2.7).

Diffusion-Node Temperatures
In order to facilitate the discussion to follow on the computational procedure, it is convenient to examine the forward-backward finite difference expression. ${ }^{13}$

$$
\begin{equation*}
C_{i} \frac{\left(T_{i, k+1}-T_{i, n}\right)}{\Delta t}=\beta T_{\text {forward }}+(1-\beta) T_{\text {backward }} \tag{6.2-7}
\end{equation*}
$$

where: $\quad \beta=$ factor with range $0 \leq \beta \leq 1 / 2$

$$
\begin{aligned}
& T_{\text {forward }}=q_{i, n}+\sum_{j+1}^{p} a_{i j, n}\left(T_{j, n}-T_{i, n}\right)+\sum_{j=1}^{p} \sigma b_{i j, n}\left(T_{j, n}^{4}-T_{i, n}^{4}\right) \\
& T_{b a c k w a r d}=q_{i, n}+\sum_{j+1}^{p} a_{i j, n}\left(T_{j, k+1}-T_{i, k+1}\right)+\sum_{j=1}^{p} \sigma b_{i j}\left(T_{j, k+1}^{4}-T_{i, k+1}^{4}\right)(6.2-9) \\
& i=1,2, \ldots, N \\
& \mathrm{~T}_{\mathrm{j}, \mathrm{n}} ; \mathrm{T}_{\mathrm{j}, \mathrm{k}+1}=\text { constant, } \mathrm{N}<\mathrm{j} \leq \mathrm{p} \\
& \mathbf{n}=\mathrm{nth} \text { time-step; } \mathrm{k}=\mathrm{kth} \text { iteration within a given time-step. } \\
& C_{i}, q_{i}, a_{i j}, b_{i j}=\text { optionally specified (refer to Tables 6.2-1 - }-6.2-4 \text {) }
\end{aligned}
$$

Any value of β less than one yields an implicit set of equations which must be solved simultaneously. For values of β less than or equal to one-half equation (6.2-7) represents an unconditionally stable set of equations, whereas values of β greater than one-half yields a set of equations with conditional stability.

The standard implicit algorithm used in subroutine CNBACK follows directly from equation (6.2-7) by letting $\beta=0$, whereas the Crank-Nicolson method used in subroutine CNFWBK follows by letting $\beta=1 / 2$. Subroutine

CNVARB uses a variable factor which is based upon the ratio of CSGMIN/DTIMEU; this ratio is internally calculated in CNVARB (refer to Section 6.4.3.2). In order to simplify the presentation, the following notation is used. For CNBACK $(\beta=0)$:

$$
\begin{aligned}
& Q_{i}=q_{i, n}+\bar{C}_{i, n} T_{i, n} \\
& Q_{s u m}=Q_{i}+\sum_{j=1}^{i} G_{i j, n} T_{j, k+1}+\sum_{j=i+1}^{p} G_{i j, n} T_{j, k} \\
& G_{s u m}=\bar{C}_{i, n}+\sum_{j=1}^{p} a_{i j, n} \\
& G_{i j, n}=a_{i j, n}+\sigma b_{i j, n} T_{j, \ell}^{3} \\
& (6.2-11) \\
& \left(q_{i}\right)_{a v e}=\frac{1}{2} \sum_{j=1}^{p} \sigma b_{i j, n}\left[\left(T_{i, k}^{4}\right)+\left(T_{i, k}^{4}\right)_{2}\right], \text { average heat loss }(6.2-14)
\end{aligned}
$$

from ith node, called radiation damping (refer to Section 6.2.6 for details)
$=0$, if radiation is not present
For CNFWBK ($\beta=\frac{1}{2}$) (note equation (6.2-7) is multiplied by 2):

$$
\begin{align*}
& Q_{i}=2 q_{i, n}+2 \bar{C}_{i, n} T_{i, n}+\sum_{j=1}^{p} a_{i j, n}\left(T_{j, n}-T_{i, n}\right) \\
& +\sum_{j=1}^{p} \sigma b_{i j, n}\left(T_{j, n}^{4}-T_{i, n}^{4}\right) \tag{6.2-15}\\
& Q_{\text {sum }}=\text { same as equation (6.2-11) } \\
& G_{\text {sum }}=2 \bar{C}_{i, n}+\sum_{j=1}^{p} a_{i j, n} \tag{6.2-16}\\
& G_{i j, n}=\text { same as equation (6.2-13) } \\
& \left(q_{i}\right)_{\text {ave }}=\text { same as equation (6.2-14) }
\end{align*}
$$

For CNVARB (variable β^{\prime}) (note that equation (6.2-7) is multiplied by 2 , so that $\beta^{\prime}=2 \beta$ now ranges, $0 \leq \beta^{\prime} \leq 1.0$):

$$
\begin{equation*}
Q_{i}=2 q_{i, n}+2 \bar{C}_{i, n} T_{i, n}+\beta^{3}\left(\sum_{j=1}^{p} a_{i j, n}\left(T_{j, n}-T_{i, n}\right)+\sum_{j=1}^{p} \sigma_{i j, n}\left(T_{j, n}^{4}-T_{i, n}^{4}\right)\right) \tag{6.2-17}
\end{equation*}
$$

$Q_{3 u m}=Q_{i}+\left(2.0-\beta^{\prime}\right)\left(\sum_{j=1}^{i} G_{i j, n} T_{j, k+1}+\sum_{j=i+1}^{p} G_{i j, n} T_{j, k}\right)$
$G_{\text {sum }}=2 \bar{c}_{i, n}+\left(2.0-\beta^{\prime}\right) \sum_{j=1}^{p} a_{i j, n}$
$G_{i j, n}=$ same as equation (6,2-13)
$\left(q_{i}\right)_{\text {ave }}=\frac{2.0-\beta^{\prime}}{2} \sum_{j=1}^{p} \sigma b_{i j, n}\left[\left(T_{i, k}^{4}\right)+\left(T_{i, k}^{4}\right)_{2}\right]$, average heat
loss from ith node, called radiation damping (refer to Section 6.2.6 for details)
$=0$, if radiation is not present
$1=1,2, \ldots, N$
$\beta=2.0 * \operatorname{CSGMIN} / D T I M E U$ (range allowed, $0 \leq \beta^{\prime} \leq 1.0$)
$T_{j, n} ; T_{j, k}=$ constant, $N<j \leq p$ (p is the total number of nodes)
n $=$ nth time-step; $k=k t h$ iteration
$C_{i}, q_{i}, a_{i j}, b_{i j}=$ may be optionally specified (refer to Tables 6.2-1 - 6.2-4)
$\bar{c}_{i, n}=c_{i, n} / \Delta t$
Calculation of the diffusion-node temperatures follows VARIABLES 1
call; the computational pattern is:
Iterative $D \not \varnothing-L \emptyset \emptyset P$ ($k I=1$, NLOOP) for the total nodal system is established. First Iterative Loop:

DO-LOOP ($\mathrm{I}=1, \mathrm{NND}$) on diffusion nodes is established.
The functions associated with the variable capacitance C_{i}, the variable impressed source q_{i}, and the variable coefficients G_{k} ($a_{i j}$ for conduction and $\sigma_{i j}$ for radiation) between diffusion-diffusion and diffusion-arithmetic nodes are updated once for each time-step. These functional types are described in Section 6.2.1.2 and the computational pattern is indicated in the flow chart of Figure 6.2-3.

Ail known quantities (those evaluated at time-step n) are summed and ave identified by the symbol Q_{i} (equations 6.2-10, 6.2-15 and 6.2-17). CSGMIN is evaluated.

Radiation damping is used; average radiation heat loss, (q_{i}) ave, from the ith node is evaluated (refer to Section 6.2.6).

For CNVARB, $\beta^{\prime}=2.0 * C S G M I N / D T I M E U$ is calculated.
The diffusion-node temperatures are calculated by "successive point" iteration (actually CNBACK and CNFWBK have slightly different first iterative pattern than CNVARB but the difference is not significant).

$$
\begin{aligned}
T_{i, k+1}= & D D * T_{i, k}+D N^{*}\left[Q_{\text {sum }}-\left(q_{i}\right)_{\text {ave }}\right] / G_{\text {sum }} \\
D N= & \text { DAMPD (use specified diffusion node damping factor, } \\
& \text { if nct specified, } D A M P D=1.0) \\
\mathrm{DD}= & 1.0-\mathrm{DN}
\end{aligned}
$$

For CNVARB, the diffusion-node relaxation temperature change is calculated; maxinum value is stored in DRLXCC.

Second and Succeeding Iterative Loops:

With the iterative loops after the first, those quantities C_{i}, q_{i}, and G_{k} which were updated during the first iteration are held constant. Diffusion-node temperatures are found by using equation (6.2-21). The diffusion-node relaxation temperature change is calculated and the maximum value stored in DRLXCC.

Check of DRLXCC against DRLXCA (allowable maximum diffusion-node relaxation temperature change) is made after the arithmetic-node temperature calculations.

Each third iteration, a check on solution convergence is made; if convergence is occurring linear extrapolation to accelerate convergence is made (refer to Section 6.2.7).

Arithmetic-Node Temperatures (if any)

During the first iterative loop the impressed source q_{i} and coefficient $G_{k}\left(a_{i j}\right.$ for conduction and $\sigma b_{i j}$ for radiation) between arithmeticarithmetic nodes are updated once each time-step. On every loop, arithmetic-
node temperatures are calculated using "successive point" iteration. The finite difference algorithm is presented in Section 6.2.5.1 (equation 6.2-6).

The arithmetic-node relaxation temperature change is calculated and the maximum is stored in ARLXCC.

During Each Iterative Locp After the First
Both DRLXCC and ARLXCC are checked against DRLXCA and ARLXCA, respectively. If both DRLXCA and ARLXCA are satisfied, the iteration ceases.

If LøøPCT equals NLøめP the message "RELAXATION CRITERIA NOT MET" is printed.

Both the calculated maximum diffusion-node and arithmetic-node temperature change (stored in DTMPCC and ATMPCC, respectively) are checked against the corresponding allowable temperature change stored in DMMPCA and ATMPCA. If DMMPCA is not satisfied, the time-step is decreased to,

$$
\Delta t=.95 * \Delta t(D T M P C A / D T M P C C)
$$

and all temperatures re-set to former values. The computational procedure is repeated with the smaller time-step.

If ATMPCA is not satisfied, the time-step is decreased to,
$\Delta t=.95 * \Delta t(A T M P C A / A T M P C C)$
and all temperatures re-set to former values. The computational procedure is repeated with the smaller time-step.

6.2.5.3 Steady State Routines

Diffusion nodes and arithmetic nodes are treated separately in CINDSS and CINDSL even though from a physical standpoint a distinction between diffusion nodes (nodes with capacitance) and arithmetic nodes (nodes with no capacitance) doesn't exist. Thus, the set of control constants for the diffusion nodes and another set of control constants for arithmetic nodes are similar to those used in the transient routines. No distinction in the type of nodes is made in CINDSM.

The computational procedure to be discussed applies only to CINDSS and CINDSL: CINDSM is considerably different (refer to Section 6.5.3).

Diffusion-Node Temperatures (nodes specified with capacitance even though the problem is steady state)

An iterative $\mathrm{D} \varnothing-\mathrm{I} \varnothing \varnothing \mathrm{P}$ ($\mathrm{K} 1=1, \mathrm{NLD} \varnothing \mathrm{P}$) is established.
Within this iterative loop a $D \varnothing-L \emptyset \emptyset P$ ($I=1$,NND) on the diffusion nodes is made. The functions associated with the impressed source q_{i} and the variable coefficients G_{k} ($a_{i j}$ for conduction and $\sigma b_{i j}$ for radiation) between diffusion-diffusion and diffusion-arithmetic nodes are updated each iteration.

Diffusion-node temperatures are calculated using "block" iteration for CINDSS and "successive point" iteration for CINDSL.
"Block" iteration (CINDSS):

$$
\begin{aligned}
& T_{i, k+1}= D D^{*} T_{i, k}+D N^{*} \frac{\left(q_{i, k}+\sum_{j=1}^{p} G_{i j, k} T_{j, k}\right)}{\sum_{j=1}^{p} G_{i j, k}} \\
& G_{i j, k}=a_{i j, k}+\sigma b_{i j, k}\left(T_{j, k}^{2}+T_{i, k}^{2}\right)\left(T_{j, k}+T_{i, k}\right) \\
& D N=\text { DAMPD (diffusion-node damping factor) } \\
& D D=1.0-D N \\
&=1,2, \ldots, \text { NND (number of diffusion nodes) } \\
&=\text { kth iteration; } p=\text { total number of nodes } \\
& k= \\
& q_{i}, a_{i j}, b_{i j}=\text { optionally specified to Tables (6.2-1 }-6.2-4) \\
& T_{j, k}=\text { constant, (NND + NNA) < } j \leq p \text { (NNA is the number } \\
& \text { of arithmetic nodes } \\
& \text { "Successive point" iteration (CINDSL): }
\end{aligned}
$$

$$
\begin{align*}
& T_{i, k+1}=D D * T_{i, k}+D N^{*} \frac{\left(q_{i, k}+\sum_{j=1}^{i} G_{i j, k} T_{j, k+1}+\sum_{j=i+1}^{p} G_{i j, k} T_{j, k}\right)}{\sum_{j=1}^{p} G_{i j, k}} \tag{6.2-23}\\
& G_{i j, k}=a_{i j, k}+\sigma b_{i j, k}\left(T_{j, \ell}^{2}+T_{i, k}^{2}\right)\left(T_{j, \ell}+T_{i, k}\right) \\
& \text { (} \ell=k \text { if } j \geq i \text { and } \ell=k+1 \text { if } j<i \text {) } \\
& \mathrm{DN}=\mathrm{DAMPD} \\
& \text { DD } \quad=1.0-\mathrm{DN}
\end{align*}
$$

$$
\begin{aligned}
& i=1,2, \ldots,(N N D+N N A) \\
& \text { k }=\text { kth iteration; } p=\text { total number of nodes } \\
& q_{i}, a_{i j}, b_{i j}=\text { optionally specified to Tables (6.2-1 - 6.2-4) } \\
& T_{j, k}=\text { constant, (NND + NNA) }<j \leq p \text { (NNA is the total } \\
& \text { number of arithmetic nodes) } \\
& \text { Diffusion-node relaxation temperature change is calculated and }
\end{aligned}
$$ the maximum is stored in DRIXCC.

Arithmetic-Node Temperatures (nodes specified with no capacitance)
Within this iterative $D \phi-I \phi \phi P$ a $D \varnothing-\mathrm{L} \varnothing \varnothing \mathrm{P}$ ($\mathrm{I}=\mathrm{NND}+1$, NND +NNA) is established.

The functions associated with impressed source q_{i} and variable coefficients $G_{k}\left(a_{i j}\right.$ for conduction and $b_{i j}$ for radiation) between arithmetic-arithmetic nodes are updated each iteration.

Arithmetic-node temperatures are calculated using "successive point" iteration.

$$
\begin{aligned}
& T_{i, k+1}=A D * T_{i, k}+A N * \frac{\left(q_{i, k}+\sum_{j=1}^{p} G_{i j, k} T_{j, k+1}+\sum_{j=i+1}^{p} G_{i j, k} T_{j, k}\right)}{\sum_{j=1}^{p} G_{i j, k}}(6,2-24) \\
& G_{i j, k}=a_{i j, k}+\sigma b_{i j, k}\left(T_{j, \ell}^{2}+T_{i, k}^{2}\right)\left(T_{j, \ell}+T_{i, \ell}\right) \\
& \text { (} \ell=k \text { if } j \geq i \text { and } \ell=k+1 \text { if } j<i) \\
& \text { AN = DAMPA (arithmetic-node damping factor) } \\
& \mathrm{AD}=1.0-\mathrm{AN} \\
& i=(N N D+1),(N N D+2), \ldots,(N N D+N N A) \text { (number of } \\
& \text { arithmetic nodes) } \\
& \mathbf{k} \quad=\text { kth iteration } \\
& \text { p } \quad=\text { total number of nodes } \\
& \mathbf{T}_{\mathbf{j}, \mathbf{k}}=\text { constant, }(\mathrm{NND}+\mathrm{NNA})<\mathbf{j} \leq \mathrm{p}
\end{aligned}
$$

The arithmetic-node relaxation temperature change is calculated and the maximum value is stored in ARLXCC.

Both DRLXCC and ARLXCC are checked against DRLXCA and ARLXCA, respectively. If both relaxation criteria, DRLXCA and ARLXCA, are satisfied, the iteration ceases.

If both relaxation criteria, DRLXCA and ARLXCA, are not met with NLøøP iterations, the message "ITERATION COUNT EXCEEDED, NLøøP = " is printed.

Energy balance of the system is calculated and is stored in control constant ENGBAL.

6.2.6 Radiation Damping

Radiation damping denotes an averaging of radiation heat loss technique used to prevent or minimize large temperature oscillations. This method is currently employed in only the implicit routines. The technique which is original with J. D. Gaski is based upon practical and computational considerations. Solution of numerous problems without large temperature oscillations indicates the effectiveness of the approach.

The radiation averaging technique is relatively simple conceptually and rather easily incorporated in the numerical solution routines. The computational pattern is such that the diffusion nodes are encountered sequentially. Let the encountered node be the ith node. A check is made for the presence of a radiation coefficient, $G_{k}=\sigma_{i j}$, to the ith node. If one or more radiation connections is present, the radiation heat loss, $\left(q_{i}\right)$ rl from the ith node is calculated based upon the previous temperature $T_{i, k}$.

$$
\begin{equation*}
\left(q_{i}\right)_{r 1}=\sum_{j} \sigma b_{i j, n} T_{i, k}^{4} \tag{6.2-24}
\end{equation*}
$$

where, $\quad j=$ all radiation connections to node i
$\mathrm{n}=\mathrm{nth}$ time-step
$\mathbf{k}=\mathbf{k t h}$ iteration
Using $\left(q_{i}\right)_{r 1}$, a second temperature $\left(T_{i, k}\right)_{2}$, is found as follows:

$$
\begin{equation*}
\left(T_{i, k}\right)_{2}=\left[Q_{s u m}-\left(q_{i}\right)_{r 1}\right] / G_{\text {sum }} \tag{6.2-25}
\end{equation*}
$$

where,

$$
\begin{align*}
Q_{s u m} & =\bar{C}_{i} T_{i, n}+q_{i, n}+\sum_{j=1}^{i} a_{i j, n} T_{j, k+1}+\sum_{j=i+1}^{p} a_{i j, n} T_{j, k} \\
& +\sum_{j=1}^{i} \sigma b_{i j, n} T_{j, k+1}^{4}+\sum_{j=i+1}^{p} \sigma b_{i j, n} T_{j, k}^{4} \tag{6.2-26}\\
G_{s u m} & =\bar{C}_{i}+\sum_{j=1}^{p} a_{i j, n} \tag{6.2-27}
\end{align*}
$$

Note that in the evaluation of $\left(T_{i, k}\right)_{2}$, the damping factor DAMPD is not used. Note further that $G_{\text {sum }}$ does not contain $\sum_{j} \sigma b_{i j, n} T_{i, k}^{3}$ since it is accounted for in the radiation loss term, $\left(q_{i}\right)_{r 1}$.

Now a second radiation heat loss based on $\left(T_{i, k}\right)$ is found,

$$
\begin{equation*}
\left(q_{i}\right)_{r 2}=\sum_{j} \sigma_{i j, n}\left(T_{i, k}\right)_{2}^{4} \tag{6.2-28}
\end{equation*}
$$

Equations (6.2-24) and (6.2-28) are then averaged,

$$
\begin{equation*}
\left(q_{i}\right)_{\text {ave }}=\left[\left(q_{i}\right)_{r 1}+\left(q_{i}\right)_{r 2}\right] / 2.0 \tag{6.2-29}
\end{equation*}
$$

This average radiation heat loss from an ith node is used in the diffusion-node finite difference algorithm as follows,

$$
\begin{equation*}
T_{i, k+1}=D D^{*} T_{i, k}+D N^{*} \frac{\left(Q_{\text {Sum }}-\left(q_{i}\right)_{\text {ave }}\right)}{G_{\text {sum }}} \tag{6.2-30}
\end{equation*}
$$

where, $\quad \mathrm{DN}=\mathrm{DAMPD}$
$\mathrm{DD}=1.0-\mathrm{DN}$
$\left(q_{i}\right)_{\text {ave }}=$ average radiation heat loss (equation 6.2-29)
$G_{\text {sum }}=\bar{C}_{i}+\sum_{j} a_{i j, n}$
$Q_{\text {sum }}=$ of the form shown by equation (6.2-26). The actual expression depends upon algorithm. Equation (6.2-26)
is for the standard implicit method.
The reason behind the use of $\left(q_{i}\right)$ ave is that if the initial temperature $T_{i, k}$ is too large, the heat loss from the ith node, $\left(q_{i}\right)_{r 1}$ would then be too large. As a result the evaluation of $\left(T_{i, k}\right)_{2}$ with $\left(q_{i}\right)_{r 1}$ would yield a temperature that is too low. Thus, the averaging of of $\left(q_{i}\right)_{r 1}$ and $\left(q_{i}\right)_{r 2}$ would be much closer to the true heat loss from the
th node. If $T_{i, k}$ is too small then $\left(T_{i, k}\right)$ would be too large; the averaging scheme still holds true.
6.2.7 Acceleration of Convergence by Extrapolation Technique

Several of the SINDA numerical solution routines use an extrapolation technique to accelerate convergence of the iterative procedure. The extrapolation technique is used in the implicit routines CNBACK, CNFWBK, and CNVARB for the iterative temperature solution of the diffusion nodes, but is not used for the iterative temperature solutions of the arithmetic nodes. The extrapolation method is also used in the steady state routines CINDSL and CINDSM for the iterative temperature solution of both the diffusion and the arithmetic nodes.
6.2.7.1 Extrapolation Technique

The extrapolation is based on a zero temperature difference condition which is defined to be a point where the temperature change of a particular node over two successive iterations is zero. The governing equations are developed as follows:

Consider the temperatures of an ith node at three successive iterations as shown in Figure 6.2-4a. Let these temperatures, which are assumed to be successively decreasing (or increasing), be denoted as,

$$
T_{i, k-2}, T_{i, k-1} \text { and } T_{i, k}
$$

where, $\quad k$ is the present iteration
$\mathrm{k}-1$ is the previous iteration
$\mathbf{k - 2}$ is two iterations before the kth iteration
By taking the differences,

$$
\begin{aligned}
& \Delta T_{i, k-1}=T_{i, k-2}-T_{i, k-1} \\
& \Delta T_{i, k}=T_{i, k-1}-T_{i, k}
\end{aligned}
$$

and plotting these temperature differences as a function of iterations, the iterative point of zero temperature difference can be found by linear extrapolation as shown in Figure 6.2-4b. The corresponding expression for the line is found by using the point, $\Delta T_{i, k}$ at $I=k$ and the slope, $\left(\Delta T_{i, k}-\Delta T_{i, k-1}\right) /(k-(k-1))$, to yield,

Figure 6.2-4a, Temperature (ith) vs. No. of Iterations

No. of Iterations, I
Figure 6.2-4b. Temperature Difference vs. No. of Iterations

No. of Iterations, I
Figure 6.2-4c. Extrapolation of Temperature (ith) to New Value Figure 6.2-4. Method of Extrapolation to Accelerate Convergence

$$
\begin{equation*}
\Delta T_{i, I}=\Delta T_{i, k}+\left(\Delta T_{i, k}-\Delta T_{i, k-1}\right)(I-k) \tag{6.2-31}
\end{equation*}
$$

where,

$$
I=\text { iterations }
$$

Since at the zero temperature difference condition, $\Delta T_{i, I}=0$, the expression for the extrapolated iterations, $K_{e}=(K-k)$, is found to be,

$$
\begin{equation*}
K_{e}=-\Delta T_{i, k} /\left(\Delta T_{i, k}-\Delta T_{i, k-1}\right) \tag{6,2-32}
\end{equation*}
$$

Now, by extrapolating the line established by the temperatures, $T_{i, k-1}$ and $T_{i, k}$ to the line $I=K$, as shown in Figure 6.2-4c, the extrapolated temperature $T_{i, K}$ is found. The expression is readily found to be,

$$
\begin{equation*}
T_{i, I}=T_{i, k}+\left(T_{i, k}-T_{i, k-1}\right)(I-k) \tag{6.2-33}
\end{equation*}
$$

Since $I=K$ and $K-k=K_{e}$, equation (6.2-33) becomes,

$$
\begin{equation*}
T_{i, K}=T_{i, k}\left(1+K_{e}\right)-K_{e} T_{i, k-1} \tag{6.2-34}
\end{equation*}
$$

6.2.7.2 Frogramming Considerations

Each applicable node is tested at the completion of each third iteration to determine if the extrapolation method should be applied. If K_{c} is calculated to be less than or equal to zero, extrapolation is neglected since the error function is diverging. If K_{e} is calculated to be greater than zero, a new temperature is calculated based on equation (6.2-34); however, to avoid problems associated with a neariy-zero slope of the line representing the temperature difference vs. number of iterations ralationship (Figure 6.2-4b), K_{e}, is set to a number K_{m}; otherwise, K_{e} could be a very large number. For the implicit routines, CNBACK, CNFWBK, and CNVARB, $K_{m}=10$. For the steady state routine CINDSL $K_{m}=8$ and for steady state routine CINDSM a criterion based upon the maximum temperature is used.

6.2.7.3 Routines Using Acceleration of Convergence

SINDA numerical solution routines that employ the acceleration of convergence features are:

CINDSL, CINDSM Steady state routines
CNBACK, CNFWBK, CNVARB Transient implicit routines

6.2.7.4 Comment on Acceleration of Convergence

Neither an extensive study on the value of the acceleration convergence feature has been made, nor has one been reported, but the

$$
6-41
$$

linited results presently available indicace that for the steady state routine CINDSL, the number of iterations is reduced approximately 20%. Results are not available for the implicit routines.

A study of the acceleration of convergence feature is made difficult because the method is not a user option in the applicable SINDA numerical solution routines. Thus, the user must be sufficiently versed with the routines in order to delete the acceleration of convergence feature.
6.2.8 Other Characteristics of the SINDA Numerical Solution Routines 6.2.8.1 Units

SINDA, as presently coded, requires that the temperatures must be specified in degrees Fahrenheit (${ }^{\circ} \mathrm{F}$) since the conversion factor to obtain degrees absolute is internally set at 460.0. This means that the units must be consistent with ${ }^{\circ} \mathrm{F}$ (or ${ }^{\circ} \mathrm{R}$). The execution routines as presently coded do not permit the use of other units.
6.2.8.2 General Comments on Computational Features

Many of the computational features such as radiation damping are original with J. D. Gaski. No theoretical proofs are offered since a practical "gut-feel" development was often used in lieu of a sophisticated mathematical approach; the features, in general, appear to meet the intended objectives. It should be particularly noted that the numerical solution routines are computationally similar; within a particular numerical solution class explicit, implicit or steady state, the computational similarity is even more pronounced. Yet on the other hand, similarity of patterns are broken for no particular reason other than the programer's whim.

SINDA explicit solution routine number six. These are identified as follows:

CNFRWD Conditionally stable explicit forward difference. Requires short pseudo-compute sequence (SPCS).

CNFRDL Identical to CNFRWD except that the long pseudocompute sequence (LPCS) is required.

CNFAST Modified CNFRWD for accelerated forward differencing. Requires short pseudo-compute sequence (SPCS).

CNEXPN Unconditionally stable explicit differencing using exponential prediction. Requires short pseudo-compute sequence (SPCS).

CNDUFR Unconditionally stable explicit differencing using DuFort-Frankel method. Requires short pseudo-compute sequence (SPCS).

CNQUIK Unconditionally stable explicit differencing using a combination of half CNEXPN and half CNDUFR. Requires short pseudo-compute sequence (SPCS).

A detailed description of each explicit routine is presented on the pages to follow with heavy reliance upon the general description of Section 6.2. A brief description of these routines is summarized first.

CNFRWD uses an explicit forward differencing algorithm and requires the short pseudo-compute sequence (SPCS). The explicit method is characterized by computational simplicity and stability limitations. Since the allowable time-step is governed by the smallest time constant of the network, care must be given in reducing the physical system to a reasonable lumped-parameter model. Arithmetic-node temperatures are calculated by "successive point" iteration.

CNFRDL is identical to CNFRWD except that CNFRDL requires the long pseudo-compute sequence instead of the short pseudo compute sequence. CNFRDL requires slightly less solution time than CNFRWD but the difference is not significant; CNFRDL does require more core storage, however.

CNFAST represents a modified CNFRWD with the modifications intended to decrease the computational time. A user specified control constant DTIMEL which contains the minimum time-step allowed is used as a criterion for isolating those diffusion nodes that are to receive the steady state calculations. A large pocket of internally converted diffusion nodes can present considerable accuracy problems.

CNEXPN uses an unconditionally stable explicit method with the Intent to reduce computational time at the expense of temperature accuracy. If accuracy is an important consideration, another routine such as CNFRWD would be a better choice. As a note of interest, CNEXPN solutions tend to lag in time the true solutions.

CNLUFR uses the unconditionally stable DuFort-Frankel method with the intent to reduce computational time by using time-steps greater than those allowed with the conditionally stable explicit methods. Again accuracy may be compromised. CNDUFR solutions tend to lead in time the true solutions.

CNQUIK uses half CNEXPN and half CNDUFR. Why? Since CNEXPN solutions tend to lag in time and CNDUFR solutions tend to lead in time, a combination may yield better solutions. Preliminary results indicate that CNQUIK solutions are more accurate than either CNEXPN or CNDUFR for the same computational time.

6.3.1 Subroutines: CNFRWD and CNFRDL

6.3.1.1 General Comments

Subroutines CNFRWD and CNFRDL are numerical solution routines that use the forward finite difference explicit approximation ${ }^{12}$, ${ }^{14}$ of the parabolic differential equation. CNFRWD and CNFRDL are identical except that CNFRDL requires the short pseudo compute sequence (SPCS) whereas CNFRDL requires the long pseudo compute sequence (LPCS). The need for both routines becomes apparent when it is understood that if a steady state numerical solution routine is followed by a transient numerical solution routine, both rcutines must have consistent PCS (LPCS or SPCS). As a note of interest, each arithmetic node receives the long pseudo compute sequence (LPCS) but this is done internally by the program.

The forward finite difference expiicit method as used in CNFRWD and CNFRDL is the conventional Euler method that neither provides a check on the accuracy nor does it provide any scheme of correction once the temperature values are calculated except for the arithmetic nodes which are reiterated NL $\varnothing \varnothing \mathrm{P}-\mathrm{times}$. The explicit method is characterized by computational simplicity and stability limitations with the temperature error at any time point being of the order $\Delta t, O(\Delta t)$, provided the stability criterion is satisfied. For a rapidly changing boundary condition, such as a heat source, there is no assurance that the calculated temperatures are accurate during the transient period, particularly near the start of the transient, even though the stability criterion is satisfied. Since the allowable time step is governed by the smallest time constant of the network, care must be given in reducing the physical system to a lumpedparameter model. Nonlinearity due to the presence of thermal radiation exchange or temperature-time varying coefficients can lead to numerical solution difficulties; the presence of arithmetic nodes can also present difficulties. These routines offer a number of control constants many of which can be optionally specified by the user to affect the numerical results.

Even with the experience gained through the use of these routines, no realistic criteria can be stated except for the qualitative guidelines indicated above. It is thus recomuended that the user becomes familiar with various control constants and their role. The presentation

$$
6-45
$$

to follow is intended to provide the instructional information.

6.3.1.2 Finite Difference Approximation and Computational Algorithm

The forward finite difference explicit formulation of the lumped parameter heat balance equations was presented in Section 5.2.1. For convenience, the expression is repeated here.

$$
c_{i} \frac{\left(T_{i, n+1}-T_{i, n}\right)}{\Delta t}=q_{i, n}-\sum_{j=1}^{p} a_{i j}\left(T_{j, n}-T_{i, n}\right)+\sum_{j=1}^{p} \sigma b_{i j}\left(T_{j, n}^{4}-T_{i, n}^{4}\right)
$$

(From equation 5.2-1 of Section 5.2.1)
where,

$$
\begin{aligned}
i & =1,2, \ldots, N \\
T_{j, n} & =\text { constant, } N<j \leq p \\
p & =\text { total number of nodes } \\
\Delta t & =\text { time-step } \\
n & =\text { nth time-step }
\end{aligned}
$$

By letting $G_{i j, n}=a_{i j, n}+\sigma b_{i j, n}\left(T_{j, n}^{2}+T_{i, n}^{2}\right)\left(T_{j, n}+T_{i, n}\right)$, equation (5.2-1) becomes,

$$
\begin{equation*}
c_{i} \frac{\left(T_{i, n+1}-T_{i, n}\right)}{\Delta t}=q_{i, n}+\sum_{j=1}^{p} G_{i j, n}\left(T_{j, n}-T_{i, n}\right) \tag{6.3-1}
\end{equation*}
$$

The algorithm as used in the subroutines for the diffusion nodes and for the arithmetic nodes may be expressed as follows.

Diffusion Nodes

$$
\begin{equation*}
T_{i, n+1}=T_{i, n}+\frac{\Delta t}{C_{i}}\left[q_{i, n}+\sum_{j=1}^{p} G_{i j, n}\left(T_{j, n}-T_{i, n}\right)\right] \tag{6.3-2}
\end{equation*}
$$

where,

$$
\begin{aligned}
& n= \text { nth time-step } \\
& \Delta t= \text { time-step (refer to Section } 6.2 .4 \text {) } \\
& i= 1,2, \ldots, \text { NND (number of diffusion nodes) } \\
& T_{j, n}= \text { constant, (NND }+N N A \text {) } j \leq p \text { (NNA is the number of } \\
& \text { arithmetic nodes and } p \text { is the total number of nodes) } \\
& \mathbf{C}_{\mathbf{i}}, q_{i}, a_{i j}, b_{i j}=\text { may be optionally specified (refer to } \\
&\text { Tables } 6.2-1 \text { through } 6.2-4) .
\end{aligned}
$$

Arithmetic Nodes (if any)

$$
\begin{align*}
& T_{i, k+1}=D D^{*} T_{i, k}+D N^{*} \frac{\left(q_{i, n}+\sum_{j=1}^{i} G_{i j, n} T_{j, k+1}+\sum_{j=i+1}^{p} G_{i j, n} T_{j, k}\right)}{\sum_{j=1}^{p} G_{i j, n}} \tag{6.3-3}\\
& \text { where, } \quad k=k t h \text { iteration loop; } i=(N N D+1),(N N D+2), \ldots,(N N D+N N A) \\
& C_{i}, q_{i}, a_{i j}, b_{i j}=\text { optionally specified (refer to Tables 6.2-1 - 6.2-4) } \\
& \mathbf{T}_{\mathbf{j}, \mathrm{k}}=\text { constant, (NND + NNA) }<\mathbf{j} \leq \mathrm{p} \text { (NNA is the number of } \\
& \text { arithmetic nodes and } p \text { is the total number of nodes) } \\
& \text { DN } \equiv \text { DAMPA (arithmetic node damping factor, refer to Section 6.2.3.2) } \\
& \mathrm{DD}=1.0-\mathrm{DN} \\
& G_{i j, n}=a_{i j, n}+\sigma b_{i j, n}\left(T_{j, \ell}^{2}+T_{i, k}^{2}\right)\left(T_{j, \ell}+T_{i, k}\right) \\
& \text { (} \ell=k \text {, if } j \geq i \text { and } \ell=k+1 \text {, if } j<i \text {) }
\end{align*}
$$

6.3.1.3 Comments on the Computational Procedure

The important steps of the computational procedure used in subroutines CNFRWD and CNFRDL are indicated in Table 6.3-1. For a detailed step-by-step computational description, the user must examine the computer listings for CNFRWD and CNFRDL presented in Appendix A, but some general computational details are given in Section 6.2.5.1. Both CNFRWD and CNFRDL use essentially the same computational steps with the difference occurring in the calculation of the diffusion-node temperatures as shown in the flow chart of Figure 6.3-1; a flow chart for the calculation of the arithmetic-node temperatures is shown in Figure 6.3-2. A functional flow chart of CNFRWD and CNFRDL is shown in Figure 6.3-3. The difference between CNFRWD and CNFRDL is due to the use of the short pseudo-compute sequence (SPCS) by CNFRWD and the use of the long pseudo-compute sequence (LPCS) by CNFRDL.

All diffusion-node temperatures are calculated by a two-pass operation prior to the calculation of the arithmetic node temperatures. On the first pass the pseudo-compute sequence for the diffusion nodes is addressed and the heat flow is calculated and the direction determined for each conductor encountered; the appropriate heat flow and conductance summations are performed. Refer to Section 6.2.5.1 for more details on the computational procedure.

The stability criterion of each diffusion node is calculated and the minimum value is placed in control constant CSGMIN. The time-step used (stored in control constant DTTMEU) is calculated as 95% of CSGMIN divided by control constant CSGFAC which is set at 1.0 unless specified larger by the user. A "look ahead" feature is used when DTMEU is calculated. If one time-step will pass the output time point the time-step is set to lie on the output time point; if two time-steps will pass the output time point, the time-step is set so that the end of the two time-steps will lie on the output time point. DTIMEU is checked against both DTIMEH and DTIMEL. If DTHMEU exceeds DTIMEH, DTTMEU is set equal to DTIMEH, and if DTTMEU is less than DTIMEL, the "run" is terminated. DTIMEL is internally set to zero if not specified and DTIMEH is set to l.OE+8 if not specified. The maximum diffusion node temperature change over a time-step is placed in control constant DTMPCC and is checked against the allowable diffusion node temperature change stored in the optionally user specified control constant DTMPCA which is not specified is set to 1.0E+8. If DTMPCC is larger than DTMPCA, DTIMEU is shortened and the calculations repeated. Refer to Section 6.2.4 for detailed procedure on time-step calculation.

The user may iterate the arithmetic node calculations during a time-step by specifying control constant NLø申P and adjust the solution by the use of ARIXCA. The maximum arithmetic node temperature change over an iteration is placed in control constant ARLXCC and is checked against the arithmetic node temperature change criterion stored in ARLXCA. Satisfaction of either NL $\varnothing \phi \mathrm{P}$ or ARLXCA terminates the iterative process for that time-step. If the arithmetic node iteration count exceeds NL ϕ (P the results are retained and computation proceeds without user notification. The maximum arithmetic node temperature change over the time-step is stored in control constant ATMPCC and is checked against the allowable temperature change stored in ATMPCA. If larger, the time-step is shortened and the calculation repeated. The user may also specify the control constant DAMPA in order to dampen possible oscillation due to nonlinearities.

6.3.1.4 Control Constants

Control constants $\emptyset U T P U T$ and TIMEND (> TIME \varnothing) must be specified as Indicated in Table 6.2-5 and described in Section 6.2.3.2; otherwise the "run" will terminate with an error message. The function of optionally
specified control constants APLXCA, ATMPCA, BACKUP, CSGFAC, DAMPA, DTIMEH, DTIMEL, DTMPCA, NL $\varnothing \varnothing$, and TMME \varnothing is described in Section 6.2.3.2. Note particularly that TIME \varnothing may be set negative and that NL $\varnothing \varnothing \mathrm{P}$ is set to one if not specified.

6.3.1.5 Error and Other Messages

If control constants $\emptyset \mathrm{UTPUT}$ and TIMEND are not specified, the following error message will be printed for each,

ØUTPUT "Nø ØUTPUT INTERVAL"
TTMEND "TIME STEP Tøめ SMALL"
The reason for the TIMEND error message is that a direct check on TIMEND is not made; the resultant error message just happens to be a quirk in the coding.

If the short pseudo-compute sequence SPCS is not specified, the error message will be,
"CNFRWD REQUIRES SHORT PSEUD \emptyset-COMPUTE SEQUENCE"
If the long pseudo-compute LPCS is not specified, the error message will be,
"CNFRDL REQUIRES LONG PSEUDO-COMPUTE SEQUENCE"
If the dynamic storage allocation is not sufficient (NDIM < (NND + NNA)), the message will be,
" LøCATIONS AVAILABLE"

Note that the number printed will be negative indicating the additional storage locations required.

If the time-step used is less than the time-step allowed (DTIMEL) which may be optionally specified by the user, the message will be,
"TIME STEP Tøゆ SMALL"
If CSGMIN ≤ 0, the message printed will be,
"CSGMIN ZERø or NEGATIVE"
Checks on the control constants, the pseudo-compute sequence and the dynamic storage allocation are made in the following sequence with the "run" terminating if a single check is not satisfied,

$$
6-49
$$

掿TPUT, pseudo-compute sequence, dynamic storage locations
It should be particularly noted that no message is printed if ARLXCA is not satisfied with NL $\varnothing \emptyset P$ iterations; ARLXCA and NLめ $\varnothing \mathrm{P}$ are optionally specified control constants.

Table 6.3-1. Basic Computational Steps for CNFRWD and CNFRDL

1. Specification of control constants (all control constants are pre-set to zero). Control constants $\varnothing U T P U T$ and TIMEND must be specified. SPCS is required for CNFRWD and LPCS for CNFRDL. (Refer to Table 6.2-4 for nominal values and Section 6.2.3.2 for description.)
2. Sufficiency check on dynamic storage. Requirements $=$ NND + NNA (NND $=$ diffusion nodes and NNA = arithmetic nodes).
3. Setting and/or calculation of time-step, Δt. (Refer to Section 6.2.4 for detailed procedure.)
4. Setting of source and diffusion node dynamic storage locations at zero.
5. Calling of VARIABLES 1. (Refer to Section 6.2.2.2.)
6. Checking of RACKUP. (Refer to Section 6.2.3.2.)
7. Calculation of diffusion-node temperatures. (Refer to Section 6.2.5.1 for description and to flow chart of Figure 6.3-1.)
Diffusion-node temperatures are calculated by using: (refer to Section 6.3.1.2.)

$$
\begin{aligned}
T_{i, n+1} & =T_{i, n}+\Delta T_{i, n} \\
\text { where, } \Delta T_{i, n} & =\frac{\Delta t}{C_{i, n}}\left[q_{i, n}+\sum_{j=1}^{p} G_{i j, n}\left(T_{j, n}-T_{i, n}\right)\right]
\end{aligned}
$$

8. Erasure of all temperature calculations for latest time-step if allowable temperature change criterion DTMPCA is not satisfied and recalculation of temperatures with reduced time-step.
9. Calculation of arithmetic-node temperatures; if the number of iterations equals NL $\emptyset \emptyset \mathrm{P}$ the temperatures are retained without user modification. (Refer to Section 6.2.5.1 for description and to flow chart of Figure 6.3.2)
10. Erasure of all temperature calculations for latest time-step if allowable temperature change criterion ATMPCA is not satisfied and recalculation of temperatures with reduced time-step.
11. Setting of BaCkUP to 0.0 and the calling of VARIABLES 2.

If BACKUP is nonzero, temperatures are re-set to former values and the computational procedure repeated.
12. Advancing of time, checking of time to print, and the printing at the output interval.
13. Calling of фUTPUT CALLS.
14. Checking for problem end-time stored in user specified control constant TIMEND.

Figure 6.3-1. QSUM and GSUM for "Block" Diffusion-Node Temperature Calculation, CNFRWD and CNFRDL

$$
K=1
$$

$$
\mathbf{i}=\mathrm{NND}+1
$$

Unpack conductor No. (K)
and adjoining node \# (j)
+
Update option property
G_{k}, if necessary

figure 6.3-2. Calculation of Arithmetic-Node Temperatures by "Successive" Point Iteration

Figure 6.3-3. Functional Flow Chart for CNFRWD and CNFRDL

6.3.2 Subroutine: CNFAST

6.3.2.1 General Comments

Subroutine CNFAST, which requires the short pseudo compute sequence (SPCS) represents a modified CNFRWD with the modifications intended to decrease the computational time. Use of CNFAST requires a user specification of control constant DTIMEL which represents the minimum time-step allowed in addition to control constant $\emptyset \mathrm{UTPUT}$. With minimum computational time and adequate temperature values as the objective, the computational procedure is simplified. A number of checks on control constants are eliminated and temperature nodes with CSGMIN less than the allowable timestep, DTIMEL, are calculated using the steady state equations.

Although experience on the use of CNFAST is rather limited at this time, it is clear that the user specified DTIMEL should be sufficiently small that only a small number of the diffusion nodes should receive the steady state equations. These steady state equations are computed only once during a time-step and thus are not treated computationally the same as the other user-specified arithmetic nodes. A large pocket of internally converted diffusion nodes would lead to large temperature inaccuracies.

6.3.2.2 Finite Difference Approximation and Computational Algorithm

The finite difference expressions for CNFAST are the same as those indicated in Section 6.3.1.2 for subroutines CNFRWD and CNFRDL, but the application of these equations in the computation procedure is different. Diffusion Nodes

If the user specified control constant, DTIMEL, which represents the maximum time-step allowed as specified by the user is less than or equal to CSGMIN, the diffusion node temperature is calculated as,

$$
\begin{equation*}
T_{i, n+1}=T_{i, n}+\frac{\Delta t}{C_{i}}\left[q_{i, n}+\sum_{j=1}^{p} G_{i j, n}\left(T_{j, n}-T_{i, n}\right)\right] \tag{6.3-4}
\end{equation*}
$$

where, $\quad \Delta t \neq$ time-step (refer to Section 6.2.4); $n=n t h$ time-step

$$
\begin{aligned}
c_{i}, q_{i}, a_{i j}, b_{i j}= & \text { optionally specified (refer to Tables } 6.2-1-6.2-4) \\
i & =1,2, \ldots, N N D(o f \text { diffusion nodes with DTMEL } \leq \text { CSGMIN) } \\
T_{j, n}= & \text { constant, (NND }+ \text { NNA) }<j \leq p \text { (NNA is the number of } \\
& \text { arithmetic nodes and } p \text { is the total number of nodes) } \\
G_{i j, n}= & a_{i j, n}+\sigma b_{i j, n}\left(T_{j, n}^{2}+T_{i, n}^{2}\right)\left(T_{j, n}+T_{i, n}\right)
\end{aligned}
$$

If DTIMEL > CSGMIN, the time-step is set at DTIMEL and the aiffusion node temperature calculated with no iterations as,

$$
\begin{equation*}
T_{i, n+1}=\left(\frac{q_{i, n}+\sum_{j=1}^{p} G_{i j, n}\left(T_{j, n}-T_{i, n}\right)}{\sum_{j=1}^{p} G_{i j, n}}\right) \tag{6.3-5}
\end{equation*}
$$

where, n.means the nth time-step
$i=1,2, \ldots$, NND (number of diffusion nodes with DTIMEL > CSGMTN)
Arithmetic Nodes (if any)
The arithmetic-node temperatures are calculated in the same manner as in CNFRWD (Section 6.3.1.2) or refer to Section 5.2 .3 for finite difference algorithm.

6.3.2.3

Comments on the Computational Procedure
The important steps of the computational procedure used in subroutine CNFAST are indicated in Table 6.3-2 and a functional flow chart is shown in Figure 6.3-4. For a detailed computational description, the user should examine the computer listing for CNFAST in Appendix A_{s} but some general computational details are presented in Section 6.2.5.1. The computational procedure is similar to the one used in CNFRWD with the major difference being the use of DTIMEL which represents the user specified minimum time-step allowed. The time-step calculations stored in DTIMEU proceed exactly as in CNFRWD until the check with DTIMEL is made. If DTIMEU (CSGMIN of a node) \geq DTIMEL, the diffusion node temperature calculation is identical to CNFRWD. If DTIMEU (CSGMIN of a node) < DTIMEL, the diffusion node receives the steady state calculation.

Control constants DTMPCA which contains the allowable diffusionnode temperature change and ATMPCA which contains the arithmetic-node temperature change are not checked in CNFAST. Thus time-steps are not shortened and temperature calculations repeated. The remainder of the computational procedure follows those of CNFRWD (Section 6.3.1.3).

6.3.2.4 Control Constants

Control constants DTIMEL, ØUTPUT and TIMEND (-TIME ϕ) must be specified as indicated in Table 6.2-5 and described in Section 6.2.3.2;
otherwise the "run" will terminate with an error message. The function of optionally specified control constants ARLXCA, BACKUP, DAMPA, DTIMEH, NL $\varnothing \varnothing$ P and TME \emptyset is described in Section 6.2.3.2. As mentioned before in a previous paragraph, the user should take considerable amount of caution in specifying DTIMEL in order to prevent large pockets of nodes that receive the steady state equation without reiteration. Note also that TIME \varnothing may be set negative and that $N L \not D \varnothing$ is set to one if not specified,

6.3.2.5 Error and Other Messages

If control constants DTIMEL, фUTPUT and TIMEND are not specified, the following error message will be printed for each,

DTIMEL "N DTIMEL"
фUTPUT "Nø ØUTPUT INTERVAL"
TIMEND no message
A direct check on TIMEND is not made; an indirect message is printed for the other explicit routines but is not output for CNFAST.

If the short pseudo-compute sequence SPCS is not specified, the error message will be,
"CNFAST REQUIRES SHORT PSEUDO-COMPUTE SEQUENCE"
If the dynamic storage allocation is not sufficient (NDIM < NND), the message will be,
" LOCATIONS AVAILABLE"
Note that the number printed will be negative indicating the additional storage locations required.

If CSGMIN ≤ 0, the message printed will be,
"C/SK ZER \varnothing or NEGATIVE"
Checks on the control constants, the pseudo -compute sequence and the dynamic storage allocation are made in the following sequence, with the run terminating if a single check is not satisfied,

фUTPUT, DTIMEL, pseudo-compute sequence, and dynamic
storage locations.
It should be particularly noted that no message is printed if ARLXCA is not satisfied with NLDøP iterations; ARIXCA and NLDøP are optionally specified control constants.

Table 6.3-2. Basic Computational Steps for CNEAST

1. Specification of control constants. Control constants DTIMEL, ØUTPUT and TIMEND must be specified. SPCS is required for CNFAST. (Refer to Table 6.2-5 for values and Section 6.2.3.2 for descriptions.)
2. Sufficiency check on dynamic storage. Requirements $=$ NND (NND $=$ diffusion nodes).
3. Setting and/or calculation of time-step, Δt. (Refer to Section 6.2.4 for detailed procedure.)
Note that initial time-step equal DTMMEL and subsequent time-step is the larger of CSGMIN or DTIMEL.
4. Setting of source and diffusion node dynamic storage locations to zero.
5. Calling of VARIABLES 1. (Refer to Section 6.2.2.2 for description.)
6. Checking of BACKUP. (Refer to Section 6.2.3.2 for description.)
7. Calculation of diffusion-node temperatures. (Refer to Section 6.2.5.1 for description.) Calculation differs from the other explicit routines, since diffusion nodes with CSGMIN less than DTIMEL receive steady state calculation (refer to Section 6.3.2.2.)

If DTIMEL \leq CSGMIN, the node temperature is calculated as,

$$
T_{i, n+1}=T_{i, n}+\frac{\Delta t}{C_{i}}\left[\sum_{j=1}^{p} G_{i j, n}\left(T_{j, n}-T_{i, n}\right)+q_{i, n}\right]
$$

If DTMMEL $>$ CSGMIN, the node temperature is calculated using the steady state expression,

$$
T_{i, n+1}=\left(\frac{q_{i, n}+\sum_{j=1}^{p} G_{i j, n}\left(T_{j, n}-T_{i, n}\right)}{\sum_{j=1}^{p} G_{i j, n}}\right)
$$

8. Calculation of arithmetic-node temperatures if the number of iterations equals NLD P the temperatures are retained without user notification. (Refer to Section 6.2.5.1 for details.)
9. Calling of VARTABLES 2. (Refer to Section 6.2.2.3 for description.)
10. Advancing of time, checking of time to print, and the printing at the the output interval.
11. Ca11ing of фUTPUT CALLS.
12. Checking for problem end-time stored in user specified control constant TIMEND

Figure 6.3-4. Functional Flow Chart for CNFAST

6.3.3

Subroutine: CNEXPN

6.3.3.1 General Comments

Subroutine CNEXPN is an explicit routine based upon the exponential prediction method; ${ }^{1}, 17$ the method being unconditionally stable permits any size time-steps and requires the short pseudo-compute sequence (SPCS). An infinite time-step reduces the transient equation to a steady state one. Although the method is unconditionally stable, stability should not be confused with accuracy. Comparison of several numerical methods, including the exponential approximation, is given in Reference 17.

If accuracy is an important consideration, time-steps should not be larger than those taken with the standard explicit method such as used in CNFRWD. If high accuracy is not an important consideration; considerable savings in computational time can be affected with the use of a large timestep. It should be noted that the same savings in computational time may be possible with the implicit routines. As another note of interest, CNEXPN solutions have a tendency to lag in time the true temperatures.

6.3.3.2 Finite Difference Approximation and Computational Algorithm

Diffusion Nodes

The expression for the numerical method used in subroutine CNEXPN for solving the diffusion-node temperatures may be derived from the heat balance equation (5.1-6).

$$
\begin{array}{r}
\frac{d T_{i}}{d t}=\frac{1}{C_{i}}\left[q_{i}+\sum_{j=1}^{p} a_{i j}\left(T_{j}-T_{i}\right)+\sum_{j=1}^{p} \sigma b_{i j}\left(T_{j}^{4}-T_{i}^{4}\right)\right] \quad \begin{array}{c}
\text { (equation } \\
\text { S.1-6 of } \\
\text { Section 5) }
\end{array} \\
i=1,2, \ldots, N \\
T_{j}=\text { constant, } N<j \leq p
\end{array}
$$

If $G_{i j}=a_{i j}+\sigma b_{i j}\left(T_{j}^{2}+T_{i}^{2}\right)\left(T_{j}+T_{i}\right)$ equation $(5.1-6)$ becomes,

$$
\begin{align*}
& \frac{d T_{i}}{d t}=\frac{1}{C_{i}}\left[q_{i}+\sum_{j=1}^{p} G_{i j}\left(T_{j}-T_{i}\right)\right] \tag{6.3-6}\\
& i=1,2, \ldots, N \\
& T_{j}=\text { constant, } N<j \leq p
\end{align*}
$$

If we further let $G_{i j}, q_{i}$ and T_{j} be invariant with time and temperature, equation (6,3-6) may be integrated rather easily to yield,

$$
\begin{equation*}
T_{i, n+1}=T_{i, n} e^{-\alpha_{n} \Delta t}+\frac{q_{i, n}+\sum_{j=1}^{p} G_{i j, n} T_{j, n}}{\sum_{j=1}^{p} G_{i j, n}}\left(1-e^{-\alpha_{n} \Delta t}\right) \tag{6.3-7}
\end{equation*}
$$

where, $\quad n=n t h$ time-step; $i=1,2, \ldots$, NND (number of diffusion nodes) $c_{i}, q_{i}, a_{i j}, b_{i j}=$ may be optionally specified (refer to Tables 6.2-1-6.2-4) $T_{j, n}=$ constant, (NND + NNA) $<j \leq p$ (NNA is the number of arithmetic nodes and p is the total number of nodes)

$$
\begin{aligned}
\alpha_{n} & =\frac{\sum_{j=1}^{p} G_{i j, n}}{C_{i, n}} \\
\Delta t & =\text { time-step (refer to Section 6.2.4) } \\
G_{i j, n} & =a_{i j, n}+\sigma b_{i j, n}\left(T_{i, n}^{2}+T_{j, n}^{2}\right)\left(T_{i, n}+T_{j, n}\right)
\end{aligned}
$$

Computationally equation (6.3-7) is applied to the diffusion nodes. It should be noted that the form of equation (6.3-7) represents a "block" change in temperatures since the evaluation of $T_{i, n+1}$ is based upon $T_{i, n}$. Arithmetic Nodes (if any)

Arithmetic-node temperatures are calculated in the same manner as in CNFRWD (Section 6.3.1.2) or refer to Section 5.2.3 for finite difference algorithm.

6.3.3.3 Comments on the Computational Procedure

The important steps of the computational procedure used in subroutine CNEXPN are indicated in Table 6.3-3 and a functional flow chart is shown in Figure 6.3-5. A detailed computational procedure requires the examination of the CNEXPN computer listing which is presented in Appendix A but some general computational details are given in Section 6.2.5.1. The computational process of subroutine CNEXPN is essentially identical to CNFRWD with the difference being the finite difference expression used for the calculation of the diffusion nodes and the time-step which is calculated as CSGMIN*CSGFAC in lieu of CSGMIN/CSGFAC. The "look ahead" feature for
time-step calculation as well as a check with DTTMEH, DTIMEL and DTMPCA is identical to CNFRWD. Temperatures of arithmetic nodes are calculated after the diffusion nodes and utilize NLDDP, ARLXCA, and DAMPA in exactly the same way as CNFRWD. The verbal flow description of CNFRWD (Section 6.3.1.3) applies here except for the differences indicated above.

6.3.3.4 Control Constants

Control constants \emptyset UTPUT and TIMEND ($>$ TTME \emptyset) must be specified as indicated in Table 6.2-5 and described in Section 6.2.3.2; otherwise the "run" will terminate with an error message. The function of optionally specified control constants ARLXCA, ATMPCA, BACKUP, CSGFAC, DAMPA, DTTMEH, DTIMEL, DTMPCA, NL $\varnothing \varnothing$, and TIME \emptyset is described in Section 6.2.3.2. The user should take particular care in the selection of CSGFAC since too large of a time-step would lead to grossly inaccurate temperatures even though the solution is stable. Note also that TIME \emptyset may be set negative and that NLøøP is set to one if not specified.
6.3.3.5 Error and Other Messages

If control constants $\emptyset U T P U T$ and TIMEND are not specified, the following error message will be printed for each,

ØUTPUT "Nø $\emptyset U T P U T$ INTERVAL"
TTMEND "TIME STEP Tøø SMALL"
The reason for the TIMEND error message is that a direct check on TIMEND is not made; the resultant error message just happens to be a quirk in the coding.

If the short pseudo-compute sequence SPCS is not specified, the error message will be,
"CNEXPN REQUIRES SHORT PSEUDO-COMPUTE SEQUENCE"
If the dynamic storage allocation is not sufficient
NDIM < (NND + NNA)), the message will be,
" LOCATIONS AVAILABLE"
Note that the number printed will be negative indicating the additional storage locations required.

If the time-step used is less than the time-step allowed (DTIMEL) which may be optionally specified by the user, the message will be,
"TIME STEP Tゆ SMAIL"
If $\operatorname{CSGMIN} \leq 0$, the message printed will be,
"CSGMIN ZERØ or NEGATIVE"
Checks on the control constants, the pseudo-compute sequence and the dynamic storage allocation are made in the following sequence with the run terminating if a single check is not satisfied,
©UTPUT, pseudo-compute sequence, dynamic storage locations.
It should be particularly noted that no message is printed if ARLXCA is not satisfied with NLøøP iterations; ARLXCA and NLD申P are optionally specified control constants.

Table 6.3-3. Basic Computational Steps for CNEXPN

1. Specification of control constants. Control constants 申UTPUT and TIMEND must be specified. SPCS is required for CNEXPN. (Refer to Table 6.2-5 for values and Section 6.2.3.2 for description.)
2. Sufficiency check on dynamic storage. Requirements $=\mathrm{NND}+\mathrm{NNA}(\mathrm{NND}=$ diffusion nodes and NNA = arithmetic nodes).
3. Setting and/or calculation of time-step, Δt. (Refer to Section 6.2.4 for detailed procedure.) Calculated time-step $=0.95 *$ CSGMIN * CSGFAC.
4. Setting of source and diffusion node dynamic storage locations to zero.
5. Calling of VARIABLES 1. (Refer to Section 6.2.2.2 for description.)
6. Checking of BACKUP. (Refer to Section 6.2.3.2 for description.)
7. Calculation of diffusion-node temperatures. (Refer to Section 6.2.5.1 for description.)
Diffusion-node temperatures are calculated by using (refer to Section 6.3.3.2),

$$
T_{i, n+1}=T_{i, n} e^{-\alpha \Delta t}+\frac{q_{i, n}+\sum_{j=1}^{p} G_{i j, n} T_{j, n}}{\sum_{j=1}^{p} G_{i j, n}}\left(1-e^{-\alpha_{n} \Delta t}\right)
$$

where,

$$
\alpha_{n}=\frac{\sum_{j=1}^{p} G_{i j, n}}{C_{i, n}}
$$

8. Erasure of all temperature calculations for latest time-step if allowable temperature change criterion DTMPCA is not satisfied and recalculation of temperatures with reduced time-step.
9. Calculation of arithmetic-node temperatures. If the number of iterations equal NL $\varnothing \varnothing \mathrm{P}$, the temperatures are retained without user notification
10. Erasure of all temperature calculations for latest time-step if allowable temperature change criterion ATMPCA is not satisfied and recalculation of temperatures with reduced time-step.
11. Calling of VARIABLES 2 and checking of BACKUP. (Refer to Section 6.2.2.3 and 6.2.3.2 for description.)
12. Advancing of time, checking of time to print, and the printing at the output interval.
13. Calling of øUTPUT CALLS.
14. Checking for problem end time stored in user specified control constant TIMEND.

Figure 6.3-5. Functional Flow Chart for CNEXPN

6.3.4 Subroutine: CNDUFR

6.3.4.1 General Comments

Subroutine CNDUFR is an explicit numerical solution routine that uses an unconditionally stable DuFort-Frankel method. ${ }^{9}$, 12, 17 The DuFort-Frankel method replaces the present temperature of the node being operated on by the average of future and past temperatures in the forward differencing equation. In subroutine CNDUFR the present temperature of the node being operated on is replaced by a time-weighted average of future and past temperatures. CNDUFR requires the short pseudo-compute sequence (SPCS).

The intent of an unconditionally stable routine such as CNDUFR is the reduction of computational time by using time-steps greater than those allowed with the conditionally stable explicit methods as constrained by the stability criterion. However, less accuracy can be expected with a lengthened time-step. The time-step controlled with control constant CSGFAC represents a user decision that is difficult and must be aided by a trial and error procedure.

Examination of several CNDUFR solutions reveals a tendency to lead in time the true temperatures.
6.3.4.2 Finite Difference Approximation and Computational Algorithm

Diffusion Nodes

The DuFort-Frankel explicit finite difference expression ${ }^{9}$, 12, 17 for calculating the diffusion-node temperatures may be readily determined as follows:

Using the standard explicit finite difference expression,

$$
\begin{align*}
& c_{i} \frac{\left(T_{i, n+1}-T_{i, n}\right)}{\Delta t}=q_{i, n}+\sum_{j=1}^{p} G_{i j, n}\left(T_{j, n}-T_{i, n}\right) \tag{6.3-8}\\
& i=1,2, \ldots, N \\
& T_{j, n}=\text { constant, } N<j \leq p
\end{align*}
$$

letting the present temperature, $T_{i, n}$, be replaced by the average of future temperature, $T_{i, n+1}$, and past temperature, $T_{i, n-1}$,

$$
\begin{equation*}
T_{i, n}=\frac{T_{i, n+1}+T_{i, n-1}}{2} \tag{6.3-9}
\end{equation*}
$$

where, $\quad \Delta t_{i}=\Delta t_{i+1}, i=1,2, \ldots, M$ (equal time-steps)
and defining,

$$
\begin{equation*}
\bar{C}_{i}=C_{i} / \Delta t \text { (refer to Section 6.2.4 for discussion on } \Delta t \text {) } \tag{6.3-10}
\end{equation*}
$$

equation (6.3-8) can be expressed as,

$$
\begin{gather*}
T_{i, n+1}=\frac{\bar{C}_{i, n} T_{i, n-1}+2 q_{i, n}+\sum_{j=1}^{p} G_{i j, n}\left(2 T_{j, n}-T_{i, n-1}\right)}{\bar{C}_{i, n}+\sum_{j=1}^{p} G_{i j, n}} \tag{6.3-11}\\
i=1,2, \ldots, N
\end{gather*}
$$

In CNDUFR the present temperature, $T_{i, n}$, of equation (6.3-8) is replaced by a weighted average of future temperature, $T_{i, n+1}$, and past temperature, $T_{i, n-1}$. The weighting is based on unequal time-steps.

$$
\begin{equation*}
T_{i, n}=\frac{\left(\Delta t_{n-1} T_{i, n+1}+\Delta t_{n} T_{i, n-1}\right)}{\Delta t_{n-1}+\Delta t_{n}} \tag{6.3-12}
\end{equation*}
$$

where, $\quad \Delta t_{n-1}=t_{n}-t_{n-1}$ (past time-step)

$$
\Delta t_{n}=t_{n+1}-t_{n}(\text { present time-step })
$$

Let

$$
\begin{align*}
& \tau_{n-1}=\frac{\Delta t_{n-1}}{\Delta t_{n-1}+\Delta t_{n}} \tag{6.3-13}\\
& \tau_{n}=\frac{\Delta t_{n}}{\Delta t_{n-1}+\Delta t_{n}} \tag{6.3-14}
\end{align*}
$$

Equation (6.3-8) becomes,

$$
\begin{equation*}
T_{i, n+1}=\frac{\tau_{n} T_{i, n-1}\left(\bar{C}_{i, n}-\sum_{j=1}^{p} G_{i j, n}\right)+\sum_{j=1}^{p} G_{i j, n} T_{j, n}+q_{i, n}}{\bar{C}_{i, n}-\tau_{n-1}\left(\bar{C}_{i, n}-\sum_{j=1}^{p} G_{i j, n}\right)} \tag{6.3-15}
\end{equation*}
$$

where, $\quad i=1,2, \ldots$, NND (number of diffusion nodes)

$$
\begin{aligned}
& T_{j, n}=\text { constant, }(N N D+N N A)<j \leq p \text { (NNA is the number of arithmetic } \\
& \text { nodes and } p \text { is the total number of nodes) } \\
& G_{i j, n}= a_{i j, n}+\sigma b_{i j, n}\left(T_{j, n}^{2}+T_{i, n}^{2}\right)\left(T_{j, n}+T_{i, n}\right) \\
& c_{i}, q_{i}, a_{i j}, b_{i j}=\text { may be optionally specified (refer to Tables 6.2-1 }-6.2-4 \text {) }
\end{aligned}
$$

In CNDUFR, equation (6.3-15) is applied to the diffusion nodes with the computational procedure being a "block" change in temperature from one time-step to another.

Aithmetic Nodes (if any)
Arithmetic-node temperatures are calculated in the same manner as in CNFRWD (Section 6.3.1.2) or refer to Section 5.2 .3 for the finite difference algorithm.

6.3.4.3 Comments on the Computational Procedure

The important steps of the computation procedure used in subroutine CNDUFR are indicated in Table 6.3-4 and a functional flow chart i.s shown in Figure 6.3-6. A computer listing of CNDUFR is found in Appendix A but some general computational details are given in Section 6.2.5.1. The computational procedure for CNDUFR follows the CNEXPN computational pattern, but with the temperatures of the diffusion nodes calculated by the DuFort-Frankel method of the exponential prediction method. Another significant difference is that CNDUFR must provide for two sets of past tenperatures which are required for DuFort-Frankel algorithm; two timesteps for consecutive time-step calculations are also required. Otherwise, checks and control constant use are identical to CNEXPN. Thus, the verbal flow description of Section 6.3.1.3 applies directly except for the differences indicated above.

6.3.4.4 Control Constants

Control constants \varnothing UTPUT and TIMEND (> TIME \varnothing) must be specified as indicated in Table 6.2-5 and described in Section 6.2.3.2; otherwise the "run" will terminate with an error message. The function of optionally specified control constants ARLXCA, ATMPCA, BACKUP, CSGFAC, DAMPA, DTIMEH, DTIMEL, DTMPCA, NL $\emptyset \emptyset$, and TIME \emptyset is described in Section 6.2.3.2. The user should take particular care in the selection of CSGFAC since too large of a time-step would lead to grossly inaccurate temperatures even though the solution is stable. Note also that TIME \varnothing may be set negative and that $N L \emptyset \emptyset P$ is set to one if not specified.

6.3.4.5

Error and Other Messages
If control constants $\emptyset U T P U T$ and TIMEND are not specified, the following error message will be printed for each,
øUtPUT . "Nø фUTPUT InTERVAL"
TIMEND "TIME STEP Tø申 SMALL"
The reason for the TIMEND error message is that a direct check on TIMEND is not made; the resultant error message just happens to be a quirk in the coding.

If the short pseudo-compute sequence SPCS is not specified, the error message will be;
"CNDUFR REQUIRES SHORT PSEUDO-COMPUTE SEQUENCE"
If the dynamic storage allocation is not sufficient (NDIM $<(2 * N N D+N N A))$, the message will be,
" \qquad LOCATIONS AVAILABLE"

Note that the number printed will be negative indicating the additional storage locations required.

If the time-step used is less than the time-step allowed (DTIMEL), which may be optionally specified by the user, the message will be,
"TIME STEP Tøø SMALL"
If CSGMIN ≤ 0, the message printed will be,
"CSGMIN ZERø or NEGATIVE"
Checks on the control constants, the pseudo-compute sequence and the dynamic storage allocation are made in the following sequence with the run terminating if a single check is not satisfied,

ØUTPUT, pseudo-compute sequence, dynamic storage locations
It should be particularly noted that no message is printed if ARLXCA is not satisfied with NLDøP iterations; ARLXCA and NLøøP are optionally specified control constants.

Table 6.3-4. Basic Computational Steps for CNDUFR

1. Setting of control constants to nominal values. Control constants ØUTPUT and TIMEND must be specified. SPCS is required for CNDUFR. (Refer to Table 6.2-5 for values and Section 6.2.3.2 for description.)
2. Sufficiency check on dynamic storage. Requirements $=2 * \mathrm{NND}+\mathrm{NNA}$ (NND $=$ diffusion nodes and NNA = arithmetic nodes).
3. Setting and/or calculation of time-step, Δt. (Refer to Section 6.2.4 for detailed procedure.) Calculated time-step $=0.95 *$ CSGMIN*CSGFAC.
4. Setting of source and diffusion node dynamic storage locations to zero.
5. Calling of VARIABLES 1. (Refer to Section 6.2.2.2 for description.)
6. Checking of BACKUP. (Refer to Section 6.2.3.2 for description.)
7. Calculation of diffusion-node temperatures. (Refer to Section 6.2.5.1 for description.)
Diffusion-node temperatures are calculated by using (refer to Section 6.3.4.2),

$$
T_{i, n+1}=\frac{\tau_{n} T_{i, n-1}\left(\bar{C}_{i, n}-\sum_{j=1}^{p} G_{i j, n}\right)+\sum_{j=1}^{p} G_{i j, n} T_{j, n}+q_{i, n}}{\bar{C}_{i, n}-\tau_{n-1}\left(\bar{C}_{i, n}-\sum_{j=1}^{p} G_{i j, n}\right)}
$$

where,

$$
\begin{aligned}
& \tau_{n-1}=\frac{\Delta t_{n-1}}{\Delta t_{n-1}+\Delta t_{n}} \\
& \tau_{n}=\frac{\Delta t_{n}}{\Delta t_{n-1}+\Delta t_{n}}
\end{aligned}
$$

8. Erasure of all temperature calculations for latest time-step if allowable temperature change criterion DTMPCA is not satisfied and temperature recalculation with reduced time-step.
9. Calculation of arithmetic-node temperatures; if the number of iterations equal NL $\varnothing \varnothing$, the temperatures are retained without user notification (refer to Section 6.2.5.1 for details).
10. Erasure of arithmetic-node temperatures for latest time-step if allowable temperature change criterion ATMPCA is not satisfied and temperature recalculation with reduced time-step.
11. Calling of VARIABLES 2 and checking of BACKUP. (Refer to Section 6.2.2.3 and 6.2.3.2 for description.)
12. Advancing of time, checking of time to print, and the printing at the output interval.
13. Calling of øUTPUT CALLS.
14. Checking for problem end time stored in user specified control constant TIMEND.

Figure 6.3-6. Functional Flow Chart for CNDUFR

$$
6-71
$$

6.3.5 Subroutine: CNOUIK

6.3.5.1 General Comments

Subroutine CNQUIK is a numerical solution routine that uses an algorithm composed of half DuFort-Frakel method ${ }^{9},{ }^{12,17}$ and half exponential prediction method. ${ }^{1}$, 17 CNQUIX requires the short pseudocompute sequence (SPCS); characteristics of subroutines CNDUFR and CNEXPN, as described in Section 6.3.3 and 6.3.4, also apply to CNQUIR.

Why CNQUIK? Examination of CNDUFR and CNEXPN solutions reveals that CNDUFR has a tendency to yield temperatures which lead the true temperatures, whereas CNEXPN has a tendency to lag the true temperatures. Thus, it was theorized that a combination of CNDUFR and CNEXPN should yield a more accurate solution than either one. Preliminary results indicate that CNQUIK is more accurate than either CNDUFR or CNEXPN with approximately the same solution time. It can also be theorized that a more accurate combination of the DuFort-Frankel and exponential prediction is probably possible than the half and half used in CNQUIK. However, a detailed study will be required before a realistic evaluation of CNQUIK can be made.

6.3.5.2 Finite Difference Approximation and Computational Algorithm

Diffusion Nodes
Subroutine CNQUIK uses a numerical solution algorithm composed of half DuFort-Frankel and half exponential prediction. That is the temperature of the diffusion nodes is calculated by using,

$$
\begin{aligned}
& T_{i, n+1}=\left(T_{\text {CNDUFR }}+T_{\text {CNEXPN }}\right) / 2.0 \\
& T_{\text {CNDUFR }}=\frac{\tau_{n} T_{i, n-1}\left(\bar{C}_{i, n}-\sum_{j=1}^{p} G_{i j, n}\right)+\sum_{j=1}^{p} G_{i j, n} T_{j, n}+q_{i, n}}{\bar{C}_{i, n}\left(1-\tau_{n-1}\right)+\sum_{j=1}^{p} G_{i j, n}} \\
& \quad \text { (equation 6.3-15 of Section 6.3.4.2) }
\end{aligned}
$$

(equation 6.3-7 of Section 6.3.3.2)

$$
\begin{aligned}
& n=n t h \text { time-step } \\
& \text { i. }=1,2, \ldots, \text { NND (number of diffusion nodes) } \\
& T_{j, n}=\text { constant, (NND }+ \text { NNA) }<j \leq p \text { (NNA is the number of } \\
& \text { arithmetic nodes and } p \text { is the total number of nodes) } \\
& \alpha_{n}=\frac{\sum_{j=1}^{p} G_{i j, n}}{C_{i, n}} \\
& G_{i j, n}=a_{i j, n}+\sigma b_{i j, n}\left(T_{i, n}^{2}+T_{j, n}^{2}\right)\left(T_{i, n}+T_{j, n}\right) \\
& \tau_{n}=\frac{\Delta t_{n}}{\Delta t_{n-1}+\Delta t_{n}} ; \quad \tau_{n-1}=\frac{\Delta t_{n-1}}{\Delta t_{n-1}+\Delta t_{n}} \\
& c_{i}, q_{i}, a_{i j}, b_{i j}=\text { optionally specified (refer to Tables 6.2-1-6.2-4) } \\
& \bar{C}_{i}=C_{i} / \Delta t \text { (refer to Section 6.2.4 for discussion of } \Delta t \text {) } \\
& \text { Arithmetic Nodes (if any) } \\
& \text { Temperatures of arithmetic nodes are calculated in the same manner } \\
& \text { as in CNFRWD (Section 6.3.1.2) or refer to Section } 5.2 .3 \text { for the finite } \\
& \text { difference algorithm. } \\
& \text { The important steps of the computational procedure used in sub- } \\
& \text { routine CNQUIK are indicated in Table 6.3-5 and a functional flow chart is } \\
& \text { shown in Figure 6.3-7. A computer listing of CNQUIK is found in Appendix A. } \\
& \text { General computational details are given in Section 6.2. The computational } \\
& \text { procedure for CNQUIK follows CNEXPN or CNDUFR with the diffusion-node } \\
& \text { temperatures calculated with the half DuFort-Frankel and half exponential } \\
& \text { prediction algorithm being the only difference. Arithmetic-node tempera- } \\
& \text { tures are calculated in the same manner as the other SINDA explicit } \\
& \text { routines. Note that the time-step is calculated as CSGMIN*CSGFAC and checks } \\
& \text { are the same as CNEXPN or CNDUFR. Thus, the verbal flow description of } \\
& \text { Section 6.3.1.3 applies directly except for the differences indicated }
\end{aligned}
$$ above.

 as indicated in Table 6．2－5 and described in Section 6．2．3．2；otherwise the＂run＂will terminate with an error message．The function of optionally specified control constants ARLXCA，ATMPCA，BACKUP，CSGFAC，DAMPA，DTIMEH， DTIMEL，DTMPCA，NL \emptyset ，and TIME \emptyset is described in Section 6．2．3．2．Again， caution must be exercised in the selection of CSGFAC since tco large of a time－step would lead to grossly inaccurate temperatures even though the solution is stable．Note also that TIME \emptyset may be set negative and that NL $\emptyset \emptyset \mathrm{P}$ is set to one if not specified．

6．3．5．5 Error and Other Messages

If control constants $\phi U T P U T$ and TMEND are not specified，the following error message will be printed for each，

ØUTPUT＂Nめ ØUTPUT INTERVAL＂
TIMEND＂TIME STEP TゆØ SMALL＂
The reason for the TIMEND error message is that a direct check on TIMEND is not made；the resultant error message just happens to be a quirk in the coding．

If the short pseudo－compute SPCS is not specified，the error message will be，
＂CNQUIK REQUIRES SHORT PSEUDO－COMPUTE SEQUENCE＂
If the dynamic storage allocation is not sufficient
（NDIM＜（2＊NND＋NNA），the message will be，
＂LOCATIONS AVAILABLE．＂
Note that the number printed will be negative indicating the additional storage locations required．

If the time－step used is less than the time－step allowed（DTIMEL）， which may be optionally specified by the user，the message will be，
＂TIME STEP TØØ SMALL＂
If CSGMIN ≤ 0 ，the message printed will be，
＂CSGMIN ZERゆ or NEGATIVE＂

Checks on the control constants, the pseudo-compute sequence and the dynamic storage allocation are made in the following sequence with the run terminating if a single check is not satisfied,
¢UTPUT, pseudo-compute sequence, dynamic storage locations.
It should be particularly noted that no message is printed if ARLXCA is not satisfied with NLD $\varnothing \mathrm{P}$ iterations; ARLXCA and NLD$\varnothing \mathrm{P}$ are optionally specified control constants.

Table 6.3-5. Basic Computational Steps for CNQUIK
 TTMEND must be specified. SPCS is required for CNEXPN. (Refer to Table 6.2-5 for values and Section 6.2.3.2 for description.)
2. Sufficiency check on dynamic storage. Requirements $=2(N N D)+$ NNA (NND = diffusion nodes and NNA = arithmetic nodes).
3. Setting and/or calculation of time-step, Δt. (Refer to Section 6.2.4 for detailed procedure.) Calculated time-step $=0.95 *$ CSGMIN*CSGFAC.
4. Setting of source and diffusion node dynamic storage locations to zero.
5. Calling of VARIABLES 1. (Refer to Section 6.2.2.2 for description.)
6. Checking of BACKUP. (Refer to Section 6.2.3.2 for description.)
7. Calculation of diffusion-node temperatures. (Refer to Section 6.2.5.1 for description.)

Diffusion-node temperatures are calculated by using (refer to Section 6.3.5.2),
$\mathrm{T}_{\mathrm{i}, \mathrm{n}+1}=\left(\mathrm{T}_{\mathrm{CNDUFR}}+\mathrm{T}_{\mathrm{CNEXPN}}\right) / 2.0$
(Refer to equation 6.3-17, Section 6.3.5.2.)
8. Erasure of all temperature calculations for latest time-step if allowable temperature change criterion DTMPCA is not satisfied and temperature recalculation with reduced time-step.
9. Calculation of arithmetic-node temperatures; if the number of iterations equal NLø $\emptyset \mathrm{P}$, the temperatures are retained without user notification. (Refer to Section 6.2.5.1 for details.)
10. Erasure of all temperature calculations for latest time-step if allowable temperature change criterion ATMPCA is not satisfied and temperature recalculation with reduced time-step.
11. Calling of VARIABLES 2 and checking of BACKUP. (Refer to Section 6.2.2.3 and 6.2.3.2 for description.)
12. Advancing of time, checking of time to print, and the printing at the output interval.
13. Calling of фUTPUT CALLS.
14. Checking for problem end time stored in user specified control constant TIMEND.

Figure 6,3-7. Functional Flow Chart for CNQUIK

6.4

Transient Implicit Solution Routines
SINDA implicit solution routines number three; these routines are identified as follows:

CNBACK Implicit backward difference method.
Requires long pseudo-compute sequence (LPCS).
CNFWBK Implicit forward-backward differencing, using
Crank-Nicolson method.
Requires long pseudo-compute sequence (LPCS).
CNVARB Combination of CNBACK and CNFWBK.
Requires long pseudo-compute sequence (LPCS).
Implicit methods generally tend to be more accurate than explicit methods and are unconditionally stable as are some explicit methods. With implicit methods the rime-step is specified in contrast to the calculated time-steps of explicit methods with their stability criterion. An important consideration in the use of implicit methods is that the time-step DTIMEI should be specified in conjunction with control constant NLD$\phi \mathrm{P}$ which represents the maximum number of computational iterations during each timestep. Since each iterative calculation is essentially equivalent to a time-step calculation for an explicit method, the combination of DTIMEI and NL $\varnothing \varnothing \mathrm{P}$ for a given time period should be set less than the total number of time-steps used by the explicit method for the same time period, if computational time is to be reduced; this of course assumes that during each time-step the maximum number of iterations is required. If the NL $\varnothing \phi \mathrm{P}$ iterations are required during a time-step, the temperature accuracy is affected but the magnitude would depend upon the value used for the maximum allowable relaxation temperature change criteria, ARLXCA and DRLXCA. It should be noted if NLDøP iterations are required during a time-step, the message "RELAXATION CRITERIA NOT MET" is printed.

A detailed description of each implicit routine, as presented on the pages to follow, relies on the general description of Section 6.2. A brief description of these routines is summarized first.

CNBACK uses the standard backward differencing algorithm and requires the long pseudo-compute sequence (LPCS). The time-step must be
specified via control constant DTTMEI and used in conjunction with the control constant NLффP. CNBACK uses the acceleration of convergence feature.

CNFWBK uses the Crank-Nicolson algorithm which is composed of half forward differencing and half backward differencing. CNFWBK solutions tend to be more accurate than CNBACK solutions with approximately 25% less iterations; however CNFWBK solutions have "blown" on occasions.

CNVARB uses a combination of forward differencing and backward differencing. Unlike CNFWBK which is half and half, CNVARB uses a variable beta factor which ranges from 0 to 1 . Thus CNVARB uses a method that is somewhere between forward differencing and backward differencing.

6.4.1 Subroutine: CNEACK

6.4.1.1 Genera1 Comments

Subroutine CNBACK is an implicit routine that uses the standard backward difference expression and requires the long pseudo-compute (LPCS). Time-step must be specified via DTIMEI otherwise the "run" will terminate with an error message printout. The time-step value is arbitrary but the user should consider DTIMEI in conjunction with the control constant NLDøP which represents the maximum number of computational iterations during each time-step (refer to Section 6.2.3.2 for description).

Implicit methods tend to be more accurate than explicit methods and are unconditionally stable, but implicit solutions often oscillate at start up or boundary step changes when heat transfer by radiation is present. CNBACK internally controls sudden radiation heat transfer changes by an averaging technique which is termed "radiation damping" (refer to Section 6.2.6 for details). This automatic damping has been very effective in many solutions that have been examined and lessens the need for the use of DAMPD and DAMPA.

6.4.1.2 Finite Difference Approximation and Computational Algorithm

The numerical solution algorithm used in subroutine CNBACK is the standard backward-difference expression ${ }^{12},{ }^{13}, 17$ which may be expressed as:

$$
\begin{aligned}
& C_{i} \frac{\left(T_{i, n+1}-T_{i, n}\right)}{\Delta t}= q_{i, n}+\sum_{j=1}^{p} a_{i j} \cdot\left(T_{j, n+1}-T_{i, n+1}\right) \\
&+\sum_{j=1}^{p} a b_{i j}\left(T_{j, n+1}^{4}-T_{i, n+1}^{4}\right) \\
&(\text { equation } 5.2-5 \text { of Section 5.2.2) } \\
& i=1,2, \ldots, N \\
& T_{j, n+1}=\text { constant, } N<j \leq p \\
& T_{i, n} \equiv T_{i}(n \Delta t)
\end{aligned}
$$

The computational procedure for the backward difference formulation must necessarily be re-iterative because of the need to solve a set of simultaneous nonlinear equations.

Diffusion node temperatures are solved by "successive point" iteration but differs from the arithmetic-node temperature calculation because of the capacitance term and the use of "radiation damping" (refer to Section 6.2.5.2).
$T_{i, k+1}=D D^{*} T_{i, k}$
$+D_{N} \frac{\bar{C}_{i, n} T_{i, n}+q_{i, n}+\sum_{j=1}^{i} G_{i j, n} T_{j, k+1}+\sum_{j=i+1}^{p} G_{i j, n} T_{j, k}-\left(q_{i}\right) \text { ave }}{\bar{C}_{i, n}+\sum_{j=1}^{p} a_{i j, n}}$
where,

$$
i=1,2, \ldots, \mathrm{NND}
$$

$\mathrm{n}=\mathrm{nth}$ time-step
$\mathrm{k}=\mathrm{kth}$ iteration
DN = DAMPD (diffusion-node damping factor)
$\mathrm{DD}=1.0-\mathrm{DN}$
$G_{i j, n}=a_{i j, n}+\sigma b_{i j, n} T_{j, \ell}^{3} \quad(\ell=k$ if $j \geq i$ and $\ell=k+1$ if $j<i)$
$C_{i}, q_{i},{ }^{\prime}{ }_{i j}, b_{i j}=$ optionally specified (refer to Tables 6.2-1 - 6.2-4)
$\bar{C}_{i, n}=C_{i, n} / \Delta t(\Delta t=$ time step, refer to Section 6.2.4)
$\left(q_{i}\right)_{\text {ave }}=\sum_{j=1}^{p} \quad \sigma b_{i j, n}\left[\left(T_{i, k}^{4}\right)+\left(T_{i, k}^{4}\right)_{2}\right] / 2.0$, average heat loss from
the ith node (refer to Section 6.2 .6 on radiation damping for details)

Details on the computational procedure for implicit routines are presented in Sections 5.2.2 and 6.2.5.2.

Arithmetic Nodes
Arithmetic-node temperatures are calculated identically the same in all the SINDA numerical solution routines. Thus, refer to either Section 6.3.1.2 or Section 6.2.5.2 for the finite difference algorithm.

6.4.1.3 Comments on the Computational Procedure

The important steps of the computational procedure used in subrout ine CNBACK are indicated in Table 6.4-1. For a detailed step-by-step computational description, the user must examine the computer listing for

CNBACK in Appendix B, but some general computational details are given in Section 6.2.5.2. A functional flow chart of CNBACK is shown in Figure 6.4-1.

Both diffusion-node temperatures and arithmetic-node temperatures are calculated by "successive point" iteration. Each third iteration, diffusion-node temperatures which are decreasing over two time-steps are extrapolated in an attempt to accelerate convergence (refer to Section 6.2.7). Temperature convergence is examined during each time-step by checking DRLXCC and ARJXCC against the user control constants DRLXCA (for diffusion nodes) and ARLXCA (for arithmetic nodes), respectively. If temperatures have not converged with NL $\varnothing \varnothing \mathrm{P}$ iterations, the message "RELAXATION CRITERIA NOT MET" is printed. Control constant NLゆø P is used to specify the maximum number of iterations allowed during each time-step.

VARIABLES 1 and VARIABLES 2 are performed only once for each timestep. Since this subroutine is implicit, the user must specify the timestep to be used through the control constant DTIMEI in addition to control constant TIMEND and \emptyset UTPUT. The look ahead feature for the time-step calculation used in CNFRWD is also employed in CNBACK as are checks for maximum allowable time-step DTMMEH, maximum allowable temperature change between time-steps, DTMPCA (diffusion nodes) and ATMPCA (arithmetic nodes). The minimum time-step DTIMEL is not checked however. Damping of solutions can be achieved through the use of the control constants DAMPD and DAMPA but "radiation damping" (refer to Section 6.2.6) used by CNBACK lessens the need for the damping factors DAMPD and DAMPA.

6.4.1.4 Control Constants

Control constants ARLXCA, DRLXCA, DTIMEI, NL \varnothing, \varnothing, \varnothing UTPUT, and TIMEND must be specified as indicated in Table 6.2-5 and as described in Section 6.2.3.2; otherwise "run" will terminate with an appropriate error message. The function of optionally specified control constants ATMPCA, BACKUP, DAMPA, DAMPD, DTIMEH, DTMPCA, and TIME \emptyset is described in Section 6.2.3.2.

Specification of time-step DTIMEI should be done in conjunction with control constant NLøøP which represents the maximum number of computational iterations during each time-step. Since each iterative calculation is essentially equivalent to a time-step calculation for an explicit
method，the combination of DTMMEI and NLゆøP for a given time period should be less than the total number of time－steps by the explicit method for the same period．Note also that TMED may be set negative．Specification of ARIXCA and DRLXCA depends upon the problem but a rypical value is 0.1 ．

6．4．1．5 Error and Other Messages

If control constants ARLXCA，DRLXCA，DTIMEI，NL \varnothing ，\varnothing ， TIMEND are not specified，the following error message will be printed for each，

ARLXCA	＂ND ARLXCA＂
DRIXCA	＂Nø DRLXCA＂
DTIMEI	＂N¢ DTTMEI＂
NLゆ¢P	＂ $\mathrm{N} \phi$ NLめ $\mathrm{NP}^{\prime \prime}$
ØUTPUT	＂Nめ ¢UTPUT INTERVAL＂
TTMEND	＂TRANSIENT TIME NめT SPECIFIED＂

If the long pseudo－compute sequence LPCS is not specified，the error message will be，
＂CNBACK REQUIRES LONG PSEUDO－COMPUTE SEQUENCE＂
If the dynamic storage allocation is not sufficient
$(N D I M<(3 * N N D+N N A+N N B))$ ，the message will be，
＂＿LOCATIONS AVAILABLE＂
Note that the number printed will be negative indicating the additional storage locations required．

If CSGMIN ≤ 0 ，the following message will be printed，
＂CSGMIN ZER \emptyset or NEGATIVE＂
If either ARLXCA or DRLXCA is nct satisfied with NL $\emptyset \emptyset \mathrm{P}$ iterations， the following message will be printed，
＂RELAXATIめN CRITERIA NØT MET＂
Checks on the control constants，the pseudo－compute sequence and the dynamic storage allocation are made in the following sequence with the＂run＂terminating if a single check is not satisfied，

NLøØP，TIMEND，ØUTPUT，ARLXCA，DTIMEI，DRLXCA，LPCS and dynamic storage allocation．

Table 6.4-1. Basic Computational Steps for CNBACK

i. Specification of control constants. Control constants ARLXCA (if NNA >0), DRLXCA (if NND >0), DTTMEI, NL申фP, фUTPUT and TIMEND (TIMEND $>$ TIME ϕ) must be specified. LPCS is required. (Refer to Table 6.2-5 for values and Section 6.2.3.2 for description.)
2. Sufficiency check on dynamic storage. Requirements $=3 *$ NND + NNA + NNB (NND = diffusion nodes, NNA = arithmetic nodes and NNB $=$ boundary nodes).
3. Setting and/or calculation of time-step, Δt. (Refer to Section 6.2.4 for detailed procedure.) Time-step = DTIMEI.
4. Setting of iterative $D \varnothing 100 p, 1$ to NL $\varnothing \varnothing \mathrm{P}$.
5. Setting of source locations to zero.
6. Calling of Variables 1. (Refer to Section 6.2.2.2 for description.)
7. Checking of BACKUP. (Refer to Section 6.2.3.2 for description.)
8. Diffusion-node temperature calculations, first iteration only.

Evaluation of q_{i}, C_{i} and G_{k}.
Damping of radiation heat transfer. (Refer to Section 6.2.5.2.)
Calculation of diffusion-node temperature.
The computational algorithm depends upon the presence of radiation heat transfer, but the method of solution is the standard implicit algorithm (refer to Section 6.2.5.2).
9. Conversion of $T_{i, k+1}$ to degrees Rankine.
10. Diffusion-node temperature calculations, successive iterations after first. Repeating of step 8 , except that q_{i}, C_{i} and G_{k} are not updated. Calculation of DRLXCC.
11. Acceleration of convergence every third iteration if linear extrapolation is met (refer to Section 6.2.7).
12. Conversion of $T_{i, k+1}$ to degrees Fahrenheit.
13. Calculation of arithmetic-node temperatures, second and succeeding iterations; arithmetic-node temperatures are not calculated on the first iteration (refer to Section 6.2.5.2 for details).
14. Conversion of temperatures to degrees Rankine.
15. Checking of ARLXCA and DRLXCA for convergence and \emptyset PEITR for output. If both ARLXCA and DRLXCA are satisfied, iterations during a time-step ceases, otherwise $N L \emptyset \emptyset P$ iterations are performed.
16. Checking of ATMPCA and DTMPCA. If either one is not satisfied time-step is shortened, previous temperatures erased, and temperatures recalculated for shortened time-steps (refer to Section 6.2.5.2).
17. Conversion of temperatures back to degrees Fahrenheit.
18. Calling of VARIABLES 2 and checking of BACKUP (refer to Section 6.2.2.3 and 6.2.3.2).
19. Advancing of time, checking of time to print, and the printing of the output interval.
20. Calling of øUTPUT CALLS.
21. Checking for problem end time stored in control constant TIMEND.

6.4-1. Functional Flow Chart for CNBACK

6.4.2 Subroutine: CNFWBK

6.4.2.1 General Comments

Subroutine CNFWBK is an implicit numerical solution routine that uses the Crank-Nocolson algorithm. ${ }^{7,8,12}$ The long pseudo-compute sequence (LPCS) is required and the nodal temperatures (both diffusion and arithmetic) are solved by "successive point" iterations. The iteration looping, convergence criteria and other control constant checks are identical to CNBACK. Time-step must be specified via control constant DTIMEI. Diffusion and arithmetic temperature calculations may be damped through the use of DAMPD and DAMPA, respectively. Thermal radiation heat transfer is uniquely "handled" via a so-called "radiation damping" (refer to Section 6.2.6), and acceleration of convergence (refer to Section 6.2.7) is also available in CNFWBK.

CNFWBK solutions which are based on a half forward differencing and a half backward differencing method tend to be more accurate than CNBACK solutions with approximately the same solution time.

6.4.2.2 Finite Difference Approximation and Computational Algorithm

The numerical solution algorithm used in subroutine CNFWBK is the Crank-Nicolson method, which is half forward differencing and half backward differencing, and may be expressed as:

$$
\left.\begin{array}{l}
C_{i} \frac{\left(T_{i, n+1}-T_{i, n}\right)}{\Delta t}=\frac{1}{2}\left(T_{\text {forward }}+T_{\text {backward }}\right) \\
T_{\text {forward }}=q_{i, n}+\sum_{j=1}^{p} a_{i j, n}\left(T_{j, n}-T_{i, n}\right)+\sum_{j=1}^{p} \sigma b_{i j, n}\left(T_{j, n}^{4}-T_{i, n}^{4}\right) \\
T_{\text {backward }}=q_{i, n}+\sum_{j=1}^{p} a_{i j, n}\left(T_{j, n+1}-T_{i, n+1}\right)+\sum_{j=1}^{p} \sigma b_{i j, n}\left(T_{j, n+1}^{4}-T_{i, n+1}^{4}\right) \tag{6.4-4}\\
n
\end{array}\right)=\text { nth time-step } \quad \begin{aligned}
i & =1,2, \ldots, N \\
p & =\text { total number of nodes } \\
& =\text { constant, } N<j \leq p
\end{aligned}
$$

The computational procedure for the forward-backward difference formulation must be re-iterative because of the need to solve a set of simultaneous nonlinear equations. The pattern of computation is very similar to that used in CNBACK.

Diffusion-Nodes

Diffusion node temperatures are solved by "successive point" Iteration but the algorithm differs from the algorithm used in CNBACK because of the additional terms arising from the forward difference portion of the expression.

$$
\begin{aligned}
& T_{i, k+1}=D D^{*} T_{i, k}+D N^{*}\left[Q_{\text {sum }}-\left(q_{i}\right) \text { ave }\right] / G_{\text {sum }} \\
& \text { where, } \quad Q_{\text {sum }}=Q_{i}+\sum_{j=1}^{1} a_{i j, n} T_{j, k+1}+\sum_{j=i+1}^{p} a_{i j, n} T_{j, k} \\
& +\sum_{j=1}^{1} \sigma b_{i j, n} T_{j, k+1}^{4}+\sum_{j=i+1}^{p} \sigma b_{i j, n} T_{j, k}^{4} \\
& Q_{i}=2 q_{i, n}+2 \bar{C}_{i, n} T_{i, n}+\sum_{j=1}^{P} a_{i j, n}\left(T_{j, n}-T_{i, n}\right) \\
& G_{\text {sum }}=2 \bar{C}_{i, n}+\sum_{j=1}^{p} a_{i j, n} \\
& \mathbf{n}=\text { nth time-step; } \mathbf{k}=\mathbf{k t h} \text { iteration } \\
& C_{i}, q_{i}, a_{i j}, b_{i j}=\text { optionally specified (refer to Tables 6.2-1 - 6.2-4) } \\
& \text { DN }=\text { DAMPD (diffusion-node damping factor) } \\
& \mathrm{DD}=1.0-\mathrm{DN} \\
& \bar{C}_{i, n}=C_{i, n} / \Delta t(\Delta t=\text { time-step }) \\
& \left(q_{i}\right)_{\text {ave }}=\sum \sigma b_{i j, n}\left[\left(T_{i, k}^{4}\right)+\left(T_{i, k}^{4}\right)_{2}\right] / 2.0 \text {, average heat loss from } \\
& \text { ith node (refer to Section 6.2.6 on radiation damping } \\
& \text { for details) }
\end{aligned}
$$

(Note that the known quantities at time-step, n, are indicated by Q_{i}, equation 6.4-7.)

Arithmetic-node temperatures are calculated identically the same in all the SINDA numerical solution routines. Thus, refer to Section 6.3.1.2 or Section 6.2 .5 .2 for the finite difference algorithm.

6.4.2.3 Comments on the Computational Procedure

The important steps of the computational procedure used in subroutine CNFWBK are indicated in Table $6.4-2$. For a detailed step-by-step computational description, the user must examine the computer listing for CNFWBK in Appendix B, but some general computational details are given in Section 6.2.5.2. A functional flow chart of CNFWBK is shown in Figure 6.4-2.

The computational flow pattern for CNFWBK is identical to CNBACK with the only difference between the routines being the diffusion-node temperature finite-difference algorithm. On the first iteration only the source locations zeroed out and the present temperatures stored, VARIABLES 1 is called and variable C_{i}, impressed source q_{i} and variable coefficients G_{i} (diffusion-diffusion and diffusion-arithmetic) evaluated. All quantities which are evaluated at time, t_{n}, are summed in accordance with equations (6.4-6) and (6.4-8). CSGMIN is evaluated and the diffusion-node temperatures calculated; note the arithmetic-node temperatures are not calculated on the first iteration.

On the second and succeeding iterations the quantities C_{i}, q_{i} and G_{k} (diffusion-diffusion and diffusion-arithmetic) are not updated. Diffusion-node temperatures are calculated and DRLXCC determined. Every third iteration, if a diffusion-node temperature is converging, a linear extrapolation to accelerate convergence is performed (refer to Section 6.2.7). If arithmetic nodes are encountered, the appropriate q_{i} and G_{k} (for arithmetic nodes) are evaluated once per time-step. Arithmetic-node temperatures are calculated and ARLXCC determined.

Control constants DRLXCC and ARLXCC are checked against DRLXCA and ARLXCA, respectively each time-step; if both criteria are satisfied the iterations cease, otherwise the iterations continue NL $\varnothing \phi \mathrm{P}$ times and the message "RELAXATION CRITERIA NOT MET" is printed.

Diffusion-node and arithmetic-node temperature changes between time-steps are calculated and stored in DTMPCC and ATMPCC, respectively.

If DTMPCC $>$ DTMPCA or if ATMPCC $>$ ATMPCA，the just completed calculations are erased and the time－step shortened（refer to Section 6．2．5．2）．

6．4．2．4 Contro1 Constants

The control constants for CNFWBK are used in exactly the same way as used in CNBACK．Control constants ARLXCA，DRLXCA，DTIMEI，NLめDP， ØUTPUT，and TIMEND must be specified as indicated in Table 6．2－5 and as described in Section 6．2．3．2；otherwise＂run＂will terminate with an appropriate error message．The function of optionally specified control constants ATMPCA，BACKUP，DAMPA，DAMPD，DTIMEH，DTMPCA，and TIME \emptyset is described in Section 6．2．3．2．

Specification of time－step DTIMEI should be done in conjunction with control constant NLøøP which represents the maximum number of com－ putational iterations during each time－step．Since each iterative calcula－ tion is essentially equivalent to a time－step calculation for an explicit methed，the combination of DTIMEI and NL $\emptyset \emptyset P$ for a given time period should be less than the total number of time－steps by the explicit method for the same time period．Note also that TIME may be set negative．Specification of ARLXCA and DRLXCA depends upon the problem but a typical value is 0.1 ．

6．4．2．5 Error and Other Messages

If control constants ARLXCA，DRLXCA，DTIMEI，NL $\varnothing \mathrm{P}, ~ \emptyset U T P U T$ and TIMEND are not specified the following error message will be printed for each，

ARLXCA	＂ND ARLXCA＂
DRLXCA	＂Nす DRLXCA＂
DTIMEI	＂N\％DTTMEI＂
NLめ¢P	＂Nゆ NLゆøP＂
¢UTPUT	＂Nø ØUTPUT INTERVAL＂
TIMEND	＂TRANSIENT TTME NøT SPECIFIED＂

If the long pseudo－compute sequence LPCS is not specified，the error message will be，
＂CNFWBK REQUIRES LØNG PSEUDØ－CøMPUTE SEQUENCE＂
If the dynamic storage allocation is not sufficient
$\left(N D I M<\left(3^{*} N N D+N N A+N N B\right)\right)$ ，the message will be，
＂LOCATIONS AVAILABLE＂

Note that the number presented will be negative indicating the additional storage locations required.

If CSGMIN ≤ 0, the following message will be printed,
"CSGMIN ZER \emptyset OR NEGATIVE"
If either ARLXCA or DRLXCA is not satisfied with NLøøP iterations, the following message will be printed,
"RELAXATIDN CRITERIA NфT MET"
Checks on the control constants, the pseudo-compute sequence and the dynamic storage allocation are made in the following sequence with the "run" terminating if a single check is not satisfied,

NLOOP, TIMEND, OUTPUT, ARLXCA, DTTMEI, DRLXCA, LPCS and dynamic storage allocation.

Tab3e 6.4-2. Basic Computational Steps for CNFWBK

1. Specification of control constants. Control constants ARLXCA (if NMK >0), DRLXCA (if NND >0), DTTMEI, NLゆФP, ØUTPUT and TMMEND (TIMEND \geq TIMEO) must be specified. LPCS is required. (Refer to Table 6. $\overline{2}-5$ for values and Section 6.2.3.2 for description.
2. Sufficiency check on dynamic storage. Requirements $=3 *$ NND + NNA + NNB (NND $=$ diffusion nodes, $N N A=$ arithmetic nodes and NNB = boundary nodes)
3. Setting and/or calculation of time-step, Δt. (Refer to Section 6.2.4 for detailed procedure.) Time-step = DTIMEI.
4. Setting of iterative $D \varnothing$ loop, 1 to NL $\varnothing \phi$ P.
5. Setting of source locations to zero.
6. Calling of Variables 1. (Refer to Section 6.2.2.2 for description.)
7. Checking of BACKUP. (Refer to Section 6.2.3.2 for description.)
8. Diffusion-node temperature calculations, first iteration only. Evaluation of q_{i}, C_{i} and G_{k}. Damping of radiation heat transfer. (Refer to Section 6.2.5.2.) Calculation of diffusion-node temperature. The computational algorithm depends upon the presence of radiation heat transfer, but the method of solution is the Crank-Nicolson algorithm (half forward and half backward, refer to Section 6.2.5.2).
9. Conversion of $T_{i, k+1}$ to ${ }^{\circ} R$ (Rankine).
10. Diffusion-node temperature calculation, successive iterations after first. Repeating of step 8 except that q_{i}, C_{i} and G_{k} are not updated. Calculation of DRLXCC.
11. Acceleration of convergence every third iteration if linear extrapolation is met (refer to Section 6.2.7).
12. Conversion of $T_{i, k+1}$ to degrees Fahrenheit.
13. Calculation of arithmetic-node temperatures, second and succeeding iterations; arithmetic-node temperatures are not calculated on the first iteration (refer to Section 6.2.5.2 for details).
14. Conversion of temperatures to degrees Rankine.
15. Checking of ARLXCA and DRLXCA for convergence and \emptyset PEITR for output. If both ARLXCA and DRLXCA are satisfied, iterations during a timestep cease, otherwise NLDфP iterations are performed.
16. Checking of ATMPCA and DTMPCA. If either one is not satisfied timestep is shortened, previous temperatures erased, and temperatures recalculated for shortened time-steps (refer to Section 6.2.5.2).
17. Conversion of temperatures back to degrees Fahrenheit.
18. Calling of VARIABLES 2 and checking of BACKUP (refer to Section 6.2.2.3 and 6.2.3.2).
19. Advancing of time, checking of time to print, and the printing of the output interval.
20. Calling of øUTPUT CALLS.
21. Checking for problem end-time stored in user specified control constant TIMEND.

6.4-2. Functional Flow Chart for CNFWBK

6.4.3 Subroutine: CNVARB

6.4.3.1 General Comments

Subroutine CNVARB uses an implicit finite difference algorithm that is a composition of forward-differencing and backward-differencing. The proportion of forward to backward to be used is calculated internally by using a weighting factor, β, that is dependent upon the ratio of the explicit stability criterion as stored in the control constant CSGMIN divided by the computational time-step stored in DTIMEU. The weighting factor can vary each time-step but is constrained to range, $0 \leq \beta \leq 1 / 2$ (refer to Section 6.2.5.2 or Section 6.4.3.2). A β of one-half yields the Crank-Nicolson half-forward and half-backward expression, whereas a β of zero yields the standard backward-difference expression.

Except for the weighting factor, β, the computational procedure and the use of the various control constants in CNVARB is essentially identical to subroutine CNFWBK.

Solution characteristics should be very similar to CNFWBK solutions with expectation that CNVARB solutions would be more optimum in terms of accuracy and solution time. Solutions are not presently available to verify or refute the expected advantages of CNVARB solutions.

6.4.3.2 Finite Difference Approximation and Computational Algorithm

The numerical solution algorithm used in subroutine CNVARB is a combination of forward-differencing and backward-differencing with the weighting of each determined by the ratio of control constants CSGMIN/DTIMEU.

The combination forward-backward differencing with weighting can be expressed as:

$$
\begin{align*}
& \frac{C_{i}}{\Delta t}\left(T_{i, n+1}-T_{i, n}\right)=\beta\left(q_{i, n}+\sum_{j=1}^{p} a_{i j, n}\left(T_{j, n}-T_{i, n}\right)\right)+\sum_{j=1}^{p} \sigma b_{i j, n}\left(T_{j, n}^{4}-T_{i, n}^{4}\right) \\
& +(1.0-\beta)\left(q_{i, n}+\sum_{j=1}^{p} a_{i j, n}\left(T_{j, n+1}^{-T}{ }_{i, n+1}\right)\right)+\sum_{j=1}^{p} \sigma b_{i j, n}\left(T_{j, n+1}^{4}-T_{i, n+1}^{4}\right) \tag{6.4-9}\\
& i=1,2, \ldots, N \\
& \mathrm{n}=\mathrm{nth} \text { time-step } \\
& \beta=\text { weighting factor (} 0<\beta \leq 1 / 2 \text {) } \\
& T_{j, n} ; T_{j, n+1}=\text { constant, } N<j \leq p
\end{align*}
$$

If equation (6.4-9) is multiplied by 2.0 and the known quantities (at time-step, n) and the unknown quantities (at time-step, $n+1$) separated, the algorithm used in CNVARB may be obtained readily.

Diffusion Nodes

Diffusion-node temperatures are solved by "successive point" iteration. The finite difference iterative form as used in CNVARB can be found by multiplying equation (6.4-9) by 2.0 and by using appropriate time-step, n, and iteration, k subscripts.

$$
\begin{equation*}
T_{i, k+1}=D D^{*} T_{i, k}+D N^{*}\left[Q_{\text {sum }}-\left(q_{i}\right)_{\text {ave }}\right] / G_{\text {sum }} \tag{6.4-10}
\end{equation*}
$$

where, $\quad Q_{i}=2 q_{i, n}+2 \bar{C}_{i, n} T_{i, n}$
$+\beta^{\prime}\left(\sum_{j=1}^{p} a_{i j, n}\left(T_{j, n}-T_{i, n}\right)+\sum_{j=1}^{p} \sigma b_{i j, n}\left(T_{j, n}^{4}-T_{i, n}^{4}\right)\right)$
$Q_{s u m}=Q_{i}+\left(2.0-\beta^{\prime}\right)\left(\sum_{j=1}^{i} G_{i j, n} T_{j, k+1}+\sum_{j=i+1}^{p} G_{i j, n} T_{j, k}\right)$

$$
\begin{align*}
& G_{\text {sum }}=2 \bar{C}_{i, n}+\left(2.0-\beta^{\prime}\right) \sum_{j=1}^{p} a_{i j, n} \tag{6.4-13}\\
& G_{i j, n}=a_{i j, n}+\sigma b_{i j, n} T_{j, \ell}^{3} \tag{6.4-14}\\
& (\ell=k \text {, if } j \geq i \text { and } \ell=k+1 \text {, if } j<i) \\
& \left(q_{i}\right)_{a v e}=\frac{\left(2.0-\beta^{1}\right)}{2} \sum_{j-1}^{p} \sigma b_{i j, n}\left[\left(T_{i, k}^{4}\right)+\left(T_{i, k}^{4}\right)_{2}\right] \tag{6.4-15}\\
& \text { average heat loss from the ith node, called radiation } \\
& \text { damping (refer to Section 6.2.6 for details) } \\
& =0 \text {, if radiation is not present } \\
& \beta^{\prime}=2.0 * C S G M I N / D T I M E U \text { (range allowed, } 0 \leq \beta^{\prime} \leq 1.0 \text {, note } \beta^{\prime}=2 \beta \text {) } \\
& \mathbf{n}=\mathbf{n t h} \text { time-step; } \mathbf{k}=\mathbf{k t h} \text { iteration } \\
& C_{i}, q_{i}, a_{i j}, b_{i j}=\text { optionally specified (refer to Tables 6.2-1 - 6.2-4) } \\
& \bar{C}_{i, n}=C_{i, n} / \Delta t \\
& i=1,2, \ldots, N N D \\
& T_{j, n} ; T_{j, k}=\text { constant, (NND }+N N A \text {) }<j \leq p \text { (} p \text { is the total number of } \\
& \text { nodes and NNA is the number of arithmetic nodes) }
\end{align*}
$$

$$
6-94
$$

Arithmetic Nodes

Arithmetic nodes are calculated in the same manner in all the SINDA numerical solution routines. For the finite difference algorithm refer to either Section 6.3.1.2 or Section 6.2.5.2.

6.4.3.3 Comments on the Computational Procedure

The important steps of the computational procedure used in subroutine CNVARB are indicated in Table 6.4-3. For a detailed step-by-step computational description, the user must examine the computer listing for CNVARB in Appendix B, but some general computational details are given in Section 6.2.5.2. A functional flow chart of CNVARB is shown in Figure 6.4-3.

The computational flow pattern for CNVARB is very similar to CNFWBK or CNBACK; the slight difference is shown in the flow chart of Figure 6.4-3. The basic difference between CNVARB and the other two implicit routines is the use of a variable beta, β^{\prime}, which is calculated internally by the routine. Thus, the updating of the variable capacitance C_{i}, the impressed source q_{i} and the variable coefficients ($a_{i j}$ for con-. duction and $\sigma_{i j}$ for radiation) during the first iteration and the subsequent calculation of diffusion-node temperatures in subsequent iterations are identical to CNFWBK except for the finite difference algorithm. Use of the various control constants and checks are identical to CNFWBK.

6.4.3.4 Control Constants

Control constants for CNVARB are used in exactly the same way as used in CNFWBK. Control constant ARLXCA, DRLXCA, DTIMEI, NLøøP, ØUTPUT, and TIMEND must be specified as indicated in Table 6.2-5 and as described in Section 6.2.3.2; otherwise "run" will terminate with an appropriate error message. The function of optionally specified control constants ATMPCA, BACKUP DAMPA, DAMPD, DTTMEH, DTMPCA and TIME \emptyset is described in Section 6.2.3.2.

6.4.3.5 Error and Other Messages

If control constants ARLXCA, DRLXCA, DTIMEI, NLøøP, ØUTPUT and TIMEND are not specified, the following error message will be printed for each,

APIXCA
DRIXCA
DTMMEI
NLQ $\emptyset \mathbf{P}$
øUTPUT
TIMEND
＂ND ARLXCA＂
＂Nø DRLXCA＂
＂N中 DTTMEI＂
＂N NLゆゆP＂
＂Nø OUTPUT INTERVAL＂
＂TRANSIENT TTME NøT SPECIFIED＂

If the long pseudo－compute sequence LPCS is not specified，the error message will be，
＂CNVARB REQUIRES L $\emptyset N G$ PSEUD \varnothing－CøMPUTE SEQUENCE＂
If the dynamic storage allocation is not sufficient
$(N D I M<(3 * N N D+N N A+N N B))$ ，the error message will be，
n LøCATIONS AVAILABLE＂

Note that the number presented will be negative indicating the additional storage locations required．

If CSGMIN ≤ 0 ，the following message will be printed，
＂CSGMIN ZERめ or NEGATIVE＂

If either ARLXCA or DRLXCA is not satisifed with NL \varnothing（ P iterations， the following message will be printed，
＂RELAXATION CRITERIA NØT MET＂

Checks on the control constants；the pseudo－compute sequence and the dynamic storage allocation are made in the following sequence with the＂run＂terminating if a single check is not satisfied，

NLDøP，TIMEND，ØUTPUT，ARLXCA，LPCS and dynamic storage allocation．

Table 6.4-3. Basic Computational Steps for CNVARB
i. Specification of control constants. Control constants ARLXCA (if NNA >0), DRLXCA (if NND >0), DTTMEI, NL $\emptyset \emptyset$, $\emptyset U T P U T$ and TIMEND (TIMEND \geq TIME $)$ must be specified. LPCS is required. (Refer to Table 6.2-5 for values and Section 6.2.3.2 for description.)
2. Sufficiency check on dynamic storage. Requirements $=3 * N N D+N N A+N N B$ (NND = diffusion nodes, NNA $=$ arithmetic nodes and NNB $=$ boundary nodes).
3. Setting and/or calculation of time-step, Δt. (Refer to Section 6.2.4 for detailed procedure.) Time-step = DTIMEI.
4. Setting of iterative $D \varnothing 100 p, 1$ to NLD \varnothing.
5. Setting of source locations to zero.
6. Calling of Variables 1 (refer to Section 6.2.2.2 for description).
7. Checking of BACKUP (refer to Section 6.2.3.2 for description).
8. Diffusion-node temperature calculations, first iteration only.

Checking of stable stability criteria.
Calculation of weighting factor $\beta^{\prime}=2.0 *$ CSGMIN/DTIMEU. $\quad\left(0 \leq \beta^{\prime} \leq 1.0\right)$
Conversion of temperatures to degrees Rankine.
Damping of radiation heat transfer (refer to Section 6.2.5.2).
Calculation of diffusion-node temperatures using forward-backward algorithm with variable beta ($\beta^{\text {r }}$).
Calculation of DRLXCC.
9. Diffusion-node temperature calculations, successive iterations after first. Repeating of step 8 except that $\mathrm{G}_{\mathrm{i}}, \mathrm{C}_{\mathrm{i}}$ and G_{k} are not updated. Calculation of DRLXCC.
10. Acceleration of convergence every third iteration if linear extrapolation criterion is met (refer to Section 6.2.7).
11. Conversion of $T_{i, k+1}$ to degrees Fahrenheit.
12. Calculation of arithmetic-node temperatures every iteration (refer to Section 6.2.5.2 for details).
13. Conversion of temperatures to degrees Rankine.
14. Checking of ARLXCA and DRLXCA for convergence and \emptyset PEITER for output. If both ARLXCA and DRLXCA are satisfied, iterations during a time-step cease, otherwise NL $\phi \phi$ P iterations are performed.
15. Checking of ATMPCA and DTMPCA. If either one is not satisfied timestep is shortened, previous temperatures erased, and temperatures recalculated for shortened time-steps (refer to Section 6.2.5.2).
16. Conversion of temperatures back to degrees Fahrenheit.
17. Calling of VARIABLES 2 and checking of BACKUP (refer to Section 6.2.2.3 and 6.2.3.2).
18. Advancing of time, checking of time to print, and the printing of the output interval.
19. Calling of øUTPUT CALL.S.
20. Checking for problem end time stored in user specified control constant TTMEND.

6.5

Steady State Numerical Solution Routines
SINDA steady state numerical solution routines number three. These steady state routines are identified as follows:

CINDSS Block iterative method
Requires short pseudo-compute sequence (SPCS)
CINDSL Successive point iterative method
Requires long pseudo-compute sequence (LPCS)
CINDSM Modified CINDSL for radiation-dominated problems Requires long pseudo-compute sequence (LPCS)

A detailed description of steady state routines is presented in the pages to follow with liberal reference to materials presented in Section 6.2. A brief description of these routines follows.

CINDSS which uses the short pseudo-compute sequence (SPCS) was the first steady state routine developed for SINDA (via CINDA and CINDA-3G); as a result, some of the features contained in subsequent steady state routines are not used in CINDSS. If a transient analysis is to be performed following a steady state analysis, CINDSS must be used with a transient routine that also requires SPCS. The "block" iterative method (refer to Section 5.2.3) used by CINDSS should lend itself to some types of problems which are highly nonlinear with terms such as $G_{i j}\left(T_{j}^{4}-T_{i}^{4}\right)$. With "block" iteration, both T_{j} and T_{i} are changed simultaneously. Solution convergence is based upon a temperature relaxation criterion stored in DRLXCA for diffusion nodes and ARLXCA for arithmetic nodes.

CINDSL requires the long pseudo-compute sequence (LPCS) and uses the "successive point" iteration method (refer to Section 5.2.3). Any transient analysis routine coupled with CINDSL must require LPCS. Solution time for CINDSL is less than CINDSS; as a result, it is used more often than CINDSS. A major problem with CINDSL is that a highly nonlinear problem can present convergence difficulties unless considerable amount of damping is used. For example, a radiation-dominated problem contains many $\sigma b_{i j}\left(T_{j}^{4}-T_{i}^{4}\right)$. With "successive point" iteration, T_{j} may be updated and T_{i} not for a given conductor; as a result, the resultant heat flow calculation could present difficulties because of large change in values. CINDSL has the acceleration of convergence feature, whereas CINDSS does not.

Solution convergence is based upon temperature relaxation criterion stored in DRLXCA for diffusion nodes and ARLXCA for arithmetic nodes.

CINDSM is the latest addition to the SINDA 1ibrary of steady state routines. CINDSM requires the long pseudo-compute sequence and uses "successive point" iteration. The routine was specifically developed to solve radiation-dominated problems. Solution convergence is based upon system energy criterion stored in BALENG.

6.5.1 Subroutine: CINDSS

6.5.1.1 General Comments

Subroutine CINDSS is a steady state routine that requires the short pseudo-compute sequence (SPCS) and ignores the capacitance values of diffusion nodes to calculate steady state temperatures. Diffusion nodes are solved by a "block" iterative method as discussed in Section 6.5.2.3, whereas arithmetic nodes are solved by a "successive point" iterative method also discussed in Section 6.5.2.3. For steady state solutions diffusion nodes are not necessary; as a matter of fact, solutions will be achieved more quickly if all diffusion nodes are specified as arithmetic. The use of diffusion nodes in a steady state solution allows for the direct use of the transient model.

A series of steady state solutions at various points in a time period can be accomplished by specifying control constants TIMEN and ØUTPUT. ØUTPUT is used both as the output interval and the computational interval. The instructions with the appropriate call are made in VARIABLES 1 to modify boundary conditions with time.

The CINDSS call can be followed by a call to one of the transient solution subroutines which has the same short pseudo-compute sequence requirements such as CNFRWD. In this manner the steady state solution becomes the initial conditions for the transient analysis. It is important to remember that control constants specified for the steady state routine will be used by the transient routine unless initialized to the desired values. Since CINDSS utilizes control constants TIMEND and ØUTPUT for the steady state-transient problem, the user must specify their values in the execution block after the steady state call and prior to the transient analysis call. CINDSS does not utilize the acceleration of convergence feature as discussed in Section 6.2.7.

Solution convergence is based upon a temperature relaxation criterion stored in control constants DRLXCA for diffusion nodes and ARLXCA for arithmetic nodes. Normally, identical values are specified for both DRLXCA and ARLXCA. Sufficient information is not presently available to indicate different values for DRLXCA and ARLXCA. A method to indicate the accuracy of the "converged" temperatures is not presently available. It
should also be noted that "converged" temperatures could have large system energy unbalance.

6.5.1.2 Finite Difference Approximation and Computational Algorithm

The steady state heat balance equation at the ith node may be readily expressed as,

$$
\begin{align*}
& q_{i}+\sum_{j=1}^{p} a_{i j}\left(T_{j}-T_{i}\right)+\sum_{j=1}^{p} \sigma b_{i j}\left(T_{j}^{4}-T_{i}^{4}\right)=0 \tag{6.5-1}\\
& i=1,2, \ldots, N \\
& T_{j}=\text { constant, } N<j \leq p
\end{align*}
$$

Equation (6.5-1) represents a set of nonlinear algebraic equations to be solved simultaneously. Since CINDSS solves temperature of nodes specified as diffusion (nodes with capacitance even though a steady state solution is desired) by the "block" iteration method and temperatures of nodes specified as arithmetic (no capacitance) by the "successive point" iteration method, two successive approximation algorithms are used. Diffusion Nodes (if any)

$$
\begin{equation*}
T_{i, k+1}=D D * T_{i, k}+\frac{D N *\left(q_{i, k}+\sum_{j=1}^{p} G_{i j, k} T_{j, k}\right)}{\sum_{j=1}^{p} G_{i j, k}} \tag{6.5-2}
\end{equation*}
$$

where, $\quad k=k t h$ iteration; $i=1,2, \ldots$, NND (number of diffusion nodes)

$$
q_{i}, a_{i j}, b_{i j}=\text { may be optionally specified (refer to Tables 6.2-1-6.2-4) }
$$

$\mathrm{T}_{\mathrm{j}, \mathrm{k}}=$ constant, (NND + NNA) $<\mathrm{j} \leq \mathrm{p}$ (NNA is the number of arithmetic nodes and p is the total number of nodes)
$G_{i j, k}=a_{i j, k}+\sigma b_{i j, k}\left(T_{j, k}^{2}+T_{i, k}^{2}\right)\left(T_{j, k}+T_{i, k}\right)$
DN \equiv DAMPD (diffusion node damping factor)
$\mathrm{DD}=1.0-\mathrm{DN}$
Arithmetic Nodes (if any)

$$
T_{i, k+1}=A D * T_{i, k}+\frac{A N^{*}\left(q_{i, k}+\sum_{j=1}^{i} G_{i j, k} T_{j, k+1}+\sum_{j=i+1}^{p} G_{i j, k} T_{j, k}\right)}{\sum_{j=1}^{p} G_{i j, k}}
$$

where, $\quad k=k t h$ iteration; $i=(N N D+1),(N N D+2), \ldots,(N N D+N N A)$
$q_{i}, a_{i j}, b_{i j}=$ optionally specified (refer to Tables 6.2-1 - 6.2-4)
$\mathrm{T}_{\mathrm{j}, \mathrm{k}}=$ constant, (NND + NNA) $<j \leq \mathrm{p}$ (NNA is the number of arithmetic nodes and p is the total number of nodes $G_{i j, k}=a_{i j, k}+\sigma b_{i j, k}\left(T_{j, \ell}^{2}+T_{i,}^{2}\right)\left(T_{j, \ell}+T_{i, k}\right)$ ($\ell=k$, if $j \geq i$ and $\ell=k+1$, if $j<i$)
AN \equiv DAMPA (arithmetic node damping factor)
$\mathrm{AD}=1.0-\mathrm{AN}$

6.5.1.3 Comments on the Computational Procedure

The important steps of the computational procedure used in the steady state subroutine CINDSS are indicated in Table 6.5-1. For a detailed procedural description, the user must examine the computer listing for CINDSS in Appendix C, but some general computational details are given in Section 6.2.5.3. A functional flow chart of CINDSS is shown in Figure 6.5-1. The user is required to specify the maximum number of iterations to be performed via control constant $N \perp \emptyset \emptyset P$ and the diffusion-node temperature change relaxation criteria DRLXCA and the arithmetic-node temperature change criteria ARLXCA. The iterations continue until either NLDøP is satisfied or both DRLXCA and ARLXCA are satisfied. If DRLXCA and ARLXCA are not satisfied with NL $\emptyset \varnothing \mathrm{P}$ iterations, an appropriate message is printed. VARIABLES 1 and $\emptyset U T P U T$ CALLS are performed at the start and VARIABLES 2 and фUTPUT CALLS are performed upon completion. Control constants DAMPD for diffusion nodes and DAMPA for arithmetic nodes are so-called damping factors which are multipliers of the "new" temperatures; the factor 1.0 - DAMPD (or 1.0 - DAMPA) is a multiplier for the "old" temperatures. This weighting of "old" and "new" temperatures is useful for damping oscillations due to nonlinearities. For nonlinear systems, the damping factors are specified to be less than one. If not specified, the damping factor is set to 1.0. As a point of interest, it appears that if a linear system is to be solved, the convergence could be accelerated by using the damping factor greater than one. The diffusion nodes receive a "block" iteration, whereas the arithmetic nodes receive a "successive point" iteration; acceleration features are not utilized.

6．5．1．4 Control Constants

Control constant NL $\varnothing \varnothing \mathrm{P}$ must be specified and control constants ARIXCA and DRLXCA must be specified if NNA >0 and NND >0 ，respectively； otherwise＂run＂will terminate with an appropriate error message．Control constants DAMPA and DAMPD may be optionally specified among others．Control constant characteristics are tabulated in Table 6．2－5 and description of these control constant is presented in Section 6．2．3．2．Specification of NLDゆP is dependent upon the values of ARLXCA and DRLXCA and thus the accuracy of solution．Since the type of problem will influence accuracy，it appears that a trial and error procedure is the only practical way of determining realistic control constant values．

6．5．1．5 Error and Other Messages

If control constants ARLXCA，DRLXCA and NL $\emptyset \phi \mathrm{P}$ are not specified， the following error message will be printed for each，

ARLXCA	＂NØ ARLXCA＂
DRLXCA	＂Nめ DRLXCA＂
NLØØ？	＂Nめ NLゆФP＂

If the short pseudo－compute sequence SPCS is not specified，the error message will be，
＂CINDSS REQUIRES SHøRT PSEUDO－CøMPUTE SEQUENCE＂
If the dynamic storage allocation is not sufficent（NDIM＜NND）
will be，
1

LøCATIONS AVAILABLEE＂

Note that the number printed will be negative indicating the additional storage locations required．

If both temperature change relaxation criteria ARLXCA and DRLXCA are not met with NLD$\varnothing \mathrm{P}$ iterations，the message will be，
＂ITERATIめN CめUNT EXCEEDED，LøøPCT＝ \qquad

Checks on the control constants，the pseudo－compute sequence， and the dynamic storage allocation are made in the following order with the ＂run＂terminating if a single check is not satisfied．

NLøøP，ARLXCA，DRLXCA，SPCS，and dynamic storage allocation．

Table 6.5.1. Basic Computational Steps for CINDSS

1. Specification of control constants. Control constants ARIXCA (if NNA >0), DRLXCA (if NND >0) and NLøゆP must be specified. SPCS is required. (Refer to Table 6.2-5 for values and Section 6.2.3.2 for description.)
2. Sufficiency check on dynamic storage. Requirements $=$ NND (NND $=$ diffusion nodes).
3. Setting of TMMEN for first iteration and succeeding iterations.

TIMEN $=$ TMME ϕ, first iteration TIMEN = TIME \varnothing + \emptyset UTPUT, succeeding iterations
4. Setting of iterative loop for all nodes, $\mathrm{kl}=1$, NL $\varnothing \varnothing \mathrm{P}$
5. Setting of source locations to zero.
6. Calling of VARIABLES 1 (refer to Section 6.2.2.2 for description).
7. Calculation of diffusion-node temperatures by "block" iteration if NND >0 (refer to sections 6.2.5.3 and 6.5.1.2).

$$
\begin{array}{r}
T_{i, k+1}=D D^{*} T_{i, k}+\frac{D N^{*}\left(q_{i, k}+\sum_{j=1}^{p} G_{i j, k} T_{j, k}\right)}{\sum_{j=1}^{p} G_{i j, k}} \\
D N=\text { DAMPD and } D D=1.0-D N
\end{array}
$$

8. Calculation of DRLXCC.
9. Calculation of arithmetic-node temperatures by "successive point" iteration if NNA >0 (refer to Sections 6.2.5.3 and 6.5.1.2).

10. Calculation of ARLXCC.
11. Checking of DRLXCC and ARLXCC against the relaxation criteria DRLXCA and ARLXCA, respectively, for convergence. If both ARLXCA and DRLXCA are satisfied, iterations cease, otherwise NL $\emptyset \phi \mathrm{P}$ iterations are performed.
12. Calculation of system energy balance which is stored in ENGBAL.
13. Call VARIABLES 2 and $\emptyset U T C A L, ~ p r i n t ~ E N G B A L ~ a n d ~ L \emptyset \emptyset P C T . ~$
14. Check if TIMEND $=$ TIMEN.

Figure 6.5-1. Functional Flow Chart for CINDSS

6.5.2 Subroutine: CINDSL

6.5.2.1 General Comments

Subroutine CINDSL is a steady state routine that requires the long pseudo-compute sequence (LPCS). Both diffusion- and arithmetic-node temperatures are calculated by a "successive point" iteration computational technique. Every third iteration a linear extrapolation is performed to accelerate convergence. CINDSL generally yields significantly faster solutions than CINDSS, but nonlinear problems such as those with radiation heat transfer can pose considerable convergence difficulties unless a large amount of damping (low values of DAMPA and DAMPD) is imposed.

A series of steady state solutions at various points in time can be generated by specifying control constants TIMEND and ØUTPUT. ØUTPUT is used both as the output interval and the computation interval; this requires appropriate calls in VARIABLES 1 to modify boundary conditions with time.

CINDSL can be followed by a call to one of the transient numerical solution routines which have the same LPCS requirements. Used in this manner the steady state solutions become the initial conditions for the transient analysis. Note that since CINDSL utilizes control constants TIMEND and ØUTPUT for the coupled steady state-transient problem, the user must specify the values of TIMEND and ØUTPUT in the execution block after the steady state call and prior to the transient analysis call.

Solution convergence is based upon a temperature relaxation criterion stored in control constants DRLXCA for diffusion nodes and ARLXCA for arithmetic nodes. Normally, identical values are specified for both DRLXCA and ARLXCA for lack of anything better. The damping factors DAMPD for diffusion nodes and DAMPA for arithmetic nodes are merely multipliers of "new" temperatures and the factor 1.0 - DAMPD (or 1.0 - DAMPA) is a multiplier of the "old" temperatures. Normally, these damping factors are specified to be less than 1.0, but for a linear system the convergence probably could be accelerated by using a damping factor greater than one.
6.5.2.2 Finite Difference Approximation and Computational Algorithm

The set of steady state heat balance equations,

$$
\begin{array}{r}
q_{i}+\sum_{j=1}^{p} a_{i j}\left(T_{j}-T_{i}\right)+\sum_{j=i}^{p} \sigma_{i j}\left(T_{j}^{4}-T_{i}^{4}\right)=0 \\
i=1,2, \ldots, N \\
T_{j}=\text { constant } N<j \leq p
\end{array}
$$

is solved by a re-iterative scheme called a "successive point" iterative method here. Both diffusion-node and arithmetic-node temperatures are solved in this manner. The only difference between the two algorithms is that control constant DAMPD is used with diffusion nodes and control constant DAMPA is used with arithmetic nodes.

Diffusion Nodes (if any)

$$
\begin{equation*}
T_{i, k+1}=D D^{*} T_{i, k}+D N^{*} \frac{\left(q_{i, k}+\sum_{j=1}^{i} G_{i j, k} T_{j, k+1}+\sum_{j=i+1}^{p} G_{i j, k} T_{j, k}\right)}{\sum_{j=1}^{p} G_{i j, k}} \tag{6.5-4}
\end{equation*}
$$

where, $\quad i=1,2, \ldots$, NND $; k=k t h$ iteration

$$
\begin{aligned}
q_{i}, a_{i j}, b_{i j}= & \text { may be optionally specified (refer to Tables } 6.2-1-6.2-4) \\
T_{j, k}= & \text { constant, (NND }+N N A)<j \leq p \text { (NNA is the number of arithmetic } \\
& \text { nodes and } p \text { is the total number of nodes) } \\
D N= & \text { DAMPD (diffusion-node damping factor) } \\
D D= & 1.0-D N \\
G_{i j, k}= & a_{i j, k}+\sigma b_{i j, k}\left(T_{j, \ell}^{2}+T_{i, k}^{2}\right)\left(T_{j, \ell}+T_{i, k}\right) \\
& (\ell=k \text { if } j \geq i \text { and } \ell=k+1 \text { if } j<i)
\end{aligned}
$$

Arithmetic Nodes (if any)

$$
\begin{align*}
& T_{i, k+1}=A D^{*} T_{i, k}+A N * \frac{\left(q_{i, k}+\sum_{j=1}^{p} G_{i j, k} T_{j, k+1}+\sum_{j=i+1}^{P} G_{i j, k} T_{j, k}\right)}{\sum_{j=1}^{p} G_{i j, k}} \\
& \text { where, } \quad i=(N N D+1),(N N D+2), \ldots,(N N D+N N A) \\
& q_{i}, a_{i j}, b_{i j}=\text { may be optionally specified (refer to Tables 6.2-1 - 6.2-4) } \\
& \mathrm{T}_{j, k}=\text { constant (NND }+ \text { NNA) }<j \leq p \text { (NNA is the number of arithmetic } \\
& \text { nodes and } p \text { is the total number of nodes) } \\
& \text { AN = DAMPA (arithmetic-node damping factor) } \\
& \mathrm{AD}=1.0-\mathrm{AN} \\
& G_{i j, k}=a_{i j, k}+O b_{i j, k}\left(T_{j, \ell}^{2}+T_{i, k}^{2}\right)\left(T_{j, \ell}+T_{i, k}\right) \\
& \text { (} \ell=k \text { if } j \geq i \text { and } \ell=k+1 \text { if } j<i \text {) }
\end{align*}
$$

6.5.2.3 Comments on the Computational Procedure

The important steps of the computational procedure used in the steady state subroutine CINDSL are indicated in Table 6.5-2. For a detailed procedural description, the user must examine the computer listing for CINDSL in Appendix C, but some general computational details are given in Section 6.2.5.3. A functional flow chart of CINDSL is shown in Figure 6.5-2.

The computational pattern of CINDSL is very similar to CINDSS with the differences being that CINDSL uses the long pseudo-compute sequence, whereas CINDSS uses the short pseudo-compute sequence, and that CINDSL contains the acceleration convergence feature, whereas CINDSS does not. The user is required to specify the maximum number of iterations to be performed via control constant NLDøP and the diffusion-node temperature change relaxation criteria DRLXCA and the arithmetic-node temperature change relaxation criteria ARLXCA. The iterations continue until either NLDøP is satisfied or both DRLXCA and ARLXCA are satisfied. If DRLXCA and ARLXCA are not satisfied with NLゆ ϕ, an appropriate message is printed. Acceleration of convergence is performed every third iteration if a temperature is converging over two time-steps.

6.5.2.4 Control Constants

Control constant NLDøP must be specified and control constants ARLXCA and DRLXCA must be specified if NNA > 0 and NND > 0 , respectively; otherwise "run" will terminate with an appropriate error message. Control constants DAMPA and DAMPD may be optionally specified among others. Control constant characteristics are tabulated in Table 6.2-5 and description of these control constants is presented in Section 6.2.3.2. Specification of NLDøP is dependent upon the values of ARLXCA and DRLXCA and thus the accuracy of the solution. Since the type of problem will influence accuracy, it appears that a trial and error procedure is the only practical way of determining realistic control constant values.

6.5.2.5 Error and Other Messages

If control constants ARLXCA, DRLXCA and NL $\varnothing \emptyset \mathrm{P}$ are not specified, the following error message will be printed for each,

ARLXCA	＂N \emptyset ARLXCA＂
DRLXCA	＂N \emptyset DRLXCA＂
NLø $\emptyset P$	＂$N \emptyset$ NL $\emptyset \emptyset \mathrm{P} "$

If the long pseudo－compute sequence LPCS is not specified， the error message will be，
＂CINDSL REQUIRES L \varnothing NG PSEUD \emptyset－COMPUTE SEQUENCE＂
If the dynamic storage allocation is not sufficient， （NDIM＜2＊（NNA＋NND）），the message will be，
＂＿LøCATIONS AVATLABLE＂
Note that the number printed will be negative indicating the additional storage locations required．
＂LøøPCT＝ \qquad and ENGBAL＝ \qquad ＂

If both temperature change relaxation criteria，ARLXCA and DRLXCA，are not met with NLゆøP iterations，the message will be，
＂ITERATIめN CめUNT EXCEEDED，LめøPCT＝ \qquad ＂

Checks on the control constants，the pseudo－compute sequence， and the dynamic storage allocation are made in the following order with the＂run＂terminating if a single check is not satisfied．

NLø \varnothing ，ARLXCA，DRLXCA，LPCS，and dynamic storage allocation．

1. Specification of control constants. Control constants ARLXCA (if NNA >0), DRLXCA (if NND >0) and NL $\phi \phi$ P must be specified. LPCS is required. (Refer to Table 6.2-5 for values and Section 6.2.3.2 for dexcription.)
2. Sufficiency check on dynamic storage. Requirements $=$ 2* (NND + NNA) (MND $=$ diffusion nodes and $N N A=$ arithmetic nodes).
3. Setting of TIMEN for first and succeeding iterations.

$$
\begin{aligned}
& \text { TIMEN }=\text { TTME } \phi, \text { first iteration } \\
& \text { TIMEN }=\text { TIME } \phi+\emptyset U T P U T, \text { succeeding iterations }
\end{aligned}
$$

4. Setting of iterative loop for all nodes, $\mathrm{kl}=1$, NL $\varnothing \varnothing \mathrm{P}$.
5. Setting of source locations to zero.
6. Calling of VARIABLES 1 (refer to Section 6.2.2.2 for description).
7. Calculation of diffusion-node temperatures by "block" iteration if NND > 0 (refer to Section 6.2.5.2 and 6.5.1.2).

8. Calculation of DRLXCC.
9. Calculation of arithmetic-node temperatures by "successive point" iteration if NNA >0 (refer to Sections 6.2.5.3 and 6.5.1.2).

10. Calculation of ARLXCC.
11. Checking of DRLXCC and ARLXCC against the relaxation criteria DRLXCA and ARLXCA, respectively, for convergence. If both ARLXCA and DRLXCA are satisfied, iterations cease, otherwise NLOOP iterations are performed.
12. Acceleration of convergence each third iteration, if linear extrapolation criterion is met (refer to Section 6.2.7).
13. Calculation of system energy balance which is stored in ENGBAL.
14. Call VARIABLES 2 and $\emptyset U T C A L, ~ p r i n t ~ E N G B A L ~ a n d ~ L \emptyset \emptyset P C T . ~$
15. Check if TIMEND $=$ TIMEN.

CINDSL
1

Return
Figure 6.5-2 Functional Flow Chart for CINDSL

6.5.3.1 General Comments

Subroutine CINDSM is a steady state routine specifically generated for radiation dominated problems. CINDSM requires the long pseudo-compute sequence (LPCS) and is considerably different from CINDSL. CINDSM is based on the use of pseudo linear equations which are the result of linearizing the radiation conductors. These equations are solved by using the "successive point" method with LAXFAC iterations. Updating of the properties as well as the linearized conductors occur outside of the iterative loops. Temperature convergence is based on a criterion that is continually tightened until either the NLD$\varnothing \mathrm{P}$ iterations or the system energy balance criterion stored in BALENG has been satisfied.

The acceleration of convergence by linear extrapolation as used in CINDSM is essentially the same as used in the other SINDA numerical solution routines, but in lieu of limiting the extrapolation by an allowable slope value (refer to Section 6.2.7) the maximum temperature change of the network on the last iteration is used as the allowable value.

Information available at this time indicates that each problem appears to have an optimum combination of NLøøP, DAMPD, and LAXFAC values. An NLøøP of 100 , a DAMPD of 0.5 and a LAXFAC of 10 has been successfully applied to spacecraft problems with radiation domination, but the solution time is rather long.
6.5.3.2 Finite Difference Approximation and Computational Algorithm

The set of steady state heat balance equations,

$$
\begin{aligned}
q_{i}+\sum_{j=1}^{p} a_{i j}\left(T_{j}-T_{i}\right)+\sum_{j=1}^{p} \sigma b_{i j} & \left(T_{j}^{4}-T_{i}^{4}\right)=0 \\
i & =1,2, \ldots, N \\
T_{j} & =\text { constant, } N<j \leq p
\end{aligned}
$$

is solved by a re-iterative "successive point" method after linearization. Linearization is achieved by letting $\sigma b_{i j}\left(T_{j}^{4}-T_{i}^{4}\right)=G_{I}\left(T_{j}-T_{i}\right)$ with $G_{I}=\sigma b_{i j} \cdot\left(T_{j}^{2}+T_{i}^{2}\right)\left(T_{j}+T_{i}\right)$. This yields

$$
\begin{equation*}
q_{i}+\sum_{j=1}^{p} a_{i j}\left(T_{j}-T_{i}\right)+\sum_{j=1}^{p} G_{r}\left(T_{j}-T_{i}\right)=0 \tag{6.5-6}
\end{equation*}
$$

Diffusion and Arithmetic Nodes
No distinction is made between diffusion and arithmetic nodes. As a result, the following algorithm applies to bath types of nodes,

$$
\begin{equation*}
T_{i, k}=D^{*} T_{i, k}+D N^{*} \frac{\left(q_{i, L}+\sum_{j=1}^{i} G_{i j, L} T_{j, k+1}+\sum_{j=i+1}^{p} G_{i j, L} T_{j, k}\right)}{\sum_{j=1}^{P} G_{i j, L}} \tag{6.5-7}
\end{equation*}
$$

where,

$$
i=1,2, \ldots,(\mathbb{N N D}+\mathrm{NNA}) ; p=\text { total number of nodes }
$$

$\mathrm{k}=\mathrm{kth}$ iteration
$\mathrm{L}=$ before each LAXFAC iterative loop
$\mathrm{T}_{\mathrm{j}, \mathrm{k}}=$ constant, (NND + NNA) $<\mathbf{j} \leq \mathrm{p}$
DN = DAMPD (diffusion-node damping factor; DAMPA is not used)
$D D=1.0-D A M P D$
$G_{i j, L}=a_{i j, L}+\sigma b_{i j, L}\left(T_{j, L}^{2}+T_{i, L}^{2}\right)\left(T_{j, L}+T_{i, L}\right)$
($G_{i j}, L$ is updated once before each LAXFAC iterative loop NNA $=$ number of arithmetic nodes NND $=$ number of diffusion nodes
$q_{i}, a_{i j}, b_{i j}=$ may be optionally specified (refer to Tables 6.2-1-6.2-4)
6.5.3.3 Comments on the Computational Procedure

A detailed step-by-step computational procedure as used in the steady state routine CINDSM is presented in Table 6.5-3. For a more detailed procedural description, the user must examine the computer listing in Appendix C. A functional flow chart that is compatible with the step-by-step description of Table 6.5-3 is shown in Figure 6.5-3.

CINDSM is considerably different from either CINDSS or CINDSL because of the use of a variable convergence criterion which is internally updated. Overall, from a total system basis, control constants NL $\varnothing \varnothing \mathrm{P}$ and BALENG are the ultimate criteria.

It should be particularly noted here that unlike CINDSS or CINDSL, which use both DAMPA and DAMPD, CINDSM uses only DAMPD. The reason for this is that CINDSM does not treat the nodal types as diffusion or arithmetic.

$$
6-114
$$

6.5.3.4 Control Constant

Control constants BALENG; LAXFAC AND NL $\emptyset \not \equiv \mathrm{P}$ must be specified; otherwise the "run" will terminate with an appropriate error message. Control constant DAMPD may be optionally specified among others. Control constant characteristics are tabulated in Table 6.2.5 and description of these control constants is presented in Section 6.2.3.2. Specification of BALENG, LAXFAC and NLOOP appears to be a trial and error procedure.

6.5.3.5 Error and Other Messages

If control constants BALENG, LAXFAC, and NL $\varnothing \phi$ P are not specified, the following error message will be printed for each,

BALENG	"Nø BALENG"
LAXFAC	"Nø LAXFAC"
NL \varnothing ¢ P	"Nめ NLゆøP"

If the long pseudo-compute sequence LPCS is not specified, the error message will be,
"CINDSM REQUIRES L \varnothing NG PSEUD \varnothing-C \varnothing MPUTE SEQUENCE"
If the dynamic storage allocation is not sufficient, (NDIM $<\left(3^{*}\right.$ NNA $+3^{*}$ NND + NGT)), the message will be,
"__ LOCATIONS AVAILABLE"
Note that the number printed will be negative indicating the additional storage locations required.

If either NLD $\$ \mathrm{P}$ iterations has been made or if ENGBAL \leq BALENG, the following message is printed,
"LøøPCT = ___ and ENGBAL ___
Checks on the control constants, the pseudo-compute sequence and the dynamic storage allocation are made in the following order with the "run" terminating if a single check is not satisfied,

NL $\emptyset \emptyset P$, LPCS, BALENG, LAXFAC and dynamic storage allocation.

Table 6.5.3. Basic Computational Steps for CINDSM

1. Specification of contrcl constants. Control constants BALENG, LAXFAC and NL $\phi \emptyset \mathrm{P}$ must be specified. The long pseudo-compute sequence (LPCS) is required. (Refer to Table 6.2-5 for values and Section 6.2.3.2 for description.)
2. Sufficiency check on dynamic storage. Requirement $=3 *$ (NND + NNA $)+$ NGT (NND = diffusion nodes, NNA = arithmetic nodes and NGT = total number of conductors).
3. Setting of TIMEN for the first and succeeding iterations.
```
TTMEN = TIME|, first iteration
TIMEN = TIME }\emptyset+\emptysetUTPUT, succeeding.iteration
```

4. Constants used in CINDSM

NLAX $=$ NL \varnothing P/LAXFAC (both NL $\varnothing \phi P$ and LAXFAC are specified by the user)
RELAX $=.05$ (initial value used in CINDSM as the allowable temperature change)
DELXXX $=.05 /$ NLAX (a number used in reducing RELAX for a tighter criterion)
XXXDUM $=.001$ (a value of RELAX used in CINDSM for a tighter criterion)
$=.001 / 5$ (a subsequent value of RELAX for a tighter criterion)
DAMP = DAMPD (damping factor for all nodes; DAMPA is not used)
5. Updating of variables and linearization of radiation.

Variable q_{i} and G_{k} are evaluated by calling subroutine NфNLIN.
Linearization means that the radiation exchange expressed as $\sigma b_{i j}\left(T_{j}^{4}-T_{i}^{4}\right)$.
Normally, $G_{i j}$ would be updated each iteration as done in CINDSS or CINDSL, but in CINDSM $G_{i j}$ is not updated within the D $\varnothing-L \emptyset \emptyset P$ ($\mathrm{k} 1=1$, IAXFAC) but is updated outside of the loop.
6. Iterative $D \emptyset-L \emptyset \emptyset \mathrm{P}$ ($\mathrm{kI}=1$, LAXFAC) is established.

Temperatures of all nodes are calculated by "successive point" iteration with no damping.

$$
\begin{equation*}
T_{i, k+1}=\frac{q_{i}+\sum_{j=1}^{1} G_{i j} T_{j, k+1}+\sum_{j=i+1}^{p} G_{i j} T_{j, k}}{\sum_{j=1}^{p} G_{i j}} \tag{6.5-5}
\end{equation*}
$$

where, $G_{i j}=a_{i j}+\sigma b_{i j}\left(T_{j}^{2}+T_{i}^{2}\right)\left(T_{j}+T_{i}\right)\left(q_{i}\right.$ and $G_{i j}$ are not updated during the LAXFAC iterations)

Check on temperature convergence. Temperatures have converged if,

$$
\left|T_{i, k+1}-T_{i, k}\right|_{\max } \leq \operatorname{RELAX}(=.05)
$$

If temperatures have converged, the computation goes out of the iteration loop to step (7).

Table 6.5.3. (continued)
Every third iteration, acceleration of convergence is attempted if Iinear extrapolation criterion is met (refer to Section 6.2.7).
Iteration ceases if LAXFAC iterations have been performed or if the temperatures have converged.
7. Check on NLAX iterations.

If in step (6) the number of iterations, LOOPCT \geq NLAX, the computational procedures go to step (9). However, in step (6) if the number of iterations LOOPCT < NLAX, then a set of temperature calculations is made using "successive point" method with a damping factor and no iterations.
$\boldsymbol{T}_{i, k+1}=D D^{*} T_{i, k}+D N^{*} \frac{\left(q_{i}+\sum_{j=1}^{i} G_{i j} T_{j, k+1}+\sum_{j=i+1}^{p} G_{i j} T_{j, k}\right)}{\sum_{j=1}^{p} G_{i j}}$
where, $D N=D A M P D$ (diffusion node damping factor; note DAMPA is not used)
$G_{i j}=$ constant
Allowable temperature change criterion RELAX is reduced to,

$$
\text { RELAX }=.05-(.05 / \mathrm{NLAX})
$$

and computational procedure goes to step (5).
8. Repetition of steps (5) through (7) except for temperature convergence criterion.

Temperatures have converged if,

$$
\left|T_{i, k+1}-T_{i, k}\right|_{\max } \leq \operatorname{RELAX}(=.05-.05 / \mathrm{NLAX})
$$

9. Assuming step (7) has been satisfied, LøøPCT is checked against NL $\varnothing \mathrm{P}$. If LOOPCT \geq NLOOP, the computation proceeds to step (12).
If LOOPCT $<$ NLOOP computation proceeds to step (10).
10. Reduce RELAX to .001.
11. Check on temperature convergence.

$$
\text { If } \begin{array}{r}
\left|T_{i, k+1}-T_{i, k}\right| \leq \operatorname{RELAX}(=.001) \text { go to step (12). } \\
\left|T_{i, k+1}-T_{i, k}\right|>\operatorname{RELAX}(=.001), \text { LAXFAC is reduced to } \\
\text { LAXFAC }=N L \varnothing \varnothing P-L \emptyset \emptyset P C T,
\end{array}
$$

and steps (5) through (11) are repeated.
12. Compute system energy balance and store in control constant ENGBAL.
13. If L $\emptyset \emptyset P C T \geq$ LAXFAC (original user input value), go to step (15)
14. If LOOPCT \leq LAXFAC (original user input value), ENGBAL is checked against BALENG.
If ENGBAL \leq BALENG, go to step (14)
If ENGBAL $>$ BALENG, RELAX is set to, RELAX $=.001 / 5$, and steps (5) through (14) are repeated with the new RELAX values.
15. Print ENGBAL; call VARIABLES 2; call фUTCAL; check if TIMEND $=$ TIME .

6.5-3. Functional Flow Chart for CINDSM

1. J. D. Gaski and D. R. Lewis, "Chrysler Improved Numerical Differencing Analyzer," TN-AP-66-15, April 30, 1966, Chrysler Corporation Space Division, New Orleans, Louisiana.
2. D. R. Lewis, J. D. Gaski and L. R. Thompson, "Chrysler Improved Numerical Differencing Analyzer for 3rd Generation Computers," TN-AP-67-287, October 20, 1967, Chrysler Corporation Space Division, New Orleans, Louisiana.
3. J. D. Gaski, L. C. Fink and T. Ishimoto, "Systems Improved Numerical Differencing Analyzer, Users Manual," 11027-6003-R0-00, September 1970, TRW Systems Group.
4. J. P. Smith, "SINDA User's Manual," 14690-H001-RO-00, June 1971, TRW Systems Group.
5. TRW Thermal Analyzer Program, Users Manual, Part II, Program Description, CDRC Heat Transfer Group, Program No. 3123.23-31, May 22, 1967.
6. T. Ishimoto, J. D. Gaski and L. C. Fink, "Final Report, Development of Digital Computer Program for Thermal Network Correction; Phase II Program Development, Phase III - Demonstration/Application," September 1970, 11027-6602-R0-00, TRW Systems Group.
7. W. J. Karplus, Analog Simulation, Solution of Field Problems, McGraw-Hill Book Company, 1958.
8. J. Crank and P. Nicolson, "A Practical Method for Numerical Evaluation of Solutions of Partial Differential Equations of the Heat Conduction Type," Proc. Camb. Phil Soc., vol. 43, 1947, pp. 50-54.
9. E. C. Dufort and S. P. Frankel, "Stability Conditions in the Numerical Treatment of Parabolic Differential Equations," Math. Tables and Other Aids to Computation, vol. 7, pp. 135, 1953.
10. J. Douglas, Jr., "On the Numerical Integration of $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=\frac{\partial u}{\partial t}$ by Implicit Methods," Journal of the Society of Industrial and Applied Mathematics, 3:42-65, March 1955.
11. J. Douglas, Jr., and D. W. Peaceman, "Numerical Solution of Two-Dimensional Heat Flow Problems," A.I.Ch.E. Journal, vol. 1, No. 4, 1955, pp. 505-512.
12. R. D. Richtmyer, Difference Methods for Initial-Value Problems, Interscience Publishers, Inc., 1957.
13. J. B. Diaz, R. F. Clippinger, B. Friedman, E. Isaacson and R. Richtmyer, "6. Partial Differential Equations," ch. 14, Numerical Analysis, Handbook of Automation, Computation and Control, vol. 1, Control Fundamentals, 1958.
14. G. M. Dusinberre, Heat Transfer Calculations by Finite Differences, International Textbook Company, 1961.
15. G. R. Gaumer, "The Stability of Three Finite Difference Methods of Solving for Transient Temperatures," Fifth U. S. Navy Symposium on Aeroballistics, McDonnell Aircraft Corporation, 18 October 1961.
16. R. S. Varga, "On Higher Order Stable Implicit Methods for Solving Parabolic Partial Differential Equations," Journal of Mathematics and Physics, vol. 40, no. 3, October 1961.
17. B. K. Larkin, "Some Finite Difference Methods for Problems in Transient Heat Flow," A.I.Ch.E Preprint 16, Seventh National Heat Transfer Conference, August 9 to 12,1964, Cleveland, Ohio.
18. S. R. Allada and D. Quon, "A Stable Explicit Numerical Solution of the Conduction Equation for Multi-Dimensional Non-Homogeneous Media," A.I.Ch.E. Preprint 27, Eighth National Heat Transfer Conference, August 8 to 11, 1965, Los Angeles, California.
19. R. S. Barker and H. M. Stephens, "Investigation of Numerical Methods for Determining Transient Temperatures in Flowing Fluids," A.I.A.A. Fourth Aerospace Sciences Meeting, 27 June 1965, Los Angeles, California, Douglas Paper No. 3823.
20. H. Z. Barakat and J. A. Clark, "On the Solution of the Diffusion Equations by Numerical Methods," Journal of Heat Transfer, November 1966.
21. S. Gross, "An Improved Finite-Difference Method for Heat Transfer Calculation," J. of Spacecraft, vol. 4, no. 4, pp. 538, 1967.
22. B. P. Jones, "A Study of Several Numerical Methods for Solving a Particular System of Ordinary Differential Equations," TMX-53121, NASA/MSFC.
23. G. L. Kusic and A. Lavi, "Stability of Difference Methods for Initial-Value Type Partial Differential Equations," J. of Computational Physics 3, pp. 358-378, 1969.
24. J. H. Smith, "Survey of Three-Dimensional Finite Difference Forms of Heat Equation," SC-M-70-83, Sandia Laboratories, March 1970.
25. 0. C. Zienkiewicz, The Finite Element Method in Structural and Continuum Mechanics, McGraw-Hill Publishing Company, pp. 148-169, 1967.
1. W. Visser, "A Finite Element Method for the Determination of Nonstationary Temperature Distribution and Thermal Deformations," Matrix Methods in Structural Mechanics, Proceedings of the Conference held at Wright-Patterson AFB, Ohio, October 26-28, 1965, AFFDL-TR-66-80, November 1966, pp. 925-943.
2. A. F. Emery and W. W. Carson, "Evaluation of Use of the Finite Element Method in Computation of Temperature," A.S.M.E. $69-\mathrm{WA} / \mathrm{HT}-38$, A.S.M.E. Winter Annual Meeting, November 16-20, 1969, Los Angeles, California.
3. E. C. Lemmon and H. S. Heaton, "Accuracy, Stability and Oscillation Characteristics of Finite Element Method for Solving Heat Conduction Equation," 69-WA/HT-35, A.S.M.E. Winter Annual Meeting, November 16-20, 1969, Los Angeles, California.
4. P. D. Richardson and Y. M. Shum, "Use of Finite Element Methods in Solution of Transient Heat Conduction Problems," 69-WA/HT-36, A.S.M.E. Winter Annual Meeting, November 16-20, 1969, Los Angeles, California.
5. H. S. Carslaw and J. C. Jaeger, "Conduction of Heat in Solide," Oxford University Press, 1959.
6. "Temperatures in Structures," NAVORD Report 5558,

Part 1. General discussion and one-dimension, one layer problem; analytic solutions, C. J. Thorne, 10 July 1957.

Part 2. One dimension, two- and three-layer plate problems; analytic solutions, C. J. Thorne, 28 March 1958.

Part 3. Two- and three-layer cylindrical shields; one-space variable, linear, O. H. Strand and C. J. Thorne, 20 August 1958.

Part 4. Two- and three-layer spherical shell segments, one-space variable, linear, R. E. Smithson and C. J. Thorne, 4 September 1958.

Part 5. One layer, two-space variables, linear problems, L. C. Barrett, H. J. Fletcher and C. J. Thorne, 27 May 1958.
32. S. S. Abarbanel, "On Some Problems in Radiation Heat Transfer," O.S.R. Technical Report No. 59-531, Massachusetts Institute of of Technology, April 1959.
33. P. L. Chambre', "Nonlinear Heat Transfer Problem," J. of Applied Physics, vol. 20, no. 11, pp. 1683-1688, November 1959.
34. D. C. Stickler and L. S. Han, "Three Linear Approximations to the Stefan-Boltzmann Radiation Problem for the Plane Slab," RADC-TDR-62-557, Supl. 1, Ohio State University, July 1962.
35. R. H. MacNeal, "An Asymetrical Finite Difference Network," Quarterly Applied Mathematics, vol. 11, pp. 295-310, 1953.
36. T. Ishimoto and J. T. Bevans, "Temperature Variance in Spacecraft Thermal Analysis," TRW Systems Group, A.I.A.A. Paper No. 68-62, J. of Spacecraft, vol. 5, no. 11, pp. 1372-1376, 1968.
37. B. Busse11, "Properties of a Variable Structure Computer System in the Solution of Parabolic Partial Differential Equations," Report No. 62-45, September 1962, University of California, Los Angeles, California.
38. P. F. Strong and A. G. Enslie, "The Method of Zones for the Calculation of Temperature Distribution," A.S.M.E. 65-WA/HT-47, A.S.M.E. Winter Annual Meeting, November 7-11, 1965, Chicago, Illinois.
39. A. L. Edwards, "TRUMP: A Computer Program for Transient and Steady State Temperature Distributions in Multidimensional Systems," TID-4500, UC-32, Lawrence Radiation Laboratory, University of California, Livermore, May 1, 1968.
40. A. K. Oppenheim, "Radiation Analysis by the Network Method," Trans. A.S.M.E., 78, pp. 725-735, 1956.
41. G. L. Polyak, "Radiative Transfer Between Surfaces of Arbitrary Spatial Distribution of Reflection," Translation TT-9, School of Aeronautical and Engineering Sciences, Purdue Univeristy, Lafayette, Indiana; translated from Konvek tionyi i Luchisty i Teploobmen, pp. 118-132, Akad. Nauk. SSSR, Moskva (1960).
42. E. M. Sparrow, E. R. G. Eckert and V. K. Jonsson, "An Enclosure Theory for Radiative Exchange Between Specularly and Diffusively Reflecting Surface," J. of Heat Transfer, Trans. A.S.M.E., 84, Series C, Pp. 924-300, 1962.
43. R. P. Bobco, "Gray Surface Radiation Between a Differential Area and Infinite Plane: Nonuniform Local Heat-Flux," ARS Journal, August 1962.
44. E. M. Sparrow, "Heat Radiation Between Simply-Arranged Surfaces Having Different Temperatures and Emissivities," A.I.Ch.E. Journal, March 1962.
45. J. T. Bevans and D. K. Edwards, "Radiation Exchange in an Enclosure with Directional Wall Properties," Trans. A.S.M.E., J. Heat Transfer 87C, pp. 388-396, 1965.
46. J. T. Bevans, T. Ishimoto, B. R. Loya and E. E. Luedke, "Prediction of Space Vehicle Thermal Characteristics," AFFDL-TR-65-139, TRW Systems, October 1965.
47. E. M. Sparrow and R. D. Cess, Radiation Heat Transfer, Brooks/Cole Publishing Company, 1966.
48. R. Viskanta, J. R. Schornhorst and J. S. Toor, "Analysis and Experiment of Radiant Heat Exchange Between Simply Arranged Surfaces," AFFDL-TR-67-94, Purdue University, June 1967.
49. 0. W. Clausen and T. Ishimoto, "Thermal Test of a Model Space Vehicle, Part I. Description and Thermal Analysis Model, AFFDL-TR-67-42, Part I, TRW Systems Group, June 1967.
50. R. G. Hering and R. P. Bobco, "Local Radiant Flux and Temperature in Semigray Nondiffuse Enclosures," A.I.A.A. No. 68-60, A.I.A.A. 6th Aerospace Sciences Meeting, New York, New York, January 22-24, 1968.
51. T. Ishimoto and J. T. Bevans, "Method of Evaluating F Variance for Thermal Variance Analysis," A.I.A.A. Journal, vol. 6, no. 6, p. 1178-1180, June 1968.
52. J. R. Howell and R. Siegel, Thermal Radiation Heat Transfer, Volume II, Radiation Exchange Between Surfaces and in Enclosures, NASA SP-164, 169.
53. R. P. Bobco, "Radiation Heat Transfer in Semigray Enclosures with Specularly and Diffusely Reflecting Surfaces, J. Heat Transfer, Trans. A.S.H.E., Ser. C, vol. 86, no. 1, pp. 123-130, February 1964.
54. A. F. Sarofim and H. C. Hottel, "Radiative Exchange Among Non-Lambert Surfaces," J. Heat Transfer, Trans, A.S.M.E., Ser. C, vol. 88, no. 1, February 1966.
55. T. Ishimoto and J. T. Bevans, "Method of Evaluating Script F for Radiant Exchange Within an Enclosure," A.I.A.A. Journal, vol. 1, no. 6, pp. 1428-1429, June 1963.
56. K. A. Toups, "A General Computer Program for the Determination of Radiant Interchange Configurations and Form Factors - CONFAC II," North American Aviation, Inc., Space and Information Systems Division, S.I.D. Report 65-1043-2, October 1965
57. R. P. Bobco, "Analytical Determination of Radiation Interchange Factors," SSD 90190R, Hughes Aircraft Company, June 1969.
58. R. J. McGrath and F. L. Egendorf, "A Computer Program for Determination of Radiation Interchange Factors - RADFAC, User's Manual," SSD 90191R, Hughes Aircraft Company, June 1969.
59. "Measurement of Radiation Interchange Factors, Final Report and Facility Design Description," Thermophysics Department Staff, Project Manager, R. P. Bobco, SSD 00577R, NASA Contract NAS 9-10271, Nov. 1970.
Page
CNFRWD A-2
CNDRDL A-13
CNEAST A-24
CNEXPN A-33
CNDUFR A-44
CNQUIK A-5
SUBROUTINE CNFRWD ENTRY POINT 003522

STORAGE USED (BLOCK. NAME, LENGTH)$\begin{array}{lll}0001 & \text { *CODE } & 003535 \\ 0000 & \text { *COINST+TEMP } & 000072 \\ 0002 & \text { \#SIMPLE VAR } & 000050\end{array}$0002 FARRAYS 0000000005 \#BLANK ${ }^{0} 000000$
0006 TITLE 00000 $\begin{array}{lll}0010 & \text { CAP } & 00001 \\ 0011 & \text { SOURCE } & 00000\end{array}$ 능 -142
80
80
0.8
00 000003 $\begin{array}{ll}0001 & * \operatorname{CODE} \\ 0000 & \text { COHST }\end{array}$
\qquad EXTERNAL REFERENCES (BLOCK, NAMEI
 IXCON
ISPACE
IMCNS $\begin{array}{ll}00022 & \text { VARBLI } \\ 0023 & \text { D1OIWM } \\ 0024 & \text { PLYAKM } \\ 0025 & \text { D2DIWM } \\ 0026 & \text { VARULZ } \\ 0027 & \text { OUTCAL } \\ 0030 & \text { EXIT } \\ 0031 & \text { NERR2S } \\ 0032 & \text { NWUC } \\ 0033 & \text { NIO2\$ } \\ 0034 & \text { NER10\$ }\end{array}$

 8800080808080808080808080808080808

음unno

 용ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ

,

IFT THE ARITHMETIC TEMPERATURES INTO THE EXTRA LOCATIONS
INNA.LE. 0 I 60 TO 45 $401=$ L1,NNC
I) $=0.0$
LLE) $=$ T(II
CON(12) $=0$
CAL
$\mathrm{J}_{1}=$
TCGM $=0.0$
CKM $=1, E+8$ SUM AND 6 SUM
-
u

[^0]

[^1]

 FORMAT (2OH TIME STEP
FORMAT IB, 2 GH LOCATIONS AVATLABL
FORMAT (19H NO OUTPUT INTERVAL)
ENU.
O \#DIAGNOSTIC* MESSAGE(S)
8) 1

END OF UNIVAC 1108 FORTRAN V COMPILATION.
NFRWD CYMBOLIC
NFRWD CODE RELOCATABLE

CNFRDL，CNFRDL

 STORAGE USED（BLOCK，NAME，LENGTH） GE USED（BLOCK，NAME，LENGTH）0001 CODE 003476
 EXTERNAL REFERENCES（BLOCK，NAME）

[^2]
응ㅇㅇㅇㅇㅇㅇ으으으응

8 ．

2
8
8
8
0
0
0
2
0
0
0
0
0
0
0
아는
突
$\stackrel{\rightharpoonup}{8}$

世世ールールールロニと

응888ㅇ8888응

 8888888888088888888805808

[^3]

CNFRDL,CNFROL

絧?

CNFRDL, CNFRDL	
c	include vargolist
	CHECK FOR RADIATION CONDUCTOR
	IF (FLO(2,1,NSO1(J1) , EQ, 0) GO TO 3000
	NTYPE $=$ FLO(0,5.NSO2(J2))
	LA $=$ FLD(5,17.NSQ2(J2)
	LK = FLD(22.14,NSO2 (J2))
	60TO12005.2010.2015.2020.2025.2030.2035.204
	TM $=2060 \cdot 2065)$ NTYPE
2005	
	G0 T0 2999
2010	TM $=T(1)$
	G0 TO 2007
2015 CA	CALL DIDIwM(T) 1 , A(LA), XK ILK),G1)
2017	$\mathrm{J} 2=\mathrm{J} 2+1$
	$L A=F L D(5,17, N S Q 2(J 2))$
	LK $=$ FLD(22,14,NSQ2 (J2)
	CALL D101wM(T)
	G0 T0 2998
2020	G1 $=\times \mathrm{K}(\mathrm{LK}) * \times \mathrm{K}(\mathrm{LA})$
	60 To 2017
2025	CALL D101wM(T)(I).A(LA), XK(LK), G1)
	$\mathrm{J} 2^{2}=\mathrm{J} 2+1$
	LA $=$ FLD(5,17.15S02(J2))
	LK $=$ FLD(22.14.NSQ2(J2))
	G2 $=\mathrm{XK}(\mathrm{LK}) * \mathbf{* K}(\mathrm{LA})$
	G0 T0 2998
2030	TM $=1 \mathrm{~T}(1)+\mathrm{T}(\mathrm{LTA}) 1 / 2.0$
	G0 TO 2999
2035	TM $=$ T(I)
	GO TO 2032
$\begin{array}{r} 2040 \\ 2042 \end{array}$	CALL PLYAWM(A)
	J2 $=12+1$
	$L A=F L D(5,17 \cdot N 502(J 2))$
	$L_{K}=$ FLD $\left.22.14, \mathrm{NSQ2}(12)\right)$
	Go To 2998
2045	$61=x k(L K) * X K(L A)$
	GO TO 2042
2050	
	$\mathrm{J2}=\mathrm{J} 2+1$ (AILA)
	$L A=F L D(5,17, N 5 Q 2(J 2))$
	LK $=$ FLD(22.14.NSQ2(J2))
	G2 $=x_{k}(L K) * x k(L A)$
	60 ro 2998 a
2055	TM = (T(I)+T(LTA) 12.0
	CALL D201wM(TM, CON(14).,A(LA) OXK(LK),G(L.6))
	GO TO 2999
2060	TM = T(LTA)
	go T0 2007
2065	TM $=$ T(LTA)
	60 ro 2032
2998	$G(L G)=1 . /(1 . / G 1+1 . / G 2)$
$\begin{aligned} & 2999 \\ & 3000 \end{aligned}$	$\mathrm{J} 2=\mathrm{J} 2+1$
	conithue
	Elld
	IF (FLD(3.1,NSO1(J)), EQ.0) GO TO 75
	$T 1=T(1)+460.0$

CNFRDL, CNFRDL	
$\begin{aligned} & 155 \\ & 160 \end{aligned}$	GV = G(LG)
	SUMC $=$ SUMC + GV
	SUMCV $=$ SUMCV + GV*T(LTA)
c	CHECK FOR LAST CONDUCTOR
	IF (ISG1 (JJ1).GT.0) G0 T0 135
c	obtain the calculated temperature difference
	$\left.\mathrm{T}_{1}=\operatorname{ABS}(T)(L)-T 2\right)$
c	Store the new temperature
	$T(L)=T 2$
C 165	save the maximim arithmetic relaxation change
	IF(TGGM.GE.T1) GO TO 165
	TCGM $=11$
	$\operatorname{KON(37)}=\mathrm{L}$
	continue
c	SEE if relaxation criteria was met
	IF (TCGM.LE.CON(19)) GO TO 175
170	continue
c	Store the maximum arithmetic relaxation change
175	CON(30) $=$ TCGM
C	compute the arithmftic temperature change
	TCGM $=0.0$
	Do $180 \mathrm{I}=$ Llitinc
	LE = ILTI
	$\mathrm{T}_{1}=\mathrm{ABS}(\mathrm{T}(\mathrm{I})-\mathrm{XILE})$)
	IF(TL.LT.TCGM) GO TO 180
	TCGM $=$ T1
	$\operatorname{KON}(38)=1$
	continue
c^{180}	SEE if atmpla was satisfied
	IF (TCGM.GT.CON(11)) GO TO 125
	CON(16) $=$ TCGM
185	KON(12) $=0$
	Call varble
c	CHECK THE BACKUP SWITCH
	IF(KON(12), NE.0) 60 T0 105
c	advance time
	$\operatorname{CON}(13)=\operatorname{CON(1)}$
	TSUM = TSUM + TSTEP
	TSTEP $=$ DELTA*0.95
c	CHECK FOR TIME TO PRINT
	IF(TSUM.GE.CON(18)) GO TO 190
c	Check for print every iteration
	IF(KON(7), EQ.0) GO TO 10
	CaLL outcal
	GO TO 10
c	trit to even the outrut intervals
190	TPRINT $=$ TPRINT+TSUM
195	call outcal
c	is time greater than eno compute time
	IF(CON(1)*1.000001.LT.CON(3)) GO 705
	NDIM $=$ NLA
	RETURN
995	WHITE (6,885)
	GO T0 1000.
990	WHITE (6,886)
	G0 TO 1000
997	WHITE (6,887)
	GO TO 1000

[^4]

[^5]

$\overrightarrow{7}$

范
~
N

[^6] I
-

CNFAST, CNFAST

 808ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ

CNFAST，CNFAST

3065 TM $=$ T（LTA）

$T(L)=T 1$
CONTINUE．
COLRLX．LLE CON（191）GO TO 155
COHTANE
ONI Con VAR $=$
CON（L VARBLL
$\operatorname{CON(13)}=\operatorname{CON}$
$\operatorname{CON}(13)=\operatorname{CON}(1)$
TSUM $=$ TSUM TSTEP
TSTEP $=$ CKM
IF（TSUM．LT．CON（18）
TPRINT＝TPRINT＋TSUM
IF（CON（1）＊1，00C001．LT．CON（3）） 60 TO 5
NTH $=1 E$
NDIM $=$ NLA

GO TO 1000
hRITE $(6,886)$
OO TO 1000 （6，887）NDIM
u

 F Uilivac 1108 furtran v compilation． 10 OF CN

$$
\begin{aligned}
& \text { CIWEXPHJCNEXPN FOROF } \\
& \text { UNIVAC } 110 B \text { FORTRAN V ATHENA VERSION } 131 K-100 \text { CREATEO ON } 20 \text { AUG } 70 \\
& \text { THIS COMPILATION WAS DONE ON O9 JUN } 70 \text { AT } 14: 00: 19
\end{aligned}
$$

EXTERNAL REFERENCES (bLOCK, NAME)

$$
\begin{array}{lr}
\text { CODE } & 003551 \\
\text { COOIST+TEMP } & 000072 \\
\text { SINRLE VAR } & 000047 \\
\text { ARIIAYS } & 000000 \\
\text { BLANK } & 000000 \\
\text { ITLLE } & 000001 \\
\text { TEMP } & 000001
\end{array}
$$

0002	R	000015	CKM
0002	R	000036	DELTA
0002	R	000031	G2
0002	1	000043	JJ
0002	1	000044	L
0002	1	000025	LG
0002	1	000005	LI
0002	1	$00 n 003$	NLA
0013	1	000000	NSGA
0002	R	000000	PASS
0002	R	000046	SUMCV
0002	R	000006 TSTEP	

 $-$

U. armore ail?
EID
IF $C O H(4) \cdot L E \cdot 0.0) \operatorname{CON}(4)=1.0$
$I F(K C N(5) \cdot L E \cdot 0) \operatorname{KON}(5)=1$
$I F(C O N(6) \cdot L E \cdot 0 \cdot) \operatorname{CON}(6)=1 . E+8$

IF(CON(9).LE.O.) CON(9) $=1.0$

$I F(C O N(C U N(19) . L E, 0,1 \operatorname{CON}(19)=1 . E+8$
$I F(K C N(31) . N E . O)$ GO TO 995
PASS $=-1.0$
$N H C=: I N D+N N A$
IE $=$ NTH
NLA $=$ NDIM
NTH $=$ NTH+NNC

 -


```
    N-
```


[^7]| mim |
| :---: |

[^8]解？
解：
mim
鳃

[^9]CNEXPN.CNEXPN
$G(L G)=1,1(1,1 G 1+1, / G 2)$
$1 F(F L D(3,1, N 501(J J 1), E Q .1) \quad G(L G)=01 * G 2$
$1 J 2=1 J 2+1$
CONTINUE
END
IF(FLD(3,1,NSO1(JJ1)).EQ.0) GO TO 140 F(FLD $(3)+460.0$
登品 3998
R

EXTERNAL REFERENCES (BLOCK, NAME)

 α

[^10]

르를
酷?

[^11]

0.
08
0

90 COMPUT WEW TEMPERATURES USING CALCULATED SOURCE IERMS

$x(L$ LE $)=T 1$
T(I) $=$ Ti
100 CONTINUE

mim
Wi!
in

 CNQUIK
OI FOR：CNQUIK
UNIVAC 11O8 FORTRAN ATHENA VERSION 131K－10D CREATED ON 20 AUG 70
THIS COIAPILATION WAS DONE ON 09 JUN 70 AT $23: 15: 06$ this conpilation was done on 09 JUn 70 at 23：15：06
SURROUTINE CNQUIK ENTRY POINT 003643
SURROUTINE CNQUIK
STORAGE USED（BLO
$\begin{array}{lll}\text { E USED } & \text {（BLOCK，NAME } & \text { LENGTH）} \\ 0001 & * C O D E & 003660 \\ 0000 & * C O N S T+\text { TEMP } & 000100\end{array}$ $\begin{array}{lll}0000 & \text { \＃COINST＋TEMP } & 000100 \\ 0002 & \text { \＃SIMPLE VAR } & 000054\end{array}$ $\begin{array}{ll}0004 \text {＊ARRAYS } & 000000 \\ 0005 \text { BLANK } & 000000\end{array}$ TITLE $\quad 000001$ TEMP 000001
$43-1$
808
080
080
4
4
20
303
000001
100000
1000000
000001
000010
EXTERNAL REFERENCES（BLOCK，NAME）

$\begin{array}{ll}0022 & \text { VARELL } \\ 0023 & \text { DLUIWM } \\ 0024 & \text { PLYAWM } \\ 0025 & \text { DEOIWM } \\ 0026 & \text { VARRL2 } \\ 0027 & \text { OUTCAL } \\ 0030 & \text { EXIT } \\ 0031 & \text { NERR2S } \\ 0032 & \text { EXP } \\ 0033 & \text { NWDUL } \\ 0034 & \text { NIOL\＄} \\ 0035 & \text { NERIO\＄}\end{array}$

A－ 55

 α
 ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅁㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ

 と

点x

 $\propto \propto$

CNOUIK

> IF(CON(4).LT.1.0) CON(4) $=1.0$
> $\begin{aligned} & I F(K O N(5) \cdot L E, 0) \operatorname{KON}(5)=1 \\ & I F(C O N(6), L E, 0 .) \operatorname{CON}(6)=1 . E+8\end{aligned}$
> $\begin{aligned} & \text { IF }(\operatorname{CON}(6), L E .0 .) \operatorname{CON}(6)=1 . E+8 \\ & \text { IF }(\operatorname{CON}(8) . L E .0 .) \operatorname{COH}(8)=1 . E+8 \\ & \text { IF }(\operatorname{CON}(9) . L E, 0 .) \operatorname{CON}(9)=1.0 .\end{aligned}$
> $F(\operatorname{COH}(11) . L E, 0.) \operatorname{CON}(11)=1 . E+8$
> $\begin{aligned} & \text { IF }(C O N(18) . L E \cdot 1 \cdot) \operatorname{COTO} 999 \\ & \text { IF }(C O N(19) . L E .0 ;) \operatorname{CON(19)}=1 . E+8\end{aligned}$
> PASS $=-1.0$
> $\begin{aligned} & \text { NNC }=\text { NND } \\ & I E \text { FNNA } \\ & \text { INTH }\end{aligned}$
> $\begin{aligned} & \text { EH }=\text { NTH+NNC } \\ & \text { NLA }=\text { NDIM }\end{aligned}$
> TH $=$ NTH H IHNC + HND
> CHIM = FNOIM-NNC-NND FOR EXTRA LOCATIONS FOR GALCULATED HODES
> $=$ NLA-NNS-NND 998
> $\begin{aligned} & 1=\text { NTID }+1 \\ & \text { TSTEP }=\text { CON(18) }\end{aligned}$
> $\begin{aligned} & \text { STEPO }=0.0 \\ & \text { PRINT }=\operatorname{CON}(13)\end{aligned}$
> $\begin{aligned} & \text { TPRINT } \\ & \text { INITALIZE TIME SUM HETWEEN OUTPUT INTERVALS } \\ & \text { TSUM }=0.0\end{aligned}$
$\begin{aligned} & \text { CONT FXCEEN IT } \\ & \text { CON } \\ & \text { CON } \\ & \text { (3)-CON(13) }\end{aligned}$
$\begin{aligned} & \text { S THE TINF STER LARGER TIIAN ALLOWED } \\ & \text { F ISTEF.LE.CON(B) GO TO } 15\end{aligned}$
TSTEP $=$ COHIE:

[^12]CNOUIK

CNOUIK

TO 60
$=$ G (LG)
AIN TME
(FLD(3,1,NSQ1(J1)),EO.0) GO TO $5 S$
$=T(I)+460,0$
$2=T(L T A)+460,0$
$G V=G(L G) *(T 1 * T 1+T 2 * T ?) *(T 1+T 2)$

要勇要意？
든․
㪯

cnouik

TSTEP $=$ CKM $M 0.7$
$=1 . N H O$
DO $1121=1$, NHO
2int
$=T(1)$

$$
\begin{aligned}
& \operatorname{KON}(20)=1 \\
& D O 165 L=1.1 . N N C \\
& \operatorname{SUHC}=0.0 \\
& \text { SUMCV }=0.0
\end{aligned}
$$

IF（I．GT．I）GO TO 6000
IICLUDE VRQZOLIST
IF（FLD $4,1, N S Q I(J J 1+1))$

部
W W Win
是

crabuik

	crinuik
	$L A=F L D(5.17 \cdot N S Q 2(J J 2))$
	LK $=$ FLD(22,14.NSQ2(JJ2)
	G2 $2=\mathrm{XK}(\mathrm{LK}) \times \mathrm{XK}(\mathrm{L} A)$
	60 to 3998
3055	$T M=(T(L)+T(L T A)) / 2.0$
	CALL D2DIWM(TM,CON(14),A(LA), XK(LK),G(LG)) GG TO 3999
3060	TM $=$ T(LTA)
	G0 T0 3007
3065	TM $=T(L T A)$
	G0 to 3032
3998	$G(1.6)=1 . /(1 . / G 1+1 . / 62)$
	IF(FLD(3.1,NSG1(JJ1) .EQ.1) G(LG) $=$ G1*G2
3999	$\mathrm{JJ2}=\mathrm{JJ2+1}$
4000	continue
	Elio
	If (FLU(3,1,NSQ1(JJ1)),EQ,0) GO TO 140
	$T_{i}=T(L)+460.0$
	$T 2=T(L T A)+460.0$
	$G V=G(L G) *(T 2 * T 1+T 2 * T 2) *(T 1+T 2)$
	GO TO 145
140	$G V=G(L G)$
145	sunc = Sumetov
	SUNCV = SUMCV +GV*T(LTA)
c	CHECK FOR LASt CONDUCTOR
	IF (NSU1(JJ1).GT.0) Go To 135
$c \quad$	OBTAIN THE CALCULATED TEUPERATURE DIFFERENCE
	$T_{1}=$ ABS (TCL)-T2)
c	StORE THE NEW TEMPERATURE
	$T(L)=T 2$
C	save the maximum arithmetic relaxation change
	BF(TCGM. GE.T1) GO TO 165 TCGM $=11$
	$\operatorname{KON}(37)=2$
165	continue
$c \quad$	SEE IF RELAXATION CRITERIA WAS MET
	IF(TCGM.LE.CON(19)) GO TO 175
170	CONTINUE MAETHM
	Store the maximum arithmetic relaxation change
175	CON(30) TCME TCGM
c	COMPUTE THE ARITHMETIC TEMPERATURE CHANGE
	TCGM $=0.0$
	Do 180 I = L1,:INC
	LE = It +I
	T1 $=$ ARS(TII)-X(LE) $)$
	IF(TI.LY.TCGM) Go To 180
	TCGM $=$ T1
	kors(38) $=1$
180	continue
c	SEE If ATMPCA VIAS SATISFIED
	IF (TCGM.GT.CON(11) ${ }^{\text {g }}$ GO TO 125
	$\operatorname{CON}(16)=$ TCGM
185	$\operatorname{KON}(12)=0$
	CALL VARBL?
c	Check the hackup Switch
	IF(KON(12).NE.0) GO TO 105
c	ADVANCE TIVE
	$\operatorname{con}(13)=\operatorname{Con}(1)$
	TSIJM $=$ TSUN+TSTEP

B. COMPUTER LISTINGS OF SINDA IMPLICIT SOLUTION ROUTINES

Page

CNBACK		B-2
CNFWBK		B-14
CNVARB	E-26

EXTERNAL REFERENCES (BLOCK, NAME)

STORAGE ASSIGNMENT FOR VARIABLES (BLOCK, TYPE, RELATIVE LOCATION, NAME)

$$
\begin{aligned}
& \text { - © } \\
& \text { 엉ㅎ }
\end{aligned}
$$

> CNBACK, CNBACK
> $\alpha \propto \alpha$

$$
B-4
$$

CNBACK, CNBACK					
$\begin{aligned} 60 \mathrm{RC} & =1 \cdot E+8 \\ J J & =0 \end{aligned}$					
c Calculate first pass temperatures and csgmin Do $105 \mathrm{I}=1$, NNT include varcilist					
C c	FOLO DELTAT XNTO THE CAPACITANCES ${ }^{\circ}$				
	NTYPE $=$ FLD (0,5,NSQ2(J2))	*NEW			
	$L_{\text {A }}=F L D\left(5,17,1502\left({ }^{\text {a }}\right.\right.$) $)$	*NEW			
	LK $=$ FLD (22,14, NSQ2 (J2)	*NEW			
	GO TO (1005,1010,1015,1020,1025,1030,1035:1040:1045), NTYPE	**-3			
1005 CALL DID1WM(T(I),A(LA),XK(LK),C(1))					
$\begin{aligned} & 1010 \\ & 1012 \end{aligned}$	CALL DIDIWM(T) 1 , A(LA), XK(LK), C1)				
	$\mathrm{J} 2_{2}=\mathrm{j} 2+1$				
		*NEW			
	$L K=F L D(22.14, N S Q 2(J 2))$	*NEW			
	CALL DIDIWM(T) (I),A(LA), XK(LK),C2)	**-2			
	GO TO 1998				
$1015 \mathrm{CL}=\mathrm{XK}(\mathrm{LK}) * \times \mathrm{KK}(\mathrm{LA})$					
1020	CALL DIDIWM(T(1),A(LA), XK(LK), CI)				
	$\mathrm{J} 2=\mathrm{J} 2+1$				
	LA = FLO(5,17, NSO2(J2))	*NEW			
	LK $=$ FLD(22.14,NSQ2(42)	*NEW			
	$\mathrm{c} 2=\mathrm{XK}(\mathrm{LK}) * \mathrm{XK}(\mathrm{LA})$	**-2			
	60 T0 1998				
GO TO 1999 1025 CALL PLYAWM(A(LA),T(I),A(LA+1),XK(LK),C(I)					
$\begin{aligned} & 1030 \\ & 1032 \end{aligned}$	$\mathrm{J} 2=\mathrm{J} 2+1$				
	$L A=F L D(5017.1502(J 2))$	*NEW			
	LK $=$ FLD(22.14,NSQ2(J2))	*NEW			
	CALL PLYAWM(A(LA), T(I), A(LA+1),XK(LK), C®)	***2			
	$1035 \mathrm{CL}=\mathrm{XK}(\mathrm{LK}) * \times \mathrm{KK}(\mathrm{LA})$				
	$L^{\prime}=\mathrm{FLO}(5,17, \mathrm{NSN} 2(\mathrm{~J} 2))$	*NEW			
	LK $=$ FLD(22,14.NSQ2(J2))	- NEW			
	C2 $=\mathrm{XK}(\mathrm{LK}) * \mathrm{XK}(\mathrm{L}$ A)	**-2			
1045 CALL D201WM(T(I),CON(14),A(LA),XK(LK),C(I))					
$1996 \mathrm{C}(1)=\mathrm{C} 1+\mathrm{C} 2$					
$1999 \mathrm{~J} 2=\mathrm{J} 2+1$					
2000 continue					
R1 $=0.0$$\mathrm{~S}=0.0$					
$\mathrm{G2}=0.0$ include vargilist					
IF (FLD(4.1,NSO1(U1+1)), EQ.0) GO TO 5000					
	NTYPE $=$ FLD (0,50NSR2(J2)	*NEW			
		*NEW			
	$L K=F L O(22,14 . N S Q 2(J 2))$	*NEW			
	60 T0 (4005,4010,4015,4020,4025,4030,4035,4040,4030). NTYPE	**-3			
400b $0(1)=x K(L K)+0(1)$					

\footnotetext{
CNEACK, CNBACK

[^13]

麗？
\square

ค⿵⺆⿻二丨冂大

CNDACK，CNBACK

00643	194＊	c	LIMIt the extrapolation
00645	195＊		$\mathrm{IF}(\mathrm{X}$ LE3）．LT．$-10.1 \times(\mathrm{LE3})=-10$ ．
00647	196＊		LE2 $=152+1$
00650	197＊		$T(1)=\mathrm{x}($ LE3 $) * \times($ LE2 $)+(1,0-x$（LE3）$) * T(1)$
00651	198＊	175	continue
00653	199＊	180	IF（NHA．LE．O）GO TO 220
00655	200＊		$J_{1}=J_{1}$
00656	201＊		JJ2 $=\mathrm{J} 2$
00657	202＊		DO $230 \mathrm{I}=1$ ，NHT
OUfi2 2	203＊	230	$T(1)=T(1)-460.0$
00664	204＊		DO $2151=$ N／donitc
00667	205＊		$\mathrm{L}=1$
00670	206＊		GSU：A $=0.0$
00671	207＊		IF（K1．ST．2） 60 TO 6000
00673	208＊		IHCLUUE VRO2．LIST
C0674	209＊		IF（FLD（4，01．NSQ1（JJ1＋1）），E0．0） 60 T0 6000
00676	208＊		NTYPE $=$ FLD（0，50NSQ2（JJ2）
00677	208＊		
00700.	208＊		LK $=$ FLD（22，14，NSO2（JJ2））
00701	208＊		GO TO $15005,5010,5015 \cdot 5020,5025,5030,5035 \cdot 5040,50301$ ，NTYPE
00702	208＊	5005	$Q(L)=X K(L K)+Q(L)$
00703	208＊		60 T0 5999
00704	208＊	5010	$Q_{1}=0.0$
00705	208＊	5012	
00706	208＊		60 T0 5998
00707	208＊	5015	$01=0.0$
00710	208＊	5017	CALL DIDIWM（COH（14），A（L．A），XK（LK），Q2）
00711	208＊		G0 TO 5998
00712	208＊	5020	CALL DIO1WM（CON（14），A（LA），XK（LK）：01）
00713	208＊	5022	$\mathrm{JJ2}=\mathrm{JJ2+1}$
00714	208＊		LA＝FLD（5．17．NSQ2（JJ2）
00715	208＊		LK $=$ FLO（22．14．NSQ2（JJ2））
00716	$208 *$		60 to 5017
00717	208	5025	Q1 $=$ XK（LK）${ }^{\text {PK }}$（LA）
00720	208＊		G0 To 5022
00721	208＊	5030	CALL DIDIWM $(C O N(14), A(L A), X K(L K), 01)$
00722	208＊		$\mathrm{JJ2}=\mathrm{JJ2}+1$
00723	208＊		LA $=$ FLO（5，17．NSQ2（JJ2）
00724	208＊		LK $=$ FLD（22．14．NSQ2（ ${ }^{\text {dJ2 }}$ ）$)$
00725	208＊		$02=\mathrm{XK}(\mathrm{LK}) * \mathrm{Xk}(\mathrm{L} A)$
00726	208＊		G0 T0 5998
00727	208＊	5035	CALL DIDIW：（COH： 14 ），A（L．A），XK（LK），©1）
00730	208＊	5037	$\mathrm{J} 22=\mathrm{J} 2+1$
00731	208＊		$L A=F L D(5,17,11502(J J 2)$
00752	208＊		LK $=$ FLD（22．14，NSQ2（JJ2）
00733	208＊		G0 to 5012
00734	208＊	5040	Q1 $=$ XK（LK）＊XK（LA）
00735	203＊		Go to 5037
00736	208＊	5998	$Q(L)=Q 1+02+0(L)$
00737	208＊	5999	$\mathrm{JJ2}=\mathrm{J} 2+1$
00740	208＊	6000	CONTINUE
00741	208＊		EnO
00742	209＊		osum $=$ oli
00743	210＊	185	$J J 1=J J 1+1$
00744	211＊＊		$L G=F L D(5.16 . n 1501(J J 1))$
00745	212＊		LTA $=$ FLD（22．14．NSO1（J．S）！
00746	213＊		IF（K1．GT．2）Go To 4000
00750	214＊＊		IWCLUHE VKG2，LIST
00751	214＊		IF（FLU（2．1．NSQ1（JJl），EQ．0）GO TO 4000
00753	214＊		NTYPE $=$ FL0（0，5，NSQ2（JJ2）

ェx $x \propto$
Nw NN世

[^14]

*

NNMNNNNNNNN゙N 응ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ

EXTERNAL REFERENCES (BLOCK NAME)

$$
\begin{array}{ll}
0022 & \text { VARBLI } \\
0023 & \text { OUTCAL } \\
0024 & \text { OIDIWM } \\
0025 & \text { PLYAWM } \\
0026 & \text { O2U1WM } \\
0027 & \text { TOPLIN } \\
0030 & \text { VARELE } \\
0031 & \text { EXIT } \\
0032 & \text { NERR25 } \\
0033 & \text { NHUUS } \\
0034 & \text { NIORS } \\
0035 & \text { NER10S }
\end{array}
$$

 NNN NNNNNNO
 $\begin{array}{llll}0010 & R & 000000 & A \\ 0010 & R & 000000 & C \\ 0002 & R & 000014 & \text { ON }\end{array}$ $\begin{array}{llll}0010 & R & 000000 & C \\ 0002 & R & 000014 & \text { DN } \\ 0002 & R & 000042 & G 2\end{array}$ 0002 I 000006 IE3 $\begin{array}{ll}0022 & 1 \mathrm{0} 0022 \mathrm{Ki} \\ 017 & 1000000 \mathrm{KON}\end{array}$ 21
4
0
0
0
0
0
0 -40 N
4
$=0$
$=1$ $3-0$
302
308

000 | 2 |
| :--- |
| 8 |

$$
\begin{aligned}
& 60 \text { T0 } 999 \\
& \begin{array}{l}
G 0 \text { TO } 999 \\
\operatorname{con}(6)=1 \cdot E+8 \\
\operatorname{con}(8)=1 . E+8
\end{array} \\
& \text { 今 } \\
& \text { 앙 }
\end{aligned}
$$

$$
\begin{aligned}
& 0.160 \\
& \stackrel{-}{\circ}
\end{aligned}
$$

					$\sum_{4}^{\frac{3}{4}} \sum_{k}^{3}=\frac{1}{2}$

[^15] 104999
0.0
0101 WM
04998
0.0

W?
慮:

20
\pm

$=01+$
JNOE
INUE
0.0 .8
0
90
 GOTO 2060.2065). NTYPE

ro 2909
$=T 11)$
U101WM(T(1), A(LA),XK(LK),G1)
$=$ FLD (5, 17,NSQ2 (J2))
DID1WM(T(LTA), A(LA) © XK(LK), (62)

$\stackrel{\rightharpoonup}{0}$

Xh $(L K) * X K(L M)$
ini
 $80=\frac{3}{5}$

N
Nे
Nे

 ถละ

\%	

	CNVARE, CNVARB
	LA = FLD(5.17.NSG2(J2))
	LK = FLD (22.14, NSQ2 (J21)
	62 $=\mathrm{XK}(\mathrm{LLK}) * \mathrm{XK}$ (LA)
	GO T0 2998
2030	TM $=$ (Til)+T(LTA) $1 / 2.0$
2032	CALL PLYAWM(A(LA), TM, A(LAA+1) ©XK(LKK),G(L.G) 60 т0 2.999
2035	$T M=T(1)$
	60 T0 2032
2040	
2042	$\mathrm{J} 2=\mathrm{J} 2+1$
	$L A=F L D(5,17 \cdot 14 S Q 2152))$
	$L K=F L D(22.14 . N S Q 2(J 2))$
	60 T0 2998
2045	
	60 TO 2042
2050	CALL PLYAWM(A) L a), T(1), A(LA+1)0XK(LK),G1)
	$L A=F L D(5,17 \cdot 11502(52))$
	LK = FLD(22,14,NSG2(J2))
	$62=\mathrm{XK}(\mathrm{LK}) * \mathrm{XK}(\mathrm{LA})$
	60 T0 2998
2055	$T M=(T(1)+T(L T A)) / 2.0$
2060	
2060	GO TO 2007
2065	TM $=$ T(LTA)
	GO TO 2032
2998	$G(L G)=1 . /(1 . / G 1+1.162)$
2999	$\mathrm{J}_{2}=\mathrm{J} 2+1$
3000	continue
	$G V=G(L G)$
	$T 1=x(1 E 1+1)+460.0$
	$\mathrm{T}_{2}=\times(1 E 1+L T A)+460.0$
c	CHECK FOR RADIATION CONDUCTOR
	$G 2=G 2+G V *(T 1 * T 1+T 2 * T 2) *(T 1+T 2)$
	$x(L E 2)=x(L E 2)+G V *(T 2 * * 4-T 1 * * 4)$
	Go To 80
75	$x(L E 2)=x(L E 2)+G V *(T 2-T 1)$
	$\mathrm{G2}=\mathrm{G} 2+\mathrm{GV}$
80	IF(NSQ1(Sl),GT.0) 60 to 70
C	OBTAIN the minimum stability criteria
	$\mathrm{R}_{1}=\mathrm{C}(1) / \mathrm{c} 2$
	IF(R1.GE.RC) GO To 100
	$\mathrm{RC}=\mathrm{R1}$
	$\operatorname{KON(35)}=1$
100	continue
	CON(17) $=$ RC*TSTEP
	IF(RC.LE.0.) G0 YO 993
	BETAO $=2.0 * C O N(17) / C O N(2)$
	If (ibt Tho.ct.i.f) netao $=1.0$
	betan $=2.0$-betao
c	CONVERT TEMPERATUKES TC RANKINE
	DO $651=1$. NNT

[^16]

Win?

[^17]
C. COMPYTER IISTINGS OF SINDA STEADY STATE SOLUTION ROUTTNES
Page
CInDSS C-2
CIRDSL C-11
CINDSM C-20
SUBROUTINE CINDSS
ENTRY POINT 003062

exterfal references (block, name)

[^18]Z
Z

[^19]

预录要品：
勇妾莽：

$\frac{3}{\frac{3}{4}}$

[^20]| | go ro 175 |
| :---: | :---: |
| 170 | QOUT $=$ QOUT+G(LG)*(T(1)-T(LTA)) |
| | CHECK FOR LAST CONDUCTOR TO THIS NODE |
| 175 | IF(NSOL(J1).GT.0) GO T0 165 |
| 195 | CONTINLIE |
| | $\operatorname{CON(32)}=$ ABS (OIN-GOUT) |
| | CALL VARBL? |
| | $\operatorname{Con}(13)=\operatorname{CON}(1)$ |
| | CALL OUTCAL |
| | WKITE (6,882) |
| | WRITE (6,883) KON(20), CON(32) |
| | $\operatorname{KON}(28)=\operatorname{KON(28)+2}$ |
| | IF(CON(3).GT.CON(1)*2.000001) GO TO 10 |
| | $\mathrm{NTH}=\mathrm{IE}$ |
| | NDIM $=$ NLA |
| | RETURA |
| 994 | WRITE. 6,884) |
| | GO to 1000 |
| 996 | WRITE (6,886) NOIM |
| | GO TO 1000 |
| 997 | WHITE $(6,887)$ |
| | GO T0 1000 |
| 998 | WHITE (6.888) |
| | 60 T0 1200 |
| 999 | Whitel 6.889$)$ |
| 1000 | call outcal |
| | call Exit |
| 882 | FORMAT(1H) |
| 883 | FORMAT (10H LOORCT $=16,10 \mathrm{H}$ ENGEAL $=$ E12,5) |
| 884 | FORMAT (46H CIntiss requires short pseudo-conp |
| 885 | FORMAT (35H ITERATION COUNT EXCEEDED. NLOOP $=$ |
| 836 | format (iar 20 H locations available) |
| 887 | FORMAT(10H NO DRLXCA) |
| 888 | Format 10 H NO ARLXCA) |
| 889 | FORMAT (14H No looh count) |
| | EHD |

FOR.*
CIHDSL,CIN.SL
ca

 \propto

[^21]

CINDSL.CINDSL			
c. ${ }^{25}$	END		
	$J_{1}=11+1$		
	$L G=F L D(5,16, N S O 1(J 1))$	*NEW *NEW *NEW *** 3	
	$L T A=F L D(22.14 \cdot N S Q 1(N 1))$		
	INCLUDE VARG•LIST		
	CHECK FOR RADIATION CONDUCTOR		
	IF (FLO(2,1,NSQ1(J1) , EQ.0) G0 TO 3000		
	NTYPE $=$ FLD (0,5.NSQ2(J?))		
	$L A=F L D(5,17, N S Q 2(J 2))$		
	LK $=$ FLD(22.14,NS02(J2))		
	GOTO12005.2010,2015.2020,2025.2030.2035.204n,2045.2050.2055.		
2007	CALL DIDIWM(TM, A(LA), XK, (LK), G(LG))		
	GO TO 2999		
2010	G0 T0 2999TM $=$ T(I)		
2017	$\mathrm{J} 2=\mathrm{J} 2+1$		
	$L A=F L D(5,17, H 1 S Q 2(J 2))$		*NEW
	LK $=$ FLD(22.14,NSG2 (J2))	*NEW	
	CALL D101WM(T(LTA), A(LA), XK (LK), 621	**-2	
	Go To 2998		
2020	G1 $=\mathrm{XK}(L K) * X K(L A)$		
	GO TO 2017		
2025 CALL D101WM(TII), A(LA), XK (LK), G1)			
	$J 2=J 2+1$		
	$L A=F L D(5,17 \cdot 1 / S Q 2(J 2))$$L K=F L D(22,14, N S Q 2(J 2))$	*NEW	
		- NEH	
	$\mathbf{G 2}=\lambda K(L K) * X K(L A)$	**-2	
	GO TO 29?		
$2030 T M=(T(I)+T(L T A)) / 2.0$			
2032			
	GO TO 2999 .		
2035	$\mathrm{T}: \mathrm{M}=\mathrm{T}(\mathrm{I})$		
	GO TO 2032		
2040			
2042	$\mathrm{J} 2=\sqrt{2}+1$	ANEW *NEW ** ${ }^{*}$ -	
	$L A=F L 0(5,17, N S Q 2(J 2))$		
	LK = FLD(22.14,NSQ2(32))		
	CALL PLYANM(A(LA), T(LTA), A(LA+1), XK (LK), G2)		
	60 TO 2998		
2045	G1 = XK(LK)*XK(LA)		
	GO TO 2042		
2050	CALL PLYAWM(A(LA), T(I), A(LA+1), XK(LK), 61$)$		
	$J 2=J 2+1$		
	$L A=F L D(5,17 \cdot 115 Q 2(\mathrm{~J} 2)$)		
	LK $=$ FLD(22.14.NSQ2(J2))	* NEW	
	G2 $=X K(L K) * X K(L A)$	**-2	
	60 To 2998		
2055	$T M=(T(I)+T(L T A)) / 2.0$		
	CALL D2OIWM(TM, CON(J4), A(LA).0XK(LK),G(LG))		
	60 T0 2949		
2060	TM $=$ T(LTA)		
	go ro 2007		
2065	TM $=$ T(LTA)		
	GO TO 2032		
2994	$G(L G)=1 . /(1.161+1 . / 62)$		
	$\mathrm{IF}(\mathrm{FLD}(3.1, N S Q 1(J 1)), E C, 1) \mathrm{G}(\mathrm{LG})=61 * G 2$		
2999	$12=52+1$		

m

SUBROUTINE CINDSM

$-1409-$
888888

"벙흐응
CINOSH

-4898여웅

	CINDSM
$c^{.85}$	continue
	SEE IF ThE RELAXATION CRITERIA WAS MET
	IF (RLXD.LE, RELAX) GO TO 105
	IF (JJ.LE.2) G0 TO 95
	小儿 $=0$
	LE1 $=1 E 1+\mathrm{I}$
	LE2 $2=1 E 2+1$
c	SEE IF THE EXTRAPOLATION CRITERIA ARE MET
	$T(1)=x(L E 2) * x(L E 1)+(1,0-x(L E 2)) * T(1)$
90	Continue
95	$\operatorname{CON}(30)=\mathrm{RLXD}$
	$\mathrm{KON}(37)=\mathrm{N} 1$
	IF (KON(7).NE,0) CALL OUTCAL
800	continue
105	$\operatorname{KON}(20)=K O N(20)+K K$
c	Store conductance values back in the g array
	DO $1101=1$ NGGT $\text { EE4 }=I E 4+I$
110	$G(I)=X(L E 4)$
c	check if the initial nlax iterations have reen performed
	IF (LPASS.GE.NLAX) GO To 120
${ }_{\text {c }}^{C}$	the nlax initial iterations have not been performed.
	APPLY damping factor and reduce relax by only 0.005/nlax
	DO $1151=1$, NNC
	LE3 $=1$ IE3+I
115	T(I) $=$ DAMP*T(I) +RLX*X(LE3)
	$x \times x=x \times x-0 E L X X X$
	60 to 15 .
C_{120}	after the nlax initial iterations, reduce relax to 0.001
	CONTINUE
	$\mathrm{N} 2=0$
c	Check to see if maximum number of iterations has been exceedeo IF(KON(20).GE.KON(5)) GO TO 130
c	has not been exceeded. reduce relax to 0.001
	$\mathrm{N} 2=1$
	XXX $=$ XXXXDUM
	GSUM $=0.0$
c	obtain the maximum temperature change
	DO 125 1 = 1, NNC
	LE3 $=$ IE3 I
	QOUT = ABS(T(I)-X(LE3):
	IF (QOUT.GT.GSUM) GSUM = QOUT
125	continue
c	If THE MAXIMUM TEMPERATURE CHANGE OVER THE QUASI-INTERVAL EXCEEDS
c	RELAX, REDUCE CRITERIA AND PERFORM MORE ITERATIONS IF (GSUM LE RELAX) GO TO 130
	REDUCE LAXFAC TO THE DIFFERENCE RETWEEN NLOOP AND LOOPCT, SO
c	that nloop remains the maximum number of iterations possible
128	LAXFAC $=$ KON(5)-KON(20)
	go to 15
	cherk the energy balance of the system
c	NLOOP HAS BEEN EXCEEDED
130	$\mathrm{N} 2=\mathrm{N} 2+1$
	Qout $=0.0$
	$J_{1}=0$
c	determine net hieat flow to boundary nodes
	DO $150 \mathrm{I}=1$, NHLC
	$J_{2}=J_{1+1}$

[^22]

Less
CRITERIA

[^23]
[^0]:

[^1]:

[^2]: ## $\begin{array}{ll}0022 & \text { VARBLI } \\ 0023 & \text { OIO1WM } \\ 0024 & \text { PLYAWM } \\ 0025 & \text { D2DIWM } \\ 0026 & \text { VARLL } 2 \\ 0027 & \text { OUICAL } \\ 0030 & \text { EXIT } \\ 0031 & \text { NERTI2S } \\ 0032 & \text { NWDUS } \\ 0033 & \text { NIO2S } \\ 0034 & \text { NER10S }\end{array}$ 00

[^3]:

[^4]:

[^5]: O *DIAGNOSTIC* MESSAGE(S)

 1108 FORTRAN V COMPILATION.
 YMBOL IC

[^6]: -

[^7]:

[^8]:

[^9]:

[^10]: > SUQROUTINE CNOLFR
 EXPLITITEOFORTFRANKL EXECUTION SUBROUTINE FOR SINDA F-V
 > THE SUE COMM, LIST
 INCMON /TMTLE/H(1)

[^11]:

[^12]: cnouik

[^13]:

[^14]:

[^15]:

[^16]:

[^17]:

[^18]: names
 LOCATION.

[^19]:

[^20]:

[^21]:

[^22]:

[^23]:

