

N75-10170 DATE: APRIL, 1975 24-53180 PUBLICATION CHANGE THE FOLLOWING CHANGES APPLY TO PUBLICATION: ____ DMS-DR-2172 TITLE: RESULTS OF REACTION CONTROL SYSTEM ON-ORBIT JET SIMULATION USING AN 0.0175-SCALE CONFIGURATION 3 SPACE SHUTTLE ORBITER MODEL (21-0) IN THE LARC 60-FOOT VACUUM SPHERE (0A99) NUMBER: DMS-DR-2172 DATE: OCTOBER 1974 BRANCH: FLIGHT TECHNOLOGY Table V, p. 27 lists the following data: Impingement Forces (Lbs) Configuration Run # Side -139 Orbiter (MOD) 5 LT. Pitch-up -139 Orbiter (MOD) 6. -.1768. LT. Pitch-up Corrected data are as follows: Configuration Run # -139 Orbiter (MOD) 5 LT. Pitch-down -139 Orbiter (MOD) 6 .1768 LT. Pitch-down Prepared by: Operations--Maurice Moser Jr. G. G. McDonald, J. L. Glynn Reviewed by: _ Concurrence: <u>(Manuan</u> J/G. Swider, Manager Approved: < on N. D. Kemp, Manager Fight Technology Branch Data Management Services PAGE 1 OF 1 DISTRIBUTION SAME AS FOR ABOVE PUBLICATION DATA MANagement services CHRYSLER CORPORATION SPACE DIVISION

October, 1974

DMS-DR-2172 NASA-CR-134,415

RESULTS OF REACTION CONTROL SYSTEM ON-ORBIT JET SIMULATION USING AN 0.0175-SCALE CONFIGURATION 3 SPACE SHUTTLE ORBITER MODEL (21-0) IN THE LARC 60-FOOT VACUUM SPHERE (0A99)

By

J. Marroquin Shuttle Aero Sciences Rockwell International Space Division

Prepared under NASA Contract Number NAS9-13247

By

Data Management Services Chrysler Corporation Space Division New Orleans, La. 70189

for

Engineering Analysis Division

Johnson Space Center Nation 1 Aeronautics and Space Administration Houston, Texas

WIND TUNNEL TEST SPECIFICS:

Test Number:60-foot Vacuum Sphere R3289NASA Series Number:0A99Model Number:21-0Test Dates:March 26-April 12, 1974Occupancy Hours:52

FACILITY COORDINATOR:

David R. Stone Mail Stop 163A Langley Research Center Langley Station Hampton, Virginia 23665

Phone: (804) 827-2843

PROJECT ENGINEERS:

Ira E. Tilley III OSD-Tech. Support Section A Mail_Stop 419, Bldg. 1250 Room 123 Langley Research Center Hampton, Virginia 23665 John Marroquin Rockwell International Space Division 12214 Lakewood Blvd. Dept. 390, Mail Code ACO7 Downey, California 90241

Phone: (213) 922-4185

Phone: (304) 827-3101

AERODYNAMICS ANALYSIS ENGINEER:

Dan W. Hersey Rockwell International Space Division 12214 Lakewood Boulevard Dept. 390, Mail Code ACO7 Downey, California 90241

DATA MANAGEMENT SERVICES:

Prepared by: Liaison--D. A. Sarver, M. J. Lanfranco Operations--Maurice Moser, Jr.

Reviewed by: G. G. McDonald, J. L. Glynn

Approved: 22/ N. D. Kemp, Manager

Concurrence:

/G. Swider, Manager

111

Data Management Services Elight Technology Branch Chrysler Corporation Space Division assumes no responsibility for the data presented other than display characteristics. RESULTS OF REACTION CONTROL SYSTEM ON-ORBIT_JET SIMULATION USING AN 0.0175-SYSTEM CONFIGURATION 3 SPACE SHUITLE ORBITER MODEL_(21-0) IN THE LARC 60-FOOT VACUUM SPHERE (0A99) By J. Marroquin, Rockwell International Space Division

ABSTRACT

An experimental investigation was conducted in the Langley Research Center 60-foot Vacuum Sphere (test 0A99) from March 26 through April 12, 1974, to obtain detailed effects of the RCS jet flow direct impingement on the Orbiter during on-orbit flight of the Space Shuttle Vehicle.

ŝ

X

TABLE OF CONTENTS

......

•

1 AND A

in Grad

4

Ĵ

1.4.1

¥. . . .

C

	Page	
ABSTRACT	iii -	
INDEX OF FIGURES	2	و بر مسرد .
INTRODUCTION	4	
NOMENCLATURE	5	
CONFIGURATION INVESTIGATED	7	4
RCS NOZZLE DESIGN	9	·
RCS NOZZLE CALIBRATION	10 .	
TEST FACILITY DESCRIPTION	11	
DATA REDUCTION .	12	i.
REFERENCES	13	;
TABLES		
I. TEST CONDITIONS	14	
II. DATA SET/RUN NUMBER COLLATION SUMMARY	15	
III. MODEL DIMENSIONAL DATA	16	
IV. INSTRUMENTATION AND TRANSDUCER INFORMATION	25	
V. RCS DIRECT IMPINGEMENT FORCE DATA	27	
VI. RCS DIRECT IMPINGEMENT PRESSURE DATA	28	-
FIGURES		
MODEL	29	
DATA	49	B

INDEX OF FIGURES

.

Figure		Title	Pagè
1.		Axis systems.	29
2.		Model information.	
	a.,	Géneral Model-Arrangement	30
	b.	Modified OMS Pod_and RCS Nozzle Location	31
	с.	M ₆ OMS Pod	32
	d.	RCS Plenum Nozzle Block Installation	33 .
	e.	Nozzle Configurations	34
	f.	L/H Wing, Body Flap and SSME Nozzle Pressure Tap Location/Identification	35
	g.	L/II Lower AFT Fuselage Pressure Taps	38
	h.	Pressure Taps Location on the Right Side of the Vertical Stubilizer and Rudder	40
	i.	RCS Nozzle Calibration	42
3.		Model photographs.	
	a.	General Installation-Photograph	43
	b.	RCS Nozzle Block Installation	44
	Ċ.	Pressure Tap and Transducer Installation Photograph- Plan View	45
	d.	Pressure Tap and Transducer Installation Photograph- Side View	46
	e.	Hyd. Valve System Installation	47
	f.	LaRC_60-Eoot Vacuum Sphere Facility	48
4.		Impingement Pressures on the Orbiter Fuselage, Body Flap and SSME Nozzle Bell.	49

ł

INDEX OF FIGURES (Concluded)

المنظمة المسلكة (

电子的

- 4 ... A.

3

Figure	Title	Page
5.	Left Wing Impingement Pressures.	50
6.	Impingement Pressures on Right Side of Vertical Tail.	51

3

INTRODUCTION

An experimental investigation was conducted March 26 through April 12, 1974, to determine RCS direct impingement effects on the Space Shuttle Vehicle during on-orbit flight. Langley Research Center 60-foot Vacuum Sphere was the test site; Orbiter Model 21-0 was used. Nominal test conditions are in Table 1.

RCS flow_was simulated by blowing a jet of cold air from non-metric nozzles attached to the_model sting support system near the fuselage base (figure 2d). Thrust was obtained by setting the nozzle plenum pressure (as specified by the nozzle calibration). Nozzle thrust was measured by a 10 lb. capacity load cell. Nozzles were calibrated at near vacuum_conditions and corrected to total vacuum conditions. A plot of both measured and theoretical thrusts as a function of model_plenum pressure is in figure 2i.

Three-RCS on-orbit flight conditions were simulated... Six-component. force data were measured on the complete model using the LaRC 0.50-inch diameter balance (number HH09). It was supported by a LaRC sting.

Six force data runs, including three re-runs, were recorded at various sphere pressure levels and displayed on oscillograph recorders. Model pressure data, applicable to several altitudes, were obtained for two RCS modes using a dummy sting.

Two pressure hook-ups were used. One hook-up, used during tests of pitch down jets (N₇₀), measured pressures on the wing, bodyflap, SSME, and fuselage (see Table IVa). The other hook-up, used during tests of pitchup jets (N₆₉), measured pressures on the vertical tail (see Table IVb).

NOMENCLATURE general

ł

1

ţ

.

and the second s

..

1

n.b.

•

.

•

ĥ

-

n

£:

Symbol	Plot Symbol	Definition
⁶ BF	BDFLAP	bodyflap deflection angle, degrees
^د .e	ELĚVTR	elevator deflection angle, degrees
⁸ RF	RUDFLR	rudder flare angle, degrees
à	ALPHA	angle of attack, degrees
β	BETA	angl <u>e</u> of sideslip, degrees
Pa		atmospheric pressure, psia
	Ref	erence and C. G. Definitions
^b ref	BREF	wing span or reference span, ft
L _{ref}	LREF	reference length or wing mean aerodynamic chord, ft
S _{ref}	SREF .	wing area or reference area, ft ²
MRC	MRC	moment reférence center
C.G.		center of gravity
	Bod	y-Axis S <u>ys</u> tem
N	NF	normal force, lbs
A	AF	axial.force, 1bs.
Y	SE.	side force, lbs
m	PM	pitching moment, in-1bs
n	YM .	yawing moment, in-16s
l	ŔM	rolling moment, in-lbs

Ś

NÖMÉNCLÁTURÉ (Concluded) Additional Nömenclature

.

1

•

ĺ

Svmbol	Plót. Symbol	Definition
Pc		model RCS plenum chambér pr <u>ess</u> ure, p <u>sia</u>
P _{V1}		sphere pressure prior to run, microns
Pv2		sphere pressure after run, microns
Tc		model plenum chamber temperature, °F
Tv		sphere chamber temperature, °F
•		Simulation Nozzle Design
A*		nozzle throat area, in ²
Aref		reference area, in ²
е.		exit
m.		mass flow rate of the nozzle, lbm/sec
TH.		vacuum thrust of the nozzle, lbf
Υ.		specific heat
Ê		expansion ratio
θp		nozzle_lip_angle_
λ		plume sha <u>p</u> e <u>p</u> arámeter
ф		Newtonian impact angle
		Abbreviations
RCS		reaction control system
SSME		space shuttle main engines
OMS		orbiter manēuvering system
MPS.		main propulsion system
L/H		left hand side
Ŕ/H		right hand sidé

CONFIGURATION INVESTIGATED

The test article (provided by Rockwell) was an 0.0175-scale model (21-0) of the VL70-000139 definition of the SSV Orbiter Configuration 3. The model was constructed of light weight, glazed cast foam with fixed control surfaces. A three-view drawing of the model showing the principal dimensions and photographs of the model installed in the chamber are shown in figures 2a and 3a, respectively.

The model was installed vertically in the LaRC 60-foot Vacuum Chamber. The RCS plenum-nozzle assembly was non-metrically attached to the sting. Nozzle N₆₈ (yaw control) and N₇₀ (pitch down control) was located on the left side of the RCS plenum. Nozzle N₆₉ (pitch up control) was located on the plenum right side. Each nozzle contained two orifices, through which cold air flowed, as shown in figure 2e. Orifices were plugged on non-firing nozzles.

The following nomenclature was used to designate the model components: $0 = B_{17} C_7 E_{22} F_5 M_6 N_{39} R_5 V_5 W_{103}$ Component Definition

B₁₇ Vehicle configuration 3 fuselage lightweight Orbiter per Rockwell lines VL70-000139

C7 Basic vehicle configuration 3 canopy per Rockwell lines VL70-000139

E22 Basic vehicle configuration 3 elevon per W103 Rockwell lines VL70-000139

F5. Basic vehicle body flap 3 configuration per Rockwell lines VL70-000139

M₆ Modified OMS-RCS pod for the Rockwell SSV configuration 3 (VL70-000139)

Configuration 3A MPS nozzles N₃₉ Basic vehicle 3 configuration nudder per Rockwell lines VL70-000095 R.5 Basic vehicle configuration 3 light weight Orbiter. Center-line vertical tail doublewedge airfoil with rounded leading edge. VL70-000139 and VL70-000095 ٧₅ Vehicle configuration 3 wing per lines VL70-000139 (same plan-form as W₈₉ except dihedral at TE) ₩103 RCS Nozzles L/H yaw nozzle, not canted ^N68 R/H pitch up, not canted N₆₉ L/H pitch down, canted 12° AFT and 20° outboard

ð 🌆 101

N₇₀

RCS NOZZLE DESIGN

: 5-

Α.

Β.

-

たいかいたい

1000000

The simulation technique employed for the nozzle design was based on the analytical method of Hill and Draper, in which a single unique parameter, λ , was derived that closely approximates the internal iso-properties of a vacuum plume. The correlation between test and full-scale flight forces, moments, and pressures is summarized below.

	full scale	mode1
PCS Jet Characteristics		
Chamber Pressure, P _c	150_psia	1000 psia
Chamber Temperature, T _c	5450°R	530 °R
Specific Heat, Y	1.232	1.4
Nozzle Throat Area A*	3.619 in. ²	0.0011045 in. ²
Expansion Ratio, ϵ	20	6.2
Nozzle_Lip Angle, ⊙ _p	9°	10°
Éxit Aréa, A _e	72.382 in. ²	0.00685 in. ²
Exit Mach No., M _e	3.93.	3.4
Mass Flow Rate, m	3.287 1bm/sec	0.0242 1bm/sec
Vacuum Thrust, TH	950 lbf.	1.78 lbf.
Simulation Parameter		

Plumé Parameter, λ Throat Area Ratio (A*/A Total pressure Ratio ref (P /P.)	4.74 3.619 5.47 x 10 ⁹	4.74 (matched) 3.619 (matched) 5.45 x 10 ⁷ (close)
(^P c ^{/P} A)		

ġ

RCS NOZZLE CALIBRATION

The RCS nozzles were calibrated in the intermittent blowdown-vacuum test section 7' x 5' x 16' Test Chamber Rocket Nozzle Test Facility at the Los Angeles Division from 13 through 15 March 1974. The calibration determined nozzle thrust as a function of plenum chamber pressure (P_c).

ITTY

Test chamber and nozzle plenum chamber pressures were recorded by a dial gage. Nozzle thrust was measured by a Revere No. 244267, 10-16 capacity load cell. All three nozzles were calibrated under near vacuum conditions to simulate the same on-orbit flight conditions tested in the LRC vacuum sphere; see Table I. Calibration results are shown in figure 21.

TEST FACILITY DESCRIPTION.

02

The 60-foot Vacuum Sphere at Langley Research Center, Hampton, Virginia is shown in figure 3. This cell is capable of simulating pressure altitudes_over 91.5 Km (300,000 ft.). Evacuation is continuously maintained by six oil diffusion pumps.

Test OA99 data were recorded within 570 milliseconds after RCS jets commenced firing to maintain adequate pressure altitude. A high speed electronically operated, hydraulically controlled valve (located outside and under the test chamber) was used to control RCS jet flow. The valve was operated with hydraulic pressures between 450 psia and 1000 psia.

Vacuum chamber initial pressure, final pressure, and nominal temperature are presented in Table I for each run.

DATA REDUCTION

Force and moments measured by the Orbiter internal strain-gauge balance were reduced about the MRC X_0 = 1076.68, Z_0 = 375.0, and Y_0 = 0.0 (Table V).

Pressure data were obtained on three oscillograph recorders and hand reduced (Table VI).

REFERENCES

12

 Pretest Information for test of the 0.0175-Scale Space Shuttle Orbiter Model 21-0 Configuration 3 in the LRC 60-foot Vacuum ophere to Determine RCS direct impingement data for the 139 Orbiter during onorbit flight conditions. (0A99), Rockwell International Report SD74-SH-0143, dated March 18, 1974.

ê 🚺

171

 Drawings. Rockwell Drawing VL70-000094, Lines Control Aft Body, OMS RCS Pod, Configuration_139.

Rockwell Drawing VL70-000095, Lines Control Vertical Tail, Configuration 139.

Rockwell Drawing VL70-000139A, Lines Study Orbiter, Preliminary Vehicle 3.

Rockwell Drawing VL70-G08401 (for information only) OMS/RCS Aft Fuselage Pod-Equipment arrangement, Integrated Structure MCR 428.

Rockwell Drawing SS-A01231, dated March 5, 1974, Modification 21-0 Plastic Master for Langley 60-foot Vacuum Sphere.

Rockwell Drawing SS-A01232, dated March 4, 1974, Instrumentation and assembly 21-0 Plastic Master, Langley 60-foot Vacuum Sphere.

3. SAS/AERO/74-197-Simulation and Nozzles Design Requirement for RCS on-orbit Plume Direct Impingement Test (0A99), dated 3-22-74.

TABLE I. - Test Conditions

										-	(H)	(j)				_					٦
			REMARKS	FORCE & MOMENT DATA	◆			FORCE & MOMENT DATA	FORCE & MOMENT DATA		PRESS. DATA PITCH-DOWN (SPH LEAKA	PRESS. DATA PITCH-DOWN(SPH LEAKA(REPEAT OF PITCH-DOWN			REPEAT OF PITCH-DOWN	PITCH-UP	•	•	•	PITCH-UP
PROGRAM	TEST TIME	-ITTIM)	SECONDS)	570	•			570	570		150	150	570	4						•	570
RE	PV2	MICRON	BG	10.0	21.0	22.0	30.0	15.0	22.0	•	47.5	49.4	20.0	34.9	47.4	61.0	14.0	25.3	38.2	51.2	63.6
ACUUM SPHEI	۲	MICRON	HG	h .3	6.5	S S S	22.0	0.61	0.6		31.3	6.14	ζ Γ Γ	19.2	32.1	46.0	14.0	11.4	23.3	36.2	48.6
ſΛ	E	>。	í۲.	8	8	93	66	8	8		26	20	18	78	77	77	85	.8 ,	85	85	. <u>8</u> 2
ENUM	E	. . 0	Γ.	100	66	88	88	97	97		83	6.6	°8	8	62	62	104	104	104	104	TOU
RCS PI	ρ	U	PSIA	1000		-	•	1000	750	· ·	0001	1001	000	4		,				▶	1000
		NOZZLE	CONF.	N68	N68	MGG	N69	NTO	0LN		ULL I		-		•	NTO	N69		 	•	1169
		RUN	NO.	Ê		~	ب (<u>م</u> د.	20	,	٢	- 00	0.0) ji		21	1.	1	ۍ ا ا	10,1	17
			DATE	4-3-74	4-3-74	4-4-4	4-4-4	4-5-74	4-5-74		10-70-71	h-10-74	п ∠-11-п		⊢ ₽	4-11-4	12-21-1		┠┈╴	-•	h-12-74

ŀ

þ

	11.
ABLE	ABLE

ł

TEST RUN NUMBER 47-01-4 4-20-74 47-11-74 47-11-4 4-12-74 4-12-74 4-3-74 4-4-74 4-5-74 4-5-74 7-7-74 4-3-74 .: 2 £..• DATE 71-74-74 11. 14.14 FORCE PREUS FORCH PRESS : DATE : Ч rH ابنے Ē Ч **ا_** RERUN PITCH DN L/H RERUN FITCH DN (1/H) ц) Ц PITCH DOWN (L/H) PITCH DOWN (L/H) PITCH DOWN (L/H) RCS FIRING PITCH DOWN (L/H) PITCH UP (R/H) (R/H) PITCH UP (R/H) PITCH UP (R/H) DATA SET/RUN NUMBER COLLATION SUMMARY YAW (LEFT) YAW (LEFT) PITCH UP 64 _____ RCS VACUUM DIRECT IMPINGEMENT TEST 64 T OF 88 88 66 88 83 83 67 8 61 1000 97 සි 97 1000/10/ 10001 1000 1000 1000 1000 000 1000 1000 COFFEICENT 750 20 450 37 **د**ه 0 0 δ_{BF} δ_{RF} 0 0 Ē 0 O 4δe]. 0 Ò 23 a B. Ò Ç 8 0 Ö $0 = P_1 T_0 T E_2 2 F_5 M_0 N_3 9 R_5 V_5 N_1 0_3$ 61 CONFIGURATION 0 + N₇₀ $O_{N} + O$ 0 + N₆₉ 0 + N70 + ^{N69} 0 + N₆₉ $0 + N_{70}$ 0 <u>+ N</u>70 $0 + N_{69}$ $0 + N_{70}$ ρ + Ν₇₀ $0 + N_{68}$ 0. + N68 0 + R70 $0 + N_{69}$ Ē 0 SCHEGUL/ES EST: 0499 CATA SET m ۱A 9 θ Ř A 16 2 4 ~ 2 9 5 17 Ц 15

: **16** :10**14**

.

TABLE III MODEL DIMENSIO	DNAL_DATA	₽~0
MODEL COMPONENT : BODY - B17		
GENERAL DESCRIPTION : <u>Fuselage, 3</u>	configuration, lig	htweight orbite
per Rockwell Lines VL70-000139	······································	
		·
MODEL SCALE: 0.0175		
DRAWING NUMBER :		
	•	-
DIMENSIONS.:	FULL SCALE	MODEL SCALE
Length = In.	1290.3	22.58025
Max Width - 3n.	267.6	4.6830
Max Depth - In.	244.5	4.27875
Fineness Ratio	4.82175	4.82175
Area - Ft ²	386.67	0.118398
Max. Cross-Sectional		•;
Planform .		.
Wetted		

107 See ----

÷.

Contraction of the local data

-{ }

16

Base

,	umating/data/re	*REVISED 4/24	/74
	TABLE III MODEL DIMENSION	AL DATA - Cont	inued.
MOD	EL COMPONENT :CANOPY - C7		
GENI	ERAL DESCRIPTIONConfiguration	3 per Röckwell	Lines VL70-0001
			و منه
<u>MOI</u>	EL SCALE: 0.0175		
DIMEI	NSIONS	FULL SCALE	MODEL SCALE
	*Length ($X_0 = 433$ to $X_0 = 578$) IN.FS	145.00	2.538
	Max Width	57.14	<u>9.99950</u>
	Max Depth		·
-	Fineness Ratio		- Karana Managara ang Karana ang K
	Area.		
	Max. Cross-Sectional		
	Planform.		
	Wetted		
	Base		

diant -

C.

二代進手の

•

10110

15 14

TABLE III. - MODEL DIMENSIONAL DATA - Continued. ELEVON - E22 MOCEL COMPONENT: GENERAL DESCRIPTION: <u>3 Configuration per W103 Rockwell Lines</u> VL70-000139 data for (1) of (2) sides. ê 🖬 MODEL SCALE: 0.0175 ITY DRAWING NUMBER: VL70-000139 DIMENSIONS: FULL-SCALE MODEL SCALE Area - Ft² 205.52 0.06223 Span (equivalent) - In. 353.34 6.18345 Inb'd equivalent chord 114.78 2.00855 Outb'd equivalent chord 55.00 0.962% Ratio movable surface chord/ total surface chord At Inb'd equiv. chord __ 0.208 0.208 At Outb'd equiv. chord 0.400 0.400 Sweep Back Angles, degrees Leading Edge 0.00 0.00 Trailing Edge - 10.24 - 10.24 Hingeline 0.00 0.00 Area Moment (Normal to hinge line) Ft³ 1548.07 0.00820

TABLE III. - MODEL DIMENSIONAL DATA - Continued.

MODEL COMPONENT BODY FLAP - F5

GENERAL DESCRIPTION : <u>Body flap for Fuselage B17</u>. <u>3 configuration</u> per Rockwell Lines VL70-000139.

<u>کار کار</u>

THE

MODEL SCALE: 0.0175

C

FULL SCALE MODEL SCALE DIMENSIONS : 1.48225 Length - In. 84.70 Max Width ... - In. 267.6 4.6830 Max Depth **Fineness Ratio** Area - Ft². Max. Cross-Sectional 142.5195 0.04364 Planform Wetted 38.0958 0.01167 ` Base

TABLE_III MODEL DIMENSIONAL DATA - Continued.
MODEL COMPONENT :OMS POD - Mc
GENERAL DESCRIPTION Configuration 3
Aft end of OMS POD cut off for RCS installation. See Figures 2 and 3
and Convair Model Drawing No. WT-73-108150.
MODEL SCALE: 0.0175

FULL SCALE DIMENSIONS : MODEL SCALE Length (OMS Fwd Sta X₀=1233.0) _____327.000 _____5.7225 Max Width (@ X₀ = 1450.0) 109.000 1.9075 Max Depth Fineness Ratio Area Max.. Cross-Sectional • • Planform . Wetted . Base

EXAL DESCRIPTION: CONTINUENTION: CONTINUENTION: OOUL SCALE 0.0175 RAWING NO. See figures. INSTRINCT FULL SCALE Mach No.	والمعاملة والمعاقب والمراجع والمراجع والمعالي والمراجع والمعاقب والمعالي والمراجع والمعالي والمراجع و	- ·	
DDEL SCALE = 0.0175 RAWING NO. See figures. INSUSIONS FULL SCALE MODEL SCALE Nach No.	NERAL DESCRIPTION: <u>Configuration 34 MPS Nozzles</u>	3	and a state of the second s
OPPL SCALE = 0.0175	ىرىرىرىكى بىرىكى بىرىكى بىرىكى بىرىكى بىرىكى بىرىكى بىرىكى يېرىكى بىرىكى بىرىكى بىرىكى بىرىكى بىرىكى بىرىكى بىر يېرىكى بىرىكى	میکن است. استان این اسال اسال این شور اینا می این این آن این ا	
RAWING NO RAWING NO RAWING NO INSTICUTS Mach No Longth~in. Gimbal Foint to Exit Plane Throat to Exit Plane Exit Exit Inlet Area ~ft ² . Exit Exit Longer Nozzle X Longer Nozzle Longer Nozzle	$\Delta E = 0.0175$		
INTERPOLIE FULL SCALE NODEL SCALE Nach No.	RAWING NÓ. See figures.		
Mach No Longth ~ in. Gimbal Point to Exit Plane Throat to Exit Plane Diameter ~ in. Exit Exit Area ~ ft ² . Exit Exit Exit Cimbal Point (station) ~ in. Upper Nozzle X Lower Nozzles X X Lower Nozzles X Lower Nozzles X Lower Nozzles X Lower Nozzles Upper Nozzle X Lower Nozzles Upper Nozzle X Lower Nozzles Upper Nozzle Upper Nozzle Distribut	IMÉNSIONS	FULL SCALE	MODEL SCALE
Longth ~ in. Gimbal Point to Exit Plane	Mach No.		
Gimbal Point to Exit Plane Threat to Exit Plane Diameter ~ in. Exit Threat Area ~ ft ² . Exit Exit Threat Gimbal Point (station) ~ in. Upper Nozzle X Lower Nozzles X Lower Nozzles X Lower Nozzles X Lower Nozzle Upper Nozzle Upper Nozzle Upper Nozzle Upper Nozzle Upper Nozzle Upper Nozzle Upper Nozzle Upper Nozzle Upper Nozzle	Length~in.		
Throat to Exit Plane Diameter ~in. Exit Throat Inlet Area ~ft ² . Exit Exit Throat Gimbal Point (station)~in. Upper Nozzle $X_$ NOT USED Z_ Lower Nozzles $X_$ $X_$ Lower Nozzles $X_$ $X_$ Lower Nozzles $X_$ $X_$ Lower Nozzles $X_$ $X_$ Lower Nozzles $X_$ $Y_$ $X_$ Lower Nozzles $X_$ $Y_$	Gimbal Point to Exit Plane	and the second sec	
Diameter ~in. Exit 94.000 1.645 Threat 1.645 Threat 1.645 Inlet 1.645 Threat 1.645 Area ~ft ² . Exit 1.645 1.652.0 1.255.685 1.255.685 1.255.685 1.255.697.65 1.257.55 1.257.55	Throat to Exit Plane		
Exit 94.000 1.645 Threat 1 Inlet $$ Area ~ft ² . Exit 48.193 0.01475669 Threat $$ Gimbal Point (station)~in. Upper Nozzle X NOT USED $$ Lower Nozzles $\frac{1162.0}{2} \pm \frac{25.585}{342.7} \pm \frac{-25.585}{53.000} \pm \frac{-25.585}{5.99725}$ Null Position~deg. Upper Nozzle $$	Diameter~in.	•	
Threat Inlet Area ~ft ² . Exit48.19301475669 Threat Gimbal Point (station)~in. Upper Nozzle Z_ Lower Nozzles $X Z_ Lower Nozzles X Z_ Lower Nozzles X Z_ Lower Nozzles X Z_ Lower Nozzle X Z_ Null Position~deg. Upper Nozzle Upper Nozzle$	Exit	94.000	1.645
Inlet Area ~ ft ² . Exit	Throat		
Area $\sim ft^2$. Exit <u>48.193</u> 0.01475669 Throat <u>48.193</u> 2.0.01475669 Throat <u>48.193</u> 2.001475669 Throat <u>48.194666666666666666666666666666</u>	Inlet		
Exit <u>48.193</u> <u>0.01475669</u> Throat <u></u>	$Area \sim ft^2$.		
Threat Gimbal Point (station)~in. Upper Nozzle X NOT USED Z. Lower Nozzles X $\frac{1462.0}{25.585}$ Y $\frac{25.585}{2}$ X $\frac{1462.0}{25.585}$ Y $\frac{25.585}{2}$ Null Position~deg. Upper Nozzle	Exit	48.193	0.01475669
Gimbal Point (station)~in. Upper Nozzle X NOT USED	Throat		
Upper Nozzle X NOT USED	Gimbal Point (station)~in.		
Z Lower Nozzles X X Z Null Position ~ deg. Upper Nozzle Pit ch	Upper Nozzle X NOT USED Y		
Lower Nozzles X Y Z Null Position ~ deg. Upper Nozzle	2_		a na anna an tao ann an
Null Position ~ deg. Upper Nozzle	Lower Nozzles X Y Z	. <u>1462.0</u> + <u>53.000</u> - <u>342.7</u>	<u> </u>
Upper Nozzle	Null Position~deg.		
Yun	Upper Nozzle Pitch Yaw	مىلىنىنىنى بىرىنى تەرىپىرىنى بىرىنى ئىلانىنىڭ ئىرىكى بىرىنى بىرى	

· * (. • • • • • •

2 15 1134

'n

1947 AN 410

And the second second

いいあいき

••;

i

*Řeviše	ED 4/24/74	
TABLE III MODEL DIMENSI MODEL COMPONENT: RUDDER - R5	CONAL_DATA - Con	tinued.
GENERAL DESCRIPTION: 2A, 3 and 3A Configu VL70-000095	ration per Rocky	vell Lines
MODEL SCALE: 0.0175		
DRAWING NUMBER: VL70-000095		
DIMENSIONS:	FULL-SCALE	MODEL SCALE
Area - Ft ²	100.15	0.031
Span (equivalent) - In.		
Inb'd equivalent chord	91.585	-3-5-75
Outb'd equivalent chord	50.333	0.88958
Ratio movable surface chord/ total surface chord	· · · ·	
At Inb'd equiv. chord	0.400	0.400
At Outb'd equiv. chord	0.400	0.400
Sweep Back Angles, degrees		
Leading Edge		34.83
Trailing Edge	26.25	26.25
Hingeline	34.83	34.83
* Area Moment (Product of Area & c) - Ft ³	_526.13_	0.00270
*Product of Area and Mean Chord Inc.		1.281

1.4.00

ENERAL DESCRIPTION: <u>Centerline Vertica</u>	l Tail, doublewedge airfoil with
rounded leading edge.	
MODEL SCALE: 0.0175	
RAWING NUMBER: VI.70-000139	9, VI.70=000095
IMENSIONS:	FULL-SCALE HODEL SCALE
TOTAL DATA	
Area (Theo) - Et^2	
Planform Snam (Theo)	425.92 0.13042
Aspect Ratio	-315.72
Rate of Taper	
Sweep Back Angles, degrees	<u> </u>
Leading Edge	45.000
0.25 Element Line	<u></u>
Chords:	
Tip (Theo) WP	-268.50 <u>4.69875</u> 108.47 <u>1.80823</u>
MAC Sta of 25 MAC	199.81 3.49667
W. P. of .25 MAC	1463.50 25.61125
- B. L. of .25 MAC	00
Airtoil Section Leading Wedge Angle - Deg	10,000 10,000
Trailing Wedge Angle Deg	14.290 14.290
Leading Edge Radius	2.00 0.0350
Blanketed Area	13.17 0.23048

a contra

Ļ

ŝ

> **3**7 ţ

r Ma

100 Barris

Į.

i:

٠,

C

19

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POCK

TABLE III. - MODEL DIMENSIONAL DATA - Concluded.

MODEL COMPONENT : WING-W 100

SENERAL DESCRIPTION: _____ Configuration 3 Orbiter per Lines VL70-000139.

MODEL SCALE: 0.0175		
TEST NO.	DWG. NO. VI.7	0-0001.39
DIMENSIONS:	FULL-SCALE	MODEL SCALE
TOTAL DATA Area (Theo.) - Ft ² Planform Span (Theo In. Aspect Ratio Rate of Taper Taper Ratio Dihedral Angle, degrees Incidence Angle, degrees Aerodynamic Twist, degrees Sweep Back Angles, degrees Leadi Edge Trail:	$ \begin{array}{r} 2690.00 \\ 936.68 \\ 2.265 \\ 1.177 \\ 0.200 \\ 3.500 \\ 3.000 \\ + 3.000 \\ + 3.000 \\ - 10.24 \\ \end{array} $	$\begin{array}{r} 0.0823813 \\ 16.3919 \\ 2.265 \\ 1.177 \\ 0.200 \\ 3.500 \\ 3.000 \\ + 3.000 \\ + 3.000 \\ - 10.24 \end{array}$
0.25 Element Line Chords: Root (Theo) B.P.O.O. Tip, (Theo) B.P. MAC Fus. Sta. of .25 MAC W.P. of .25 MAC B.L. of .25 MAC	$\frac{35.209}{689.24}$ $\frac{137.85}{474.81}$ $\frac{1136.89}{299.20}$ $\frac{182.13}{6}$	35.209 12.0617 2.41237 8.309175 19.805575 5.236 3.187275
EXPOSED DATA Area (Theo) - Ft ² Span, (Theo) - In. BP108 Aspect Ratio Taper Ratio Chords Boot BP108	1752.29 720.68 2.058 0.2451 562.40	0.536551 <u>12.6119</u> <u>2.058</u> 0.2451 <u>9.842</u> <u>0.110375</u>
Tip 1.00 b MAC Fus. Sta. of .25 MAC W.P. of .25 MAC B.L. of .25 MAC Airfoil Section (Rockwell Mod NASA)	<u>137.85</u> 393.03 <u>1185 31</u> 300.20 251.76	6.87803 20.71203 5.2535 4.4058
xxxx-54 Root <u>b</u> = Tip <u>b</u> =	<u> </u>	<u>0.10</u>
Data for (1) of (2) Sides • Leading Edge Cuff 2 Planform Area - Ft2 Leading Edge Intersects Fus M. L. @ Sta Leading Edge Intersects Wing @ Sta	120 <u>33</u> 560.0 1035.0	<u>9.8000</u> 15.1125

Ż4

- Instrumentation and Transducer Information (N70) Pitch-Down a.

TABLE IV.

& 8 RECORDER PROBLEMS REMARKS RUNS 7 & 6 RECORDER RUNS 9, 10, 11 & 12 RANGE 0.5 0000 1.0 1.0 1.0 1.0 1.0 5 ν. 10 V. 10 V EXCIT. lo v 10 V lo v 1 TRANSDUCER 5579 5503 5503 5503 6073 2202 2205 2205 2209 2209 2204 2211 22204 22204 6110 6228 5253 5574 5570 5499 5225 S/N INV. NO. 101501 100877 86210 88634 89021 138027 NA 130688 130688 130678 130677 130677 130689 130689 130689 130689 130689 130689 130689 100984 87469 100882 CHANNEL พกรอน 85554333398283-500 86554333 555554 855554 84 90 80244 σ 10 RECORDER RECORDER TAP NO えわみがぬかぬののみをあるかん 51 CHAMBER L/H FUSELAGE L/H FUSELAGE PRESS. TAP L/H WING BODY FLAP BOBY FLAP LOCATION DNIM E/T PLENUM SSME 日前の C. 25

 TABLE IV. - Instrumentation and Transducer Information - Concluded.

 b. (N69) Pitch-Up

DPPCS TAD	TAD.	RECOR	DER		TRANSDU	CER		
LOCATIONS	NO.	RECORDER	CHANNEL	INV. NO.	s/N	EXCIT	RANGE	REMARKS
VERTICAL	36	m	Ľ	138027	2203	lo v	0.5	
	-E:	ŝ	17	138031	2207	<	0.5	
	.8°) m	25	138026	2202	-	0.5	
	66	i m	H	100882	6225		1.0	
	13) M	13	130688	1866		1.0	
	141	ŝ	15	130686	2346		1.0	
	42	ŝ	27	138029	2205		0.5	
	₽ <u></u>	ŝ	29	138032	2208		0.5	
	4	n	19	130678	1856		1.0	
	45	ŝ	21	130677	1855		1.0	•
	10	m	23	130689	1867		1.0	
	47	ſ	ų	138034	2210		0.5	
	84	ŝ	33	138033	2209		0.5	
	61	Ś	35	138035	2211		0.5	
VERTICAL	Ř	en	37	138028	2204	lo V	0.5	
PLENUM CHAMBER	പ്	ŝ	26	1 1 1.*	1	1 1 1		

TABLE V. - RCS DIRECT IMPINGEMENT FORCE DATA

١

٩,

A CONTRACTOR AND A CONTRACTOR OF A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACT

3

Nuc.	figuration 9 Orbiter(MOD)	Plenum Pressure 1000(psi)	Impingen Normal 0562	ment Force Axial 0083	s(Lbs) Side 0052	Impingement Pitch .3454	Moments Roll 3497	(in-lbs) Yaw .1033
iter(MOD)1000(psi).00191111626341716-1.33672.1386h-upiter(MOD)1000(psi)0032108925991916-1.32352.1011h-upn-up1000(psi)94915081.18037.8420-1.90051.1690iter(MOD)1000(psi)94915081.18037.8420-1.90051.1690iter(MOD)800(psi)77104209.17686.4115-1.53319325	w WOZ. Diter(MOD) v Noz.	1000(psi)	0459	0035	0077	.3226	3338	.1214
iter(MOD) 1000(psi)0032108925991916 -1.3235 2.1011 h-up iter(MOD) 1000(psi)94915081 .1803 7.8420 -1.9005 -1.1690 h-down iter(MOD) 800(psi)77104209 .1768 6.4115 -1.53319325	biter(MOD) ch-up	1000(psi)	.0019	- 1116	2634	1716	-1.3367	2.1386
iter(M0D) 1000(psi)94915081 .1803 7.8420 -1.9005 -1.1690 h-down iter(M0D) 800(psi)77104209 .1768 6.4115 -1.53319325 h-down	oiter(MOD) ch-up	1000(psi)	0032	1089	2599	1916	-1.3235	2.1011
iter(MOD) 800(psi)77104209 .1768 6.4115 -1.53319325 h-down	oiter(MOD) ch-down	(i sd)0001	- 9491	5081	.1803	7.8420	-1.9005	-1.1690
	biter(MOD) ch-down	800(psi)	7710	4209	.1768	6.4115	-1.5331	- 9325

1

4

27

<u>(</u>)

TABLE VI. RCS DIRECT IMPINGEMENT PRESSURE DATA

RCS Jet Group: Right side, Up-firing

<u>Run 13</u>

<u>Run 9</u>

P_C = 1000 Psia

2. **14** 1177**4**

Táp. #	Imp.	Press.	~ PI	MMHg
36-	0.65			
37	1.25.			
38	2.10			
39	2.60			
40	1.70			
41	0.15			
42	0.50			
43	0.85			
44 .	1.45			
45	1.95			
46	1.80			
47	0.10			
48	0.75	-		
49	1.40			
50	1.25			

RCS Jet Group: Left side, Down-firing

Tap # $P_{I} \sim MMH_{q}$ $P_{I} \sim MMH_{q}$ $P_{I} \sim MMH_{g}$ Tap # Tap # 13.0 .2 .5 .1 0 -25 ---26 27 28 29 30-31 32 33 34 0 13 14 15 16 17 18 19 20 21 22 23 24 1 2. 3 4 5 6 7 0 .1 .7 .1 .1 0... .2. .1 8.3 .1 1.9 .1 .1 .2 0 .1 27.0 110.0 3.0 38.0 8.0 0. 8 .1 .5 .8 .3 .4 9 .5 10 35 .6 11 12

٠.

ţ

NOZ7LE GEOMETRY

		NO.	THR	OAT		E	AREA	r.
*O1	NO.	NC77LE	DIA. (IN.)	AREA (IN. ²)	DIA. (IN.)	AREA (IN. ²)	RITIO (4)	. NOTES
N68	- <mark>-</mark> 2	2	6.0375	401100	0.0934	.006850	6.2	YAW JET. NOT CANTED LEFT HAND SIDE.
69N	2-	. 01	5750-0	HOLLCO.	0.0934	.006850	6.2	PITCH UP, RIGHT HAND SIDE. NOT CANTED
.o.L.N	ب ې	2	0.0375	401100	0.0934	.006850	6.2	PITCH DOWN, LEFT HAND SIDE 20° OUTHOARD
		Ħ	P ANGLE	p = 10°				

114

THROAT DIA.

FITCH NOTILE

Figure 2. - Continued. .

ŀ

و لر ب

- 44

7

35

L/H WING SURFACE PRESSURE TAPS (19)

TAP NO.	X0	Ϋ́ς Ϋ́ς	LOCATION	1
. 1	1320	225	(19) PRESSURE TAPS LOCATED ON THE UPPER L/H WING SURFACE	
2	1320	281	· · · · · · · · · · · · · · · · · · ·	
3	1320	340		
4	1370	170		
5	1370	225		
6	1370	281		
7	1370	340		
8	1370_	400		
9.	1424	130		
10 .	1420	170		
11	1418	225		
12	1414	281		
13	1412	340		
14	1408	400		
15	1478	135		
16	1472	170		
17	1466	225		
18 .	1456	281	♥	
19	1448	340	(19) PRESSURE TAPS LOCATED	

ON THE UPPER L/H WING SURFACE

f. Pressure Tap Locations Figure 2. - Continued.

36

A CALL AND A

18

\$

BODY FLAP PRESSURE TAPS (6)

١.

i. **M**

. IDA

SSME NOZZLE BELL PRESSURE TAPS (3)

TAP	xo	۲ ₀	LOCATION
NO.		, 	
33	1556	ę thrust	FWD UPPER CENTERLINE OF THRUST OF SSME NOZZLE BALL.
34	1604	🧲 THRUST	AFT UPPER CENTERLINE OF THRUST OF SSME NOZZLE BALL
35	1582	30 ⁰ off Center	LEFT HAND SIDE OF SSME NOZZLE BELL LOOKING FWD, 30 ⁰ CCW FROM CENTERLINE OF THRUST

Pressure Tap Locations.

Figure 2f. - Concluded.

Figure 2. - Continued.

TAP	X ₀	Z0	LOCATION.
26	1492.0	358.0	l/H LOWER AFT FUSELAGE (BOAT TAIL AREA)
27	1492.0	312.0	· 🖌
28	1438.0	335.0	
29	1390.0	358.0	
30	1390.0	312.0	
31	1369.0	312.0	† -
32	1350.0	342.0	L/H LOWER AFT FUSELAGE (BOAT TATL AREA)

L/H LOWER AFT FUSELAGE PRESSURE TAPS (7)

15

(

Pressure Tap Locations Figure 2g. - Concluded. 39

.

£

	VERTICAL TAIL	(R/H) PRESSU	RE TAPS (15)
TAP NO.	х _о	Yo	LOCATION
50	1533	740	R/H SIDE OF THE VERTICAL TAIL AND RUDDER
49	1495	700	▲
48	1460	660	
36	1616	780	
37 °.	1587	740	
38	1557	700	
39	1528	660	•
40.	1500	620	
41	1471	580	
42	1641	740	
43	· 1619	700	•
44	1596	660	
45	1576	620	
46	1553	580	¥ .
47	1423	620	R/H SIDE OF THE VERTICAL

. K. 1

1.41

,

ð

. ان

R/H SIDE OF THE VERTICAL TAIL AND RUDDER Pressure Tap Locations Éigure 2h. - Concluded.

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

AN THE

ORIGINAL PAGE IS POOR

i

57.Y

c. Pressure Tap and Transducer Installation Photograph-Plan View

Figure 3. - Continued.

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

1....

1 1

ł

d. Pressure Tap and Transducer Installation Photograph-Side View

Figure 3. - Continued.

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

Figure 4. - Impingement Pressures on the Orbiter Fuselage, Body Flap and SSME Nozzle Bell. Û

ORIGINAL PAGE IS POOR

ţ.

5 m

Figure 5. - Left Wing Impingement Pressures.

TIM

Transit - Star

- - -

Figure 6. - Impingement Pressures on Right Side of Vertical Tail.