
CRES REMOTE SENSING LABORATORY

li i l.

8-18 GHz RADAR SPECTROMETER

CRES Technical Report 177-43

Thomas F. Bush

Fowwaz T. Ulaby

September, 1973

N75-1041
1

(NASA-CR-140317) THE 8-l GZ RADAR
SPECTROMETER (Kansas univ. center for
Research, InC.) 136 p HC $5.75 CSCL 14B Unclas
Research, Inc') -G3/35 53182

Supported by:

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Lyndon B. Johnson Space Center

Houston, Texas 77058

CONTRACT NAS 9-10261

THE UNIVERSITY OF KANSAS CENTER FOR RESEA.
*2385 Irving Hill Rd.-Campus West Lawrence, Kansas 66044

https://ntrs.nasa.gov/search.jsp?R=19750002339 2020-03-23T03:24:01+00:00Z



jTHE UNIVERSITY OF KANSAS SPACE TECHNOLOGY LABORATORIES
2291 Irving Hill Dr. - Campus West Lawrence, Kansas 66044

Telephone:

8 - 18 GHz RADAR SPECTROMETER

CRES Technical Report 177-43

Thomas F. Bush
Fawwaz T. Ulaby

September 1973

Supported by:

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Lyndon B. Johnson Space Center

Houston, Texas 77058

CONTRACT NAS 9-10261

REMOTE SENSING LABORATORY

____ ___ ___ ___ ___ ___ ___ ___ ____ ___ ___ ___ ___ ___ ___ ___REMOTE SENSING L ABORATORY



TABLE OF CONTENTS

Page

ABSTRACT. . . . ..... ............. . . v

1.0 INTRODUCTION .. ............... 1

2.0 RADAR AS A REMOTE SENSOR . . . . . . . . ...... . 3

2.1 ImagingRadar . . . . . . . . . . . . . . . . 3
2.2 Non Imaging Radar . . . . . . . . . . . . . . 4
2.3 The Radar Cross Section . . . . . . . . . . . . . 5

2.3.1 ao as a Function of Target Geometry . . . . . . 5
2.3.2 a ° as a Function of Complex Permittivity . . . . . 6
2.3.3 co as a Function of System Parameters . . . . . . 6

2.4 Lack of Adequate Scattering Data . . . . . . . . .. 7

3.0 RADAR SPECTROMETER DESIGN AND CONSTRUCTION . . . 9

3.1 Specific Design Objectives . . . . . ........... 9
3.2 Choice of an FM-CW System . . ........... * * 9

3.2.1 Frequency Averaging ... ............ 9
3.2.2 Ranging Capabilities . . . . . . . . ... 13
3.2.3 System Simplicity . . . . . . . . . ... 13

4.0 ANTENNAS ...................... 14

4.1 Reflectors .... ...... . ......... .14
4.1.1 Antenna Beamwidth . . . . . . . . . . . . 14
4.1.2 FarField . . . . . . . . . . . . . . .15
4.1.3 Antenna Gain . . . . . . . . . . . . . 15

4.2 Antenna Feeds . . . . . . .. . ............... 15
4.3 Polarization Capabilities . . . . . . . . . . . . 17
4.4 Antenna Pattern Measurement Procedure . . . . . . . 17
4.5 Calculation of Effective Antenna Beamwidth . . . . . . 19

5.0 TRANSMITTER . . . ............. . . .20

6.0 RECEIVER ........ .................. 25

6.1 Mixer ... ........ ............. 25
6.2 Impedance Transformer and IF Amplifier . . . . . . . . 25
6.3 IF Filter . ................. 27
6.4 SignalDisplay . . . . . . . . . . . . .. . .27
6.5 Receiver Noise. . . . . . . . . . . . . . . . 31
6.6 Dynamic Range and Tangential Sensitivity . . . . . . . 31

1



TABLE OF CONTENTS (CONTINUED)

Page

7.0 SYSTEM CONFIGURATION. . . . . . . . . . . . . . 38

8.0 CALIBRATION . . . . . . . . . . . . . . .. . . 45
9.0 CALCULATIONOF . ... . . . . . . . . .... . 48

10.0 MEASUREMENT ACCURACY. . . . . . . . . . . . . . 50

11.0 CONCLUSION . . . . . . . . . . . . . . . . . . 61
APPENDIX A. ANTENNA FEED PRINCIPAL PLANE

POWER PATTERNS . . . . . . . . . . . . . 62
APPENDIX B. ANTENNA FEED BEAMWIDTH, VSWR,

GAIN, AND ISOLATION CURVES . . . . . . . . 69
APPENDIX C. TRANSMIT ANTENNA PRINCIPAL PLANE

POWERPATTERNS . . . . . . . . . . . . . . 74
APPENDIX D. RECEIVE ANTENNA PRINCIPAL PLANE

POWERPATTERNS . . . . . . . . . . . . . . 87

APPENDIX E. DUAL PRINCIPAL PLANE POWER PATTERNS . . . . . 100
APPENDIX F. ANTENNA EFFECTIVE PRINCIPAL PLANE POWER

PATTERNS . . . . . . . . . . . . . . . . 113
REFERENCES .... ... .. ..................... 126

ii



LIST OF FIGURES

Page

Figure 1. 90 Per Cent Confidence Interval For Rayleigh
Distribution . . . . . .... ....... . . ..** 10

Figure 2. Illustration Defining Look Angle, 0,
Beamwidth, a, And Range, R . . . . . . . . . . . 13

Figure 3. Far Field Distance For The Antenna As A
Function Of Frequency . . . . . . . . . . . ... 16

Figure 4. Photographs Showing Antennas Mounted On
Antenna Range Tower . . . . .......... . . 18

Figure 5. Basic Block Diagram of 8-18 GHz Radar Spectrometer . . . 21

Figure 6. Illustration Showing Frequency Relationship
Between Transmitted And Received Signals . . . . . . 22

Figure 7. Unlevelled Sweep Oscillator Power Spectrum . . . . . 24

Figure 8. IF Noise Contours As A Function Of Frequency
And Source Impedance . . . . . . . . . . . . . 26

Figure 9. IllustrationDefining RB: The Range Resolution
Afforded By The Antenna Beam . . . . . . . .. . 28

Figure 10. IF Filter Response Characteristics . . . . . . . . . 29

Figure 11. IF Spectrum For Corn At A Look Angle Of Zero
Degrees. Note The Major Portion Of The Spectrum
Falls Within The IF Filter Band As Indicated By
The Heavy White Lines . . . .. . . . . . . . . 30

Figure 12. AM Noise Spectrum For Various Values Of FM. Note
The Trend Of Increasing Noise With Increasing Values
OfF ..... * * * * * * .............. 32

Figure 13. Photos Showing The AM Noise Spectrum Of The
Receiver For Various Values of FM  ..... ... . 33

III



LIST OF FIGURES (CONTINUED)

Page

Figure 14. Leveled Sweep Oscillator Power Spectrum. Note
That The Spectrums Gross Variations Are Leveled
While The Minor Undulations Persist . . . . . . . . . 35

Figure 15. Receiver Tangential Sensitivity Curves . . . . . . . . 37

Figure 16. 8-18 GHz Radar Spectrometer Block Diagram . . . . . . 40

Figure 17. Photo Showing Radar Components Located In
Topographic Van . . . . . . . . . . . . . . . 41

Figure 18. Photos Showing The Placement Of Components
OnBoom . . . . . . . . . . . . . . . . .. . 42

Figure 19. Photos Showing Placement Of Various Components
Behind Antenna Feeds . . . . . . . . . . . . . 43

Figure 20. Photo Showing An Overall View Of The System With
The Boom Fully Extended . . . . . . . . . . . . 44

Figure 21. Photo Showing Lens As Used During Calibration . . . . . 47

Figure 22. Curves Depicting The Fading Of The Return Signal As
The Boom Was Moved In The Azimuth Plane. Note
The Reduction In The Fading As e, The Look Angle,
Increases . . . . . . . . . . . . . . . . ... 51

Figure 23a. Fading Histogram of Corn at 9 GHz, e=00  . . . . . . 53

Figure 23b. Fading Histogram of Corn At 9 GHz, e =300 . . . . . . 54

Figure 23 c. Fading Histogram of Corn At 9 GHz, e=700 . . . . . . 55

Figure 24. 90, 80, And 50 Per Cent Confidence Intervals As A
Function Of Number Of Independent Samples. . . . . . 58

Figure 25. Curves Of The Mean And Median As A Function Of
Number Of Degrees Of Freedom. Note The Median
Rapidly Approaches The Mean As N Increases. . . . . . 59

iv



ABSTRACT

This report discusses the design, construction, testing and accuracy of an

8-18 GHz radar spectrometer. The spectrometer is an FM-CW system employing

a dual antenna system. The antennas, transmitter and a portion of the receiver are

mounted at the top of a 26 meter hydraulic boom which is in turn mounted on a truck

for system mobility. HH and VV polarized measurements are possible at incidence

angles ranging from 00 to 800. Calibration is accomplished by referencing the

measurements against a Luneberg lens of known radar cross section.
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1.0 INTRODUCTION

Remote Sensing is one of the youngest, yet one of the most dynamic fields

in the scientific community today. The term "youngest," however, should not

be construed as absolute since the advent of the camera provided one of the most

valuable sensors available at the present day. It was not until the past decade,

however, that remote sensing came of age as a science recognized as a valuable

tool with the potential to solve many of the present and future resources problems

facing mankind (1, 2, 20).

Remote Sensing advocates do not claim to have answers to all of man's

problems but they do offer solutions to many of the most pressing questions At

this time one of the most real problems for many people is the world's diminishing

energy supply. Remote sensing has been shown to be an extremely effective tool

for the study of lithologic and geological structures, important keys in the exploration

for oil (3, 4, 19, 20). Other applications of remote sensing include land-use

inventories, detection of crop insect pests and diseases, weather forecasting and

a variety of others too numerous to be presented in detail. Luney and Dill (2)

present a discussion of many of the applications of remote sensing with particular

attention to agriculture and forestry. The Water Resources Research Catalog (41)

provides a useful index to the many applications of remote sensing to the field of

hydrology.
The ocean, covering 75 per cent of our planet, provides food and transportation

for all nations and constitutes the major link in the earths water cycle. Thus it

is not surprising that the sea is a major target of study for many investigators. These

investigations indicate an extreme potential in remotely sensing the ocean (5, 6).

As the popularity of remote sensing increases, more and more effort is being

made to design new sensors and to apply existing sensors. A number of sensors

were developed for usage in other fields but were recognized as important instruments

to be used in remote sensing. The obvious example of the aerial camera found

its first applications in the military which has helped it to develop into one of the

primary sensors. Its popularity stems from the fact that it is flexible, can provide

high resolution images and is available to most people. Its major disadvantages stem

from the fact that it requires solar illumination and clear weather (7, 8).



The radiometer has found application in the visible, infrared and microwave
portions of the electro-magnetic spectrum. Its ability to measure target emission,
an indicator of target temperature, has shown it to be an effective tool in geoscience
investigations and in the study of thermal pollutants (9, 10).

A multitude of other sensors are available to scientists such as sonar, gamma

ray spectrometers and magnetometers, each possessing unique capabilities. Although
each sensor provides its own particular type of data, the integration of a number
of these unique sensors into an operational system provides the potential for realizing
more information than any one could provide alone. To fully utilize an operational
system, each element of the system must be dependable and fully understood (11).
Radar is one such element and may play the central role in an operational system.
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2.0 RADAR AS A REMOTE SENSOR

Radar is a unique device in that it provides its own source of illumination.

It has its origins during World War II when it was developed by the military for

aircraft detection and tracking. Since then it has developed as both a military

tool and as a civilian tool.

Being self-illuminating and thus independent of external illumination, radar

provides distinct advantages over passive sensors. The angle at which the illumination

intersects the target can be varied so as to produce a number of desired effects such

as shadowing (12). Radar is also nearly weather and time independent. The designer's

control of frequency allows him to place the signal in an atmospheric window so that

signal attenuation due to rain, cloud cover and gaseous absorption is minimized.

The frequency and polarization of the illumination can be chosen to provide

optimum results for a particular investigation. Experimental results have shown that

both parameters can be extremely important in the detection and separation of

targets (13, 14, 15). Control of the illumination phase is also important, particularly

in the synthetic aperture imaging radars.

2.1 Imaging Radar

Radar technology has continued at a rapid pace since its beginnings. The

present state of the art has produced an ultra-sophisticated imaging system known

as a synthetic aperture side looking airborne radar. This radar illuminates a target

from a number of positions along its flight path and extracts both amplitude and

phase information from the signal at each position. This information is then stored

and finally processed to produce an image. Although this is an extremely costly

and complicated process, it results.in very fine resolution which in theory can under

some conditions top that of a high quality photographic system (16)!

Needless to say, synthetic aperture radars are not commonplace. Real

aperture side looking imaging systems are available for civilian use but even these

are not yet readily available. They have, however, exhibited their capabilities

and are the topic of many investigations (4, 12, 15, 17).
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A distinct advantage of state of the art side look radar is that it is an

imaging system. The image resemblance to a photograph allows it to be

interpreted by a photo interpreter after minimal instructions. All of his inclinations

to look for sizes, shapes and patterns in the image are applicable. Tone, shadow

and texture are highly dependent on the imaging system, a critical point that

must be realized (18).

A second capability of a side looking imaging system is that it produces a

synoptic presentation of a rather extensive area while providing resolution acceptable

for most applications. Typically, a real aperture side looking system can provide

cross track resolution of 10 meters and along track resolution of 15 meters while

covering a 65 km swath from an aircraft at a few km altitude.

Another advantage of SLAR is that of relief enhancement. This is the effect

of shadowing which is especially pronounced in the far range. As with photography,

stereoscopic coverage is available as is the ability to mosaic radar imagery (19).

These advantages of SLAR are suggestive of an extremely effective tool

in remote sensing (21). Yet the effectiveness of side looking airborne radar has

not been fully realized. Although the sophistication of synthetic aperture radar

is a reality, information available on the parameter which is ultimately measured,

the radar cross section, is sadly quite limited.

2.2 Non-Imaging Radar

In the field of remote sensing, non-imaging radars are normally known as

scatterometers. The purpose of any scatterometer is to measure the scattering cross

section, a, of a target of interest. Knowing a, the ultimate goal is to extract from

it a maximum of information pertinent to that particular target. Hopefully this

would permit use of a as a target identifier.

Again as with imaging systems, scatterometers have displayed their effective-

ness in remote sensing (22). Scatterometers are not usually imaging devices although

an imaging system may be calibrated for this purpose. Scatterometers are, however,

often simpler in design, making them less costly in terms of initial expense.
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2.3 The Radar Cross Section

In most cases in remote sensing, radar backscatter is described in terms of

a0 , the differential radar cross section rather than a, the total radar cross section.

This representation is correct only if it is assumed that the backscatter is contributed

by a very large number of independent scatterers so that the signal is essentially

incoherent. If this assumption is indeed applicable, superposition of power is

possible and we can write the radar equation in the form

P n P ti G .ti Gri (i/AAi) AAj 2  2.3.1

i1 (4r)3 R4  2.3.1

where AA. is an element of the scattering surface and n is the number of scattering
i ith

elements. For the i element, U i/AA i is the incremental scattering cross section.

By our initial assumption we can only consider the average case so we write

ao a 2.3.2
00

a = < AA. >2.2

where< > denotes the average value. This parameter, ca , was introduced in an

attempt to describe a scattering cross section independent of illuminated area, a

variable totally dependent on the particular system being used (23).

Two target parameters control the value oa0 will assume. The first is target

geometry,while the second is target complex permittivity. Both are equally important
0

when an attempt is made to characterize a target in terms of a

2.3.1 oo as a Function of Target Geometry

Target geometry is the more difficult parameter to describe. In an

attempt to define the cutoff point between a smooth and rough surface, Rayleigh

proposed a criterion which is commonly accepted among investigators. Rayleigh

states that in order to consider a target as "smooth,"

h X 2.3.3

8 cos 5
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where h is the maximum height difference between points on a surface, is the
wavelength and o is the angle of incidence. After applying this criterion, however,
the question remains as to the degree of smoothness or roughness presented by
a particular target and finally, how to describe the target.

Many investigators have presented mathematical models for particular classes
of targets in an attempt to describe their scattering behavior. A useful summary
of many of the earlier models is given by Janza (24).

Because of the complexities of natural targets, both the physical and
statistical models are extremely idealized resulting in a gross target description.
In some cases this may be appropriate but for most targets an actual measurement
is the ultimate description.

0

2.3.2 0 as a Function of Complex Permitivity
In collecting data on complex permittivity, most investigators have taken

an experimental rather than a theoretical approach (25, 26, 27, 28). The methods
employed in compiling these data are generally quite controlled and the measurements
are usually made in the laboratory. In studying many materials such as synthetic
insulators, these methods are perfectly acceptable, but when studying naturally
occurring targets whose properties vary as a function of their environment, these
methods may not be easily employed.

An important example of this is found in the measurement of complex
permittivity of soils. The permittivity of a soil will be a function of soil type,
moisture content and soil density. In samples collected for laboratory study, both
moisture content and soil density may be disturbed,making an analysis somewhat
unreliable.

2.3.3 a as a Function of System Parameters
Although target geometry and permittivity are basic to the description of a0

the characteristics of the illumination are equally important. These characteristics
are frequency, polarization and incidence angle. Although investigators have made
an effort to study the effects of these variables on o, no coordinated program has
been initiated to study this problem in a comprehensive manner (13, 14, 15).
Combined with the effects of target parameters, the addition of these three variables
presents an almost impossible task to the theoretician attempting to devise an adequate
mathematical description of go, even for the simpler naturally occurring targets.
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2.4 Lack of Adequate Scattering Data

Radar has already exhibited its worth as a useful remote sensor and certainly

has much unrealized potential. In attempting to realize this potential, however,

it is most frustrating to attempt radar design with little or no a priori knowledge of

the parameter being studied, the scattering coefficient (23, 24).

Most of the studies made of 0, as of this writing, suffer from serious

disadvantages. These may be lack of polarization agility, limited range of incidence

angle, limited size of resolution cell, limited variety of targets and so on. One of

the most serious drawbacks to nearly all studies, however, is that measurements

were made at single frequencies rather than continuously over wide bands. This is

in contrast to measurements made in the visible and infrared bands where continuous

spectral responses are available.

The Goodyear program (35) was initiated in order to study the backscatter

of vegetation. Measurements, however, were restricted in terms of frequency, look

angle and variety of targets. Ohio State University (14) studied an extensive

variety of targets at four frequencies but was seriously hampered by the small size

of the resolution cell and the lack of continuous frequency coverage. In an attempt

to measure the ability of radar to study subsurface soil interfaces, Lundien (25)

constructed a system for making controlled laboratory studies. It was discovered

however that multiple reflections within the radar facility and his method of sample

preparation made signature analysis, an important phase of his study, impossible.

Similar problems plagued most of the reported studies such as de Loor (36) whose

system produced useful data but only over a small range of incident angles.

In 1969, Moore, Waite and Rouse published an article (37) describing

the advantages of transmitting a broad band signal. The term "panchromatic" was

coined to describe such a system. Subsequently, much effort was made to realize

a panchromatic radar and to experimentally exhibit these advantages. Initial

studies of panchromatic illumination were made by Rouse (42), Thomann (38) and

Walte (29). Thomann made an acoustical simulation of a panchromatic imaging

system and showed the effect to be that of speckle reduction in radar imagery.

Similarly , Waite constructed a polypanchromatic microwave system and exhibited

the same reduction in speckle along with octave bandwidth spectral response

curves for a very small range of targets.
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During the summer of 1971, octave bandwidth spectral response data were

produced by a frequency modulated system. Calibration difficulties were a

problem so that only relative data was reported (39). The system was rebuilt

and octave bandwidth data with better absolute calibration were finally collected

during the summer of 1972 by Ulaby (34).

In view of the success achieved by this system, it was decided to expand

the system to cover the spectrum from 2-18 GHz. It was proposed to cover this

range of frequencies with two systems, one covering the band from 2-8 GHz and

a second covering the band from 8-18 GHz. This report discusses the design,

construction and testing of a system operating between.8 and 18 GHz.
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3.0 RADAR SPECTROMETER DESIGN AND CONSTRUCTION

3.1 Specific Design Objectives

The original design objectives of the scatterometer are presented below in

the form of a listing.

(a) Absolute measurement of ao.

(b) Continuous frequency coverage from 8 GHz to 18 GHz.

(c) Continuous incident angle coverage from 00 (normal) to 800.

(d) Maximum polarization agility.

(e) Adequate frequency averaging without excessive loss of

spectral resolution.

(f) Ranging capabilities.

(g) Adequate dynamic range for targets of interest.

(h) Semi-continuous calibration capabilities.

(i) Sufficient angular resolution so as not to sacrifice

angular information.

j) System mobility for coverage of a variety of targets.

The following sections explain how the above objectives were

met.

3.2 Choice of an FM-CW System

The choice of an FM-CW system was based on its ability to satisfy a number

of the objectives set forth in the previous section. These are discussed below.

3.2.1 Frequency Averaging

If we assume that the targets of interest can be represented by a random collection

of independent scatterers, then we can describe the fading signal by a Rayleigh

distribution (23). If we do indeed make this assumption, the number of independent

samples required for a particular accuracy is shown in Figure 1. In this case, the

deviation from the median value between the 5 per cent and 95 per cent points on the

distribution is plotted against the number of independent samples. Clearly averaging

is needed for an acceptable amount of accuracy.

9
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Since the accuracy depends upon the number of independent samples, not the

total number of samples, it is necessary to determine the frequency spacing between

independent samples. Under the conditions that the fading distribution is Rayleigh,

this spacing is given by (29)

AF 150 3.2.1.1AFS -1 MHzs D Mz

where D is the difference of the minimum and maximum distance (measured radially

from the antenna) between the scatterers in an illuminated cell contributing to

the return. For any radar, the maximum value of D can never exceed the range

resolution of the system although D can be less than the range resolution.

For an FM-CW radar, range resolution is determined either by the angular

resolution of the beam or by the limiting effect of the IF filter on the measured

return (see sections 6.3).

If the IF filter is not limiting the return,AR can be calculated from pure

geometrical considerations. In this case, (see Figure 2).

where R= h [sec (e+ 0/2) - sec (0- 0/2)]where
AR= range resolution

h = antenna height above the target

O = pointing angle of antenna relative to vertical

= antenna beamwidth in the elevation plane.

If the IF filter limits the measured return

AR = R Af 3.2.1.2
if

where R = slant range

Afif = IF filter bandwidth

fif =  intermediate frequency

Usually, the minimumr value of D occurs at.normal incidence. When looking

at bare soil, for example, D may be in the range of 5-10 cm depending on surface

roughness and penetration. In this case, AF will range from 3 to 1.5 GHz. Thes

maximum value of D occurs at a look angle of 700 at which point the range resolution

of the system (4.53 m) is the controlling factor. For this case, AF = 33 MHz.
IS
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FIGURE 2. ILLUSTRATION DEFINING INCIDENT ANGLE, e
BEAMWIDTH, 1, AND RANGE, R.



Based upon these figures a decision was made on the band over which

averaging would be done. It was felt that 400 MHz was acceptable in terms of

spectral resolution and interms of the number of independent samples provided at

larger incident angles. Although only.1 independen't sample would be provided

at vertical, 12 independent samples would be provided when a target exceeded

the range resolution of the system at 700.

3.2.2 Ranging Capabilities

To permit control over the size of the resolution cell, it was felt that

ranging capabilities were necessary. The resolution ability of an FM-CW radar

is determined by the IF filter which is discussed in section 6.3.

3.2.3 System Simplicity

To reduce both cost and construction time and to increase reliability it

was felt a relatively uncomplicated system was desirable. Although a pulse

system such as that used by Waite (29) would have provided the necessary system

capabilities it was felt that the problems associated with such a system were

undesirable. To keep track of individual pulses, some sort of timing scheme

would be necessary. This in itself would have been a major subsystem causing a

substantial increase in system complexity. Adding to this would be the problem

of the ringing of pulses within the system making it even more difficult to distinguish

the actual signal from decayed remnants of the transmitter pulse.

Often, an FM-CW radar suffers the problem of transmitter leakage through

the duplexer of a single antenna system. This can be solved, however, by use of a

dual antenna system.

13



4.0 ANTENNAS

4.1 Reflectors

The choice of reflectors was based on a compromise among three basic

criteria.

(a) Antenna Beamwidth =

2D
(b) Placement of target in far field R = 2D

M

(c) Antenna Gain G 4- n Ae
X2

where

S= beamwidth

A = wavelength

D = aperture diameter

G= gain
n = antenna efficiency

A = effective aperture area
e

R minimum range to far field

4.1.1 Antenna Beamwidth

For the radar backscatter to be representative of a particular target, the
illuminated cell must include several scatterers contributing to the measured return.
Yet, if the illuminated area is increased, too much angular information concerning
ao would be lost.

In view of this, 61 cm. spun aluminum parabolic reflectors with an f/d
ratio of 0.3 were chosen for both transmitting and receiving antennas. At vertical
indicence the reflectors would theoretically provide an effective beamwidth
(G t * Gr) of approximately 2.20 and 1.20 at 8 and 18 GHz respectively. This
forces the illuminated area to vary from 1 m to 0.5 m2 . These values increase
with the incident angle.

14



4.1.2 Far Field

Figure 3 shows the far field distance as a function of frequency for the

standard criteria, (30)

S 2D 2

M-

and the less stringent criteria (30).

D2

RM

Note that the reflectors satisfy the more stringent requirement at 8 GHz and the

less stringent requirement at. 1.8 GHz.

4.1.3 Antenna Gain

For any antenna, gain is an important parameter to be considered when a

choice of reflector is being made. This was true in our case but a more stringent

requirement was that of beamwidth, discussed above. Since beamwidth and gain

are related by

4wnG=

where

r = antenna efficiency

ee ,4 = half power beamwidths measured in radians

the gain was dictated by the beamwidths. For a beamwidth of 3.0 in both planes,

and an antenna efficiency of 0.5, the gain would be 33.5 dB, the figure used in

calculating the expected power returned.

4.2 Antenna Feeds

Because of the limited availability of feeds covering the 8-18 GHz regions,
the choice was somewhat simplified. Both log periodic and spiral types were

available but because a spiral is circularly polarized rather than linearly polarized

a log periodic feed was chosen.

15
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The primary patterns of the feeds are shown in Appendix A. Appendix B

shows VSWR vs. frequency, cross polarization level vs. frequency and gain vs.

frequency.

The feed mount was constructed entirely from nylon and plexiglass, both

having a dielectric constant far below that of a metal mount, to minimize pattern

distortion.

4.3 Polarization Capabilities

To maximize the polarization agility of the system, both dishes were mounted

on the shafts of small electric motors. Limit switches were installed such that the

dishes were permitted to rotate only 90 0 . Each motor was independently remotely

controlled so that all four polarization combinations, HH, HV, VH, VV were possible.

4.4 Antenna Pattern Measurement Procedure

Both antennas were mounted on an aluminum frame so that their position

relative to one another could be fixed (see Figure 4). Provisions were made on the

transmitting antenna so that it could be adjusted in both the azimuth and elevation

planes. The entire frame was then mounted on the receiving antenna tower on an

outdoor antenna range at The University of Kansas. Between the antennas, a small

television camera was mounted so that visual indication of what the antennas were

"seeing" was available. After accomplishing this, the following procedure was

followed:

a. To correctly focus each antenna feed, principal plane power patterns

were made at frequencies from 8-18 GHz in 2 GHz increments. Feed adjustments

and patterns were made alternately so that the patterns were optimized in terms of

beamwidth, sidelobe level and symmetry.

b. After focusing, principal plane power patterns were made at the above

mentioned frequencies. These patterns are shown in Appendices C and D.

c. Next, the transmitting antenna was mechanically adjusted by means of

adjustment bolts so that the beams of the antennas were coincident in both planes.

This was done by alternately switching each antenna to the antenna range receiver

and plotting both patterns on the same paper. After alignment was insured, dual

patterns were made at frequencies from 8-18 GHz in 2 GHz increments and are

shown in Appendix E.
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FIGURE 4. PHOTOGRAPHS SHOWING ANTENNAS
MOUNTED ON ANTENNA RANGE TOWER.
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d. Finally, adjustments were made on the television camera. With the

antennas positioned at the point of maximum signal, the camera was fixed such

that the cross hairs on the television monitor centered on the, image of the

transmitting horn.

Although not presented here, preliminary cross polarized patterns were made.

These patterns indicate that the main beam of the cross polarized pattern averaged

only 13 dB down from the main beam of the like-polarized pattern. The cause of

this rather poor isolation can be seen by referring to Figure B4, in Appendix B which

shows the poor cross polarization isolation level of the antenna feeds as a function

of frequency. This problem made it impossible to make cross-polarized scattering

measurements.

4.5 Calculation of Effective Antenna Beamwidth

Since the average scattering coefficient is defined in terms of the illuminated

area,

o_ > 2.3.2
AA.

it is necessary to determine the effective illuminated area. This calculation is

contingent on the knowledge of the product pattern of the antennas at each

frequency.

To obtain these patterns, the product of the gain of the antennas was calculated

at 0.50 increments from the maximum and then plotted to obtain the effective patterns.

These are shown in Appendix F . An effective beamwidth was determined by

integrating the area under the pattern bounded by a -20 dB reference and then divided

by 100. All integration was done with a Hewlett-Packard 9125 B calculator-plotter.

The illuminated area is an ellipse if the beam is conical. The axes of these
ellipses are functions of look angle , range and beamwidth. Since the illuminated
area contributing to the measured return is confined by the IF filter (see section 6.3),
the general expression for the area must be modified. The derivation of the necessary

expressions is provided by Batlivala and Khamsi (31).
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5.0 TRANSMITTER

Shown in Figure 5 is a simplified block diagram of the basic components

presently under discussion. Further discussion of supporting hardware is given

in section 7.0.

The transmitter power is provided by two Hewlett-Packard 8690 series sweep

oscillators. One covers 8-12.4 GHz while the second covers 12.4-18.0 GHz.

An RF single-pole, double-throw switch was used to direct the power from the required

oscillator.

Following this switch was a 3 dB power divider. The choice of a 3 dB divider

was dictated by the local oscillator power requirements of the mixer. Thus, half

the signal was used as the actual transmitted signal while the second half comprised

the local oscillator signal. As shown in Figure 5 , two RF SPDT switches allowed

a delay line to be used as a calibration device (see section 8.0).

Both oscillators were modulated by a triangular waveform provided by a

function generator. The peak to peak voltage of this signal determined the

frequency swing, Af,of the RF signal around the carrier frequency, f, while the

triangular waveform frequency, FM  determined the IF frequency.

This is shown graphically in Figure 6. Considering like triangles we can

write

fif Af/2 5.0.1

where 2 R/c 1/ 4 FM

fif = intermediate frequency
R = range

Af = RF frequency deviation

FM = frequency of modulation

c = speed of light

Hence,

S4Af R FM 5.0.2
fi M 5.0.2
if c

Note that for a fixed intermediate frequency, (determined by the IF filter)

the range and FM are inversely related by the constant

f icfrc

4f
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The power spectrum of both oscillators is shown in Figure 7. The fast

undulations present in this spectrum contributed to the receiver noise significantly,

as discussed in Section 6.5.
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6.0 RECEIVER

6.1 Mixer

The mixer used in the system is an extremely wide band device (1-18 GHz)

manufactured by RHG Electronics Laboratory; Inc. Typically it requires +7 to

+10 dBm local oscillator power and operates with a noise figure of 9.5 dB across

the 8-18 GHz band. According to manufacturer's specifications, the LO-RF

isolation is greater than 20 dB across the band.

6.2 Impedance Transformer and IF Amplifier

Following the mixer, the IF signal.is fed into a Princeton Applied Research

Model 211 amplifier via an impedance transformer with a 10:1 turns ratio. The IF

amplifier is a low noise, single ended device providing 10MQ. input impedance

and flat frequency response from 1 Hz to 1 MHz. Calibrated gain settings on the

front panel permit the selection of gains from 1 to 1000 in a 1-2-5 sequence.

It was discovered that a gain of 20 (26 dB) was the optimum gain setting.

Two considerations lead to this choice: (a) maximum gain without amplifier

saturation and (b) maximum gain without an increased signal-to-noise ratio.

Consideration b was the overiding factor.

Testing showed that for a gain greater than 50, low frequency noise (see

section 6.5) would saturate the amplifier under certain conditions. Not only did

saturation occur but the saturation also caused the amplifier to oscillate which

often caused an increase of 20 dB in the apparent signal-to-noise ratio. For a

gain of 20 or less, no saturation or oscillation was seen to occur.

To improve the signal-to-noise ratio, an impedance transformer was used

at the input of the amplifier. This configuration was suggested by the amplifier

manufacturer who provided the noise figure contours shown in Figure 8. Note

that the noise figure is a function of both frequency and source impedance. As

shown, the contours predict a 35 dB noise figure when operating at 60 kHz with

the IF port of the mixer (50 Q impedance) connected directly to the amplifier. By

using a 10:1 impedance transformer the effective source impedance is 5000 Q which

reduces the noise figure to approximately 8 dB.
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6.3 IF Filter

As the look angle, 0, increases to values larger than about 400, the

illuminated area begins to increase drastically. To reduce the variability of the

size of the illuminated cell the IF filter was designed to begin limiting the size

of the cell at a look angle of 450. Consider the case shown in Figure 9. For

this case, a 30 beamwidth was assumed and an IF frequency of 60 kHz was chosen.

ARB is the range resolution afforded by the beam and from geometric considerations,

ARB = 1.92 M.

From equation 5.0.2 it follows that

Af. c
ARF= if 6 3.1

4 Af FM

where ARf is the range resolution afforded by the IF filter and FM = 312 Hz for the

range R = 36.75 m. Setting ARF = ARB and solving for AFif indicates an IF filter

with a bandwidth, AFif, of 3.2 kHz.

Thus, for e<450, the range resolution is determined by the antenna beam while

for e>450, the IF filter is the limiting factor. The actual filter used had a band-

width of 3.58 kHz (Figure 10) such that the filter began limiting at e = 480. The

filter bandwidth was determined by integrating the area under the curve bounded

by a -40 dB reference and then dividing by 10,000. All integration was done with

a Hewlett-Packard 9125 B calculator-plotter.

It should be noted that the IF filter was also wide enough that the post-filtered

signal was still representative of the actual received signal. That this is the case

is shown in Figure 11 where a photo of the IF spectrum is shown for corn at e= 0.

The vertical lines on the photo show the effective bandwidth of the IF filter. Note

that the majority of the signal falls within the filter.

6.4 Signal Display

Following the IF filter, the signal was simultaneously fed into an RMS voltmeter

and into a spectrum analyzer. The spectrum analyzer provided information as to the

quality of the signal while the mean signal was read from the voltmeter.
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6.5 Receiver Noise

As for any receiver, noise was the factor limiting the sensitivity. This

noise was not thermal noise, however, but rather it was the detected local oscillator

signal. Figure 7 shows the sweep oscillator output power as a function of frequency.

This power spectrum shows a trend of increasing power with frequency and also the

smaller and faster undulations of the spectrum. Since this signal is frequency modulated

about any point, the signal is thus also amplitude modulated. This "AM" signal is

then detected by the mixer and thus becomes part of the IF signal.

Figure 12 shows the IF noise level for a number of modulation rates. As

expected, the noise power increases with FM . This is to be expected since increasing

FM merely increases the fundamental frequency of the AM signal causing the entire

spectrum to shift toward higher frequencies, thus placing more noise power in the

band of the IF filter.

This is perhaps shown in a better manner by Figure 13. These photos of the

noise spectrum were taken for various values of FM . All photos were taken with

identical spectrum analyzer settings. Note that for FM
= 100 Hz practically no noise

is present at the center frequency of the IF filter while for FM = 700 Hz the spectrum

has shifted to the right, placing a larger portion of the noise in the pass band of the

filter.

In an attempt to alleviate this problem, a leveling loop was placed at the

output of the sweep oscillator. It was hoped this would smooth the spectrum shown

in Figure 7. The leveled spectrum is shown in Figure 14. It can be seen that the

effect was to level the gross undulation of the spectrum while leaving the smaller,

yet troublesome undulations present. Since the noise is a function of FM it is

also a function of range. Thus, although the noise increased as the range decreased,

the signal also increased as R4 so that the signal to noise ratio did not vary as much

as might be predicted by Figure 12.

6.6 Dynamic Range and Tangential Sensitivity

In an attempt to estimate the minimum signal to be measured, the radar

equation was used in the form
2o

p PtGtGr a A.il 6 6.1

r (47) 3 R4
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By referring to Figure 7, it can be seen that the transmitted power had an
0average value of 10 dBm. A worst case o of -20 dB was chosen along with a

worst case range of 76 m, that being the range at = 700. At 70 0 , the illuminated

area contributing to the measured return would be 8 m2 , at 8 GHz, Gt Gr= 66 dB

and X= .0375 m. Substituting these values into the radar equation provides an

estimate of the worst case return power. It turns out Pr = -89 dBm.

Figure 15 shows the tangential sensitivity of the receiver As defined by

Taylor and Mattern (32), tangential sensitivity is the input signal which produces

a unity signal to noise ratio at the receiver output. Thus, it is seen that the worst

case estimate of the return signal falls as an average, 9 dB above the receiver

tangential sensitivity except at 17 GHz where an anomalous dip occurs in tangential

sensitivity. Care was taken in analyzing data taken at this frequency.

The dynamic range of the receiver as measured across the 8-18 GHz band

was approximately 82 dB.
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7.0 SYSTEM CONFIGURATION

Figure 16 is a schematic of the actual system configuration of the scatterometer.

The upper section contains the various controls, indicators and the IF strip. These

components are contained in an army topographic van as shown in Figure 17.
Although the schematic is fairly self explanatory, two points should be discussed.

The frequency controller is nothing but a resistive network which supplies a control

voltage to the helix voltage generator in the sweep oscillator. More important than

being a remote control device, it allows the operator to return to a given frequency

time after time so that frequency inconsistency is not a problem. The look

angle indicator is merely a voltmeter that has been calibrated in degrees. It

operates in conjunction with a potentiometer whose position is controlled by a

pendulum mounted on the shaft. All components shown inside of the dashed line

are mounted on the boom as shown in Figure 18 with all of the RF components indicated

by the heavy lines. It should be noted that the power divider, mixer and calibration

switches are mounted directly behind the antenna feeds to minimize cable losses

and reflections (see Figure 19). The following table presents, in a summarized

manner, the major system specifications. Figure 20 shows the system with the

boom fully extended.

TYPE FM-CW

Modulating Waveform Triangular

Frequency 8-18 GHz

FM sweep: Af 400 MHz

Transmitter Power 10 dBm (10 mW)

Intermediate Frequency 60 kHz

IF Bandwidth 3.58 kHz

Antennas

Height above ground 26 m

Reflector Diameter 61 cm

Feeds Cavity backed,
log-periodic
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Calculated
Antenna

Frequency Gain Effective Beamwidths of Product Patterns (Degrees)

(GHz) (dB) Az El

8 31.2 2.94 3.43

10 33.0 3.07 3.24

12 34.6 2.42 2.38

14 35.9 2.35 2.34

16 37.1 1.65 1.46

18 38.1 2.02 3.20
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FIGURE 17. PHOTO SHOWING RADAR COMPONENTS
LOCATED IN TOPOGRAPHIC VAN.
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RE 18. PHOTOS SHOWING THEPLACEME
OF COMPONENTS ON BOOM.
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FIGURE 19. PHOTOS SHOWING PLACEMENT OF
VARIOUS COMPONENTS BEHIND
ANTENNA FEEDS.
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FIGURE 20. PHOTO SHOWING AN OVERALL VIEW
OF THE SYSTEM WITH THE BOOM FULLY
EXTENDED.
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8.0 CALIBRATION

Two methods of calibration were employed in this system:

(1) Delay Line Calibration

To remove any slow system variations such as those that

might be caused by ambient temperature variations, a delay line

calibration was employed. This was accomplished by bypassing

the antennas with a 21 .6 m cable by means of RF switches at the

feed of each antenna.( see Figure 16). This provided a simulated

signal which was used to perform a closed loop type of calibration.

(2) Luneberg Lens Calibration

In order to convert the data from relative to absolute values, an

Emerson and Cumming, Inc., model 2B-109, Type 140 Luneberg

lens was employed. This is a variable index of refraction, spherical I

lens having the property such that a wave incident on the lens is

focused to a point on the opposite side of the sphere. A reflective

cap placed over the back of the sphere reflects this energy so that

the emerging signal travels in the same direction from which it entered.

The index of refraction varies in a Luneberg lens of radius r as

S[2- (_r)2/2 8.0.1
or0

The Luneberg lens has advantages over both the reflective sphere and

the corner reflector, both of which have been used as traditional calibration devices.

Spheres have been widely used because of their geometric symmetry. That is, they

appear the same when viewed from any direction. The disadvantage however is

that a sphere has a very small scattering cross section. For a sphere,
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asphere = Trr2 for X 1r>2 8.0.2

for the lens however, 34

alens (4Tr)3 r 8.0.3
2lens

A simple calculation shows that at 10 GHz, the cross section of a 23 cm lens is
26 dB higher (400 times) than a 23 cm metallic sphere.

The advantage of a lens over a trihedral corner reflector is that the lens
is much more effective over a large solid angle. Experimental data shows a 61 cm
corner reflector has approximately a 200 half power beamwidth at 24 GHz (33) while
23 cm Luneberg lens has a 1400 beamwidth.

Figure 21 shows the lens hanging from a large wooden tripod which was used
to support it during calibration.
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FIGURE 21. PHOTO SHOWING LENS AS USED DURING

CALIBRATION.
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9.0 CALCULATION OFa 0

The power returned to the radar from an area extensive target is

PG G 2 o dA
p =ff t t r ' dA 9.0.1

r A (4T) 3 R4

where

P = Received powerr
Pt = Transmitted power

Gt = Transmit antenna gain

Gr = Receive antenna gain

-A = Wavelength

o = Scattering coefficient

Rt = Target range

dA = Differential element of illuminated area
If the assumption is made that the parameters inside the integral are constant

over the illuminated area the radar equation becomes:
PtGt G  ,2 00A°

p = Pt t r Aill 9.0.2
r (4 T)3 R4 t

Note that Pr represents the received power at the receive antenna terminal.
If we introduce an unknown constant K to represent the effects of cable loss, mixer

conversion loss etc., we can write
P2 0o

V = K Pt Gt Gr a Aill 9.0.3
(4n)3 t t

where V= voltage at receiver output after square law detection. Thus we can write
Pt Gt Gr 2aL

V =K G r 9.0.4
L (47T) 3 RL4

where the subscript "L" refers to the Luneberg lens. Since the delay line is switched

into the circuit at the antenna ports we can also write

Vdl = K PtL 9.0.5

where L = delay line attenuation.
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With this background, it can be seen how a0 is extracted from V.

At the time of the lens calibration a delay line calibration is also made.

We can thus write 2
PG G 2a

V=K t tr L 9.0.6VL = K1  4)3 R 4 906
L i (4Tr) R L

If we assume K1 remains constant during the calibration period (approximately

5 minutes) we can write for the delay line.

VdlL = K1 Pt L 9.0.7

Now consider the actual target data.
P G G A2 a00 A.

V t t Gr G aill 9.0.8
t 2 (4T)3 Rt

Again if we assume K2 remains constant during the collection of data between

delay line calibrations (40 minutes) we can write

Vdlt = K PtL 9.0.9
dlt 2 t

Taking the ratio of equations 9.0.8 and 9.0.6 we have

Vt K2 RL4 ao Aill 9.0.10

V KRVL Kt Rt 2

Taking the ratio of equations 9.0.9 and 9.0.7 we have

Vdlt = K2  9.0.11

Combining 0
Combining equations 9.0.10 and 9.0.11 and solving for o we obtain

R4
ao Vt Vd lL Rt 4L

VV R 4 A.VL Vldt L Aill

It is important to note that the above equation is independent of K1 or

K2 . Thus, the delay line is an effective means of removing any system parameter

variations.

Knowing the frequency of modulation, Rt and RLcan be calculated according

to equation 5.0.2. The range information then allows the calculation of the

illuminated area as discussed in section 4.5.
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10.0 MEASUREMENT ACCURACY

Because of the relative phases of signals which have been reflected from

individual scatterers within a resolution cell, any radar return will be subject

to fading. In the case of the 8-18 GHz radar spectrometer presently under

discussion, the fading is particularly pronounced as can be seen from Figure 22 .
This figure was derived from data taken in the following manner.

For look angles at 00 , 100, 200, 300 , 500 and 700, the radar return
was recorded as a function of boom position. After each measurement was taken,
the boom was moved in the azimuth plane approximately 20. Each measured return was
processed to produce a value of cro which is plotted versus azimuth angle.

Although this figure was drawn only for look angles of 00 , 300 and 700 ,

it points out an important fact; that being that the fading is drastically reduced
as look angles increase. The reason for this reduction, of course, is that more
independent samples are available for averaging at large look angles. According
to Waite, the frequency spacing between independent samples is given by 3.2.1.1.

AF = 150AFs MHz 10.0.1
s D

For corn, the target height always exceeds the range resolution of the

system so that if we assume that the return (prior to I. F. filtering) includes

contributions from the entire height of the plant, D can be replaced by the range

resolution of the system (see section 3.2.1).

R Af.f

AR = f 10.0.2
fif

In this case, Afif = 3.58 KHz and fif = 60 KHz so that

AR= .059R 10.0.3

Since, in this case, D = tR we can write
150 2542

AF = 150 MHz= 2 5 4 2 MHz 10.0.4

Now, since Af = 400 MHz, and since the number of independent samples provided
per measurement is

Af
N= 10.0.5

s
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we obtain

N = 0.1573R 10.0.6

Thus, we can theoretically write the number of independent samples,
N, provided at each angle.

Shown in Figure 23 are histograms of the fading distributions for
corn at 9 GHz for look angles of 00, 300 and 700. Although each has the
shape of a Chi-square distribution, it definitely appears that n, th number
of degrees of freedom, increases with O, the look angle. This increase in n
suggests that we are indeed averaging more and more independent samples as
0, and thus R increases. This is consistent with equation 3.2.1.1.

To determine how many independent samples are indeed being averaged,
an empirical approach was taken. First, it will be assumed that the radar return
distribution is exponential, often known as a chi-square distribution with two degrees
of freedom. Since we are averaging the return, which involves the addition of
random variables, we can say the return will be described by a chi-square distribution
with 2N degrees of freedom. This is justifiable by the additive property of the
chi-square distribution which says that the sum of independent chi-square distributions
is a chi-square distribution with the number of degrees of freedom equal to the
sum of the number of degrees of freedom in each individual distribution (43).

For a chi-square distribution, the mean and the variance are given
by:

j= n 2  2= 2na 4 10.0.7
c c

where

n = number of degrees of freedom

ac = variance of population from which the samples were taken (40)

Combining the above expressions for the mean and the variance provides

a2 2 1
-2  - 10.0.8

or n N
or

2

N 10.0.9
C52
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Thus, if the mean and standard deviation of the radar return are known,
N, the number of independent samples provided can be calculated.

The data needed to calculate P and a was collected, as mentioned

earlier. Although only 50 points are shown in Figure 22, 140 points were actually
gathered for each of the targets of interest at the look angles mentioned at a
frequency of 9 GHz. From this data, the mean, standard deviation and consequently

N, were calculated. These values of N, a and ' are presented below for corn
along with N p, the number of independent samples predicted by equation 10.0.6.
Note that one must assume that the measured a and ii are extremely good estimates

of the actual values of a and W.

Look Angle _ a N N

00 10.6 11.0 1 4

100 2.83 2.6 2 4

200 0.552 0.308 4 4
300 0.479 0.196 6 5
500 0.171 0.059 9 6

700 0.315 0.08 16 12

Obviously, averaging is necessary to obtain a representative value of ao
at each angle. As can be seen, more averaging is definitely necessary at the
lower angles. This brings up the question: How many independent samples must
be averaged to predict that the mean value of ao will fall within a specified range
with a specified probability? As an example we might consider Go for corn at
a look angle of 00 . We see that the mean value ofo is 10.6; this, however, is an
average of 140 independent samples. We might now wish to know how many samples
must we average in order to say that this average will fall in a symmetric interval
about the mean, from 9 to 12,95 per cent of the time.

This question does not have an obvious answer for an asymmetric distribution
such as the chi-square. For a Gaussian distribution it becomes much easier. This
arises from the fact that the mean and the median have the same value.
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If we want to construct a symmetrical, 90 per cent confidence interval

around the mean of a Gaussian distribution we pick the end points, x 1 and x2'

of the interval such that x x2
.05=f pxdx and .95=f P dx 10.0.10

o o

This is possible since by definition

0.5= Px pdx 10.0.11
0

Consider now a chi-square distribution with 2 degrees of freedom. For

this particular distribution it turns out that

.633=f p2 dX2 or .337=f P 2 dX2  10.0.12o p X 2

Thus, although it is impossible to construct a symmetrical 90 per cent

confidence interval around the mean, it is possible to construct a 90 per cent

confidence interval around the median M, since

0.5= P2 dX2  10.0.13
oxp

Having found X 2 and X2 such that,1.22PX2 d0 2

.05 = 1 p 2 dX2, .05=f p2 dX2  10.0.14

2 2 o X 2
the points M-X 1 and M+X 1 were plotted versus N. This was done for

90 per cent, 80 per cent and 50 per cent confidence intervals as shown

in Figure 24.

Now
lim P-M = 0 10.0.15
n oo

as can be seen from Figure 25 where ' and M have been plotted versus n. Note

that ij and M have been normalized to P=I. For n >10, P-M< .06 so we can say

P=M n >10 10.0.16
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Thus, for more than 5 independent samples we have a fairly good approximation

of a symmetric confidence interval around the mean. Data was taken to exploit

the fact that more individual samples are averaged at larger look angles. Thus,
at zero degrees, when only one independent sample is available per observation,
it was necessary to make nine observations. At seventy degrees, however, when

16 independent samples per observation were available, it was only necessary to

make four observations to provide sixty four independent samples.

Number of Effective Number of
Look Angle Measurements made Independent Samples

0 9 9

100 8 16

200 7 28
300 6 36

400 5 40

500 4 36

600 4 48

70' 4 64
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11.0 CONCLUSION

Because of the inadequate amount of scattering data on naturally occurring

targets, the 8-18 GHz radar spectrometer was determined to be an important tool

for the field of remote sensing. The basic parameters of such a system have been

presented along with its performance characteristics. Not only did it provide

useful scattering data for the determination of a0 , but it also provided useful data

on the fading distribution of signals returned from agricultural targets.

Approximately 75,000 data points were collected with this system for

use in determining the scattering coefficients of selected agricultural targets.

Extensive ground truth was taken simultaneously with the scattering data. There

is, however, a need for much more data to answer the questions raised during

this initial study. Plans are being made to build a more sophisticated spectrometer

capable of making cross polarized measurements (along with HH and VV) at a faster

rate than is presently possible.
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APPENDIX A

ANTENNA FEED PRINCIPAL PLANE POWER PATTERNS
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Antenna Feed Principle 0
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Antenna Feed Principle 0
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Antenna Feed Principle 0--
Plane Power Patterns
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Antenna Feed Principle 0
Plane Power Patterns
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Antenna Feed Principle 0--
Plane Power Patterns
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APPENDIX B

ANTENNA FEED BEAMWIDTH, VSWR, GAIN,

AND ISOLATION CURVES
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APPENDIX C

TRANSMIT ANTENNA PRINCIPAL PLANE POWER PATTERNS

4 div. = 3 dB
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APPENDIX D

RECEIVE ANTENNA PRINCIPAL PLANE POWER PATTERNS

4 div. = 3 dB
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APPENDIX E

DUAL PRINCIPAL PLANE POWER PATTERNS

4 div. = 3 dB

NOTE: Dark Pattern = Transmit Antenna
Gray Pattern = Receive Antenna
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APPENDIX F

ANTENNA EFFECTIVE PRINCIPAL PLANE POWER PATTERNS
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