
RESEARCH-STUDY OF

A SELF-ORGANIZING COMPUTER

by
Mario R. Schaffner

N75-10715
(NASA-CR-140 5 9 9) RESEARCH-STUDY OF A 175-0715
SSELF-ORGANIZING COMPUTER Final Report

(Iassachusetts Inst. of Tech.) 268 p HC
ry

$8.50 CSCL 09B Unclas
___G3/60 17145

for the

National Astronautic and Space Administration

Contract NASW - 2276

Final Report

Massachusetts Institute of Technology

Cambridge, Mass. 02139 USA

_July 1974 "
"k ,. -- ;_,I p

https://ntrs.nasa.gov/search.jsp?R=19750002643 2020-03-23T03:42:21+00:00Z

PREFACE

The title of the report deserves some explanation. The sponsoring

Agency, the Guidance, Control and Information System Division of NASA,

Washington, D.C., was interested in knowing about a hardware system pro-

gramed in the form of finite-state machines that was developed at the Smith-

sonian Astrophysical Observatory, and gave this contract with this title.

The opportunity has been taken to study further and document the approach

used. The result of the work can be properly labeled as an "organizable"

computer. The capability of this computer to be organized is such that

undoubtedly it would significantly facilitate the establishment of "self-

organizing" systems, as soon as proper programing systems are added to it.

However, no work could be made, in the limits of this contract, on self-

organizing programs, although determined programs are amply documented.

"Self Organization" is not a clearcut notion. All complex systems

have some degree of self-organization. However, the interpretation to be

assumed here is that taken in the context of artificial intelligence: the

development of means for performing given tasks, in relation to an environ-

ment. Essential to this approach is the establishment of criteria for

evaluating performance. In this sense, self-organization has attributes of

thinking. Turin (1950) in his "Can a machine think?" conjectured that a pos-

sible computer (a projection of the Manchester computer of that time), fur-

nished with enough memory and programs, could produce results undistinguish-

able from.those of human thinking. This shows that a self-organizing system

has two main components: an organizable physical part, and a programing

part. Different emphasis can be given to either of the two parts. This re-

port presents the organizable part in the form of a programable hardware

and its programing language. The program part for the self-organization can

be considered as a continuation of the present work.

- iii -

PRECEDING PAGE BLANK NOT FILMED,
TABLE OF C 0 NTENTS

page

PREFACE iii

Chapter 1. MOTIVATION FOR A NEW APPROACH I

1.1 Unsatisfactory Aspects in the Use of Computers 1

1.2 The Compiler Approach 5

1.3 The Approach of the Language Directed Computer 8

1.4 A Global Approach 12

Chapter 2. WHY ABSTRACT MACHINES? 15

2.1 Inferences from Psychology 15

2.1.1 Introduction 15

2.1.2 Developmental structures 16

2.1.3 The spatiotemporal frame 18

2.1.4 Words and imagery 20

2.1.5 Concluding remarks 26

2.2 Modeling and Representation 27

2.3 Automata Theory 33

2.3.1 Introduction 33

2.3.2 Functions and structures 34

2.3.3 Formalizations 35

2.3.4 Automata and languages 36

2.3.5 Connections with psychology 36

2.3.6 Interchangeability between program and machine 38

2.4 Cellular Spaces and Computing Structures 41

2.5 Inferences from Neurology 46

2.5.1 Introduction 46

2.5.2 A look at the central nervous system 48

2.5.3 Inferences from the central neural system 55

2.5.4 The McCulloch-Pitts correspondence 59

-v -

2.6 Outline of the Approach Taken 63

2.6.1 Synopsis, part 1 63

2.6.2 Function and structure 67

2.6.3 Synopsis, part 2 70

Chapter 3. THE FORMULATION OF A SYMBOLIC SUBSTRATUM 73

3.1 Preliminaries 73

3.2 Elementary Machines (FSM Automaton) 78

3.2.1 Symbolic formulation 78

3.2.2 Structural formulation 79

3.3 Compounded Machines (CPL Automaton) 82

3.3.1 Symbolic formulation 82

3.3.2 Structural formulation 82

3.3.3 Discussion 86

3.4 Comparison with Other Formal Systems 88

3.4.1 Comparison with commonly formulated finite-
state machines 88

3.4.2 Comments in respect to Turing machines 90

3.4.3 Considerations in regard to cellular spaces 92

3.4.4 Considerations in regard to formal languages 94

Chapter 4. THE ISOMORPHIC IMPLEMENTABLE SUBSTRATUM 99

4.1 General Structure 99

4.1.1 Interface with the environment 99

4.1.2 Program allocation 101

4.1.3 The automatic flow of data 102

4.2 Implementation 104

4.2.1 The programable network 105

4.2.2 The programable memory 109

4.3 Discussion 110

4.3.1 Pipelining 110

4.3.2 Addressing 111

- vi -

4.3.3 Parallelism 113

4.3.4 Computer architecture 114

4.4 The CPL 1 Processor 117

4.4.1 Factual information 117

4.4.2 Description 118

Chapter 5. THE PROGRAMING LANGUAGE 121

5.1 Introduction 121

5.1.1 The role of the programing language 121

5.1.2 Preliminaries on the user language 125

5.1.3 An experiment in applying modes of thinking
to computer features 127

5.2 The User Language 130

5.2.1 Structure of a program and its representation 130

5.2.2 Input prescription I 134

5.2.3 Data transformation F 135

5.2.4 Transition function T 143

5.2.5 Routing R 149

5.3 An Implentation of Machine Language 153

5.3.1 Outline 153

5.3.2 The format of the card 154

5.3.3 The morphology of the words 156

5.4 Discussion 158

5.4.1 Functional and technical characteristics 158

5.4.2 Similarities with other programing languages 168

Chapter 6. COMPARISON OF PROGRAMS 173

6.1 Introduction 173

6.1.1 Available works on program comparison 173

6.1.2 Criteria of comparison 174

6.1.3 Description of the data used in the tables 177

- vii -

6.2 Real-Time Processing of Weather Radar Signals 178

6.2.1 Structural characterisation of radar-echo 182
patterns

6.2.2 Distribution of precipitation intensity 189

6.2.3 A compounded program 193

6.2.4 Recording of Weather echoes 196

6.2.5 Measurement of statistical characteristics of 198
weather echoes

6.2.6 Measurement of the dispersion of short means 202

6.2.7 Real-time data handling 205

6.2.8 Measurement of the antenna pattern with solar
noise 208

6.2.9 R.A.D.A.R. 211

6.2.10 Real-time numerical models 214

6.2.11 Computation of the Fast Fourier transform 218

6.3 Real-Time Processing of Meteor Radar Signals 223

6.3.1 Recognition and recording of faint meteors 223

6.3.2 Experiments of strategies 229

6.3.3 Noise measurements 231

6.4 Exploratory Programs 232

6.4.1 Numerical model of the dynamic of a fluid 232

6.4.2 Analysis of echo-pattern turbulence and movement 236

Chapter 7. CONCLUDING REMARKS 243

7.1 The Essence of the Approach 244

7.2 Results Obtained and Extrapolations 246

7.3 Topics for Further Study 249

REFERENCES 253

- viii -

Chapter 1

Motivation for a New Approach

1.1 UNSATISFACTORY ASPECTS IN THE USE OF COMPUTERS

Every year we become accustomed to seeing computers increase their

speed, their capacity, and their endowment of automatic procedures. Reli-

ability is not of concern any longer; on the contrary, we have come to ex-

pect infallibility. The cost-performance ratio decreases continuously. In

sum, computers do not present technological problems. However, there are

some unsatisfactory aspects in their use, as outlined in the following.

In modern life, computers are becoming almost as numerous as automo-

biles, and the feeling develops that computers are going to be an indispens-

able companion for many everyday activities. However, we observe that while

the majority of automobile users drive their automobiles themselves, a sig-

nificantly smaller portion of computer users do their own programing direct-

ly; as a matter of fact, a new profession has developed for the operation of

these machines. Note, moreover, that the data we have to process, and the

dynamic systems we have to consider in driving an automobile are much more

complex than the very elementary mechanization of a currently typical com-

puter program. In the course of our analysis we will find an interpretation

for the difference in interaction that occurs with automobiles and computers

(section 2.1.4, page 24).

Others (see for instance Sammet, 1969) use a different analogy. It has

been said that if the telephone companies had not gone to dial telephoning,

then every woman between the ages of 20 and 50 would have been forced to be-

come a telephone operator in order to keep up with demands. Similarly, at

the rate computers and their applications are developing, it may be neces-

sary for vast numbers of people to become programers. In fact, programers

-1-

may well have to outnumber significantly the number of people who have prob-

lems to solve, inasmuch as the problems themselves become more and more com-

plex.

Clearly we need to deal with computers directly, just as everybody today

dials directly his telephone connections, and almost everybody drives his own

car rather than obtaining the service of a professional driver. Naturally

each user would like to do this with maximum application to his problem and

with minimum attention to the annoying intricacies of the computer itself.

In order to obtain a general view of this situation, independent of

particular applications and computers, we shall try to identify the essential,

common protagonists involved in the use of a computer. If a computer is

used, obviously it is for having executed some process conceived by a user;

therefore, there will always be, as a starting point, a process in some

user's mind. We do not elaborate on this for the moment, but indicate it as

point A in Fig. 1.

process
in the user's mind

A
modeling
ef fort

debugging

high-level effort
program

compiling C
process ---- machine

program

Fig. 1. Process transformations in the use of a computer.

-2-

With the same generality there will be also a package of information

that actually controls the computer hardware for it to produce the desired

process. All general-purpose computers manufactured today are digital

machines that respond to organized sequences of instructions written in a

given language and in an established format. Thus, we can identify the

above package of information with the so-called object or machine program.

We indicate this as point C in Fig. 1.

The machine languages of all commercially available computers are con-

ceptually very simple but quite inappropriate for human users to express

their problems. This makes impractical the production of machine programs

directly by the user. Customarily an intermediate language is used, the so-

called high-level programing language, such that the user can express in it

a specific problem with reasonable ease, and the obtained description can be

automatically transformed by the computer itself (in a preliminary run,

under the control of the so-called compiler program) into a machine program

for that specific problem. Thus there is a third protagonist: the program

in high-level language, or source program; we indicate this as point B in

Fig. 1.

Point B represents a concrete description (as a rule in the form of for-

mal sentences) of a process. Essential characteristics of it are: (1) to be

complete, in the sense that no further work is necessary on the part of the

user in regard to the process per se (obviously further work might be expect-

ed for interfacing the process into a larger system); (2) to be translat-

able into point C automatically without human intervention. At this point

it is irrelevant if in this transformation additional intermediate languages

are used.

The activities involved in the use of a computer can be visualized as

the interconnection of these three points. At the start, the process in the

user's mind has to be modeled in terms of the elements of the programing lan-

guage. Depending on the type of process and on the language used, this mod-

eling may appear straightforward or as mental acrobatics. It is an effort

that takes sometimes several hours and sometimes several months to perform.

We indicate this activity with an arrow labeled "modeling effort" in Fig. 1.

Then the source program (point B) is automatically transformed into the ob-

ject program (point C). We use the term transformation rather than transla-

- 3 -

tion because typically the structure of the object program has little resem-

blance to the structure of the source program. If a good compiler is avail-

able, the user is completely relieved from the difficulties of this trans-

formation. However, the development of the compiler constituted an effort

at some previous time; it is well known that compilers are the hardest part

in computer manufacturing, and that they make the system management complex.

In Fig. 1, this transformation is symbolized by an arrow labeled "compiling

effort". Finally, in the debugging phase, the actual actions made by the

computers have to be related to the original image of the process that the

user had in mind. It is well known that for nontrivial processes, debugging

is the longest part in the programing activity. We symbolize this part in

Fig. 1 with an arrow connecting C to A labeled "debugging effort".

We can now relate the inconveniences mentioned at the beginning of this

section with the activities symbolized by the arrows in Fig. 1, and figur-

atively relate their length with the amount of effort involved. In the pres-

ent approach to computers, A is not analyzed, C is maintained essentially at

the level it happened to be in for the first computers, and most of the ef-

fort is devoted to finding the best location for point B. From this arises

the proliferation of programing languages.

The conjecture is here made that the best overall solution cannot be

obtained by maintaining this approach. Point B cannot be very close to

point A; characteristics (1) and (2) mentioned for the source language con-

stitute limiting constraints. For instance, we cannot use spoken languages

because of the difficulties of automatic interpretation and translation. We

cannot use a set of mathematical expressions because they do not form a com-

plete, autonomous description of a process, in the sense that the connections

between them and the interpretation of the symbols used need to be supplied.

On the other hand, B cannot be too close to C, for instance, by using macro-

assembler languages, because the modeling would be too cumbersome. One may

think that for each specific application an optimum point B can be deter-

mined, but a large multiplicity of languages is undesirable and expensive.

In regard to debugging, the situation is no simpler. We leave aside

here the theoretical question of proving the correctness of a program. For

every complex new program, it is a fact of reality that some unexpected prob-

lem will occur. If the problem is unforeseen, the actual behavior at point

-4-

1.2

C must be directly analyzed against the requirements at point A, regardless

of the debugging facilities available. One may think to minimize the occur-

rence of these events by providing all sorts of automatic aids; but in this

case (given the distance between C and A), the aid system may be more com-

plex than.the computer itself; moreover, it is not obvious that the effort of

interpreting them in the unforeseen cases will not nullify their benefit.

In the visualization of Fig. 1, one can think that all problems would be

eased if point A and C were closer. All three arrows (symbols of the efforts)

would be shortened. The ideal would be to shrink Fig. 1 into a single point.

Such an approach requires a reconsideration with a fresh view of points A and

C. Before going further, we will analyze in some more details the present ap-

proaches in the next two sections; the discussion then will be resumed in

section 1.4.

1.2 THE COMPILER APPROACH

The automatic transformation of the source program into the object pro-

gram by means of a compiler program is the basic approach of today's compu-

ters, and has made possible the present explosion of computer applications.

Its rationale is to give users a high-level language appropriate for their

problems, to optimize computer hardware in terms of the availalbe technology,

and to provide suitable software systems for connecting that hardware with

that language. Given the different characteristics and requirements of a

human being and a machine, the approach to treat them separately seems the

most logical one. The unlimited power of language for expressing human

thought is well known; thus this choice of form of expression is indeed uni-

versal. Studies in natural languages develop generative and recognizing pro-

cedures for increasingly larger subsets of them; studies in artificial lan-

guages develop increasingly richer systems; automata theory gives increasingly

new insight into the structure of languages. As a consequence, the expecta-

tion develops that a formal language of sufficient power to be appropriate

for general use, and automatically translatable, will in the future complete-

ly solve the problems of this approach.

To gain a better insight into this approach, let us expand Fig. 1 with

more pertinent details. The user expresses the activities he has in mind

in the form of stereotyped sentences; on the one hand this requires a

remodeling and often a deformation of what he has in mind, and on the other

-5-

1.2

hand it permits him to prescribe with minimal means the very complex (invis-

ible) activities that the computer has actually to do. This is the great

advantage of present programing languages in the context of present computers.

The compiler, in turn, has to interpret these minimal expressions and then

reconstruct all the corresponding complex computer activities. This work

can be indicated diagramatically as in Fig. 2. The source program, consti-

tuted by strings of symbols with a certain flexibility as appropriate for

the user, receives a lexical pass to be transformed into rigid strings of

other symbols more appropriate for the machine manipulation. These strings

are then subjected to a syntactic analysis for recognizing their grammatical

structures and reducing them into explicit, complete, local forms. Next, a

first machine-code generation is produced. Because of the unsatisfactory

B source program

lexical analysis

syntactic analysis

code generation

code optimisation

assembling

C object program

Fig. 2. Schematic sequence of operations in a program transformation

from the user to the machine language.

- 6 -

1.2

object program that would result at this point, an optimizing phase follows

which eliminates redundancies, changes the position of instructions in order

to reduce their occurrences, chooses more efficient processes, and attempts

to apply the several programing tricks. Finally, the actual object program

is assembled, with assignment of explicit addresses, choice of registers,

and ordering of the controls.

The power and potential of the approach of automatic language transla-

tion is well known and documented. The interest here is in comparing alter-

native approaches to it. We can observe that naturalness and flexibility in

the programing languages clash with the complexity of the compiler. The

more sophisticated the compiler is, the more mysterious the actual computer

behavior appears to the user, with consequent dependency of the man on the

machine, rather than vice versa. So far, no one programing language has

proved sufficiently efficient for all types of problems to discourage the

use of the other languages. On the contrary, the feeling develops that a

single language would freeze the knowledge and techniques of a particular

moment, blocking the benefits of successive developments. In fact, there

has been a continuous development of languages each more appropriate in a

broad range of problems and made more effective by software packages for

each class of applications. The proliferation of programing languages that

has occurred can be seen in Sammet (1969).

One of the problems of the proliferation of languages is the number of

compilers that become necessary for the automatic translation of all users'

programs for all types of computers. Suppose that there are 33 languages in

use and 33 types of computers; for making each computer capable of work with

each language, the computer community should possess 33 x 33 = 1089 compil-

ers. For each new language and for each new computer, 33 new compilers have

to be developed. This fact was recognized very early, and the possible ad-

vantage of a common intermediate language was pointed out (Strong et al.

1958). If all the above 33 programing languages can be translated to a

hypothetical intermediate language (UNCOL), and programs in this language

can be translated into machine programs of the 33 computers, the community

would need only 33 + 33 half compilers (half because the intermediate lan-

guage would be halfway between a user's and a machine language). Each new

language and each new computer would require the development of only

- 7 -

1.3

one-half new compiler. In spite of this appealing situation, such an inter-

mediate language has not been developed (Steel, 1961a,b). Dennis (1971)

faces this problem with a new insight, in terms of a common base for pro-

graming languages, simultaneously, and in accordance with general systematic

guidelines for computer architectures.

Another problem of the compiler approach is the difficulty of obtaining

efficient object programs, in comparison, for instance, with carefully hand-

coded programs. Another inconvenience is that for each program modification

an entire new compilation should be made. Direct interaction with the com-

puter, in the presence of compilers, requires complex software systems; a

similar situation occurs in regard to debugging. For many unusual problems,

and typically when real-time processing is involved, compilers are not help-

ful, and the user has to proceed with the cumbersome preparation of the pro-

grams in machine language.

From the viewpoint of the study described in this report, we wonder

about the amount of program manipulation (often exceeding the actual problem

processing), and the complexity of the software systems required in this

approach. The compiler approach tacitly presupposes that phrase-structure

languages are the most appropriate means for communicating with a computer;

the validity of this assumption will be questioned in chapter 2. Finally,

we note that the roles and the difficulties of compilers may change signifi-

cantly if the computer hardware takes a different approach.

1.3 THE APPROACH OF THE LANGUAGE DIRECTED COMPUTER

As a consequence of the problems encountered in the approach described

in the previous section, the question rises recurrently whether computers

constructed to execute directly programs written in the user programing lan-

guage can lead to a more efficient overall system, especially in view of the

technological development that are continuously occurring.

At the same time, every systematic approach that is attempted for con-

structing computers illustrates the wide range of designs that are possible

and the different levels of abstraction that can be assumed as visible

architecture. Examples of these studies can be found in Iliffe (1968),

Kilburn et al.(1968), and Bijoner (1971). In this situation, one

- 8 -

1.3

thinks spontaneously going from the botton up in Fig. 2, in the sense of

implementing directly more and more of the program transformations, up to

the direct hardware implementation of the user language.

These questions will appear again and again until a satisfactory proof

is given that one or the other approach is preferable. On this subject the

imaginary situation described by McKeeman (1967) is relevant:

It is an accident that digital computers are organized like

desk calculators - with somewhat worse luck we might have taken the
Turing machine as our model.

....
Now, if one of the users of an automatic digital Turing

machine were to suggest revolutionary additions such as a large

random access memory and a special command to add the contents

of two memory cells, we could expect to find him attacked on

various counts. A design engineer would complain that the addi-

tions were ad hoc and destroyed the essential simplicity of the

Turing machine. Besides they would make the machine ten times

more expensive to manufacture. Another user would wistfully

agree that the additions were clever and nice but he couldn't

afford the expense of reprogramming his entire library of
Turing machine programs: a working group would publish a list

of accepted standards that were in jeopardy. And finally it

would be pointed out that next year's Turing machine would be

twice as fast.
The disgruntled user would, of course, take refuge in

higher languages. Hewould use a compiler that would, when it

saw the symbol '+', generate the necessary 175 Turing machine
instructions required to add two adjacent bit patterns on his
tape.

As time went on, the user might console himself with

progress: the discovery of a new 167 instruction add routine;
hyper-Turing tapes where the bits are recorded in frames 9 bits
wide: the appearance of a pipeline micro-parallel Turing ma-

chine which, under special circumstances, could execute 27

simultaneous Turing machine operations: and finally, the Ulti-
mate - two time-shared Turing machines working on the same tape.

The solution of some problems would still be beyond reach

and the federal government would allocate funds for a really
parall-el-effort - 100 Turing machines arranged in a 10-by-10
array sharing 20 tapes on a grid,.10 across the rows and 10

down the columns. Since the machine could be shown to be
potentially 100 times as fast for some problems, the best

programmers in the world would stand in line to use it,

thereby insuring its success by contemporary standards.

The quoted excerpt is witty and polemic, as is appropriate in a con-

ference for shaking the minds of the audience; but it has also an enduring

value insofar as it refers to one of the fundamental choices in-computer

design: the level of the working hardware. Sometimes it is referred to as

- 9 -

1.3

software hardware tradeoff. McKeeman then observes that the rudimentary

philosophy of the computer (the Turing machine in his analogy) is not neces-

sarily a negative aspect; special provisions may increase the efficiency in

each class of problems. Nor should the complication of the machine programs

constitute a handicap; compilers may present the users with a completely

different machine. The real uneconomic aspect is probably in the redundancy

of the problem descriptions; they require large memories and complicated

manipulations.

Chu (1973) analyzes the "proximity" between the users' programing

language and the actual machine language, for different computer architec-

tures. Then he points out the advantages that can be obtained when the

high-level programing language is the machine language of the computer.

A search in the literature has shown the following studies and imple-

mentations toward a higher working level of the hardware.

Anderson (1961) looks for an isomorphism between machine organization

and the manner in which a user expresses a problem. He thinks that a good

programing language properly reflects the concepts and abstractions of a

particular class of problems, thus an efficient implementation of the lan-

guage should constitute a good design goal for a computer. The language

considered is ALGOL.

Mullery et al.(1963, 1964) aim to use a computer as directly as possi-

ble, without compilation. To this purpose, they develop first a general

machine-independent high-level language, then a computer organization in

accordance with that language. In recognition that data have always a

structure, the language is strongly influenced by the choice of data format:

a string of variable length, articulated up to eight levels in a tree fashion.

The syntax of the language aims to be familiar by using nouns, adjectives,

and verbs. It turns out that also the computer works in a phrase-structure

mode. At the stage of the design, they find that the cost is slightly high-

er than that of an equivalent conventional computer. Reports on efficiency

and practical use have not been found.

Melbourne and Pugmire (1966) implemented a subset of FORTRAN with a

microprogramed compiler which works during the input procedure. Statements

are converted into reverse Polish expressions, and identifiers are replaced

by storage addresses. The resulting execution time is less than for con-

- 10 -

1.3

ventional compilers, and greater than for hand coding. They point out the

ease of immediate interaction.

Bashkow et al.(1967) designed a partial implementation of a FORTRAN

machine. Statements are interpreted in hardware; no provisions are taken

for subroutines.

Weber (1967) implemented EULER in a conventional computer by micropro-

graming with additional ROM, partly as compilation, and partly as interpre-

tation. The actual objective was to show that with the help of micropro-

graming existing computer hardware can be utilized to a higher degree than

with conventional programing systems.

Iliffe (1969) built an experimental computer with a "base" more orient-

ed to the elements of interest to the user. The basic type of elements are

numeric (in different representations), control (corresponding to instruc-

tion sequences), and address (corresponding to information structures).

With these elements, a process is constituted of few elements, typically

less than a hundred. The details of these basic elements are not accessible

directly. The functions of the machine apply to all three types of elements,

with some restrictions. The syntax of the language is standard.

The hardware implementation of APL has been considered by Thurber and

Myrna (1970). This work is oriented to future large-scale integration with

which cellular arrays could be feasible. A matrix-oriented architecture is

designed for which APL is an assembly language. Some of the APL instruc-

tions are microprogramed, thus involving some sequentiality. A complete im-

plementation of APL has been made by Hassitt et al.(1973) by means of micro-

programing a conventional computer. Programs with only scalar operands run

slower in this machine, and programs with large vector operations run faster

than in the conventional approach.

SYMBOL is the latest experiment of a hardware-implemented high-level

machine language (Chesley and Smith 1971; Smith et al. 1971). The language

used "is fully in the mainstream of present languages". Practical evalu-

ations are not yet available.

Vineberg and Avizienis (1972) have studied hardware solutions for taking

advantage of computational independence within and among source statements.

Surprisingly, there appear to be no publications on hardware implementa-

tion of Decision Tables, a language that is particularly suitable for direct

- ii -

1.4

implementation. Early computers were directly controlled by tables; analog
computers, in a sense, follow decision tables. In modern times, Decision
Tables implemented in software are recognized effective and are used (see

McDaniel 1970; Low 1973).

All the studies and implementations mentioned in this section show par-
ticular advantages in relating more closely the structure of the programing
language and the structure of the computer hardware. However, no significant
impact was made on the mainstream of computers, in which language and hard-
ware are developed independently. One can argue that the issue had not been
attacked from its actual roots and with sufficient freedom. In the repre-
sentation of Fig. 1, these studies and implementations can be visualized as
attempts to bring C closer to B. The following comment can be made after
the work described in this report: While attempts to exploit the capabili-
ties of hardware have an unlimited potential, it appears not simple and easy
to map directly the conventional hardware "space" with the "space" of
phrase-structure language, as are all present programing languages.

1.4 A GLOBAL APPROACH

Current computer approach can be expressed as follows: The mechaniza-
tion of the computer is assumed as given, then each problem is transformed
(in fact, deformed) in such a way that it can be solved with that mechaniza-
tion. In Section 1.2, one part of the typical transformations to which a
problem is subjected was outlined. In Section 1.3, attempts were cited to
make the computer mechanize higher levels of the problem representation.

An example has been shown (Schaffner, 1972a) in which the level of the
computer mechanization has been raised to such an extent that we can think
of an approach opposite, in a sense, to the current approach: Each problem
is mechanized as the user sees it, then the computer is transformed, or syn-
thesized, in such a way to match that mechanization. This approach sounds
interesting, but the point is: Which is simpler, or more practical, the
deformation of the problem or the synthesis of the computer ?

To find an answer, it is necessary to give a precise meaning to "mech-
anizing a process" ar "synthesizing a computer". Thus, we need to analyze
how human beings think of their problems, how thinking can be expressed, and
in how many ways processing in general can be implemented by physical

- 12 -

1.4

devices. This brings us into the fields of psychology, linguistics, and

mathematics. Moreover, in searching for suggestions on how to make up pro-

cessing systems, it is appropriate to take an excursion into neurology.

Similar conclusions can be derived also from different viewpoints. For

instance, from the concluding suggestion of the McKeeman address (see Sec-

tion 1.3):

The obvious attack for programmers and hardware people together is
to devise language that reflects what we want to do and how we do
it, and machine structures effective in handling that language.

If we start from this attack with a fresh perspective, we have to recognize

that programing in essence is a communication between a human being and a

machine. Thus, we have to start from the disciplines pertinent to humans -

psychology, linguistics, mathematics - and then look for all possible ways

of implementing processes- engineering, neurology. Obviously, the consid-

eration for user characteristics should not be limited to external aspects,

such as studying the most relaxing color for the computer cabinets, or the

least fatiguing type of display, but should go to the essential level of the

nature of our thinking.

In conclusion, we are considering here a global approach of analyzing

the nature of the processes as they are in the user's mind, the possible

forms of representation, the possible ways of implementation, and then we

search for solutions that might appear of interest, taking into account all

the related factors. In an attempt to make this fresh perspective a useful

contribution, we take here a position of audacious complete freedom from

any constraint, or established interest, and observe as much as possible

from a far distance, including collateral fields as much as possible. This

interdisciplinary study seems to have brought interesting results: Common

aspects in thinking, representations, and processing have been shown, for

which a closer relation can be established among the three points of Fig. 1,

suitable for practical application.

All these aspects have been studied in depth by different people, at

different time, with different objectives. But it does not appear that such

a global approach has been taken with sufficient commitment in regard to

computers. Most work has concentrated on the phrase-structure languages,

and computers have been kept around the notions of instruction-obeying pro-

cessors and random-access storages.

- 13 -

'2. fG PAGE BLANK NOT FILMEDI,

Chapter 2

Why Abstract Machines ?

2.1 INFERENCES FROM PSYCHOLOGY

2.1.1 Introduction

As said in Section 1.4, we look for some insight into the processes as

they are in the user's mind, for the purpose of improving the activities in-

volved in the use of computers. This brings us into psychological consider-

ations, which are discussed in this section. It is necessary to state that

this section is not intended to be a survey of modern psychology; that the

theories mentioned are as understood, interpreted, maybe biased, from our

platform; and that our concern is only for picking out some clues useful, in

an informative or in a heuristic sense, for our goal.

Two branches of psychology are particularly relevant to this study, the

theory of thought and the theory of language. The history of these fields

goes back to the classical philosophers, in their perpetual search for uni-

versals in nature and in human thought. As always, past patterns, experi-

ments, and recurrences have a heuristic power, and may facilitate freedom

from what may be merely incidental. A survey from a psychological viewpoint

of the studies of thinking, from Aristotle's image to the present is given

in Mandler (1964). Mathematical modeling is discussed in Miller (1964). A

historical review of psychological studies of language can be found in

Blumenthal (1970). However, only three references to the past are cited as

an indication of the variety of relevant possible studies.

Modern graph theory confronts us with an impressive field impregnated

with logico-mathematical properties. This fact clearly has deep roots in

psychology, and can be found in a variety of forms at all times. A semi-

historical survey of these reappearances is in Gardner (1958).

Axiomatic mechanization is one of the patterns of thinking. Associ-

ation psychology applied it to modeling thought (see, for instance, Warren

- 15 -

2.1.2

1921). A mechanization, even if related to completely abstract objectives,

is suitable for implementation by machines; a realizable abstract machine

implementing this theory was indeed described (Reiss, 1962).

Gestalt psychology, as complement to the extreme schematization of

associationism, reveals the existence of a natural "facility" in human

thinking to proceed in terms of global entities.

In modern times a rigid concern for experimental evidence, together

with more and more use of mathematical tools common to other disciplines,

has brought psychology, in particular developmental psychology, to more

fruitful connection with other independent fields such as mathematics and

artificial intelligence. It is from developmental psychology that we will

derive heuristic notions and support for certain assumptions to be made.

2.1.2 Developmental structures

Piaget describes three main stages in mental development (see Flavell

1963; Furth 1969).

1. Stage of sensori-motor operations (up to about 2 years of age). Co-

ordination of perceptual and motor functions develops. The scheme of per-

manent objects progressively comes into being, in the sense that an object

is known to exist even if it is out of the perceptual field. Elementary

forms of symbolic behavior take place.

2. Stage of concrete operations (approximately 2-11 years). Properties of

the present world are established (conception of space and time). Organiz-

ation of complex operations develops, all directed to the concrete here and

now. The world starts to be represented through the medium of symbols.

3. Stage of formal operations (from about 12-15 years). Hypothetical

reasoning and deductive procedures become possible. Operations on inter-

nalized actions form new internal structures. With these means the contin-

ual growth of adult thinking proceeds.

A key point in Piaget's theory is that each new capability derives from

integration and grouping of the capabilities previously developed. The new

groupings result in new mental "structures". They are on the one hand more

synthetic, organized at a higher level; and on the other hand richer in

details, more differentiable ("structured whole", "set of all subsets",

"ensemble des parties").

- 16 -

2.1.2

There is a continuity of development; the operations characteristic

of each stage are based on operations characteristic of the previous stages.

By grouping or integrating structures, new structures, and thus new func-

tions, are produced. In turn, the integrating or grouping of these new

structures produces still more new structures. Each class of structures

constitutes at the same time the attainment of one stage and the starting

point of the next stage. A structure at each given level is composed of

structures of lower levels.

Piaget has related these structures to logic (Piaget 1950; Inhelder

and Piaget 1958). Logic and psychology are two independent disciplines;

the first is concerned with the formalization of internally consistent sym-

bolic systems; the second deals with the mental structures that are actual-

ly found in all human beings, independent of formal training or the use of

particular notational symbols, and regardless of consistency. Piaget

applies the first as a theoretical tool in the description of the second.

As an example, the new groupings that occur.in the mental structures corre-

spond indeed to the possible combinations in logic. He finds also that at

different stages different logical functions can be performed.

In regard to the cause of development, Piaget invokes the mechanism of

an equilibrium. The more unstable the system is in dealing with new situ-

ations, the more new integrations and groupings are induced. The broader

the stability of a new structure, the more this structure becomes a perman-

ent acquisition and is assimilated.

One interesting outcome in Piaget theory is that intellectual develop-

ment occurs autonomously, independently of outside information, although

very strongly affected indeed by it.

One fundamental concern for psychologists is cognition. Making a copy

of objects pertaining to an objective world was one past theory; evoking

innate images was another. For Piaget cognition is a process between per-

ceptual data and operational structures. The structures adapt themselves,

evolve in order to remain in equilibrium in the presence of new perceptual

data. Perceptual data may or may not produce evolution depending on

whether such equilibrium can be reached. Signals from the environment may

remain meaningless and mute, or they may produce large consequences, accord-

ing to the possibility of cognitive processes between the arriving signals

- 17 -

2.1.3

and the receiving structures (readiness of the receiving organism). Differ-

ent structures will produce different outcomes. Thus cognition can be af-

fected by working either on the input signals or on the internal structures.

An object can be known only by being conceptualized to some degree.

Knowledge is an adaptation and assimilation process.

It is interesting that here an input can not be "declared" to be some-

thing, from the outside; but it is what results from the interrelation be-

tween input and structure. This approach has to be taken because of the

extreme complexity and variability of the structures.

From the theory of developmental structures we can derive heuristic

notions. One can start from the available, or familiar, level, then proceed

in integrating and grouping until a satisfactory solution is found. The

familiarity, or the permanency of a level of integration is a function of

the range of applications and success attained. We can also derive a heur-

istic notion of embedment of different levels. Or, put in a different way:

rather than thinking of separated processes, one for each level (performed

in sequence of time, or cascaded in space), we can think of a global, more

developed, process (structure) comprised of all the levels.

2.1.3 The spatiotemporal frame

Piaget's modeling of mental processes emphasizes an evolutionary devel-

opment of the mental structures during the different stages; in particular

he refers to the "structural integration of concrete and formal operations"

(Inhelder and Piaget 1958). Because the concrete operations are structured

in a spatiotemporal frame, and because they are the basis of all the subse-

quent formal operations, we may deduce that all the mental activity of the

adult, in its inner work, at some level, is structured in a spatiotemporal

form. Of course,new, more effective structures can always develop.

Following a different course, other psychologists (Bruner et al. 1966)

emphasize the evolutionary bounding up between perception and sensorimotor

schemata (see Section 2.1.4). During the first months of life visual per-

ception is inextricably associated with the handling and moving of objects.

Because the structures thus learned remain fundamental throughout life, and

are used also in later higher level intellectural activities, the frame

formed at that time is embedded in abstract thinking.

- 18 -

2.1.3

In regard to the conscious level, people refer to "spatial intuition".

In all abstract discussions, recourse is made to this spatial intuition; it

is considered doubtful that even modern mathematics does not derive all in-

formation from spatial intuition (Beth/Piaget 1966). It is a fact that

whenever an adult (even a logician) uses some kind of symbolic representa-

tion to describe a classification he is bound to think in spatial terms

(Inhelder and Piaget 1958); Taxonomical trees and the Euler circles are ex-

amples. Even when dealing with the most abstract entities, we talk and think

of mappingone "space" into another "space".

It is clearly meaningless to say that spatial relations are objectively

determined from the environment. Experimental evidence shows that spatial

notions do not derive directly from perception; on the contrary they imply

a truly operational construction (Beth/Piaget 1966) Neither is there any

usefulness in assuming that spatial categories are innate. The Piaget pro-

cess of cognition shows that it is through the development of "intelligence",

in reaction to stimulae from the environment, that the individual constructs

spatial notions. The objective constructions that we are accustomed to

place within the environment are for Piaget identical with the structures of

intelligence. In fact, everything we connect with objective, identity,

causality, space, and time is regarded by Piaget as constructions and living

operations (Piaget 1971). The fact that all human beings construct the same

spatiotemporal frame is easily explained by common genetic structures. It

is known that frogs have a visual and related processing apparatus quite

different from ours (Lettvin et al 1959), and very likely their mental

frame is different too.

In this light, it is probably fair to say that the spatiotemporal frame

is basic to our thinking, and the frame remains, regardless of further com-

plex mental structures that are developed subsequently. At the conscious

level, however, one can "feel" different degrees of involvement-of the

spatiotemporal frame, because of strong internalization of new structures.

From this the impression originates that "spatial intuition" may be only an

heuristic device that is applied frequently. In sum, we may say that the

spatiotemporal frame is the original substratum in which thought takes place;

the degree in which this remains conscious varies in different cases.

- 19-

2.1.3

If this is so, the hypothesis can be advanced that any mental struc-

ture, at any degree of symbolic abstraction, in which spatiotemporal form

does not appear at the consciousness, can be restructured also in a spatio-
temporal frame; and the new structure should appear at least very

objective; whether it is also simpler needs to be seen.

An application of the above is in the following: If our objective is

to develop ("to discover", in the sense that we do not yet have mental

structures perform it) a logical system different from the familiar spatio-

temporal system, obviously we have to reject (at the conscious level) the

spatiotemporal frame; we have to work with the available structures to

arrive at a consistent new system, and then we need to exercise the new

system to internalize it. But if our objective is to describe a process
that can be modeled well in the spatiotemporal frame, we create unnecessary

work if we describe it in a different frame. This observation is made be-

cause in our opinion there is the following curious situation. The pro-

cesses we give a computer can typically be well modeled in the spatiotempor-

al frame; all today's programs (a program is a description of a process) are

expressed in the form of strings of symbols, form that needs a nonindiffer-

ent elaboration before it can be framed in our inner spatiotemporal struc-

tures - that is, be understood.

2.1.4 Words and imagery

In a broad sense, mental activity can be viewed as information process-

ing, thus information has to be represented in some form, both internally

and externally. In this fascinating, multifaceted, deeply intricate area,
we will consider a few aspects very pertinent to our study. An extensive

treatment of this subject can be found in Paivio (1971).

Bruner (Bruner et al 1966) delineates the successive development of

three modes of representation. (1) Inactive (motor): at first the child
knows his world by the habitual actions he uses for coping with it. Be-

cause these actions, or schema, are exclusively devoted to specific local

goals, this system does not permit a real mental activity. (2) Ikonic

(images): representation is made independent of action, and is permanent;

it is formed in space and time, and allows for a degree of abstraction and

anticipation. (3) Symbolic (verbal): the symbolic structuring of informa-
tion permits the full development of intellectual activity.

-20-

2.1.4

The details and difficulties of such a classification are not of rele-

vance here. Of interest instead is the notion that "each of the three modes

of representation has its unique way of representing events. Each places a

powerful impress on the mental life of human beings at different ages, and

their interplay persists as one of the major features of adult intellectual

life". We can also observe in the external human communication the use of a

mixture of words, images, and gestures that are difficult to separate from

each other.

Piaget (Piaget and Inhelder 1971), in reference to his developmental

structures and cognitive processes (section 2.1.2), considers two main sym-

bolic systems for representing information: the verbal system, and the sys-

tem of mental images or imagery.

The verbal system derives from perception (typically, -but not exclusive-

ly, from the audio apparatus), presents at the surface a serial nature, and

has lexical, syntactic, and semantic structures. Its peculiar characteris-

tics are the ability of categorization and a permanent precision. It is

particularly effective for representing abstract concepts, and has a largely

varying efficacy in representing the other object of thought.

The imagery system derives from perception (typically, but not exclu-

sively, from the visual apparatus), through internalized imitation (in Piaget),

or some other schematizing process, and presents at the surface a parallel

nature. It evolves from static to kinetic to transformational nature, each

form remaining available, and is capable of a continuous stylization from

vivid views to pure abstractions. Its peculiar characteristics are the

ability of condensing information, and an operational dynamics (as it will be

elaborated below). It is very efficient for representing a global situation,

and has a largely varying effectiveness in representing the different objects

of thought.

The characteristics of the two systems are complementary and overlapping

at the same time, and the two systems are used both in alternative and co-

operative ways. For instance, we do not find the way to have a direct

"mental image" of the concept of truth. On the other hand, we will never

terminate in describing by words "all" the information we derive from a vivid

image. Images (Piaget contests, ibid.) are not less symbolic than words;

they are so in a similisensible form; in the schematization process that they

generate, they retain the properties of interest and abandon the rest that

- 21 -

2.1.4

was perceived. They have the function to designate exactly as words have.

They are very rich symbols; in some instances not very precise; at the ex-

treme of stylization they tend to parallel words: a circle has the same

categorization power as the word "circle".

Images have a peculiarly important role of interface between perception

and the operations of intelligence. But the most interesting feature of

imagery shown by Piaget (ibid.) is the intimate collaboration with the work

of intelligence. The images help the evolution of the operational structures,

and the operational structures help the evolution of images. The work of

complex operations would not be possible without the features of the images,

and the features of the images would not be possible without the collabora-

tion of operations. (These psychological analyses are of tremendous heuris-

tic value for our study, for they consolidate the notion of collaboration

between data structures and operational structures.)

It should also be considered that imagery is the symbolic system by and

large most available at the early stages of development, and thus the opera-

tional structures developed at that time are strongly oriented to images.

Because these structures remain integrated into all subsequent structures,

it is likely that imagery plays everywhere some inextricable role at least

in some layer of all types of mental processes. It is a situation that goes

with that of spatiotemporal frame.

The role of verbal language and of imagery in thought has produced in

the past a sharp controversy. Associationists considered images as the

material of thought - "thinking as a party of images". At the opposite ex-

treme, behaviorists considered images as an auxiliary and occasional sym-

bolism, and words the real content of thought.

From experimental evidence, psychologists today think that the mental

processes exist independently of each one of the two representational systems.

Neither one alone would fulfill the requirements for the mental activities

of which man is capable; both are used in a complementary and cooperative

way, together with other less prominent sign systems. As a consequence,

these systems affect thinking. The language learned from the social environ-

ment indeed facilitates the development of thinking; and different languages

may produce different mentalities (see Whorf 1965). On the other hand, it

can be said that the autonomous (firm point in the Piaget theory) develop-

- 22 -

2.1.4

ment of formal operations implies a symbolic language of communication; if

not thought, the individual spontaneously would generate some form of it.

There is no doubt that images and words interact continually in every mental

process. Which form is more dominant depends on the task, circumstances,

and individual differences. Much has to be learned of both the verbal sys-

tem and the imagery system; in particular, in regard to special roles of

imagery (see Piaget). Everyone can observe in himself how one form can in-

voke instantaneously the other. Paivio (1971) views images andl verbal pro-

cesses as alternative coding systems, or mode of representation, and hypo-

thesizes a double-coding system for memorization.

From an applicational viewpoint it is well known that "a picture is

worth a thousand words"; but also "one word is worth a thousand pictures,

if it contains the conceptual key". Thus, alternating the two forms permits

better efficiency. Verbal symbols are exact schematizations very suitable

for logic functions. But if a problem is given such as "Alice is taller

than Mary; Elsie is shorter than Mary; is Elsie taller than Alice?" (in

Bruner 1966, p. 9), translation into an up-down image allows a direct reading

of the answer (Fig. 3 c). Mathematical expressions also become easier if

they evoke some stylized ikonic or enactive element.

Moreover, imagery appears to have an unequalled power in its anticipa-

tory capability in a spatiotemporal frame - the so-called geometrical intui-

tion. Geometrical intuition can be considered as the practical counterpart

of the Piaget theory of collaboration between imagery and operational struc-

tures. Note that this intuition can be trained to spaces completely differ-

ent from those developed from perceptual activity. Paivio (1971), in crit-

ically analyzing the different viewpoints on the subject, suggests that

imagery is the very basis of swift leaps of imagination in creative thinking.

It is not by chance that the word "imaginative" has the meaning of creative.

It is important to make clear that imagery refers to the internal sym-

bolic system used by the mental structures; it has nothing to do with the

graphical means we use for communication with the environment, although,

needless to say, one typically evokes the other. For instance, in the three-

term problem cited above, we can represent (at the outside) the girls in dif-

ferent verbal and graphical forms, and evoke different mental structures.

- 23 -

2.1.4

In Fig. 3(a), the problem is represented in a verbal form, is modeled

in a verbal structure, and it evokes mental verbal processes. Typically, a

time of the order of ten seconds is necessary for the mental structures to

solve the problem, when represented in this form.

In Fig. 3(b), the problem is represented in a graphical form, almost

pictorial, but it is still modeled in a verbal structure, and evokes verbal

mental processes. A time little longer than previously is typically used

for solving the problem represented in this form, due to the extra coding

of the girl's dress. This coding was necessary to avoid evoking imagery

processes by showing different heights in the girl's portraits.

In Fig. 3(c), the problem is represented in a graphical form that is

completely symbolic, rather than pictorial; it is modeled in a structural form,

and evokes imagery mental processes. The observer doesn't feel like making

any elaboration at all, and declares that the problem is'bbvious". Note that

much less symbols and means have been used in the representation (c) than in

representations (a) and (b). The modeling has indeed a great influence.

In Fig. 3(d), the problem is represented with verbal means, but is

modeled in a graphical form, and evokes imagery mental structures. As soon

as the code of the problem is communicated, if not already guessed by intui-

tion, the problem appears instantaneously solved, as for the representation (c).

Clearly, it is not the use of external graphic means that is determinant,

but the modeling of the problem in such a way that effective mental structures

are evoked. Cognition is a process between external representations and men-

tal operating structures.

At this point, it appears particularly remarkable that today's computer

programs are developed in the form of word strings. Now we can attempt an

interpretation for the fact observed in section 1.1 that, while most auto-

mobile users drive their automobiles themselves, a much smaller fraction of

computer users write the programs themselves; this also considering other

factors such as responsibility, cost, and intrinsic complexity. Driving an

automobile is fundamentally a sensorimotor activity with full use of imagery;

preparing a computer program in today's programing languages is a symbolic

activity deprived of direct imagery.

- 24 -

2.1.4

-Alice is taller than Mary
- Elsie is shorter than Mary (a)

- is Elsie taller or shorter than Alice ?

A Alice
M Mary
E Elsie relative height

(b)

ALICE (d)
MARY
ELSIE

Fig. 3 - Different forms of modeling and representation of a problem

- 25 -

2.1.4

We take the occasion here for an observation that will be of interest

later. There is a well-known game called charades, in which a person or a

group of people have to communicate to another group a message through mime,

without any use of words. The message to be conveyed may consist of a name,

an object, an event, or even an abstract concept. We see here a mode of

representation that is not word structured, and that performs the same role

as the verbal language. While on the one hand the rate of information trans-

mission is typically very low, on the other hand certain nuances of feeling

can be easily communicated by "body language" that would be difficult to ex-

press in sentences. The fact that this game is enjoyed as entertainment

suggests that those activities related to creating and interpreting images

and imitations do not constitute, subjectively, an effort.

Let us elaborate further. We can use mime to represent each single

word of a message; and have observers reconstruct sentences from the mime

activity. In this case we transmit through mime information that was

already expressed in the form of sentences. We can observe that the rate of

information transmission is low as is typical for mime, and that the capa-

bility of communicating feeling is poor, as is typical for spoken sentences.

In this case, by cascading the representations we degrade the communication

system - we sum the difficulties of the two forms of expression. Let us now

consider two parties communicating by telephone (without picturephone); one

party has expressed in geometric form certain properties, description of

which he is unable to express in sentences; he transforms the geometric con-

struction into sentences of a common language, and the other party recon-

structs those elusive properties. In this case, the cascading of forms of

representation does not result in a summation of difficulties. These exer-

cises will be of interest for the discussions on page 170.

2.1.5 Concluding remarks

One of the most interesting aspects of psychology of relevance to our

study is the consideration of experimental data on mental processes in terms

of logico-mathematical structures. The subject obviously is a delicate one;

always questionable is the value of a theory of one field applied to another

field; but in the case of thought theory, the question is particularly ines-

capable because thinking itself is involved in any human activity. The

-26-

2.1.5

independence of logic-mathematics from psychology is universally accepted,

in the sense that no psychologism in mathematics, and no mathematics in psy-

chology. However, from an epistemological viewpoint, in the sense of inter-

preting how science is the product of man's actual thought, a connection be-

tween the logico-mathematical structures and the subject's mental structures

cannot be-avoided. Fascinating in this respect are the Piaget's (1971)

speculations for explaining the "mathematical necessity" in psychological and

neurological terms. This necessity would be based on the need of equilibrium

and closure of the mental activities in response to the various external

stimula and internal elaborations.

A further range of considerations arises when the peculiar features of

computer programs are also involved, as it occurs in artificial intelligence

(cf. Nevell 1970; Papert 1973).

In our aim to gain an insight into point A of Fig. 1, we make treasure

of the theories of mental processes. In particular, we acknowledge the be-

lief that the role of the spatiotemporal frame is a primary, rather than a

secondary support of thinking; the ascertained self-existence of thought re-

gardless of each particular symbol system, such as verbal structures; and

the prominent role of imagery among the symbolic systems. Furthermore, we

feel a great heuristic power in Piaget's developmental structures, made of

successive integrations and grouping of previously developed structures.

We will resume these issues in section 2.6.

2.2 MODELING AND REPRESENTATION

2.2.1 In the previous section, we saw psychologists trying to model human

mental activities. In this section we will survey how those internal mental

activities try to model processes of the "external" world. The term external

is in quotation marks to remind us-that any object of mental activity (as

opposed to the mental activity itself) is considered external even if that

object is an internal creation without any apparent reference to an outside

world, as it can be a problem of pure mathematics. Of course, thought can

also make a model of itself; it is what we were discussing in section 2.1.

From an epistemological viewpoint, as Minsky (1965) says, "to an ob-

server 0*, and object A is a model of an object A* to the extent that 0*

can use A to answer questions that interest him about A*". But here we are

not concerned about the connections between A* and A, e.g. the connections

-27-

2.2

between a physical experiment and the idea that the experimenter
has of it;

we are interested in the transformation of A into B as put
in Fig. 1. There-

fore epistemological questions are beyond the scope of our
discourse. In

section 2.1 we saw interesting facts and theories related to
A; in this sec-

tion we are going to see which general types of B have been used
in the dif-

ferent fields; and in section 2.6 we will sketch the character of
the A to B

transformation that we propose for our goal.

2.2.2 A modeling activity, in the sense delimited in the previous paragraph,

can have several goals, and corresponding viewpoints. It can have a heuris-

tic purpose for arriving at the formation of a theory. It can have the pur-

pose of filtering the information we have on a complex situation, for arriv-

ing at a simplified description that keeps the properties of interest and

abandons those characteristics presently not relevant. It can be directed

to the establishment of a procedure for obtaining a given or desired process.

It can serve as a form of representation of a system. It can be used for

changing the means with which a system or a process is represented.

Our goal, the representation of what the user has in mind, has con-

nections with those viewpoints that increase in importance in the order in

which they were listed; the discussion will be weighed accordingly. We see

that modeling and representation are here strongly related. The choice of

the form of representation determines the selection of the type of model; and

the representation that is appropriate is the consequence of the modeling.

Often a truly "problem solving" activity is involved, but we do not discuss

directly this viewpoint (see for instance Kleinmuntz 1966); we will give it

consideration indirectly by searching for tools that also facilitate solu-

tion finding. The main focus in this section is on the interplay of problems,

tools, and people, as Naur (1965) put it; problems can be expressed only in

terms of some modeling tools, different tools make different problems, and

problems and tools exist insofar as they are recognized by people. Following

the discussion in section 2.1, we can substitute people with the mental struc-

tures that people are capable of, or prefer to use.

2.2.3 From a historical viewpoint we can trace different forms that people

used for modeling/representing systems.

- 28 -

2.2

Archimedes' "give me a lever and a fulcrum, and I will move the

earth" is a startling example of a process modeled in the form of an abstract

machine, and represented in a verbal form. It is conceived through the

geometrical intuition and is presented in axiomatic words.

The pages of Leonardo's Codice Atlantico are covered with representa-

tions particularly interesting for the present discussion. They are mental

conceptions, guided by mathematical knowledge, oriented to the attainment of

specific tasks; they are not copies of memorized perceptions. Thus, it is

hard to distinguish whether they are abstract automata or visualizations of

real or possible objects. The form of representation consists of sketches

where the imitation of movement is among the means of communication, and their

spreading in the sheets makes an integral discourse with the words. There is

a full use of imagery, anticipation, and verbal language.

The typical books of engineering in the last century are full of

"artist's views" of machinery, visual and abstract at the same time, comple-

mented with symbolic signs and words. As a result, they are functional and

structural descriptions simultaneously. The practical success of this type

of representation during the industrial revolution resides in the powerful

capabilities of the geometrical intuition of the reader.

2.2.4 For heuristic purposes, let us examine modeling in a different en-

vironment: that of exhibitions; for example, world fairs, which are the

occasions where the maximum effort is made to represent something. The vis-

itor's first approach is an architecture, sophisticated, audacious, possibly

symbolizing important aspects of the whole. This reminds us that it is psy-

chologically pleasing, or effective, or both, to see at first an overall

structure, and to have an initial preparation of the general spirit of the

world to be seen. (Nothing of the sort is possible with present programing

languages, which indeed have the task of representing the different worlds

that programs are). Then, each issue exhibited in the pavilion is modeled

and represented in the most appropriate form among the several available.

Usually it is a mixture of graphic means and sentences; often actual mechan-

ical static or working models are used. We have here a well-facilitated cog-

nition process in the Piaget sense. The signals from outside have multiple

structures in order to produce an effective communication with the variety of

mental structures that the visitors may have. The success of an exhibition

is indeed affected by the broad bandwidth of the language used. (Again the

contrast emerges with the monocromaticity of present programing languages).

- 29 -

2.2

2.2.5 In a mathematical context, a model is constituted by a class of un-

defined mathematical objects, and relations among these objects. Modeling

is to express in these terms a particular behavior or a specific structure.

Mathematical models are the fundamental tools of all scientific work, and

no general discussion of them is needed here. From a psychological view-

point, they constitute one mode of thought processes, the one that has the

well-known characteristics of rigor, stability, and deductive power.

A type of model of special interest is abstract algebra with related

abstract spaces. It involves the notion of mapping an object of a class

(or space) into an object of another class (or space). If the mapping is

between two different models, a correspondence is established between the

two. A model M' is said to be a homomorphic image of a model M when there

is a unique mapping of the objects of M into objects of M', and for every

operation in question in M there is a corresponding operation in M'. The

two models are said to be isomorphic, with respect to the operations in

question, if the same conditions also hold for the mapping of M' into M.

A mathematical tool is developed and receives spreading usage insofar

as it allows one to model with elegance one class, or several classes of

problems. The greater its success in those classes, the stronger is the

natural tendency to use it in other classes of problems. When a model

reaches an almost universal application it produces the well known psycho-

logical effect that people tend to think that "reality" has the frame of

that model. This is a very comfortable and practical situation, until some

recalcitrant problem requires the introduction of a new, initially "odd",

model. In psychological terms, these facts can be interpreted as the devel-

opment and permanency of mental structures derived from cognition processes

originated both from perception and elaboration of internal symbolic systems.

An interesting case is the following. The power of generalization of

abstract algebra is well apparent. In the spirit of this model, a program-

ing language has been attempted for nonnumerical processes (CODASYL 1962).

The fact that difficulties have been encountered suggests that this type of

model, in its pure form, while very elegant in a mathematical context, does

not match well the common mental structures that are involved in specific

practical applications.

-30-

2.2

2.2.6 In system theory, we see three classical approaches: input output

response, state variable characterization, and the probabilistic approach.

The last one is peculiar to certain situations in which an incomplete know-

ledge of the system is involved, and it is not relevant to the present dis-

cussion. The other two are both applicable to the same systems (see

Dertouzos et al.1972). For the first, the main tool is the calculus and

the most interesting feature the feedback; the second is particularly suit-

able for discrete systems and more detailed discussion will be in section

2.3. The two approaches are obviously derived from "intuitive" mechaniza-

tion of physical systems, and given their well-known success in varieties of

applications, both should be available, in some form, to an A-to-B trans-

formation.

More recently, complex systems are modeled in the form of computer pro-

grams. Since early time (see Minsky 1962), it was recognized that computer

programs have some modeling power not easily achievable in the other ap-

proaches. Here the tool is a programing language. And indeed a programing

language may allow of all the other forms of modeling. There is here a clear

example of modeling of a modeling. A program can judiciously handle dif-

ferent modelings; there is a strong similarity with thinking; thus computer

programs appear to be the most general and powerful tool for modeling. For

this reason they are the main tool used in artificial intelligence (see for

instance Barnerji and Mesarovic 1970; Vinograd 1973).

But this power of computer programs is obtained by simulation with a

given machine, or programing language. And here we come to the object of

our study, which can be expressed in the following form: how much can a

machine or a language make computer programs replicate our actual thinking,

rather than tortuously and inadeguately simulate it ?

2.2.7 We noted already the ancient use of graphic means and their connection

with the imagery of the mental processes. In recent years, graph theory had

an impressive surge, both as an independent mathematical discipline (cf.

Berge 1968; Golomb 1970) and as an interdisciplinary connective, especially

with the computer field (cf. Read 1972), ranging from modeling the behavior

of hardware (cf. Holt 1971), to modeling program structures (cf. Slutz 1968).

- 31 -

2.2

As usual, a programing language has been developed with particular fea-

tures that facilitate the study of graphs (King 1972). But it seems clear

that graphs have a potential for being themselves a programing language, or

a part of it. A start in this direction can be seen in Rosenstiehl et aL

(1972).

We see graphs deserving a funidamental role in a general programing lan-

guage for the following reasons:

(1) They are symbolic, in the sense that they have the same power of cate-

gorization, the same precision and permanency as verbal symbols.

(2) They are complementary to verbal symbols in that they are particularly

effective in representing situations that are not effectively representable

through verbal systems.

(3) They can be functional and structural at the same time: a graphic means,

while symbolizing a function, can also convey information of a structure or

path, in time or space, related to the implementation of that function.

(4) They constitute effective representations. Graphs have a wealth of

properties; if these properties are made to correspond to the properties of

a programing language, a very effective representation is achieved.

(5) As a language, they evoke the imagery system of the user, with all the

related heuristic power. The geometrical intuition of the programer will

very likely help him to find a solution for modeling his ideas, undoubtedly

will guide him in the construction of the program, and finally will give

him a facilitation for checking the correctness of the construction.

- 32 -

2.3 AUTOMATA THEORY

2.3.1. Introduction

Automata theory can be considered the branch of system theory that

deals with the dynamic behavior of discrete parameter systems. Because dis-

cretization of parameters is an extremely practical schematization, and dy-

namic behavior is the most revealing insight we can have in a variety of

systems of completely different natures, automata theory is growing autono-

mously, with inextricable connections with many other disciplines, and with-

out a possibility to define convincing boundaries. For these reasons, a

collection of different aspects of automata theory is discussed in this

section.

There is no question that many notions peculiar to automata theory have

been used, in one form or in another, in past speculations and practical ap-

plications. An example available in the literature is the work of Kutti

(1928) for extracting and representing the essential behavior of complex

telephone systems, regardless of the actual devices used and contingent de-

tails. However, the present comprehensive viewpoints of automata theory, which

joins mathematical rigor with a satisfactory intuition, appear as a recent

acquisition. The starting of automata theory can be placed in the Turing's

(1936) introduction of a "machine" (abstract) as a constituent of mathematics.

The only possible way to ascertain the computability of a mathematical func-

tion was found in the behavior of a machine. Undoubtedly, that event enlarged

the context of mathematics.

In a completely different field, neurology, the need arose for formal

modeling (see section 2.5.4). The growing field of digital circuits was de-

manding a general characterization of dynamical behavior (Huffman 1954).

Then, automata theory became a recognized field with the publication of "Auto-

mataStudies" (Shannon and McCarthy 1956). At that time, mathematics, system

theory, artificial intelligence, neurology, and formal expressions were al-

readyreciprocally involved. Moore (1956) gave the first explicit presenta-

tion of an automaton as a formal structure for modeling devices. In refer-

ence to the subject of the present report, this three-page paper appears to

- 33 -

2.3.1

be a beautiful example of collaboration of psychological fertility of the

human mind (the development of a new mental approach), of mathematical rigor

(the logical features of the model), and of adherence to the real world (the

"unknown devices").

Mealy (1955) showed the use of the transition function for structuring

the output. Wang (1957) started the increase of efficiency of Turing ma-

chines. Hopcroft and Ulman (1967) showed a way of generalizing automata.

The connection with language was discovered (Chomsky 1957). The properties

of finite-state machines were soon organized (cf. Gill 1962). The alge-

braic aspect were brought in light (Hartmanis and Stearns 1966). Most use

of automata developed in mathematics (cf. Minsky 1967), in digital design

(cf. Hennie 1968), in formal languages (cf. Luce et al. 1963; Ginsbury 1966),

and in neurology (cf. Leibovic 1969). Comprehensive treatments can be found

in Booth (1967), and Arbib (1969), among several others. The field has such

fertility that several symposia and numerous papers and books are produced

every year in connection with notions of automata.

2.3.2 Function and structure

One of the peculiar characteristics of automata is their dual aspect:

functional and structural. For every "automaton" formally conceived in some

mathematical form, it is possible to devise some operational structure (ab-

stract) that implements an identical behavior. For every "automaton" con-

ceived as an operational structure, it is possible to devise a formal ex-

pression that produces an identical behavior. The pioneering work of

McCulloch and Pitts on this issue, in a neurological context, will be dis-

cussed separately in section 2.5.4. Each author that treats automata theory

gives his form of demonstration of this correspondence. Kobrinskii and

Trakhtenbrot (1965) give particular consideration to the issue.

Mathematical modeling and structural modeling appear to be equivalent.

A mathematical function and its corresponding Turing machine are indistin-

guishable, or, more properly, they are two different representations of the

same "object"; and for the moment we do not discuss if we might have a more

essential insight of it. Therefore, we consider it meaningless to inquire

whether an "automaton" is a mathematical object that can be simulated by

an operating structure, or an operating structure that can be represented by

a formal expression; an automaton is simply a notion that has those two

aspects.

-34-

2.3.2

This property of automata has two important applications: (1) The syn-

thesis of digital machines for performing given functions expressed in some

symbolic form; and (2) The characterization by means of formal expressions

of the functioning of given machines. Several procedures are available for

obtaining these transformations in several classes of functions and devices

(cf. Kobrinskii and Trakhtenbrot 1965; Harrison 1965). Obviously, thereare

several solutions, depending on the type of operational elements and type of

structures used. Note that here there is a recursive procedure; each element

considered can be in turn treated either as a new formal expression or as a

further structure of other elements. In order for the system to be universal,

there is a minimum operational complexity of the elements, for each class of

structures and devices such as Turing machines, cellular automata, and digi-

tal circuits.

2.3.3 Formalizations

The dual aspect of automata, functional and structural, discussed in the

previous paragraphs implies the treatment of the several "machines" by purely

formal means. A variety of different mathematical models have been formalized

(cf. Ginsburg 1962; Nelson 1968).

An example of such formalizations is the definition of a finite-state

machine as a quintuplet [S, I, 0, a, X], where S is a finite set of state, I

a finite set of input symbols, 0 a finite set of output symbols, C : S x I + S

the transition function that maps the present state and input symbol into the

next state, and : S x I - 0 the output function that maps the present state

and input into an output symbol. The mappings a and X are given in some sym-

bolic form, or simply as a table. Often a graph representation is of great

help in visualizing these functions. It is interesting to note that even in

these purely symbolic treatments it appears again, as most effective, a

representation in the form of a symbiosis of graphic means and verbal symbols

that we saw preferred in different human activities and different epochs.

Very interesting relationships have been shown (Hartmanis and Stearns

1966) between abstract algebra and structural realizations of automata. The

techniques of algebra suggest a great potential for characterization, com-

position, and decomposition. However, it does not seem that algebra can eas-

ily tell all the story of automata. The following comment is interesting

-35-

2.3.3

(ibid. p. 18): "We have found that it is often useful to think in terms of

a little machine chugging away from state to state rather than in terms of

abstract sets and mapping. For this reason, we now incorporate this view

into our formalism."

The notion of automaton seems to be able to capture what is essential,

common in the various mathematical or structural formulations. It would

therefore appear the best vehicle for solving the question, as Arbib (1968)

put it: given a prbleb, what is the computing structure best suited to it?

Von Neumann (1948, 1958, 1966) was envisioning a general theory of automata,

as a new formal tool, that could serve computers, neural systems, and dynam-

ic systems.

2.3.4 Automata and languages

Automata can be seen as acceptors of input sequences that recognize one

sequence from others by going into particular states, or producing a particu-

lar output. They can be seen also as generators of output sequences, under

different input conditions. Input and output sequences are strings of sym-

bols. Thus automata can be seen as recognizers or producers of symbol

strings, a fact that associates automata with formal languages. Because

languages are also defined by grammar, a correspondence between automata and

grammar results.

These relationships had given automata a new facet, and opened a new way

for modeling languages. The approach appears completely general; to finite-

state automata, push-down automata, linear-bounded automata, and Turing ma-

chines correspond finite-state languages, context-free languages, context-

sensitive languages, and recursively enumerable sets, respectively.

To the extent that a formal language corresponds to a computer program-

ing-language, the string of symbols produced by an automaton can constitute

a program (i.e., the string is interpretable as describing an automaton, the

process in question).

Insofar as a formal grammar can be a schematization of a natural gram-

mar, an automaton can be an element in modeling natural languages, but its

productions are well far away from natural utterances.

2.3.5 Connection with psychology

The notion of automaton can be concretized in many other different

contexts. Just to summarize, automata can be considered as: functions,

-36-

2.3.3.

algebraic systems, logic systems, constructs, dynamic systems, sequential

machines, logical networks, languages, expressions, programs, or graphs. It

is often said that automata have several facets. A characterization cdpable

to be consistent with all those facets might be: a system of mechanizations.

We can note that different classes of automata permit different types

of behaviors, computations, processes, operations. Each class of automata

is derived by integration and grouping of automata of other classes. Analo-

gies with Piaget's developmental structures discussed in section 2.1 are

striking.

Given the variety of contexts in which intellectual activity arrives to

the consideration of automata, we conjecture the following interpretation.

What are called "automata" (with all the difficulties to establish a general

definition) are the external correspondences of mental structures that we

use in varieties of mental processes; structures that are more involved in

thinking than those corresponding to each single mathematical model; struc-

tures that are deeply imbedded with the system of imagery, and perhaps sup-

ported also by sensorimotor substructures.

Rather than viewing automata as multifaceted objects, we may more ap-

propriately regard them as general purpose tools of our mental processes

used in many classes of situations. Can a system have a model of itself?

Von Neumann (1966) showed a procedure in self-constructing automata; Minsky

(1965) elaborates on the issue. The dual aspect of automata is obviously

due to the characteristics of our thinking; very likely the same character-

istics that brought Piaget to hypothize the two symbolic systems, the verbal

system and imagery.

If this is so, automata appear the best candidates for constituting the

framework of a general-purpose computer programing-language. The user models

in this frame the various information he has in mind about the intended pro-

cess, and then, expresses the model directly in that form through-some-means(*).

(*)Note that in conventional programing, a double modeling occurs. The process
is first understood, mechanized (modeled) in the user's mind in some form (a
first automaton); then, that model is remodeled in terms of a given program-
ing language (an automaton to produce a second automaton); and
finally, the user expresses the transformed model (the second automaton)
through some means of verbal structure. In our approach, that will be elab-
orated later, we imply an automaton that is the user's original conception of
the intended process, and means that allow him to express it direct±y.

-37-

2.3.5

The power of the automata framework is in its completely symbolic nature, the

symbols (input, output, states) may correspond, as in thought, to simple ele-

ments or to other complex structures. Moreover, if an automaton is produced

from the programing activity, a structure for implementation is readily avail-

able, because of the inherent structural aspect of automata.

2.3.6 Interchangeability between program and machine

Burks (1963) shows that a Turing machine M*T = M*P -A composed of a fin-

ite automaton M, and a tape T comprising a finite program P and a blank un-

limited portion A, can be substituted by a new Turing machine M.*A composed1

of a more complex finite automaton M. and a blank tape A. Thus, all the
1

computable numbers can be computed by a machine without program, but with

appropriate finite automaton. In essence he points out two ways for obtain-

ing universal computation: by varying the program in a fixed automaton, and

by varying the automaton with, so to speak, a fixed blank program.

Then he recalls that any finite automaton M. can be substituted with a1

description S)(M.) on the tape, such that a Turing machine M *)(M.f A com-
1 U 1

posed of a finite universal automaton Mu, the description (M.), and a blank

tape A , can simulate the behavior of the machine M.*A .
1

In these terms, then, he discusses the interchangeability between active

information (the description of M.), and passive information (the description

of the program P). Then, from this theoretical general frame, he points out

that there are potential advantages in using active information more exten-

sively than the passive one, and made the following suggestion.

5. A Machine Design Language and Automatic Programming

The idea of an automatic programming language is a commonplace
now and it is customary to teach this language to the user of a ma-
chine, rather than the machine language. As noted earlier, an auto-
matic programming language is the machine language of a hypothetical
programmer's machine Mp with a certain organization, and this organ-
ization is presupposed in the automatic programming language. This
suggests that it would be better to teach the potential user of a
machine about the hypothetical machine Mp in conjunction with its
language rather than to teach the automatic programming language
in isolation from this hypothetical machine.

But what I wish to propose goes further than this.- The hypo-
thetical machine M was designed to solve all problems of a very
wide class, and hence does not take advantage of the special proper-
ties of a particular problem. This limitation is inherent in the
idea of a general-purpose computer. For many problems it is easier

- 38 -

2.3.6

to think of the problem in terms of a special-purpose computer
especially designed to solve that problem. In doing this one will
not be distorting his natural way of formulating a problem to adapt
it to a particular computer. Instead, he can formulate the al-
gorithm for solving his problem by designing a special-purpose com-
puter analogous to the problem.

I suggest, then, that instead of always writing a program for
a problem one should sometimes design a special-purpose computer for
that problem. No doubt this suggestion seems preposterous. But the
moral to be drawn from the work of Turing and von Neumann is that
programs and computers are, to a large extent, interchangeable. Since
this is so there cannot really be such a great difference between
writing a (special-purpose) program and designing a special-purpose
machine as it seems at first sight. There appears to be a great
chasm between these two types of activities because the comparison
between machine design and program writing is usually drawn between
the long, involved design procedures which have produced our present
general-purpose computers, and the relative ease of writing a pro-
gram in a given rigorously formulated program language. But this
contrast is not the relevant one here. The engineering design of an
actual computer involves much more than the purely logical design of
the computer, and this purely logical design is constrained by these
engineering considerations. Moreover, in writing out or diagramming
the logical design of a computer one does not have available a rigor-
ously formulated design language comparable in power to the best cur-
rent automatic programming languages.

Hence my proposal involves the development of a framework or
language of great expressive power for specifying the logical struc-
ture of any computer. Experience in machine design and the use of
flow charts for programming suggests that this language be diagram-
matic as well as symbolic. Moreover, it is feasible to build a com-
puter which can scan a two-dimensional diagram, so that the design
of a machine in this language can be fed directly into the manu-
facturer's machine Mm . In other words, in designing a machine M one
is writing V(M) in the proposed machine design language. The machine
Mm must be told how to interpret the expressions written in the
machine design language--this calls for an interpretive routine J. To
summarize, when one is interested in a computation T(M*D-A) he writes

j)(M) and gives it to the machine-program complex Mm*j. The number
n(Mm*g'2(M)-D-A), which equals T(M*D^A), is then produced. (t)

Thus, my proposal involves, first, the development of a rigorous-
ly formulated machine design language, and second, the development of
a routine for the automatic translation of expressions in that lan-
guage into the machine language of the actual machine Mm. These two
steps are, of course, the same as those required for the development
of an automatic programming system Mm*D(Mp): the machine language
corresponding to the programmer's machine Mp must be worked out and
the interpretive routine)(Mp) must be written. Likewise, the use of
the automatic system Mm*, is similar to the use of the automatic pro-
gramming Mm*D(Mn). In both cases one is given a problem. To solve
the problem with Mm*9 he writes a descriptionl (M) of a machine M
which is equivalent to that problem. To solve the problem by means of
Mma(Mp) he writes a program P which is equivalent to that problem.

(t) D symbolizes data.

-39-

2.3.6

The systems Mm*J and Mm*D(Mp) operate on different levels of
the hierarchy of Turing machines introduced earlier. It will be
recalled that the universal machine Mu uses one block of input in-
formation to simulate Turing machines with blank (tapes, Mul uses
two blocks to simulate machines with one block of input information,
Mu2 uses three blocks to simulate machines with two blocks, etc.,
etc.).In this hierarchy Mm*J is a case of Mul, as is shown by the
formulas

n (Mm*- (M)-D-A) = r (M*D^A)

n(Mul* (M)-I-A) = (M*I A)

and Mm used with)(Mp) is a case of Mu2 , as is shown by the forumlas

r(Mm*j ()-P^D^A) = 7 (Mp*P-D-A)

n(Mu2*j)(M) - I - I'A) = 7 (M*I^'I'A).

There are many possible approaches to our proposed machine de-
sign language. We will briefly indicate an approach which is sug-
gested by von Neumann's cellular self-reproducing automaton but
which diverges from it in a number of important respects. A finite
of growing automaton of any power may be stipulated as the contents
of a cell, provided that the specification of the automaton, either
directly or via a chain of definitions, is reasonably simple. Thus
one cell could store a number, with the understanding that the cell
can store as many (finite) digits as the number has. For example,
if it stores a ten-bit number to begin with and is to store 2
3 4,S. . at various stages during the computation, the cell will
automatically grow in size so as to accommodate the extra bits that
are produced by successive multiplications.

In specifying a problem by means of a special-purpose computer
one would assume as many serial stores, parallel memories, control
units, etc. as was convenient. Data could be organized into blocks
in natural ways. The control automata stipulated could direct opera-
tions like: sum the series in block A, monotonize the data in blocks
B and C, withdraw from memory all sequences having property , etc.
There would be provision in the machine design language for defining
new automata in terms of old ones, so once an automaton is specified
others can easily be designed in terms of it.

Von Neumann has a fixed crystalline structure for his cells. We
propose to allow new cells to spring up between old ones under the
control of the computation. Suppose a list of words is stored in bins
and at a later date new entries are to be inserted. This change would
be conceived as an automatic process of inserting new storage bins
between the old ones. This change must, of course, be accompanied
by an appropriate change of the switches which connect these bins to
the rest of the automaton. In general, storage and computing facil-
ities would be created wherever needed and in a form suited to the
problem being solved. Hence a batch of information would not be
stored in a homogeneous memory, as is the case in current computers,
but in a memory organized to reflect the organization of the informa-
tion itself. That is, the memory would be divided into categories,
subcategories, etc. in natural and useful ways, cross-switching con-
nections would be assumed where needed, etc.

-40-

2.3.6

Current computers are organized into large, specialized units
such as memories, arithmetic units, and controls. The reasons for
this organization are to be found in the nature of the components
from which computers are built. Since the special-purpose computers
to be designed in our proposed machine design language are not to be
built, there is no reason for organizing them in the conventional way.
Rather, they should be organized in whatever way best accommodates the
problem at hand. Consider, for example, a two-dimensional partial dif-
ferential equation. It may be convenient to solve this equation by
computing the value of a function at all grid points simultaneously,
in which case the special-purpose computer should be organized to do
this. It should be clear from the foregoing that in our proposed
machine design language one could formulate machine organizations
radically different from present ones.

In conclusion, let us review briefly how one would use the pro-
posed machine design language. It would be most effective when ap-
plied to a problem capable of analog treatment, i.e., whose structure
may be paralleled by the structure of a special-purpose computer which
will solve the problem. In such a case the mathematical equation
describes the behavior of a physical model. To specify the solution
of this equation one describes in the machine design language a
special-purpose computer which would operate analogously to the given
physical model. The description of this special-purpose computer is
supplied to a general-purpose computer which translates it into its
own machine language and then solves the problem.

Whatever the practical feasibility of this proposed system, I
think that the theoretical possibility of it illuminates Turing's
and von Neumann's results on universal machines.

The results that will be shown in chapter 6 indicate that the suggested

approach is not only of a theoretical interest, but seems to have also a

tremendous practical potential.

2.4 CELLULAR SPACES AND COMPUTING STRUCTURES

2.4.1 The consideration of axiomatic, discrete spaces having certain proper-

ties (cellular spaces, or tesselation) provides us with another way to develop

automata.

In a cellular space, each cell has a finite set of states, usually in-

cluding a quiescent state; a transition function gives each cell the next

state as a function of the present states in that neighborhood; a cell in the

quiescent state, surrounded by cells in the quiescent state, should have the

quiescent state as the next state. For reasons of simplicity, almost exclu-

sively uniform and unlimited spaces, and deterministic functions have been

considered. If a finite set of cells are initially set to a pattern of states,

an automaton is created, and capabilities of computation and construction can

be obtained.

-41-

2.4.1

Undoubtedly, this approach has been inspired by the biological struc-

tures. Its study is considered a part of automata theory; its implications

extend into computing structures, chemistry, biology, genetics, and evolu-

tion.

2.4.2 Von Neumann did the first work in this field (von Neumann 1966; Burks

1970). He considered cells with 29 states and a transition function that

depends on the state of the cell in question and on that of the four nearest
neighbors. Actions can be produced by a cell to any of the four neighboring

cells, in a synchronized time sequence.

In this substratum organs can be synthesized, such as pulsers, recog-
nizers, transmission channels, wire crossings, tapes, constructing arms,
etc. With these means, finite automata and Turing machines can be formed,
and their work simulated. Thus universality in computation can be achieved.

But also construction can be obtained. Having set initially into the
cellular substratum a finite configuration of states that forms a construct-
ing automaton and that contains a plan (the description of another automaton),
new automata can be constructed, in some other region of the substratum, and
left to operate independently. An automaton can reproduce itself, i.e. pro-
duce another automaton that contains the same capability of construction.
Universality in construction can be achieved. An automaton can also construct

an automaton of higher complexity than itself. Obviously, such a mathemati-

cal finding has implication for biology.

2.4.3 Moore (1962) considered transition functions depending on the eight
nearest neighbors. He showed the phenomenon of Gardens of Eden, configura-

tions that can exist only at the origin.

Codd (1968) found universality of computation and construction with eight
states and dependency on four neighbors. A two-state cellular space can have
universality in computation and construction but not with dependency on only
four neighbors.

Yamada and Amoroso (1969, 1971) introduce a general d-dimensional tessel-
lation automaton defined as a quadruplet: the dimension d of the array of
cells, a neighborhood index, a set of states, and a set of next-state func-
tions. In essence, it is an infinite regular array of identical finite-state

machines with a transition function that can change from step to step, and is

-42-

2.4.3

uniform for all the cells. Then they formalize a structural and behavioral

iso- and homomorphism for this type of automata.

Grosky and Tsui (1973) expand further the analysis of tessellation auto-

mata by considering spatial non-uniformities. Moreover, they consider under

a unified formalization both sequential and parallel transformations.

It is instructive to observe that in Turing machines data structures and

operational structures are well distinguishable -- the tape and the finite-

state part. In cellular automata instead, data and operational structures

are inseparable; operational structures come out by structuring data in space,

and data structures are the result of operational structures. -Of course, in

certain instances, a structure can be seen as stored data, or as an operating

device. Cellular automata exist in an environment (substratum) made of the

same elements as themselves; they differ: from their environment only in that

they are "organized", while the environment is not (Burks 1970).

In the last generalizations, tessellation automata, from spatiotemporal

structures (as they were at the origin), become purely mathematical structures

completely disconnected from any geometrical:intuition of the conventional

space.

2.4.4 Holland (1960, 1965) has formalized a class of substrata in which the

single cell has storage and operational capacity. It is a homogeneous, dis-

crete, unlimited space, thought as an array of modules, defined by a quin-

tuplet

[A, A0, X, f, P]

where A determines the geometry of the discrete space, e.g. the dimension; A0

determines the standard neighborhood, or connectivity available to each module; .

X determines the storage capacity of the module; f determines the operational

characteristics of the module; and P determines the path-building (addressing)

capability of the module. A specific quintuplet characterizes a particular

space. This class of spaces admits representatives structurally and behavior-

ally equivalent to Turing machines (with one or more tapes), von Neumann's

cellular automata, logical nets, and potentially infinite automata.

In particular, Holland has considered spaces with a potential connectiv-

ity (construction of paths) by which a cell can affect another cell in one

time step, regardless of the distance. Thus, this space is more efficient

than the von Neumann tessellation. In this space, a finite automaton is

-43-

2.4.4

defined by a quintuplet

[I, S, 0, f, u]

where I is a finite set of inputs (the ensembles of signals at the input

lines), S a finite set of states, 0 a finite set of outputs (the ensembles

of signals at the output lines), f: IXS + S, and U: IXS + 0 the transi-

tion and output functions, respectively. He uses these means for studying

adaptive systems. In one approach (Holland 1970), a hierarachical organ-

ization of schemes of blocks at different levels is used; at each level, a

block is considered as a primitive, and can be substituted for a better one,

provided that it satisfies the input-output interface. Initially, a set of

automata acting as generators is given with the capability of measuring the

success of operations within themselves in relation to the environment. Then

the automata duplicate and generate new structures. The construction pro-

ceeds by grouping and integrating blocks at the different levels. (Similar-

ities with theories in section 2.1 are remarkable.)

This approach is interesting also because it shows the possibility of

describing automata implicitly. Rather than giving the description of all

the possible occurrences in an automaton, a set of generating elements and

relations on their production, or growth rules, is given. Typically, an im-

plicit description is more compact than an explicit one.

On the same line, a computer structure capable of executing an arbitrary

number of subprograms simultaneously also has been described (Holland 1959).

It consists of a two dimensional grid of identical, synchronous processing

modules. Each module has a storage register, a certain number of auxiliary

registers, and associated circuitry. Each module can exchange data and action

signals with its four nearest neighbors. The storage registers contain in-

structions or operands, the auxiliary registers contain the state of the

module and other control information. At each time step (a cycle of the com-

puter) there are three phases: (1) the modules may acquire new data from

outside; (2) communication paths between modules are established (that may be

also conservation of previous paths); and (3) the prescribed operations are

executed. A module, from inactive, can become active, transfer the action to

a neighbor, and become again inactive; the predecessor and successor are in

space rather than in time. Several independent or interactive routine (cor-

responding to paths) can be executed simultaneously in the array. In a sense,

-44-

2.4.4

it is a spatial counterpart of a plurality of interconnected Turing machines

with a much higher level of actions.

From an applicational viewpoint, this approach has a rich potential for

very ingenious problem solutions. However, the structure seems too much pre-

determined although completely general; in certain cases it would appear a

natural frame for the problem (e.g. two-dimensional numerical models), and

in many others it would require an extensive remodeling of the problem on

the part of the user or a compiler. In regard to the utilization of the

modules (efficient use of the eventual hardware), this approach seems not

favorable, unless a different level of automata theory, such as that needed

for understanding biological processing systems, could give the structure a

different power. However, the real difficulty does not seem to be in the

number or in the utilization of the elements (in view of the present or
future technology),but in the formidable task of programing (cf. Comfort

1962). To help this task, the concentration of arithmetic power in a few

modules has been also considered (Comfort 1963).

2.4.5 More in the direction of macromodules is the SOLOMON computer (Slot-

nick et al.1962). It is an array of identical processing elements working

in parallel under the supervision of a central control unit, "in an arrange-

ment that can simulate directlyj the problem being solved". The quoted sen-

tence shows the main aspiration of this solution, which is clearly relevant

to our goal. The work related to the SOLOMON computer has been a contribu-

tion to the ILIAC IV computer, but it did not produce a new line of general-

purpose computers; we here discuss from our viewpoint the potential and lim-

itation of this approach.

The problems to which SOLOMON was particularly addressed include paral-

lel computation in mesh points; for these operations, the array of processors,

capable of direct communication with the four nearest neighbors, and execu-

ting broadcasted instructions, constitutes a very efficient structure well

matching the-characteristic of the problem. But, at the same time, this

pre-established configuration of the array causes a very low performance

when the problem has a different structure. Because the processors, are so

numerous, they are inevitably simple for obvious reasons of cost; thus, when

an operation would demand a sophisticated processor, either the execution is

slow, or complicated programing is required for compensating by using several

-45-

2.4.4

processors. The memory is subdivided in sections attached to each process-

or; while this solves the problem of access to the many processors, in other

respects there is less flexibility and utilization than with a single main

memory. Input and output are provided at the edges of the array; for par-

ticular problems, this is a completely satisfactory situation, for most

problems, it involves additional transfers and programing. In summary, the

approach is valid for a particular class of problems, but it has not appeared

as an efficient solution for a general-purpose use, in terms of both hard-

ware and programing effort.

For the specific application of recognition of patterns in a surface,

Unger (1958) had considered a processing structure composed of a two-

dimensional array of modules that make bit by bit operations.

Recently, the interest for array structures has a revival because of

possible application of their properties to integrated electronic substrata

(see for example, Minnick 1967; Akers 1972; Jump and Fritsche 1972).

Further comments on cellular spaces will be made in section 3.4.3.

2.5 INFERENCES FROM NEUROLOGY

2.5.1 Introduction

The neural systems of living creatures are considered to be the organs

mostly responsible for their sensorimotor processes and psychological activ-

ities. Thus it is plausible to expect a correspondence between these activ-

ities and neural structures. While for the vegetative functions and the

elementary sensorimotor processes specific neural structures are clearly dis-

tinguishable that perform specific functions, the functioning and the struc-

tures of the neural system becomes more and more elusive when higher level

activities are considered.

One would naturally think of an analogy with computers, where no resem-

blance can be found between the structures of the different processes per-

formed and the structure of the hardware that performs them. It is only

through the notions of coding and of hierarchical layers of virtual struc-

tures that the relation between structure and function can be reconstructed.

However, there are fundamental differences between computers and neural sys-

tems. Neural systems have undoubtedly some probabilistic aspects. while

-46-

2.5.1

computers are completely deterministic in their functioning. Neural systems

have the capability of structural self-organization, a capability unknown to

computers. Moreover, the organization of neural systems appears completely

different from that of computers. Thus the interest for our study to look

into the structures and functioning of neural systems, especially for the

high level activities.

It is assumed as a fact that psychological activities, regardless of

their level, base their existence in the neurological substratum. However,

the connection between the two is so poorly known that it cannot be analyzed

directly. At present, psychologists look for understanding mental processes

through psychological experiments and modeling theories; neurologists study

structural and physiological aspects of the neural systems; and finally

neuropsychologists attempt to make inferences between the findings of those

two fields. Among the most interesting questions involved, beside the epis-

temological problems, there are the nature of cognition and knowledge, the

cause of evolution, and the "necessity" of logicomathematical structures.

The notion of cognition as a process between a receiving structure and

signals from the environment (see section 2.1.2) brings Piaget (1971) to con-

sider knowledge not as an additive accumulation of experience, but as a

steady improvement in cognitive instruments. As an example, the functioning

of the cortex, which is hereditary insofar as the genetic substratum that

permits its functioning is concerned (the development achieved by the differ-

ent species is rather precisely determined), is completely evolutionary as

cognitive structure. The acquisition of knowledge is viewed mainly as a de-

velopment of structures.

As for the cause of evolution, after the two alternatives of Lamarckism

(structural changes produced by changes in the environment) and of Darwinism

(natural selection produced by the survival of the fittest), the hypothesis

of autoregulation seems more satisfactory. It is a general autoregulation

(loc. cit.) that occurs through cognitive processes between the organism,

where the nervous system is the main organ involved, and the environment. It

is an equilibration in the search for closure of the open system of the or-

ganism plus environment.

In regard to the "necessity" of logicomathematical structures, Piaget

(loc. cit.) presents the fascinating hypothesis that this fact is a highly

-47-

2.5.1

differentiated extension of biological general autoregulation. Logicomathe-

matical structures are frames that permit equilibrium and closure in their

exchanges with the environment (from which the appearance of pertaining to a

physical world), and in the reflective constructions of thought (from which

their appearance of "necessity"). They do not exist per se, but emerge from

the functioning of the mental structures, as soon as the functioning is used

for solving problems (that is, reaching equilibrium and closure). Thus log-

icomathematical structures are endogenous developments. They are similar in

the plurality of individuals because of a similar genetic substratum and

similar stages of development. But because they are developments, these

"universals" are also open to evolution. This view encompasses the previous

philosophical views of innateness, and derivation from an outside world.

In this context, the question is not one of searching for a direct iso-

morphism between psychological and neural structures. Cerebral functioning

should be seen as an expression of very generalized forms rather than of

particularly organized forms at independent levels. As an example, neurons

are capable of precise logic functions since birth, but the child is not;

then, the child develops sensorimotor schemata that contain some relation-

ships but which are still elementary by comparison with the logic of neurons.

It is only after twelve to fifteen years that logic operations become possi-

ble for the individual, and they develop to a much higher complexity thanthat

of the known neuron functioning. Moreover, there is the fact that on the one

hand, entire classes of different physical structures can correspond to each

function; and on the other hand, different functions can be performed by a

given structure. Precisely because of all this, an examination of the neural

system has a heuristic interest for the present study, particularly in refer-

ence to the central neural system, which is related to the higher level func-

tions.

2.5.2 A look at the central nervous system

In mammals, the vegetative functions are regulated by neural systems

located in the spinal cord, hypothalamus, etc., and constituted by well de-

finable, specific structures. On the other hand, for providing the so-called

higher functions, there is a sophisticated neural system, referred to as the

central neural system (CNS) located in the cranial box, the brain, composed

of structures with a high self-organizing capability. The CNS of man is

-48-

2.5.2

characterized by having a significant portion initially in an apparently

uncommitted structure, which slowly self-organizes with the development of

the individual.

Structurally, the human brain is about one pound of material composed

of a large number of cells and fiber bundles. A few of these cells (however,

about 30 billion), called neurons, have a well recognizable structure and

have some aspect of their functioning known. The most numerous type of cells,

called glial cells, have practically unknown roles in addition to providing

a metabolic function between blood capillaries and neurons, and the myelin-

ation (isolation) function to the neuronic structures. The external shape

of the brain, with its lobes, convolutions, and fissures, has a phylogenetic

derivation, as it can be inferred by biogenetic law from the development of

the embryo.

From the viewpoint of our study, there is a heuristic interest in the

neurons, about which a degree of knowledge is available, in the functional

structures of the cerebrum, the strategics used, and the interpretations and

hypothesis that are given.

Neurons have several, but characteristic, shapes and sizes; they have typi-

cally several ramified branches, called dendrites, which can be thought of

as inputs, and one, typically long, conduit, called the axon, that can be

thought of as an output cable. Neurons have chemicoelectrical processes by

which, in first approximation, they act as threshold devices; when certain

input conditions are exceeded, an impulse is produced that propagates along

the axon. The functional aspect emerges from interconnection; the inputs

of each neuron are connected to outputs of other neurons, and some to sensory

cells through chains of other neurons; the output of each neuron is connected

to the inputs of many other neurons, and some to muscles through chains of

other neurons.

The main peculiarity of the neural network seems to be in these connec-

tions, called synapses. They are points of contact between the axon (output)

of a neuron and the dendrites (input) of other neurons. In few cases they

seem to produce a direct electrical contact; as a rule, they are constituted

by a thin - less than 1 micron - membrane at the contact of the dendrite and

the axon, where small packets containing few thousands of molecules can be

released. A synapse can have either an excitatory or an inhibitory effect.

-49-

2.5.2

"Nearly every synapse that has been carefully studied has been proven to have

unique features" (Eccles). In the CNS a neuron has typically several tens of

thousands of synapses. Clearly, such a substratum is suited for an extreme-

ly large variety of structures, for any degree of detailed variation, and it

can easily cope with malfunctions of single elements. The complexity of

functions that can be performed even by a small group of neurons in the cen-

tral neural system can easily be inferred. In the human cortex alone, there

are more than 1014 synapses.

Ever since Galvani's experiments with frogs, there has been assumed a

connection between electricity and the nervous system; but it was not until

the 1930's that Hodgkin was able to produce the first analysis of it. Also

chemical transmission was first proved only in the 1920's by Loewi. A col-

lection of the main contributions to cellular neurophysiology can be found

in Cooke and Lipkin (1972). Studies on synapses can be found in the numer-

ous publications of Eccles.

The cerebellum - A specific, region of the brain has recently been studied

in its structural/functional aspect -- the cerebellum. It provides for the

regulation of movement, autonomous and voluntary; it receives information

from the higher centers of the brain (the cerebral cortex), and coordinates

the muscular movements responsible for behavioral acts.

Structurally, the cerebellum has a layer (A in Fig. 4) of Purkinje

neurons (labeled 1) very rich of dendritic branches (inputs), and a layer

(B in Fig. 4) of granule neurons whose axons (outputs) extend in parallel

fibers (labeled 7) running through the dendritic region of the Purkinje

neurons. Moreover, scattered in those layers, there are three other types

of neurons, the Golgi, the stellate, and the basket cells (labeled 2, 3, and

4, respectively) which synapse in the same network. Each Purkinje neuron

has up to 200,000 synaptic contacts. The dendrites of the granular neurons

synapse with one type of the arriving fibers, and the axons of the Purkinje

neurons are the output fibers of the cerebral cortex. Another type of

arriving fibers synapse directly with the Purkinje neurons.

The functioning of this extremely intricate network can be seen global-

ly as dynamic patterns of inhibitions in a multitudinous bombardment of pulses,

at specific regions of the cerebellum for the different parts of the body.

These patterns are learned with exercises; at birth, relatively few synapses

-50-

?III %m 14E

IV

v

* .VI

Fig. 4 - Structure of the cerebellum in man Fig. 5 - Structures of the cerebral cortex in man

2.5.2

exist in the dendritic region of the Purkinje neurons; repeated sequences of

movement induce new synapses (Eccles's "spines") that produce a progressive-

ly more refined control of the movements. Each individual forms a personal

endowment of "spines" that gives the individual motor ability and style.

It seems that here the spatiotemporal frame develops, from the lifelong

coordination of movements toward goals. It would be of interest to see which

neurological counterpart can be found for the role of spatiotemporal frames

discussed in a psychological context in section 2.1.3. There are many exper-

iments that show that formal thinking is accompanied by imperceptible muscu-

lar movements (e.g. eye movements), as if we were dealing with objects having

an actual spatiotemporal structure.

Cerebral cortex - The cerebral cortex is a highly organized part of the CNS,

that probably exhibits to the highest degree a self-organizing capability.

In man it constitutes the largest portion of the brain.

Structurally, it is composed of neurons arranged in columns and layers

(Fig. 5) surrounded by glial cells and blood vessels. Six layers are gener-

ally recognized, the fifth of which contains most of the pyramidal neurons,

the type more characteristic of the cerebral cortex. The axons of these

neurons constitute the output fibers, which go to other regions of the cor-

tex and to the outside of it; the input fibers, from other regions of the

cortex, split in branches between layers V and VI, and between the II and

III layers. Other specific afferents, coming from outside the cortex, split

into layer IV. The pyramidal neurons have ramified dendrites rich of spines

(interpreted as acquired synapses) and are surrounded by axons of stellar

neurons that produce an inhibitory feedback. The neurons of a same column

seem related to the same elementary operation. This general structure is

observed in all parts of the cortex, though with marked variations.

The complex connectivity of the cortex is not significantly deciphered.

Luria (1966) sees the cortex as "an organ capable of forming functional organs";

functionally thought of as a result of comparing what was planned with what

in fact takes place.

There are some areas of the cortex that appear committed to sensory and

motor operations, with a mapping to the different parts of the body. Other

regions, the largest ones in man, appear genetically uncommitted and spatial-

ly not strictly specific. In the uncommitted regions, an area has been

-52-

2.5.2

related to speech, usually in the left hemisphere, in some individuals in the

right hemisphere. The homologous area in the opposite hemisphere has been

related with the interpretation of spatial relationship and visual experi-

ences (Penfield 1965). There has been always a search for mapping the vari-

ous mental functions into areas of the cortex; however, this does not seem

the appropriate approach.

While for sensory motor functions some definite neural structures are

distinguishable and localization is possible, it seems impossible to do so

for the so-called intellectual activities. More than a wired diagram is a

question of coordination of involvement of many parts of the brain. In

modern neurcpsychology, the concept of function is not related to the proper-

ties of specialized neural regions and organs, but is understood as the pro-

duct of a temporary collaboration of dynamic structures spread in the entire

nervous system. The higher mental functions start as systems based on rela-

tively elementary sensory motor processes; with development, they take other

more direct restructuring, dropping many passages that were related to their

formation. There, different neurological patterns (probably corresponding

to different psychological strategies) may be found in different individuals.

Memory - The learning of a function - perceiving a situation and memorizing

it - is the most impressive capability of neural systems. The human CNS has

this capability developed to an astonishing degree; yet its neurological

context has been the most elusive, both for the short term, and for the long

term memory forms. Only tentative, partial hypotheses are available so far.

From the structural studies, the synaptic theory of learning and memory

develops (cfr. Eccles, 1964). Functions and perceptions produce spatiotem-

poral patterns of impulses in the cortex neuronal network; repetition, or

permanency of this pattern, produces a higher efficiency of the synapses

involved; a stronger channeling of the pattern results, with the consequent

formation of an "engram" of synapses. The fact that cuts and extirpation

of any portion of the cortex do not destroy any specific memorization makes

this theory unsatisfactory. The huge amount of information that can be re-

tained in the permanent memory turns the theory to little use.

Genetic and immunological memories have been explained with molecular

structures. Variations in RNA have been found in neuron and glial cells

after learning activity. Thus a molecular theory of the psychological memory

-53-

2.5.2

has been suggested, based on some hypothetical coding system. This approach

is compatible with the experiments of rats that acquire skill after injection

of RNA from trained rats (cfr. Schmitt 1968), and worms exhibit a capability

belonging to other worms they cannibalized (McConnell 1968). However, the

theory, at the present stage, does not explain how the process of memoriza-

tion occurs.

Widespread electrical activity during learning periods, revealed by

electroencephalograms, has suggested memorization processes in which neurons,

glials, and intercell liquid are involved (Adey, 1968). The fact that memo-

rization appears diffused in all the cerebral volume, and any new information

matching some part of the memorized content is able to recall the entire con-

tent has suggested an analogy with holograms and holophones (Longuett-Higgins

1969).

Modeling - Given the structural and functional complexity of the CNS, some

kind of simplified models are a necessity for analyzing and understanding its

performance. But, as one can expect, models of the neurological counterpart

of the psychological activities are extremely difficult and limited.

The all-or-none response of neurons and their concatenations suggested

McCulloch and Pitts (1943) to model the behavior of neural structures by means

of networks of formal neurons. This approach will be discussed separately in

section 2.5.4, because of certain theoretical implications of particular in-

terest for the subject of this report. A formal network, as are other types

of automata, is suitable of a variety of treatments; for instance, as an alge-

braic structure; thus they give the possibility, at least theoretically, of a

logicomathematical treatment of neural systems, starting from their structural

aspect.

The multitude of structures that are discernible in neural systems has

suggested a genotypic modeling (Rosenblatt 1962) in which sets of rules for

generating classes of systems are used, and then the results are compared

with the psychological behavior. Rigorous analyses have been made of possible

parallel structures that can be applied to the modeling of perception (Minsky

and Papert 1969). One interesting feature of this approach is its learning

capability (the perceptron convergence theorem) by means of a small,

intelligent kind of memorization.

The extremely large variety of dynamic behaviours that are possible in

-54-

2.5.2

arrays of active elements has promoted several attempts to model in such terms

the functioning of neural systems. The reverberations of Caianello (1961) and

the resonances of Reiss (1964) are examples.

After the initial formalization of McCulloch and Pitts, automata theory

always appeared an interesting candidate for modeling neural behavior. Its

main power, with respect for instance to stimulus-response theories, is in

the elegant treatment'of past histories of the organism by means of the

notion of state. Von Neumann (1958), in comparing the characteristics of

biological systems and of man-made processing systems, was envisioning a

general theory of automata that could be a theoretical basis for both.

Arbib (1968) pointed out that the potential of automata theory lies not so

much in the' modeling of actual neural structures, but in modeling the dif-

ferent aspects of the information processing involved in neural systems.

Rosen (1969), in turn, suggests to use the automata-theoretic description

independently for each of the several hierarchical levels that can be de-

fined in the functioning of the neural systems; in this case, the interpre-

tation of state will be different at different levels.

Cybernetic models seem very appealing in the light of the autoregula-

tion aspects inherent in nervous systems; however, they do not lead :to de-

tailed correspondences with the actual neural structures.

2.5.3 Inferences from the central neural system

(1) Given a certain similarity of tasks between the central neural system

and computers, we shall try in this section to derive some heuristic infer-

ences from the former that might be of interest for the latter. Obviously,

the solutions adopted by biological systems are not necessarily the appro-

priate ones for man-made systems. Very likely, they are not, for several

reasons. Neural systems are as they are because of an evolutionary develop-

ment that happened in the epithelial system from which they derive; computer

design can start from any approach (man-made high-speed vehicles use advan-

tageously wheels and roads, while biological runners are bound to use legs).

The CNS should work in the worst conditions, for instance, when an animal

is jumping in a harsh forest escaping from a deadly danger; computers typi-

cally are protected, often being kept in air-conditioned rooms. Biological

systems are made of unreliable but self-repairing components; man-made sys-

tems are made of reliable but fixed components. However, given the capa-

-55-

2.5.3

bilities of that one-pound system that is the brain, we can suppose that

there are certain directions of some kind of mathematical essentiality; thus

we may learn something or at least have some heuristic suggestions, that

might be useful also for computers.

(2) A characteristic approach in the CNS is the self-organization. New

functions are automatically produced, under compulsion of the environment,
from presently available functions. Note that the brain does not carry a

self-construction; the number of neurons decreases during life. So far as

neurologists know, it is the connectivity that is developed. If structural

changes are indeed implemented in neural systems based on chemical-biologi-

cal processes, which require time, structural changes might be even more

suitable in man-made technologies, which usually have much faster response.

Particularly challenging is the capability that seems present in the CNS to

restructure automatically the substratum for performing new functions more

effectively and directly, as a consequence of repeated use and time. Self-

organization is being tackled now in artificial intelligence, in the form of

programs; but it is completely extraneous to the conventional use of today's

computers. We can see an aspect of self-organization in the implicit de-

scription of automata mentioned in section 2.4.4.

(3) The CNS is viewed not as a collection of independent, specialized

resources (as is the rule in present-day computer analysis), but as a col-

lection of different rearrangements of the available substratum, toward the
goal of the moment. I feel rich of heuristic suggestion a neuropsychologist

view "that the material basis of the high nervous processes is the brain as a
whole, but that the brain is a highly differentiated system whose parts are

responsible for different aspects of the united whole" (Luria 1966, p.35).

This approach offers an alternative to the one used in today's computers:

that of concurrent work of different parts, with the related task of search-

ing for possible parallelism in the processes. The alternative is concur-

rency of the different branches of the substratum into a coordinated work for

the task of the moment, as in our thinking in which all the mental faculties
are reorganized each time for the present task. Obviously, if parallelism is

inherent in the structure of the process, that parallel structure will be
assumed by the substratum. The brain strategy seems to be far from both the

specialized resources of conventional computers and from the uniformly dis-

-56-

2.5.3

tributed potential of the cellular spaces; it seems to use the integration

of differentiated substrata, and the systemistic collaboration of already

developed structures.

(4) One of the most peculiar characteristics of the neural systems is the

inseparability of data and functions; we can refer only to structures that

account for both. We havealready noted this characteristic as peculiar to

automata, in particular of thoserealized in cellular spaces. This situation

is remarkably different from that of today's computers, in which data and

instructions are two disjointed entities.

(5) Memory is one of the most impressive capabilities of the CNS. Yet,

neurologists have been unable to find any physiological behavior that can be

interpreted as an addressing function. In psychological context, the con-

scious recall of past memories seems related to association; the subconscious

utilization of past information has an unknown mechanism; vivid revival of

forgotten episodes occurs also by electric stimulation of the uncommitted

cortex. In some cases, it seems evident that information resides in some

form in the processing structure itself, rather than in a "memory" from which

it is retrieved by some means. In general, it appears that data and opera-

tional structures are embedded in each other. From a neurological viewpoint,

random access addressing seems an invention of computers; we shall discuss

this question in section 4.3.2.

(6) The "intelligence" of the central nervous system does not appear mean-

ingfully related either to the size of the brain or to the number of neurons

in it. Table 1 shows some data (Blinkov and Glezer 1968). The only really

differentiating characteristic so far known is the connectivity. After all,

a human brain is smaller and has less neurons than that of an elephant, but

has-higher processing capabilities.

One may argue whether a similar situation can occur in computers. At

present, all computers follow the same philosphy, thus their power is more or

less evaluated in terms of their size (memory capacity, number of registers,

etc.). By introducing connectivity, different philosophies can be used, and

the computer's power might vary independently of tneir size. It might also

be that the use of computers is notably facilitated with a philosophy differ-

ent from today's approach of instruction-obeying processor + random-access

-57-

2.5.3

memory + software system. There is no doubt that the human brain is a quite

effective and versatile computer; yet, it seems that it does not use either

instructions or addresses. These considerations, expressed here very inform-

ally, might be suitable of analytical treatment. The results reported in

chapter 6 can constitute a starting material.

T A B L E 1

mean weight ratio of number of cells
of the brain brain weight per 0.001 cubic mm

(g) to body weight of cerebral cortex

whale 6700 macaque 1/20 mouse 1420

elephant 5200 dolphin 1/38 Guinea pig 525

dolphin 1800 mouse 1/40 rabbit 438

man 1400 man 1/50 cat 308

chimpazee 435 dog 1/250 macaque 215

cat 25 elephant 1/500 man 105

mouse 0.2 whale 1/20000 elephant 69

The evolution of the brain in man has evidently not followed the line

of a quantitative increase in size, but the line of an increase in the com-

plexity of the connections between the elements (Blinkov and Glezer 1968).

In the last 10,000 years, the size of the brain of man has slightly decreased.

- 58 -

2.5.4

2.5.4 The McCulloch-Pitts correspondence

Certain phenomena in the neural structures present a threshold effect,

leading to a relatively easier experimental analysis. Moreover, these ef-

fects are typically related to the most distinguishable element of the neur-

al structures, the neuron. Thus, this aspect of the functioning of the neur-

al system was one of the first to be studied, and was schematized in terms of

"all-or-none" behavior. A connective with the propositional calculus, and

subsequently with the emerging field of computers, was inevitable.

McCulloch and Pitts analyzed this aspect totally. They published (1943)

a set of theorems proving that for every logical description of a behavior it

is possible to determine a net of logical neurons (axiomatic and simplified

models of the biological neurons) that exhibits that behavior; and conversely,

the behavior of every net of logical neurons can be described by means of

propositiona.-logic. An updated comment on this paper can be found in Fields

and Abbott (Ed., 1963) by Arbib.

This correspondence between behavior and logical nets was a milestone in

neurology, because it gave for the first time a theoretical tool for simulat-

ing the activity of the nervous systems - even that of the highest complexity,

the human brain - without the intervention of any vitalistic ingredient. Re-

gardless of the correspondence between the structures of the logical networks

and possible structures in the actual nervous system, the behavior of the

latter could be, in principle, reproduced in terms of the former. The fact

that in practice no single activity of the central neural system has been

satisfactorily explained in terms of neural networks (in the sense of modeled

within a manageable formal network) is simply the consequence of the struc-

tural and functional complexity of the real neural systems. The formal net-

works are mathematical schematizations of certain threshold phenomena and

certain relatively macroscopic structures of neural systems; in the cases in

which these aspects play a fundamental or relevant role in the neural behavior,

the networks are a useful model; in the cases in which these aspects play a

minor role in the overall functioning, the networks do not lead to fdsible

models.

From the above discussion it may appear that the universal correspond-

ence demonstrated by McCulloch and Pitts between logical expressions and

this quite ineffective type of neural modeling is a mere coincidence. Here

-59-

2.5.4

the key relevance of the McCulloch-Pitts correspondence to the present work

emerges. It is, in an another context, the same dualism of functional and

structural aspects found so inherent in automata theory. The fact that the

structural aspect is thought of as a network of neurons is simply an instance

among many others possible. The McCulloch-Pitts correspondence is a mathe-

matical issue. But mathematics is an aspect of psychological mental struc-

tures. And psychological structures are one aspect of neurological struc-

tures. Thus we can see a deeper universality in the McCulloch-Pitts corres-

pondence, through a series of transformations of which we know very little.

Discussions on the relations between biological structures/regulations and

logicomathematical cognition may be found in Piaget (1971).

These considerations should make well apparent that the McCulloch-Pitts

correspondence is not only relevant to neurology, but also, perhaps even more

importantly, to computers. Von Neumann (1948), in talking on a general theory

of automata, said on the subject:

The McCulloch-Pitts result ... proves that anything that can be exhaus-
tively and unambiguously described, anything that can be completely
and unambiguously put into words, is ipso facto realizable by a
suitable finite neural network. Since the converse statement is
obvious, we can therefore say that there is no difference between
the possibility of describing a real or imagined mode of behavior
completely and unambiguously in words, and the possibility of
realizing it by a finite formal neural network. The two concepts
are co-extensive. A difficulty of principle embodying any mode of
behavior in such a network can exist only if we are also unable to
describe that behavior completely.

In the light of the work described in this report, I find surprising

that these triggering words did not have apparently any resonance in the com-

puter field. But still more impressive observations come after (loc. cit.):

Interpretations of This Result. There is no doubt that any
special phase of any conceivable form of behavior can be described
"completely and unambiguously" in words. This description may be
lengthy, but it is always possible. To deny it would amount to
adhering to a form of logical mysticism which is surely far from
most of us. It is, however, an important limitation, that this
applies only to every element separately, and it is far from clear
how it will apply to the entire syndrome of behavior. To be more
specific, there is no difficulty in describing how an organism
might be able to identify any two rectilinear triangles, which
appear on the retina, as belonging to the same category "triangle."
There is also no difficulty in adding to this, that numerous other
objects, besides regularly drawn rectilinear triangles, will also
be classified and identified as triangles-triangles whose sides

-60-

2.5.4

are curved, triangles whose sides are not fully drawn, triangles
that are indicated merely by a more or less homogeneous shading
of their interior, etc. The more completely we attempt to

describe everything that may conceivably fall under this heading,
the longer the description becomes. We may have a vague and un-*.
comfortable feeling that a complete catalogue along such lines
would not only be exceedingly long, but also unavoidably indefin-
ite at its boundaries. Nevertheless, this may be a possible
operation.

All of this, however, constitutes only a small fragment of
the more general concept of identification of analogous geometri-
cal entities. This, in turn, is only a microscopic piece of the
general concept of analogy. Nobody would attempt to describe and
define within any practical amount of space the general concept
of analogy which dominates our interpretation of vision. There is
no basis for saying whether such an enterprise would require
thousands or millions or altogether impractical numbers of volumes.
Now it is perfectly possible that the simplest and only practical
way actually to say what constitutes a visual analogy consists in

giving a description of the connections of the visual brain. We
are dealing here with parts of logics with which we have practical-

ly no past experience. The order of complexity is out of all pro-
portion to anything we have ever known. We have no right to assume
that the logical notations and procedures used in the past are

suited to this part of the subject. It is not at all certain that
in this domain a real object might not constitute the simplest
description of itself, that is, any attempt to describe it by the
usual literary or formal-logical method may lead to something less
manageable and more involved. In fact, some results in modern
logic would tend to indicate that phenomena like this have to be
expected when we come to really complicated entities. It is,
therefore, not at all unlikely that it is futile to look for a
precise logical concept, that is, for a precise verbal descrip-
tion, of "visual analogy." It is possible that the connection
pattern of the visual brain itself is the simplest logical ex-
pression or definition of this principle.

Von Neumann repeated in several instances the expectation that, for

complex automata, the description of an automaton is simpler than a litterary

description of its behavior. Some elaborations on this conjecture, and com-

ments of Burks and G6del are in von Neumann (1966), pp. 46 - 56.

Here, a simple observation is made. Networks are very effectively used

in certain situations such as: the modeling of a neural behavior that can

be reduced to the actions of a few neurons; the description of the behavior

of a digital circuit composed ofa few elements; understanding the interaction

of a plurality of units at a high-level description. In these cases, we see

-61-

2.5.4

networks to constitute not only a general facility for describing an actual

structure, but to constitute also a "language" for describing that behavior.

As a matter of fact, often the behavior is expressed in a simpler way by the

network than by a corresponding verbal description. Networks continue to be

a precise means for describing actual structures also when these structures

are very complex; the electric schematic of an entire computer, the tele-

phone network of a city, and a McCulloch-Pitts network for modeling a func-

tion of the CNS are examples. But in these cases the networks are not any

longer also a suitable "language" for describing a behavior. We can observe

very plainly that the ability of a network to be or not a suitable language

is determined by the elements of the network to correspond or not to the ob-

jects used in our "image" of the s.ystem under consideration, when we think

of, and understand it. Obviously this fact is related to the processing

system of imagery studied by psychologists (see section 2.1.4).

If we consider networks whose elements are not defined in advance, but

are made corresponding each time to the objects of our thinking, these net-

works can constitute a general language for describing behavior. Moreover -

a unique and useful feature - they describe also a structure. This approach

implies that we might need a subsequent consideration for defining those

elements in terms of other elements belonging to a lower hierarchical level.

These networks are not the block diagrams so often used in the most

disparate fields, although in certain cases they may appear similar to them;

they are not graphical representations of systems already modeled in some

other form; they are "machines" that realize the system. Networks as ab-

stract machines are symbolic representations that have the same exactitude

and permanency that are peculiar of the formal verbal representations. They

are suitable to a variety of syntactic features that are not applicable to

the block diagrams originated as graphical representations of already modeled

systems.

In summary, what we extract from the work of McCulloch and Pitts is the

notion of networks that are simultaneously a description of a behavior and a

design of a structure. We consider these networks as a language that des-

cribes simultaneously a function and an implementation of it.

Another interesting fact is the following. In applying this approach

for modeling processes in the form of "abstract machines", we find (see

-62-

2.5.4

chapter 6) that the description of these machines, especially for complex

processes, is typically simpler than the description of the processes the

-machines-implicitly represent. It is a suggestive correspondence with von

Neumann's expectation, above mentioned, on the complexity of automata and

their activity.

We conclude this section on the McCulloch-Pitts correspondence with the

last words recorded on the work guided by McCulloch in this direction, p. 339

of an M.I.T. (1968) Quarterly Progress Report:

Just as a universal Turing Machine can be made specific for
the computation of a particular number by having a portion of its
tape serve as a program, so can a "universal net" of N neurons be
made specific to embody any net of N neurons (with or without loops),
by a proper encoding of its inputs....

Neither the logic of relations, nor the theory of neural nets
is fully developed. We expect both to bear fruit in due season,
and have only reported their present flowering.

At the time in which the research reported in the above quotation abruptly

stopped, not far from that place, but unfortunately without communication,

in a different context, the work reported in the present report was starting.

2.6 OUTLINE OF THE APPROACH TAKEN

2.6.1 Synopsis, part 1.

We started in section 1.1 with the realization that limitations in the

use of computers do not come from technological difficulties but from the

cumbersomeness of communicating with computers, and depicted the situation

graphically in figures 1 and 2. In section 1.4, the need for a global ap-

proach was expressed, which calls for an examination of the psychology of the

user and for a search for possible processing implementations. After a tour

of the findings of psychologists, automata theorists, and neurologists, we

come back to the consideration of a global approach. Its development is out-

lined in the following.

In the first placewe observe that the approach used today, as depicted

in figure 2, seems affected by a remarkable sequence of successive trans-

formations. A human being develops a process, to be later given a computer,

in terms of his mental structures; these structures have a variety of forms,

-63-

2.6.1

and are open to continuous re-arrangement. Fundamental in the development

of a process is the geometrical intuition. Also in his most abstract activ-

ities, a human being is bound to use the structures that have been formed at

the sensorimotor stage; all the gestures and sketches we are familiar with,

and the imperceptible muscular movements found by psychoneurologists prove

this abundantly. The most general characterization of thinking, in the con-

text of using computers, seems to be a mechanization of abstract objects.

Giving the term a very broad sense, we can view these mechanizations as ab-

stract machines.

Then, the abstract machine in the user's mind is transformed into an

equivalent verbal structure -- the process expressed in a programing lan-

guage. Although in some cases the programing language allows an almost iso-

morphic transformation of what the user has originally in his mind, in most

cases a complete remodeling of the process is required on the part of the

user before the transformation can be accomplished. This is a user effort.

The fact that this effort can be decreased by a long training is not a very

desirable solution. Since a professional is necessary at present, this

training is precisely one of the inconveniences, and it is questioned here.

Possible effects of this training in human behavior will be commented on in

section 5.1.2.

Subsequently, this verbal-structured representation of the process is

transformed further, through other intermediate languages, until finally it

matches the characteristics of a given, real machine -- the computer hard-

ware. We have already noted the further effort encountered by the user for

interpreting the work of this machine during the debugging phase.

Then, we observe that,in the outlined interpretation of today's com-

puters, we start from a machine (abstract, in the user's mind) and we end

with another machine (physical). Now, the question comes spontaneously

whether a more direct connection between the two machines could be possible,

without going through all the described transformations.

The path used by today's computers does not seem to have a universal

necessity, as it can be inferred from the different approaches seen in the

different contexts examined in the previous sections. It is simply a hap-

pening. Men are accustomed to give verbal orders to subalterns; first digi-

tal computers were elementary and made by simple on-off devices for which

simple verbal instructions were very appropriate. On the other band, we can

-64-

2.6.1

see, for instance, that analog computers were programed in a different way.

For the possibility of a more direct connection between user and compu-

ter, we see the necessity for a first change. The real machine mentioned in

the above description has a highly fixed structure (or, in other words, little

connectivity); it is precisely the verbal structure which provides the match-

ing between the variety of the user's abstract machines and the rigidity of

the real machine. If we intend to eliminate, or reduce, this matching pro-

cess, we need the real machine to be capable of assuming the variety of

structures of the mental machines. We have already seen cellular spaces

(section 2.4) capable of becoming any conceivable automaton; we saw the

human cortex (section 2.5.2) thought of as an organ capable of becoming a

variety of other organs. Here we need a substratum capable of becoming the

various abstract machines of conscious thought in the context of the process-

es we give a computer.

In fact we need a substratum with dual aspects or, in other words, two

isomorphic substrata in two different domains: one in a symbolic domain, to

play the role of a language in which the user can externally express his men-

tal machines; and another in a physical domain which, when molded by a pro-

duction of the first substratum, implements an actual, operating machine

corresponding to the original user's mental machine.

In regard to the nature of this dual substratum, it can not be precisely

as the cellular spaces discussed in section 2.4, because they do not match

the user's natural way of thinking of processes, and they lead to inefficient

implementation. A similar situation can be expected in regard to the human

cortex (a neurological structure, as opposed to the psychological performance),

although we know too little about its actual working. However, in the general

notions of automata we see the possibility of defining such a substratum.

Automata seem to extract what is essential in the processes, and they have a

double aspect, one functional (which can be used for the language role), and

one structural (which can be used as a design for actual implementation).

The levels at which the automata are conceived will be several, in a hier-

archiacal relation, as our thought is; in section 2.5.4 the subject was pre-

liminarily discussed.

Along these lines we will arrive at an actual definition and implementa-

tion of the desired dual substratum. In the next section, the structure/

function duality will be discussed in some detail, and in section 2.6.3 the

-65-

2.6.1

0

0

0

0
00

0 D0

Fig. 6 - Transformation of drawings by means of a pantograph

A B C - -- events

OO

N YN N fYY N rog rogrm word

Fig. 7 - A programable decision device

- 66 -

0O 0 0
00

0@ 0

0 0
0 00

0 0 0 0O 0
0

0
0

Fig. 6 -Transformation of drawings by means of a pantograph

A BC e ve n ts

d e coad e r

cornparato r d ec is ioan

N Y N N Y Y N Y program word

Fig. 7 - A programable decision device

-66 -

2.6.1

synoptic outline will continue from other viewpoints.

2.6.2 Function and structure

When a process is modeled in the form of a sequential machine, we ob-

tain a rigorous definition of the process, but also we find in our hand an

abstract structure that performs that process. When a neural behavior" is

modeled in the form of a McCulloch-Pitts network, an explanation of that be-

havior is found, but we find in our hands also a hypothetical machine that

produces that behavior. When a certain performance is obtained by means of

a cellular automaton, we have in front of usboth a functioning and a struc-

ture that produces it. .

From all these examples, we see that one way for our thinking to define

a process is that of devising an abstract machine that'mechanizes it. It is

evidently a special-purpose machine, in fact, even more, it is a completely

tailored machine; we prefer to say that it is the process itself. It is also

the mosteffective machine at our disposal for that process; if we could think

more effectively, we would accordingly sketch that machine. 't is clear that

our thinking has indissolubly embedded a functional and a structural aspect;

that the different forms in which we can model our cognitions can differently

enhance one Or the other aspects; and also, that for complex processes we

tend to enhance the structural aspect in order to use that powerful capabili-

ty called geometrical intuition. In accordance with these considerations we

will form our substratum.

.The interesting point is that all such abstract machines (if we avoid

distractions and illusions) are physically realizable, given appropriate means.

This is simply the consequence of our thinking to be developed with years of

adaptation to a world that we call physical and say follows certain laws.

The cleverness and efficiency of these machines depends on the familiarity of

the user with the process in question, on his skill, and on the teaching he

can have from outside. We are looking for a magic substratum that can make

these imaginary machines real; let us start with two preparatory examples.

Let us suppose that we have the task of reducing the coordinate scales

of a collection of drawings. In this case somebody has taught us the

mechanism of the pantograph. We take four bars (a standard element in a

mechanical context), assemble them as in Fig. 6, and proceed in the well

known manner. Note that we can produce the process even without knowing

- 67 -

2.6.2

rules of geometry and without the need to express any word. If we had a uni-

versal machine in which we could command all movements, a considerable effort

would have to be spent for finding the necessary geometric rules, for apply-

ing them to the different instances in the drawings, and for communicating

all that to the universal machine. The example, because of its mechanical

nature, might not appear relevant to the present context. I think, instead,

that it is very helpful for pointing out certain general points. In particu-

lar, (1) it is a simple and revealing example of the effectiveness of a

special-purpose structure in producing a complex process (this strategy seems

completely neglected in today's computers); (2) it is a suggestive example of

how data can be properly "channeled"; the four bars constitute not only the

operational structure, but also the addressing device (this is a psychologi-

cal preparation toward the liberation from the "random access" trap).

As a second example, let us suppose that we have to handle a variety of

complex decisions. The approach-used in today's computers is to model them

in terms of elementary tests. But a global approach can be very well taken

by modeling them as a single logical function, and implementing it with a

corresponding device. Fig. 7 shows a symbolic frame for thinking of decisions,

composed of a decoder and a comparator (standard elements in a computer con-

text). There are three types A, B, and C of events that may or may not occur

(YES or NOT,respectively). A decision has to be taken depending on particu-

lar compositions of those occurrences (Y) or not occurrences (N). A word

composed of Y and N, in accordance with a certain morphology, is presented to

the comparator, and the decision follows in accordance. Note that the mor-

phology of this word is suitable of meaning; for instance, the first N of the

word means that the decision should not be made when there is no occurrence

of any A or B or C; the last Y of the word means that decision is made when

all A, B, and C occur; a Y in all even positions of the word means that A

should always occur; an N in the first four positions means that C never

should occur, etc.

The structures of these examples can be thought of as equivalent to par-

ameterized programs; each is capable of a class of different processes. The

pantograph is capable of different reductions and isomorphic deformations of

drawings, by inserting the shafts in different holes of the bars. The de-

cision device performs different discriminations, by changing the word in-

serted into it.

- 68 -

2.6.2

In the two examples above, the procedure was elegant because we started

from a mechanism already invented. But we cannot expect that this will al-

ways be the case; nor are we interested in an approach in which the user has

to make each time a new invention. Fortunately, it is not so. The only

assumption taken is that the user has the process in question clear in his

mind (this is not really a limitation; it is a common experience that it is

preferable not to start action if one is not clear what he wants). This,

obviously, does not exclude the fact that for complex processes clarification

develops gradually through trial and error. We proceed as follows.

If a user understands a process, inevitably he has a mental image of it;

thus he will be able to sketch this visualization. This sketch, regardless

if graphical, mental, or verbal, is an abstract machine; at this point, it is

the process in its entirety. This abstract machine will be composed of parts;

to them the user applies again his visualization and geometric intuition

powers, with new abstract machines resulting. This visualization if repeated

recursively, until the parts of the machines are elementary in the given con-

text, or have known implementation. Insofar as we remain in the domain of

abstract machines, always it will be possible to express these abstract ma-

chines in some form, for instance with sketches and words.

The McCulloch-Pitts correspondence shows that when these abstract machines

have a certain formality, they can be implemented by realizable devices. Von

Neumann even argues that, for complex processes, such machines can be simpler

than a description of what they perform. The key for the practicality of

this approach is to stop the succession of hierarchical visualizations at the

point where the user stops to be interested for his present purposes; in

other words, the dual substratum we are seeking should be at the level of the

user's interest.

In sections 2.3 and 2.4 we saw several substrata for implementing auto-

mata; their common characteristic is to be at a very elementary level. The

motivation for this is in their objectives: analysis, classification, search

for universal bases. For these tasks, mathematical simplicity and homogeneity

are essential; efficiency is irrelevant. Here, the objective is to represent

mental images; this was the reason for the previous review of psychological

theories of thought.

Conventional general-purpose computers are also substrata for processes;

but they are unsuitable for being molded by our mental images. The indirect

-69-

2.6.2

way referred to in section 1.2 leads to the inconveniences discussed in section
1.1. The rigidity of present computers has been deplored repeatedly, especially
in the past, before the present dominance of software. For instance, Bauer
(1960) says "almost all the needs can be summed up in one short comment: there
is a need for computers which can adapt to problems. Up to this time com-
puter customers have found it necessary to adapt their problems to the computers"
Estrin (1960) went further than a simple complaint; he proposed a symbiosis
of a fixed conventional computer and a variable structure consisting of an
inventory of substructures selected in accordance with the frequency of their
use. But it is neither simple nor efficient to have in advance an inventory
of all the structures that may be needed for all problems; a user might wish
a new piece that never was considered before. We can see also that the ap-
proach of analog computers is not suitable for our objective; in analog com-
puters, the processes have a fortiori to be modeled in terms of the available
devices (e.g. integrators, scalers, etc.); here, we need devices as suggested
by mental images.

In this study, in regard to the level of the substratum, we take the same
position as that of psychologists in their interpretation of human thought:
new structures are formed by grouping and integration of previously developed
structures, starting from a genetic level of the substratum. This substratum
should permit constructs equivalent to verbal structures, processing of words
in accordance to a syntax; and constructs equivalent to images, complex ob-
jects that are inclusive of data and functions, treated as a whole, of which
parallel and special-purpose structures should be among the possible applica-
tions. Fundamental in this substratum should be the spatiotemporal frame, in
order to take full advantage of our geometric intuition.

2.6.3 Synopsis, part 2

If a symbolic substratum is available in which the objects of our thought
can be molded, and with which objects our mental images of the processes can
be described as abstract machines; and if a physical substratmu, isomorphic to
the first, is also available that can implement those abstract machines, we
can look again at Fig. 1 with a new interpretation.

Point A represents the mental abstract machines in the form of which the
user can think of the processes. Point B is the representation of those ma-
chines in the symbolic substratum. And point C is the actual information that

-70-

2.6.3

should be given the physical substratum in order for.it to be molded in the

form of those abstract-machines. The three points are distinct because they

belong to different domains, the mind, a representation, a hardware; they are

expressed in different media; but they are structured in the same way. Thus,

we can expect that the transformation of one point into the other will not

constitute a great effort. This approach corresponds to the intuitive idea

(geometrical intuition!) expressed at the end of section 1.1 to shrink Fig. 1

into a single point.

In practical terms, rather than making first an effort to frame the pro-

cesses into stereotyped sentences, and then require the computer to make an-

other effort to re-transform those sentences into a machine behavior, we

focalize our attention to the natural way of seeing a process as an abstract

machine, and then we ask thecomputer to copy it. From all the previous dis-

cussions, we can be certain that the language of abstract machines is broader,

and more widely suitabie to different applications, than is a single phrase-

structure language. A proper choice of control devices and machinery has

made it possible for the majority of individuals to run tens of times their

walking speed and to extricate themselves' in remarkable complexities such as

the automobile traffic in Los Angeles and Rome, by using sensorimotor struc-

tures developed since early stages. It seems to me that it should be also

possible to choose proper control devices and machinery to make it possible

for the majority of individuals to obtain by themselves, with the help of

computers, symbolic processes orders of magnitude more complex than those

mentally affordable, by using imagery structures developed during life.

In accordance with all the discussions in sections 2.1 and 2.2, the act-

ual materialization of point B will take advantage of visual 'forms of repre-

sentation. We can hope that the clarity peculiar to state diagrams and the

properties analyzed in graph theory can be joined in the development of an

effective graphical language. These graphical structures will be embedded

with verbal expressions for their unique power of characterization and their

complementary features.

Having set forth the lines of our study, we close the preparatory part,

(the first two chapters) with an exercise of a graphical representation of

this report. From introspection and from psychologist's analyses we know of

the existence of several facets in thinking. We know also that processes can

-71-

2.6.3

be implemented in different ways, e.g. Turing machines, analog, and digital

computers. This situation is visualized in the form of blocks in Fig. 8.

There, a dotted line indicates the course of the discussion. We started by

recognizing certain inconveniences in communicating with present computers

(chapter 1); then we went wondering what the user has in mind (chapter 2).

In chapter 3, a substratum for abstract machines is formulated, in chapter

4 an isomorphic physical substratum is outlined, the programing language is

discussed in chapter 5, and finally, in chapter 6, results are presented.

hypothetical

form of
representation

process in the representation

/user's mind I
IF

\/ /

,A * hypothetical
</ form of

S / 1 . computer

/ / . - ' v./ ': phras.
I /. "4 //

I / II . I . ",,\ I

S5 /

j / # I cony.

Lcomp.comp." "" -

results -- -- results

Fig. 8 - Graphical visualization of different approaches to computers

-72-

Chapter 3

The Formulation of a Symbolic Substratum

In the previous chapter we have developed the background for a symbolic

substratum, in a spatiotemporal frame, in which abstract machines can be de-

veloped, corresponding to the user's mental images of the processes. A sub-

stratum that can also permit an isomorphic physical substratum, such

that the abstract machines delineated by the user in the symbolic substratum

constitute also the design of an actual implementation of the machines in the

physical substratum.

Below, some preliminary characteristics are discussed; the formulation

of the substratum is carried out in sections 3.2 and 3.3; and in the follow-

ing section the substratum is compared with the other systems that are used

for describing processes.

3.1 PRELIMINARIES

Sequentiality - Mental processes appear basically sequential. We analyze

information sequentially; we accomplish tasks sequentially, often in a sort

of time sharing, which itself is a form of sequentiality. Sequential physi-

cal implementations, as is well known, can accomplish large tasks with small

means. There are enough justifications for starting with a sequential struc-

turing of the abstract machines.

We note also that thinking acquires a special power by means of its

capability of keeping extra items at the conscious level, in a kind of back-

ground, during the sequential performance of mental processes. We will give

our abstract machines an equivalent capability.

Time - Sequentiality implies a time frame. Certain precautions are necessary

in order to avoid ambiguity and instability, in regard to both logical con-

sistency and physical delays in implementation. In automata theory two

-73-

3.1

solutions are usually taken: the synchronous approach, and the asynchronous

one with unit-delay elements properly introduced. Here we take the following

approach that shares the interesting features of both preceding ones.

Time is quantized in intervals labeled . . .i-l, i, i + 1 (Fig.9).

The length of these intervals, in abstract or physical sense, is irrelevant.

At the conjunction of two adjacent time intervals there is a change region.

The characteristics and values relevant to our machines are defined for each

interval i, and we consider them as remaining constant within each interval.

Changes can occur in the change regions, but we organize things in such a way

that we do not need to be involved in how they occur in these regions.

This approach will be used both at the macroscopic level of the process

modeling, and at the microscopic level of the actual execution of the specific

data transformations.

change regions

/\ -/

///

i-2 I- i+ 1 i+2
time

x//

Fig. 9 - Quantization of time.

States - In observing our sequential way of thinking, we can say that in

fact we switch from one image to another, from one consideration to a subse-

quent one, from one viewpoint to another. There are, of course, interesting

variations from individual to individual: some data are given in section 5.1.3.

It is a common fact that under an external stimulus, such as receiving an

unexpected word or hearing a telephone ring, we are able to change suddenly

the entire subject of our thinking. There is no need of further examples for

considering the notion of state of mind, or simply the "state", to be an ele-

ment appropriate for a psychological substratum. The notion of state is

-74-

3.1

probably the most important building element of automata theory. In several

different contexts, the notion of state is also applied to physical imple-

mentation of discrete systems, such as computers. As a conclusion we assume

the notion of state as a building block of our dual substratum.

The notion of state can be applied at many different levels and in ref-

erence to many different objects of the discourse, with a consequent very

different usefulness, that a clarification, of the subject is appropriate

at this point. As a specific example, let us consider three possible appli-

cations of the notion of state for a given system - a digital computer.

In the first application, we consider all the independent, steady-

state logical levels that are present in the entire structure of the com-

puter. As is well known, we end up with an astronomical number of possible

states. States defined at this level might be of interest for analyzing the

local functioning of a particular circuit of the computer, but they are use-

less for understanding the functioning of the computer and for analyzing the

processes executed by that computer.

In the second application, we consider the computer as composed of parts

treated as units; each of these units can be in a finite number of functional

states, and we consider as the state of the computer the cartesian product of

the states of its parts. In this case, the number of states might be manage-

able, and the consideration of these states might also be of interest for

analyzing the interactions among the parts of the computers. However, these

states are still useless in the analysis of any problem under execution, be-

cause they refer to machine conditions and not to problem characteristics.

In the third application, we consider the entire computer as a unit,

and assign to it three states: the quiescent state before a problem is re-

ceived, the execution state, and the quiescent state after execution with the

output available. Here the number of states is too small to give any insight

into either the functioning of the computer or the characteristics of the

problems executed. The only interest for such a state definition would be

for controlling an outside device that gives the problems to the computer,

and that acquires the output results.

From these examples, we see that the number of states varies tremendously

according to the level at which the states are defined; but we see also that

it is not simply their number that affects their usefulness; in no one of the

-75-

3.1

above applications,states are useful for our goal of modeling processes.

The notion of state becomes extremely useful for modeling,if the states cor-

respond to our visualizations of the processes; in particular, if they corres-

pond to our sequential consideration of the different phases of a process.

In this case, the number of states does not affect notably the practicality

of the model, provided that all the states together form a structure of the

process as it is understood by the user, and that the majority of these

states have a role meaningful to the user.

Transition - If the notion of state is used, we will need also the notion

of transition from one state to another. This means that in our machines

the prescription of how to transfer from the present state to another future

state has to be a fundamental machine element. These prescriptions are

called transition functions in automata theory. They exist in present

computers only in the rudimentary form of jumps.

Because our substratum should have both machine and psychological

orientations, the transition functions will be derived both from automata

theory and from observations of people thinking (see section 5.1.3).

Data transformation - If a process is considered, it is because of the need

of transforming some information. Therefore, at least in some "state" of

our machines, some data transformation should occur. We will keep the term

"data transformation" in order to treat comprehensively the different activ-

ities that might occur, such as those related to analytical functions, logi-

cal functions, data reduction, coding, selecting, formating, etc., all viewed

in a global Gestalt approach.

Input-output - Sometimes we think in complete isolation (off line, in com-

puter terms), and sometimes we think in interaction with the environment (on

line, using the same analogy). It is a common occurrence of life that during

the process of our activities we receive information from outside, and we

have to give information to the outside. Since our abstract machines are

intended to be a natural outgrowth of the user's mental images, we will pro-

vide these machines with a general capability of acquiring data from, and

producing data to the outside at any moment of their process, without being

bothered by any constraint or delay.

-76-

3.1

All the above preliminary characteristics are chosen a priori for our

substratum as appropriate for both the psychologicaland the realizable-

machine aspects. It is difficult to say whether the considerations of this

section constituted the initial requirements for the formulation of our

abstract machines, or the a posteriori Justification after the formulation,

or a cyclical adjustment and improvement of the substratum. Probably, some

of all of the above is true.

-77-

3.2 - ELEMENTARY MACHINES (FSM AUTOMATON)

3.2.1 - Symbolic formulation

The primitive elements considered are:

(i) a finite set of process variables x , a generic subset of which isr
indicated as X ;q

(ii) a finite set of input data ur , a subset of which is indicated

as U ;
q

(iii) a finite set of output devices, or control storages, z r

(iv) a finite set of labeled process-states s , where a state is

defined by:

(v) a function F. which produces new values for a subset X as a3 a
function of the values in subsets Xb and Uc '

(vi) a function T. which produces a label s (the next state) as a

function of the values in subsets Xd and U , ande

(vii) a prescription R. for routing some variables x to some of3 r
the output devices, or control storages, z .

r
An abstract machine is defined as a finite set of quadruplets

[I, Fj, Tj, R I s

s = 1, 2, 3, ... k

where I. is the prescription of an input subset U = U U Ue,j j c e

Fj, T, and R. are as defined in (v), (vi), and (vii), respectively, and

s ranges through the k states of the machine.

The variables xr and their subsets Xa , Xb , and Xd are implicitly defined

by the functions F. and T. . Without loss of generality, we suppose in

the following that xr and ur belong to a finite alphabet of integers from

0 to 2m

Such a machine, as far as its internal behavior is of concern, can

be functionally represented by the two expressions

-78-

3.2.1

X(i+1) = Fs(i) [X (i), UCi)
(3.2)

s(i+l) = Ts(i) X(i+1), U(i)

where the symbols have the meaning indicated before, and i is the time as

formulated in section 3.1 . For each value i of time, s(i) and s(i+l) are

the present and next states, respectively. It is probably appropriate to

recall that, here, the states are "process-states" and not states of the

variables; a state refers to a quadruplet (3.1); in successive times i, the

state (a quadruplet) may remain the same, but the variables typically change.

Further discussion will be found in section 3.4.1(6).

Such a machine can be represented also in the form of a state diagram,

by means of proper conventions. In chapter 5 a set of conventions are

given, and in chapter 6 many examples are shown. A machine so formulated

is referred to as a Finite State Machine (FSM); capital initials are used

to distinguish it from the otherwise formulated finite-state machines.

3.2.2 - Structural formulation

Let us call logical network, or simply network, any logical network

that, regardless of the devices used and the level of the functions con-

sidered, corresponds to a logical activity in the sense discussed in section

2.5.4. If F stands for a logical description of an activity j, and N

for a logical network performing that activity, we can thus consider the

mapping

F N (3.3)

Let us now consider a very large (finite) logical network composed of

operating and storage elements. For simplicity, and without loss of general-

ity, we assume binary quantities. Such a network can be regarded as a giant,

unmanageable, finite-state machine with a very large number of states and

input signals. The state diagram of such a machine has such a complexity

that it can be considered undescribable; we call it a total state diagram.

Let us divide the input signals into two categories, which we call v inputs

and p inputs. For each set of values at the p inputs, a particular "compon-

-79-

3.2.2

ent" of the total state diagram is selected, while all the rest disappears.

Such a component can be regarded as a specific computation on variables

connected to the v inputs.

If there are m of such p inputs, we can look at the ensemble of the p

inputs as a word W of m binary digits. All the possible patterns for these

digits form a set of 2m words. Let us call L the subset of these words that

correspond to meaningful logical networks. We can thus consider, in the

subset L, the mapping

N -- W (3.4)

where N is a logical network performing an activity j, and W is a digital

word implementing that network. In the sequel, we will call a programable

network (PN) a logical network as described, where words W can implement

specific networks N that perform activities F . We consider the subset L

as the language of that programable network, and the mapping

F. W (3.5)

as the semantics of that language.

If the objects and the structures of the network are made correspond to
those that are used in the descriptions F, an encoding can be chosen for the
network such that the descriptions F. can be mapped into the words W. by
direct transliteration.

A programable network PN, as previously defined, is embedded with a
set of internal variables x (Fig.10). By the term embedded it is meantr
that the variables are expressed in some digital form and are stored in
some elements of the network where they can be read and written by some

inputs v and outputs of the network. The p inputs of PN read digital words

W and W in a storage P. Some of the v inputs and some of the outputs ofF T
PN are connected to input lines C and output lines F , respectively, through

switching devices that respond to digital words WI and WR , respectively,

in P.

- 80 -

3.2.2

We give such a structure a control for selecting quadruplets in P.

During each time interval i, words WI and WF of the selected quadruplet;

are connected to the input switches and to the p inputs of PN, respectively;

at the first change period, the network is activated, F is performed, then

WT is substituted at the p inputs, a selection of a quadruplet is determined
T
for the future interval (i+l), and finally WR is connected to the output

switches. In the next time interval, the newly selected quadruplet will

perform the same way.

(programable P (program

network) PN [W.. . W* 1 F WT WR storage)

......... [w, wT WRI
[-] F-1 F

1 1 --.
0 0

Fig. 10 - The F S M automaton

In the realm of the language L of PN, this structure parallels the

symbolic automaton defined in section 3.2.1, in the realm of the language

there tacitly implied. The symbols I, F, T, and R there considered corre-

spond to the symbols WI, WF, WT, and WR used here. In both cases, when

specific and proper values are given to these symbols, specific machines

are defined. With the first formulation, the machine is in a verbal-like

structure; with the second formulation, it is in an imagery-like structure.

In accordance to this correspondence, the automaton now formulated will

be called also a Finite State Machine (FSM).

- 81-

3.3 COMPOUNDED MACHINES (CPL AUTOMATON)

The elementary machines just defined (the FSM automata) constitute a

sufficient, or appropriate, modeling frame only for simple processes. A

more powerful frame is necessary in cases such as:

(1) when several processes have to be dealt with simultaneously;

(2) when our mental limitation requires to attack a complex process in

smaller parts separately;

(3) when the size of the process exceeds the assumed size of the FSM

automaton.

In these cases, a compounded machine is developed, by grouping a plurality

of elementary machines.

3.3.1 Symbolic formulation

Each component FSM is defined by a set of quadruplets (3.1), and

represented by expressions (3.2). We will give a name to each FSM in order

to make communication between them possible. Corresponding extension should

be given to the elements I, F, T, and R.

Obviously, to make compounded machines treatable and consistent, a

new grammar has to be formulated, and possible limitations spelled out.

But we will not go further in attempting to define the rules and the

constraints of such a grammar in a symbolic context.

3.3.2 Structural formulation

Let us connect an FSM automaton, as defined in section 3.2.2, with a

memory in the following way (Fig. 11). During intervals i, the content of PN

is removed by a control, packed in the form of a page of data, and stored into

the storage medium of the memory, through its input lines.

A page here is a virtual replica of an FSM automaton. It includes the

present set of Xr, the state label s(i+l), and the set of quadruplets de-

scribing the FSM; these quadruplets may be substituted, in the page, by the

name of the FSM, if they are stored elsewhere (as will usually be the case in

the isomorphic physical substratum). Although the page is thought of as a

compressed package, it is a "structured" set of data, in the sense that the

detailed information of the allocation of each variable in PN is preserved

in some form.

- 82 -

3.3.2

As soon as the FSM automaton has been emptied, the control transfers

into it a new page from the memory, through the memory output lines, and

allocates data into PN according to the above-mentioned information inherent

to the structure of the page. In this way, a large number of FSMs can per-

progromoble programoble

o network memory

Fig. 11 - The CPL automaton

FSM FSM2 FSM 3 .--..

: . time

FS of

Fig. 12 - Cycles in PN

-83-

3.3.2

form their processes, through the circulation of the pages between PN and

the memory, in a time-sharing fashion. All the change periods of the several

FSMs are made contiguous in the PN, as diagramatically indicated in Fig. 12,

and are called the cycles of PN.

The storage medium of the memory is structured by the injection of

pages, and by the content of control storages zr (iii in section 3.2.1).

The pages injected by the FSM automaton form a sequence of blocks, typically

of different lengths. This sequence is segmented and structured in accord-

ance with the content of certain control storages z . The path of the pagesr

between the input and output of the memory is a consequence of this struc-

turing. The content of the control storages, and thus the structure of the

memory, may change at any cycle as a consequence of routing R by part of some

FSM.

The continuous, automatic circulation of the pages gives not only the

possibility for many FSMs to use the same PN in time-sharing, but, not less

important, allows a continuous dynamic reshaping of the memory substratum.

Each page can independently change in size during processing in the suc-

cessive circulations. PN can generate new pages that become inserted into

the memory segments. Pages can eliminate themselves simply by not

circulating.

The page is a data structure that automatically modifies itself during

processing as a consequence of the Is (introduction of new data), the Rs

(routing of data to outside or displacement of data), and the Fs (data

transformations). These pages, in their actual (not virtual) form, are

considered by the user in his dealing with the process, and are manipulated

by the programable network in the execution of the process. It is this

identity of data structure, as seen by the user and by the computer, that

contributes to make simple the man machine interaction.

The array of storages x in PN has a replica, indicated as H in Fig.11,

also embedded with the programable network. Storage H can copy a page cur-

rently in PN, can transfer a stored page into PN, and can take part in the

operations performed in PN. The content of H is not removed during the cir-

culation of the pages. In this way, the several FSMs in process can exchange

data and interact through H. Storage H has a role equivalent to the

-84-

3.3.2

psychological background noted in section 3.1 in regard to sequentiality in

thinking.

The input-output connections with the environment allow each page to

acquire new input data u and routing data to outside output storages, atr
each circulation. From the viewpoint of each FSM, the entire structure is

as if it were dedicated solely to its own process; thus each FSM is treated

as indicated in section 3.2.

An FSM (a set of quadruplets) can be implemented by several pages,

which simply carry the name of the FSM and the present state; a page can go

through several FSMs by changing the FSM name. Variables xr may refer to

names of FSMs and pages. A specific implementation of the language for des-

cribing these structures is given in chapter 5. The dynamic behavior of

these structures can be best represented, again, by means of state diagrams,

by using proper conventions.

A compounded machine is developed by defining several interacting FSMs

and related sets of pages. A complex process is modeled as an interplay of

processing structures (the FSMs) and data structures (the pages), developing

them as suggested by the mental images that the user has of the process in

question.

A variety of coordinates are available along which to model a process:

a parallel array of data and operational structures in PN; a parallel array

of pages in the memory; a sequential pattern of a page during its circula-

tion; a sequential evolution of arrays of pages in the memory; and a

sequential interaction with systems in the environment.

It can be noted that the compounded machines have been introduced in a

structural form; the corresponding symbolic form is not presented as it was

for the elementary machines. This is because it is only through geometrical

intuition that we can manage complex behaviors. If we had formulated a com-

pounded machine in a purely phrase-structure form, much more effort would

have been needed-, and at each step we would have had to take recourse to

local spatiotemporal images for understanding what is going on. For this

reason we prefer to start from an overall image in structural form and, when

appropriate, to take recourse locally of verbal forms such as the words of

the quadruplets and names. This corresponds precisely to the alternation of

images and words that occurs in thinking (section 2.1.4).

- 85 -

3.3.3

Because of the peculiar features of such a machine - the organization

of data in structured pages, their automatic ciruclation, and the loose

nature of both the PN and the memory - it has been referred to as the

Circulating Page Loose (CPL) automaton.

3.3.3 Discussion

What has been described constitutes a symbolic substratum that imple-

ments the characteristics outlined in section 2.6. There are three regions

(Fig.ll), the programable network PN, the programable memory, and the

environment; each has different orientation, and is suitable of different

structuring. PN is a region where the user can develop structures of data

and of operations; it can be considered as corresponding to the psychologi-

cal short-term memory and local images. Through this region, patterns of

symbols (the pages) circulate from a dynamically structured memory (the

page memory) that, in fact, implements a large number of virtual PN regions.

In actuality, the multiplication of PN regions occurs sequentially, but

there is a complete interaction between PN and the memory, that both can be

considered as forming a larger, complex machine(s). This ensemble corres-

ponds to a kind of multiple visualization and to an intermediate memory em-

ployed by the user in his development of the processes. Each time a page

is in PN, it can exchange data with the environment, which includes the sys-

tems with which to interact, and with other regions of the memory.

The genetic level of the substratum can be the single digit, since both

PN and the page memory are programable. The working level of the substratum

is that of the primitives listed in section 3.2.1. Operational and data

structures are treated as a whole, by means of the words F and T, and the

names of pages and FSMs. In PN, operational and data structures are devel-

oped conjointly, as has already been seen in many forms of automata, and

these structures correspond to the images that the user forms of the opera-

tions; situations such as that of Fig. 3c are implemented, rather than se-

quences of steps such as in Fig. 3a. In sum, it is a standard substratum

in which the user can develop the structures that he feels are appropriate

for the problem at hand. What we call here an abstract machine is, in

essence, a spatiotemporal dynamic representation of a process, in terms of

objects constructed by the user in this substratum.

-86-

3.3.3

Note that the language for describing these machines is based on a

syntax very familiar to all users: the rules of a pseudo-spatiotemporal

frame, against which the programer can check the consistency of what he is

developing. In fact, this frame helps the conception of the programs and

guides their construction. This is particularly apparent when compared to

the instruction or statement listing of conventional programs.

Another help to the user comes from the hierarchical structure of these

abstract machines. First, the overall structure, the strategy for the model

of the process, is conceived in terms of FSMs and pages. Then the state

diagrams of the FSMs are developed. Finally, the operational structures,

and the inflected words that make up these structures are constructed in

detail (see chapter 5).

The basic point of this approach is to invent a machine (in the broad-

est sense) appropriate for each case, process, task. In other words, one

has not to imply a set of given devices, on the basis of which appropriate

algorithms or procedures should be prepared, but has to prepare a specific

device that will do the desired activity as its natural response, and, if

it is the case, following specific methods requested by the particular

application.

The devices to be invented are "abstract materializations" (the contra-

diction is purposely made to focalize the different aspects of the point) of

what the user has in mind - a consistent, realizable description of how he

thinks the process can be produced in an abstract world. Now we can foresee

from a general viewpoint the difference that results in programing. Conven-

tional programing consists of transforming activities in order to become

procedures executable by given devices. Here programing consists of syn-

thesizing devices for which the given activity, precisely in the form pre-

ferred by the user, is an executable procedure.

Given the developmental character of these machines, it will be possible

to use implicit description of them. A program may consist of a very concise

description of a generating machine; then, this machine will construct the

entire system of FSMs and pages necessary for the execution of the intended

process. Here we come close to self-organization; but actually to perform

self-organization it is necessary to define tasks, criteria of evaluation,

and interacting environments, all topics that are not included in the

present report.

- 87 -

3.4 COMPARISON WITH OTHER FORMAL SYSTEMS

3.4.1 - Comparison with the commonly formulated finite-state machines

The "FSM" is based on the same notions of state, input and output

symbols, and transition function as are the "finite-state machines" which

can be said took first organic form with Moore (1956), and which are now

well established in automata theory. In recognition of this fact, the

automaton defined in section 3.2 has been indicated with the same terms.

However, there are differences; to help avoiding possible confusion, we use

capital initials, Finite State Machine (FSM), for our version.

The differences between the FSM and the finite-state machines of the
literature are of two types: in application and in formulation. Finite-

state machines are typically used for modeling the behavior of the simplest

elements of a system at a very micro level. The FSM is used to model an

entire process at a macroscopic level. In regard to the formulation, the

following differences can be pointed out.

1. The characterizing functions of the finite-state machines are
thought of as decision tables, or Boolean functions. This is in connection

with the type of symbols used. In the FSM the characterizing functions are
extended to all sort of discrete functions, and in a sense they are treated

similarly to the analytic functions. Also here, while the practical conse-

quences are fundamental, no conceptual difference is involved. In the FSM

moreover, because of the complexity of these functions, the characterizing

functions of the machine are broken into several separated expressions, one

pair for each state. Further subdivision in separate expressions will

appear in the actual programing language.

2. In the finite-state machines, the input and output symbols are from

a small alphabet; most commonly they are the binary symbols 0 and 1. This

is because the finite-state machines are characterized in tabular form (or

its equivalent), and with a large alphabet a table becomes impractical. In
the FSM the symbols are sets of variables whose values are from a very large

alphabet. Because the FSM is characterized in terms of functions, the size
of the alphabet does not produce inconvenience. But in fact, while the

different size of the alphabet produces large practical differences, it does

not constitute a conceptual difference.

-88-

3. In the FSM there are the internal variables x . It is the presence
r

of these variables that makes the FSM a practical model for all sorts of

processes. However, the internal variables can be viewed .either as further

input symbols or as states of the machine. In either of these two cases

the FSM would assume the formulation of the usual finite-state machine. In

one case, we can say that the total states of the machine are partitioned

in "process states" and internal variables. In the other case, we can say

that the output symbols that are needed in the future are stored in the

machine, rather than being represented as new input symbols. It is the

flexibility given the user to choose each time which event is treated as a

state, and which as an internal variable, that contributes to make the FSM

a suitable model for the different types of processes. The possibility of

exchanges between number of states and size of the alphabet in a finite-state

machine was first shown by Shannon (1956).

Conventional finite-state machines have some memory capacity for hold-

ing the state. The FSM has the memory capacity extended to hold also inter-

nal variables. The interesting point is that the new finite-state machine

(the FSM) becomes able to handle efficiently the processes without an out-

side memory and all the consequent traffic of data. Traffic which produces

the unacceptable inefficiency of the Turing machines, and the accepted (but

not desirable) overhead of conventional computers.

4. Conventionally, Moore and Mealy finite-state machineslare distin-

guished in regard to the output production. In the FSM, because an entire

programable network is at our disposal, a variety of output functions: can

be defined. In section 5.2.5, the language will be given for prescribing

three types of output productions: state related, transition related, and

driven outputs.

5. Finally, the most significant difference is in our use of the

structural form. Based on the McCulloch-Pitts correspondence, we allow our-

selves to consider generic structures that become specific structures in

response to program words. This fact gives the possibility of viewing a

sort of universal finite-state machine. The very interesting point is that,

in spite of this universality, each specific behavior can be implemented

with the desired efficency, and not through a complex simulation.

-89-

3.4.1

6. The application of the notion of state made in our formulation

deserves further comments. In section 3.1, the variety of levels at which

the notion of state can be applied was discussed; but the application of

states can be diversified also because of the different objects to which

they have reference.

A well-known application of states is in the role of generalized

coordinates of a system: the state variables. Here we are not interested

in the detailed consideration of the values of such variables, a consider-

ation that belongs more to the analysis than to the synthesis of a process;

here, this role is performed by the process variables x . Our statesr
correspond more to the phases of the process as visualized by the user.

In psychological terms they tend to correspond to the states of mind of

the user; in analytical terms, obviously, they can always be viewed as

partitions of the set of values of generalized variables.

The usefulness of our definition of state becomes apparent in the

construction of a program. The modularity offered by these states helps

the assembling of complex processes by interconnecting and modifying dif-

ferent parts. These states provide an easy understanding of the grammar

of the FSM; a state is a temporary choice of the four fundamental ingred-

ients: new input prescription I, data transformation F, transition function

T, and routing R. Besides, these states can always be used for modeling

the different past histories, as in conventional finite-state machines.

3.4.2. Comments in respect to Turing machines

Turing showed the power of the symbiosis of a finite-state machine with

an unlimited scannable tape. This symbiosis is the essence of all Turing

machines, regardless of the various features that they might have. In the

CPL automaton (Fig.ll), the programable network constitutes a finite-state

machine, the finite page memory plus additional outside storages that might

be utilized through lines and r are equivalent to an unlimited tape; the

information read by the finite-state part is a page; the successive pages

scanned are determined by the finite-state machine by means of the routing R.

In this generalized sense the CPL automaton is a Turing machine.

-90-

3.4.2

Let us now comment on some peculiar features of the CPL automaton in

respect to conventional Turing machines.

1. The portion of data that is read at each cycle (or move) of the CPL

automaton is a page. A page can be considered as a tape symbol belonging

to an extremely large alphabet, or as an elementary volume of a multi

dimensional tape (see Arbib 1969). It is well known that in general the

size of the alphabet and the dimensionality of the tape allow an increase

of efficiency in a Turing machine. In the CPL automaton, moreover, it is

possible to relate in an intuitive way the structure of the pages to the

data structures of the processes to be executed; and the overall result

is that the work of the machine appears simple to a user who is familiar

with those processes.

2. It is well known that a large number of states permits a more efficient

work in a Turing machine; but, at the same time, it makes more cumbersome

the description of the mechanization of the machine. In the CPL automaton,

the number of states can be as large as required, and these states are

introduced in correspondence to the mental states through which the user

goes in thinking of the processes. The result, again, is that the work of

the machine can be made efficient and simple to a user familiar with those

processes.

3. A specific Turing machine is thought of as a definite structure, with

definite quintuplets (symbol read, present state, symbol written, next state,

move) that describe the performance of the finite-state part. A universal

Turing machine has, in addition, a program written in a section of the tape,

such as to instruct the universal Turing machinie to simulate a specific

Turing machine. It is precisely this simulation that makes the universal

Turing machines unusable even at the theoretical level (the importance of

the universal Turing machines is in their existence, not in their use, for

instance, as theoretical models).

The CPL automaton, because it has the capability to store a program,

is equivalent to a universal Turing machine. But its unusual characteristic

-91-

3.4.2

is that it does not simulate a specific machine, rather it becomes a

specific machine, by means of the programable network PN, and the structur-

ing of the page memory. This is meant in the sense that the user, in each

moment, sees only one definite, specific structure, the one that has been

described by the quadruplet of the past and present states; at different

moments, the structure may be different. One could say that the universal-

ity is obtained not by initially writing a program on the tape, but by

initially assigning different quadruplets to the finite-state part.

The consequence, obviously, is that in this case we can optimize the

efficiency for each different process.

4. The increase of difficulty in managing a Turing machine when the number

of symbols and states increases, as mentioned in (1) and (2) above, explains

why efficient Turing machines never have been considered. On the contrary,

it has been a continuous challenge to search for Turing machines with fewer

and fewer symbols and states (see Minsky 1967).

In the CPL automaton we can see a Turing machine where the efficiency

is the prime interest. This efficiency is not paid for with a complexity

in the "use" of the machine, because the machine is "constructed" as and

only insofar as is necessary for each specific process. Certainly the

substratum on which the machine is constructed (the PN and the memory) is

much more complex than the substratum of a conventional Turing machine (a fi-

nite control and a linear array of tape squares). But this is of no concern

for the user, because the substratum, be .it simple or complex, is given.

Moreover, in the CPL automaton, several different machines can easily

coexist in a concurrent or independent work.

3.4.3 Considerations in regard to cellular spaces

Cellular spaces (briefly described in section 2.4) are indeed a fascin-

ating field; to mention some of their potentials, they allow universality in

both computation and construction; they seem to promise a mathematical under-

standing of certain aspects of biological structures; they seem to offer a

coherent guideline for the developing technology of large-scale integration.

However, to date, practical utilizations are quite behind the potentialities,

either for modeling neural systems, or for describing parallel computations,

-92-

C 3.4.3

or for designing large integrated circuits. It might be that some crucial

characteristics are still difficult to be handled in the cellular spaces so

far considered.

The substratum defined in this chapter in some respects bears similari-

ties with cellular spaces, and in other respects it uses different approaches.

For this reason, some considerations in regards to both are discussed in

this section.

Biological as well as psychological structures possess the capability

of self-development from a genetic substratum; the new structures then con-

stitute a new substratum for further development. The engineering of inte-

grated circuits has the capability of adapting the design in accordance

with an unlimited variety of practical considerations. Cellular spaces are

mathematical structures that for necessity of definition and treatment need

a high degree of uniformity and genetic simplicity. In cellular spaces,

even with an amazingly simple mathematical substratum, universality in com-

putation and constructioncan be theoretically obtained. But these outcomes,

in general, have characteristics that render cellular spaces unsuitable for

practical utilization. If practical considerations are imposed, the neces-

sary mathematical homogeneity and simplicity are lost. The consideration

of several hierarchical layers, each genetically based on a lower layer and

exhibiting higher level characteristics might offer a solution to the prob-

lem; but no treatment of such an approach has been yet developed.

The substratum for our abstract machines is composed of two regions

with different specialization. One region, the programable network or PN

is specialized for operational structures; the other region, the page mem-

ory or PM, is specialized for data structures. This approach gives an ini--

tial advantage in respect to cellular spaces without going as far as to

duplicate the rigidity of configuration of conventional computers.

In attempting practical implementations of cellular spaces there is

always to be considered a compromise between the sophistication of the

space and the loss of efficiency because of poor utilization of such an in-

vestment. In our substratum the solution is taken of using a limited,

small region with a very high sophistication (the PN rich in connectivity

and functional capabilities), and multiplying this region, in a virtual

fashion by means of pages that reside in a much simpler substratum (the PM).

-93-

3.4.3

The page memory here is not a "random" piling of data, but is an organized

tessellation of replicas of PNs, typically each one different from the others.

When these replicas (the pages) are in the memory, they are, so to speak, in

a dormant status; when they are in PN, they are in full active status. In

this case, the compromise to be considered is between the extension of PN

and the serialization of the execution. The utilization of the PN region can

be made very efficient because of both its sophistication and its limited

extension.

One of the difficulties in the theory of cellular spaces is that of com-

munication among remote regions. The Holland's path construction is an ex-

ample of the ingenious and complex provisions that have to be taken. In our

substratum the circulation of the pages, in conjunction with the auxiliary

storage H, provides a general means of exchanging data among different regions

of the substratum. In addition, the routing function can be used as a fast

mail system for sending information elsewhere.

The most complex task required by cellular spaces is programing. The

desired activities have to be modeled in terms of the characteristics of the

available space. The works made in regard to the von Neumann cellular auto-

mata and the Holland machines are examples. In the CPL automaton, viewed as

a tessellation space, we can have easily different characteristics in differ-

ent regions and these characteristics and regions can vary in time. Unlike

the Yamada treatments, where these characteristics are dealt with as mathe-

matical properties, here the user visualizes the properties in terms of

characteristics of abstract machines. An abstract machine, when deviced by

the user for a particular task (for which he concerns) does not appear com-

plex, psychologically speaking. In a sense, we may perhaps say that the ap-

proach of using a substratum that can be characterized in terms of abstract

machines is in between those of cellular spaces and special purpose machines.

3.4.4 Considerations in regard to formal languages

Formal language theory defines a language as a set of strings of symbols

over a finite alphabet. Such a broad definition covers natural languages,

programing languages, and certain mathematical systems studied in automata

theory. The approach taken in-formal languages also clarifies how a language

-94-

3.4.4

makes it possible to express infinite information (the enumerable
infinite

set of strings) with finite means (the finite alphabet and grammar).

Our abstract machines, because they form an organizedsystem of-ex-

pression, constitute a formal language in a broad sense. But they are multi-

dimensional objects, as opposed to linear strings of symbols, and they are

governed by a grammar that also involves "imagery" features. As such they

cannot yet be framed in available theoretical treatments (see Book 1973);

this fact, however, does not impair the validity of using such a language.

Moreover, we are using a very simple type of abstract machine that is readi-

ly expressible in the form of strings of symbols. In the absence of devices

that could accept directly state diagrams sketched by the user, we are ob-

liged, at the end, to express the abstract machines in the form of strings

of symbols.

In section 2.1.4, the two main symbolic systems delineated by psycholo-

gists in the study of mental processes were reviewed: the verbal structure

system and the imagery system. In this context, we can say that convention-

al formal languages are a way of expression that utilizes exclusively the

phrase-structure symbolic system, and abstract machines are a way of ex-

pression that utilizes abundantly the imagery system. When a user is devel-

oping a program in the form of an abstract machine as illustrated in chapters

5 and 6, he uses both the verbal and the imagery systems as appropriate.

When that program is given to a computer that can accept only strings of sym-

bols, the abstract machine is expressed in terms of a formal language of

phrase structure.

The interesting point is that certain processes might be more easily

conceived and described in terms of abstract machines than by means of a

phrase-structure language (compare with the von Neumann quotations on pages

60-61 in the previous chapter). In such cases, it is advantageous for a

human user to work initially with abstract machines, for which he can take

full advantage of imagery and geometrical intuition. These abstract machines

should obviously constitute a formal system, that is they should form a

"language" in the broad sense. Then, the abstract machines are re-expressed

in the form of a string of symbols in a formal language, in order to be

acquired by a digital machine.

The abstract machines formulated here can be expressed very easily in a

formal phrase-structure language. The elements of these machines are always

-95-

3.4.4

the same (I, F, T, R), regardless of the process they represent. The grammar

that manages these elements is formally simple, in spite of the tremendous

flexibility that it offers for modeling processes of different natures. All

the graphical means employed have a very direct representation in the form

of symbols in a string, governed by a simple syntax. As an example, program

4215 expressed as a state diagram in Fig. 48 of chapter 6 is shown here in

the form of strings of hypothetical phrase-structure language. Five FSMs

can be distinguished, all engaged concurrently on the same task. The items

constituting the FSMs are indicated sequentially in the order I, F, T, R,

and the symbol ";" is used for missing items, except at the end of the state

description. Each state is delimited with square brackets; the states are

ordered following their label number, which thus does not need to be indi-

cated. The unit that in spoken languages is the sentence, here is the state.

The symbol # is used to delimit each FSM.

#4215[1 FoT (1,2)][IFT1 (0,5)][IFT2 (3,4)R2 13F o(0)][I4F4(0)1]

(15F5T5 (6,13)R2] [1 6 F 6 T6 (7,9)] [1 7 F 7 T 7 (8,11)] [I 8 F (6)R8]

[;F9T9(10,13)][10 10 10(6,11)][;Fl[;F1 12;R12 13Fo 5(13,14)]

[114FoT 14(2,13)]# #1110[IF(0)R]# (3.6)
#1112[;FoT o(0,1)][IF1 T1 (2,1)][;F 2T2 (0,3)][:F 3T3 (0,4)][14F4 (6/0)]

[;F 5T5 (6/5,5)][;F 6 ;R6]#

#1113[;Fo0 1F 1;R 1[I2F2T2 (3,2)]1 [I 3F31 [;F 4 (0)]#

#1114[IoFo T o(1,2)Ro IFIT1(3,0)][I2F 2 T2(0,3)][I3 F3(0)R 3]#

It should be clear that Fig. 48 is not a graphical representation of
strings of symbols that describes some procedure for implementing a process,
rather it is the chosen model of the process; and expression (3.6) is the
representation of that model in the form of strings of symbols. This re-
versed direction in the translation of the process description is a funda-

mental point.

From the analyses carried out in chapter 6, it appears, at the proced-
ural level at least, that a formal phrase-structure description of abstract

-96-

3.4.4

machines of a proper type (machines that may represent processes of different

types) is simpler than the formal description of the different types of pro-

cesses directly in phrase-structure form. In the first case, the phrase-

structure language has to deal always with the same structure (that of the

formal abstract machine); in the second case, it has to deal with the variety

of structures of the different processes. The abstract machines do not pose

visible formal problems to the user because they are the reflection of what

he has in mind.

In terms of the pictorial representation of Fig. 1, here we consider a

point B (the abstract machines) that is very close to a point A, and a point

C (the codes given to the computer) that is directly derived from B, as will

be discussed in more detail in the next chapter.

-97-

?ECEDING PAGE BLANK NOT FILMED

Chapter 4

The Isomorphic Implementable Substratum

In chapter 3, a symbolic substratum was introduced for modeling (and

thus describing) processes in the form of "constructs" (abstract machines)

that are visualized by the user. The formulation of that substratum was im-

plicitly guided by the realizability of an isomorphic
physical substratum

that could implement those "constructs". This chapter describes and dis-

cusses such a physical substratum.

4.1 GENERAL STRUCTURE

The symbolic substratum is organized in a structure called the Circula-

ting Page Loose (CPL) automaton, as represented in Fig. 11. Such a structure

is also the basic structure of the isomorphic physical substratum. In fact,

it was the known realizability of such a structure that suggested its
adop-

tion in the symbolic substratum. Because of its identity with the CPL auto-

maton, the physical substratum will be referred to as the Circulating
Page

Loose (CPL) system. In essence, this structure consists of a programable

operating network and a programable memory through which
pages of data circu-

late. However, now we have to consider certain details of the real
world

that were advantageously ignored in a symbolic context.

4.1.1 Interface with the environment

In the real world, we cannot expect the environment to be at our beck

and call. In fact, the environment is composed of peripheral devices, usual-

ly with low speed, with their own timing, and without
any knowledge of what

is going on inside a computer. Therefore, buffers and means for selecting

and controlling the peripherals will be necessary. Accordingly, we introduce

- 99 -

4.1.1

two auxiliary units (Fig. 13): an "assembler" between the output of the

memory and of the environment and the input of the programable network PN ;

and a "packer" between the output of PN and the input of the memory and

of the environment.

These units provide for the interface between the system and the envir-

onment, as well as that between PN and the memory. The assembler is assigned

the implementation of the input prescription I, and the packer that of the

routings R. Every time the assembler receives a page from the memory, it

calls for specific new input data U from the environment, responsive to the

information in I of the present state of the page. It assembles the page

into an array of registers Qa' called the assembler page array, which is a

replica of the registers in PN. In Qa' the page assumes again the open form

that it had in PN at the previous cycle. As soon as the assembling of the

page in Qa is completed, and the programable network PN is free, the page in

a is transferred in parallel into PN. At this point, the data structure ofa

the page becomes part of the operational structures of the F in PN, and the

data transformations described in the present state of the page are executed.

At the end of the operations in PN, the page is transferred in parallel

into an array of registers Q in the packer. Here the routing prescriptionsp

are implemented. Responsive to information in the R of the present state of

the page, outside devices are activated, and data are transferred. At the

same time, the variables x. in the page are packed for transmission into the
1

storage medium of the memory. During this transmission, the movement of

data within the page, prescribed by routing, is implemented also.

Note that outside devices may be not ready to give or acquire data when

a page is transiting through the assembler or packer. A variety of solutions

can be adopted for these cases. On one extreme, the FSM can have an initial

state in which the page circulates through path in order to acquire all

the data necessary to start the processing, and an output state in which the

page again circulates through path in order to deliver all the results to

the environment. In the same time that these peripheral operations are

accomplished, other pages follow path a for the execution of their process-

ing in PN. On another extreme, sufficient buffer storage and peripheral

control can be added in order to make the work of the pages completely un-

disturbed by the environment timing.

- 100 -

4.1.1

assembler

I

- E .** - pa ge functional

memory I memory
programb ae I

network I

> t 2I

packe r

Fig. 13 - The basic frame of the CPL system

The introduction of the assembler and the packer, however, does not

make the system different from the CPL automaton. When the user is concerned

with the processes, assembler and packer are invisible. Only when he is

concerned with details of input and output does the presence of the assembler

and packer comes into light.

4.1.2 Program allocation

When a process consists of a single page of data and a very concise

FSM, the description of the FSM (that is, the content of storage P in Fig.

10) can be very well part of the circulating page. The quadruplets are

acquired from the environment in the initial state; during processing, the

quadruplet of the present state is brought to an active position; at the end

of the process, all the FSM description disappears by not recirculating.

In general, an FSM description has a size exceeding what is appropriate

for a circulating page. Moreover, often an FSM is implemented by many pages.

- 101-

4.1.2

For these reasons, separate storage is provided for holding the quadruplets

of all the FSM in use. The pages instead, carry a key word that contains

the label of the FSM to which the page belongs, and the label of the present

state in that FSM. When a page arrives into the assembler, a specific quad-

ruplet is acquired from that storage, in response to the content of the key,

and is added to the page in 2a-
a

Component I of the quadruplet is utilized by the assembler for provid-

ing the new input U, and no longer follows the page. Components F and T

are utilized by PN, and do not follow the page in the packer. Component R

is utilized by the packer, and does not follow the page in the memory. As

a consequence of function T performed in PN, a new key will in general sub-

stitute for the old one in the page; this key will indicate the next state

for the page, and optionally also a new FSM. The auxiliary page array

permits also the transmission or interchange of program components among

different pages.

Because the specific means that are implemented for giving the pages a

quadruplet are not visible to the user, there is no indication of them in

Fig. 13.

4.1.3 The automatic flow of data

In the CPL automaton, the user can develop abstract machines easily be-

cause an active substratum is available that produces, recirculates, and

interrelates pluralities of pages. The user is not concerned with how all

this happens, he knows only the spatiotemporal frame in which the activity

occurs (Fig. 11), and the means for building and affecting that activity

(the configurations of PN and of the memory). A similar situation should be

maintained in the physical substratum. Techniques invisible to the user

should materialize this activity as an inherent characteristic of the system.

The actual implementation of the automatic circulation derives from the

general structure. One page at a time is prepared in the assembler by re-

ceiving old data from the memory, new data from the environment, and a state

description from the program storage. The programable network and the packer

perform their operations as soon as they receive a page. The memory builds

pages, or data structures, as soon as it receives them from the packer.

The basic page transfers can be described with the use of register

- 102 -

4.1.3

transfer notations (Bartee et al 1962) by the expressions

t1 1a + t 2 yFI (O,) + t 3 61Sn +
tL 1 a + 2y(N 1 3 1 n N

t2YF2 "NN) + t4
6
2"N + N (4.1)

t5a2QN + t6 -a p

where F1 and F2 are functions executed by the programable network; tl

t2, ... are-Boolean time functions produced by a control system; and a,

, ... are Boolean conditional coefficients with value, meaning, and con-

straints as shown below.

Sa 2 Y ~ 1 6 2 Condition

1 0o o acquisition of a new page

1 o o recirculation of a page

0 o 1 recirculation of a page bypassing PN

o o 1 o processing of a page

o o 1 acquisition from storage

S * * 1 storage of a page or data

The system can process in sequence all the pages through the paths aL

and a,2 ; it can continuously process a single page, condition y; it can

input and output data without involving PN, following path 6; it can buffer

a page for a certain time in the auxiliary page array Q through the trans-

fers 62; it can produce a new page in array N during processing (combina-

tion of paths 6162 and y) for the execution of a subtask; it can intro-

duce the new page into circulation through transfer 61

The registers of arrays 2 and Q have one-to-one correspondence with
a p

the registers ON embedded in the programable network; the packer transfers

the data in 2 into a page for the memory in a given order; the same order
P

is used by the assembler to allocate the data of a page into a. In this
a

way each variable of a process always goes into the same register of PN,

- 103 -

4.1.3

during the circulation of the page, if not otherwise prescribed by the program.

These structural features of the physical system implement automatically the

virtual multiplication of PN (by means of pages) that was implied in the sym-

bolic CPL automaton.

The circulation of pages, which is always present if there is any activ-

ity in the system, implies a storage with properties appropriate for receiv-

ing, holding, and delivering pages of different characteristics. Such stor-

age, because it is always present, is specifically indicated in Fig. 13 as

page memory.

But different processes have different data structures, and even the

pages may alternate periods of circulation with periods of rest or of differ-

ent activity. For these reasons, a storage is also necessary that can assume

different properties and different partitions in accordance to the different

data structures needed. Because the extent of these storages and their

input-output disciplines are not established in advance, but are determined

at each moment by the processes themselves, the general term of functional

memory is used in Fig. 13. Which functions are physically implemented in the

memory depends upon the design; in chapter 5, specific designs will be re-

ferred to. Obviously, it will be convenient to have always the function of

addressable storage, which in our context can be described as follows: the

access to an old variable xb (that has been routed to some data structure in

the functional memory) by means of a variable xa in a page.

In general terms, a specific amount of storage medium is given to the

physical system; then a control is added such as to partition that medium in

several regions that implement different disciplines and that can be inde-

pendently accessed by the packer and assembler. The orders for this control

are given by the FSMs in the form of routings to particular control storages

zr (item vii in the symbolic formulation of section 3.2.1). In other words,

it is a hardware implementation of what usually is implemented in software.

4.2 IMPLEMENTATION

All the parts of a physical substratum that is isomorphic to the sym-

bolic substratum defined in chapter 3 are implementable with the present

technology of integrated circuits. No particular difficulty was encountered

- 104 -

4.2.1

in implementing a first CPL machine even with the components available in

1968 (section 4.4). Thus the real issues of interest are performance and

analysis of design. Documentation on performance is given in chapter 6.

Design involves consideration of a variety of contingent requirements that

are out of the scope of ,this introductory report. Therefore only brief com-

ments will be made on the more unconventional aspects of the system, with an

attempt to distinguish what is intrinsic to the approach from what are con-

tingent factors.

4.2.1 The programable network

Networks of operating elements have recurrently attracted the attention

of people, in both a theoretical and a practical context. In section 2.4

studies were reviewed in the context of cellular spaces and array computers,

and in section 2.5.4 in the neurologic context. First studies on networks of

logical elements appear in Burks and Wrigh (1953). An extended survey of

networks oriented to microcircuit implementation can be seen in Minnick (1967).

Examples of subsequent contributions are in Meo (1968), Sheldon (1972), Jump

and Fritshe (1972), and Maruoka and Honda (1973). Recently, networks are

studied in the context of distributed computers..

In this broad activity related to the notion of network, a few points

relevant to our context are discussed.

Networks at the system level do not permit an intimate collaboration of

the available resources, and they create traffic problems with a consequent

high overhead. Networks as arrays of elements have two basic disadvantages:

(1) to perform a specific function, a complex program or control is needed

that typically has no relation with the forms in which the functions are

visualized by the user; and (2) arrays require many more elements than would

be needed in especially designed structures.

A notion that appears of primary concern in all these works is regulari-

ty: geometric regularity, functional regularity, time regularity, etc.

Probably in many cases the emphasis on regularity derives from the comfort

of an elegant mathematical treatment more than from pragmatic necessity.

The programable network considered here does not start from regularity

of structure. It is oriented to the implementation of the different struc-

tures that the user conceives for different problems. In a sense, it has an

approach similar to that of patchboards in analog computers; the structures

- 105 -

4.2.1 R RODUiBILI - THOE
ORIGINAL PAGE I OOR

_ ._ i. .-

II

neurons networks of
, neurons) (()

(a) _ _____ _____ __-4

\4 -CYC G

C - (C) -T

(c) (d)
links resources storages

bus

resources storages

(e) (f)

L data f functional controllable
storage resource connection

Fig. 14 - Different types of connectivity

- 106 -

4.2.1

assumed in a programable analog computer are those chosen bythe user as the

model of the process to.be executed.

It is not difficult to implement in hardware all sorts of complex

operations comprising many.variables (special purpose processors are such

implementations). The real question is how to form a language that allows

the implementations of all those different designs, from a standard program-

able substratum, by the part of nonengineer users. For instance, in a fixed

plus variable structure computer (Estrin et al. 1963) it was expected that

programing "should be done by a team consisting of a numerical analyst, a
programmer, and a computer design engineer". The solution that has been found

here is to use recursively the approach discussed at page 62, and already used

for the general structure of the CPL system. The hardware of PN forms a pro-

gramable substratum isomorphic to a symbolic substratum where the user can

describe structures for data transformations that he derives from his images

of the data transformations. A variety of modes are available for specifying

(sometimes in steps) these structures, in order to conform to their different

characters.

In this way, the mapping (3.5) of section 3.2.2 can be obtained by ap-

plication of rules to elements of a given alphabet, with the alphabetand

the rules having a meaning to the user. The more complete the isomorphism

is, the more the following situation can be approached: everything that is

expressible in the language can be implemented in the network, and all the

possible configurations of the network (the hardware tricks) have their

logical expression in the language.

In this approach, programability has such depth and extension that no
processing characteristic can be attributed to thephysical structure per se

when isolated from the program. We can recognize only two principal char-

acteristics in the substratum: functionality and connectivity.

Ideally, the functions available to the various elements should include

the functions that are recognized in the mental processes. Psychologists

make their research in this direction; see for instance Piaget (1950). More
fruitful results for the present context can come by making such analyses

with particular attention to computer use. A preliminary experiment is

described in section 5.1.3. In the absence of such analyses, the few arith-

metic and logical functions can be augmented with others related to data

manipulation. Fundamental in the functionality of a network are functions in

the form of look-up tables.

- 107 -

4.2.1

Connectivity is no less important than functionality for approaching

isomorphism with mental constructs. A set of different types of connectivi-

ties is depicted in Fig. 14. In (a) is the connectivity found in biologic

neural systems, where functional elements (neurons) have tens of thousands

of possible connections. Very probably, this approach is not suitable for

man-made devices. What can be derived from (a) in a technologic context is

the total connectivity represented in (b). Each functional element has an

output line that is connectable to the input of all the other elements.

Note that we do not separate storages from functional resources; here, an

element is at the same time a storage of a quantity and a functional resource.

Approach (b) has the practical inconvenience that it is not expandable;

the total number of elements should be known when constructing the input

selector of each element. The connectivity represented in (c) is not total

but permits an unlimited expansion.

Obviously, one is interested in the minimum connectivity for a certain

degree of performance. Probably, this can be obtained only by means of non-

uniformity. The connectivity represented in (d) has a preferred element

that has connection with all the other elements, and the remainder elements

have connection with one neighbor, with a replica of itself, and with a

source.

Computers that search for performance without economy in connectivity

use approaches of the type represented in (e). A significant overhead due

to traffic problems is inherent in this solution. Computers that search for
maximum economy use the connectivity represented in (f).

There is an interesting rationale in a completely programable network.

With a linear increase of hardware elements, either as number of elements or
number of connections, the operating configurations that are possible in-

crease with an exponential function, and the length of the expressions for
describing them increases only logarithmically. For given criteria of per-

formance, an optimum complexity can be expected for a PN.

The various solutions that can be adopted for the programable network
have known technical implementations. Because of the isomorphism between the
physical and the symbolic substrata, the description of those solutions can
be made either in the hardware domain or in the symbolic domain. The latter

is chosen here, and symbolic descriptions are given in chapter 5.

- 108 -

4.2.2

4.2.2 The programable memory

A variety of media for storing digital information are well known and

established, and new media are continuously in development. These media can

be grouped in three types, according to their inherent mode of inserting and

estracting data: sequential (e.g. magnetic bubbles, tapes); cyclic (e.g.

drums, delay lines); and random access (e.g. core memory).

From any one of these media, memory with any input-output discipline

can be formed. Early computers implemented random access memories with de-

lay lines and drums. Sequential or cyclic memories can be implemented with

core memories whose addresses are connected to a counter. Content address-

able memories can be implemented with serial, cyclic, and random access

media. Techniques for implementing the different types of memory from the

different media are well known.

In the CPL system, the discipline for data storage varies in accordance

to the characteristics of each process, thus a programable control has to be

used in the memory. In this condition, a large variety of storage media can

be used as well. The particular characteristics of each storage medium will

make the control implement some modes of storing directly, and other modes

less so. An addressable storage offers a more uniform complexity in imple-

menting different disciplines of data storage.

In regard to the page memory, fixed or variable formats can be used.

Auxiliary signals or flags are needed for delimiting the pages and their

parts. The printed pages with their punctuation marks offer an interesting

example of how information can be related to the structure of a text. Tech-

niques for implementing circulating pages were previously described (Schaffner

1966).

The term functional memory as used here refers to the organization of

the storage medium for obtaining a data acquisition generalized to a function.

Examples are: augmentation of the present content with a new datum, as in

an accumulator; increment by one at each access performed; and substitution

with the largest of the present content and the new datum. Obviously, among

the functions of the functional memory, there will be always the selective

transfer (read/write) as in conventional random access memories. Symbolic

description of functional storage is in chapter 5.

- 109 -

4.3 DISCUSSION

In this section we look at the physical substratum as a computer and
analyze its structure and characteristics as compared to those of various
computers that have been built or proposed.

4.3.1 Pipelining

The architecture represented in Fig. 13 clearly has a pipeline organiz-
ation. While the assembler is preparing a page, PN is processing another
page, and the packer is routing a further page. While the several configur-
ations of F are succeeding in PN, input and output buses give and take data
to and from the assembler and packer, and give a stream of state descriptions
to assembler, PN, and packer.

The overlapping of the processor and memory operations (Buchholz 1962)
is here intrinsic to the basic structure. In conventional computers the
efficiency of pipelining is strongly dependent on the presence of a stream
of similar tasks (Graham 1970; Ramarmoorthy 1972); here all portions of the
processes are framed in the standard form of the FSM. Packer and assembler
have independent data channels, and their operation times can be statistical-
ly matched by providing sufficient buffer storage with a first-input-first-
output discipline, thus approaching a full time operation in PN (cf. Cotten
1969).

A characterization of computers in terms of data and instruction streams
has been suggested by Flynn (1972). Here the appropriate characterization is
in terms of FSM and page streams; we do not deal with operands and instruc-
tions, but with data structures (the pages) and operating structures (the
FSMs). The relevant difference is not in the size but in the level. A page
is not an amorphous segment of data. It is a self-sufficient package of in-
formation, in the sense that it contains all that is necessary to perform a
portion of processing (a state) in PN. It may correspond to a job. The key
accounts for the program, new input data will be found ready in PN, and other
broadcast or exchanged data will be found also in PN (the X' in the auxiliary
page array Q'). Even when the page is sleeping in the memory, reduced to the
minimum X + key, it remains an organized set of variables because it has (in
a potential form) the same spatial configuration it had, or will have, in PN
for matching the operational configurations. Each word describing the FSMs

- 110 -

4.3.2

has a much higher level than that of conventional instructions because it

refers to a programable network rather than to a single processor.

4.3.2 Addressing

Computers are articulated on two basic parts: a computing machine -

the processor - , and a storage of data - the memory. To make these parts

work meaningfully, an addressing function is necessary. Conventional com-

puters feed data into the memory randomly, and thus they need to assign them

an address, and add to the processor an address-manipulation part.

In the CPL system, the processor takes the form of a programable network

that is also the storage of the data it uses. When an extension of this

storage is needed, replicas of it (the pages) are formed in a larger storage

(the memory). Moreover, the organization of this larger storage is adapted

in time to conform to the required movement of data in the various processes.

Under these conditions, the addressing function, in the conventional sense,

disappears. In its place there is the structure of each page and the group-

ing of the pages.

The structuring of the pages is automatic. At each moment/time, a page

has the structure that was given to it by the last union with an operating

configuration in PN, and by the routings. Each operating configuration and

routing in the FSMs is prepared by the user in accordance to the page struc-

tures that are to be met. The several state diagrams in chapter 6 illustrate

this interplay between FSMs and pages.

The grouping of the pages is a consequence of specific actions of the

FSMs. Pages are created by the FSMs; new pages can be inserted at any point

of an existing array of pages; pages can be deleted. Arrays of pages can be

scanned in different ways by means of commands in the FSMs. Examples of

isolated pages, one-, two-, and three-dimensional arrays are illustrated in

chapter 6.

In conclusion, the main addressing function is accomplished without the

use of individual addresses, but by means of pages as dynamic movable stor-

ages -- dynamic in the sense that their structure changes in accordance to

the structure of the information they hold; movable in the sense that it is

not a physical location where the information resides, but a structure that

goes from one medium to another (the PN and the structurable memory). Also

in conventional high-level programing languages there is no use of addresses,

- 111 -

,.3.2

but simply because the task is shifted to the compiler. Internal addresses

and their manipulation account for a large part of the memory and of the over-

head of conventional computers.

Often in a process it is simpler to address a specific nonlocal datum

whenever necessary, rather than to establish a special data structure such

that the datum appears spontaneously at the needed time and place. For these

cases, the CPL system has a functional memory available, in which the func--

tion of addressed storage can also be performed.

Sometimes in a process there is a sorting of data controlled by rules or

information not available in advance, for which no data structure can be pre-

pared in the program; that is what is called a random process. But in all

these cases the particular information that will determine the actual sort-

ing of the data will necessarily appear as a variable x in the process.

Therefore, that variable can be used as an expressly created address for

accessing the needed data in the functional memory, or in some page structure.

Evidently, among the functions available, there will be the one that uses a

variable in the page for addressing other data structures.

We see that a programable substratum is capable of taking advantage

from various addressing methods. Well-designed, special-purpose digital

machines in general use few or no internal addresses; the structure of the

machine provides for the needed flow of data. Similarly, a well conceived

abstract machine (i.e., a program for the CPL system) will in general make

little or no use of addressed storage.

In this light, the total addressing in a random form of conventional

computers appears as the most onerous solution. It is the price paid for

having full flexibility with a computer of rigid structure. In the CPL

system, because structuring is permitted, much less price is paid for full

flexibility. We do not need to handle addresses for all data; we provide

addressing information only when there is a change of structure.

An interesting situation also arises with program addressing. In con-

ventional computers, the main program uses names for addressing routines

that are stored somewhere. In the CPL system, the FS4s use words such as

the F, T, and R which are in themselves all the necessary information for

accomplishing the tasks indicated with those words (see the mapping (3.5)).

When an F or a T is attached to the p inputs of PN, an entire operating

- 112 -

4.3.3

structure is implemented, and the operands are already present in the struc-

ture. When an R is routed to the memory control, a new data structure is

formed, and the data are already present in the storage medium.

4.3.3 Parallelism

Parallelism is one way for increasing the throughput of computers that

is actively pursuited both theoretically and practically. The classical

scheme of parallel computers consists of an array of identical processors

obeying a common stream of instructions. The performance of this scheme is

heavily dependent on parallelism in the problems. Whereas for particular

problems parallel computers can achieve a throughput which is orders of

magnitude larger than that of conventional computers, for general problems

they face a performance degradation that increases with the number of pro-

cessors, due to the difficulty for the operating system to keep busy all of

the processors, and to contentions in the access to the memory (cf. Chen

1971). Moreover, parallelism-is generally not simply expressed in program-

ing languages.

For these reasons attention is brought to reduced form of paralleslism

in the hardware and to the exploitation of the inherent parallelism in the

computations (cf. Hobbs et al 1970; MAC 1970). Examples of studies toward

a general understanding and modeling of parallelism in the processes are in

Karp and Miller (1967), Slutz (1968), and Thomas (1971).

In the CPL system, high throughput is sought by means of the special-

ization of the hardware, both in the processor and in the memory. Paral-

lelism is one of the specializations adopted in programing to the extent

to which parallelism exists in the process to be executed. Two forms of

parallelism are possible.

(1) In the programable network all the variables x can perform operationsr

simultaneously and independently. Also different operations can be assigned

to these variables. Each variable can deal with its own input u and aux-r

iliary data x'.
r

(2) An array of pages can perform the same FSM, thus implementing parallel

processing in a virtual form. In this case the actual execution occurs

serially, but from the programing viewpoint the array of pages can be

treated as a parallel computer. Form (1) can coexist with form (2).

Interesting is the fact that questions of timing and interconnections

- 113 -

4.3.4

are solved in the same moment in which the user establishes the structure of

the pages and their interplay with the FSMs. Examples of different degrees

of parallelism are given in chapter 6.

4.3.4 Computer architecture

In the history of computers many designs have been proposed and several

implemented (see Bell and Newell 1971). The intent in each case is to find

the computer structure that optimizes given requirements. However, every

time that an elaborated structure has been used, it turned out that the com-

puter is appropriate for the objectives for which it was conceived, but is

less so in other respects.

Present general purpose computers, in order to exhibit a more uniform

response to the different classes of problems, adopt nonspecialized pro-

cessors, random access memories, and shift to the software the burden of im-

plementing specializations.

It is natural to ask whether an adaptable specialization could avoid

the nonuniform response of the specially structured computers, and the in-

efficiency of present general purpose computers. There have been specific

attempts in this direction, perhaps the most conscious are the fixed plus

variable structure computer of Estrin (1960-63), a polymorphic data system

(Porter 1960), and the distributed processor of Koczela (1968). However,

neither of these or other suggestions have motivated the production of struc-

turable computers.

The solution described in this report suggests a computer structurable

at a very intimate level; and to such a degree that we can attempt to make

the computer implement the structures conceived by the user in modeling -the

processes.

To visualize the structure of the CPL system as a computer, the PMS

representation (Bell and Newell 1971) can be advantageously used. At the

most global level, the CPL system appears composed (Fig. 15a) of a processor

P connected to a memory M and an environment X through a transducer T, as

any other computer. If the switches S and the partition of the memory into

the various functions are made visible (Fig. 15b), we can visualize the pipe-

line structure. Note that the arrows indicate a continuous flow of data

rather than random bi-directional traffic. If the controls K and the data

transformation facilities D are also made visible (Fig. 15c), we can visual-

ize the parallel, or in general, the specializable structure.

- 114 -

4.3.4

P. = processor X T - P - M (a)
M = memory

S = switch

K =control

D- =--doto processing T S
facility

T = transducer /
X * environment X P MP Mf (b)
- data flow i

--- Control flow T S

T S

T _' S"
KK

D It (C)

KK j

Fig. 15 - PMS representation of the CPL system

In Fig. 15c we can easily visualize the work of the CPL system. Two

flows of data, one from the environment and one from the memory, merge into

the programable network PN. From PN, two data flow emerge, one directed to

the environment and one back to the memory. Two sets of switches are basic

to the work of the system: the connectivity of PN (the small s in the figure)

which implements the operational structures; and the assembler and packer

(the large S in the figure) which implement the movement of the data struc-

tures. The memory is partitioned in three regions: one, M, for storing
pr

the FSMs descriptions; one, M, for holding the pages, which are virtual

replicas of PN; and one, Mf, for storing particular data structures. The

controls K at the programable network, memory, assembler, and packer imple-

ment the dynamic structuring of the computer in accordance with the structure

of the processes under execution.

- 115 -

4.3.4

One basic characteristic of this architecture is that most of the memory

is not treated as a part separated from the computing machine (the processor),

but rather as a storage of virtual replicas of the processor.

But perhaps the most significant diversity of a CPL computer is in the

different use of the user's intelligence. A programable substratum is not

enough for making a computer. Also necessary is a kind of compiler that is

able to prepare the appropriate organizations of the substratum. As is well

known, this is not an easy task; especially if the source program is in a

phrase language (cf. Wineberg and Avizienis 1972).

But if the substratum has enough flexibility, we can ask the user to

provide for the organization of the substratum. In particular, we can ex-

ploit the natural capability for images that all users have, bypassing a

verbal description of the process. If the substratum permits a sufficiently

flexible structuring, the user does not have the impression that he is deal-

ing with a piece of hardware, but that he is producing representations that

are no less rigorous, or less symbolic, or less elegant than the phrase

structure ones.

There is one requirement, however. It is clear that human beings do not

use the same structures for all types of problems. Therefore, the substratum

should allow a variety of structures, including verbal structures. In these

cases, some FSMs can act as on-run compilers.

A very detailed programability is favorable also for the economy. What

in conventional computers are the different units, here are different struc-

tures implemented on the same common substratum. This brings a higher utiliz-

ation rate of the hardware. The cost of the programability, because of the

direct interpretation of words to form configurations, is significantly less

than the total cost of the controls in separated units for performing the

same tasks.

The organization of the computer activity in terms of pages makes the

references to the memory less frequent and more predictable, for which economy

can be derived in the implementation of the memory.

- 116 -

4.4 THE CPL 1 PROCESSOR

4.4.1 Factual information

In the early 1960s, efficient and economical real-time processing of

radar signals was required at the Harvard College Observatory for the Radio

Meteor Project, an astrophysical research program.* An effective solution

was found in using specially designed hardware in conjunction with circulat-

ing digital words (Schaffner 1964). Several systems based on this concept

were installed at the project radar station in Havana, Illinois (SAO 1966).

In December 1964, at the Smithsonian Astrophysical Observatory, a small

demonstration was given of the instant implementation of different processors

by changing a patchboard in a general digital structure. The analog approach

of structuring the machine in accordance with a model of the process was there

applied to a completely digital system.

Then, it was a natural step to replace the patchboard with program bits.

In this instance, these bits were holes in a punch card. Also the first IBM

computer was a Card Programmed Calculator (CPC). The divergence that followed

for the CPL system,in retrospect, can be attributed to the following reasons:

(1) the approach of organizing the machine after a model of the process,

analog computer style, was retained, rather than discarded for a purely verbal

description of the processes; (2) general frames already developed in auto-

mata theory were assumed for modeling both the processes and the hardware.

Subsequently, the development of the CPL 1 machine was initiated

(Schaffner 1966). The first operation started at the end of 1968. During

1969 the machine was used for testing a variety of computations in the labora-

tory, and preparing the interface with the environment. In 1970 the CPL 1

processor was brought to the radar station of the Project in Havana, Illinois,

where recording of faint meteors with different recognition strategies were

made (see section 6.3). Then the equipment was brought to the Massachusetts

Institute of Technology (see section 6.2).

Under the present.contract, an analysis of the system was undertaken.

The context of automata theory was joined with the consideration of studies

of psychologists on mental processes, and the notion of isomorphism between

a symbolic substratum and a physical one took shape. In the symbolic sub-

Originally supported by NSF under Grant G-14699, then by NASA under con-
tracts NASr-158 and NSR-09-015-033.

-117-

4.4.2

stratum the user describes his images of the processes; the physical substra-

tum implements those images. This study constitutes the basis for the pro-

graming language of the CPL system.

The 1966 report was made before the construction of the machine, with

many issues still to be understood and developed; the present report is made

after use of the machine, and represents a first analysis of the approach

taken.

4.4.2 Description

The CPL 1 machine has the architecture represented in Fig. 13. The pro-

gramable network PN has four variables xr, four variables x' in , four new

input data ur, and a key word. The controllable traits (connections and oper-

ational characteristics that can be described by program) are 148. The func-

tionality at the variables initially consisted of setting, resetting, comple-

menting, shifting, transfer, summation, and subtraction. Then special func-

tions were added as they became desirable. Many of these functions have a

variety of controllable details. The connectivity is of the type indicated

in Fig. 14d. The registers that hold the variables can be cascaded in order

to form words of different length. The basic segment is 12 bits long.

The program is stored in a separate storage. The key word of each page

acquires into the assembler a state description which is composed of four
4-bit words for the input prescription I, three 12-bit words for the function

F, four 4-bit words for the function T, one 4-bit word for the routing pre-

scription R, and a 12-bit code word. The bits representing I, F, T, and R

are interpreted in different ways according to the content of the 12 bits of
the code word. One of the most interesting aspects in designing the CPL 1

machine has been the realization of the possible utilization of the totality

of the bit patterns in a meaningful language - the mapping (3.5). For this

reason, simple 12-bit words can describe a full configuration of PN. In each

page cycle, up to three different configurations can be implemented for F,
and one configuration for T. All words WF and WT are implemented directly, and

no microprogram processor is used. The FSM descriptions are written on punch

cards; the format used is described in section 5.3.

The assembler has three page arrays ~a (Fig. 13) for matching the data

rate of the memory with the processing times of the programable network.

Available inputs are analog signals, digital words, and numbers set on dials.

- 118 -

4.4.2

The packer has an output buffer to permit the recording of output data

simultaneously with new processing on the part of the pages. Output peripher-

als are a magnetic tape recorder, a fast printer, and oscilloscopes. All

variables xr can be observed during their passage through the packer, in both

analog and digital forms; this feature permits the display of the evolution

of quantities of interest during computation. A diagnostic facility permits

the damping of all variables at the exit of each cycle, or alternatively at

each change of state. The reasons discussed in section 5.4.1 with regard to

the ease of debugging programs apply also in the ease of checking the hard-

ware - another consequence of the isomorphism between the symbolic and the

physical substrata.

The memory is implemented with MOS devices. Part of it is used for the

circulating pages, and part for particular data functions.

A separate supervisor unit receives information from a digital clock,

operator push buttons, and a supervisor program; as a consequence of this

information, the supervisor injects into circulation pages of different FSMs,

at proper time and range intervals. In one program card of the supervisor

it is possible to schedule for an hour of processing up to 15 FSMs in con-

secutive or periodical different arrangements, with the resolution of one

second in time and one kilometer in range.

The entire equipment is contained in 22 printed circuit cards. In Fig.

16 the CPL processor and the supervisor unit are visible at the right of a

rack of peripherals and the radar console.

- 119 -

4.4.2

CPL 1

processor

supervisor

unit

Fig. 16 - The CPL 1 machine at the M.I.T.'s weather radar

- 120-

Chapter 5

The Programing Language

In chapter 3 a symbolic substratum for abstract machines was introduced;

details that are not fundamental to the structure of the substratum, and are

thus open to a variety of implementations, were not given at that time. In

chapter 4 a physical substratum isomorphic with the symbolic substratum was

described, again without details pertinent to particular implementations.

In this chapter we give actual means for describing the abstract machines,

and molding the physical substratum in accordance with them, including choices

for those details. These details apply to both the symbolic and the physical

substrata. A preliminary discussion on the role of a programing language

begins the chapter, and a comparative discussion in reference to other pro-

graming languages concludes it.

5.1 INTRODUCTION

5.1.1 - The role of the programing language

Following a classification of Burkhardt (1965), programing languages

for digital computers range from

- machine codes

to - assembly languages

- procedural languages

- specification languages

and - declarative languages

in accordance with the use made of interpretive or translating routines

(compilers). Languages were also proposed that simply state the problems,

without indicating the solution to be used (cf. Schlesinger and Sashkin 1967).

- 121 -

5.1.1

This extreme case however cannot be viewed simply as a programing language,

but should be considered more as a system of solution finding.

It is a characteristic of conventional programing that a process is

described in several forms: in the user language, possibly in the inter-

mediate languages of the compiler, in an assembly language, and finally in

the actual binary codes of the computer. In each one of these forms the

process is completely described; each form is obtained from the previous

one by translation. All these different languages can be viewed as formal

systems of verbal structure (although the machine codes are at the limit of

such a view).

Programing procedures for analog computers, instead, need a completely

different approach. These procedures involve such a diversity of activities

and gadgetries that they can be hardly viewed as a language. However, be-

cause they convey definite information, they constitute an actual language

in the broad sense. In such a variety of contexts, it is not possible to

define the role of programing languages in general, we can instead clari-

fly the role of the programing language in our context, and confront it

with the typical ones in other languages.

Inchapter 3 we developed a method for modeling processes. Modeling

relates to the mental structures employed by the user during the conception

of a process; it does not relate, in general, to an actual computer. In

chapter 3, however, we were careful to frame the modeling in a way that can

be related also to a physical machine. The products of this modeling can be

thought of in the context of automata; to avoid ambiguity with automata of

well-known formalizations, we offer the term abstract machines. Thus we need

to familiarize ourselves with the notion of abstract machines as a "language"

in the broad sense of a means of communication, in the same light as the

verbal structures used in digital computers and the hardware structures used

in analog computers.

We are familiar with phrase-structured languages and with mathematical

languages because of education. If we were never taught about them, we could

hardly spontaneously develop something similar in a single individual life.

- 122 -

We do not think of abstract nachines as a language because we are not taught

in that sense. But from the discussions in chapter 2 it appears that it is

the one for which we have a natural inclination. It results from our sen-

sorial experience since birth, and from the continuous realization of the

cause-effect relation. To think of imaginary (abstract) objects in recip-

rocal relations is a natural activity. Children's drawings are an example.

The sketches we make on a piece of paper, or on the blackboard, to help des-

cribe a difficult problem are another example.

A language is formed because of practical necessities or conveniences;

and from these, the characteristics of the language derive. The spoken

languages developed for communicating all kinds of information, in a noisy

environment, without need of actual rigor. These languages are very flex-

ble, all present a remarkably constant amount of redundancy, and all have

some degree of ambiguity.

The mathematical languages came out for the complementary need of com-

municating with rigor a well-delimited type of information, in a protected

environment. These languages have very little flexibility, tend to elimi-

nate redundancy, and do not admit ambiguity.

For the purpose of communicating with computers we may imply a quiet

environment, we need rigor, we cannot accept ambiguity, and we strongly

desire a flexibility that can follow the multifacets of human thinking.

Programing languages of digital computers are sharing more and more

the potentially infinite power of verbal languages. However, we have to

recognize that for practical necessities they do not excel in flexibility.

Moreover, they imply the complex translations discussed in chapter 1.

The procedures used in analog computers are very effective, but they cannot

compete with the generality and elegance of the phrased languages. In our

approach, we bring the physical computer to take the same structures of a

symbolic system that has the role of a language. The interesting results

obtained by applying this approach have motivated this study.

In order to utilize the symbolic system of chapter 3, of which we

implied a corresponding physical system in chapter 4, we need now to define

a detailed set of symbols, rules, and conventions for documenting the pro-

ductions in that system, that is, the abstract machines. In other words,

we need to provide the means for the external representation of the abstract

- 123 -

5.1.1

machines devised by the user. Note that the means for the external represen-

tation do not constitute, and do not constrain the programming language,

which is the substratum where the user develops the abstract machines.

We do not know whether it can be practical to bring the physical sub-

stratum of chapter 4 to the precise level that is appropriate for the user;

or, put the other way around, whether it is practical for a human user to

conceive abstract machines at the level of economical physical substrata.

Therefore, we keep two successive levels, the same that were indicated as

points B and C in Fig. 1 of chapter 1. For these two levels we introduce:

(1) A user language - A format, a set of rules, symbols, and

conventions for representing the abstract machines, so as to form "a working

language" and "a guide for all hardware representations".

(2) A machine language - A set of symbols and rules for repre-

senting the abstract machines in a form that can be accepted and understood

by actual machines (the physical substrata), that is, hardware representa-

tions.

The two levels do not represent different languages. They are ex-

ternal forms of the same language that are oriented to different users, one

human, and the other, electronic. Because of this different orientation,

they may differ in some characteristics. What is important is that one

form can be directly derived from the other, because of the isomorphism

between the two substrata. In the examples of chapter 6, different degrees

of proximity between the two forms can be observed.

In the ALGOL 60 Report (Naur 1960) different levels of language were

recognized; namely, a Reference Language, a Publication Language, and Hard-

ware Representations. Our levels (1) and (2) have roles similar to those

of the Reference Language and Hardware Representations of ALGOL. To outline

these similarities, we put quotation marks at the terms that have the

same application as in the ALGOL 60 report. However, there are some differ-

ences. For instance, in ALGOL a hardware representation is obtained by

translating a phrase structure into another phrase structure; here, it is

obtained by transforming a multidimensional structure into a string of sym-

bols, as discussed in section 3.4.4. However, the one-to-one correspondence

between the elements of the two representations always holds. In the ALGOL

- 124 -

Reference Language, the entire structure of the program is expressed exclu-

sively by means of lexical and syntactical characteristics; here a great re-

course to spatial relations and to graphic means is made. In ALGOL, both

the Reference Language and Hardware Representations provide source programs;

the object programs are a quite different affair. Here, the hardware repre-

sentations provide, in general, actual object programs.

To take account of all these facts, we call level (1) the "user lang-

uage" and level (2) the "machine language". Their precise relation to high-

level, reference, implementation, and machine languages of conventional pro-

graming will be discussed in section 5.4.1.

5.1.2 - Preliminaries on the user language

There is no doubt that the form of expression is very important. It is

well known to psychologists that languages further in the child the develop-

ment of some classes of mental structures and not others. In pedagogy, the

cases are well known in which traumatic experiences with high school mathe-

matics have erected barriers around that part of the cognitive field labeled

"abstract symbolism" (Inhelder and Piaget, 1959, p. vii). Pager (1973)

points out the inconveniences of information represented exclusively in

phrase form, and suggests augmenting the language by means of various de-

vices.

In programming the influence of language is undoubtely no less deter-

minant. Solutions are conceived or not, depending on whether the program-

ing language allows their construction and representation or not. A

page of listing of today's programs would not particularly attract a nonspe-

cialist to develop a symbiosis with the computer. Echoing Whorf's (1956)

hypothesis that the structure of the language influences the manner in which

humans understand reality and behave, one can simply mention the possible

influence on those who use computers of changing from a command language

to that of mental images. At least, when programing in the form of ab-

stract machines, the user would not feel himself to be a slave of the com-

puter since he would have designed its characteristics.

Fortunately, the.phrase language is merely one particular instance of

the semiotic or symbolic function (Piaget, 1971, p. 46). The discussion

- 125 -

5.1.2

on modeling and representation made in section 2.2 now comes to fruition.

We noted there, in several different contexts, the recurrent use of images

and words in the common task of transmitting complex information, that is,

the simultaneous use of different forms of expressions. Obviously, it

would be advantageous for the programing languages, which have to repre-

sent so many varieties of processes ranging from mathematical computations,

to payroll preparation, to modeling of intelligence, to take advantage of a

plurality of forms of expression.

Forms of representation and of modeling are not independent. Each one,

in a sense, preselects the other. Here there are two facts that favor a

large latitude of representations. In the first place, the modeling is in

the context of automata. As noted in section 2.3, automata have appropriate

representations in a variety of forms, such as algebraic systems, verbal

structures, and operational constructs. In the second place, here we use a

physical substratum isomorphic to the symbolic substratum. It is precisely

the use of these two isomorphic substrata that frees us from the severe con-

straints posed by the automatic translation of the source programs into the

object programs - constraints that dictate the exclusive use of a formal,

phrased language.

It is highly desirable that the form of representation can keep as much

as possible the flavor of the abstract machines. From all the discussions

in chapter 2, we can readily assume a basic representation for the abstract

machines in the form of a kind of state diagram. Diagrams are not new. In

automata theory, the state diagrams are a well-recognized form of representa-

tion. In programing, flow charts are highly recommended (but scarcely used).

Schemas are a new form of analysis in computation theory (Manna, 1973).

One observation is in order here. Graphic means have been used so far

as an accessory, auxiliary representation of certain aspects of a process,

typically the control structure. Here, instead, the diagram will be the ref-

erence representation. Other forms will be derived from it when necessary.

We will, also, always keep present the complementarity and the collaboration

of the two main symbolic systems in the mental processes. Therefore, we will

formulate a global representation of all the aspects of a process, by using

simultaneously graphic and verbal structures, taking advantage of the first

- 126 -

5.1.2

especially for representing the dynamics and the constructs of the process,
and of the second especially for representing single characterizations.

The fact that the reference language uses graphic means as a main con-

stituent does not appear to imply impracticality, although present programing

languages avoid graphic means. As discussed in section 3.4.4, our state dia-

grams can readily be expressed in the form of symbol strings, when necessary

for machine communication. If a need emerges for automatic equipment that
can accept and manipulate graphic expressions, undoubtedly industry will pro-

vide it.

Processes modeled in the form of abstract machines have a natural repre-

sentation in graphic form. If, moreover, graphic means favor the imagination

of the user, there is no reason for not using them.

5.1.3 - An experiment in applying modes of thinking to computer feature

In chapter 3 the basic structure of a symbolic substratum was given;
however, detailed features of the substratum were omitted. This was done

purposely, because it is important that these detailed features are care-

fully chosen in accordance with pyschological characteristics of the users,
rather than being formulated arbitrarily; and this needs long experience.

In this chapter, a minimum set of necessary details are described, as they
are at present being worked on. One of these features has been developed

in terms of .pyschological characteristics, as reported in this section.

One of the basic elements of our substratum is the transition function.
The effectiveness of a wealth of transition functions for describing complex

processes in a simple form was recognized since the first use of the CPL

machine. But transitions can be easily recognized also in our mental pro-

cesses; transitions between items, times, actions, situations, places,

states of mind, etc., are familiar and natural for everyone. Even without

a specific psychological background on the subject, wefelt that an inves-
tigation on the modes in which transitions occur in thinking could be useful

for providing appropriate transition functions to the symbolic substratum.

A variety of people with different activity, age, and training have
been interviewed. The form here shown was used to facilitate the extrac-
tion of the wanted information from the interviewed people. In order to
bring the interviewee to the issue, transition is presented first as a physi-

- 127 -

5.1.3

cal transfer from one place to another. Eight modes (upper part of the

form) are presented as applicable to planning a trip, for business or pleas-

ure. The relative applicability of these modes is asked and results recorded

as ordered numbers in the form. At this time the person being interviewed

is already "in" the notion of transition, and sometimes is able to mention

some other ways of looking at it, ways that are transcribed if different

from the eight examples given.

Then the notion of transition is presented in the sense of "changing

mind", "changing situation", "changing status". The various reactions,

comments and sayings of the interviewee are interpreted and if an interest-

ing pattern of the transition appears it is noted in the second half of the

form.

The population interviewed included students, professionals in differ-

ent fields, and people in a variety of occupations; their ages ranged from

11 years to mature age. The following is a sample of some relevant ex-

pressions obtained.

1. I will stay there for a certain number of days.

2. I will go there, and then I will see.

3. I will go to C, and I might stop in B.

4. I will stop there for a certain time.

5. Temporary block.

6. Several plans performed sequentially.

7. Canceling the plan, and making another.

8. Discuss this, before you forget.

9. If I think many things at a time, the efficiency decreases.

Of great interest have been the answers in regard to visual or verbal

thinking, and serial or parallel mental activity. Undoubtedly, a wide

variety of forms of thinking exist, and at the same time many common modes

are used. Comparable numbers of people said that they think in images or

in words; but after further introspection, said that actually they were

thinking in both terms. Few people felt that they were thinking definitely

either in images or in words. The majority of people reported that their

cogitation is serial. A very few, however, claimed that their mental

attention is completely parallel.

- 128 -

5.1.3

Expressions such as 1 in the list has suggested the STAY function (see

section 5.2.4). Expressions such as 4 suggested generalizing the stopover

transitions to include temporary staying. The emphasis expressed by people

on the conditionality and priorities in stopping and changing plans pro-

duced the development of features for specifying priorities and options on

several conditions.

The work done in connection with the reported interview has further

confirmed the effectiveness of the transition functions in modeling pro-

cesses, has contributed to the formulation of these functions, and has

demonstrated, at least for this case, the possibility and the convenience of

modeling computer features after common features of people's thinking.

age sex Iprofe

date place

siple transition

condit.

one stopover

several stopovers

conditional stopover

a plan

several tentative plans

sudden diversion

natur. freq.

specification of.each step

automatic sequence of

hange of mind

- 129 -

5.2 THE USER LANGUAGE

5.2.1 - Structure of a program and its representation

For the CPL system, programing is to devise an abstract machine that

performs a desired process.

These abstract machines are derived from the mental image that the user

forms of the processes. These images should be channeled, oriented to the

symbolic substratum of chapter 3, to yield the development of appropriate

abstract machines in the substratum.

These machines are composed of elements from given collections, and are

assembled in terms of certain mechanizations. These collections and mecha-

nizations constitute the user language.

A program consists of the description of an abstract machine. These

descriptions are made up of symbols, graphic and verbal, that indicate the

elements used and the mechanizations involved. Each of these elements and

mechanizations are simple in themselves. Complex processes can result from

particular structuring of the abstract machines; however, the description

of the machines remains at the level of the simple elements. Here we do

not describe the execution of a process,'but rather we describe a machine

that will perform the desired process as a consequence of the particular

structure we give the machine.

The symbolic (as well as the physical) substratum allows two types of

structures: operational structures, the FSMs; and data structures, funda-

mentally the pages. A process is the outcome of the interplay of these two

types of structures.

The user is given a standard frame for developing these interplays:

the spatiotemporal frame represented in Fig. 13. The FSMs and the data

structures merge in the programmable network PN. An FSM is a set of states

that are operational structures and commands upon data structures. Primary

data structures are sets of pages, each with a key which refers to a state

of an FSM. When a page comes into PN, it implements a portion of an FSM, a

state. In turn, that portion of FSM acts on the page, and optionally affects

also the data structures.

- 130 -

R,

° •< .2[las se mblIer (
b

E

E El ... Pogo functo.* Fig. 17 - FSM structures
o X :)E .. Dmemory imemory.

prografflbta
network

Fig. 18 - Page structures

Fig. 13 The CPL frame ac

COC
Co

ZNN

t

R131/133 REPRODUCIBLITY OF THEORIGINAL PAGE IS POOR

5.2.1

Simultaneously, a flow of data from and to the environment is available

at the assembler and packer points.

An auxiliary page storage is available in PN for facilitating the

data transformations and for interactions among the pages.

An auxiliary functional storage medium is available in the memory for

special data structures that can interact with the pages.

An FSM is represented in the form of a state diagram, with graphic and

alphanumerical means (Fig. 17). The states are indicated as domains encir-

cled by a line (dashed areas in the figure), within which the components

specific to the state are written. The paths of the transitions are indi-

cated by arrows and special symbols in the space separating the states.

Components related to transitions are also indicated in this space.

An FSM can consist of one isolated state, a group of connected states,

or even several groups of connected states. Whether to consider separated

groups of states as independent FSMs or as one large FSM is matter of stra-

tegy in modeling a process.

A state is composed of the four components I, F, T, and R, some of

which may be not present, and some of which may be composed of several sub-

components. The modes and rules for describing these components are indi-

cated in the following sections. Examples of state diagrams are in chapter 6.

The pages are created, transformed, rearranged, and eliminated by the

FSMs, by actions of the I, F, T, and R. The FSMs can act insofar as there

are pages that implement them. For the start of each program, obviously, an

outside intervention has to inject at least a first page into the frame of

Fig. 13. It should be noted that in this frame the pages are to call for

pieces of program (the present state), rather than programs to call for data.

The pages are organized in different ways to conform to the data struc-

ture of each process. These organizations are implicitly described by the

FSMs. However, they can be independently represented, if that is appropri-

ate for visualizing or documenting the program. Pages can constitute a

plurality of independent jobs; a linear array of similar sets of data (as in

the program of section 6.2.1); a two-dimensional array (as in the program of

section 6.4.1); or a mixture of various structures, as in the representation

of Fig. 18 (which refers to a program discussed in section 6.4.2).

- 132 -

5.2.1

m

RR

o,

aassembler

(b)

C E1 c DPge fanCtion Fig. 17 - FSM structures

*meory memoly
- programable

aftwork

- pacFig. 18 - Page structures
iS) pocker.

Fig. 13 - The CPL farme AC

• "CE T

hAC

Co

bC E

r

REPRODUCIBILITY OF THE
t ORIGINAL PAGE IS POOR

- 131/133 -

5.2.2 - I N P U T P R E S C R I P T ION I

- Three categories of input objects are considered:

- quantities* that are written in the program itself;

- quantities* that are in some storages of the machine, which are
referred to with names such as M, N, P . . .

- quantities* that come from outside sources, which are referred
to with names such as SI, S2 , S3 . '

- k new inputs ui are possible for any given CPL machine, say

Ul , u2, u 3 . . . u k '

- An input prescription consists of an ordered list of assignments for the u.
1

example: S - - 8 M 0

it means: u1 will have the present value** of S4

u 2 will be empty (= 0)

u3 n I n

u4 will be = 8

u5 will have the present value** of M

u6 will be = 0

the following u. will be empty (= 0)
1

In the state diagram, usually, the input prescriptions are not indicated, be-

cause the chosen input quantities are apparent in the descriptions of F and T.

But they should be kept in mind in regard to which set of inputs is available

in each state. The input prescription is compulsory in the machine programs.

* The physical substratum is supposed digital, at least for the user's view-
point. Thus all quantities are treated as numbers. Of course their mean-
ing varies from process to process, and even from moment to moment in the
same process.

**Present value, in this context, means the value that the source possesses
when the page in question is activated, namely, when the page enters the
assembler.

- 134 -

5.2.3 D A T A T R A N S F O RMATION F

The variables and data available to the programable network are:

(1) xr process variables in the page (in fN

(2) x' variables in the auxiliary page array (in)

(3) u new input datar

(4) x"' variables in the following page (in 1
r a

(5) x'' variables in the previous page (in f)
r p

(1) and (2) are the variables that can be transformed; (3), (4) and (5) can

only be read. In the programable network, variables (1) and (2) assume a new

value as a function of themself and of other variables and data in the network,

as indicated in the general expression (3.2), here repeated:

X(i+l) = F X(i) , U(i)] .

The usual way of expressing functions often involves a sequential appli-

cation of simpler operations. Correspondingly, a sequence of different net-

work configurations is used, within the cycle of a page in PN, to perform the

total function F.

Here,the mapping (3.5) of page 80 has to automatically provide these

configurations from the user's expressions. A form is suggested for these

expressions that, on the one hand, matches a mode of thinking, and, on the

other hand, matches the characteristics or constraints of a physical network.

First, the variables that are to be transformed are named; second, the type

of operation to be performed is indicated; and third, the variables and data,

if any, that are read for obtaining the transformation are named. It is un-

derstood that the reading of the variables is made before that the transfor-

mation takes place; if the same variable appears in the first and in the

third parts of an expression, its old value is implyed in the third part,

while the first part represents its new value. This corresponds to the as-.

sumed convention of time, as indicated in Fig. 9 at page 74.

- 135 -

5.2.3

The variables will be indicated with specific names starting with a

capital, or with capital letters (A, B, C, ...). The variables in the

auxiliary page array, in the following page, and in the previous page will

be indicated in the same way but with the addition of one, two, and three

primes, respectively. The new input data will be indicated with specific

names, all in lower case, or with lower case letters (a, b, c, ...). Because

of the syntax of the language, the form chosen for the expressions, and the

use of specific allocations in the state diagram, the lexical characteristics

are here not critical as in conventional programing languages.

The functions are indicated with symbols, as suggested in the following.

Because the user language is the state diagram, it is important that the

functions be indicated in a coincise, possibly selfexplanatory form. It is essen-

tial that the meaning is given without ambiguity; but the lexical character-

istics are irrelevant; the symbol rigidity required by a computer is posponed

to the time of the actual coding of the program. The functions that can be

used depend on the implementation of the language. The approach taken here

is to allow the user to develop a program as much as possible in his own

terms; then, gradually, the program is refined in terms of a specific imple-

mentation of the language. Context dependency is here highly beneficial.

The CPL system has the facility of producing data transformations

globally, by means of operational networks, rather than by means of sequences

of commands. Therefore, the language should give the user the control of

this facility. The approach is again that of using a correspondance between

possible structures of thinking and possible structures of the physical

substratum constituting the programable network.

When we think of a network, we look at it as a parallel array, if there

is a regularity of repeated characteristics; we look at it as composed of a

main element and collateral parts, if all operations relate to a single

variable; we look at it serially, one part at a time, if the network is

composed of a distributed set of elements performing different, dependent,or

independent functions; and we think of it as a unit, without entering into

details, if we are already familiar with what it does. According to these

natural ways of thinking, and in agreement with the structure of PN, four

modes of prescribing data transformations are established.

- 136-

5.2.3

Mode 1 - Collective prescription (an assignment of a similar function

to several variables xr).
In the user language, this prescription is made by listing the names

of the variables involved, followed by the symbol of the operation, and by

the arguments in an order corresponding to that of the variables.

Example: A B E F a b c d

This mode correspond, in a sense, to the vector operations, but it is

more flexible. As an example, in the expression

ABCD A' E a b c D' A F

ABC and abc can be viewed as components of the vectors X (the main variables)

and U (new input data), respectively; but A' and D' are components of the same

vector X' and appear with a different role in the expression; moreover, E

(component of vector X) accumulates F which is another component of the same

vector X. Such an eterogeneous composition of variables does not pose prob-

lems to the machine, because of the isomorphism between structure of the

language and structure of the physical substratum.

Mode 2 - Multiple prescription (different functions assigned to dif-

ferent variables).

The description of each function for each variable is made as in Mode

1, and an indication is added signifying that the functions are executed as

a single network. In the preferred user language, this indication is a

square parenthesis enclosing the entire prescription. As an example:

[A Z a, B b, C x 2, D + 1]

Obviously, in this case, attention should be given to the relation among

the variables; these questions appear clear themselves if the user thinks

of a physical network. For instance, the following prescriptions are per-

fectly valid

[A E B, B = A]

[Ax 4, B B', A'B' = AB]

In the first prescription, B will hold the previous value of A, and A the

sum of the two. In the second prescription, A' and B' will show the orig-

inal values of A and B,respectively, while A will double and B will sum

the original value in B'.

- 137 -

5.2.3

Mode 3 - Individual prescription (a complex function centered to a vari-

able).

If only one variable is to be transformed, the entire network can be

mobilized for a particular operation, without the possibility for ambigui-

ties. Simple examples are:

A Z log B

(CD) Z C

In the second example, C and D are treated as a single variable that accumu-

lates the most significant part of itself; configurations of this type can

be advantageously used for finite approximations of differential equations.

Mode 4 - Special transformations (that were developed for specific re-

current tasks).

In the use of a computer often a group of operations are used and re-

peated in many recurrent jobs. It is thus desirable, for the simplicity of

the programs, or for the speed of the execution, to have that group of

functions executed by means of a single specialized network. In these

cases, the complex network is not described any longer, but simply called

by means of a coded word.

In conventional programing, a specific data transformation has to be

built in terms of the functions available in the programing language, sup-

plied with auxiliary commands. Only in particular cases, the desired data

transformation can be framed as an executable statement; in most cases, a

specific sequence of statements and control commands -- a routine -- has to

be devised. A similar procedure could be used also here; however, the pre-

sence of an entire page in the network and its programability make a more

direct implementation possible. A larger number of desired data transfor-

mations will correspond directly to expressions that can be formed in one of

the four modes. A succession of such expressions in a state gives the state

a significant processing capability. In this context, a state will in gen-

eral correspond to a phase of the process as viewed by the user, as testified

by many of the examples in chapter 6.

Theestablishment of specific functions to be made available in each mode

requires a thorough study of algorithms and programable networks. General

- 138 -

5.2.3

outlines and specific implementations are given in the following.

Mode 4 represents the hardware implementation of recurrent special data

transformations. The interesting point is that, when a programable substra-

tum is available, these implementations do not require hardware interven-

tions; they.can be implemented by the user, when needed, with a preliminary

construction in terms of the other modes.

Mode 3 represents functions that are not a uniform attribute of the sub-

stratum; that is, functions that either cannot be performed simultaneously

for all the variables, or that are available only to some privileged varia-

bles. This mode is the one most closely related to conventional microprogram-

ing. Functions in look-up-table form are to be prescribed in this mode also,

because only one table per function will be generally available. In the

CPL 1 machine, this mode has been implemented for some hard-wired functions

at privileged variables.

Modes 1 and 2 refer to uniformly programable functionality of the sub-

stratum; that is, functions that can be implemented simultaneously and inde-

pendently for all vaiables. The distinction between mode 1 and mode 2 is

introduced only for simplifying the language that describes the networks.

Mode I has been analyzed and implemented to a certain extent; in the follow-

ing, samples of the richness of functionality achievable in a programable

substratum are shown; working notations that are used in the state diagrams

are also indicated, in the form of examples.

Setting

- To zero (clear). Notation: A ABC
o o

- To the maximum value (binary 111 ...). Notation: A max

- To the absolute value (A +IAI). Notation: All

- Complement (Boolean function). Notation: A compl

Shifting

- To the right for n binary positions. Notation: A : k (k = 2n)
n

- To the left for n binary positions. Notation: A X k (k = 2n

Options: (1) Several words cascaded; notation (AB) : k. (2) Injecting one

rather than zero; notation A : k. (3) circular; notation A(k.

- Bit reversal. Notation: A rev B. Interpretation: A assumes the reversed

patterns of bits present in B, and B remains unchanged.

- 139 -

5.2.3

Increment

- The variable is increased by one. Notation: A B C +1. Interpretation:
A - A +1, B + B +1, C - C +1; when a variable reaches the maximum value,
no further change occurs even if prescribed.

Option: the variable overflows and restarts from zero; notation: A l1

- The variable is decremented by one. Notation: A B C -1. Interpretation:
A + A -1, B - B -1, C - C -1; when a variahble reaches zero, no further

change occurs.
Options: (1) the variable assumes negative values and stops at the maximum

negative value; (2) when the variable reaches zero, it starts again from
the maximum value.

Transfer

- Copy of a value. Notation: A B C = D E F. Interpretation: A 4- D, B -- E,
C - F; D, E, and F unchanged.

- Movement. Notation: A B C +- D E F. Interpretation: as above, but D, E,
and F are cleared.

- Interchange. Notation: A B C D E F. Interpretation: A - D, B - E,
C - F, D +- A, E -+ B, F - C.

Selection

- The largest value. Notation: A larg AB. Interpretation: A assumes the
largest of the values in A and B; B remains unchanged.

- The smallest value. Notation: A smal AB. Interpretation: corresponding
to that above.

- Mean value. Notation: A mean AB. Interpretation: A - (A + B)/2, B re-
mains unchanged.

Accumulation

- Summation. Notation: A B C E a b c. Interpretation: A -- A + a, B - B+b,

C + C + c; the variables do not exceed the maximum value, positive or
negative.

Option (1): cascaded variables; notation:(AB) E D; interpretation: D is
accumulated in A, B constitutes a continuation of A.

Option (2): free overflow; notation: A B t a b; interpretation: when each
variable reaches the maximum value, the accumulation continues from zero
value.

Option (3): the variables do not assume negative values, and stop at zero.

- Subtraction. Notation: A B C E- a b c. Interpretation: A - A - a, B +-

B - b, C -- C - c; the variables do not exceed the maximum values.

Options (1), (2), and (3) as above.

- Absolute value of the difference. Notation: A 1- B. Interpretation:
A + A - B, if A > B; A -+- B - A, if B > A; B unchanged.

Product

- Limited precision. Notation: A B C 1 a b c. Interpretation: A - A x a,
B * B x b, C -+- C x c.

Options of different precisions in privileged variables.

- 140 -

5.2.3

Boolean functions

- AND. Notation: A AND B. Interpretation: each bit of A assumes the value

of the AND function of the corresponding original bits in A and B; B re-
mains unchanged.

- OR. Notation: A OR B. Interpretation: as above, but using the OR func-
tion.

- Exclusive OR. Notation: A EOR B. Interpretation: as above, but using
the exclusive OR function.

One of the basic characteristics of a programable substratum is the con-

nectivity. The connectivity poses constraints to the expressions above de-

scribed. In reference to Fig. 14c, we can define a distance d between two

variables x. and x. by counting the number of variables from xi and x (in-1 J

cluded), in a given order. Therefore, for any given physical substratum, a

constraint will be in the language, for which d in the expressions of mode 1

should be not greater than a given value k. The value k may be different in

the two opposite directions in the sequence of the variables. Privileged

variables will generally have larger k than the other variable; in Fig. 14d,

the first variable does not have constraints of distance.

Function F in a state can be also devoted to activities to be performed

in PN by other pages. This is one of the means for making concurrent work

by part of several FSMs and pages possible. The driven transitions, section

5.2.4 (1)e, are prescribed as an F function by part of the FSM that orders

the transition.. The notations used in the state diagrams and their inter-

pretation are as follows.

ST n next page transfers to state n of its FSM.

ST n (k) all pages of FSM k transfer to state n.

ST n all all the following pages (of the present memory segment)

transfer to state n of their respective FSM.

The driven transitions supercede any transition function T that may be de-

scribed in the present state of the driven page.

Also routing prescriptions can be driven by a page other than the one

that performs the routing. The driving page prescribes the routing as an

F function. The notations used in the state diagrams and their interpreta-

tion are as follows.

- 141 -

5.2.3

RT k (. . .) The pages of FSM k implement the routing described.

The parenthesis stands for a routing prescription as indicated in section

5.2.5.

Function F in a state can include also commands. Of particular

necessity are commands that control the output production. The following

are given with their notation and interpretation, also with reference to the

routings described in section 5.2.5 (4).

output (name) : the variable "name" in the functional memory is
transferred to the output buffer.

output SEG(k) : the page segment k is transferred to the output
buffer.

distribution : the content of the distribution is transferred
to the output buffer, and the distribution is
cleared.

record : the present content of the output buffer is recorded.

erase : the present content of the output buffer is erased.

record open : the present and future content of the output buffer
is to be recorded.

record stop :the present content of the output buffer is the
last to be recorded.

- 142 -

5.2.4 TRA N S I T ION F U N C T I0 N T

A transition function is composed of two parts

(1) - a set of paths through the states of the FSM

(2) - a set of conditions (such as values reached by the

variables, signals coming from the outside) that

determine the choice of one path.

Moreover, a transition function can be

(a) - described in the FSM itself

(b) - be imposed by another FSM or be produced by an

outside control (driven transitions).

There is a transition function in each state, and it is performed each time

a page has a cycle in that state, after the data transformation F.

- 143 -

5.2.4

(1) PATHS IN TRANSITION FUNCTIONS

(a). No prescription of any sort for T function means that the FSM remains
in the present state (until some action from the outside of that FSM occurs).
In the state diagram, this case is represented by the absence of any arrow
emerging from the circle representing that state, Fig. 19 (a).

(b). Unconditional transition to the state with the next label (in the
natural numerical order). Note that this is the simplest coded transition,
no state labels need to be indicated. The adopted graphical representation
consists of drawing adjacent the circles representing the states, Fig. 19(b).

(c). Unconditional transition to state h. This prescription needs simply
the state label h. Its graphical representation consists of an arrow point-
ing to state h, Fig. 19(c).

(d). Transition to different states depending on conditions. The T func-
tion and the related state labels need to be prescribed. The graphical
representation consists of several oriented arrows emerging from the state,
Fig. 19(d). Details are given in (2).

(e). Driven transition (produced as a consequence of actions by part of
some other FSM). No prescription is made in this FSM. The graphical
representation consists of a dashed arrow, Fig. 19 (e). Similar symbols are
used also to indicate the starting state.

(f). Go to state h and stay there for n cycles (then the transition pre-
scribed in state h will act). The prescription needs a code, the label h
and the value n. The graphical representation consists of an arrow with
open head where the value of n is written, Fig. 19 (f).

(g). Stay in the present state for n cycles (then the other prescriptions
will act). The prescription needs a code and the value n. The graphical
representation consists of an arrow looping into the state with the value
of n written inside, Fig. 19 (g).

(h). Go to state h stopping over states k, m, . . . (stopover transition).
The prescription consists of the multiplicity of state labels in an estab-
lished order. The graphical representation consists of a jagged arrow with
notches pointing to the states where stop is made, Fig. 19(h).

(i). As in h, but staying in the stopover states for assigned numbers of
cycles. The prescription is as in h with added number of cycles. The
graphical representation is as in h, with the number of cycles written in
the notches, Fig. 19(i). Note that if the state where to stop is not
specified, the FSM will remain idle for the specified number of cycles.

(j). Priority is assigned to one or more transition branches. Priority
means that that branch (if chosen by the function T) will occur first, re-
gardless of other conventions. The prescription consists of a code added to
the description of that branch. The graphical representation consists of a
dot superimposed to the arrow representing that branch, Fig. 19(j).

- 144 -

5.2.4

(k). Lock of page. This feature is used when the page movement is con-

trolled by function T, rather than following the automatic circulation. The

prescription consists of a code added to the description of the branches for

which the page remains in operation. The graphical representation consists

of a circle added to those branches Fig. 19 (k).

(1). End of page. This transition produces the disappearing of the page.
It is described as a reserved state label. It is represented graphically by

a triangle, Fig. 19(1). . U. ,

The feature of the priority allows the mechanization of a variety of

rules. In reference to stopover transitions, when the states connected with

priority transition are adjacent n he state-label order), the next destin-

ation of a stopover transition will be reached at the end of the priority

transitions, as in example 3 of Fig. (j). When the states connected with

priority transition are not adjacent, the occurrence of the branch with

priority cancels every previous.stopover prescription (ex. 4 of Fig. 19(j)).

Transitions f and g, and tr# ition h in the second example given in

Fig. 19(h) produce similar staying. But this redundancy is in fact a flexi-

bility which eases the programing. In the case of transition g, the prescrip-

tion of staying is made once and it holds for all the transits through that

state. In the case of transitions f the stay can be different for different

arrivals to that state. In the case of transition h, the stay can be dif-

ferent in accordance with events occurring in that state.

- 145 -

5.2.4

60
h

(a) (b) (c)

I 0 a

I
I

/

h

(d) (e)

D
A

0

n

h (f) (g)

Fig. 19 - Symbols for the transition paths (cont.)

- 146 -

5.2.4

a~ay

24

12 3 4 5(j

I t6616

Fig. 19 (cont.) Symbols for the transition paths

- 147 -

5.2.4

(2) CONDITIONS IN THE TRANSITION FUNCTION

The conditions that affect the choice of the path are expressed in convention-

al notations, below a horizontal line. Examples:

the tests occur from
top to down, and the

first that is valid
determines the path

B > B'

cont 2

the dot indicates the branch
taken when the condition is true

the branch from the corner is the

path taken when no one condition
is true (the "else" case)

Decision table form

A = E 1 1 no indication in the table means don't care

B ovf 0 1

C > 4 0 0 1 all tests are performed before a branch

is chosen

The set of conditions is pertinent to each implementation of the language.

The follbing set is adopted here: = , > , < , ovf (overflow) , and

cont 1, cont 2, ... cont k (control signals appearing from outside, they

can be indicated also by name).

- 148 -

5.2.5 ROUT I N G R

Variables x. can be routed
1

(1) to output (to an output buffer storage from which they will be

recorded on the indicated peripheral at the prescribed

time);

(2) to different places in the page (where they will be found at the

next circulation);

(3) to other pages (where they will be found at the next circulation);

(4) to functional memories (regions of the memory other thanthe

circulating pages);

(5) to control places (typically for structuring the memory).

Moreover, the routing can be

state dependent: it occurs every time a page is in that state - in

the state diagram is indicated at the right of a

vertical line;

transition dependent: it occurs only if a given path is chosen- in

the state diagram is indicated beside the arrow repre-

senting that path;

driven routing: it occurs when another FSM produces that prescription -

in the state diagram of the driven FSM is indicated in

parentheses.

The routing operations occur after the completion of the work in the pro-

gramable network; (physically, they are performed when the page is in the

packer).

The details of the routings are pertinent to the implementation of the

language. In the following, the choices adopted here are described.

- 149 -

5.2.5

(1) ROUTING TO OUTPUT

- Simple indication of the name of a variable xi means that the indicated
variable disappears (becomes = 0) from the page, and its value is stored
(in queue form, if not otherwise prescribed) into the output buffer.

- Indication of the name of a variable xi underlined means that the variable
is kept in the page, and its value is copied into the output buffer as above.

(2) ROUTING TO DIFFERENT PLACES IN THE PAGE

descrip t ion notation

(in the form of examples)

- clear variables A, C, D A C D
0 o o

- exchange A with D A .__D

- shift all the variable to left, the
last becoming = 0

- circulate all the variables of one
position to the left

(3) ROUTING TO OTHER PAGES

- The name of a variable followed in parenthesis by the name of a new variable
and of an FSM means that the routed variable will substitute for the new indi-
cated variable in all the pages of the indicated FSM. Example: A(B,3).

- 150 -

5.2.5

(4) ROUTING TO FUNCTIONAL MEMORY

- Storage. Notations and interpretation as follows.

A (name) : variable A in the page is stored as variable "name"

in the functional memory; A in the page remains un-

changed.

A + (name) : as above, but A in the page is cleared.

A (B) : variable A in the page is stored in the functional
memory as a variable with name equal to the content of
B in the page.

A + (B) : as above, but A in the page is cleared.

- Acquisition. Notation and interpretation as follows.

A = (name) : variable A in the page will acquire the content* of

variable "name" in the functional memory.

A + (name) : as above, but the content of "name" will be cleared.

A = (B) : variable A in the page will acquire* the content of
the variable in the functional memory that has name
equal to the content of B in the page.

A - (B) : as above, but the variable in the functional memory
will be cleared.

A read : variable A in the page will acquire* the content of
the variable in the functional memory that has name
equal to the present content of A.

- Exchange. Notations and interpretation as follows.

A ? (name) : variable A in the page and "name" in the functional

memory exchange their values.

A 7 (B) : variable A in the page and the variable in the func-
tional memory with name equal to the content of B in

the page exchange their values.

- Accumulation. Notation and interpretation as follows.

A ace (name) : variable A in the page is accumulated to the present
content of variable "name" in the functional memory.

A acc (B) : variable A in the page is accumulated to the present

content of the variable in the functional memory with
name equal to the content in B of the page.

*that content will be found in the page at the next circulation.

- 151 -

5.2.5

- Distribution. Notation: L. Interpretation: variable C in the page is
distributed in a distribution region defined in the functional memory.
A distribution region is a sequence of n words reserved in the functional
memory; these words are labeled 0, 1, 2...n-1. When a variable with
value k is distributed, the present value of the distribution word with
label = k is incremented by one; for any value k larger than n-l, the
increment is made in the word labeled n-l.

- Count. Notation: 6 (name). Interpretation: an increment of one is made
in the variable "name" in the functional memory.

- Maximum. Notation: D max (name). Interpretation: the variable "name" in
the functional memory assumes the largest of the values of D and of the
old content in "name".

(5) ROUTING TO MEMORY CONTROL

- Creation of a page. Notation and interpretation:
P n a page is introduced into the present memory segment, in state

n of the present FSM.

P (k) a page is introduced in the initial state of FSM k.

P n(k) a page is introduced in state n of FSM k.

- Distribution definition. Notation: distrib (n). Interpretation: a se-
quence of n words is reserved in the functional memory as distribution
region.

- Change of page segment. Notation: SEG (k). Interpretation: the circula-
tion of pages transfers to the page segment k. A segment can be also a
distribution sequence.

- Scanning. Notation: SCAN (code). Interpretation: the circulation of
pages occurs along a segment, across an array of segments, across planes
of segments, etc., according to the "code".

- 152 -

5.3 AN IMPLEMENTATION OF MACHINE LANGUAGE

5.3.1 - Outline

In this section, the machine language implemented in the CPL 1 proces-

sor is described. This implementation can be considered as a subset of the

user language described in section 5.2. This subset reflects the particular

contingencies and scope of the CPL 1 processor as described in section 4.4.

Because of the specific application for which the CPL 1 processor was

constructed, particular attention was givento keep programs concise and

simple. The modeling of the actual work of the machine in FSM form made

this goal possible. For economy of peripherals, static card readers were

adopted as an input device, and conventional punch cards were used as a

program medium. However, much high exploitation of the information capacity

of the 960 bits of the card was made, in'comparison to conventional codings.

Preassigned fields were established in the card with a one-to-one correspon-

dence with the items of the FSMs, states, I, F, T, and R. In this way, the

user can produce the machine programs directly, by looking at the state

diagram (the user's program) and writing piece-by-piece on the card with a

desk punching machine.

The feature of using no prescription for the most frequent choice was

abundantly used. The binary codes were given amorphology similar to that

of spoken languages, so that the user, after a short practice with the pro-

cessor, could compose most of the-codes himselfwithout looking in the dic-

tionary. The fixed format on the card made the syntax of the language obvi-

ous and no error prone. With the development of the system, however, the

fixed format required an acrobatics for fitting into it larger amounts of

information. Although this feature is not relevant to a general context, it

has been of interest: for exercising conciseness in the mapping (3.5).

In the particular context just described, the connection between user

language and machine language discussed in section 5.1.1 did not pose prob-

lems. The user thinks of one language, that of the FSMs. The development

of programs is carried out by sketching state diagrams. When a preliminary

test is desired, portions of the state diagram are unched directly on a

- 153 -

5.3.1 5.3.1

card and fed into the CPL 1 machine. Observation of the results may suggest

some modifications, which are usually written on the same card. During the

development of a program, a card can be used as a small scratch pad. Items

can be added and deleted (all ls), and new state descriptions can be written,

until space is available in the card and there is a possibility of transfer-

ring to the new fields.

When a program is completed to the user's satisfaction, the updated

state diagram constitutes the documentation of the program in the user lang-

uage, and one or more cards constitute the original for the duplication of

the machine programs.

What seems most significant in this experience, abstracting from the

specific context and environment in which it occurred, is the man-machine

interaction. When developing a program, we discuss the process in terms of

states, transitions, and data structures; we talk to the machine in the same

terms; and we can interpret the raw data of the computer in the same context.

5.3.2 - The format of the card

The words describing a configuration in the programable network consti-

tute the most complex items in the FSM descriptions. Statistically, it was

observed that in typical processes a configuration is used repeatedly in a

single FSM. Therefore it was found advantageous not to write the words WF

in the state descriptions, but to write them only once in a separate field,

labeled "common storage" (Fig. 20). In the state descriptions, words WF

are referred to by means of the number of the column in the common storage

where they have been written.

The fields in the card are (Fig. 20): the common storage for fifteen

12-bit words WF; a column for the name of the FSM; a column for the code

word; and sixteen fields, labeled from 0 to 15, for the description of six-

teen states. The label of the state is given by the label of the field

where it is written. Each state field is divided in four subfields: the

top one for the input prescription I, the middle left for the calls of words

WF, the bottom one for the transition function T, and the middle right for

the routing prescription R. State 15 is dedicated to the recording functions,

and has a slightly different format.

- 154 -

5.3.2

code state 3

FSM name - 13 R3

COMMON STORAGE E 0 I 2 3 4 6 7 8 9 8 , 10 II 12 13 14 1

Fs ,Fs ----. Z -- ----------

0 0 0 0 0 0 0 0 0 0 0 0 CC 00 0
9 2 : 2. 114 I1151 2 z1 4222!242 2 1 2 r 11322 31 3n25 4 404 524544 5S4145 90 1751 41252 i3240 6 ! 4 V545 U 6! ?1727 1 5 16422 is24 1

Ill Ill I1 I III I1 1111 1111111 1 11111i ll ili fi ii 11111 111111

22222 22222 2222222222 22 2 22222 22 2 222 2?22 222 222 2222222222 22222222

3133333333333333333333333333 33333333333 3 333 33 333 33 333 3333333333 333

.14 4 4444 444 444444 4 44 44 4 8 4 1 4 4 4 444 4.4 4 44 4 4 44,,444.4

5555555555555 55555555555555 55555 55555555555 5555 5 55555 5 555555 5s555 s5 555 S .

666666666656666666866666 8 66 666668 666 6866866666 6666I6666 66866666I866 666666

17 7 7 0 7711 70,7 7 17 7 71 7 27 7 7 7 7 77 7 71 7 071 7 7 L77 f7 7 7 017777 7717 71

008 060688880 88 088 80888086 888 88 8 88 0888 88 88 888 0909

2921
2

:Q39949q~f 993 9 399,9 99 0 91 9 9993 9 1, .9 9 9 9 9 9 9 q 9 9 f< . 9 1 q 1 q9 q n , q Qq Q ' q

calls for F3 T

Fig. 20 - Fields in the program cards of the CPL 1 processor

Input prescription I. Each of the 4-bit words refers to the prescription of

one u . The top bit indicates whether the input datum is written in the
r

card or derived from an outside source. In the first case, the following

bits indicate the mantissa of a number whose exponent is in a section of the

code word. In the second case, the following bits select one of eight

sources that are preselected among 64 by another section of the code word.

Data transformation F. The three 4-bit words in the call-for-F field indi-

cate column numbers in the common storage. In the common storage, 12-bit

words refer to configurations of the PN with the morphology described in

section 5.3.3.

Transition function T. The first word prescribes the variables that are to

be compared, in accordance to a coded table. The second word indicates the

type of comparison , ,> , etc., and whether it is a stopover transition.

The following two words indicate the states to which transfer in accordance

with the result of the test. When a special code is present in the second

- 155 -

5.3.2

word, the first word indicates which outside control signal, or internal

event such as overflow, is involved in the decision.

Routing prescription R. The small word for the routing prescription is aug-

mented by a section of the code word. Routing to the output buffer, with or

without clearing of the variables in the page, is indicated directly. Re-

served codes indicate special routings, such as the transferring to a dis-

tribution function.

5.3.3 - The Morphology of the words

One of the most interesting issues of the CPL system is the mapping

(3.5) between a symbolic description of data transformations and the codes

given to the programable network for its execution. The peculiarity of this

mapping is that it does not occur through the activity of a compiler that

assembles sequences of instructions from a given instruction set as a conse-

quence of the interpretation of sequences of statements from a formal phrase-

structure language. The mapping occurs through operational networks that are

devised by the user in a symbolic substratum. Because of the isomorphism be-

tween the symbolic and physical substrata, the execution can be obtained by

a physical operational network that has the same objects and the same struc-

ture as the symbolic network devised by the user. In such a situation, the

mapping (3.5) can be accomplished by means of a simple transliteration, if

an appropriate language is provided to the user and to the decoders of the

machine.

The CPL 1 processor, in spite of its elementarity, has been an inter-

esting benchmark for experimenting with the essential points of this mapping.

By using morphologies and inflections that are familiar because of their use

in spoken languages, it has been possible to develop a direct correspondence

between the bit patterns that control the programable network and the produc-

tions of a language that mean the desired data transformations to the user.

By taking certain attentions, it is also possible to utilize almost the to-

tality of the available bit patterns. It is possible to give the language

such a structure that it appears to the user an effective means for communi-

cating data transformations.

- 156 -

5.3.3

prefix root specifier suffix

(b)

1 1 1 (b)

0000 (c)

Fig. 21 - Morphology of words F in the CPL 1 processor

For the 12-bit words that describe configurations of the PN, the mor-

phology represented in Fig. 21 is used. Type (a) is used for mode 1 of sec-

tion 5.2.3. The root indicates the type of function involved, such as sum-

mation, subtraction, multiplication, etc. The prefix prescribes some details

peculiar to each function, such as questions on overflow, sign, circularity,

etc. The specifier specifies the arguments that are read for the data trans-

formation, that is, it indicates.the connectivity. For unary operations, the

specifier specifies further details in the operations. Finally, the suffix

indicates which of the four variables x are to be transformed.r

For the individual prescriptions of mode 3 in section 5.2.3, the format

(b) of Fig. 21 is used. The variable that is transformed is a preferred

variable, and thus it does not need to be indicated. Root and prefix have

the same role as before. The specifier has the pattern 111 for indicating

mode 3 of the PN description. The suffix, in this use, refers to details and

connectivity that are peculiar to each type of function.

For the special networks of mode 4, the format (c) is used. A pattern

0000 in the suffix (which is meaningless in the other modes) characterizes

this format. The remaining part of the word is a coded list of special oper-

ating configurations. The prefix remains available for specifying options in

each of these special configurations.

- 157 -

5.4 DISCUSSION

It is necessary to state in advance that comparisons between the pro-

graming language described in this report and conventional programing lan-

guages will always present some difficulty. For although in the broad sense of

means of communication both are "languages", in several respects they per-

tain to different domains. The first produces descriptions of machines, the

others descriptions of procedures. The first is in a multidimensional form

and refers to a computer based on a programable substratum; the second are

in phrase structure form and refer to computers based on an instruction-

obeying processor and random-access memory. Probably, the actual origin of

this difficulty of comparison can be related to the repeatedly mentioned

dual symbolic systems of mental processes, imagery and verbal structures.

However, because in both cases the final goal is the same, that of

obtaining a certain result by means of a man-made machine, a discussion on

the correspondences and divergences of the two types of languages should

have meaning. In this sense, some elaborations on certain pragmatic aspects

are made in the first section, and actual or apparent similarities with fea-

tures of other languages are discussed in the following section.

5.4.1 Functional and technical characteristics

In conventional programing, the user description of the process and the

actual execution of the computer are two different things. The difference

is so fundamental that the user simply ignores what the computer does. How-

ever, what the computer obtains is completely determined (hopefully) by what

the user prescribes. This determinateness is achieved by using a verbal-

structure language very precise in its lexical and syntactical elements.

This method on the one hand gives the user complete independence of the

mechanics of the computer, and on the other hand constrains him to the rigid-

ity of the grammar of that language.

In the CPL system, the machine does precisely what the user prescribes

- 158 -

5.4.1

(the important point is that it is not the user going to a given mechanics

of the computer, but the computer coming up to the images of the user). Here

determinateness is achieved by giving a structural description. A structure,

a construct, appears to have larger latitude than a language of commands and

declarations. The user describes directly "what" the computer should be and

do. In this situation, the means for describing the "what" become almost

irrelevant. Rather, essential is that user and computer work in similar

spaces; this is made possible by the two isomorphic substrata: the symbolic

one, used as user language, and the physical one, which is the computer.

From the experiences described in chapter 6, it does not result that

a structural modeling, at the level of the symbolic substratum of chapter 3,

is more difficult than a conventional procedural description. As a matter

of fact, by pushing the user to visualize the processes structurally, and

asking him to produce mental images, we help him to clarify the process and

give him guidelines for developing a program.

Because the structures of the user language serve the user during the

modeling of the intended process, and are not given directly to the computer,

a large choice of vocabulary and a great deal of flexibility in lexical and

syntactical characteristics can be accepted. Provision of the lexical rigid--

ity needed by the computer is postponed to the time of the preparation of

the machine program. Because of the one-to-one correspondance between the

items of the user and machine languages, the preparation of the machine pro-

grams can be obtained, manually or automatically, without the involvement

of processing activities.

Note that the use of relatively free notations does not preclude the

writing of a precise, complete program in the form that the computer actually

will execute. In conventional programing languages, if we use free notations

(for the purpose of communication among human beings), it is difficult to

define an actual computer program. The fact that a user language is relieved

from lexical (and possibly syntactical) rigidity should be considered appro-

priate, as testified by the growing of default features in compilers.

There are several consequences from the approach taken, that only ex-

tended experience can fully clarify. Some of particular relevance are dis-

cussed in the following pages.

-159 -

5.4.1

Machine independence

In conventional programing, we can distinguish several levels (often not

neatly separated) each with a different degree of machine independence. At

the so-called reference language level, a program is written unambiguously

in the form of sentences obeying the vocabulary and the syntax of a parti-

cular programing language. At this level, a program is completely machine

independent; it is potentially executable by any computer that has a com-

piler for that language and suitable system software. But, evidently, it

is not an actual program that can be fed directly into a computer.

At the level of hardware implementations, a program has the same struc-

ture as above, but vocabulary and syntax are restricted to those accepted by

a particular class of computer systems. Within that class of systems, such

programs are complete and machine independent.

At the broad level of assembly languages, programs are expressed more

in terms of features of a particular type of computer than in terms of a

general language. Within that type of computer, they are actual programs and

machine independent.

At the level of machine language, programs consist of the actual compu-

ter instructions and auxiliary control information. They are usually tailor-

ed to a particular installation. In conclusion, transferability is one ob-

jective of today's programing, but it cannot yet be considered achieved in

a general sense.

In the CPL system, given the strong connection between user and com-

puter, machine independence has to be viewed differently. Here we do not

constrain ourselves to the automatic translation, but rather we attempt to

optimize simultaneously the work of the user and of the machine.

The purpose of the user language is to produce a formal, rigorous, and

complete description of a process, regardless of the actual machines that

will eventually execute it. To give the user a chance to develop a good,

essential description of the process, we eliminate actual machine constraints

by implying ideal machines. However, these ideal machines have the same

basic structure as the real machines, in order not to make difficult the

later production of actual machine programs. This approach is made possible

by using a language of abstract machines rather than a phrase structure

- 160 -

5.4.1

language. (Note that the high-level languages used today do not have the

structure of the computers used today.) Thus, in the sense here discussed,

the state diagrams of the user language are machine independent.

The machine programs constitute the actual information that is given

a computer, thus they are fully machine dependent. In our case, the machine

programs refer to a particular real substratum. But it is not the vocabulary

that is relevant; given the one-to-one correspondence between the

elements of these programs and the actual computer actions, it will always

be possible to provide an automatic, direct translation from one vocabulary

to another. What produces the machine dependency is the variety of the

mapping (3.5)(section 3.2.2, page 80) that we can expect to be implemented

in computers of this sort. Our approach is based on identity of syntax in

the symbolic and physical substrata, but the mapping (3.5) has to be imple-

mented differently, in different cases, for obvious reasons of cost and

application. If these mappings are developed with a broad view, also with-

out overlooking pyschological considerations, we have a strong feeling that

the different mappings can constitute hierarchical subsets of a general user

language. In this case, a machine program for a CPL system of level k could

be executable by all CPL systems of levels k and above.

Now we come to the connections between user and machine languages. No

particular attention to this subject has been needed in the present work.

In the use of the CPL 1 machine, the state diagrams are sketched initially

in a summarized form; then they are redrafted with the actual capabilities

of the CPL 1 machine in mind. Then, the machine programs are hand produced,

by writing the items of the state diagram on punch cards, in terms of the

words of the dictionary (part of the manual of the CPL 1 machine). Because

of their meaningful morphology, most of these words are mentally com-

posed when punching the cards, without reference to the dictionary. When a

program is complex in terms of the capability of the machine used, a prelim-

inary, careful check of the implementability of the state diagram is strong-

ly advisable. When a program is simple, details and variations can success-

fully be improvised directly in machine language.

In chapter 6, programs are shown at different levels of the user lang-

uage (state diagrams), and in machine language for the CPL 1 processor,

that is, on punch cards. The user languages ranges from the extended

- 161 -

5.4.1

implementation of section 5.2 to the subset implemented in the CPL 1

processor. Moreover, for the sake of clarity, programs that were devel-

oped originally for the CPL 1 machine are also often presented in the user

language of section 5.2

In conclusion, we can depict the situation as follows: A user program

(state diagram or equivalent) is a formal description of a process that can

easily be read and interpreted. It is a complete program. It is executable

by CPL machines above a certain level, and not by other CPL machines. In the

first case, the machine programs are obtained by transliteration of the

graphic and alphanumerical symbols of the state diagram into the corres-

ponding machine words. In the second case, the programs should be re-elabor-

ated before the transliteration can be made.

For a larger context, the following conjectures are offered. User lan-

guages could be developed with lexical and syntactical characteristics as

appropriate for each application, but always isomorphic with a basic, general,

symbolic substratum. Programs written in these languages could be translated

by automatic or manual procedures into the terms of a standard vocabulary and

in a standard FSM form of a desired level k. Each of these user languages

will probably be translated automatically down only to a certain level k.

The productions of these translations could be considered actual machine pro-

grams, for machines of that level, because every nonnaked CPL computer will

have incorporated direct translators from that standard form and vocabulary.

In order to permit the one-to-one correspondence between the elements

of the user and machine programs, it is necessary either for the physical

substratum to have the same features as the symbolic substratum, or for the

symbolic substratum to be limited to the features of the physical substratum.

The first course would be adopted when possible, otherwise the second wo.1d
be. The interesting characteristic of this approach is that each machine
language can be viewed as a restricted form of the user language, rather than

as a completely different language. When a derivation is desired between
a program and a CPL machine not isomorphic with the language used in that
program, a sort of compiler could be developed, or human intervention used.
In this case, the work of adaptation should not be impractical because all
machine languages would have the same structure as the programing languages.

- 162 -

5.4.1

In this report, the possible connection of a CPL system with present

programing languages and computers is not analyzed.

Data and declarations

One of the significant divergences from conventional computers is in the

treatment of data. In conventional computers, data are individually piled

in a memory, more or less randomly, and are referenced from and to it by

means of an address apparatus. Here data are created in structures by the

operational substratum PN, and, in a virtual sense, they remain in that form

-(the pages are virtual replicas of PN). A first consequence is that here the

address apparatus is unnecessary.

In a random-access storage system, the specific random locations of the

single variables are, obviously, without any interest. Accordingly, in

programing languages data are referred to by names, which constitute a much

more natural reference system. However, this method generates a significant

overhead in the work of the computer, and often creates unsuspected pitfalls

for the user (such as in calling by name or by value). In the CPL system,

data are grouped in pages, and the pages are usually not called for, but are

associated in further structures (sequences, arrays, matrices, etc.) so that

data emerge spontaneouslyat the proper places and right times. This organ-

ization is made with ease directly by the user because programs are developed

in the form of abstract machines, rather than as.sequences of phrases. If

the storage substratum PM has enough flexibility, the user can mold in it the

images he has of the data structures.

"The simplest kind of structures for us to verbalize and work with are

spatial in character. It is not surprising, therefore, that there are many

examples of use of n-dimensional space." (Miller 1964, p. 224). In accor-

dance the memory is organized as n-dimensional structures rather than as an

unstructured deposit. Here the user "sees" the actual structure and evolu-

tion of the computer, and we can therefore expect that he will be less error

prone than when he is dealing with collections of items indirectly, through

a verbal language.

The passing of parameters to a subroutine, procedure, or function here

occurs as an interplay between FSMs and pages. The pages choose portions

- 163 -

5.4.1

of programs by means of the key word, and the program, in turn, transforms

the pages and their key words. Undoubtedly a large flexibility is available

for constructing complex processes.

One might suspect that a complex interplay of many pages with many FSMs

would generate confusion in the user. In the context of the processes ana-

lyzed in this report, it does not appear to be so. The conjecture is made

that, for large classes of processes, the geometrical intuition that the user

can develop for the structures that he designs in the framework of Fig. 17

is no less effective than the symbolic intuition he can develop for the struc-

tures available in the virtual machines created by the compilers. For the

classes of problems in which a verbal structure is the appropriate model,

such structures can be implemented in the frame of Fig. 17 with no more diffi-

culty as when they are implemented by a compiler in the substratum of conven-

tional computers.

A different approach results also in regard to the declarations. Be-

cause data are not called for but are constructed and manipulated by the oper-

ational substratum, there will be no declarations attached to the data.

Rather, the operational structures have specified how to treat data. This

permits different treatments at different times on the same data, without the

need to introduce new declarations.

The notion of declaration has undoubtedly a great psychological beauty,

in the sense that one can start by saying "be such and such...", and all the

necessary context and background comes into being. Unfortunately, in present

programing languages little of this potential is implemented, and the largest

role of declarations is devoted to mechanical details required in a random

access system. In common communication between persons we do not need to

declare those detail for every object; in most cases that information is

already implicit in our discourse; only in particular instances we take re-

course to an explicit declaration. In this respect, the declarations of

conventional programing languages are certainly annoying, and undoubtedly

redundant.

In assigning the prescription of data treatments to the operational

structures, rather than to the data, we have some advantages. When the user

is preparing transformations on certain data, he knows what those data are,

and evidently he does not need to make a declaration to himself. Thus, if

- 164 -

5.4.1

later he wishes to treat those same data differently, he can do so and again

does not need to insert a new declaration. All the problems of validity and

consistency of declarations in presence of transfers, go to, call, etc., do

not appear here. Undoubtedly it would be difficult to implement with compi-

lers the flexibility achieved when the user develops directly both the data

and operational structures. When the structure of a process is visible to

the user in the form of an abstract machine, with all the dynamic aspects

made clear by a spatiotemporal frame, the user is in much better position for

exploiting his capabilities in creating an efficient program.

It is interesting to note that here data and program are in one respect

more separated and in another respect more embedded than in conventional com-

puters. The pages (data) and the FSM descriptions (program) follow completely

different paths. However, when theymerge together in the programable network,

they become indistinguishable; the structure of the page is part of the opera-

ting structure, and the operations create the structure of the pages.

Efficiency-of-programs

The efficiency achievable by hand coding in conventional computers is

well known, but it can rarely be afforded because of the labor required.

The simplifications that can be made in the programs when new hardware fea-

trues become available are also wel known, but they would require the pur-

chase of a new computer.

Here, because of the two isomorphic substrata, we have a machine language

that is at the same level as the user language, thus the user can always make

the proper choices for the computer execution. Moreover, the operational

substratum allows the implementation of all sort of hardware features.

Ease of entering and modifying a pro&ram

Conventional programs are expressed in the form of a listing. It is

well known the difficulty of recovering an4 understanding a process from the

listing for anyone who did not write that program. The reason is that a

- 165 -

5.4.1

listing is a very unexpressive form of representation for a process, and

requires a great many symbolic steps before it can be reinterpreted. A

confirmation of this fact is the use of comments as an almost indispensable

ingredient of programs.

An abstract machine represented in the form of a state diagram is, on

the contrary, a very expressive object. Its graphic structure easily

evokes the spatial intuition. The symbols embedded in it allow an easy

understanding of the dynamics of the process through anticipation or tem-

poral intuition. The modularity in terms of pages and states keeps pro-

grams understandable regardless of their complexity. The hierarchical de-

scription in terms of FSMs, states, networks, and prescriptions allows a

gradual acquisition from an overall picture to the minute details.

For similar reasons, modifications of a program are much simpler when

one deals with a state diagram than with a listing. The modularity of the

states allows an easy development of new parts. The absence of declarations

eliminates one common source of trouble. The easy visualization of the

entire process given by the state diagram permits a careful verification of

all consequences produced by each modification.

The interpretation of conventional programs is based on a foreign gram-

mar that needs to be memorized, and thus is prone to errors. A typical ex-

ample is the extended use of concatenated parentheses in certain programing

languages; parentheses are a very concise, elegant, and effective device for

symbolic representations, but they become inappropriate for mental processes

when extended excessively. A CPL program, instead, is largely based on

visual structures for which we all have a special facility, and which are

less error prone. The modeling in the form of a machine allows the intui-

tive understanding of very complex dynamics.

Interaction with the computer

The drastic difference in the ease of man-machine interaction between

the CPL system and conventional computers should be evident, and little more

needs to be said. The basic reason is that in conventional computers com-

munication occurs through verbal-like messages, such as commands, statements,

and declarations; in the CPL system, the user constructs and sees continuously

- 166 -

5.4.1

the machine. This approach, compared to conventional programing, can be

paralleled to "doing it yourself" compared to telling some simple-minded

person to do it. In the latter case, you have first to model into verbal

structures what you had in mind, anticipating the actions he can make; then,

you have to be sure that your listener interprets correctly your utterances,

for the same result you wanted. If you do it yourself, instead, you map

your images directly into actions; and this is particularly direct, because

in conceiving your intentions you were anticipating, more or less uncon-

sciously, what you were able to do.

Because this is an unusual viewpoint in modern computers (while it was

not unfamiliar at the early time of computer development, especially the

analog ones), another analogy is offered. In a factory, if people were

communicating only by telephone, in different languages through interpreters,

without blueprints and personal contacts, the work would be still possible

but more limited and difficult. Each method of communication can suffice

for transmitting all sorts of information, if suitable means of translation

are provided; but when many different types of information are involved,

communication is more efficient if more than one method is used.

Debugging

The fact that here the computer assumes the configuration of the model

chosen by the user for his problem makes debugging a part of understanding

the problem, rather than an extraneous activity. The fact that user and

computer work in two substrata that are isomorphic eliminates many diffi-

culties typical of the cases in which user language and computer actions

bear no similarity.

Diagnostic facilities are easy to be implemented due to the fact that

data are organized in accordance with the structure of the problem, and the

execution proceeds in the modular frame of the states. Many of the comments

made in regard to the ease of entering a program apply also to the ease of

debugging. In the CPL system, a direct machine dump produces the variables

x. partitioned in pages and states. Such a data display is completely mean-1

ingful for the user, because those variables, pages, and states are the ele-

ments into which the user modeled his process. No debugging facilities are

necessary in the language.

- 167 -

5.4.2 Similarities with other programing languages

Flowcharting

Flowcharting started with the "We therefore propose to begin the plan-

ning . . . by . . . the flow diagram . . ." of Goldstine and von Neumann

(1947). The first computer programs were flow diagrams with an accompanying

list of codes. Then computers developed, and today programers do not use

flowcharts, except as a secondary, simplified documentation coming after the

program has been written. Conversely, in programing the CPL system, the

first step is the production of a state diagram, which is related to the

early flow diagrams in several respects.

The reason for all this is very simple. A graphical representation of

the type of a flowchart is the most effective description of the behavior of

a processing machine. At the early times, programers were dealing directly

with the actual actions of the computer; thus flowcharts were the most ef-

fective program representation. Then programers freed themselves from the

actual working of computers and dealt with problems in terms of phrase lan-

guages; in this case, flowcharts are completely useless. Our FSM is again a

machine, and the programer deals directly with it, actually conceives and

constructs it; therefore a type of flowchart becomes again the most effective

program representation. The difference is that in the early times of compu-

ters, the flowchart was describing the behavior of mechanical or electronic

devices that exhibited no resemblance with the problem as seen by the user;

here the state diagram describes the behavior of an abstract machine that is

the model of the problem as seen by the user. Once this situation is achieved,

it is not difficult to enrich the flowchart with a variety of features and

notations to make it a very expressive, user-oriented programing language.

The power of expression of a graphical representation is so obvious that

program theorists often were intrigued with it, aside from its use for repre-

senting the actual work of the computer. It has been proposed to use flow-

charts not only as a notation but even as a programing language (Burkhardt

1965); however, it never has been adopted. Galler and Perlis (1970), in a

general analysis of programing languages, raise the question: "The clarity

and precision we have achieved in representing algorithms by means of flow-

charts leads one to ask what it is about flowcharts that makes them so much

clearer than the verbal description". They recognize that it is not the two-

dimensionality of the representation, because any flowchart can be easily

- 168 -

5.4.2

transformed into a linear sequence, but they do not elaborate further.

In our interpretation, we recognize that the effectiveness of a

graphical representation has a psychological basis. A graphical represen-

tation of an abstract mechanism directly evokes the imagery system of our

mental processes. Instead, a sequence of symbols, conveying the same in-

formation, needs first to be memorized in its entirety (and that implies an

effort), then it is analyzed, and finally the mental images start to take

shape. In the case of a program, we can say: when an algorithm is repre-

sented in a list form, what we perceive first as a unit is a single command,

or declaration, and it requires a certain amount of work to reconstruct the

entire mechanism from the many commands. When the algorithm is represented

in state diagram form, what we perceive--first as a unit is the entire mecha-

nism, and we then need little effort to focus on the single parts in order

to make precise our knowledge of the algorithm.

It is also interesting to see a similarity in the recommended approach

to programing. Here we have two successive phases: first, the delineation

of a strategy, a mechanization, in a relatively free user language; second,

the elaboration of actual machine operations. For the first computers, we

read that "it is advisable to plan first the course of the process and the

relationship of its successive stages . . . and to extract from this . . .

the codes . . . as a secondary operation" (Goldstine and von Neumann 1947).

However, when programing is made with a phrase language in which lexical and

syntactical characteristics are rigid and crucial, such a gradual approach

is not very practical. The reason for this is that visualization of a pro-

cess in its entirety requires remodeling it in a context that is different

from that of the phrase programing language; thus we have to switch alter-

natively between a visual frame, and a verbal frame, and attempt to estab-

lish connections between the two.

Elaborating further on the above comment, we can realize that the state

diagrams of our abstract machines, while having a similarity of roles with

the flow diagrams of early computers (the main differences being in the level

of the modeling and in the richness of features), have an intrinsic differ-

ence with the flowcharts of today's programs. This difference comes not

from the different number and types of boxes, but from a more subtle reason.

Flowcharts are graphical representations of processes already modeled in a

- 169 -

5.4.2

phrase structure; thus, they can enjoy the fast perception peculiar to graph-

ical representations, as it concerns the overall picture, but they are bounded

to the features of a phrase language for what concerns the process modeling.

Instead, state diagrams are the actual model of the process, made with full

use of the features peculiar to the images of our mental processes (compare

with the game of charades discussed in section 2.1.4). A further difference

is in the fact that flowcharts are a model for the user, but not, typically,

a representation of the actual computer execution; state diagrams are both.

Ironically, flowcharts are highly recommended in the programing courses,

in recognition of the power of graphical representations, but professional

programers find it preferable not to use them. Only seldom, for an intriguing

process, a programer may start with a graphical sketch of the overall struc-

ture of the program, but then, at a certain point, he transfers to phrase

structures. A graphical representation, if carried out to the actual details

of a program, becomes too cumbersome, thus useless. If the flowchart is kept

at a level in which it can function as a panoramic image, it does not con-

stitute an actual program. In practice, flowcharts are used only as an

auxiliary, summarizing documentation of programs already developed.

The power of the state diagrams derives from modeling the processes in

the form of automata (our abstract machines). The inconveniences that arise

in flowcharts are not present here, because graphical and verbal means are

used in a collaborative way, and not each as a different representation of

the other.

Karp and Miller (1967), Slutz (1968), and others have applied flow

diagrams to the analysis of parallel computation. They need to distinguish

data operations and control structures, because they imply conventional com-

puters. Here we imply a computer isomorphic to the programing language, and

it is possible to deal with only one structure that is representative of

both the data transformations and the control.

APL

Among the programing languages that have been developed, APL (Iverson

1962a) is one that suggests more similarities in structure and goals with

the language here described. However, the similarity is more in the

appearance because the two languages are in different frames.

First of all, more than a language for actually programing computers,

- 170 -

5.4.2

APL is a system of concise and powerful notations applicable to a variety of

descriptions and analyses. In particular, it can be used for describing a

process for a computer if suitable compiler, or interpretive routines, are

available (Falkoff and Iverson 1967). APL per se does not provide data struc-

turing, input and output, which are crucial points in computer use. Works

of direct implementations were cited in section 1.3. The language described

here, instead, is a method for actually programing a particular type of com-

puter, the CPL system.

In APL, the emphasis is placed on conciseness in describing algorithms;

this is inevitably paid for with a compulsory notation system that is diffi-

cult for the nonexpert. Consideration to computers appears only in the

structure as sequences of statements, clearly motivated by the hope that

simnle interpretive routines will be able to apply the languages to the dif-

ferent computers. Because these sequences often are very concise and use

arrows for jumps, APL programs have some diagrammatical appearance, thus re-

sembling structures of FSMs. However, there is complete absence of the no-

tion of state, which is crucial both for visualizing the structure of a

given process, and for gradually constructing a complex program. The view-

point is fully that of sequence of statements.

The point is that APL reaches conciseness by means of elegant notations

and not becoming involved in the execution. Iverson himself (1962a) says

that the goal actually is to provide a language with such a descriptive and

analytical power as to repay the effort required for its mastery. He shows

(Iverson 1964) the interesting analytical possibility of the language. In a

sense, programing a computer is incidental. The language described here on

the contrary reaches conciseness by prescribing an execution that is tailored

to the model chosen by the user for visualizing the process. The notation

to be used is not of primary relevance for the method. We see that the

scopes of the two languages are in different areas.

Iverson talks of common language for hardware, software, and applica-

tions (Iverson 1962b). He recognizes the desirability for a programer to

deal with a process at a high level, while having the possibility to specify

also details. But what he means is that APL is very effective (concise) for

describing and analyzing the working of a given piece of hardware, for de-

scribing and manipulating a given piece of software, and for expressing a

-171-

5.4.2

given algorithm. All this is very valuable but it is different from the goal

expressed in section 1.1 of merging the three points of Fig. 1. We are not

interested in describing hardware, software, or algorithms per se and

separately. In our approach, hardware, softwareand algorithms are all as-

pects of the same structure. In this sense not only does a single language

describe them, but it is actually a single description. For APL, there are

three different descriptions for the three aspects. This different situation

is a consequence of the fact that Iverson worked only on the language, accept-

ing the computers as they are. Here the computer also is re-examined and

changed together with the language.

Decision Tables

For more than ten years (Kavanagh 1960; McDaniel 1970; Low 1973) de-

cision tables have been recognized to be a very effective programing method,

easily understood by humans regardless of their background, and machine

independent. One item of the FSM description, the function T, has in a

sense the same philosophy of decision tables. Therefore similar advantages

can be expected.

One difference is that conventional decision tables need to be compiled,

in order to be understood by a computer. Here function T is directly imple-

mented by the loose hardware of the CPL system. Another difference is that

common decision tables need some interface with the other general purpose

programing languages. Here function T is one of the constituents of the

language, therefore it is well integrated in all kinds of programs.

CPL

A programing language has been developed in Cambridge, England, from

which the name Cambridge Programing Language (CPL) is derived. This language

is to be used with conventional computers, but has a particular aim to be

efficient also for nonnumerical processes (Barron and Strachey 1966). In

this context, the language is advantageously structured in blocks. However,

it is a phrase structure language. There are similarities of aims and orien-

tations in the Cambridge language and in the language of this report, however

only the names are identical.

- 172 -

Chapter 6

Comparison of Programs

The main objective of this work, as described in the previous chapters,

is to provide a more direct communication between man and computer by intro-

ducing two corresponding substrata, one symbolic, which has the role of the

programing language, and one physical, which constitutes the computer. If the

symbolic substratum is suitable for representing the "images" that the user

conceives for his processes, and the physical substratum is isomorphic to the

symbolic one in such a way as to make those images real, we can expect a

greater facility for making computers do what we want them to do.

The purpose of this chapter is to test to what extent this expectation

can actually be realized. Moreover, we see in practice that each programing

language (and in some degree each type of computer) is more efficent for some

classes of problems and less so for others. If the programing language and

the computer have the greater versatility of substrata where varieties of

"abstract machines" can be developed that conform to the specific processes,

we may expect also a more uniform efficiency in programing and execution for

the different types of processes. To test also such a possible uniformity,

sample programs for processes of different natures will be considered.

6.1 INTRODUCTION

6.1.1 Available works on program comparison

Comparing computer programs involves two different classes of consider-

ations. On the one hand, programs are computations, and as such they can, in

principle, be approached with mathematical theories of computation and of its

complexity. On the other hand, programs are affected by the technical charac-

- 173 -

6.1.1

terististics of the specific computers for which they are prepared. These

characteristics do not follow, at present, organized criteria, but rather

they are the consequence of empirical and economical considerations. The in-

creasing relative cost of programing (see for instance Balzer 1973) has pro-

moted numerous studies for increasing the software productivity by means of

tools derived from theoretical considerations. However, at the present time,

no practical procedures are available for handling simultaneously the theo-

retical and the practical aspects of a program.

On the theoretical side, among the studies that can be closely related

to the building of theoretical tools for program comparisons are the works

of Chaitin (1966) on the length of programs for Turing machines, the intri-

guing properties determined by Blum (1967) on the number of steps for compu-

ting functions, and the studies of Meyer and Fisher (1971) on the succinct-

ness of different forms of descriptions.

On the practical side, only pragmatic considerations can be found, such

as the comparisons of Schwartz (1965), and the discussions of Shaw (1966).

An attempt to establish a criterium of measure is in Hellerman (1972). Cru-

cial in any comparison of programs is their rigorousness, and the works of

Dijkstra (1968, 1972) also become pertinent.

6.1.2 - Criteria of comparison

In the absence of any developed criterion for evaluating and comparing

programs, only empirical parameters can be considered and pragmatic charac-

teristics of the programing language evaluated.

Attempts to determine some significant parameters for comparing actual

programs were all nullified by the differences between conventional lang-

uages and the language of the abstract machines. Thus, simple, external

data such as the number of statements, symbols, cards, and memory bytes have

been accounted. When possible,the execution time and the programing time

were also measured. The interpretation of these data is given in the next

section.

In regard to the comparison of pragmatic characteristics of the lang-

uage, a qualitative account is given here, under the titles that usually

appear in the literature.

- 174 -

6.1.2

Ease of learning. We have here to distinguish two types of users: those who

have not previously been exposed to computers, or who have had only sporadic

contact with them; and those who have routinely worked with conventional com-

puters. For the first category, no difficulty has been encountered. It was

interesting to observe the benefit of the physicalization of the processes in

the form of abstract machines. For the second category, there is indeed an

initial phase of changing habits. After this, of course, there is the bene-

fit of more competence.

Elapsed time for programing. Given the complexity of producing a reliable

measure of the actual time devoted to a program, few measuresappear on the

tables. However, a shorter programing time is one of the most significant

results of these comparisons. If we compare at the machine language level,

the difference is between one and two orders of magnitude. If we compare

the time for writing a program for the CPL system (machine program) with the

time for writing an equivalent program in a high-level conventional language,

there is no significant difference in general. But if in the comparison we

include also the time for making the program work, a great difference appears

in favor of the CPL system.

Ease of debugging. In agreement with what can easily be expected (see page

167), the phase of debugging for the CPL system is either of negligible im-

portance or very simple to carry out.

Program readability. "My opinion is that programs with more than a certain

number of steps are absolutely unreadable, no matter what language they are

written in." (Shaw 1966). This is a common comment about conventional pro-

grams. The experience with the.programs written for the CPL system is quite

different. The state diagrams, as shown in the following sections, do not

lose their clarity with increase of size of the program. Given the ease of

writing programs, often punch cards of the CPL machines would accumulate dis-

connected from any reference; it was possible to reconstruct the process by

reconstructing the FSMs even from the punch cards.

Ease of documentation. In conventional languages, a good documentation re-

quires an extra effort on the part of the programer. In the CPL system, the

state diagram, as produced during the development of a program, constitutes

- 175 -

6.1.2

an objective documentation, that includes all the information that may be

needed in the future for understanding, maintaining and modifying a program.

Ease of maintaining and change. The experience obtained so far with the CPL

system has been all in a context in which extensions and modifications to the

programs were normal events. The facility for documenting the programs, the

readability of the state diagrams, and the ease of debugging discussed above

are all characteristics that permitted the maintenance of programs to be made

without difficulties.

Several hundreds programs of different types and scopes have been written

for the CPL machine during these past years. Although all this material could

not be specifically documented, even in a statistical form, these programs con-

stitute the basis upon which the various comments, discussions, and statements

have been made throughout this report. A few sample programs have been selected

for the comparisons, either because of the interest in the processes performed,

or because more documentation was readily available in the corresponding con-

ventional programs. Most of the sample programs are in the context of real-

time processing of weather-radar signals, and they are grouped in section 6.2.

Some of the programs are from the early use of the processor at the Radio

Meteor Project of the Smithsonian Astrophysical Observatory, and these are

grouped in section 6.3. Section 6.4 shows some exploratory programs developed

in a theoretical context for analysing the effectiveness of the system in dif-

ferent applications.

Acknowledgement is given to the several people who at different times and

places, contributed to the program comparison, either by running the CPL ma-

chine, or by developing CPL programs, or simply by writing corresponding pro-

grams in conventional languages. I am thankful to David Hallenback, Julian

Simms, Steve Tubbs, Robert J. Horn III, Ken Yeager, Hon W. Chin, Jerry

Morrison, and Man Kong Yau.

6.1.3 - Description of the data used in the tables

The data that appear in the tables of comparison in the following sec-

tions are to be interpreted as follows.

- 176 -

6.1.3

Language. The language in which a program is written, ranging fromhigh-level

languages to machine codes, is referred to in its common name.

The name CPL 1 is used for the programs written in the language of the

CPL 1 processor described in section 4.4.

The name CPL 2 is used for programs written in a more extended language

that is expected to be implemented in a CPL 2 machine whose construction has

been initiated. This language basically corresponds to the level described

in section 5.2.

Statements/Instructions. These terms have conventional meaning when they

refer to the conventional programs. In the CPL programs, each independent

expression that appears in the state diagram is counted as one statement;

e.g., an expression that describes a configuration in F or an expression that

describes a condition with its related path in T.

Symbols. Each independent component in an expression is counted as one sym-

bol; e.g., a name, a command, an arithmetic symbol, a significant delimiter,

punctuation mark, or blank. Also in the CPL language each graphic delimiter

for distinguishing states, F, T, and R is counted as a symbol. Moreover,

each word describing a configuration is accounted for as many symbols as

many bytes are necessary for its storage.

Number of cards. The cards considered are those employed in each language.

For high-level languages, usually there is one card per statement. For ma-

chine languages, often several instructions are written in the same card.

For the CPL 1 programs, the format of the card is the one described in sec-

tion 5.3.2.

Memory words. This is the number of words of memory that are used for storing

the program. If not otherwise specified, words of 12 bits are considered.

Execution time. In each case, a portion of processing is chosen such that it

is representative of the total execution time, as well as being suitable of

measurement. In some cases, the fact that the process is executed in actual

real time is indicated with r.t. The indication q.r.t. (quasi real time) is

used in cases in which the actual execution occurs after a preliminary storage

of the data in the memory, but, for all practical purposes, the results ap-

pear as if they were obtained in real time.

- 177 -

6.2 REAL-TIME PROCESSING OF WEATHER-RADAR SIGNALS

Radars have been used for the observation of meteorological events

ever since World War II. Special radars are now being gradually developed

as specific meteorological instruments. The development of this field can

be traced in the records of the Weather Radar, and Radar Meteorology Confer-

ences of the American Meteorological Society (Boston, Mass.).

As eyes constitute a powerful sensor for biological creatures insofar

as they are closely connected to a sophisticated processing system (the brain),

similarly, the degree to which radars applied to meteorology can produce in-

formation of meteorological relevance can be thought of as being related to

the processing facility they incorporate. The most extensive experience with

the CPL system has been carried out in this context, from 1970 to date, at

the Massachusetts Institute of Technology. In this field of application, the

CPL system appears to be particularly appropriate for the following reasons:

(1) For radar meteorologists, computers are only an auxiliary instru-

ment, and not an object of primary interest. Therefore, a solution is highly

desirable for which the wanted processings can be prepared with the least

effort, and without the need for professional programers.

(2) Weather radars produce a very high rate of data, all of which may

contribute to the information of interest. Therefore, a system that can

process in real time a large quantity of data without a large investment

in equipment is paramount.

(3) Very little is known about the types of processings appropriate for

extracting the information of interest from the raw radar signals, and years of

study and development are expected. In this situation, for economical rea-

sons, an approach is appropriate that is the least committed to a particular

solution, and that allows for the greatest flexibility and interaction.

In the following sections, samples of the programs that have been devel-

oped in this field are described, and compared with equivalent programs for

other types of computers. The programs were prepared for and run in the

CPL 1 machine; for some of them the more concise versions written for the

CPL 2 machine, or written in the language of section 5.2, are shown. Some pro-

posed programs directly developed in the language of section 5.2 are also

included.

- 178 -

6.2

In order to give an idea of the practical advantages that can be derived

from a large availability of real-time processing, a few samples of different

types of results are shown in the following figures.

Fig. 22 shows that inferences about types of precipitation can be

drawn from a characterization of weather echo patterns made on the basis of

some structural characteristics (program described in 6.2.1). The interest

for such a processing is in having that information at the same time as

observing the echo patterns on the radar screens.

Fig. 23 shows a particular evolution of echo pattern simulated with a

numerical model, from an initial simple cell. Numerical models of this

type (described in 6.2.10), fed with initial data collected in real time by

the radar, are of possible interest for developing a short-term forecast of

the evolution of the echo patterns, and for inferring from these evolutions

the meteorological events that might occur.

Fig. 24 shows an example of elimination of ground echoes in the data

collection of a weather radar; in this instance, the echoes from the Monadnock

Mountains (southern N.H.) are canceled in real time during a PPI recording.

In frequent geographical situations, ground echoes strongly disturb the radar

observation and measurements of meteorological events. However, ground

echoes exhibit a spectrum of fluctuations significantly different from that

exhibited by weather echoes, and thus they can be recognized and eliminated

with a suitable processing in real time (program described in 6.2.4).

Fig. 25 shows a measurement of the radar antenna pattern obtained with

the solar noise. For quantitative measurement of precipitation by radar, a

precise knowledge of the radiation pattern of the antenna is required. Mea-

surements of this sort are always delicate and expensive because they re-

quire targets remote from the ground, such as high towers, an airplane, etc.

The sun is available in every part of the world, it is well isolated in the

sky, and it produces a broad noise spectrum. If an appropriate processing is

made to enhance the intensity of the noise and to overcome the short-term

variations (program described in 6.2.8), and the distribution on the solar

surface is accounted for, practical measurements of the antenna patterns

can be obtained with simple means.

- 179 -

3.6-o 0 Fig. 22
*
3 Type of precipitation recognized through real-

3.4 - time morphological analysis of the echo pattern
*

3.2- *

3.0- *
S0 0 stratiform rain

2.8 0 : * 1 convective shower
a • • 9 snow

2.6 -

2.4 - ground echo

2 4 ground echo

2.2 with precipitation2.2-0

2.0- a a

1.8 _ o. 0 •

1.4- 0a a *

0 00 • 0

S001.6 - o • e
0os T HE0

0
•

00 00 0 0 0

1.4- 0 .0
o o0 0S.., .

.2 - 0 00 , O

.0- 0 o 0 o o oD P0
0 0 00 0 0

000
0 00 0 0 V

.6 0 0 0

.8 -o o ooo o o o
6-o o o o a oo o°

0 0 0 V Vo ~ 9 v v v V_ v 9
.4 v v Vv v v 'v v vv

Vv V

.2 -
area of precipitation A (Km x degree)

I I I S Ib I I S1 I I I ,

100 200 400 1000 2000 4000

Fig. 23

Different evolutions from
a single cell simulated with
a real-time numerical model

- 180 -

------------ --- a - --- --.-------------------- * - ------ ----- --------------- At-..-

CC. 9 C.

4' C4 Fig 24

St L C V-_kElimination of ground

... .. echoes obtained in

real time during the
...... radar data recording

....... - C *..,4t4F9.. , ,, . . ., , .,OP J - - - ,.#9,",,,, TT,.:..

...°.°.°. . .

C... - II February 1973

0(0 4e(44

, , * o , , , * * * , * * , **,* .* *

:.::.....................9•*. ene si

profiles correspond •*** ***

to differet p iio .****** ** 12
h

19 49

of the Su.. (horizontal

CCC move mert.)g• G r t d th

.*%

Fig. 25 1 to tL.. r .dt

. L . j**• ..t *

..Antenna pattern ...* . .

determined by means positioan•• ... s"

of the solar noise(""o•

output * *''** ' *'***" ** "***,. 12h 22 32

ever C s ond) .* *- 4
Fig 25* ***

An e n pattern (CttV m4 s3a9l,.,.- -

.*.*4J ". I.** *.**44 P G **. ******.* 12S23'28

** * * * .****

(*otpu 4 * n **(D ***** ************** 12
h

24' 21"

.. 9***....***.. **% **** .. 12
h

2513"

POOR '(C a--544 *t .s e.,e .F 1" 5 3

antenna scanning (vertical)

- 181-

6.2.1 Structural characterization of radar-echo patterns

The structure of radar echo patterns, obviously, bears some relation to

the characteristics of the meteorological events of which they are the radar

visualization. What would be helpful is the determination of some parameters,

easy to compute on the radar signals, that could reflect, in a global, sta-

tistical, concise form, characteristics of interest.

The program to be described processes in real time the radar output

during the horizontal antenna rotation, and produces three global parameters

related to the structure of the echo patterns. Echo intensity xi j is con-

sidered in two discrete coordinates, the range i, and the azimuth J. The

raw echoes emerge from the radar in sequences of successive range points i.

These sequences correspond in time to successive azimuths j, due to the rota-

tion of the antenna.

Because of the fluctuation characteristic of weather echoes, the echo

intensity is determined, at each point, as the mean value of the raw echoes

in 32 successive sequences z :

Sz=n+32

xnij 3 xijz (6.1)
z=n

The following global parameters are determined for a given area explored

in the atmosphere.

area of precipitation = = the number of points i,j at which the

the echo intensity is above a threshold t

mean value = M = X. . > t (6.2)

G = i 11j xij-i-l,I + 11 -1(6.3)
2 1a a

The G parameter can be considered as the mean value of two terms thought of

as a radial and azimuthal computations. The radial computation can be visu-

alized with the aid of Fig. 26. By computing expression (6.1) at all points,

an echo profile A is determined; a replica of it is shifted by one range

point; then the absolute value of the difference between profile A and B is

computed at each point. The sum of these differences for the entire area,

divided by a, is the radial computation. The tangential computation is made

- 182 -

6.2.1

in a similar way, except that the differences are made between profiles that

succeed in time, which correspond to adjacent azimuths.

point 0

point 1 point n

srprofile j
shift in raon ge

Fig. 26 - Echo profiles versus range

In the following an implementation of this process by part of a CPL

machine is shown.

This first example is described in detail, to give the opportunity of

seeing the language of section 5.2 applied to an actual program. In the fol-

lowing examples, the features explained here will be considered familiar,

while each new feature will be described in detail.

No preliminary .storage of data is made. Rather an organization of pages

is chosen such that data are processed directly as they arrive. The circula-

tion of the pages is made synchronous with the periodicity of the radar, and

a sequence of pages is allocated in correspondence to the range interval of

interest. Thus the computations at all the n range points can proceed

simultaneously in the corresponding pages.

Then, an abstract machine is devised composed of four FSNs (Fig. 27).

FSMs 1, 2, and 4 are implemented by one page each, and FSM 3 is implemented by

the sequence of n pages corresponding to the n range points. FSM 1 first

creates the organization of the pages, and then controls their work; FSM 2

provides the echo intensity at the initial point (0 in Fig. 26); FSM 3 des-

cribes the computation at all subsequent points of the profile; and FSM 4

-183-

6.2.1

provides for the preparation of the global parameters.

Description of FSM 1 (control)

For starting the program, a page is introduced into the system (solid

arrow) in FSM 1, state 1. Here, variable A increments by one at each cycle

(function F). After the first cycle, the condition A = 1 (transition func-

tion T) is valid, thus the page remains in PN (circle on the arrow), and

creates a page in FSM 2 (routing function). Then for n consecutive cycles,

the condition A < n+2 is valid, and n pages in FSM 3 are created. At the

subsequent cycle, the third condition is valid, and one page in FSM 4 is

created. At the next cycle, no condition is valid and the page transfers to

state 2, this time leaving the circulation of all pages free (no circle in

the arrow).

The transition to state 2 has a notch with the number 31; this means

that the page will remain idle for 31 circulations, before reaching state 2

(transition i in Fig. 21). In state 2, the page produces a driven transition

to state 2 for all the pages in FSM 2 and FSM 3. Subsequently, the page goes

to state 3, after 31 idle circulations. The reason for this state is to dis-

regard the first tangential computation, which would refer to an initial all-

zero profile; this is obtained by avoiding the driven transition to FSM 4.

In state 3, the page produces a driven transition to state 2 for all pages

of all FSMs, with a periodicity of 32 circulations (31 idle circulations plus

one in state 3). At the same time, auxiliary variables x' are cleared. This

continues until an outside control signal END appears; at which occurrence,

the page transfers to state 4.

In state 4, the page produces a driven transition to state 3 for all

pages, acquires auxiliary data such as azimuth, elevation, the threshold t

used, and messages, routes these data to the output buffer, orders a record

(or a printout) of the entire content of the output buffer, and then the page

disappears (triangle).

Description of FSM 2 (initial point)

As a consequence of the driven transitions produced by FSM 1, this page

accumulates 32 video samples s into variable A (state 1), divides this accumu-

lation by 32 (state 2) and transfers the obtained value (the mean echo in-

tensity at that point) into variable B' (in the auxiliary page array n').

- 184 -

6.2.1

Variable A assumes the value of the present sample, in state 2, for starting

a new accumulation. FSM 2 simply computes expression (6.1) at the initial

point of the profile.

Description of FSM 3 (points of the profile)

Accumulation of 32 samples is provided as in FSM 2. But here, in state

2, the mean echo intensity x. obtained in A is copied into variables B, C,

and D (second expression). Then variable B is shifted one position along the

pages, through interchange with B' (third expression).

Now, C and D contain the local echo intensity x ; B contains, as said,i,j.

xi-l,j' the intensity at the point adjacent in range; and E containsx

the intensity previously determined (as it can easily be traced from the

sequence of expressions and cycles) which belong to the adjacent azimuth.

With the fourth expression, we produce in C and E the absolute value of the

differences between C and B, and E and D, respectively. Thus C and E now

contain the terms under the summations in expression (6.3).

The fifth expression accumulates into the auxiliary variables C', E',

and D' the above values in C and E, and the present xi j which is still in D.

Finally, if the present intensity (variable D) is larger than a threshold t,

an increment of one is routed to the outside variable 6(o). This is for com-

puting the area of precipitation.

The reason for making such a parallel computation (which may appear more

intriguing than a conventional serial algorithm) is to obtain the entire com-

putation in real time, for all the adjacent points, without losing any single

radar echo.

Description of FSM 4 (global parameters)

Every time the pages in FSM 3 send contributions into C', D', and E',

this page accumulates those contributions into its variables C, D, and E

(state 2). At the end of the process, the page transfers to state 3, where

the area of precipitation is acquired into A (first expression); C takes the

mean value of the radial (in C) and azimuthal (in E) computations (second ex-

pression); and finally, this mean and the integral echo intensity in D are

divided by A (third expression). The obtained parameters, area of precipita-

tion in A, G parameter in C, and mean value in D, are routed to the output.

Then the page disappears.

- 185 -

6.2.1

Figure 27 represents the program in the user language of section
5.2.

Such a program is also the machine program for a CPL system as implied
in

this report. To make the program executable by the CPL 1 machine, which has

only four variables x and not all the features in the language here used,

the computation has to be distributed in a larger number of states. The

actual program is contained in two punch cards (Fig. 30). Results obtained

with this program were shown in Fig. 22. Programs producing the same process

have been written in FORTRAN and PL-1. However, a program has not yet

been devised that can make standard computers do this process in real time.

Fig. 28 shows the listing of one FORTRAN program, and Fig. 29 the flowchart

of one PL-1 program.

In reference to the issues discussed in sections 2.1 and 2.2, we can

say that Fig. 28 is a verbal representation of a process modeled in verbal

form; Fig. 29 is an image representation of a process modeled in verbal form;

and Fig. 27 is a symbolic representation (a mixture of words and graphics) of

a process modeled in abstract machine (imagery) form.

The results of the comparison are in Table 2, expressed with the conven-

tions described in section 6.1.3.

T A B L E 2 program 5410

number number number memory execution programing

language of of of time
language statem./ symbols cards words per segm. time

instruc.

CPL 2 35 261 rt

CPL 1 86 390 2 160 rt

FORTRAN 42 406 42

PL - 1 49 273

for definitions and criteria see section 6.1.3

- 186 -

REPRODUCIBILITY OF THF 6.2.1
OPGINAL PAGE IS POOR 6.2.1

pages FII [IM
1T*

FSM I FSM 2 FSM 3 FSM 4

I I.

A+ As A s

P(2) P(3) P(4)A = I
A< n+2
A n+2

31 C DE CO'E'

A: 32

2 AS'.sA
ST 2(2,3) A 32

ABCD E= sA AAD

31CE 1-1 8 D
3 C'D'E'I C D E

ST2 il D >

C'D'E'= 0 38o)

END A= (0) A

CmeonCE C
CO:A 0

ST3 oil X
X ux.dot 5410

record

Fig. 27 - State diagram for a CPL 2 machine

LoG ,l , (K)
INTEr,o-SU. I -I .Ar - r oR S-kLOLD - --

DIHENSION N
0
ROt(100,ISHIFT(99).IOLD(99)

F UIVALEhCCEjjStzj2_SHIF111W -4-4O-1-ICL
K = .FALSE.
N 0J

45 00 50 1 a 1.100

DO 60 J = 1.8
P D-49 ENO=8 0

0
^

DO 55 1 = 1.100
. 5-.SMJ~ ""f1 (* nf11-

60 CONTINUE
T4FKAIH~ffG TO TO
SUMIl) = SUM(1)/32
1 4 SUM4. GT.-THRES)-TmEN_ N- I

DO 65 I = 1.99

TSHIFT (IL-=. ISHIFT 11)/32.
SR = IABS(ISHIFT(l) - SUM(1)) .SR
T(OL t.IJ -) H I F T(
IFIISHIFT(I) .GT. THPES THEN N=N*1

-65-._ CONT INUE,
OLD(1 = SUM-() ---

. K = .TRUF --
G60 TD' 45

7A SUM _(l)..=-SUMfl1/3
IF (SUM(1).GT. THRES) THEN N=N.I
00 75 I-=--1.99
ISHIFT(II = ISHIFT(I)/32 .
SR = IABS(ISHIFT(1) - SUM(I)) *SR-....
ST = IABS(ISHIFT() - IOLD(I))*ST

....... TOLD(1) = ISHIPTt1.
IFISHIFTIl) .GT. THRES) THEN N=N+.

-- CONTINUE ----- --
OLD)= SUM(1)

_ -_ .G 0 ...4S _.
s0 RADIAL = SR/N .

TANGE-=-STS/N l7
STOP

-- END

Fig. P8 - FORTRAN listing Fig. 29 - PL-1 flowchart

- 187-

6.2.1

COMMON STORAGE . 0 9 9 1 II 12 1 4

5414 I

Oo iol: I~ll oo30~4 0 400 00 04a300 40 0 0 0000000 o003i o400 0 0 1 0 1
IIIlli l I ll l in I nllll llil i~ lln l| lil ll i I Ill l I I it I ll

222itti22 22?23 I33?14 l! 2 l5 IZu23I222T 22323?2777 Z 1222 22 '22 :12

33133333131133 3113 11 3133 41313 333333I 31 33U3 13333 33 I3 333 3333 113

14111l44 11l4l 441 4 II l l i I l I144 141I 4414 444 411

551555l5lSlI5ll l511 l 1 s IS I s1
4 ss4 s 5555 15555 15 15 5555555554

I4I Si l 5 i5. 6 E i6 .. F..... 1 .. " E 5s01 S a S S S 5 3

171 I111I I in II4 i
nI 1 1

1
as 7 7 77711 1 1

A lIt 12 1 n s a 2 8 5a 1ii n t t e Fl 18Psisl

I44I3139 *lI411 149 0 9 3 4 I 0 E 19q 9 u

COMMON STORAGE 0... I 2 3 4 5 6 7 8 9 10 It 12 13 14 1

I I l II I I

Sl4 III. II' 2.1]l -I - ll~ -1 -. I - I 'il

441l411l4 lI '1l 44444444444441444 4 I4 -1444 1444444444- 414 444

33311331311133 3 33313 333 33 33 13333133333333333 3 l 3 o 3 3 3 3; 3 03m5
41441141414111 J 4 g4 3 4 44 4 4444 444441 44 41144 4 4 41 41 14 14 4 11044 4 44 14

115515151111555555 5 5555155 5 5 1 55 5 5555 555555 5;Is4 515s 5Si1 5 Vi

16 0154514;46 6 6 6 1 6 441 4.4 .40 i 44 ...4 4 440S E 6

g1111114 11 7 111l.7 lg11 17741 177 74lill1 17,7I I 177774'' Ill4?

S30a4I ll llI a 1800 1 2 31a 2 3 31 a I I Sl I I 11

Fig. 30 - The program for the CPL 1 machine

Program 5414 in Fig. 30 produces the same process as the program in

Fig. 27, except that it starts and ends at each passing of the antenna

through north, for a prescribed number of times. That is, it repeats the

measurements for an entire exploration of 360 degrees every other antenna

rotation, say, for half an hour; and then it prints all the measurements

made.

- 188 -

6.2.2

6.2.2 Distribution of precipitation intensity

In the usual model for the measurement of precipitation by means of

radar, the mean echo intensity, corrected at each point to take account of

several factors, is related to the rainfall intensity (Battan 1959; Austin

and Geotis 1971). From an operational viewpoint, all questions on this re-

lation that apply uniformly to all data can advantageously be postponed to

the subsequent stage of data analysis; while all corrections that are specif-

ic for each point and period need to be made in real time. Among the latter,

the following can be mentioned: geometrical diffusion of electromagnetic

waves with distance; exclusion of nonweather echoes, such as ground echoes;

attenuation encountered by the electromagnetic waves because of the precipi-

tation itself; differences in drop-size distribution that may occur in dif-

ferent regions and different periods.

Experimental programs toward the above task are here described. The

basic operation consists of integrating independently at each point the

fluctuating radar echo, making the related corrections, and counting the

occurrences of each resulting value during an entire antenna rotation. The

operation should be repeated continuously, or at periodic intervals of time.

Ground echoes exhibit a much restricted spectrum of fluctuation than

weather echoes do. Characteristic of weather echoes are fluctuation fre-

quencies of the same order of radar repetition frequencies, and a constant

standard deviation (Marshall and Hitschfeld 1953). Taking advantage of the

above characteristics, it has been found experimentally effective to discrim-

inate the echoes in base of the value reached by the following parameters:

N
I Ilog Pi(t + nT) - log Pi(t + (n+l)T)j (6.4)

n=0

where P. is the echo power at point i, T the radar pulse repetition period,

N a number of consecutive raw echoes, and the bars denote absolute value of

the difference. Weather radars, typically, produce output signals already in

logarithmic scale. Parameter 8 can be computed at each point in the same

time in which the raw echoes are integrated for producing the echo intensity,

and then compared with a threshold for deciding whether the echo should be

disregarded or not. A program for echo intensity distribution, with rejec-

tion of ground echoes based on this method, is shown in Fig. 31 in different

versions of the CPL language.

- 189 -

6.2.2

In the upper part of the figure, the program is shown in the language

of section 5.2, and it is used for describing the process, referring to the

previous example for the details. A first page performs FSM(a) that, in

state 1, waits for the antenna to point to north, then configurates a piece

of memory into a distribution of 16 storages, and, in state 2, creates all

the other pages; in state 3, it controls the synchronous behavior of the

other pages, and, at the next passage of the antenna through north (in state

4) produces the output results. A sequence of pages that corresponds to the

array of points in range performs FSM(b). In state 5, variable A produces

the absolute value of the difference between consecutive samples, B accumu-

lates these differences, and C accumulates the straight values of the suc-

cessive echoes. After 32 such cycles, the pages transfer to state 6, where

the accumulation in C is divided to form the mean value; A takes the present

sample necessary for the next cycle in state 5; and transition-related rout-

ings are performed as follows. If C is below a threshold h (which means no

echo is considered to be present), B and C are cleared, and no routing is

made. If C > h, but B is below a threshold k (which means that the echo was

not from a fluctuating weather target), B and C are cleared, and a 1 is added

to a quantity named "rejected". If both B and C are above the thresholds, a

1 is added to a quantity named "area", C is accumulated into a quantity named

T, and also distributed in the memory section created by FSM(a) at the exit

from state 1.

In the middle part of Fig. 31, the program is adapted to the CPL 1 ma-

chine; some states are added, and some different allocations of variables are

made. The starting of the FSMs from states 0 and 8 is for using an existing

supervisor that initiates FSMs in those states every minute. The lower part

of Fig. 31 shows the program in machine language; all the items constituting

the state diagram can fit into one punch card. Comparison with equivalent

programs written in various programing languages gives the data summarized

in Table 3.

In this program no account was taken of geometrical considerations. If

a large span of range is involved, each point should be weighed proportional-

ly to the range, because an element in polar coordinates has an area that

increases with the radius. This can be accomplished by multiplying the mea-

surament at a range R. by the factor R./R , being R the range at which
1 1 O O

the factor is assumed to be equal one. This in the hypothesis of antenna

beam always filled.

- 190 -

F SM (a)

F SM (b)
Az=0

distrib(16)
Al-s

SCAs p Ogram 5420
A P 5 A =s ps

A= n

31

3
3 CaccT

ST6 8(are) 8rej)

31 Az=O6 BoCo 80 00
C:32

C>hIIREPFCODUGMILITY PA~ OO
X = aux 8 o

distrib. X
record

0

x' 0 AG= s

D =Az

program. 5421
GHs
BDYAC

A+1A

A= 28 D > N5

2 4

B:32 B: 32
0A+1

A> 0

Sri

3 6

4:B7AB ACD= sso ACDMsso

ACD=sso LB- LB B o
it

8 B'

(CO U B 0 0 0

A = A

Bl2 ~ ~ ~ ~ ~ ~ ~ ~ ! !Un !Mo t.A1 J.A 1.-l
Box ,5.I-g- - - -~ - - -

gil g*r e osi a e 1 1,go ss ti II I III III III oil III t l i II

_________ ii i 1 3i33 il.: El at I3E El EK El ml? El15 T1633) t l II II h u E II 3l 6) 13 II
X= aux ill 411 14 4 44 44 4 is4 44 if '
distrib. ofl Slli If 11 1ts 55 5$ a is g 1

IfF
5171 : 1 : Mil 45 j Ile i s i s i s i t
Il :I : II ; t, . I :1. * 14 1 , F 6 tI r li I 3 3 1 11.111

Fig. 31 - Three representations of the same process

- 191 -

6.2.2 3

T A B L E 3 programr 5420 / 1

number number number memory execution programing
of of of time

language statem./ symbols cards words per segm. time

instruc.

CPL 2 26 122 1 rt

CPL 1 40 193 1 74 rt

for definitions and criteria see section 6.1.3

The correction because of the geometrical diffusion of electromagnetic

waves is usually made by adding a coefficent that increases with range to

logarithmic signals. More interesting is the correction of the attenuation

due to the precipitation itself. This is an integral function of the rain

intensity encountered along the range. But the rain intensity can be related

to the reflectivity factor Z measured by the radar; therefore, the specific

attenuation y can be expressed in the form y = k Zh . In the case of loga-
rithmic signals, a discrete algorithm for the attenuation correction can be

as follows:

Xr = mr + Cr Fig. 32

C 2:C,
Cr+l = C' + qXr D Computation of the

rC D attenuation correction

where mr is the measurement at range r, C an auxiliary variable for the

attenuation correction, q a constant, and X the corrected reflectivityr

factor. This algorithm can be implemented by an additional state (Fig. 32)
to be inserted in FSM b of the previous program (Fig. 31). Variable C in
the consecutive pages computes first m and then X; the auxiliary variable C'

computes the term C' in the above expression.

- 192 -

6.2.3

6.2.3 A compounded program

To give an example of the flexibility that is available when structur-

ing the programs in FSM form, we show how to compose a new program from

parts of others.

Program 5410 (section 6.2.1) produces the interesting parameter G that

can be well related to the type of precipitation. But in fact, we are most

interested in knowing when and where G exceeds a certain value. Program

5420 (section 6.2.2) discriminates the nonweather echoes; we would like to

have this feature also in the measurement of G. The intensity distribution

of program 5420 is also information that we would like always available.

To implement the above desires, we compose program 5430 represented in

Fig. 33. An FSM 3 has states 1 and 2 analogous to those of FSM(b) of pro-

gram 5420 for measuring the mean value of the echoes and discriminating the

nonweather echoes. Then state 3, similar to state 2 of FSM 3 in program

5410, is added for measuring the G parameter. An increment of one in A'

is added in this state, for computing a local precipitation area. A further

state 4 is necessary for the case of nonweather echo.

FSM 4 has states 1 and 2 analogous to states 1 and 2 of FSM 4 in pro-

gram 5410. But here a local G is computed immediately in state 3, and if it

exceeds a value m, the azimuth, elevation, and range are read (state 4) and

all the data are sent to the output.

FSM 2 is similar to FSM 2 in program 5410, except that it includes the

algorithm for nonweather echo rejection. The control is performed by FSM 1,

which is a compound of the FSMS 1 and (a) in programs 5410 and 5420, respec-

tively.

This program has been adapted to the CPL 1 machine, and its coded form

is shown in the twopunch cards of Fig. 34.

A real-time printout obtained with this program is shown in Fig. 35.

Each line above the flag 7777 indicates a region where G was larger than a

given value; the four numbers in these lines are from left to right: azimuth,

area, mean intensity, and G. The line above and one below the flag contain

auxiliary data. The last four lines contain the sixteen values of the

intensity distribution.

The comparison with programs written in different languages is in

Table 4.

- 193 -

6.2.3

FSM I FSM 2 FSM 3 FSM 4

I I

Az= o A l-Is A 1-I s
BC I IBC As

distrib (16) A s A s

2 2

A + 1 2I AEFG= A E'F'G

P(2) P(3) P(4) BC I As

A AE 0:30 2
A<n+2 C>h 4 A l-I s
A-n+2 B BC As

31 B>k ABC= o 30G mean GE
C>h 11 FG : A

SP 3 4 B>k 01 G > m
ST 2 (2,3) ABC=soo D'= C L

D'= 0 ABC=soo C acc (

3 1 4 a~8 (rej) (re) B31 4 4
ST 2 all 0D = C

C'D'E'= a 31 1 azimuth D
elevation A

END ABCDEFG sooCCCO Ge n

- 194 -

p r gE - OF

u. data progr m A E'F'G' IEFG
distrib. 5430
record

t

Fig. 33 - State diagram compounded from different programs

T A B L E 4 program 5430 / 1

number number number memory execution programing

language of of of time
e statem./ symb1s cards words per segm. time

instruc.

CPL 2 64 322 rt

CPL 1 75 353 2 142 rt

for definitions and criteria see section 6.1.3

- 194 -

6.2.3

4311 i 41
jIgli,:g s uI.I sI 44 1. is u l as . u i II t as a ' u ln i as .s ag*o3 gge.5 g3 : us. aI , 5 s ii ,, 4 s c s gas II tu n

"T ""M22 IT'' ' ' U." V' !V" "IH I"' ' "s -:

3321 i:I1s 3 ::I. Ii a .3i I7I :,.g: i i 73 3?? -gg? t l1a y 4 Is :mi ' is .j1 i ! anU13;:I -21 2l ift : 333 1 33 ll3I 4 II 411I I 3) 33 33 Il3)13lI3t343Jl1
i
ll 1 4333 I filM 14 114 4 IIt i ti M 1 I14

',,, 3' ,,:.g,,a : I'" "I'" " 4ij " 4: 4.14. 4 i "'""'"""'33 311" 1334446'14F1"431$4.... 4. l II"IN qI I ig f , Is s 1'5
I t346 3 4 41 11111 1116 I . 661 1 . 4 5. .

:1111 *::s, Ii 1 ' L 0 ,1, I.

Fig. 34 - The CPL 1 machine program

C : C -- 0--=--" :/-.l :-

L; IN PAG2 2POR

Fig 35 - Real-time printout from program 5431

-.- 195 -

Fig. 35 -Real-time printout from program 5431

-195 -

6.2.4 Recording of weather echoes

This example is interesting for showing the flexibility that is
avail-

able for interfacing with the environment.

We want the radar echo measured with an integration of 64 samples, with

exclusion of ground echoes, for the entire range, every degree of the
antenna

rotation, regardless of its velocity. The measurements should form a record

every degree, with azimuth, elevation, and initial range first, and
then the

echo at the successive range points, packed in two measurements for each

12-bit word.

The structure of the program, as usual for this type of processing,

consists of an FSM(a) for the control, and an FSM(b), implemented by a page

per range point, for the measurements (Fig. 36).

FSM(a), in state 1, reads the present azimuth, increments it by h (the

equivalent of one degree), then waits idle for 63 circulations and goes to

state 2. Here a driven transition to state 6 is produced, and a record is

activated with azimuth, elevation, and range as first data. After two idle

circulations, in state 3, a driven transition holds the other pages in state

4 until the present azimuth has increased by one degree; then, the same

routine repeats until a stop signal appears (transition in state 2).

FSM(b),in state 5, performs the algorith described in the program of

section 6.2.2 for measuring the mean echo value and at the same time providing

a parameter for discriminating the ground echoes. In state 6, this parameter

is tested against a threshold t, and, if it is smaller than t, the measure-

ment in C is cleared by routing. With the algorithm of state 7, the pages

transfer every other to state 8 or 9. For the pages which transfer to state

8, the measurement is shifted half a word to the left and sent to the auxil-

iary variable C'. For the pages which transfer to state 9, the content in

C' is added to the present content in C and routed to the output, thus im-

plementing the packing of two measurements in one word.

A family of programs of this type has been used for a variety of ex-

periments. An example was shown in Fig. 24. For the CPL machine, these pro-

grams are contained in one punch card. The comparison with equivalent pro-

grams in other languages is in Table 5.

- 196 -

6.2.4

FSM (a) FSM (b)

1 4

A =az X=O

A h

5
63 Al-Is

2 cAs program 52262 A=s
ST 6
B' O AB .0 B

BC=elra B
record 6
stop

B C:64

2 B>t

cn

C Li2
t12 68 I

3
7

ST 4 B = 1
B XB

A >az B :--B,

B < B'

8<

CX 64 C C
C -C'

4 4

Fig. 36 - State diagram of the program for the CPL 1 machine

T A B L E 5 program 5226

number number number memory execution programing
of of of time

language statem./ symbols cards words per segm. time
instruc.

CPL 1 27 120 1 68 rt

for definitions and criteria see section 6.1.3

- 197 -

6.2.5 Measurement of statistical characteristics of weather echoes

A program is here shown as an example of the variety of processes that

can easily be conceived for analyzing the characteristics of weather echoes

(see also Schaffner 1972 c).

We saw in the last three examples the usefulness of parameter B. There

is an interest in its relation to the rate of crossing the mean echo value,

of which there are analyses available (Fleisher 1953). Also, its possible

dependency on the echo intensity needs to be explored.

For this purpose we may wish, for all the points of an entire region of

precipitation, the echo intensity, the 5 value, and the crossing rate. In

order to measure the rate of crossing of the mean value, the latter has to

be measured first; to be aware of possible changes that may occur in the echo

intensity, we measure it a second time, at the end of the other measurements.

Such measurements are provided in the following program.

After having described the previous programs in the user language of

section 5.2, this program will be described directly in the restricted lan-

guage of the CPL 1 machine. As usual, there is an FSM(a) for control (Fig.

37), and an FSM(b) implemented by a sequence of pages for the measurements.

The control FSM determines four phases of processing by means of driven

transition to states 1, 6, and 7, in states 10, 11, and 12, respectively.

The duration of these phases is determined in state 13 by the overflow of D

which accumulates the content that has been previously set in B.

In the first phase, all the measuring pages accumulate 128 video samples

sam (state 0); this accumulation, after division 128 (state 1), constitutes

the preliminary mean echo value, located in variable A, against which the

crossing will be tested.

In the second phase, the pages run through states 2, 3, 4, and 5 for

measuring the parameter 0 and for counting the crossings. In each of these

states, the difference is made in B between the previous sample and the

present sample; this difference is accumulated in D; and then the present

sample is stored in B for the next cycle. Moreover, following the tests in

these states, we can observe that if the sample has been previously less than

A (the reference mean), the page stays in state 2; if the sample has been

previously larger than A, the page stays in state 3; but every time the present

sample crosses the value of A, the page goes for one cycle either to state 4

or to state 5, where, furthermore, a one is added into variable C. This

- 198 -

pIRD APU~q BUTpuodsaoo aq pup IueIgeTp Oie4S a'-u -LE2T

0 I I I E I Tl S I IBLBIBSG B LSbiM

ill 1 11 1 1 1 I 6I 6 I 11 Ill I I I IILI Iil BLIi

99399 9 9 9 if 3 1 93 S 9 1 9 s 9I1SI I 1S SI

IT q983 811 si st si ST~u~8 Ill Il 5 S~ Is ItI lIcss
IT iBB B lP lookBI it I tB l ut Ii tB fB i BB B B ill ii tiBB

EUcltt cc1 Ct 111 ccC * c tic c ic I ct c c llotccc l t

U tal U 1 l Ill E U 1 7 11 1l ll 1 1 11 E 1 I IBz BUillU IZ

ilu .0 I l il I ll.II itS I A A iiiili li iII9 V IB In it i ti 1it 1911 11111.111 t I l
s.e3'.ltti U s e5fl Im s P sens P 'esses BnnP Cnsesn u teo s? top Pug la h h *hthihhhive ti 1115 Itt e

10 Q 0 goo BS01 00 B a B0 00 oB 050 009000 00 algSOlogo 01B00 8 110 0 1 0 0log 1
* II _ I

tr ', r, Tl TFT 7 9 9 1 1 Z I 0 30OS 0R-ifl0S

tp 9 X tOFw

WDJbojd
9Z1 9

was WD 13

5

DS> uos we>

Uo * . WDS

1.9

I~ I QS

01

9>0

StQ

60
6

6.2.5

phase lasts for 512 radar periods. In this FSM we see an example of the use

of the states for memorizing past events.

In the third phase, 128 video samples are accumulated in B (state 6) in

order to produce the post mean. In the last phase, the four measurements are

packed into two words and routed to the output (state 8).

This program, when expressed in the codes for the CPL 1 machine, is con-

tained in one punch card, as shown on the lower part of Fig. 37. The state

fields in the card bear the same label as in the state diagram, and the items

in the card can be easily interpreted in terms of the items in the state dia-

gram (see section 5.3).

The comparison with equivalent programs written in different languages

is in Table 6.

The crossing rate can be related to turbulence in the atmosphere. Thus,

this or similar programs can be used also for data collection. Fig. 38 shows

a printout of an RHI (range altitude representation) across a storm on August

14, 1972. For each point there are two values (expressed with numbers and

letters in their normal sequence); the left value indicates the echo intensi-

ty, and the right value indicates the crossing rate. When the echo intensity

is below a certain value, the crossing rate is not shown because it pertains

mainly to the noise fluctuations.

T A B L E 6 program. 5241

number number number memory execution programing
of of of timelanguage

statem./ symbols.. cards words. per segm. time

instruc.

C P L 1 47 181 1 80 rt

for definitions and criteria see section 6.1.3

- 200 -

HEIGHT 1(KMI RH1 21 SE: 34 J I .A±A_ .D .1 1~U-4 kL Al.lfL 24a P-.. nQ. & -- a----j- cI ,S! , s 3 "U21oi3

Ie

I

A-A

.I - . . . - -.-

A A

I 99 9a
- -- A .k ------

SA 9 A A A B B A
S--A -1 8 -. - -A A ".. -....
I . .9 A A A B B A A

8 I A 9 9 A A A R A h
9 A A A 9 BB B

I - ~ - -- 9 A-5 - 19- 9 A -9--9A . .5-8I. 9 9 9 9 9 9 A A 9 A B R A A 5
-- -- 9 99-- 89i3 A 9A - AL A -

8 8 9588 99 A A ABS
7. NAA . . 9 A . A A .9 A 9

S87 7 B L6 EE 88 A9 99A A
L 7 8 DF 189 9 __ A 9 A L AA .

1 7 6 7 7 7 8 8 FAMN 9 9 EASS A A A A B

7 8 7 7 859 9 9_ _ - A 9 I A A A A
I 7 6 7 8 8 G M43 L8 9 A 9 A A 8.

S 6 7 7 8 8 FG 01 HA 1 C A D A A 9 9 & 7 A

I 66 977T8 7 A 9 ,SqHC 0 B AA A A BA A B

I 9 9 H4 8 87 8 56 L4 E A 34 JS 07 07 0DC 0 A 9 R
1 7 BA CC HG 3 3 8 8 8 8 FO Q6 QS 31o K16 Q9 P7 Ki MS EE A 5 E
S 7 E8 14 8 8 9 8 8 9 F: RI4 8 19 (6 FF A 9 A A A B
. C F6 _ A 7 -- 3 9_1 -9 FS P&- -- 5----- - AL 11 _EF F

I 7 G5 15 CA 8 9 R4 08 R$ M C J7 L3 EB EB F9 8 A A A A A 4 S E
-- A A7 1 -19 F- - - 04,- F IAiiL4 MALL74A 5 LfQ& - -

I 7 B8 FT H4 8 9 8 8 03 03 05 Q5 N5 G9 48 M3
8 B E8 F6 A 3 8 8 A 8 C

I R3 4 4 16 15 b46 R6 19 M8 KC ED ED EE FG EC A A B A A
1 9 3-Ul. Cf 9 & _ S A E MAL6 D9B 1I._.L EL -EE .. d .£A A A A. A ..
I 8 D4 A6 C6 A A 8 42 7 A J H3 AS P4 LA JO 09 4C Q5 18 P7 LA HE F6 GD IE F9 A B A 8 A
1_3 7 . -F H 814 F! J3 3 Z U. E 0k . s 1_8 4c 4 +MD. 0 .DLi 9 J 4. 4. E. ;-.EE. a .

---- -------- -- -------------------- -+-------------------------------
... - 53 . 7 A1 -i5A . tu

Fig. 38 - Echo intensity and mean crossing from program 5232

6.2.6 Measurement of the dispersion of short means

An experimental determination of the dispersion of echo-intensity mea-

surements obtained by averaging a few samples is interesting in two ways.

First, it gives a knowledge of the actual confidence that can be assigned to

the intensity measurements for different types of meteorological events.

Second, it gives information about the decorrelation time of the echoes at a

point; information that can be related to the movement of the scatterers in

the atmosphere. A practical organization of this type of measurement is

described below.

We first want a precise measurement of the actual mean value, say by

using 1000 samples. Then we want several measurements (say m measurements)

with a few samples (say n samples). Furthermore, we would like these few

samples taken at different time distances; say, k radar periods are skipped

between samples. Finally, because the actual intensity might have varied

during the period of the measurements, we want another precise measurement

made again with 1000 samples. We would like all the data printed out, with

the short measurements already arranged in a distribution.

The above is a conceptually very simple process. But it is of the type

whose procedural description is awkward when recited in sentences. An ab-

stract machine can represent more concisely the entire task. If, moreover,

this abstract machine can be used directly as an actual program, the entire

work of the experimenter is simple indeed.

An abstract machine that naturally derives from the above description is

represented in Fig. 39. It is one FSM performed by one page; the samples s,

and the parameters m, n, and k are treated as input data. In state 1, vari-

able A accumulates the samples, and the page "stays" 1000 times in this state.

Then A is divided by 1000 and routed to the output (state 2); this is the

first precise mean. At the exit of this state, a reservation for a 32-cell

distribution is routed. Then, in state 3, variable A accumulates samples,

while B increments by one. If no radar periods should be skipped (k = 0),

the page remains in state 3; otherwise it goes to state 4 for the number of

circulations to be skipped as indicated by k. Every time the samples accumu-

lated are n, the page transfers to state 5, where the mean value is obtained

by division and routed to the distribution function. Variable D is incre-

mented by one, and then the measurement is repeated, returning to state 3.

- 202 -

6.2.6

When m measurements are executed (test in state 5), the page stops over

state 1 again (the "stay" prescription holds the page in state 1 for 1000

circulations), then stops over state 2, where the new precise mean is routed

to the output, and finally transfers to state 6. Here the parameters n, m,
k, and possibly other auxiliary data are read and routed to the output; the

content of the distribution is added to the output buffer; an output record

is ordered; and then the page disappears.-

This program, when adapted to the CPL 1 machine, has minor variations,

and it is still contained on one punch card. The comparison with equiva-

lent programs in other languages is in Table 7.

As too0

A100program 040

dFig. 39 -Program for the dispersion of short means(32)

- 203 -

B=n

k >O

5 4

Dn LAC +I.

BoD +m

6
X= nkm
distri b. X
record

prograrm 1040

Fig. 39 -Program for the dispersion of short means

-203

6.2.6

T A B L E 7 program 1040 / 1

number number number memory execution programing

language of of of timelanguage
statem. / symbols cards words per segm. time
instruc.

CPL 2 23 102 1 rt

CPL 1 28 130 1 52 rt

FORTRAN 36 302 36

for definitions and criteria see section 6.1.3

It is interesting to note that the high-level-language FORTRAN program

is less concise and less problem oriented than the machine-language CPL pro-

gram. Fig. 39b shows the connections among routines of the FORTRAN program.

Fig. 39 b - Flowchart of the corresponding FORTRAN program

- 204 -

,.SA.SMPC - -

VT.R

Fig. 39 b -Flowchart of the corresponding FORTRAN program

- 204 -

6.2.7

6.2.7 Real time data handling

Certain types of processes are so related to environmental contingencies

that high-level programing languages are hardly applicable, and programs are

in fact prepared in machine language. In the case of the CPL system, there

is no real difference between the user and the machine languages, in the

sense that the user language allows complete control of the execution, and

the machine language has almost the conciseness of a user language. A simple

case is here described.

A measure of interest is in comparing precipitation intensities deduced

from radar data with actual precipitations measured at the ground. For this

purpose wewant measurements of the radar echo intensity at an array of 5 x 5

points, 1 mile apart, in a region near Concord, Massachusetts, where a net-

work of rain gauges is located. The measurements should occur automatically

during the rotation of the radar antenna, and a printout with related auxil-

iary data should be produced at each passage of the antenna through the Concord

region.

Given the small area, azimuth and range can be taken with good approxi-

mation as coordinates of the grid points. At each point, a number n of con-

secutive echoes is integrated. These results are multiplied by a constant

and another constant is subtracted, in order to express the measurements in

the desired unit. Then these numbers are printed in the form of a 5 x 5

matrix, along with the date, time, number of samples, and coefficients used.

This program has been written in machine language for two systems: the CPL 1

machine directly connected to the environment, and for a system composed of a

PDP 8/1 minicomputer and special units for the connection with the environ-

ment.

The state diagram of the CPL program is given in Fig. 40. One page per-

forms the control FSM (a), and five pages located at the proper range segment

perform FSM (b). At the initial azimuth a (test in state 8), a driven trans-O

ition brings the five pages to state 1, and then to state 2, where the accumu-

lation of the samples is made. After 100 circulations, a driven transition

brings the pages to state 4, where the coefficient n1 is subtracted and the

result transferred to variable B; then the division by n2 is performed in

state 6. If at the start of the new measurement the division is not finished,

it continues in state 3, together with the accumulation of new samples in A.

- 205 -

6.2.7

After the first measurement, the transfer to state 4 is substituted by the

transfer to state 5, where the measurement obtained in C is routed to the

output. After five measurements (test in state 11), the parameters n1 , n2,
and elevation are sent to the output and the printout is started. The pro-

gram is contained in one punch card. Ninety 12-bit words are needed in the

memory, including supervisory instructions.

Of the program for the PDP 8/1, the connection of the routines is shown

in the flowchart of Fig. 41. The routines are not described here. The total

program occupies 2 K of 12-bit words. Data of comparison between the two

programs are given in Table 8.

T A B L E 8 program 1202

number number number memory execution programing

language of of of time
statem./ symbols cards words per segm. time
instruc.

CPL 2 36 144 1

CPL 1 38 1 90 rt

FORTRAN

machine lan.

(PDP 8/1) 840 500 2000 q r t

for definitions and criteria see section 6.1.3

- 206 -

6.2.7

FSM (a) - FSM (b)

8

A = . program 1202
A o z

A oz

S I8. 0 3
AC sn,

B -1

2 B0

4 A s

99S 4A

i t[

9 o0Z

05 6 0

X=o aux CG n.
record B -1

stop 8 0

0

Fig. 40 - The complete program for the CPL 1 machine

PT
* SKIPPED 'T

NIPUT

INTERRUPT
PR"NT
PPELIMINARY
INFO

m WHO ? OUT No
X * 290

TIME
INTEGRATOR yes

TTy NpIft TAKE
100

SAMPLES

CNTA I
C -? 600 -Re

3.R P DEL.AY N .-I

YES

PRINT FLAS. TAKE NO NGER.e
HOLD RAYS

YES

GET ADDT
0 SK PPED

Fig. 41 - The flow between routines in the conventional program

- 207 -

6.2.8 Measurement of the antenna pattern with solar noise

As mentioned at the beginning of section 6.2, the solar noise offers an

interesting solution to the need of antenna calibration. Among the advantages

of the sun as a source are optimum position in the sky, regular and known move-

ment, absence of frequency and interferences problems, no cost. Among the dis-

advantages are very low signal intensity, fluctuations of different types (e.g.,

solar flares), angular extension (about 0.5 degree). With sufficient inte-

gration, the weakness of the signal ceases to be a problem. By repeating the

measurements, the momentary fluctuations can be recognized. The effect of

the extension of the emitting region of the sun can be separated by reverse

convolution with the profile of the noise intensity that is normally published

for each day. The gain of the antenna can be computed from the geometry of the

antenna pattern, regardless of the absolute value of the received signal. The

system response to the small signal variations is deduced by using the same

procedure for a source of noise with calibrated attenuator.

The program here described produces a two-dimensional antenna pattern by

giving the antenna a small vertical scanning across the horizontal trajectory

of the sun at around noon. Numbers n1 and n2 , indicating the lower and upper

elevations of the segment of interest in the antenna scanning, are established

and set as input data. The total number of points desired is set as input

datum n3. An input value n4 is experimentally chosen for properly position-

ing the zero in the present noise intensity. The entire radar range is filled

with pages implementing FSM (b), Fig. 42, and one page implements FSM (a) for

controlling the measurement.

The measuring pages, in state 10, accumulate in A all the noise samples

that can be considered independent in the range interval occupied by the

page, say four samples. This accumulation is made with free overflow, thus

the number of samples that can be accumulated is unlimited. In state 11, the

value n4 is added, and the result is accumulated into the corresponding vari-

able A' in '. Variable A is cleared, and the pages go to the waiting state

9.

The control page waits in state 1 or state 2 until the antenna is in the

prescribed interval of elevation. Then state 3 produces a driven transition

to state 10. In state 4, which occurs at midpoint of the integration in the

measuring pages, the present elevation and time are routed to the output.

- 208 -

6.2.8

In state 5, A' is cleared, and a driven transition to state 11 is produced.

In state 6, the present content of A' is acquired and routed to the output,

variable C is incremented by one, and the routine repeats itself.

When the antenna is outside the prescribed interval of elevation, the

control page rests in either state 1 or 2, and the measuring pages in state

9. When the prescribed number of measurements is reached, transition to

state 7 occurs, auxiliary data are routed, and a record is produced. If a

record is desired at any anticipated moment, a signal STOP is activated, and

when the control page stops over state 8, transfer to state 7 occurs immedi-

ately, with the consequent production of a record.

The output consists of triplets: an elevation, a time (from which an

azimuth can be derived, given the known movement of the sun), and an intens-

ity. From these triplets the antenna pattern can be constructed. Fig. 25

shows an example.

program 1710

eI>n,

a FSM (b)

2

8 el-cna
9

FSM (a) ST 10

500

AA n
AB-el tm BI

Ajn.
5 A*A

A'- O Ao
ST 11

8
6

A A'A
stop C +IA

C> N

r Fig. 42 -

rer x Program for antenna pattern measurement

- 209 -

6.2.8

Comparison with equivalent programs written in different programing

languages is in Table 9.

T A B L E 9 program 1710

number number number memory execution programing
of of of timelanguage statem./ symbols cards words per segm. time

instruc.

CPL 2 25 112 1

CPL 1 31 128 1 76

for definitions and criteria see section 6.1.3

- 210 -

6.2.9

6.2.9 R. A. D. A. R.

This acronym stands for Radar Data Acquisition and Registration system,

and refers to a software system under preparation at the Politecnico di

Milano, Italy, for a weather radar to be used in connection with the satel-

lite Sirio experiments (Cantarella et al 1971). The task of this system is

briefly described, and then an implementation for a CPL system is shown.

In these experiments, the radar scans the volume of the atmosphere in-

volved in the path between the satellite and a ground station. At each revo-

lution of the radar antenna, a frame of data should be analyzed, and if at

some points of the frame a weather target is found, the frame should be re-

corded on a magnetic tape. A frame of data is constituted of adjacent "rows"

between two assigned azimuths aI and a2 . A "row" is constituted by 1024

adjacent range points, 75 m apart, in each one of which 128 consecutive echoes

are integrated and corrected with a range normalization coefficient rn. If

in any row of a frame at least h points show intensity above a threshold t,

that frame should be recorded. If echoes continue to be present, the record-

ing of all the frames should continue; if the echoes cease, the recording

should stop after one further frame without echoes. If echoes appear again,

the recording should resume. At the end of each frame (also if no measure-

ments are recorded), a record should be produced with auxiliary data such as

date, time, elevation, and messages. After m frames, regardless of whether

echoes were present, the process should end.

An implementation of this process with a CPL machine is shown in the

state diagram of Fig. 43. An FSM (a) is implemented by one control page, and

an FSM (b) by the 1024 pages at the range points. In FSM (b), the pages flow

through the loop of states 10, 11 (or 12), 13, 14, (15), and again 10. In

state 13, the accumulation of the samples occurs, and in state 14 the mean

value is obtained and normalized. If a page produces a measurement above

the threshold t, it transits through state 15, where variable A' in Q' is

incremented by one. When recording is underway, all pages transit through

state 12, where the measurement is routed to the output.

The control page, in state 1, produces the sequence of measuring pages,

in the usual manner, and in state 2 waits for the initial azimuth before

transferring to state 3. In state 3, the auxiliary data are routed to the

output; then the loop of states 4, 5 and 6 follows. The driven transition

- 211 -

6.2.9

to state 11 brings the other pages to initiate the integration, and the

driven transition to state 14, after 128 circulations, brings the pages to

complete the measurements. If more than h points with echo are found in

A' (state 6), the control page follows the loop of states 5, 6, and 7. In

state 7, the auxiliary variable B' is set to the value 2. As a consequence

of being B' > 0, the control page will transit through states 7 or 8 for the

remainder of the frame; this means that all the measuring pages will route to

the output (because of the driven transition to state 12). At the end of the

frame (azimuth larger than a2 , tested in state 5), a record is produced, and

B' becomes one (state 9). In this condition, the following frame will still

be recorded also if no echoes are present. After one frame without echoes,

B' becomes zero, and the recording ceases. At each frame, variable C is in-

cremented by one (state 9); and when C is equal to m, the process ends, after

the production of the last record (state 9).

FSM (a)

A+ . P o FSM (b)
'1024

2 0
A - az

A= o,

3
X = ux X

r!

SST 12ST It B,-

~program R.A.D.A.R.

Fig. 43 - Program for automatic data collection

128- 212 -14

A AI rn
ST 14 A

A>az5

9 2

B +-I
C+ I

C-rm A-A'

A ,>h

program R. A. D.A. R.

Fig. 43 - Program for automatic data collection

- 212-

6.2.9

The data of this program that are suitable for comparison of size and

complexity are reported in Table 10.

T A B L E 10 program R.A.D.A.R.

number number number memory execution programing
of of of time

language statem./ symbols cards words per segm. time
instruc.

C P L 2 36 113 1 rt

for definitions and criteria see section 6.1.3

- 213 -

6.2.10 Real-time numerical models

An observer of weather radar displays is naturally led to perform two

types of mental process: (1) to interpret the patterns visible in the dis-

plays in terms of what might be the invisible (for the observer) physical

patterns in the atmosphere; and (2) to anticipate mentally the future evolu-

tion of those patterns in terms of the patterns visible on the displays.

In the interest of effectiveness and precision, we attempt here to

parallel these mental processes with computer processes. Some examples of

processes of type (1) can be seen in the programs previously described. Now

we show a preliminary example of type (2). The interest for a short-term

forecast of radar echo patterns is both for predicting the area where pre-

cipitation will occur, and for anticipating the possible occurrence of severe

events.

Note that the real interest is in the patterns in the atmosphere, but,

because the observer (radar plus human) has access only to the radar echo

patterns, any model on the evolution of the atmospheric patterns has to be

based on radar data, in addition to general information available from other

sources. In this situation one might be involved not in modeling the phen-

omena that occur in the atmosphere, but in searching for semi-empirical

models of the evolution of the echo patterns per se. To give simple examples:

if there is a constant wind, the echo patterns will have a linear translation;

if there is also growth and dissipation, the echo patterns will have an ap-

parent movement that is the result of several effects; if there is a continu-

ous supply of moisture, scattered cells will diffuse in one solid pattern;

if dry air is succeeding, the present pattern will dissipate with a certain

time behavior.

Clearly, there are two phases: (a) the establishment of lows of time

evolution for the patterns; (b) the establishment of the conditions that

select one or more of these evolutions. Phase (b) can be tackled in terms of

processings of type (1) above, in terms of processings for determining the

past movement and evolution of the echo patterns (Schaffner 1972d), and in

terms of general information available from other sources. Phase (a) can be

approached with numerical models of the type used for the dynamics of fluids.

A preliminary example of such models is described in this section.

In the context of the evolution of weather-radar echo patterns, we call

- 214 -

6.2.10

x the echo intensity at point i in the coordinate s (for simplicity of

description, only one dimension is considered; a two-dimensional model is

shown in section 6.4.1), and we assume the following components for the dy-

namic behavior.

Translation. A time varying translation of an x discrete pattern can be

modeled by the term T in expression (6.5). Function fT(t) has only the values

1 or 0; the ratio of occurrence of these values determines the velocity of

the movement; the sign at the increment of i determines the direction of the

movement.

Linear growth or dissipation. Such a behavioral component can be represented

by the term L in expression (6.5). Function fL(t) is simply a coefficient

whose value may vary in time. The operator (is a test that disables this

term whenever xi is below a given threshold (the noise value), and above a

certain value (the maximum echo intensity that is realistic).

Exponential growth or dissipation. A discrete approximation of a term of

the form ekx is represented by the term E in expression (6.5). fE is a co-

efficient whose value (very small) may vary in time. The operator (has

the same function as previously indicated.

Diffusion. From the conventional expression of the heat diffusion
2

_u a u
t- k = 0, the finite difference approximation represented by term DSx2

in expression (6.5) is derived. This term provides a very versatile control.

Function fD(t) is a coefficient that varies in time. When it is negative,
D

different degrees of diffusion can be obtained. When it is positive, and

sufficiently small to keep the system in stability, at least for a certain

time, a sort of concentration is produced, and at every variation of the

first derivative of x, a new peak grows. Coefficients h(t) and k(t) assume

only integer values, and normally are equal to one; when they are not equal,

asymmetric diffusion is produced; if .they have large values, new distant cells

are produced; and if they keep large values for a certain time, waves can be

generated from a single initial cell.

T L E

.. n+l n n
x = fT(tl[x+l - x i] + fL(t) + fE(t)x + (6.5)

+ f(t)n 1 n 1 n
D(t)x i 2 xi-h(t) 2 Xi+k(t)

D

-215-

6.2.10

Expression (6.5) can be computed at each point of the radar range by an

abstract machine with the state diagram of Fig. 44. In this program, at

first, an echo intensity is determined at each point from the actual radar

echoes. These measurements are then used as initial values of the x. in1

expression (6.5). Subsequently, the iterations proceed, with the f values

manipulated by the operator on switches -- this is only phase (a) as pre-

viously defined. The profile generated by the present xi values is made

visible in an analog display, and the iteration frequency can be varied in

order to slow down the evolution, and also freeze a particular stage in

time. Different types of evolutions can be produced and then compared with

the actual echo patterns detected by the radar at later times.

After the previous examples, the state diagram of Fig. 44 should need

only a minimum of verbal description. FSM 1, the control, commands the in-

itial data acquisition by means of states 1 and 2. In state 3, a command

of the operator gives the go ahead for the running of the numerical model.

State 4 starts the execution of the terms. State 5 commands the execution

of term T; this state is transitted t/100 of the iterations, thus the par-

ameter m allows the operator to control the speed of the movement in hun-

dredths. State 6 is a waiting state for controlling the frequency of the

iterations through the parameter t. FSM 2 and FSM 4 produce the boundary

values in the segment of xi . In FSM 3, state 5 shifts the Xi-h, and state

6 shifts the xi+k. State 7 implements the D term, while the two tests im-

plement the operator E . State 8 implements terms E and L.

This program has been adapted for the CPL 1 machine, and it is con-

tained on two punch cards. An exercise with this program was previously

shown in Fig. 23 as breaking waves obtained by an initial single cell.

Comparison with equivalent programs written in different programing

languages is given in Table 11.

Section 6.2.3 described how to compound a program from several dif-

ferent ones. Chapter 5 discussed how complex programs are developed as an

interplay of FSMs and pages. One can think of assembling a compounded pro-

gram that (a) determines continuously in real-time certain characterizations

of the present echo patterns continuously detected by the radar, (b) reads

certain coefficients set by the operator on the basis of general information,

and (c) produces continuously on suitable displays a set of future echo

patterns in accordance with different hypotheses.

- 216 -

6.2.10

FSM I FSM 2 FSM3 FSM 4

256

2 2

2A: 256 A: 256 A: 256
ST2 all C A An

3

3

3 A'B'= A

run
BC =A

4 5

S T 4 (3) Bz

A Zm D= k
A >99 D.

B6'

0+1
5 6 = .10 11 1

0~

B 7 t ST 9(3) A=A' A z A

of~~ of f im

B9nB ga f
6 -A

C TT fE A B

A C A < b 3

program 6010 r Ac 3

Fig. 44 -State diagram of a real-time numerical model
lanmeungC

CP 1 ' 1 352

T A B L E 11 program 6010

number number number memory execution programing
lagaeof of of time
lagae statem./ symbols cards words per segm. time

ins truc.

C PL 2 54 208

C PL 1 71 2 152

for definitions and criteria see section 6.1.3

- 217 -

6.2.11 Computation of the Fast Fourier Transform

Doppler weather radars have the potential for measuring wind velocity

and turbulence in the atmosphere (see Atlas 1964). In these measurements,

an independent Fourier transform is required at each point explored by the

radar. To avoid a prohibitive recording and playback systems, with the

consequent delay in gathering the information, all these Fourier transforms

should be executed in real time. Indeed, such an application is a good

bench test for the processing power of a computer. In the following, a

program that performs such a task is described for a CPL system*, using a

fast Fourier transform.

A sequence of time samples f (n = 1, 2, ... N) admits a discreten

Fourier transform composed of N frequency samples Fk given by

N k 27
Fk= I n W = e N (6.6)

n=l n

Such a transform requires the computation of N2 complex terms. The fast

Fourier transform (FFT) is a class of algorithms that obtains the transform

(6.6) with drastically reduced need of computation by taking advantage of

certain regularities in the transform itself (Gold et al 1969). In the FFT,
computation is essentially reduced to the basic complex operation (called

butterfly from its structure), with P, Q, and W complex quantities,

P (i+l) = P(i) + Q (i)Wz

Q (i+l) = P(i) - Q (i)Wz (6.7)

performed repeatedly on a specific pattern of data. Such patterns are best

shown in the form of data flow graphs, one example of which is in Fig. 45.

for a transform of 16 points. A property of the pattern of Fig. 45 is that

each pair of new terms can substitute orderly ("in place") the old terms

from which they are computed. The pattern has also a typical shuffling of

the resulting fequency samples. Patterns are possible in which also the

final frequency samples are in the natural order. The number of terms to be

computed in the FFT (involving complex multiplication and complex addition)

is N'log(N). Because these computations are all in pairs that use common

This program has been derived from the report "Study of the Applicability
of the CPL System to Doppler Radar Signal Processing" (CS 11-73) prepared
for the National Center for Atmospheric Research, Boulder, Colorado.

- 218 -

6.2.11

terms, and each pair can be computed simultaneously (butterfly), the number

of actual operation cycles is 1/2.N.log(N).

By comparing the structure of expression (6.7) with that of expression

(3.2) at page 79, and by interpreting the data flow of Fig. 45 as a periodi-

cal rearrangement of page flow, it can easily be deduced that the FFT is a

natural computation for a CPL system. Moreover, because the number of pages

does not affect the complexity of the FSMs, independent FFTs can be simul-

taneously performed at adjacent points in range.

The class of FFT for radar time sequences, repeated independently at

different range points, can be implemented by a CPL machine as follows.

The memory is partitioned in channels, one for each time sample; in each of

these channels, the range sequence of samples (belonging to a given time

sample) are stored. Each computing page is composed with the data from two

channels; the choice of these channels in the course of the computation de-

pends on the chosen FFT algorithm. The data of the page after each compu-

tation cycle substitute for the old data in the same channels. In this way,

0 0

S4 W W

0

0 W

f/1X F2

f ~ 2 4 7W W W

Fig. 45 - Data flow in a FFT algorithm

- 219 -

wW

f ~F6

Fg45 4 Dat flwi5 F loih

- 2 1 -

6.2.11

the minimal storage capacity is used, which is N complex words for executing

an FFT of N points. For a given memory capacity of the CPL processor, dif-

ferent choices of points in range and of points in time can be chosen through

programing. If M is the total number of complex words in the memory, N the

points in time, and R the points in range, assuming that all are binary

numbers, the choices are given by N x R = M.

These pages implement an FSM that describes the computation of ex-

pression (6.7). Another FSM, implemented by a separate page, computes the

coefficients Wz in expression (6.7). An additional FSM, implemented by still

another page, controls the entire process, in particular the selection of

the channels for the data pages. The details of these FSMs depend on the

particular form of the FFT adopted. As an example, here, an FFT with deci-

mation in time, scrambled output, data in place (corresponding to Fig. 45)

is considered. The state diagram for the FSMs is shown in Fig. 46.

FSM 1 (control)

In state 1, n circulations elapse for the acquisition of the time samples.

In state 2, a driven transition to state 2 for all pages is produced, and

A,B,C,D are used for producing the particular pattern of numbers that con-

stitute the labels of the data channels. There is a periodicity of

decreasing duration in state 3 (corresponding to the periodicities visible

in Fig. 45), and in states 2 and 4 these numbers are replaced. At each

cycle, this page routes two channel labels to the control of the memory.

At each passage through state 4, a driven transition to state 3 is directed

to FSM 2. At the end of log(N) series of computations, the page transfers

to state 5; here a driven transition to state 3 is directed to FSM 3 for

the output production, and, in state 6, bit-reversed numbers (function

available in hardware) are routed as channel labels. After the output of

the N series of frequency samples, the process ends. Of course, different

arrangements for the output can be prescribed; for instance, the output can

be simultaneous with a new input acquisition.

FSM 2 (coefficients)

The complex coefficients Wz are stored in C'D', where they are read by the

computing pages. The starting value (0, 2W/N) is produced in state 2; the

series of the following values are produced in state 3 (the sine and cosine

functions are available as look-up tables).

- 220 -

6.2.11

FSM 3 (butterfly computation)

This FSM is implemented by one page per point in range. In state 1, the

input complex samples (re, im) are acquired to form the content A B of the

successive pages. In state 2, the complex numbers (A,B) and (C,D), from the

channels prescribed by FSM 1, are operated upon as in expression (6.7). The

coefficients Wz are in C'D', and the butterfly operation is available as a

special function of type 4 (section 5.2.3). In state 3, the complex fre-

quency samples (A,B) are normalized and routed to the output.

FSM I FSM 2 FSM 3

A+1

" A + Iho

A n /3 AB re im

B rev A
ABCD=ooohB

k

2 2

ac oho° C'D'=F FD

siutnosy nasqe c ofn posts

S T 2 all
A:2 (A)(CD)

BCD= oAo N butterflyBC+I

A<1

BC chan

BC
chan ST 3(3) AB:r

A chan
C=n
D=A

6
BCchan +

BC 8 revA
chon 4

ST3(2) A n
BO=Co B chon

CIA
BC+1

7.
BC chan X=aux F F T I

ST 0 all

Fig. 46 - An abstract machine for performing the fast Fourier transform

simultaneously in a sequence of points

- 221 -

6.2.11

The data of this program that are relevant to the comparison of size

and complexity are reported in Table 12.

T A B L E 12 program F F T 1

number number number memory execution programing

language of of of timelanguage
statem. / symbols cards words per segm. time
instruc.

C F L 2 44 209 rt

for definitions and criteria see section 6.1.3

- 222 -

6.3 REAL-TIME PROCESSING OF METEOR-RADAR SIGNALS

The first use of a CPL processor was in connection with a radar station

for the study of the ionized trails produced by meteors in the high atmo-

sphere, at the Smithsonian Astrophysical Observatory (see section 4.4.1).

In this context, a variety of programs for pattern recognition, statistics,

and measurements were developed. A few samples of them are reported here as

a further illustration of the programing language.

6.3.1 - Recognition and recording of faint meteors

The purpose of this program is to recognize faint meteors (echo typi-

cally below the noise) and produce periodically on magnetic tape tri-dimen-

sional matrices of the detected meteors (echo energy, echo duration, and

range). Fig. 47 shows a sample of printout from a recorded tape showing

time and data as heading, a row of auxiliary data, and the number of detec-

ted meteors versus energy (horizontally) and duration (vertically) for a

particular range segment and time interval.

The meteors of interest produce a narrow echo that rises in intensity

in the first few pulses and then decays exponentially. Ionospheric echoes

of a different pattern, and all sorts of interferences should be rejected

as much as possible. Fig. 48 shows one among the several abstract machines

that were devised at that time for accomplishing this task. The circulation

of the CPL system is synchronized with the pulse emission of the radar, and

a sequence of pages (one per width of the expected echo) performs the FSM

described by states 0 through 6. Twenty consecutive samples (sam) of the

radar video are integrated and called energy (En). In order to start this

integration approximately at the beginning .of the echo, a tentative accumu-

lation (Ac) of five samples is continuously made and compared with a thres-

hold (tl, in state 1). If the accumulation is less than the threshold, the

cycle starts new in state 0; if larger, a count (Cn) is increased by one

(state 2). If four consecutive accumulations are above the threshold, the

process transfers to state 3 which, in conjunction with state 4, determines

the duration in intervals of 20 pulses. For each sequence of 20 samples

that exceeds a threshold t2, the energy is increased by a number h such

as to produce the shift of one row in the output matrix. Every time the

- 223 -

6.3.1

accumulation of 20 samples does not exceed the threshold, or the last row of

the matrix is reached (E >), transfer is made to state 5 which normalizes the

energy and routes it to the distribution. If at any time an echo is recog-

nized also at the adjacent range (notified through the signal S in state 3),

the echo is disregarded by means of a priority transition to state 6, where

the echo is tracked until it completely disappears for 128 pulses.

Simultaneously another page performs the FSM of states 7, 8 and 9 for

producing statistical measurements of the noise by accumulating in C one

thousand samples, and in D the times in which the noise exceeds a value e.
!

These measurements are made available to the record FSM through QN. The re-

cord FSM (state 10), as soon as initiated, acquires the several parameters

and measurements involved in the process, produces a record, and disappears

(triangle attached to the state).

Another page executes an algorithm (state 12) for testing continuously

the computation of interest and produces a diagnostic output (state 13) every

time a computation is incorrect. Another page reads information set on

switches by the operator (state 11) and at the command gives it to the out-

put. State 13 is used by both the last FSMs through stopover transitions.

The program described in Fig. 48 in the user language, when translated

into the machine codes, for the CPL 1 processor, is contained on two punch

cards. Another card is necessary for the supervisor program which schedules

the process in time and range.

This process has been written also in PL1, Fortran, and assembler lang-

uage for the 370/155 of the Information Processing Center at M.I.T. The flow

chart of Fig. 49 shows the algorithms applied to the vectors in which the

data of the problem are organized. Table 13 summarizes data on the different

programs. The program of Fig. 48, in its original version indicated as CPL 1,

was written debugged and put in operation in a single night during a week of

continuous recording of faint meteors at the Smithsonian radar station. The

PLI version was accomplished in several days.

The FSMs described in Fig. 48 provide the complete processing, including

data acquisition and recording on the output tape. In the flowchart of

Fig. 49, the operations of data acquisition are excluded; the routines invol-

ved in the production of output records are not indicated. In Table 13, sepa-

rate account is given for the algorithms alone, and the entire process inclu-

- 224 -

6.3.1

Fig. 47 - A record on the magnetic tape

o C.

0 10 SEC 30 %IN 12 H 11 0 33 MON 1971 4214 PROG4AM 4000 SUP O
23 100 0 287 0027 0144 0000 0437
45 10 2 0 0055 0012 0002 0000

O 2 7 4 2 0002 oo 0004 0002 C
2 0 5 1 0002 0000 0005 0001

0 7 0001 0002 0007 000O

program 4214
3

EN 0
DO I I7n T(O-1) AC .0

nAc=lsam Ac =sam I -n-GO TO7 AEP 0
nAcCn smsarP S= 0 4 En,Cn I som,t

En > t Cn= o AC At SA M REP - 20

lRP * EP 1

AC V 02

6 3 -3
PEli

Ac I som 20 EN'"

S = max REP - 5

6 S -= S,
. E-EN+ h

CH* * 1 EN * EN /r
12 nA - 'REP -0 AC *0

som,samEREP
0

Ac. AC . 0S m xN - 0 DIST(EN)

En > Ac En (E)

SA = max E EN -AC 1 E - 0 AC -o
CN * CN + 1 CN - 0 REP .0

Ac<t2 En>m .-s

cH 4 7 16

En:r S I
PHAS *3 C7 -7 SAM

REP REP + I

A CSam

GySm 1000 |S
> 08 - DS + 1AAe

10
A, B=ttjt2 A6REP -1000 NIE-C7

EREP -0 C7-0 08-0

D + I C, D -wCf, Df rec 4 E)i EN EN + SAN(14k)

A2 A2
C2 E -C2 + 1

REP - 128 82.2 BC+A2
N D2 =02 +C2

12 N *0 AC =0

BC,D b,c,d A, C+1 N CA-0 P 0

B, DEZ A, C
A B 1 D AC 0 mESAEE PRIAfMeBREP - 0 IESAE

Fig. 48 - An abstract machine for the Fig. 49 - Flowchart of a corresponding
detection and recording of faint meteors computation in PL-1

- 225 -

6.3.1

sive of input and output operations. For each program, the input data are

supposed to be recorded on magnetic tape, in the format recommended for each

of the languages used.

In the evaluation of the number of symbols in the source programs, one

symbol has been accounted for each name, constant, arithmetic symbol, and

punctuation mark (including significant blanks). For the program of Fig. 48,

its equivalent version in the form of strings of symbols has been used; but,

in this case, each item is accounted for a number of symbols equal to the num-

ber of bytes necessary for its expression.

The optimizing compiler optimizes execution time at the expense of com-

pilation time and memory size. The execution time is average in the case of

the conventional computer.

T A B L E 1 3 - Data related to the program for faint meteors.

source program ob ject program
execution

algorithms alone complete process algorithms alone complete process time

Language r rper
number number number number number memory number number memory radar pulse
of of of of of of of

statem. symbols statem. cards instr. bytes instr. cards bytes (is)

P L / 1 93 662 150 199 S 338* 1352* 1162* 139* 4588* 264 *

171 A 684 A 690 A 106 A 2682 A 68 A

6928 *I

5038 A,

FORTRAN IV 73 698 116 116 223 886 427 55 1678 46

4538 /

ASSEMBLER 138 1029 434 437 138 560 704 45 1738 22

4116 /

CPL 1 69 265 137 3 69 320 137 3 480 6.66

1046 /

CPL 2 48 186 116 2 48 160 116 2 320 < 1

886 /

* compiler PL/I (F). A PL/i Optimizing Compiler, IBM, 1972.

/ including also data storage for a segment of 50 range elements.

5 for complex and label statements, more than one card were used to ease reading and debugging.

- 226 -

6.3.1

For this process, a more through comparison has been made among the

equivalent programs in different languages, and the occasion is taken for

some discussion.

The fact that 690 instructions are needed by the computer, compared with

the number of sentences that are necessary for describing the process shows

the distance between point A and C in Fig. 1. The need for 150 statements in

PL/1, compared with the 690 machine instructions, shows the well-known power

of a high-level language (point B in Fig. 1). The 690 instructions produced

by the optimizing compiler, in respect to the 704 produced manually at the

assembler level, show the achievable effectiveness of an automatic compila-

tion. The 1162 instructions of the compiler F testify to the difficulties

involved in the compilation process.

The 137 statements of the CPL 1 or the 116 of the CPL 2 show that the

approach of the abstract machines has a power not inferior to a high-level

language, at least for the process here analyzed. The one to one correspon-

dence between statements for the abstract machines and codes for the CPL

system shows that a unique representation of the process for the user and

the machine is feasible.

The fact that the CPL processor used is a rudimental and limited machine

of this type is of little account in our discussion. In this language, the

length of the words tends to increase with the logarithm of the number of

options in the hardware. On the other hand, the complexity of the problem

models decreases with these options. The syntactic structure of the FSMs

does not change with the size or complexity of the system. Thus an increase

of complexity of the computer does not imply an increase of complexity of

the programs. In this respect, the comparison of the CPL 1 and CPL 2 pro-

grams is relevant; the two machines are the same size, but the CPL 2 exploits

to a larger extent the features of the hardware and of the corresponding

language.

This approach implies that we can generate as many functions as we like

and express them with a specific word, as long as we are able to conceive a

network that produces that function. In other words, the flexibility achie-

ved in conventional programing by designing routines here is obtained also

by designing operating structures. Or course, sequentiality can always be

used, either because it is inherent in the function at hand, or because of

limitations in the actual PN available.

- 227 -

6.3.1

The often claimed man-machine interaction needs a careful interpretation.

The machine does the 690 commands (in our example); the interaction is with a

ghost machine, that of the 150 statements; therefore we are limited to the

capability of the available translation means. An interaction by means of a

common modeling, like that of Fig. 48, is more honest and thus has more chance

to be effective. The factors that make programs so concise can be viewed as

follows: (1) modeling the problem in the form of an FSM leads to a very con-

cise description of the problem; (2) describing the functions of the problem

in the form of operating networks, and using highly inflected words for de-

scribing the networks, leads to a very concise description of complex func-

tions; (3) the greatly reduced computer overhead eliminates most of the numer-

ous computerrelated statements necessary in conventional programing; (4) the

language used for describing an entire program allows much greater exploita-

tion of the information capability of strings of symbols.

It should be clear that Fig. 48 is not a flow-chart in the usual sense

of graphical documentation of a program already written in a phrase language,

as Fig. 49 is. Fig. 48 is the abstract machine that solves our problem and

constitutes the original complete program; the equivalent representations in

the form of strings of symbols are derived afterward from it, as in the exam-

ple shown on page 96.

It is interesting to note that the structure of Fig. 48, in spite of

the fact that it has been introduced as a machine (abstract), turned out to

have less elements not existing in the user view of the process (such as in-

dexes and computer related steps) than the structure of Fig. 49, which is in-

troduced as algorithm of the process. Undoubtedly, the flexibility of the

FSMs makes them closer to our inner pattern of thinking than each single pro-

graming language. In using this system, we discuss the problems in terms of

states and transitions, we punch the program cards in terms of those problem

states and transitions, and, with more ease than in conventional programing,

we debug in the same terms. We feel that problems are not deformed by the ma-

chine, but the machine forms iteself after the problems (Schaffner 1972a).

- 228 -

6.3.2 - Experiments of strategies

The recognition of faint meteors is affected not only by their intensity

relative to the noise intensity, but also by the strategy used for their re-

cognition. If the meteor echoes were constant signals in a white, Gaussian

noise, a matched-filter receiver would be the optimum system for their detec-

tion. In reality, there are man-made interferences that are more prominent

than the cosmic noise, and the meteor echoes appear as short bursts with an

unpredictable time behavior. Therefore, recognition strategies have to be

devised, in terms of the possible characteristics of the meteor echoes, and

in terms of the parameters that are to be measured simultaneously to the

detection of the meteors.

The modeling of the processes in the form of abstract machines facili-

tates significantly the development of such strategies. Moreover, the fact

that the computer performs the processes in the same way as the user con-

ceives them allows an easy verification of the effectiveness of the strategies

by observing the values of the variables involved during the execution of

the processes on the actual signals.

- 229 -

;C EDING PAGE BLANK NOT FILMED,
6.3.3

6.3.3 - Measurement of noise

The detection of faint meteors is on a statistical basis. Essential

forthese statistics is a precise knowledge of the characteristics of the

noise present at each moment. Several programs were prepared for recording

statistical parameters on noise and interference, automatically at periodical

intervals of time.

One program is described here as a simple example of the flexibility and

conciseness of the language. One thousand noise samples s are analyzed.

The distribution of their amplitude should be produced. Moreover, the number

of samples that exceed a threshold t, and their mean amplitude should be com-

puted.

Two versions of this program are given: one (Fig. 51a) for a small page

and a large recourse to functional memory; and one (Fig. 51b) for a larger

page and a minimum recourse to functional memory. It can be noted in Table

14 that the larger page leads to a reduced description of the program. These

considerations are relevant to the question of the complexity of the program-

able network in a CPL system.

(a) (b)

S (o)

T A B L E 14 program 1020

B S 999C E Is

number nuimber number memory execution programing

Exof of of time t
Fanguag

8(0) ' CE C > t2

lagae statem./ symbols cards words per segm. time
ins truc.

CPL2 (a) 13 61 1 rt

distrib distrib

(b)Fig. 51 - State diagrams for measurement of noise characteristics

-T A B L E 14 program231 -

number number number memory execution programing
lagugeof of of time

statem./ symbols cards words per segm. time
instruc.

C P.L 2 (a) 13 61 1 r-t

(b) 11 59 1 r t

-231 -

6.4 EXPLORATORY PROGRAMS

To explore further the effectiveness of the programing language described

in section 5.2, and the efficiency of the corresponding execution, some pro-

grams for more complex processes are examined in this section.

6.4.1 - Numerical model of the dynamics of a fluid

In section 6.2.10 preliminary experiments on numerical models were shown.

Numerical models constitute a class of processes in which the spatiotemporal

structure is basic; therefore, we can expect that their modeling in the sub-

stratum of chapter 3 should in general be particularly efficient. In this

context, a program for a two-dimensional model, written in the language of

chapter 5, is shown in this section.

The dynamics of a hypothetical fluid is modeled in the form of an initial-

value problem with boundary conditions. The analytical expressions considered

are

= h +h
t 1 ax 2 ay

= h + h (6.8)
at 3 X(6.8)

- = h ' + h -

where n, i, and v are the variables of the system, and h the given parameters.r

The chosen finite-difference approximation is given by

n+ 1 n k n n n n

.n. - k - - ij_

n+ n - n ni-l,j - k ,j i ,j-1 (6.9)

n+1 n (n n) kvn n)

v = n+- vvn ,j- v 1) - k - v
ij ij s , i-,j ij ,j-

- 232 -

6.4.1

with the conventions:

x = iAx i = 1, 2, ... I

y = jA y j = 1, 2, ... J

t = n A t n = 1, 2, ... N

and the k derived from the h .
r r

To obtain the solution, an abstract machine is conceived, that has a

page for each point of the two dimensional space of the system (Figure 5), a

page for each boundary point, and a control page. The symbols n, 4, and v,

related to the variables of the process, are considered as names for three

variables xr; initial values a, b, and c of these variables are treated as

input data ur; the parameters kr also are treated as input data. Moreover,

an additional three variables Xr, named D, E and F, are used for temporary

purposes. The pages related to the points of the fluid perform an FSM 3 as

described in Figure 53, which implements expressions (6.9); the pages related

to the boundary points perform an FSM 2 which implements a time evolution

of the boundary values; and the control page performs an FSM 1 which controls

the work of the entire system. The pages circulate in the structure of Figure

13, with different scanning as indicated in Figure 52.

Figure 53 should convey the level of abstraction of these operational

structures. For instance, FSM 1, which constructs and controls the entire

machine, has four states. State 1 is devoted to creating the page array in-

dicated in Figure 52. In this state, function F consists simply in incremen-

ting variables A and B by one. Function T is expressed as a self-explanatory

decision table (the transition from the corner corresponds to the "else"

condition). The routing is different for the different transitions and con-

sists of creating pages related to given FSMs and in clearing variable A.

State 2 prescribes a horizontal scanning of the pages. State 3 prescribes

a vertical scanning, and provides for the test of the number of time steps.

State 4 orders an output record of the computed quantities, and makes the

pages disappear (transition to a triangle).

The computation of the variables n,4, and v at each point (FSM 3) is ob-

tained by means of simple networks of a parallel nature established by the

- 233 -

6.4.1

user in accordance with expressions (6,9) As an example, in state 1 of FSM 3,

the input set U, consisting of the data a, b, and c, is transferred in paral-

lel into the set X, consisting of the variables n, 4, and v. In state 3 of

FSM 3, there is a succession of five networks: the first produces simultane-

ously the accumulation of the original values of D, E, F into), i, v, and

the transfer of the original values of n, i, v into D, E, F; the second pro-

duces an interchange of values between E, E, F and D', E', F', which are vari-

ables that remain in S' of the network during the circulation of the pages;N

the third produces the subtraction of D', E', F', from D, E, F; the fourth

produces the multiplication of D, E, F by the data set k , k , k ; and the
2 4 6

fifth the accumulation of the present values of D, E , F into n, P, v. A

routing prescription sends the present values of n, ip, v to an output storage.

Obviously, the interest for such constructs is not to make the user do

what can be provided by a compiler, but to give the user the possibility

either of providing what has not been anticipated by the software systems,

or of obtaining specific optimizations. In this example, the aim was to mini-

mize the memory and the execution time. The entire computation is made with

61J + 3(1+J) + 2 memory words. The machine cycles are (2N+2) (I+1) (J+1),

with an average of four to five networks per cycle.

- 234 -

Fig. 52 - Two-dimensional page structure O

x OoRIG&A T
0 1 2 3 *.. I ... I VPOO

o Ij DDD : -,F-i: F]N :] F- F, _ ..-..
D1M .=77 ,,v ab,c

S:n FSM3

2. . D,Y - D:E:F'

: DE, Z D',E:, '

.DE... x ki,ksks

Y . * * * . .

Y, ,v _ DET
D,EF " 9,*,V

scanning D,E,: D.E:P'

control page DE,_ E'- D v/"\ 1 ,9,v r D,E,
(FSM 1)DT-DE:

boundary page - I / DE,

(FSM 2) 1

O point page -
(FSM 3S

Fig. 53 - State diagram for a numerical model

B- 235 -

n,*.va~b' B <1+1 S11 2 PSM 2 FSM 3

a E!"= 4# #A *1+1

FSM 2 a.

vertical san
horizontal scan

n,*,v +f {)s9,v
D,'E'F' * n,*,v4

FSM Irecord

Fig. 53 -State diagram for a numerical model

-235

6.4.1

6.4.2 - Analysis of echo-pattern turbulence and movement

In this example, a hypothetical process for weather radar is used for

exercising the flexibility of the abstract machines as models of intriguing

data manipulations.

The objective of the process here described is to infer on wind distribu-

tion in the atmosphere from the movement of radar echo patterns. Essentially,

profiles of the echo intensity along given lines s are measured at two times

differing by At (Fig. 54); then the two profiles at each line s are cross-cor-

related and the As for which the correlation is maximum is determined. The

ratio As/At is assumed as an estimate of the mean apparent movement of the

scattererersalong s. The echo intensity is determined in an extended volume

for adjacent small cells forming a cartesian three-dimensional array, and

cross-correlations are performed along three orthogonal axes for all adjacent

lines of cells. Because the radar scans space in polar coordinates, a coor-

dinate conversion is necessary in order to attribute the arriving echoes to

the proper cartesian cells. We are interested in both the local distribution

of movement and the global value for the entire volume.

As

oto
+ At

0.S

Fig. 54 - Echo profiles to be crosscorrelated

- 236 -

6.4.2

An abstract machine for implementing sucha process is derived from the

visualization of it on the part of the user. First we establish the data

structure. Three orthogonal coordinates r, t, and h are considered (Fig. 18

in section 5.2.1). Pages CE (cell pages), organized in a three-dimensional

array, are assigned to the data and computations related to the cells of the

volume considered in the atmosphere. Pages TE (terminal pages) are allocated

at the ends of each row and column of pages CE; thus there are three planes

of pages TE, one for each coordinate. Three pages AV (average page) are

assigned to the collection of the data from the three planes of TE pages. A

linear array of pages IN (integrating pages) are related to the points of

the present radar sweep. Finally, one page CO (control page) is assigned the

coordination of the work of all pages. Each type of the above pages implements

a particular FSM, which will be designated with the same abbreviation (Fig. 55).

FSM IN

The task of this FSM is to integrate the echoes emerging from the radar recei-

ver and to send them into the corresponding CE pages, thus providing the con-

version from polar to cartesian coordinates. More precisely, we want all the

independent echoes that fall into each cubic cell be integrated in space and

time, and then delivered to the corresponding CE pages.

Such a computation can be tackled in several different ways. Here it is

shown that an abstract machine can perform this task in real time with one

state. The antenna beam crosses several adjacent cells at each time; and

during the movement, the beam abandons certain cells, and intersects new cells.

In accordance, we imply a sequence of pages in number not less than the number

of cells that can be crossed at any time. These pages have operating cycles

at the rate at which the echoes become independent (say, corresponding to the

radar pulse width). In each cycle, in the state of FSM IN (Fig. 55), variable

A accumulates the present content of A'. At the same time, B and E are incre-

mented by one, and D acquires the present coordinates r, t, and h condensed in

one word and varying by one unit at each cell. Variable C holds from some pre-

vious cycle the coordinates of the present cell.

At each cycle, a double test is made. Until C = D (i.e., present coor-

dinates are the same as they were previously), the page remains in PN (transi-

tion with circle), and thus A accumulates samples consecutive in range. As

- 237-

FSM CO FSM IN FSM IN

start

2 A, 5, E Z A', I i A. B, C A', I I

A'. D S, rth A',D S, rth

STI (IN) AB acc P(C) > KC * AB ccPP (0

D G AS ace P(G)
E > i Eo 0 -C D

E E0

3

end

FSM CE

S TO (IN)0
4 FSM TE,O

Sri (CE)A +1 CD- A1
A-2

5

AB C = rth 2
AB = CDSCAN (coorABC=O) A B A - A
Ac A A
A38

SCAN (coor A) 4 3

ST 2 (CE+TE) C D 0

C - D 8A0-AB

AB= CD A -A'

Do c I+1 1
SCAN (coor 8+1) 1- Bo 6

S+IB
4 K 0

A - C A 4- A'
Do C 1 +1 1

A> 8

SCAN (coorC+I,
E + I

E = FSM AC
Eo

SCAN (coor B C=0)

FA+B Fig. 55
IF > 2

State diagrams of

10 D- concurrent FSMs

record 8 -

-238

6.4.2

soon as any one of the coordinates changes, the page enters circulation, and

the present sample in A' will be taken by the following page. Normally E is

larger than 1, and thus the transition path that clears E is taken. At the

next circulation, the page will perform the same way. But the time will come

when that cell is no longer crossed by the antenna beam, and thus at the next

circulation the coordinates will be different at the first cycle; in this case,

E is no longer larger than one, and the transition path with routing is taken.

This routing accumulates the content of A (the accumulated echo) and that of

B (the number of accumulations) into the page with coordinates equal to C.

Moreover, the present coordinates (presently in variable D) are transferred

to variable C in the page.

Depending on the speed of the antenna movement, and on the range, the

beam may cross the same cell for such a large number of times, that the accumu-

lation of samples may exceed the capacity of A. The variant FSM IN' contains

a further test by which the data are routed also when the number of accumula-

tions in B exceeds a given value.

FSM CE

When in state 0, the pages rest in the functional memory, capable only of

receiving the data routed by the pages IN. At the end of the first and second

radar scans of the atmosphere, the pages CE are driven to state 1 by the con-

trol page CO. In state 1 the accumulation in A is divided by the number of

accumulations in B, and the result is transferred into C while the previous

content in C is transferred into D.

For the execution of the crosscorrelation, each row and each column of

pages CE is circulated as a separate page segment. In state 2, A and B ac-

quires the content of C and D., respectively (they correspond to points of the

first and second profiles), and the product with zero lag is accumulated in

A'. Then, in state 3, the profile in B is shifted k times, and the corres-

ponding products are accumulated in A'. Subsequently, in state 4, the profiles

in C and D are interchanged, and thef-the operations in state 3 are repeated

again k times. Finally, the two profiles resume their original locations in

C and D by stopping over state 4, and then the page segment returns to state 0.

- 239 -

6.4.2

FSM TE

When pages CE of a segment (either a column or a row of the array) trans-

fer to state 2, the page TE of that segment also transfers to state 2 of its

FSM (Fig. 55). In state 2, the accumulation of products in A' (a point of

the crosscorrelation) is transferred into A of the page. Then the page stops

k times over state 3 before transferring to state 6. In state 3, B and D ac-

quires the new sum of products in A'; and C increments its absolute value by

one. Every time the new sum of products in A' is not larger than the one pre-

sently in B, the page transfers to state 4, where the substitution of new

values in B and D does not occur. In this way, D acquires a measure of the

lag corresponding to the maximum sum of products.

In state 5, variable C is cleared and provided with the negative sign.

Then the operations in states 4 and 3 are repeated. Finally, the page trans-

fers to state 6, where the present value of D is accumulated in D' and also

routed to the output.

FSM AC

At the end of the crosscorrelations along each axis, the corresponding

page AC is circulated in state 1 in order to acquire the accumulations of lags

in D'. A mean value is obtained by division, and then it is routed to the

output.

FSM CO

The tasks of this FSM, implemented by one page, is to coordinate the work

of the other FSMs and to produce a record of output data. Through states 1 to

4, under the control of signals "start" and "end" indicating the beginning and

the completion of the radar scanning, pages IN and CE are driven to the proper

states in order to produce the two sets of profiles.

After two radar scans, page CO transfer to state 5, where variables A, B,

and C are given three indexes (say values 1, 2, and 3) related to the coordin-

ates r, t, and h of the array of pages CE; moreover the scanning of these coor-

dinates is made starting from zero. Then, in state 6, a page segment along

the coordinate A is put in circulation, and the related pages CE and TE are

driven to their state 2. After 2k circulations, coordinate B is incremented

by one (state 7), and the scanning along coordinate A is repeated (state 6).

After n increments of B (the size of the array), coordinate C is incremented

- 240 -

6.4.2

by one (state 8), and the scanning is repeated as above. After n increments

also of coordinate C, the indexes of the coordinates are rotated one position

(state 9), and all the previous phases are repeated. After two rotations of

the indexes, page CO transfers to state 10 for the control of the record of

output data.

The abstract machine described is in fact the skeleton for a variety of

possible processes on the movement of a three-dimensional distribution of

scatterers. The fact that this skeleton has the spatiotemporal form depicted

in Fig. 18 that interplays with FSM structures facilitates the user's develop-

ment of these processes. After the production of the output data indicated in

the state diagram of Fig. 55, pages CE contain the original integrated measure-

ments, and the planes of pages TE contain a distribution of apparent movement

along each axis.

The interest of carrying out this program lies in the experience we can

obtain concerning the use of abstract machines for modeling, and thus program-

ing, the execution of complex data manipulations. In the first place, it has

been possible to devise an execution that processes with a minimum of storage

the data as soon as they are produced by the radar. It is very apparent from

Fig. 55 that the possibility of constructing special processing structures

leads to many shortcuts in the execution that are not possible with conven-

tional programing languages. In the second place, it has been found that the

development of the program, its readability, and its extension are easier in

the language of abstract machines than in a phrase programing language.

The programing language most effective for this type of process is un-

doubtedly PL-1. A program equivalent to that expressed in Fig. 55 has been

developed in PL-1. Starting from the solutions already developed for the

abstract machines of Fig. 55, which are applicable only partially to conven-

tional programing, several days were necessary to make the PL-1 program run

properly. The source listing of this program contains 115 statements, after

exclusion of the input and output parts. The flowchart representing the inter-

connections among routines includes 31 boxes. The program is given the compu-

ter through 159 punch cards, and the optimizing compiler produces an object

listing of 859 instructions.

- 241 -

6.4.2

This program supports with clear evidence the belief that there is a prac-

tical counterpart to the conjectures of von Neumann (pp 60-61) and Burks (sec-

tion 2.3.6). In essence, both suggest that for complex activities, the des-

cription of a special machine that performs the activity is simpler than a

description of the activity itself. The programs shown in this chapter all

indicate that a structural description is more effective than a phrase descrip-

tion. For simple processes, however, we can always suspect that this effective-

ness is merely caused by the presence or absence of specific features in the

language. But as soon as the processes become more complex, the difference in

the complexity of the description appears so basic that we have to consider

unquestionable that a structural modeling, and thus programing, is more effec-

tive, at least for certain classes of problems, than a modeling, and thus pro-

graming, by means of a phrase language.

- 242 -

Chapter 7

Concluding Remarks

This research study has had two main objectives: (1) to clarify the

reasons why a certain programable processing machine, called the CPL system

(section 4.4), has exhibited not only a significant efficiency in the execu-

tion but also a conciseness of its machine-language programs that is even

greater than that of corresponding high-level language programs, to assess

these reasons, to inquire about their possible generality, and to evaluate

advantages and disadvantages in respect to other approaches; and (2) to ex-

plore the possible applicability of this approach in fields other than the

one for which it was originally devised.

The first objective has been carried out to a certain extent in the

various chapters of the report, and a summarizing characterization is offered

in section 7.1.

In regard to the second objective, this study has broadened the issue,

and at the same time has made manifest the need for further study and analy-

sis. On the one hand, the clarification made under task (1) suggests that

a structural language is as fully general as a phrase language. Moreover,

psycholcgical analyses indicate that a structural domain evokes more easily

certain aptitudes of the user, such as familiarity with the spatiotemporal

frame, and geometrical intuition. Furthermore, spatiotemporal constructs

appear more directly implementable by hardware than are verbal constructs.

But on the other hand, a large body of knowledge and experience has been

accumulated in the last decades on phrase languages and their implementa-

tions, while almost none is available on structural languages. Under

the limited means and scope of the present contract, only microscopic bits of

- 243 -

7.1

what has been developed in the computer field could be considered. There-

fore, in section 7.2 the particular results obtained are reviewed, and their

possible extrapolation discussed. And in section 7.3, subjects that deserve

further study are suggested.

7.1 THE ESSENCE OF THE APPROACH

The essence of the computer approach analyzed in this report can be

presented from various viewpoints. In a computer context, one can say that

the structural approach used with analog computers has been brought to a

generality and a flexibility similar to those of the programing language

approach of digital computers. This result has been achieved by means of a

language that describes the structure of the computer.

Analog computers exhibit great efficiency in execution and a reduced

need for a memory, and similar characteristics are found in the CPL system.

Digital computers free the user from any hardware contact by means of a

user language,and a similar facility exists also for the CPL system.

In a programing context, one can say that in this approach the user's

images are utilized directly as a form of expression of his intentions.

This is achieved by providing formal means (called a symbolic substratum)

for describing abstract machines in a spatiotemporal frame. In this substra-

tum there is no gap between the mental images of the user and the actual

structures that the computer then will implement.

Often people think of images as vague objects, especially good in an

artistic context, while verbal expressions are considered appropriate in a

rigorous context. In fact, it has been ascertained (see chapter 2) that

images and words are both suitable for both artistic expression and logical

structuring. The development of these means of expression and the training

of their users affect their applicability.

In the CPL system there is one especially important feature. What is here

called a symbolic substratum is in effect a formal language with broad connota-

tions that is capable of implementing phrase structure constructs as well as

spatiotemporal constructs. Therefore, when a process, or part of it, is better

expressed in a phrase form, such forms also can be interpreted and implemented.

- 244 -

7.1

In section 2.1 it was repeatedly observed that an alternation of verbal struc-

tures and imagery is a characteristic of mental processes. We can expect that

the availability of these two complementary forms in the programing language

should facilitate the process of programing and lead in general to more effec-

tive programs.

In a formal context, one can say that finite state automata have been

given such a flexibility that they constitute here a convenient language

for modeling, and thus describing, processes of widely differing natures.

This has been achieved by assuming a large alphabet, a variety of formulations

for the characterizing functions, and a hierarchical modularity. Because

they have been freed from the requirements of being interesting analytical

tools, these automata can be given characteristics enabling them to form

practical models of processes.

From this approach, one can expect that some sort of systematic guidance

can be produced for assisting programing, presently merely empirical.

Significant also is the finding that by programing the structures to be imple-

mented, rather than programing the activity of structures already implemented,

the complexity of programs appears to be reduced. A relation with the con-

jecture of von Neumann cited in section 2.5.4, and with the Burks' suggestion

(section 2.3.6) is hard to escape.

The reasons that several viewpoints are necessary for better focalizing

this approach are undoubtedly the same as those that require several view-

points for focalizing the notion of automaton. The issue is the communica-

tion between man and processing machines; therefore, it should not be surpris-

ing that the multiplicity of human mental structures is to be considered.

On page 13 the intent was expressed of exploring with a fresh outlook

possible ways of direct communication between man and machine. In the ap-

proach taken,the notion of abstract machine appears to be the crucial point.

The abstract machines considered here are suitable of rigorous treatment,

inasmuch as they can be viewed as automata. This rigorousness ismandatory

for dealing with digital machines. Abstract machines evoke the imagery sys-

tem of the mental processes, which permits a more extended utilization of the

user's capabilities. Abstractmachines themselves offer the structures to be

given the physical computer, making possible a direct implementation of
the

user's intentions.

- 245 -

7.1

When the flexibility and the abstraction of abstract machines are brought

to a certain degree, it becomes unclear whether they any longer can be consi-

dered machines or whether they should be rather viewed as representation of

thought. We are accustomed to consider verbal expressions as "the" represen-

tation of thought; but as Arbib (1972) suggests, it seems more appropriate to

consider verbal expressions as "samples" of thought. For several classes of

activity, it seems that abstract machines are more appropriate samples of the

user's thought.

When dealing with a computer, the user's thought must be brought to a

rigorous form. Therefore, the user has to use a language, whatever it is,

that can finally lead to a precise formulation of the desired activity. The

symtax of abstract machines is familiar to all users, regardless of their

spoken language or of their professional training. It is the syntax of the

spatiotemporal frame that is provided to the user in a natural form by his

life experience and sharpened by his geometrical intuition. Moreover, it

seems that a structural language is less ambiguous than a verbal language.

To avoid ambiguity, a verbal language needs to be so rigid that it becomes

a poor language. A structural language seems capable of being at the same

time unambiguous and flexible.

7.2 RESULTS OBTAINED AND EXTRAPOLATIONS

In the specific field of real-time data processing in which the CPL 1

machine has been used, and for which the CPL 2 programs have been prepared,

the results are clear. With respect to the conventional computer approach,

significant advantages are simultaneously obtained in all the aspectsinvolved

in the use of a processing machine, as is testified by the examples in chap-

ter 6. It is this multiaspect, always-present facility that has suggested

the extent of the study described in this respect.

Ease of prescribing specific implementations of the processes, a para-

mount requirement in real-time data processing, is very apparent from the flex-

bility and the isomorphism of the symbolic substratum that constitutes the

user's language and the physical substratum that constitutes the computer.

In particular, the facility for handling parallelism has been remarkable.

The language describes both actual parallelism of different operations on

- 246 -

7.2

several variables in a page, and virtual parallelism of many pages performing

independent or concurrent tasks.

The speed of execution and the reduced need for memory are easily

understandable consequences of the fact that the machine is structured ad hoc

for each process. But there is also another consequence from this structur-

ing: economy. When the programability of the hardware reaches the degree im-

plied here, the same hardware can perform the tasks usually accomplished by

several different specialized units.

From a practical viewpoint, an unusual characteristic of this approach

is the possibility for the user to follow and understand easily all detailed

actions of the computer. The benefits are found especially in debugging and

modifying programs. Moreover, thischaracteristic permits a truly man-machine

interactionwithout the need for auxiliary equipment and software systems.

The most striking result is perhaps the fact that the machine programs

are typically more concise and more user oriented than thecorresponding pro-

grams in high-level languages. This outcome is the consequence of structuring

and of the isomorphism between the symbolic and the physical substrata.

One objective of this study is to inquire to what extent the above advan-

tages can be applicable to other fields. Here, the extrapolations and consi-

derations that can be made at the present state of the study are presented.

The approach described in this report has, from a theoretical point of

view, all the generality required for a general purpose computer. This issue

was discussed in section 3.4. From a practical viewpoint, in section 4.3,

the favorable characteristics of extended pipelining, flexible parallelism,

and minimization of the addressing function were pointed out. In section 5.4

discussions and conjectures were made in regard to the characteristics of the

programing language.

Some points can be a priori established. The execution will typically be

either more efficient than or equal to that of conventional computers, for

the reason that a specialized machine is in general more efficient for a specific

task than is a general-purpose machine. For the processes for which the

structure of present computers is optimum, this structure can be programed in

the CPL system. Certain inefficiencies encountered in present parallel com-

puters are overcome here because the parallelism can be adjusted to various

- 247 -

7.2

degrees. In fact, here, parallelism is a special case of the specialization

of the machine.

In regard to cost, no analysis has been carried out. However, the feel-

ing has developed that, in general, a higher utilization of the hardware

should occur in comparison to present computers. This should lead to a lower

cost, as soon as the new techniques and procedures become "normal".

In section 1.3 several works on computers oriented to programing lang-

uages were cited. These are attempts to make a physical structure implement

verbal structures. It appears that the level at which this implementation

occurs does not notably affect the overall efficiency. In the CPL system,

instead, an attempt is made to make a physical structure implement imagery

structures. The comparison between CPL 1 and CPL 2 programs suggests that

both the ease of programing and the overall efficiency of the execution ap-

pear to increase with the level at which a process is modeled in the machine

context.

In regard to programing, we can expect general benefits from a struc-

tural language, because it is a characteristic of the human mind to have typi-

cally greater facility for spatiotemporal frames than for formal systems of

verbal structure, even allowing for specific individual characteristics.

Any assessment of this question will perhaps be long and controversial, as

was the dispute at the beginning of the century over whether thought is

imageless or wordless. But such a possible polemic is of no concern to this

study, for in psychology it has been clarified that thought uses both verbal

and spatiotemporal constructs. And similarly the CPL system is suitable for

both verbal and spatiotemporal descriptions.

The present growing interest in structural representations, both in

the context of theory of computation and in the context of actual communica-

tion with computers, testifies that the present computer approach is too re-

stricted to phrase structures. The crucial point is how to develop a connec-

tion between the compiler approach, with all its well-known achievements, and

new possible structural approaches. The system described in this report

might offer a way for attacking the problem. In the next section, spe-

cific topics to be studied are suggested.

- 248 -

7.3 - TOPICS FOR FURTHER STUDY

The introduction of a structural approach in computer programing raises

a number of questions that could not be answered within the limited means of

this contract - questions that range from the purely theoretical to the spe-

cifically pragmatic. A few specific topics that appear most deserving of

attention are listed below.

1. Further analysis of programs

The preparation of the programs for real-time processing of radar signals,

samples of which are reported in chapter 6, have contributed much to the under-

standing of a structural approach, and to the development of its programing

language. Further benefits both to the understanding of the approach and to

the programing language can be expected from analysis of other programs in

different fields. Such analyses are fruitful in any of the three ways they can

be carried out: (1) by simple preparation of programs in terms of languages

of different levels; (2) by computer simulation of different CPL systems; and

(3) by actual execution on a CPL machine that can implement a level of suffi-

cient interest.

2. Study of possible connections between the structural approach and the
compiler approach

The advantages encountered with the structural approach in the field

of applications referred to in chapter 6 are impressive. But no less impres-

sive are the advantages of the compiler approach in many other different

fields. Therefore it is natural to inquire whether the two approaches can be

used simultaneously. A programable substratum controlled by finite state

automata is well suited also for implementing the activities performed by

compilers. Moreoever, given the particular flexibility of the FSMs and the

self-development of data structures, we can expect that the compiling activi-

ty would be particularly efficient.

In this context one can analyze the possibility of embedding the execu-

tion with the compilation. The structural approach would be used when appro-

priate, and the compiler approach when needed. In this case, there would be

not two distinct phases, the compilation and the execution, but only the exe-

cution, in which, sporadically, different levels of compilation might occur.

- 249 -

7.3

Given the time sharing structure of the CPL system, such a fragmentation of

compilation and execution activities should not impair the smoothness of the

execution. Because of the parallelism that can be implemented in the CPL

system, an overall greater efficiency might occur in several cases. More-

over, with real-time compilation, the interaction with the user would be

eased.

3. Study of the optimum characteristics for a programable substratum

One of the most intriguing features of the CPL system is the bypassing

of the compilation by establishing an isomorphism between the symbolic sub-

stratum that constitutes the programing languages and the physical substratum

that constitutes the computer. To give the user the impression of not being

constrained by the machine, the symbolic substratum should permit the descrip-

tion of any structure that the user is capable of devising. Although such a

goal might appear presumptuous, there is good reason for thinking that mental

processes are based on a finite set of means, from which structures are contin-

uously being buil by grouping and hierarchical concatenation. If a sufficiently

close approximation of these means is given to the symbolic substratum, it

might be possible to implement a substratum - that is, a language - that ap-

pears satisfactorily universal to the user.

One example of this type of study was given in section 5.1.3. However,

a much larger scope is necessary. In particular, an analysis of primitives

for the data transformation function F would be of great interest. Such a study

should concern itself simultaneously with mathematical formulations, psycho-

logical aspects of process modeling, and also with conveniences of implementa-

tion. Today the situation is different from that of decades ago. When com-

puters developed, technology was posing the most stringent limitations. Today,
instead, it is knowledge and imagination that limit the exploitation of tech-

nical possibilities.

4. Study on the optimum complexity for a programable network

The larger and the richer in features the programable network, the more

likely the user's constructs can be implemented directly; but at the same time

the utilization of the 1-vestment in hardware decreases. On the side of the

programs, in a first approximation, the length of the description of a network

- 250 -

7.3

configuration can be related to the logarithm of the number of elements and

options in the network. With the increase in number of elements and options,

the number of configurations and states necessary to model a process decreases.

Therefore we can expect that an increase in the complexity of the programable

network will initially decrease the total size of programs. However, with a

further increase in network complexity, the increased size of the network

descriptions will, statistically, outweigh the reductions in the modeling of

the processes.

It appears, therefore, of interest to analyze optimum complexities of

programable networks in reference to various criteria such as ease of program-

ing, size of programs, efficiency of execution, and cost-performance ratio.

5. Self-development

As indicated in the Preface, only a preparatory part of the study of

self-developing computers could be carried out under this contract. Effort

has been concentrated on formulating a programable substratum. In the con-

text of this substratum, self-development can then be studied with a great

deal more ease than in the context of conventional computers. Such a study

would be of interest not only for application to artificial intelligence and

robotics, but also for programing per se. A certain degree of self-develop-

ment permits an implicit description of processes, with consequently larger

flexibility of programs, and reduction of their size.

6. Study of implementation of recursion in the CPL system

Recursion can be implemented without the use of a compiler by giving the

processes certain self-developing structures. Certain features of the CPL

system appear interesting for such implementations. The flexibility of the

transition function, inparticular the stopover transitions and the priority,

permits the self-construction of recursive paths. The interplay that is pos-

sible among FSMs, pages, and data structures in the functional memory give

still other possibilities for recursive processes.

7. Study of the effectiveness of the CPL system for list processing

As is well known, certain classes of processing are effectively modeled

as a manipulation of lists, a list being a dynamic path in arrays of formal

- 251 -

7.3

objects. The CPL system is characterized as a programable substratum; in this

substratum, lists of objects can be defined and processed.

There are some features that deserve analysis in the context of list

processing. Segments of pages can be created and disposed during processing.

Pages can be inserted, deleted, and moved to any point of page segments. The

pages are dynamic blocks of data that can vary their size during processing.

The page segments are automatically relocated in the memory at each circula-

tion. The merging of pages and FSMs in the programable network allows the

data structures to be processing structures also. Specific words in the pages

can be used for addressing by means of routing. Data can be transferred from

one place to another in the data structures by means of the auxiliary page

array QN. Search can be implemented by one FSM shared by many sequences of
N

pages. Page segments and data structures in the functional memory may work

concurrently.

After a certain degree of knowledge has been developed at least in some

of the areas indicated above, a more suitable ground will be available for

assessing a structural approach and analyzing the possibility for an enlarged

general programing language that is capable of both verbal and structural

expressions.

- 252 -

REFERENCES

Adey, W. R. (1968): "Aspect of cerebral organization information storage
and recall" in Corning (1968), p. 69-100.

Aho, Alfred V. (Ed.) (1973): Currents in the Theory of Computing, Prentice-
Hall, Englewood Cliffs, N.J.

Aiserman, M. A., L. A. Gusev, L. I. Rozonoer, I. M. Smirnova, and A. A. Tal
(1971): Logic, Automata, and Algorithms, Academic Press, N.Y. (orig-
inal in Russian, 1963).

Akers, Sheldon B. (1972): "A rectangular logic array", IEEE Trans. Comp.,
CE-1, p. 848-857.

Alt, Francis L. and Morris Rubinoff (Eds.) (1968): Advances in Computers,
Vol. 9, Academic Press, N.Y.

Amarel, Saul (1970): "On the representation of problems and goal-oriented
procedures for computers" in Barnerli and Mesarovic (1970), p. 179-244.

Anderson, J. P. (1961): "A computer for direct execution of algorithmic
languages", Proc. Eastern JCC, Vol. 20, p. 184-193, AFIPS Publ.

Arbib, M. A. (1968): "Automata theory as an abstract boundary condition for
the study of information processing in the nervous system" in Leibovic
(1969), p. 3-19.

Arbib, M. A. (1969): Theories of Abstract Automata, Prentice-Hall, N.J.

Arbib, M. A.. (1972): "Content and consciousness: the secondary role of
languages", Report 71 P-1, Computer and Inf. Science, University of
Mass., Amherst, Mass.

Atlas, David (1964): "Advances in radar meteorology", in Advances in Geo-
physics, Vol. 10, p. 318-478, Academic Press, N.Y.

Austin, Pauline M. and Spiros G. Geotis (1971): "On the measurement of sur-
face rainfall with radar", Res. Rep. Weather Radar Research, Dept. of
Meteor., MIT, Cambridge, Mass.

Balzer, Robert M. (1973): "Digital computer programming" in Yearbook of
Science and Technology, p. 149-151, McGraw-Hill.

Barnerji, R. andM. D. Mesarovic (Eds.) (1970): "Theoretical approaches to
non-numerical problem solving", Proc. IV Systems Symp. (1968),
Springer-Verlag, Berlin.

Barrow, D. W. and C. Strachey (1966): "Programming" in Advances in Program-
ming and Non-Numerical Computation (Ed. L. Fox), p. 49-82, Pergamon
Press, N.Y.

Bartee, T. C., I. L. Lebow, and I. S. Reed (1962): Theory and Design of
Digital Machines, McGraw-Hill, N.Y.

Bashkow, T. R., A. Sasson, and A. Kronfeld (1967): "System design of Fortran
machine", IEEE Trans., EC-16, p. 485-499.

Battan, Louis J. (1959): Radar Meteorology, Univ. of Chicago Press.

- 253 -

Bauer, W. F. (1960): "Horizons in computer system design", Proc. Western

JCC, p. 41-52.

Berge, Claude (1968): The Theory of Graphs, Wiley, N.Y.

Bell, C. Gordon and Allen Newell (1971): Computer Structures: Readings and

Examples, McGraw-Hill, N.Y.

Beth, E. W. and J. Piaget (1966): Mathematical Epistermology and Psychology,

Reidel Publishing Co., Dordrecht, Holland.

Bjorner, D. (1971): "On the definition of higher-level language machines",

Proc. Symp. Computer and Automata, Polytechnic Press, N.Y., p. 105-135.

Blinkov, Samuil M. and Il'ya I. Glezer (1968): The Human Brain in Figures

and Tables, Basic Books, Inc., Plenum Press.

Blum, Manuel (1967): "A machine-independent theory of the complexity of

recursive functions", Journal ACM, Vol. 14, p. 322-336.

Blum, Manuel (1967): "On the size of machines", Information and Control,

Vol. 11, p. 257-265.

Blumenthal, A. L. (1970): Language and Psychology, Historical Aspects of

Psycholinguistics, John Wiley & Sons, Inc.

Book, Ronald V. (1973): "Topics in formal language theory" in Aho (1973).

Booth, T. L. (1967): Sequential Machines and Automata Theory, John Wiley

& Sons, N.Y.

Bruner, J. S., R. R. Oliver, P. M. Greenfield, et al (1966): Studies in

Cognitive Growth, John Wiley & Sons, N.Y.

Bucholz, W. (Ed.) (1962): Planning a Computer System, McGraw-Hill, N.Y.

Burkhardt, W. H. (1965): "Universal Programming Languages and Processors,

a brief survey and new concepts", AFIPS, Fall JCC, Vol. 27, part I,
p. 1-21.

Burks, A. W. and Jesse B. Wright (1953): "Theory of logical nets", Proc.

IRE, Vol. 41, p. 1357-1365.

Burks, A. W. (1963): "Programming and the theory of automata" in Braffort

and Hirchberg (Eds.), Computer Programming and Formal Systems, p. 100-

117, North-Holland Publ. Co., reprinted in Burks (1970).

Burks, A. W. (1970): Essays on Cellular Automata, Univ. of Illinois Press,

Urbana, Ill.

Caianello, E. R. (1961): "Outline of a theory of thought processes and
thinking machines", J. Theor. Biol., 1, p. 204-235.

Cantarella, A., F. Maffioli, and A. Pawlina (1971): "On the sirio SHF

experiment and weather radar data handling", Symp. Satel. Com., Geneva,

Italy, June 1971.

Cappetti, Ilio and Mario Schaffner (1972): "Structure of a communication

network and its control computers", Proc. Symp. Computer-Communications

Networks and Teletraffic, p. 587-598, Polytechnic Press, Brooklyn, N.Y.

Chaitin, Gregory J. (1966): "On the length of programs for computing finite

binary sequences", Journal ACM, Vol 13, N4, p. 547-569.

- 254 -

Chen, T. C. (1971): "Parallelism, pipelining and computer efficiency",

Comp. Res., Vol. 10, p. 69-74.

Chesley, G. D. and W. A. Smith (1971): "The hardware-implemented high-level

machine language for SYMBOL', Proc. Spring JCC, Vol. 38, p. 563-573,

AFIPS Press, N.J.

Chomsky, N. (1957): Syntactic Structures, The Hague: Mouton & Co.

Codasyl (1962): "An information algebra", Com. ACM, Vol. 5, p. 190-

Codd, E. F. (1968): Cellular Automata, Academic Press.

Comfort, W. T. (1962): "Highly parallel machines", Proc. Workshop on Com-

puter Organization, p. 126-155 (1963).

Comfort, W. T. (1963): "A modified Holland machine", Proc. Fall JCC,

p. 481-488.

Cooke, I. and M. Lipkin, Jr., (Eds.) (1972): Cellular Neurophsiology -

a source book, Holt, Rinehard and Winston, Inc., NY.

Corning, W. and M. Balabam (Eds.) (1968): The Mind: Biological Approaches

to Its Functions, Interscience Publisher (John Wiley), N.Y.

.------ Cotten, L. W. (1969): "Maximum-rate pipeline systems", Proc. Spring JCC,

p. 581-586.

Dennis, J. B. (1971): "On the design and specification of a-common base

language", Proc. Symp. Computers and Automata, p. 47-74, Polytechnic

Press, N.Y.

Dertouzos, Michael L., Michael Athams, Richard N. Spann, and Samuel J. Mason

(1972): Systems, Networks and Computation: Basic Concepts, McGraw-Hill,

N.Y.

Dijkstra, Edsger W. (1968): "Co-operating sequential process" in Program-

ming Languages (Genus editor), p. 43-109, NATO Symposium.

Eccles, J. C. (1964): "Conscious experience and memory", in Eccles (1965),

p. 314-344.

Eccles, J. C. (Ed.) (1965): Brain and Conscious Experience, Springler-

Verlag, N.Y.

Estrin, G. (1960): "Organization of a computer system - the fixed plus

variable structure computer", Proc. Western JCC, p. 33-40.

Estrin, G., B. Russell, R. Turn, and I. Bibb (1963): "Parallel process-

ing in a restructurable computer system", IEEE Trans. Comp., Vol EC-12,

N5, p. 747-755.
Falkoff, A. D. and K. E. Iverson (1967): "APL 360 terminal system", Proc.

Symp. Interactive System, Academic Press.

Fields, W. S. and W. Abbott (Eds.) (1963): "Information storage and neural

control", Proc. Houston, Texas, X Annual Scientific Meeting, Neurologi-

cal Society.
Flavell, J. H. (1963): The Developmental Psychology of Joan Piaget,

Van Nostrand Co., Inc., Princeton, N.J., 422 pp.

Fleisher, Aaron (1953): "The information contained in weather noise", Res.

Rep. N22, Dept. of Meteor., MIT, Cambridge, Mass.

- 255 -

Flynn, M. J., (1972): "Some Computer Organizations and their Effectiveness",
IEEE Trans. C-21, pp948-960.

Furth, H. G. (1969): Piaget and Knowledge, Prentice-Hall, New Jersey.

Galler, B. A. and A. J. Perlis (1970): A View of Programming Languages,
Adison-Wesley, Reading, Mass.

Gardner, M. (1958): Logic Machines and Diagrams,McGraw-Hill, New York

Gill, A. (1962): Introduction to the Theory of Finite-State Machines,
Mc-Graw-Hill, New York.

Ginsburg, S. (1962): An Introduction To Mathematical Machine Theory,
Addison-Wesley, Reading, Mass.

Ginsburg, S. (1966): The Mathematical Theory of Context Free Languages,
McGraw-Hill, New York.

Gold, Oppenhein, Rader, and Stockholm (1969): Digital Processing of Signals,
McGraw-Hill, New York.

Goldstine, H. H. and J. von Newmann (1947): "Planning and Coding Problems
for an Electronic Computing Instrument", reprinted in A. H. Taub,
John von Newmann Collected Works", Vol. V, Pergamon Press, 1961, pp.
80-235.

Graham, W. R., (1970): "The Parallel and the Pipeline Computers", Datamation,
Vol. 16, April, 1970.

Grosky, W. I. and F. Tsui (1973): "Pattern Generation in Non-Standard Tessel-
lation Automata", Proc. ACM Annual Conf. pp. 345-348.

Harrison, M.A. (1965): Introduction to Switching and Automata Theory, McGraw-
Hill, New York.

Hartmanis, J. and R. E. Stearns (1966): Algebraic Structure Theory of Sequen-
tial Machines, Prentice-Hall, New Jersey.

Hassitt, A., J. W. Lageschulte and L. E. Lyon (1973): "Implementation of a
High Level Language Machine", Com. ACM Vol. 16, pp. 199-212.

Hellerman, Leo, (1972): "A Measure of Computational Work", IEEE Trans. Comp.
Vol. C-21, N5 pp. 439-446. Follow-up in IEEE Trans Comp. Vol.

Hennie, F. C. (1968): Finite-State Models for Logical Machines, John Wiley
and Sons, Inc., New York.

Hobbs, L. C., and al. (Ed.), (1970): Parallel Processor Systems, Technologies,
and Applications, Spartan Books, New York.

Holland, J. H. (1959): "A Universal Computer Capable of Executing an Arbitrary
Number of Subprograms Simultaneously", Proc. Eastern J.C.C., pp. 108-113;
reprinted also in Burks (1970).

Holland, J. H. (1960): "Iterative Circuit Computers", Proc. Western J.C.C.
pp. 259-265; reprinted in Burks (1970).

Holland, J. H. (1965): "Iterative Circuit Computer Characterisation and Re-
sume of Advantages and Disadvantages", in Mathis et. al. (Ed.) Microelec-
tronics and Large Systems, pp. 171-178, Spartan Books, New York; reprinted
in Burks (1970).

- 256 -

Holland, J. H. (1970): "Hierarchical Descriptions, Universal Spaces, and

Adaptive Systems", in Burks (1970), pp. 320-353.

Holt, Anatol W.(1971): "Introduction to Occurrence Systems", in Associative

Information Techniques, edited by Jacks (1971), pp. 175-203.

Hopcroft, J. E. and J. D. Ulman (1967): "An Approach to a Unified Theory of

Automata", Bell System Tech Journal, V. 46, pp. 1793-1829.

Huffman, D. A. (1954): "The Synthesis of Sequential Switching Circuits",

Journal of the Franklin Institute, 257, pp. 161-190-275-303.

Iliffe, J. K. (1968): Basic Machine Principles, American Elsevier Publ.

Iliffe, J. K. (1969): "Elements of BLM", The Computer Journal, Vol. 12, pp.

251-2581.

Inhelder, B. and J. Piaget (1958): The Growth of Logical Thinking/Construc-

of Formal Operational Structures, Basic Books.

Iverson, K. E. (1962a): A Programming Language, John Wiley and Sons, New York.

Iverson, K. E. (1962b): "A Common Language for Hardware, Software, and Appli-

cations", Proc. Fall JCC, Vol. 22, p. 121.

Iverson, K. E. (1964): "Formalism in Programming Languages", Com. ACM, Vol. 7,

n. 2, pp. 80-88.

Jacks, Edwin L.(ed.) (1971): "Associative Information Techniques", Proc. Symp

at General Motors Research Laboratory, American Elsevier, New.York.

Jump, J. Robert and Fritsche, Dennis R. (1972): Microprogrammed Arrays", IEEE

Trans. Comp. Vol. C-21, pp. 974-984.

Karp, R. M. and Miller, R.E. (1967): "Parallel Program Schemata: A Mathema-

tical Model for Parallel Computation", IEEE Conf. Rec. 8th Symp on

Switching and Automata Theory, pp. 55-61.

Kavanagh, T. F. (1960)" Tabsol, A Fundamental Concept for System-Oriented

Languages", Proc. 1960 Eastern JCC, pp. 117-136.

King, C. A. (1972): "A Graph-Theoretic Programming Language" in Read (1972)

pp. 63-75.

Kleinmuntz, B. (ed) (1966): Problem Solving: Research, Method and Theory,
John Wiley and Sons, New York.

Kobrinskii, N.E. and B. A. Trakhtenbrot (1965): Introduction to the Theory

of Finite Automata, North-Holland Publ., Amsterdam, Holland.

Koczela, L. J. (1968): The Distributed Processor Organization, in Alt and

Rubinoff (1968).

Kutti, A. K. (1928): "On a Graphical Representation of the Operating Regime

of Circuits", in E. F. Moore (Editor), Sequential Machines, Selected

Papers, Addison-Wesley Publishing Co., Inc., 1964, translated from

"Trudy Leningradskoi Eksperimental noi Elektrotekhnicheskoi Laboratorii,"

Vol. 8 (1928).

Leibovic, K. N. (1969): Information Processing in the Nervous System, Springer-

Verlag, New York.

- 257 -

Lettvin, J. Y., H. R. Marturana, W. S. McColloch, and W. H. Pitts (1959):

"What the Frog's Eye Tells the Frog's Brain", Proc. IRE, Vol. 47, pp.

1940-1951; reprinted in Corning (1968), pp. 233-258.

Longuet-Higgins, H. C. (1969): The Non-local Storage and Associative Retrie-

val of Spatio-Temporal Patterns" in Leibovic (1969), pp. 37-47.

Low, D. W. (1973): "Programming by Questionnaire: An Effective Way to Use

Decision Tables" Com. ACM, Vol. 16, pp. 282-286.

Luce, R. Duncan, Robert R. Bush and Eugene Galanter (Editors) (1963): Hand-

bookof Mathematical Psychology, John Wiley and Sons.

Luria, A. R. (1966): Higher Cortical Functions in Man, Basic Book, New York

(original in Russian, 1962).

MAC (1970): Record of the Project MAC Conf. on Concurrent Systems and Paral-
lel Computation, Published by ACM.

Mandler, J. M., Mandler, G. (1964): Thinking, from Association to Gestalt,
John Wiley & Sons, Inc.

Manna, Zohar (1973): "Program Schemas'' in Aho (1973), pp. 90-142.

Maruoka, Akira and Honda, Namio (1973): "Logical Networks of Flexible Cells "
IEEE Trans Comp. Vol C-22, N. 4, pp. 347-358.

MConnell (1968): The Modern Search for the Engram, in Corning (1968), p. 49-
68.

McCulloch, W. S., Pitts, W. (1943): "A Logical Calculus of the Ideas Immanent
in Nervous Activity", Bull. Math. Biophys., 5, pp. 115-133, also re-

printed in Fields-Abbott (1963), and Moore (1966).

McCulloch, W. S. (1965): Embodiments of Mind, M.I.T. Press, Cambridge, Mass.

McDaniel, H. (1970): Decision Table Software, Brandon Systems, Inc. New York.

McKeeman, W. M. (1967): "Language Directed Computer Design", Proc. Fall JCC,
Vol. 31, pp. 413-417.

Mealy, G. H. (1955): "A Method for Synthesizing sequential Circuits", Bell

Systems Technical Journal, Vol. 5, pp. 1045-79.

Melbourne, A. J. and J. M. Pugmire (1966): "A Small Computer for the Direct
Processing of FORTRAN Statements", The Computer Journal, Vol. 8, pp.
24-27.

Meo, Angelo Raffaele (1968): "Modular Tree Structures", IEEE Trans Comp.,
Vol. C-17, N. 5, pp. 432-442.

Meyer, A. R. and M. J. Fischer (1971): "Economy of Description by Automata,
Grammars, and Formal Systems", 12th Symp. Switching and Automata
Theory, pp. 188-191.

Miller, G. A. (1964): Mathematics and Psychology, John Wiley & Sons,

Minnick, Robert C. (1967): "A Study of Micro-cellular Research", Jour.
Ass. Comp. Mach. Vol. 14, April 1967, pp. 203-241.

- 258 -

Minsky, M. (1962): "Problem of Formulation for Artificial Intelligence",
Proc. XIV Symp. Applied Math. Amer. Math. Soc., Providence, R. I., pp.
35-46.

Minsky, M. (1965): "Matter, Mind and Models" Proc. IFIP Congress 65, pp.
45-49, Spartan Books, Washington, D.C.

Minsky, M. L. (1967): Computation: Finite and Infinite Machines, Prentice-

Hall, Inc., Englewood Cliffs, New Jersey.

Minsky, M. and S. Papert (1969): Perceptrons, the M.I.T. Press, Cambridge,
Mass.

MIT (1968): Research Laboratory of Electronics, Quarterly Progress Report

No. 88 (January 15, 1960) pp. 337-339, by R. Moreno-Diaz and W.S.
McCulloch.

Moore, E. F. (1956): "Gedanken-Experiments on Sequential Machines", in

Automata Theory (Annals of Mathematics Studies No. 34), Princeton,
New Jersey, pp. 129-153.

Moore, E. F. (ed.) (1964): Sequential Machines-Selected Papers, Adison-
Wesley, Reading, Mass.

Mullery, A. P., R.F. Schauer, and R. Rice (1963): "ADAM-A Problem-Oriented

Symbol Processor", Proc. Spring JCC., Vol. 23, pp. 367-380.

Mullery, A.P. (1964): "A Procedure-Oriented Machine Language", IEEE Trans.
EC-13, pp. 449-455.

Naur, Peter (ed.) (1960): "Report on the Algorithmic Language ALGOL 60",
Com. ACM, 1960, pp. 299-314.

Naur, P. (1965): "The Place of Programming in a World of Problems, Tools and
People", Proc. IFIP Congress 65, Spartan Books, Washington, D.C.,
pp. 195-199.

Nelson, R.J. (1968): Introduction to Automata, John Wiley and Sons, New York.

Newell A. (1970): "Remarks on the Relationship between Artificial Intelligence

and Cognitive Psychology", in Banerji and Mesarovic (Eds.) Theoretical

Approaches to Non-Numerical Problem Solving, Springer-Verlag, Berlin,

pp. 363-400.

Pager, David (1973): "On the Problem of Communicating Complex Information",
Com. ACM, Vol. 16, N. 5, pp. 275-281.

Paivio, A. (1971): Imagery and Verbal Processes, Holt, Rinehart and Winston,
Inc. New York.

Penfield, W. (1965): Speech, Perception and the Uncommitted Cortex, in Eccles

(ed.) 1965, pp. 217-237.

Piaget, J. (1950): The Psychology of Intelligence, Routled & Kegan Paul, Ltd.,

London.

Piaget, J. (1971): Biology and Knowledge, University of Chicago Press, Chicago
(original in French, 1967).

Piaget, J. and B. Inhelder (1971): Mental Imagery in the Child-a study of

the development of imaginal representation , Basic Books, New York,

(original in French, 1966).

- 259 -

Porter, R. E. (1960): "The RW-400 - a New Polymorphic Data System", Datamation,
Vol. 6, N. 1, pp. 8-16.

Ramarmoorthy, C. V., and S. S. Reddi, "Towards a Theory of Pileline Computing
Systems", Proc. 10th Allerton Conf. on Circuit and System Theory, Uni-
versity of Illinois, Urbana, Ill., pp. 759-568.

Read, R.C. (ed.) (1972): Graph Theory and Computing, Academic Press, New
York.

Reiss, R.F. (1962): "An Abstract Machine Based on Classical Association Psy-
chology", Proc. Spring JCC, pp. 53-70.

Reiss, R. F. (1964): "A Theory of Resonant Networks", in Reiss (ed.) Neural
Theory and Modelling, Stanford University Press, Stanford, Cal., pp.
427.

Rosen, R. (1969) "Hierarchical Organisation in Automata Theoretic Models of
the Central Nervous System", in Leibovic (1969), pp. 21-35.

Rosenblatt, F. (1962): Principles of Neurodynamics, Spartan Books.

Rosenstiehl, P., J.R. Fiksel, and A. Holliger (1972): "Intelligent Graphs:
Networks of Finite Automata Capable of Solving Graph Problems", in
Read (ed.) (1972), pp. 2.9-265.

Sammet, J. E. (1969): Programming Languages: History and Fundamentals,
Prentice-Hall, Inc. New Jersey.

SAO (1966) "Measurement of High Altitude Atmospheric Parameters by Radar
Meteor Techniques", Final Report, AF 19(628)3248, Smithsonian Astro-
physical Observatory, Cambridge, Mass., Vol. III, Appendix, Chap. 8
(Schaffner).

Schaffner, M. R. (1964): "The Ensemble Digital Processor", NASA-158 Tech.
Rep. No. 1, Harvard College Observatory, Cambridge, Mass.

(1966): "The Circulating Page Loose System. A New Solution for Data
Processing." Harvard-Smithsonian Radio Meteor Project Res. Rep. No. 15.

(1971): "A Computer Modeled after an Automaton", Proc. Symp. Computers
and Automata, MRI Symp. Vol. XXI, p. 635-650, Polytechnic Press,
Brooklyn, N. Y.

__ (1972a): "Computers Formed by the Problems rather than Problems Deformed
by the Computers", Digest 6th IEEE Int. Computer Conf., p. 259-264,
San Francisco, Cal.

(1972b): "On the Data Processing for Weather Radar", Prepr.. 15th
Radar Meteorology Conf., Amer. Meteor. Soc., Boston, Mass. pp. 368-373.

(1972c): "Echo Movement and Evolution from Real-Time Processing", Pre-
pr. 15th Radar Meteorology Conf., Amer. Meteor. Soc., Boston, Mass.
pp. 374-378.

(1972d): "A Procedure for Describing Discrete Processes", Proc. 10th
Allerton Conf. on System and Circuits Theory, Univ. of Ill. Urbana,
Illinois, pp. 256-282.

- 260 -

(1973): "A Computer Architecture and its Programing Language", Proc.
1st Symp. Comp. Arch. Univ. of Florida, Gainesville, Florida, pp. 271-
277.

Schlesinger, S. and L. Saskin (1967): "POSE, A Language for Posing Problems
to a Computer", Com. ACM, Vol. 10, n. 5., pp. 279-285.

Schmitt, F. O. (1968): "Molecular Correlation of Brain Functions", in Gruing
(1968), pp. 23-47.

Schwartz, Jules I. (1965): "Comparing Programming Languages", Computers and
Automation, Feb. 1965, p. 15.

Shannon, C.E., and J. McCarthy (ed.) (1956): Automata Study, Princeton Uni-
versity Press, Princeton, New.Jersey.

Shaw, Christofer J. (1966): "Assemble or Compile?" Datamation, Vol. 12,
No. 9, pp. 59-62.

Sheldon, B. Akers (1972): "A Rectangular Logic Array", IEEE Trans, Comp.
Vol. C-21, pp. 848-857.

Slotnick, D.L. (1962): "The Solomon Computer", Proc. Fall JCC, pp. 97-107.

Slutz, D.R. (1968): "The Flow Graph Schemata Model of Parallel Computation",
M.I.T. Project MAC, MAC-TR-53, Cambridge, Mass.

Smith, W. R. R. Rice, Chesley GD, et al.(1971): "SYMBOL - a large experimen-
tal system exploring major hardware replacement of software", Proc.
Spring JCC, AFIPS Vol.. 39., p. 601-616.

Steel, T.B. (1961a): "A First Version of UNCOL", Proc. Western JCC, pp.
371-377.

Steel, T. B. (1971b): "UNCOL the Myth and the Fact", Annual Review Auto-
matic Programming, Vol. 2, Pergamon Press, pp. 325-344.

Strong, J., Wegstein, J., Tritter, A., Olsstin, J., Mock, 0., and Steel, T.
(1958): "The Problem of Programming Communication with Changing Ma-
chines, A Proposed Solution", Com. ACM, Vol. 1, n. 8 and 9.

Thomas, Robert H., (1971): "A Model for Process Representation and Synthesis",
TR-87, Project MAC, M.I.T., Cambridge, Mass.

Thurber, K.J. and J.W. Myrna (1970): "System Design of a Cellular APL Computer",
IEEE Trans. Comp. Vol. C-19, p. 291-303.

Turing, A.M. (1936): "On Computable Numbers with an Application to the Ent-
scheidungsproblem", Proc. London Math. Soc., Ser . 2-42, pp. 230-265.

Turing, A.M. (1950): "Computing Machinery and Intelligence", Mind, Vol. 59,
pp. 433-460, reprinted in Feigenbaum and Feldman (ed.) Computers and
Thought,McGraw-Hill, New York, pp. 11-35.

Unger, S.H. (1958): "A Computer Oriented Toward Spatial Problems", Proc. IRE,
Vol. 46, pp. 1744-1750.

Vineberg, M.B. and A. Avizienis (1972): "Implementation of a High-Level Lang-
uage on an Array Machine", Digest 6th IEEE Comp. Conf. pp. 37-39.

von Neumann, J. (1948): "The General and Logical Theory of Automata", Hixon
Sympsium, Pasadena, Calif., reprinted in A. H. Taub, John von Neumann
Collected Works, Vol. V, Pergamon Press, pp. 288-328.

- 261 -

von Neumann, J. (1958): The Computer and the Brain, Yale Univ. Press, New
Haven, Conn.

von Neumann, J. (1966): Theory of Self-Reproducing Automata, Univ. of Ill.

Press, Urbana, Ill.

Wang, H. (1957): "A Variant to Turing's Theory of Computing Machines", Jour-

nal ACM, Vol. 4, pp. 63-92.

Weber, H. (1967): "A Microprogrammed Implementation of EULER on IBM System/

360 Model 30", Com. ACM, Vol. 10, pp. 549-558.

Whorf, B.L. (1956): Language, Thought and Reality, The M.I.T. Press, Cambridge,
Mass.

Winograd, Terry (1972): Understanding Natural Language, Accademic Press, N. Y.

Yamada, H. and S. Amororo (1969): "Tessellation Automata", Information and

Control, Vol. 14, pp. 299-317.

Yamada, H. and S. Amororo (1971): "Structure and Behavioral Equivalence of

Tessellation Automata" Information and Control, Vol. 18, pp. 1-31.

- 262 -

