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ABSTRACT

An algorithm, based on a series of analyses by Carlson, is presented for

the symbolic integration of a class of algebraic functions. This class consists

of functions made up of rational expressions of an integration variable x and

square roots of polynomials, trigonometric and hyperbolic functions of x. The

algorithm is constituted of four major components, viz., (i) reduction of input

integrand to canonical form, (ii) intermediate internal representation of

Integral, (iii) cldssif'ication of output, and (iv) reduction and simplification

of output to well-known functions. In the oral presentation, the algorithmic

outline as well as some simple examples will be described.

vi
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INTRODUCTION

Symbolic integration is concerned with the computer automation of

analytic or closed form integration. Recently Moses (Ref, b) presented an

excellent survey of the last decade of efforts in this area, from which he

discerned three main streams of interests, viz., from artificial intelligence,

from algeurvic manipulation and from mathematics. For our discussion here we

shall characterize these interests uy two approaches, viz., the heuristic and

the algorithmic. The former approach involves basically the application, by

educated guess, of a class of methods each applicable to a specialized class

of problems. The latter approach involves in the study of a general class

of functions (e.g., rational functions) and attempts to determine if a given

member of this class can be integrated in terms of a member of the same class

or a well-defined extended class (e.g., rational functions extended oy

logarithms). On the theoretical side, Risch's result (Ref, 9) stands out as

commanding paramount importance, both in its generality and rigor. On the

practical side, Moses' implementation stands out as the most successful to

date. Therefore we shall describe our proposed approach in relation to the

work of both Risch and Moses, emphasizing the parts which our approach will

yield that are not contained in that of Risch and Moses. To this end we

first highlight the contributions of these two investigators.

Risch's algorithm is based on his reformulation of Liouville's theorem,

It involves in first examining the hierarchical structure of the integrand,

i.e., the finite number of elementary extensions that build it up from a

ground field of rational functions. Once such hierarchy has been determined,

the integration problem reduces to a systematic comparison of coefficients

through differentiation. For our purpose here it is convenient to refer to

JPL Technical Memorandum 33-713 	 1
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the integrand and the resultant integral as belonging to some input and

output classes of functions. Using such terminology we should make clear

shat Risch's algorithm deals with only input and output that are elementary

functions, that is, any of the following four clas[pes, viz „ (i) algebraic;

(il) exponential, trigonometric and hyperbolic (as rational functions of

exponentials); (iii) logarithmic; (iv) inverse trigonometric and inverse

hyperbolic (as logarithms of algebraic functions). Moreover, the current

state of Risch's algorithm handles only inputs that are rational expressions

involving cases (ii) and (iii). This point is made very clear in his most

recent publication (Ref, 10), It is well known that many simple combina-

tions of elementary functions do not possess elementary integrals, e.g.,
2

ex	 x
e /x, etc, In such cases it is necessary to extend Risch's algorithm

so as to enlarge either the input or the output class, or both.

Another important point to note is that Risch's algorithm is designed

mainly for the problem of indefinite integration. It is well known that

many expressions are only integrable for a specialized interval, e.g.,

[0,2rr], [0,m], etc, Such definite integrations that possess no indefinite

counterparts fall outside the realm of Risch's algorithm, Wang's (Ref. 11)

investigations represent pioneering efforts in such definite symbolic

integrations.

Turning to the practical side of symbolic integration, Moses' program

SIN is certainly the most general and sophisticated to date and is in our

opinion the only viable one. SIN is, roughly speaking, constituted of

three components: one made up of a collection of specialized heuristic

methods, one consisting of the capability for rational function integration,

and one implementing Risch's results,

2	 JPL Technical Memorandum 33-713
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With the foregoing preliminaries, we are ready to describe an algorithmic

approach to handle a class of algebraic integrands. We shall label this

approach Carlson's algorithm because it is based on a series of analyses

rendered by Carlson and his associates in the lest ten years (Refs. 2, 3, 4 ) 8,

and 12). The class of integrands is of the form r(x,y), where y 2 is a

polynomial in x, and r a rational function in x and y. This is the type of

integrand that classically led to the study of elliptic integrals. At first

glance this is a rather restricted class of algebraic functions. But in fact

many trigonometric and hyperbolic integrands reduce to this form. The

richness of this class of integrands is exemplified by a recently published

handbook of 3000 integral formulas (Ref. 1). Our proposed approach will

cover fifty to seventy percent of the items in the handbook. Furthermore

the non-classical approach we shall describe holds great promise of

developing to the case where definite integrals can be evaluated in terms of

a host of other well-known functions (e.g., Bessel and Legendre). It is

important to make clear what we aspire to achieve that is not possible with

Risch's algorithm. For this purpose let us divide our approach into four

cases: (i) indefinite integration - elementary output; (ii) indefinite

integration - non-elementary output; (iii) definite integration - elementary

output; (iv) definite integration - non-elementary output, in all cases the

input being algebraic functions. By definite integrations we mean those

that possess no indefinite counterparts. It is clear from the previous

discussions that at its current stage, Risch's algorithm cannot handle any

of these cases, and even in its prospective completion it will only handle

our case (i) here. On the other hand Risch's algorithm is far more general

I



in scope than our proposed one. Therefore the latter should be considered

an adjunction or supplement, albeit an important one, to the general

capability in symbolic integration.

It is appropriate here to give some examples of the types of integrals

that fall in the class under investigation:

rt -1(1+t3 )4dt	 (1)

it2(t4+at2+b) -3/2dt	 (2)

i
J(A+B cos8 + C sine + D Cos 2e + E sine + F sine cos P) 7dP	 (3)

r (A sinh2e + B sinhe + C)	 dP

3 (E sinhe + F) (Gsinhe + H coshP)i

It is also appropriate here to delimit the scope of our output. We are

interested in adding to the output only three new functions to the elementary

functions. These functions play the same role as the logarithm in the inte-

gration of rational functions. These functions can be chosen as Legendre's

well known canonical integrals F, E, and n or Carlson's standard functions

(cf. Ref, 12),

2, CARLSON'S ALGORITHM

The class of integrands, viz „ r(x,y),where y2 = Pn (x), has been the

subject of intense study for almost two centuries. It is the simplest class

beyond rational functions, but even such a class frequently leads to non-

elementary integrals, For n = 0, 1, or 2, the integral is elementary; for

n = 3 or 4, the integral is elementary or elliptic in which case up to

three new functions need be introduced; and for n a 5, the integral is called

4	 JPL Technical Memorandum 33-713
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hyperelliptic,in which case more than three new lunctiuns are required. Teo

main classical approaches to handle this class were due to Legendre and

Jacooi, respectively (Ref's. 1, T),and a more recent one due to Curlson and

his associates. We believe that Carlson's approach is superior to the other

two for the purpose of symbolic integration. Such belief is based on the

otservation that Carlson's representation possesses certain symmetry that

offers significant simplification in formal manipulation and economy in

storage of formulae. Here we give a few examples to illustrate this remark,

reserving for a future report a detailed comparison of the three approaches.

First, many integrals involving different Jacobian elliptic functions, say,

cn u, nc u, do u, nd u, cd u, do u appear in Carlson's representation as

various permutations of arguments of the same integral. Thus in such a

situation one reduction formula is required for Carlson's case as compared

to six in Jacobi's case, (see remark and example in Ref. 8, p. 227). Second,

in the case of reduction of Legendre's integrals, different substitlztions

a re needed according to various types of roots of Pn (x). Here one either

heuristically chooses the substitution (which is not always successful, see

Ref. 7, Pp, 600-602), or stores rather substantial tables of trans+ormation

formulae (see Ref'. 13, Pp. 78-7 q , 84-91), in addition to the regular

reduction formulae. With Carlson's approach this procedure is not necessary

because of the possibility of rendering the integrand into a canonical form.

Third, a number of linear and quadratic transformation formulae are needed

in Legendre's and Jacobi's approaches (see Ref. 1, Pp. 12-14, 38-41). In

the present context these formulae would be required for algebraic

simplification,which is crucial to the success of any program in symbolic

JPL Technical Memorandum 33-713
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computation. With Carlson's approach the linear transformations are rendered

trivial by permutation symmetry while the quadratic transformations take an

a canonical form (cf. Ref. 12, Pp. 203-1-08).

In this section we shall tran.late Carlson's results into an algorithmic

scheme. This scheme can be summarized by the following steps: (1) Reduce the

input function to a canonical form; (2) represent the output integral formally

as a certain Carlson's R-function (which is ,just an intermediate representa-

tion); (3) examine the parameters of the R-function to characterize the out-

put, for example, whether it is elementary or elliptic; (4) reduce the

output to a combinatic., of elementary functions and well-known elliptic

Integrals.

Here we are mainly interested in the "algorithmic outline" and there-

fore to avoid substantial digressions into mathematical details, we reserve

the description of Cirlson'a R-function to Appendix I. It suffices here to

specify the notation R(a:bl,.•.,bk;Ll,...,zk) to indicate that in general

this function is characterized by k variables and k+1 parameters. For the

major bulk of our work here k is between 2 and 4. For brevity we shall

refer to this function as R and indicate whatever change in parameter or

variable oy specifying that parameter only, e.g., R(b
i
+1) = R(a;bl,...,b1+1,

.., bk ' z1 " " 'Zk).

Procedure I: Canonical Reduction of Input

I.1	 Given input expression r(x,y); if it is already in the form of

k
linear factors r(x,y) = j] (g ix+wi), go directly to Procedure II,

i=1
else proceed.

-6
JPL Technical Memorandum 33-713
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L	 Reduce to linear fraction r(x,y) -+ [P1(x)+yP2(x)]/CP3(x)+yP4(x)l,

where the Pi(x) are polynomials in x; this reduction is possible

oecause in any polynomial in x and y, the even powers of y can be

expressed as straight polynomials of x and the odd powers as

polynomials of x multiplied by y.

I.3 Multiply both the numerator and denominator by r p3(x)-yP4 (x)J and

then by y to transform it to the form r1(x)+r2(x)/y, where r  and

r2 are i `tonal functions o: x.

I.4	 Integrate rl(x) by standard rational function integrator,

I.5	 Apply square-free and ptrtial fraction decomposition to r,,(x),
A	 A

resulting in r2 (x) =.a+...++ 	 (see, e,g., Ref. 6, P. 551), where
1	 St

the S,'s have only simple roots and are relatively prime to each

other.

k
I.6	 Factori-e each S P into linear form 17 (x+z^), where z  may be real

J=1

or complex. Now the integration of r 2 (x)/y reduces to that of

k
A t/(S')  which in turn reduces to that of xmy 1 r (x+z3 ) - ^. There

=1

is of course the practical problem of factorization. But the

problem here is no worse than the case for rational function

integration. Furthermore, for most cases of practical interest

the S e 's are polynomials of very low degrees, as evidenced by the

several thousand formulae in Ref. 1.

Procedure II: Intermediate Representation of Integral

II.1	 For the integration of algebraic functions, extreme care must be

exerted to avoid the indeterminacy of integration across a branch

TPL Technical Memorandum 33-713 	 7
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point. For example, in the Legendre formulation, most of the nuove-

mentioned substitutions are required to avoid such ambigui., 	 In

Carlson's formulation the situation is simpler. Here we need only

consider the indefinite integration variable as either always to the

left of the smallest root of y on the real axis or to the right of

the largest real root. for definite integration we need to allow

the degenerate cases of one or both integration limits ueint, branch

points. For the sake of such distinction we need first to factorize

k
Y + 17 (x+zi)-

i=1

II.2

	

	 For indefinite integration, a user of this algorithm is asked to

indicate the appropriate integration range, i.e., whether it is to

the left or the right. We then proceed to give either one of the

fol.owing representations:

® k
e^ 17 (t+zi) ldt = R(a;b;z+e+e),
X i=1

J" p (t+zi) i dt 
= x 17 (X+zi)-biB(l:a,b:l,l),	 (6)

p i=1	 i=1

where w	 b i•••+b -1 in (5) • a = b +...+b 2 in (6) b	 (b

x+z = (x+zi,x+z21.,,,x+zk), etc.

II.3

	

	 For definite integration, check for degeneracy; if none apply 2

above, else use the followings

8	 JPL Technical Memorandum 33-713
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(t-xo)a_1(xl t)a'_1 n (t+zi)-bidt

0

(7)

e+a'-1 T e C a'	 k	 -bi //+	 z+xl
_ ( xi x0)	 T a+a ,	 n ( xo+zi ) R1 a ; b ;l, z+xo ,

where a+a' - bl+.--+bk-

II.4	 The R-function so obtained has a very special form, viz., the bi'a

(and therefore a) are integers or half-integers. Since y is the

square root of an n th degree polynomial, there must be n parameters

among a and b i 's that are half-integers, where h = n or n+l for n

even or odd, respectively. This is the so-called R-function of index

h, which can always be expressed in terms of R-functions of h

variables in which a, bl , b2" " b,_, are half-integers and b  is

an integer. The next step in the algorithm is to actually achieve

that via recurrences. First rearrange the R-function to the form

such that b i...bh-1 are integers in increasing order and tk = -m;

this can always be done due to permutation symmetry; in most

cases of practical interest, bn ...bk should be small integers, say

+1 and +2.

II.5	 Recall from Step I.6 that we now have integrals of a polynomial

divided by Sly, i.e., amfxm/(S ?) dx + am-lfxm-1 /(Sry)dx + ...,

where each m, m-1,... appear as the index bk in the corresponding

R-function. Recursive operatiun n-times with the identity

cR = a'R(bk+1) + a 
2  

R(a+l,bk+1)	 (g)

will combine these m terms and reduce each b  to zero. Here zk

JPL Technical Memorandum 33-713 	 9
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is the kth variable ^)f the R-function and the identity is readily

derived from the general recurrence relation, eq. A(11),

II.6	 Now bh+l ...bk-1 ara all exactly 1, which makes it efficient for the

following recursive operation:

(a-1)(zk-1 zk-2)R = (c-1)[R(a-l,bk-1 1)-R(a-1,bk-2-1)1. 	 (9)

Here ik-1 A zk-2 because S i has only simple roots.

II.7	 The above two steps reduce the integral rA t/(S f )dx to an R-function
fy

of index h, i.e.,

R(a;bl,...,bh,0,....O:uI.....ik) ► R(e:u1,...,bh:i1,.... h).	 (10)

Procedure III: Classification of Out-it

The classification depends on the parameter h = 2, 4, 6.,.

III.1 If h=0, that means the input is a rational function of x only and we

have only come this far by mistake. Here an error return with such

a message would be appropriate.

III.2	 If h=2, the integral is elementary and each R-function is expressible

in terms of two "basis" functions, viz.,

R( ;•;il ) = 1/ il , and	 (11)
1	 1 A A 1

R(t;z, l ; zl , z2) = (i2-i1) zcos (z1/z2 )	 (12)

This case would have been handled more easily by rational substi-

tutions, but here we also want to "catch" integrals that have a

misleading non-elementary appearance, and so this capability is

retained here. Now set flag P = true and apply Procedure N.2.

(Note: The flag is to distinguish between the pseudoelliptic and

elliptic cases.)

10	 JPL Technical Memorandum 33-713



III.3	 The case h=4 constitutes the major bulk of our effort here. For example

at least two thousand formulae in Ref. 1 belong in this category.

(i)	 In general a function of this class is of the form R(a;bl,b29

A n n n
b 3 ,b4 ;z19 z2 ,. 3 ,z1+ ) and is reducible to I s basis functions, viz.,

A A A _	 1 1	 A A A
( zlz2z 3 )	 R(2 	 izl9z29z3),	 (13)

AA	 A
RF . ( LIV L2, z 3 ) = ,:,	

A	 A	 A
R ( :• ,	 4 ; z 1 , Z2 , z3 ), (14)

L,,, L 3 )
C

a R(-1• ;,1, z,z; ZI , Z.^, Z3), (15)

RH( z
19L2

>L 3 , Lh ) = R ( ) ;2,2, ' 9 1 9 z 1 1 z2 , L3 , L4). (lb)

The last three functions are analogous to Legendre's canonical

integrals F, E and n	 (Ref.l , p.	 8). All these functions are

symmetric in the variables zi, x2, and i3.

(ii) There are two important special cases caused by one or two of

the following conditions: (a) any z^ = 0, (b) b h = 0, and (c) any zi

= i^, Here a flag k = 4 should be set and for any occurrence of the

above conditions, decrease k by 1 and reduce the R-function by one

of equations (25) - (27). Now go to the three cases according to k =

2, 3, 4.

(iii) Special case k=2: R has been reduced to R(a;bl,b2;il,i2).

(a) If b1 or b2 is integer, we have pseudoelliptic case. Now

set P = true and apply Procedure IV.2.

(b) Else the answer is expressible in the fo_^m CR = C KRK + CRRF,

where the C's are polynomials in it and z2 , and

RK = R
, ; , , , ,; A
 zl,z2), RE = R(-,I,	 2 zi ,Z2 ).	 (17)

JPL Technical Memorandum 33-713 11



They are analogous to Legendre's complete integrals K and Y.

Now set P - false and apply Procedure IV, to obtain this answer.

(iv) Special case k=3: R has been reduced to R(a;bl ,b,„ ;b;ii,z`,,z3),

The answer is expressible in the form

CH = CF RF + C G R G + CA (zI z2 z3 )	 (lt3)

where the C's are polynomials in z l , z, and z 3 , Apply Procedure

IV, 3 to obtain this answer,

(v) General case R=h, The answer is expres,-{ble in the form

CR = CFRF. 
t 

C 
G 
R 
G } CIIRH + C

A (z 1z2 x3 ) 4 .	 (19)

where the C's are polynomials in- I , - and i 3 , Apply Procedure

IV. to obtain this answer,

III.4	 The cases h = u, 8, ... in general deal with hyperelliptic integrals.

In practice there are many such integrals that have hyperelliptic

appearance but are actually reducible to the elliptic case (e.g., Ref,

1, Pp. We are only interested in such degenerate cases. As

before first set a flag k=h,

n
(i) First check i'or obvious degeneracies (a) b b = 0, (b) j = 0, or

(c) zl = zj , Each occurnx.ce of any of these conditions reduces

X by 1.

(ii) For each equal pair (i i ,zi ) compute the new parameter b ij	 bi

+ bj , Collect all integer b ij 's and now apply the some opera-

tions as in IIA - II.'7 to further reduce the R-function.

The reduction of each parameter is indexed by a corresponding

decrease of k by 1,

(iii) Now if k c 5, go to step D1.3, else return the hyperelliptic 14-

function with no further reduction. A typical user may still

12	
XPL Technical Memorandum 33-713



find this R-function to be useful because many properties are known

about it (Ref. 2)

Procedure 1V. Reduction of R-function to basis Functions

This procedure consists of three sub-procedures ( k=" 3, h) for the reduction

of R(a;b 1 1b2 " " ' bk ; l ,...,zk ) to a set of basis functions. The basic technique

in this Procedure involves the application of the recurrence formulae G" N-3).

For this preliminary report we shall only present the case k=2, leaving the

more tedious ones for the final detailed report.

IV.2	 Reduction of parameter R-functions:

It' the flag P = true, the two basis functions are elementary (111-(1F'),

else they are R 
Y. 

and RF. (17)40 .	 For this Procedure we need the

following four formulas which may be derived from (?U)-(3;').

(c-1)R(bl-1)	 = (a'-1)R + asIR(a+l); ('0)

z i(c-l)R(bJ -1) = zi (c-1)R(b i-1)	 -	 (:'.j-zI)(a'-1)R; (Z1)

ez I zi R(a+l)	 = e'R(a-1)	 -	 (bi-a)zIR - (bi-a)ziR (.z)

a l b I (z i-zi )R(b 1 +1)	 = c((b i-a)(z j -z i )R+z3 (c-1)(R-R(b i -1)1 (	 3)

Now the algorithmic steps are as follows:

(i) Given an R-function R(6;b 1 ;oG ;zV z2 ) and the basis functions

R 1 and R2;

(ii) apply eq. (i2) repeatedly to R 1 and R,, to obtain

R(a;bi9 b2 ;zl ,z2 ) and R (a+ 1; b l , b2 ; zl' z2 );	 (-,4)

(iii) apply eq. (2n) to compute R(a;bl-1,b2;z1,z2);

(iv) recur on bl , with eq. (Y3) to compute R(a;b l-1;b ;zl,z`,);

(v) apply eq. (%'1) to compute R(a;bl,b2-1;zl,z2);

SPL Technical Memorandum 33-713
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(vi) recur on u2 , with eq. (23) to obtain R(a;bl,b2;zl,z2);

(vii) return result in the form 
C21 + C2R2'

Procedure V, Transformation of Output to Legendre's Notation

This Procedure is used only optionally for those who prefer Legendre's

notations. The implementation of such transformation is basically clerical

in nature, with the appropriate formula given by Carlson (Ref, 3 ). There-

fore no algorithmic flow is indicated here,
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APPENDIX I	 Propnrties of R-i'unctions

The H-function is essentially a generalized nypergeometric function of n-

variables. It is symmetric with respect to simultaneous permutation of the

b-parameters and z-variables. For detail properties see Carlson (Ref. 2 ).

Here we summarize those properties useful in the text.

1. Special values of parameters and variables:

R(e:bl,...,bn-l.n:zl,...,zn) = R(a-,bl,...,b1-l;zl,...,zn-1) 	 (25)

B(a,a'-b )

n-14n)	7
13a ,a 7—R(a,^1,...,bn-1'

(L'b)

R(a;bl,...,bn:zl, ... ,zn-l'zn-1) = R(a:bl,...,bn-1+bn:zl,...,za-1), 	(27)

where

C = b l+ ... +bn , a' = C-a, and B(a,a') = r(a)r(a')/r(a+a'). 	 (28)

Owing to permutation symmetry, the zero or equal pair of variables in the

last Lnree formulas is not confined to the last position. Moreover,

these identities can obviously be generalized to multiple zeros or

multiple pairs, or any '.,-tuplets of equal variables.

Recurrence relations:

(c-1)R(bi-1) = (a'-1)R + ez iR(a+1), i =l,...,n	 (29)

n
cR =	 b.1R(b.1+I),	 (30)

i =1

n
c R( a -l) = IbiziR(bi+l),	 (31)

n
8cR(8+1) _	 b1zi1[cR - a'R(bl+l)]. 	 (32)

JPL Technical Memorandum 33-713 	 15
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