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A SIMPLE METHOD OF CALCULATING POWER-LAW VELOCITY

PROFILE EXPONENTS FROM EXPERIMENTAL DATA

By Jerry M. Allen
Langley Research Center

SUMMARY

Analytical expressions for the effects of compressibilityand heat

transfer on laminar and turbulent shape factors H have been developed.

Solving the turbulent equation for the power law velocity profile exponent

N has resulted in a simple technique by which the N values of experimental

turbulent profiles can be calculated directly from the integral

parameters. Thus the data plotting, curve fitting, and slope measuring,

which is the normal technique of obtaining experimental N values, is

eliminated. The N values obtained by this method should be within the

accuracy with which they could be measured.

INTRODUCTION

It has long been known that turbulent velocity profiles may be

represented by a power law of the form

u -1(
ue N

where N generally varies from about 5 to 11 for turbulent velocity

profiles. Figure 1(a) shows one-fifth and one-eleventh power law profiles

plotted in the conventional manner.

Since the exponent N represents the general shape of the profile,

the experimenter often obtains N values of his profiles as a useful

index of profile shape. The usual method of obtaining these experimental

N values is to plot the velocity profile in logarithmic form, fit

a straight line through the data, and measure the slope of this line.

Figure 1(b) shows how these one-fifth and one-eleventh power law profiles
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appear in logarithmic form. This process is rather tedious

and time consuming, especially when a large number of profiles

is involved.

It is a common practice in the conduct of boundary layer experiments

to obtain from the measured profiles certain integral parameters, such as

displacement thickness 6* and momentum thickness 6 , which are descriptive

of the character of the flow. These parameters are obtained by a process

which is independent of the method normally used to define the profile N

values.

The objectives of this paper are to develop an analytical expression

for the effects of compressibility and heat transfer on the turbulent shape

factor, to compare this expression with a similar one for the laminar shape

factor, and to demonstrate how this turbulent expression may be used as

a simple method of calculating the N values of experimental turbulent

velocity profiles, thus eliminating the need of logarithmic data plotting,

curve fitting, and slope measuring.

NOMENCLATURE

H shape factor, 6* /9

M Mach number 1

u
N power law velocity profile exponent, ue

R 0Reynolds number based on momentum thickness

T temperature

u velocity in streamwise direction

y normal coordinate

ratio of specific heats ( = 1.4 for air)

6 boundary layer total thickness

6* boundary layer displacement thickness

9 boundary layer momentum thickness
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p density

a Prandtl number (0.72 for air)

Subscripts:

aw adiabatic wall

c calculated

e boundary layer edge

i incompressible

m measured

t tabulated

w wall

DEVELOPMENT OF TURBULENT SHAPE FACTOR EQUATION

In incompressible flow the ratio of displacement thickness 6*i to

momentum thickness 9. is strictly a function of the shape of the velocity

profile and is, indeed, called the shape factor. Hence it is possible

to relate 6*i and 9. to N, as described below.
i1

The incompressible-flow forms of the displacement and momentum

thicknesses are

65*i e) dy

0 (2)

and 9i u 1 -u dy
1 ue ue /

0

Assuming a power law velocity profile in the form of equation (1) permits

the closed-form integration of equations (2). Thus
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_ 6 (3)

N + 1
• N+I

N 6
and . (4)

(N + 1) (N + 2)

Dividing equation (3) by equation (4) yields the incompressible shape

factor
N+2

H N + 2
Hi N (5)

In compressible flow the situation is not so straightforward since

the displacement and momentum thicknesses

6* j6( e dy
f eUe
o (6)

and J f u ) dy
0 Pe ue U e

are no longer strictly functions of the velocity profile shape. The

compressibility effects contained in the density profile result in

integrals which do not have general closed-form solutions. The functional
Tw - Taw

relationship of equations (6) may be expressed as H = H (N, 
Me, Te

For the zero heat transfer case (Tw = Taw) H reduces to Haw = Haw

(N, Me). Reference 1 has numerically integrated equations (6) for this

zero heat transfer case, and has tabulated Haw as a function of N and Me

This function would be much more useful if it could be put in analytic

rather than tabular form. Hence, an attempt was made in this study to

analytically define the functional relationship Haw = Haw (N, Me), as

described below.

Figure 2 was prepared from the tables of reference 1 to show the

variation of Haw with N and Me . If Haw is viewed as being composed of

Hi (N) plus a compressibility correction term LH (N, Me), we can write

Haw = Hi (N) + AH (N, Me) (7)
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The variation of Haw with Me appears exponential. Hence if we assume that

HEHaw - Hi = f(N) Mex , the exponent x can be obtained from the slope

of the logarithmic plot of Haw and Me; that is

x = - l-ge-(H)
x -eog(Me)

Figure 3 shows that the exponential variation fits the data very well,

and that the value of the exponent is about 1.989.

Hence AH= f(N) Me1 .989 (8)

or aH = f(N)
S 1.989Me

sH

Figure 4 shows how the parameter MeA 9  varies with N. The

function f(N) was estimated from this figure to be

0.2719f(N) = 0.4099 + 0.2719 (9)

Hence the desired relationship between H, N,and Me for turbulent

adaiabatic flow is obtained by inserting equations (5), (8) and (9) into

equation (7) . Thus

Haw .0+ 2. +(0.4099 + 0.2719) Me1.989 (10)

a = 0+0499+ N Me

For given values of N and Me, comparisons were made between 
4 he

values of Haw calculated by equation (10) and Tucker's tabulated values.

For the range 55Nsll and OsMe s 5 , which is the range on which equation

(10) was derived, the disagreement between calculated and tabulated Haw

values is less than 0.3 percent. Even up to Me = 10, which is the limit

of the tabulated data, the disagreement is less than 0.5 percent. Thus

equation (10) provides a satisfactory approximation for the turbulent

adiabatic shape factor as expressed in Tucker's table.

Persh and Lee ( reference 2) have numerically integrated equations

(6) for the heat transfer case, and have tabulated H as a function of N,

Me , and Tw - Taw . In order to get an analytical expression for this
T
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general case, H was viewed in this paper as being composed of the zero heat

transfer value Haw plus a correction term due to heat transfer AR . Thus

we may write

H (N, Me, --W- TeTaw) = Haw (N, Me, 0) + R (N, Me, Tw TeTaw (11)

Figure 5 was prepared from the tables of reference 2 to show the

variation of H ( H - Haw) with the heat transfer parameter Tw - Taw
Te

for Mach numbers of 0 and 5, and N values of 5 and 11 . This variation

is approximately linear. Hence we may write

S= g(N, Me) Tw - Taw (12)
Te

Morenver, Mach number has a very small effect on the function g, as shown

in Table I where the g values were measured from figure 5

TABLE I - MEASURED VALUES OF g

N Me g

5 0 1.286 1.271.27

5 5 1.256)

11 0 1.143 1.13° 3 1.13

11 5 1.124

If the dependency of g on Me is eliminated, eq. (12) can be written

A- = g(N) Tw - Taw (13)
Te

Assuming a linear variation of g with N, the following equation can be

derived from Table I

g(N) = 1.39 - 0.024N (14)

Hence equation (13) becomes

= (1.39 - 0.024N) Tw - Taw (15)

Te

Comparisons were made between the values of -H calculated from equation

(15) and those taken from the tables of reference 2 . The disagreement

between the calculated and tabulated values over the range of variables
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covered by the tables (O0Me<20, 5<N1l , and -10 Tw - Taw - ' 10)

was less than ± 2 percent . Te

Hence the general expression for the turbulent shape factor as a

function of power-law exponent, Mach number, and heat transfer can be

obtained by inserting equations (10) and (15) into equation (11) .

2.O.2719\ 1.989
H = 1.0 + + 4099 + N Me

N (0.409 N )N

+ (1.39 - 0.024N) Tw - Taw (16)
Te

COMPARISON OF LAMINAR AND TURBULENT

SHAPE FACTOR EQUATIONS

An approximate relation for the effect of compressibility on

laminar shape factor has been derived by Monaghan in reference 3. The

relation is

2 A - 7rD - 4B - 4 (17)
4 - 7

H: 4-ir

where A = Tw
Te

B = - Me2Taw
_ Te)

Hence equation (17) becomes

T ,- Taw
2irTaw -r ()1 M 2 - 4 +. 2r - 4 ) T - Taw (18)

H 2 T,- Me2 T1T
H = 8 '4 - 7

The adiabatic wall temperature ratio in laminar flow is

Taw = 1 + -l J Me2  (19)

T-e- 2

e
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Inserting equation (19) into equation (18) results in the following

expression for Y= 1.4 and a= 0.72

H = 2.660 + 0.715 Me2 + 3.143 Tw -Taw) (20)
k Te I

Figure 6 shows comparisons between the laminar and turbulent shape

factors, equation (20)and (16) , respectively. The general trends are

similar; however, both Mach number and wall temperature have somewhat

larger effects on the laminar shape factor. For experimental data in

which the integral parameters 6* and 9 are known, figure 6 can be used as a

convenient criterion to determine if a profile is laminar or turbulent.

CALCULATION OF POWER-LAW EXPONENT FROM SHAPE FACTOR

Note that the adiabatic turbulent shape factor equation developed

in this paper - equation (10) - may be easily solved for the power law

exponent N.

1.989
N = 2.0 + 0.2719 Me (21)

Haw - 1.0 - 0.4099 Me 989

Thus it should be possible for a given freestream Mach number to calculate

the N values of turbulent profiles directly from experimental integral

parameters.

If the incompressible turbulent shape factor equation (equation (5))

is solved for N, the result is

2 (22)N =
Hi - 1

Note that for the case of Me = 0, equation (21) reduces to equation (22) .

The calculation of N by this technique can be accomplished by one

of the following methods: (1) For profiles in which Tw Taw , N can be

calculated directly from Haw and Me by equation (21); or (2) For profiles

obtained under heat transfer conditions, N can be interpolated from equation

(16) from known values of H, Me , and Tw - Taw ; or (3) For any profile

in which the incompressible, or kinematic,Tefornasof displacement and momentum
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thicknesses are known, N can be calculated from Hi by equation (22) . Note

that this third method is not restricted to Me = 0 or Tw = Taw profiles even

though Hi is used in the calculations

Since integration of experimental data to obtain 6* and 9 is a normal

data reduction procedure, it would be a simple matter to integrate the same

profiles to obtain 6*i and 9gi . Hence by using the appropriate method the

experimenter can calculate the N values of his turbulent profiles without

the need of data plotting, curve fitting and slope measuring.

EXAMPLES OF USE

Let us now examine a few adiabatic velocity profiles to see how the N

values calculated by this technique (Nc and Nc, i) compare with measured

values (Nm) . Reference 4 contains 12 turbulent velocity profiles at Mach

numbers of 1.975, 2.320, and 4.630 . Table II lists the test conditions

of these profiles, the integral parameters including Nc and Nc, i, and Nm

measured in the conventional manner.
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TABLE II - REFERENCE 4 DATA

PROFILE Me R Haw Hi Nc Nci Nm

1 1.975 3.62.i04 3.002 1.275 7.35 7.27 7.41

2 2.320 1.481I0 4  3.594 1.238 8.46 8.43 8.50

3 2.320 2.38i104 3.575 1.228 8.88 8.78 8.63

4 2.320 4.42A10 4  3.554 1.217 9.37 9.21 9.06

5 2.320 6.41x104 3.534 1.207 9.91 9.63 9.45

6 2.320 8.04A10 4  3.532 1.204 9.98 9.83 9.24

7 4.630 1.07<104 10.508 1.237 8.91 8.44 9.00

8 4.630 1.69x10 4  10.490 1.233 9.10 8.58 9.20

9 4.630 3.1110 4  10.418 1.214 9.94 9.37 10.20

10 4.630 4.44A10 4  10.369 1.200 10.60 9.98 10.83

11 4.630 5.71A10 4  10.343 1.194 11.00 10.31 11.11

12 4.630 6.81r104 10.322 1.188 11.33 10.66 11.31
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A comparison of the experimental H values of this table with the curves

of figure 6(a) reveals that these profiles are indeed turbulent. The ratios

of calculated-to-measured N values are plotted in figure 7 to show that both

Nc and Nc, i are generally in good agreement with the measured values of N.

Reference 5 has examined a large number of profiles and has estimated that N

can be measured within an accuracy of about ±10 percent. For all the data

presented in figure 7, the agreement between calculated and measured N values

is within this accuracy. Also, note from Table II that at each Mach number

both the calculated and measured N values show the expected trend of

increasing N with increasing Reynolds number.

One of the profiles from reference 4 is examined in more detail in

figure 8 . Straight lines were fitted to the outer part of the profile only

(solid line) and the inner part only (dotted line) to illustrate the range

of curve fits which could be drawn through this profile. The N values of

these lines are 6.69 and 8.68 , respectively; which represent a ±13 percent

range. Since it is unlikely that these extreme fits to the data would be

performed, especially the inner profile fit, the range of N curves which

would normally be fitted to this profile is probably close to the ±10 percent

mentioned earlier . A more reasonable fit to the complete profile is

represented by the dashed line, whose N value is 7.41 , which is very close

to the calculated values for this profile (Nc = 7.35 and Nc, i = 7.27).

Since this technique calculates N from either H, Haw, or Hi , which are

obtained by integration of the entire profile, the N values thus obtained

represent a fit to the entire profile. Good results would not be obtained,

therefore, for turbulent profiles containing a large laminar sublayer.

Measurements in a laminar sublayer tend to reduce the calculated N values,

with the extreme example being a completely laminar profile. For example,

the integration of a Blasius profile yields Nc, i = 1.26 . Since N ranges

from about 5 to 11 for turbulent profiles, this technique could also be

used as convenient criterion for determining whether a profile is laminar or

turbulent.

One cautionary note about this technique needs mentioning. It can be

determined from equation (21) that N is rather sensitive to errors in H.

For example, integration errors which result in a one percent error in H
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produce about a 10 percent error in N . Therefore in order to use this

technique, accurate integration of experimental data is required.

CONCLUDING REMARKS

In summary, analytical expressions for the effects of compressibility

and heat transfer on laminar and turbulent shape factors H have been

developed. Solving the turbulent equation for the power law velocity profile

exponent N has resulted in a simple technique by which the N values of

experimental turbulent profiles can be caulculated directly from the integral

parameters. Thus the data plotting, curve fitting, and slope measuring,

which is the normal technique of obtaining experimental N values, is

eliminated. The N values obtained by this method should be within the

accuracy with which they could be measured.

Langley Research Center

National Aeronautics and Space Administration

Hampton, Virginia, August 20, 1974
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