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Abstract :

Theoretical foundations of our understanding of‘fhe problém.of the._
termination of the solar wipd are reexamined in the light of moétlrecent
findings concerning the sfateslof the solar wind and the local in;e:stellar
medium. The investigation suggests that a simple extention of Parker's
(1961) analytical model provides a useful approximate description_of the

combined solar wind, interstellar wind plasma flowfield under conditions .
presently thought to obcur; A linear perturbation salutién exhibiting
both the effects of photoionization and charge exchange is obtained for
tﬁe supersonic solar wind. The solution demonstrates the point that the
addition of mass and decrease of velocity as the result of photoionization
in the supersonic region of the solar wind has no effect on the momentum
flux and, thus, the location of the shock surface. The effect of charge
exchange, however, serves to reduce by about 14% the estimate of the |
shock ra&ius provided by farke;’s soiution as excended, Finally, invesii-
gation along lines of the one dimensional compressible flow equation -and
heating associated with-polytrope solutions brings to light further theo-
retical evidence that the classical coefficientslof thermal conductivity =
for an ionized gas may be too high - perhaps by as much as a factqr of
five - to.describe the flow of the supersonic solar wind beyond earth,

' Derived from its roots in kinetic theory and the plasma transpoft

equations a la Braginskii (1965), a model for the combined flow of the

solar wind with the ionized component of the interstellar wind js formu-

lated on the level of one-fluid magnetohydrodynamics. The model features
. . . /

quasi-normal, strong shock relations on a closed surface surrounding the

sun and imbedded in the solar wind., Tangential discontinuity relations

'apply at the free surface between the solar wind and ionized interstellar



Chapter I. - The Problem

1. Introduction - Physical and Historical Perspective

From the theoretlcal point of view the terminatlon of the solar wind
is the problem of finding a model for the extended solar corona such that
admissible boundary conditions match conditions in the perturbéd local
interstellar medium. Taken.in its full physical and attendant matﬁemati-
cal generality the problem is so complex that the pioneer analyst in the
subject Parker (1963) quickly and, by events, correctly pronounced that
“real progress can come only ad hoc',

-After a brief statement of conditions in the local interstellar
medium as ﬁest they are known to astfonomers, we bring forth in this
introductory section two such ad hoc models of the corona. The models
which combine tﬁe virtues of mathematical tractability with broad pheno-
menological richness serve to illuwminate the character of the problem
and exhibit important qualitative and éemi-quantitative features of its
solution. The models are the static, heat cénducting corona and the
dynamic polytrope corona.

The former model has its roots'in the earliest description (Chapman,
1957) of the far corona but a solution satisfying a boundary condition of
greater physiéal content has been found by the present author and is given
here, The latter model incorporates the prediction of the interplanetary
sﬁpersonic solar windﬂ(Parker, 1958). The material, which includes_the
' qriticql polytrope solution chosen by Parker, is treated in the concise,
explicit mannex due to Bondi (1952) who had invoked the other member of
the family of ecritical polytrope solutions earlier in the study of stellar
acretion, '

Axford (1972), Wentzel t19j2), and Silk (1973) have recently sum-

marized theory and observation concerning the state of the interstellar



medium in the vicinity of the sun. Neglecting infrequent small dense
clouds whose inhomogeneous effect is not the subject.of concern here,
the picture that emerges is of a'tgnuous, partially ionized,lweakly mag-
netiééd, hot hydrogen gas, Typical numbers on which the discussion is

g

based herein appear in Table 1.

Table 1. Properties of the local interétellar medium,

TEMPERATURE - 103 - 10" °x

PARTICLE DENSITY

NEUTRAL HYDROGEN 0.1 - 0.2 cm -3
PROTON OR ELECTRON 0.01 - 0,025 em -3
MAGNETIC FIELD STRENGTH 3% 1070 gauss

a. Static, heat conducting corona

The model assumos v cymmetric corcna of fully ionized

[$]

hydrogen gas. The equation of static equilibrium yields

d ' . . .
E% = - GMm = _ (l.1la-1)

where at r the radial distance from the center of the sun p is the
pressure, m is the mass of a proton and an electron, n is the number
density of protons or‘electrons, M0 is the golar mass, and G 1is the
universal gravitational constant. j

Starting at some high temperature Td at ro very close to the sun,

a constant heat flux is assumed satisfying the energy equation

aiv (q) = 0 - | | . (1.1a-2)



where ¢ is the conduction teat flux density vector given by

dr - R R
q=- “ar ' . o :-(131?-3)

In equation (3) the coefficient of thermal conductivity ® appropriate
to fully ionized hydrogen can be expressed as

572

x=AT (L.la-4).

where A 1is a constant whose value as computed by Chapman (1954)-

. . o
7 in cgs units when the temperature is measured in K .

is 4 x 107
With the spherically symmetric form of the divergence operator,

equation (2) with equatioms (3) and (&) provides the Hrst integral,

9 59 & 2
7 &L

Ir Dro - _\J..I&*S)

Equation (5) is integrated over the interval .ro to r yielding

. qr ” o
T7,2'—‘-T 7/2 ..-;- 00(1 __9) . . (1.18-6)

Letting the temperature asymptotically approach the temperature T of
N 7 %o

the interstellar medium permits the evaluation of the constant 3 R

in equation (6). (Here Chapman (1957) arbitrarily took the temperature

to vanish at infinity.)
As the result, equation (6) may be represented

T

vy e, o (aaeD



Solving for T we have
7712

T=T, (;9) & [l +(§3) (

Q o

n|l H

2/7 . -
-1)] . (1.1a-8)

When T_ << To equation (8) predicts that for a vary wide range in T
: T \//2 :
such that % << (—2) _ the temperature in the corona drops off as

o Teo
. -2/77

Equation (8) and the equation of stafe
p=2%kuT , (1.1a-9)

permit the equation of equilibrium (1) to be cast

27 517 -12/7

) C o 2
R LT [x +(f°_°) z r, T (1.1a-10)
o o]
GM _m: T, 7/2
where € = 2le and ¥ =1 - (T—) .
0O [+)

With the change of variable r~ = r/r0 s eﬁuation (10) may be rewritten

in the form

. 7/2 =277 _ .
2ofe(®) ] o5
P 0 r’ ' o

Equation (11) is integrated over the interval 1 to r* yielding the

solution



P=p, gxI; __ So _{1 ) [3{: +(;f) 7l/2] 5/7”

unl ~a

! X o )
- ' 1/2 577 ‘ -
o el 2l [a(=) ao] | |
=Py ®FPIT S X r T, r © (11a-12)
In the limit as 1 — @,
T_\3/2
1 -z -
=2k T exp|-L o ¢ (1.1a-13)
Py 0o o P 5 (fm)7/2 o _ *
. 1 - =
: o
The corresponding number density is :
T \ 5/2 '
1 =z : :
To 7 ) To
nm= no -'f; exp] - -::)- —--'-—-—(T—m) 7/2 eo : (1.13—14)
L- A
' 0, .

10 ' - ‘
Estimating r, by Ro = 7X 10 cm the radius of the visible
..6 o.
o -

K, B =

L . b4 o - . - - =
disc and tvaking T = 10 K from Table i, T, = 2 i1 o

o
8 -3 33 . ‘
2X 10" cm ~ , and Mo = 2X 1077 gm , we find that €, is 5.5
approximately, Equations (13) and (14) then predict thé pressure far
from the sun should have the value 5 X 10"5 dyne/cm2 and the number

-3 . Since in the solution we have matched tem-

density 2 X.107 cm’
peraturelin the interstellar medium, the density given by equation (14)
being eight orders of magnitude higher than that measured in the inter-
stellar medium implies that the pressures are out of balance by a like
‘amouné, (The pressure of the inferstellar magnetic field being at best

-12 dyne/cm2 offers no help in supporting the statiec

of the order of 10
corona.) The model thus grossly failing the condition fof static equi-
librium, we conclude that the only available mechanism for dropping the

jnexorable pressure of the solar corona is via action against the inertia

forces of dynamic expansjon.



Before considering in the next model the consequences of such
expansion we close this discussion by noting that at-earth distance from

N 5 ‘
the sun the temperature given by equation (8) T, = 4.34 X 10 % is

comparable with though larger than the electron temperature l.? % 105 %k
measured by earth satellites (Montgomery, 1972). Since heat conduction
is a process that is defined in the local rest frame of a gas, the
process is not inhibited by dynamic expansion but in fact enhanced by
the larger temperature gradients resulting from expansion, We there-
fore expect heat conduction to play a significant rele in any compre-

hensive model of the solar corona.

b, Dynamic, polytrope corona

The model assumes steady, spherically symmetric flow with mass
conservation leading to the first integral of the continuity equation
the constant mass flux |

o-pv e (1.10-3)
where v is the bulk velocity énd wvhere p 1is the mass density;

The equation of motion is

dv_ _ 9 2 |
PVEE=" 3 - M, 2 : : (1.1b-2)
The polytfope law
p = o o © (L.1b-3)

where o 1is a free parametér is taken to replace the energy equation.
Use of the law with equations (1) and (2) serves both to make a tract-
able mathematical problem and a useful tool in analyzing the nature of

solutions of the physical problem being modeled.



- After dividing by the mass density p amd substituting equation (3) »

we integrate equation (2) over the interval r_  to r yielding

—

@ P
] — o -1 ‘Y”l]} L -l) ,
2 2 a-1 0% [p =P i -G M (r x/ (1.1b 4).
(o]

We define at the base of the corona the characteristic speed ¢

by the relation ¢ = apofpo and the ncmdimensional parameter

G My P,

o o , Which is seen to reduce to the same expression as

o O

for the static corona. Thence making the changes of variable

> s z= plog (1.1b-5)
o 0 (s I

2 . 2 .
¥ 1 -1 1 1 Yo i
R x x tTrtw

i (1.1b-6)
[+ .

— (1.1b-7)
o pcr o

Since in equations (6) and (7) x is an explicit function of r, the

problemistoﬁolve the equations for y and 2z as explicit functions

of x ,

The solution is obtained with the aid of the substitution

) 1/2 : ' |
= [L,.] A IR ‘ (1.15-8)
za-l .

<y
m
o)<



Solving equations (7) and (8) for z we get
2 = [LZI obl 7 atl | (1.1b-9)
X ' ‘ .

while combining equations (7) and (9)\gives

-1 2

y = [izl ol o el | T (1.15-10)
X

When equations (9) and (10) are substituted in equation (6) there results

with some arranging of terms

4 -2(@-1) y2 9 2 -1
= ol — Tofl _ (_1_ 1 %, 1 5) ol
E + 2 =\x-xt7z 7 a-l)('h (1.1b-11)
2 a-1 . o
Equation (11) is of the form
_ ) -2(a-1) _ _
e@m= 2" . : . (L.1b-12)

In equation (3) a ='1 describes an isothermal éo&ona which.does
not-admit finite heat conduction and t@erefore requires a heat source
which is unidentifiable except near the sun. Since a= 1y = 5/3 describes
the adiabatic corona, i.e, no heating at all, we are led to investigate the
topology of continuous solutions ﬁ(x) of eqﬁation (11) for o betﬁeen
1 and 5/3 . To clear up a point of confusion in Bondi's related dis--
cussion, in the solutioné to be obtained for gemeral ¢« the characteristic

/2

speed ¢ = (ap/p)l is not the speed of sound a and accordingly, equa-

tion (8) , M  is not the Mach‘number M but these objects are related by

c=f5?a andM=,/gﬁ= | ‘ - (1.1b-13)



—

To begin theranalysis, since M‘ is positive the left haq@ side‘of
equation (11) f(M) 1is positive definite. The constant M\ (related to
the mass flux) being positive, solutions of equation (1l1) require that
the function g(x) be positive definite also. Since % approaches zero

as 1 approaches infinity, solutions only exist when

\d

. X '
« . . . : (1.1b"1£|')

)

1
— —
2 + w-1

As we shall confirm by the solution the flow starts out very slowly in

relatively dense gas and y§/2 is a ‘very small number compared to

a-1 "
Consequently with X, = a/eo , from relation (5) , the condition (14)

effectively requires

— . ‘ | (1.1b-15)

Since as we have seen in the discussion of the static corona model

€, has the value 5.5 approximately, relation (15) indicates that o

should be less than 1.22+ .

Analysis of £ (M) reveals that at M = 1 the function has a

ninimum of value

£ = _akl
m 2(w-1l) ' ' (1.1b-16)

The function g(x) also has a minimum of value

wn

-3¢

a-1 T

2
1 o ¢ O ‘
g[n = 7; a_l 5_30 F . (lnlb-].?)
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The minimum of the function g is located at

5-3u

X == . -
T EL eI, (1.1b-18)
2 Yo ; @ %o

Taking differentials of both sides of equation (12) provides the

- relation
~2(a-1) ;
£ di=1 9l ogeax . (1.1b-19)

Equation (125 together with the differential relation (19) suggest two
kihds of physically meaningful solutions to equation (11).

The first type is the "critical solution" obtained wﬁen A 1is so
cﬁosen that the minima of £ and g jéintly satisfy equation (12),
In this case £° and g” both change from negative to positive through
zero at the same point in the flow and the fluid accelerates smoothly
through the critical point leading eventually to supersonic flow. The

critical value of A is denoted by lc and is given by

g _0_*_*3!.; atl -(5-30)
My 2 (-1 1}y 2(e-1) . 2(a-1
he” () (lo (3) 2o o 2D (1.1b-20)

4

‘ Combininé equations (20), (10), and (5) we have that the velocity at

‘the critical point is

: 1/2
= -l 2  a-1
v, co [2(1 +5= Yo " o eo)]

. C(1.1b-21)
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Similarly with eqﬁation () the critical point density is

=1 2 -1 -1
AT Y 1 T 6

. (1.1b-22)
5-3 '

¢ Yo

The corresponding pressure follows from equation (2) as

- o
e-1 2 o1 |1
b, = P, 2L+ Y, " TG &) . ©(1.1b-23)

5-3w

Thence the perfect gas law gives for the temperature

T =1 |2A+HTT Y, TG &) . (1.1b-24)

To exhibit the solution far from the sun, equation {11) approaches

asymptotically
K -2(a-1) 2¢ 4(a-1) _
¥l o, ol (v +E%1” a") atl i (1.1b-25)

' é 2 230 12 ' |
v = C y 4 —— - ——— ) . } (1.11)-26)
@ o| 0 a-1 o -

which is seen to be a constant,

The critical mass flux from equations (7), (18), and (20) is

_ 5-%
ol | st y? Jasl o) Hoeh 2
=(l)§“gg.—1)' 2 o o o 2o cxl . (1.1b-27)
P ‘2 5-3x a2 000 :

The density at large distance from the sun then varies as
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ni . ' | - (1.1b-28)

Accordingly the pressure approaches asymptotically

9.\ o
p=Po ( c) x s * . ’ (1.1b-29)

Po Ve

and the temperature varies like

P ci-1 _ - "
=T (E"E") e "2 (1.1b-30)

v
0 ®

The polytrope solution of the second kind, the subcritical solution,
cbtains when A < hc and the minimum in g is reached before f reaches

minimum, In this case going through L the derivative g~ changes

from negative tc positive while €* vomaine negative, Conseguently %ﬂ
®

changes from positive to negative and M is caused to retreat back along
-k
the lower branch of f from the maximum value M  obtained as the solu-

tion of

“2{x~1) ~5+3
k. ol Gl ol | | .
f (M ) - 4(a_1) X . xm l!. . - ‘ (lclb-Bl)

on the lower branch of £(M), M approaches zero as £(M) approaches
infinity, corresponding in this solution to g approaching infinity

with x on the upper branch of g . Thus in the suberitical soyution

far from the sun equation (11) approaches asymptotically //
~2(c-1) -2{x-1) . 4(-1)
= o+l ol a-1 2  a-l o+l
M = A (L+55=7, ~"q %

y % . (1.16-32)
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2
Solving equation (32) for ﬁ‘1+1 and combining the results with equations

(10) and (5) gives for the far field velocity.

2 L1 2
o o-1 2 g-l a-1 "o
= 2 - o e 2 .1b-
v= e A 7 (1 + 5 Y, eo) r2 . (1.1b-33)

Inspection of equation (33) in the light of equations (7) and (5) shows
that the density far from the sun approaches the constant limit
1 2 -1 ) a-1

- Q-
Pp = Py L5~y  -"5- ¢

A . - (L.1b-34)

Accordingly from equation (3), the pressure is seen to approach the.

constant value

(#4
12 gl gl
Py = By (1 + Gy - L= ) I, | (1.1b-35)

-

Pinnlly, tho tomperature zlsc appracches a2 constant

el 2 a4y : | (1.1b-36)

T = To 1+ 5 ¥, 3 o

©
In summary of the character of the two kinds of solutions, the
critical sdlutipn admits a flow that accelerates continuously approaching
".a.constant supersonic velocity far from the sun. The density correspond-
ingly éecreases as r—z and the pressure and temperature both similarly
approach zero far from the sun. Given conditiohs in the cdfona,the criti-
cal solution for any given « uniquely defines a mass flux from the sun,
The subcritical solution admits a flow.that accelerates continuously
to some maximum velocity less.éhan the speed of. sound and thence slows con-
tinuously approaching zero velocity far from the sun. The.velocity history

is carried out in such a manmer that the density, pressure, and temperature
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monotonically d%op throughout, appréaching constant miﬂimum values far from
the sun. Choosing a value of ¢ does not uniquely define the mass flux
since a sulution exists for all values of the mass flux less than that
prescribed by the. critical solution. Since the velocity far from the
sun depends linearly on the mass f1;x aéd va?}es inversely with the square
of the distance from the sun, the asymptotic yalues for the density, pres-
sure, and temperature do not depend on the mass flux in the subcritical
solution,
fable 2 sets forth values for both tyées qf solution for ¢ = 1.15
and ¢ = 1.22 at salient points in the flows. The value g = 1.15 was
chosen because it best reproduces in the critical solution the super-
sonic velocity measured in the solar wind at earth distance from the
sun. The value o = 1.22 was cﬁosen because it best matches in the sub-
critical soiution the pressure in - the localrinterstellar medium.
‘Cump&ring both the values of wass flux aud veluuit; in the criiiual
solution at ¢ = 1.15 and the subcritical solution at a=1.22

Table 2, Properties of two polytrope solutions for dynamic
2 expansion of the solar corcna.

critical subcritical
\ o - 1.15 \ . 1.22
rcho | 6.6 | : 2.15
A, 1.4 x 1073 2.4 x 1077
£ 1 x'1012‘gm-s-lster-l 1.7 x 10° gm s lster
v, | . - 1.2 x 107 cm s-l 2.1 x 106 ——
v - 4 x 107 cm s-l 0
Q - v
. 4 o
T, 0 10" %
n ‘ 0 o 0,03 '::m-3
- _

Py, ‘ 0 : 10-13 dyne m'n-2
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|

evidences the dramatic nature of the labels coined by Perker, "Ihef
Solar Wind", and Chamberlaln, "The Solar Breeze", in their nowifeﬁous
competltlve advocacy of the respective solutions to eescrlbe the state
of the sclar corona (Parker, 1960, 1963; Chamberlain, 1960, 1961).

In the perspective of COhditions as measured by instrumenfed sa-
tellites in the interplanetary region, Parker had the better of 1t'
for from the coronal base to earth the solar wind undoubtedly follows
a solution close to the critical polytrope. However,.at large distances
from the sun the critical solution which predicts vanishing density,
pressure, and temperature suffers a catastrophic failure and there a
chamberlain-like solution is appropriate.

Parker resolved this apparent paradox in a third ad hoc model which
we take up in the next section. From the point of viewrof results de-.
veloped in the eresent section, the modei provides a synthesis featuring
discontinuous branch:.ng via a shock transition from a supersonic (critical)
solution to a subsonic (suberitiecal) one. An additional feature of the
third model providing greater physicelrcentent is that the sun is permitted

~

to move relative to the interstellar gas.,
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2, Shock Termination of the Solar Wind

The model to be pfeéanted follows the developmeﬁt'brought forth by
parker (1961,1963) to demonstrate characteristic phenomena of the combined
flow field resulting from the clash of the supersonic solar wind with the
interstellar medium, As the result of certain bold idealizations of the
physics of the problem made in the iﬁterést of obtaining a tractable
mathematical formulation, Parker embhasized the "qualitative" nature of
his results, disalaimiﬁg "quantitative and definitive" accuracy.

The supersonic character of the flow admitting such a formulation,
here and throughout the remainder of the thesis the discussion is from
the point of view of an initial value problem beginning at 1 a,u.

There the properties of the flow are now thoroughly established by ob~
servation. (See for example reviews by Wolf, 1972; Gosling, 1972;
Montgomery, 1972; and Schatten, 1972.) Typical numbers used in sub-

sequent computations appear in Table 3.

Table 3. Properties of the solar wind observed at 1 a.u.

TEMPERATURE
‘ ' 50
ELECTRONS 1.5 x 10° %k
PROTONS 5 x 10" %k
PARTICLE DENSITY ' 3
ELECTRONS or PROTONS 5 em
MAGNETIC FIELD s
STRENGTH . ) 5 x 10 “Gauss

Parker's analysis is reviewed below with considerable amplification

and one important extention, Here the material will serve the originazl
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expository inteht. But in later sections it will serve as an anaiytical
tool in conjunction with theory to guide the developmént of and to ex-
plore features bf the solution to be expected from a considerably.more
detailed physical model whose construction and analysis are among the
major subjects and purposes of this thesis, As the result of the inter-
play useful light will be shed on the question of the accuracy available
in the approximate/;olution of Parker's model as extended, the analytical
solution being presently the only general description of the flowfield
extant, Finally, while not a task taken up in the thesis, the fesults

of the analysis are expected to be usefui in guiding the future develop-
ment and application of numerical procedures to obtain a full selution for
the flowfield describéd by the more exact model.

Following ideas suggested in papers by Clauser (1960) and Weymann
(1960) Parker constructed a solution for the terminatidn of .the solar
wind Uy explicitely-assumingnthe cﬁistence of a sﬂock Lranéition; The
shock provides a stable mechanism by which the verf low pressure in the
supersonic regime of tﬂe far interplanetary solar wind can be raised to
match the much higher pressures of the local interstellar medium in the
vicinity of the boundary where the two media must ultimately interact.-
Steady flow modeling average conditions is assumed iﬂ a non-rotating
heliocentric reference ffame.

Parker made the following assumptions.‘ The weaklf magnetized gas
of-the interstellar medium is taken to be incompressible, implying the
;flow is subsonic in its passage of the sun., Also, the flow of the inter-
istéllar gas, terﬁed “"the interstellar wind"; is assumed to be non-viscous,
jrrotational, and to form a sharp, mutually impenetrable boundary with

the magnetized post-shock solar wind. : ‘ '
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To decouple the transonic flow problem governing the 1ocatio£, the
geometry, and the conditions over the shock surface from the solupipn
of the ensuing subsonic flow problem in the solar wind, a spherical
shock surface is assumed across which the uniform conditions on either
side should obey the Rankine-Hugoniot normal shock relations. Since
the Mach number of the preshock supersonic solar wind is very high,
the strong shock relations are invoked, Across a strong shock a highly
supersonic flow becomés a moderately subsonic flow and the post shock
solar wind can be treated as an incompressible fluid to a fair approxi-
mation. Finally,-the subsonic solar wind is assumed non-viscous and
irrotational, also,

With the above assumptions, both the post shock solar wind and the

interstellar wind satisfy the relations of ideal fluid flow

£1 9 1N

- Nbgo—i)

curl (v) =0 , and . ' (1.2-2)
v2 ’ '

o} 5 4+ p = constant . _ {1.2-3)

Since the density p in either regime is constant the velocity

/2

v in equations (1) and (2) may be repleced by (pl v=v") . The
substitution results in the equivalent set of equatious ﬁ
div (v?) = 0 _, o //(1,2-4)
eurl (v7’) = 0, and , L _ : (1-2-5)
v'. v’ ‘ : .
= 3 = 4+ p = constant . ' _ ‘ (1.2-6)
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In these equations, no density ex#licitly appears and the conétant of
the Bernoulli equation:is the same over all stream lfhés of b&th'flow
regimes, the congbant being the stagnation preSSufe of the intérstellar
wind, Consequently there is nothing in the equatioms to distiﬁguish
them between either flow regime and they represent the flow in both.
The problem mathewmatically then has been reduced to that of a siﬁgle
ideal fluid of wnit density flowing in both regimes subject to'certain
boundary conditiﬂns.ati » and at the shock surface where the solar wind
part of the flow field first becomes subsonic,

To recover Lhie golutions for the real fluids in either regime

from the solution of the ideal fluid equations one simply applies the

inverse trdnsforwation

p71/2 e

V= (1.2-7)

with appropriate density in corresponding regions of the ideal fluid :
bolution. - Since Lthe pressure p in the Bernmoulli equation (6) was not
affected by the tvausformation of the original equations, the pressures
obtained in the aylution of the ideal fluid problem carry back unchanged
to the rESPECtiVQ:regimes of the real fluid problem.

Equations (4) and (5) admit a velocity potential that is the solution
of Laplace's equaltion., The solution of the equation is effected by.
superpqsition.

At large diatances from the sun (infinity) the effects of the solar
wind are no longey felt and-the fluid appears as an incompressible uni-
form parallel flow, At the spherical shock surface by assumption the
sﬁlar wind flows yadially wifh uniform subsonic vélocfty and hence is

indistinguishable fyom the flow of an incompressible point source



20
matching condiéions at the distance of the shock radi;s. The floﬁfield
of the combined subsonic flows is, then, to be constructed as the-s;per-_
position of the appropriate parallel and source flows to which,ﬁhe_com-
bined flow is assumed asymptotic at the boundaries. By the vﬁﬁiéh?ng
nature of the source flow at infinity, there the solution so obtained
will be exact, Since the parallel flow does not vanish identica¥iy at
the shock surface, but depending on parameters may be small there com-
pared to the source fiow, the solution in the vicinity of the shock
will only be an approximation more or leés in keepiﬁg with the assumed
sphericity of the shock surface and other idealizationsof thelproblem.

To solve the subsonic flcw problem as indicated above requires the
location ofaﬁddetermination of conditions at the shock surface;. This
is accomplished using ﬁhe integral of the continuity equapion, with con-
stant velocity in the supersonic region, to project conditions at the
egrtn to the shock; using thé strong normal shock reiations TLo Carry -
conditions across the shock; and using the incompréssible Bernoulli
gqgation to project conditions imposed by the interstellar medium back
op;prthe shock to achieve a match up as detailed below.

The integral of the continuity equation in the preshock interplane-
tary solar wind gives |

pv r2 =0V R2 =p, Ve rz s V=V %:v _ '(1-2-85
where subscript 1 refers to conditions immediately on the sﬁpersonic
side of the shock and subscribt e refers to conditions iﬁ the solar .
wind at earth distance ffdm‘the sun, The radial distance of the shock

surface from the sun is R . With the constancy of the velocity beyond
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the orbit of earth, the density in the supersonic solar wind is seen
to vary with the reciprocal of the square of the radial distance from
the sun,

The Rankine-Hugoniot normal shock relations are

PL V1= P2 Yo | (1.2-9)
2 2 \ 1. 2e
Pyt Py V] TPyt Py Y, (.'2_10)
vz Y P vl Y P '
1 1 V2 2
—_— F ——— —= = e —_— — -
z Y3 5, 5t » (1.2. 11)

where the subscript 2 vrefers to conditions immediately on the sub-
sonic side of the shock. 1In the case of strong shocks Ml >1 ,

2 T .
P
Py = Py vy Py and Fhe derived relat?ons

vy Py tl ' S |
hlaie S e
Since for a monoatomic gas such as the fully dissociated and ionized
hydrogen éf the solar wind vy = 5/3 , the right hand side of relation
(12) has the value 4 . Subsfitution of relations (12) in (10) and
dropping the negligiblé pressure p; glves fof fﬁe post shock preésure
in the'solar wind |

22



22

Beyond the shock the incompressible Bernoulli equation holds in

the subsonic solar wind so that immediately after the shock

2
2 _
Pyt Py 5 constant = p_ (1.2-14)
where p_ is the pressure at the stagnation point.

But the stagnation point pressure also obeys the incompressible

Bernoulli equation in the interstellar wind region where

(1.2-15)

In equation (15) v, is the veloéity of the sun with respect to the

undisturbed interstellar medium and the pressure of the undisturbed
medium is of the order

oolcd
Alr- ra

Ppe = PR Ty

(1.2-16)

taking account both of the scalar pressure due to the interstellar

magnetic field B, and the thermodynamic pressure of the interstellar
gas treated as atomic hydrogen.

In the light of relations (15) and (16), the right hand side of

felation (14) is a constant dependent only on the properties of the

undisturbed interstellar medium and the motion of the sun through the
medium,

Substitution of relations (12) and (13) in the left hand side of
(14) then gives ’

(1.2-17)
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Relation (17} i; viewed as selectigg the place in the supersonic ;olar
wind flow whefe'the momen £ um fiux is such that if thé shock occurs there
the post shock conditions will match up with a subsonic solar wiﬁd solu-
tion the constant of whose Bernouy}i.eguation is pg s given by relation
(15) with (16). Finally, éubstituting for N in relation (17) the

value in terms of the parameters at earth ané the radial distance from

the sun through relation (8) we get that the radial distance of the

shock from the sun maj be found as

() et .
R=r1, [T ' (1.2-18)

2
2 Py + inD

With R as given by relation (18), the immediate posﬁ shock

velocity and density obtained from relations (12) and (8) are

= {X-V 3 | . -
v, (Y*l) v, and o __(1.2 19)
L (X to | | (1,220
Py (y-l) ~—5— Pe . (1.2-20)
R

For the source flow representation of the post shock solar wind the
\ ' : . :

‘source strength is given by

. 2 )

where v;'lt is the velocity of the source component of the ideal

fluid at the point' R and is given by

1/2 . ‘ :
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Combining relations (19), (20), and (22) in (21) yields the source

strength as a function of R

y-1 1/2  1/2 o _
Q= 4mr, R (Y"'l) R (1.2-23)
The potential function and Stokes stream function for the source com-

ponent of the ideal fluid flow are respectigeiy

9, = - 7= and | (1.2-24)
Q | :
¥, = 3 (1 - cos 6) : _ (1.2-25

where ¢s is the flux in a cone of given semivertex angle 8
measured with the axis of flow in the direction of motion of the sun
through the interstellar medium, {.e. in the direction upstream of
the sun with respect to the iﬁterstellar wind,
For the parallel flow fgpresentation'of the far interstellar wind
the velocity of the parallel flow component of the fictitious fluid is
=-; . | 1,2 - .

\ -U—vpf Py v, - . _ (1.2-26)

The corresponding components of the potential function and Stokes

stream function for the ideal fluid are

9, = - U x and | .22

ﬁp = « T U y ) - (1-2—28)
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In the equations, x is a cartesién vector component measured aiong

the axis of flow, positive in the upstream direction.with respect to

the interstellar wind, and y 1is orthogonal to x . .
Adding components for the saﬁrce apd parallel flows gives the

e T .
potential function . _ ! ‘

+

¢=-Ux- = . | (1.2-29)

Similérly the Stokes stream function for the ideal fluid representation

of the combined flows of the solar and interstellar winds is

(X ]Fe

V= (1 - cos B) = ﬂ11y2 . (1.2-30)
.Differentiating equation (29) with respect to x and setting the

result to zero on the upstream axis of the flow places the stagnation

point at

/2
x = (2%5 ) (1.2-31)

From relations (23) and (26) we find for the stagnation point location
‘ 1/4

2
i/2 p v .
* * y=-1 e e
xo_ (R) (Y"’l - vz . {1.2-32)
io ‘

In the equation the asterisks signify quantities measured in astro-

nemical units, i.e. normalized by r, (See equation (18).) .
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Combining equations (30) and (31) we find the streamlines in the
X , v plane corresponding to the intersections with' streamsurfaces of
constant velocity flux ¢ are given by

y2 = 2x§ (1 - cos 8) + constant, (1.,2-33)

The regions of the flowfield corresponding to the solar and inter-
stellar winds are separated by the stagnation point streamline.obtained
from equation (33) with the constant set equal to zero. Streamlines in
the interstellar wind regime correspond to positive constants and those
in the solar wind regime to negative constants, The most negative con-
stant yielding a real streamline is (-4 xz) corresponding to the axial
streamline in the downwind direction, At large distanceé déwnstream of
the sun the streamlines become asymptotically parallel corresponding to
circular cylindrical stream sﬁ;faﬁes..ln ﬁérticular fne radius ot the

stagnation point stream surface approaches asymptotically
y = 2x° . _ : (1.2-34)

With equation (31), equation (29) may be represented as

2
X

o= -U (x+=2) . | o (Li2-33)

Then the ideal fluid velocity components obtained by differentiating

equation (35) are
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X X . h :

. o _ . : -

v. =y < 5 1) and | (1.2-36
. r f . .
2

» .xo y i
v = U 3 . . ‘ (10 2-37

y r

Finally, haking use of equation (b) and, (26) we have the real

fluid velocity components

1/2, 2 ,
oy X X
X VD<S—) ( r3 - 1) and (1.2-38)

<
1

: 1/2 2
% 2o ' 1.2-39
Vy—voa—- 3 . ("‘)
r
where setting p = P gives the velocity in the interstellar medium and
r
P =P, = %%% (EE pe gives the velocity in the subsonic scolar wind,

Equation (38) predicts that at large distances downstream of the sun
the velocity in the subsonic solar wind should-approach the constant
value 1/2
Ve =V, (3&% gi) -R* . ’ o (}.2—40)
The speed wiéﬁ which the sun moves relative to the local inter-
stellar .gas is presently quite uncertain. Astronomical measurements
put the speed of the sun with respect to the nearby stars at 20 km/s
(Allen, 1963). 1In the absence of other better indications, this value
has been the standard interstellar wind speed for purposes of ca&cu-
lations and physical inquiry,

However, consistent with both the expanded‘knowledge of the temper-
ature and density in the interstellar medium and ;hé“developing model
for the interaction of the solar.wind with interstellar neutral hydro-

gen, recent interpretation of measurements of interplanetary Lyman - o
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radiation provide both grounds (Bertaux and Blamont, 1972) and ai.
method (Thomas 1972) for mak;ng a new, mére direct eétimate."Iﬁ_
the reference éited, Thomas finds the Speedlof the interstellé?IWipd
to be on the order of 6 km/s .

Since the model used by Thomas is somewhat incomplete, for the
present,'we regard the value given as indicative. The subject of
Lyman - o scattering with inferences to be dfawn from it is discussed’
further in section 4, and again in Chapter Ili.in conjunction with cal- \
culations of interstellar wind speed based on our own model,

We now explore the possibility of using the foregoing solutioﬁ éf
Parker to provide a rough approximate description of the combined
solar wind - interstellar wind flow field under conditions typifying
current estimates, To point up a separate major difficulty in the
model as originally formulated and directly interpreted we initially

1

e Lility in the initerstellar mediunm

pusdn thé assuimption of incompréssl
to the limit by assuming the sun to move with sonic speed ( ™~ 16 km/s )
relative to the ionized component of the intersteliar gas, Later,
with the model reinterpfeted when we reduce the assumed interstellaf
wind speeds toward-the substéntially subsonic estimate of Thomas, rea- -
sonable éonsistency is achieved in the incompressibility assumption.

To:proceed accordingly, we choose from Table I the particle density
of the interstellar neutral gas to be 0.1 cm—3, the density of the ionized
.fraction to be 0.01 cm-a, and the interstellar magnetic field strength

-6 : L
to be 3 x 10 gauss, Putting numbers in equation (18) where and Piw

f1
include contributions of the ionized as well as neutral interstellar gas,
we find 125 a.u, as the estimate of the distance to the shock termination.

If the same procedure is followed for equation (32) using the foregoing result
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for R* , the gtagnation.point is found to be at 100 é.u., well within
the shock radius. The' latter is an abviously absurd-fesult from which
we infer that sﬁme assumption of Parker's model must be grossly iﬂcon-
sistent with the physics of the problem to which the model is being
applied, Understanding of the difficulty is promoted through a relation
for xt/R* obtained from equations (18) and (32). -

The relation is

1/4

2
2-») Pret+ 172 Pi Yo }

y+3 2
pivo

Pao™

. (1.2-41)

Viewed as representing an ordinary gas dynamies problem, equation (40)

may be recast

e

T
-+

|
< {n
=l

(

N*on*
W

2+ 1) } : | (1.2-42)

-

T
l

With y given the value 5/3 , the coefficients %i% and 2fvy have

the values 1/7 and 6/5 respectively, Hence in order*that the model

x
place the stagnation point outside the shock surface (—g— >1) ,
. R
equation (41) requires that Mi < % or the free stream Mach number

M, f 0.45 .

Based on Thdmas' estimate of v, ) the Mach number of the sun
through the neutral interstellar gas is 0.5 . Quite evidently then
Parker's model in the furely gas dynamic intérpretation of the problem
predicts that in the upstream direction the‘assumed incompressible
source flow of the solar wind will be deflected back and around the

flow of the interstellar gas before the source flow ever reaches the
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place where the shock in the real supersonic solar wind ought to be.
Parker himself noted (i961) that the representation éﬂbuld apply
only for very siow passage of the sun through the interstellar gas;

Somewhat ironically but fortunately for the vitality of his
model, in fact, the bulk of the interstellar wind does not flow as
parker originally hypothesized. As recognized by Holzer and Axford
(e.g., Axford, 1972) and as we shall see in more detail in the next
‘section where we diécu;s particle interactions, outside the shock the
mean free path for a neutrgl hydrogen atom to interact with anything
is much greater than the characteristic dimension of the flowfield, as
measured by R* for example. Consequently the neutral hydrogen is
not deflected as a continuum fluid forming a definable boundary with
.and flowing around the solar wind in accordance with Parker's model,
But the numerically much weaker ionized component of the interstellar
wind being a magnetized plasma of short gyro-radius interacting with
another similar plasma does forﬁ such a boundary and is deflected to
flovw in Suéh a way. Tﬁ the zeroth order approximation of the present
discussion, then; the neutral hyérogen is regarded as passing without
effect through both the ifonized interstellar wind and the subsonic
solar win&. |

If we now examine the assumptions of Parkef's model in the light
of the foregoing, we note that the reiations for the location of the
shock distance are a statement about exchanges of momentuﬁ between
the two media. As the result of momentum conservation in the x direc-
tion in single particle collisions, it does not appear that on the axis
in the forward direction it should make too much difference whether a

fraction of the overall momentum flux of the interstellar wind is
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exchanged with the solar wind within the shock as in the case of the neutral
hydrogen or whether it is all stopped at a stagnation point as in Parker's

assumption. ‘

On the other hand, given the location of the shock the location of
the stagnation point in Parker's model can be seen to derive from kine-
matical relations and is a statement about the conservation of velocity
flux in the flow of two incompressible, irrotational fluids that must -
evade each other. Evidently the two such fluids here should be the
solar wind, in principle augmented by the ionization of neutr#l hydro-
gen transported into the solar wind, and the ionized interstellar wind.

Consequently while in equationr(18) it is reasonable fo take Py
as the sum of the mass densities of the neutral and ionized coﬁponents
of the interstellar wind, in equation (32) Py should reflect only the
density of the ionized component. When this is done in equation (32)
the prediction is that the solar wind be bounded at 185 a,u,, a dis-
itduce well guiside the ;hoﬁk.-. - -

Following the corrected procedure but with Thomas' estimate of
the interstellar wind speed (6 kmfs) we find 145 a.,u. for the shock
fadius and 328‘a.u. for the distance to the stagnation point. Stream-
lines of the flow field are sketched in Figure 1,

An ihdication of the internal consistency of the model as extended
is availabie frﬁm equation (38) evaluated on the upstream axis of flow
in the subsonic solar wind. With equation (32} and x and T taken
equal to R, it may be seen £hat the first term of equation (38)
gives the post sheck ve;ocity, equation (19); and accordingly the second
term represents the error at the shock, Thé relative error in the sub-

sonic solar wind velocity in the wvicinity of the shock is hence measured

by Rzlxz , about 20% for v0=6km/s .
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Xo = 3?8 a.u, | Rs = 145 a,u,

Figure 1. Streamlines of flowfield"described by the'exténdedearkér éﬁiufioﬁ_foé ther
termination of the solaw wind. : _ ' o

cE .
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Using the value for the shock radius 145 a,u,, we see from equation

(40) that the velocity'in the subsonic solar wind downstream of the sun

is of the order of 3 v, of 2 % 106 cm/sec, We recall the speed v,

of the sun to be equivalent to about Mach 0.5 in the interstellar gas,

Thus downstream of the sun the flow of the solar wind has the character

of a transonic jet in the interstellar medium. -
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3. Heating and Flowfield Temperature

We now complete the gross characterization of the flowfield beyond
earth orbit wiéh a discussion of the temperature. The extended shock
termination solution provides the general description of the flowfield
on Which the analysis is based.

In the supersonic regime of the solar wind flow the temperature iﬁ;
governed by a competition hetween heating by conduction and cooling by
expansion. Use can be made of the heat conduction and criticél poly-
trope solutions examined in the pfevious gsection to get a qualitative
view of the situation. The polytrope solution predicts comstant velocity

and resulting density and temperature functions that vary as r and
«2(oy~
r (a-1) respectively,

L]

The volume rate of heating Q associated with any prescribed flow
can be got from a representation of the first law of thermodynamics,
the hear equation for steady fiow

Q=pdivv +.p v . grad e . — _ (1.3-1)

Expressing div v in the radial coordinate with spherical symmetry,

the internal energy e by ;%T /9, p by the polytrope law

p= pg(p/pe)a and invoking the critical polytrope solution yields the

result
2041
g = zieve ()'_9')(.;2) . : o (1.3-2)

Evidently the requirement for heating is substantially reduced both with
increasing o« and distance from the sun. For g = y , the adiabatic

solution, there is no heating.
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The heating available from conduction is given by

. 1.4 2 dr '
Q =-div ﬂ = ;2 Er(r ® I . : ‘ (1.3-3)

Neglecting for the moment the effect of the interplanetary magnetic
field on conductivity in using equation (1.1-4) and again assuming
the polytrope dependence for T leads to the result

7/2 ' Ta-5
2AT

O
1]

2 1 ?S(re) 1.3-4
—5 (@D ) (F (1.3-4)
e

Inspection of equation (4) reveals no heating (Q = 0) is avail-

able from conduction when 1 < o < 8/7 . When the upper limit of

the range is substituted in r-2(a-1) the temperature dependence of
the accorded polytrope solution is found to be the «r "?!7 variation
of the constant heat tlux solution of Chapman; J

Solutions in the range 8/7<ac< f = 5‘/3“.can derive heating

from conduction, It is interesting to note that the effective polytrope
index best representing the flow of the solar wind from the base of the
corona to earth o = 1.15 1lies rather closer to the lower end of the
range indicating the system adopts gradual heating of the flow from

slow attenuation of the conduction heat flux. Indeed if one equates’
the expressions for heat supply énd demand, equations (2) and (4), to
get the exponents of r in consoﬁance one finds o = 1.2 , furthering
the conjecture. The transport coefficient of thermal condﬁctivity A
required to bring the coefficients of the t&o expressions to equality

is found to be 5,6 X 10-7c}g;s. units,avalue consistent with theoretical

estimates.
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In the vicinity of the solar poles where the interplanetary ﬁag-
netic field lines makezqnly small angles with the raéial direction, the
state of the system should be essentially as we have just described, But
near the solar equatorial plane the situation is more complicated.

There it is now well established the magnetic field lines follow
an Archimedes spiral approximately according to the law

T

(=tan P2 C(1.3-5)

where ( is the angle the field direction makes with the azimuthal
direction, |

As presently understood theorétically and as we shall see in éhe
next chapter, the consequences of the magnetic field becbming more
azimuthal is to rapidly lower (by,sinzg) the effectivé coefficient of
thermal conductivity in the radial direction. Beyond éeveral earth
radii from the sun the heat flux is effectively blocked, Qualitatively
the result is a temperature profile that falls off faster than r"a
(for o« = 1.2) which was found in the absence of the field.

The effect of cutting off the heat flux can be partially analyzed

through thé dynamical form of the heat equation
Vz X_ GM“ . ‘
div P X(-z— + y-1 p/p - —;—) = = div 3 0 . (1.3-6)

Assuming spherical symmetry and conservation of mass (equation 1.1b-1)

we‘get from equatioh (6) the integral

GM rl q
Povhe R
pee

2y 1
§¥T R(T - T) +3 (v . (1.3-7)
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Equation (7) is séen to embody a ﬁfediction of the tgmperature iﬂ'the
supersonic region provided consistent estimates are available for the
second and last terms.

Since at earth the angle which the interplanetary magnetic field
makes with the radial direction hagloniy reaﬁhed about 45° s, heat
conduction from the bgse of the corona has not yet been greatly effected,
Hence for purposes of estimating the heat conduction flux at earth we

take the temperature ﬁrofile locally to have the r dependence found
in the absence of the field, Then téking account of the local inhibition
of conductivity by the field the heat flux is given by

T 7/2

. 2 e -
q, = .4 sin geA ;; . _ (1.3-8)

5

Taking T, to be the electron temperature 1,5 x 10 °k measured

at 1 a, u. give; the ﬁalue 3.1z x 1013 lerg]gm- for the right hand
side of equation (7). Out near the shock (r ~ 125 a. u.) the grévi-
tational term has the value .88 X 1013 erg/gm . Taking Te‘ in the
first term of the left hand side to have the average value llulx 105 %
of the electron and proton temperatures measured at 1 a, u,, one finds
the termr %%1 R T, = 4,16 x 1013 erg/gm .

?he term ve2/2 has the value 8 x 1014 erg/gm which is substan-
tially larger than the others. Hence if we are to use equaticn (7) to
estimate the temperature we must be able to gaﬁge the dynamics rather
closely. The extent to which the latter may be accomplished depends on
the imporﬁance ofvheating to the remainder of the dynamical trajectory.

To investigate the question we invoke the one dimensional compressible

flow equation (Chapter II) in radial symmetry,
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32_v2 dv =_,Z§2 + E&g + (y-1) Q. '(1'3'9)
v dr r r2 Y pv o

Using the relation for the speed of sound

af=2yarT ' (1.3-10)

we find at earth az = 2,77 ¥% 1013 <:mzs-2 which is much less than vz.

Consequently the left hand side of equation (9) is - %r (% ) and making

use of the constant mass flux relation we write

3]

a v 22 M Q. x
E (-i- ) =] —r- - ---2—" - (Y—l) p v —_2' » (1-3"11)
Tr e e r
e
R |

At earth the first term on the r.h.s. has the value 3.7 erg gmn cm
compared to - .59 erg gm_1 cmul for the gravitational term.
Beyond earth the thermal condﬁctivity diminishing factor sin (

has the approximate dependence

e . |
€ e‘ . (1.3-12)

2 .
tan r>r
ge l e

Using the r functional dependencé of equation.(l2) and again assuming.

the polytrope temperature dependence we find

i 2(e-1)(7a-6) A T
Q= 2
2 tan ge

72, Ta-3 [sin’ (
- (1.3-13)

x r
e

for the volume rate of heating by conduction. Comparing equations (4)

and (13) we see that the relative effect of the interplanetary magnetic
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field is to increase heating near earth (o . 1.2) but rapidly to .
diminish heating (by 'rzlrz)_farther away. . -

At earth fhe heating term on the right hand side of equation (11}
then has the value ~3.33 erg gm-l cm-1 which is cﬁmparable with the
value of the first term on the right hand side., Hence as a result of
-the closing magnetic field lines in the solar equatorial plane heating
is important, in a relative sense, in the dynamics of the supersﬁnic
solar wind near earth, However substituting equations (13) anﬁ (10},
with the polytrope law, in equation (1l) we see that the terms on the
‘right hand side vary with r respectively as r-(2a-1), r 2 y p(Fa-5)
Then beyond earth, where o > 1.2 is assumed, the heating term diminishes
with respect torthe first at least .as fast as r"2 . Hence for purposes
of estimating from equation (7) the temperafure out near the shock
(r .. 145 a. u.) we can get a fair estimate of the integral of equation
(11) by negiecting heating,

The integral is formally available to us in the adiabatic ﬁolytrope
"solution (= vy = 5/3) already developéd'(séction 1.1b). The solu-
tion is given relevance to the present problem by basing the initial
point parameters xo, yo » po , and so on conditiong measured at
earth,

‘Siﬁce for the adiabatic solution o is the spéed of sound a, »

Yo = ﬁé = Me the Macﬁ number which is .~ 7.7 at earth, The Méch number
being greater than one, the solution is on the ascending branch Lf £Q1) .
The initial value for the non-dimensional distance X, has the

value 3,12 which is greater than zero, thé location of the minimum

of g{x) for the adiabatic .solution, Hence X, is on the ascending

branch of g(x) , also.



40

The initial values for x and M both being on ascending branches
of their respective function curves, the solution we seek to equation
(1.1b~11) belongs te the class of critical solutions. Since out near
the shock X and M have values of the order of 400 and 20 respec~
tively, the asymptotic formulas are appropriateé, Then the result we

seek, equation (1.1b-26) gives v2/2 = 8,33 x 1014 cmzs-2 for v =

4.08 x 10 cm s-l, an increase in velocity of only 2% beyond earth,
Since by equation (11) the effect of heating a supersonic flow is to
retard the velocity, the result given is an upper bound.

Thus the second term of equation (7) has the value 3.3 X 1013

erg gm-lcm- . Accumulgting numbers found for the other terms pre-
viously, we find 74,000 0K for the estimate of the tehperature at
the shock. But the polytrope law even with ¢ = 1.14, i.e. unattenu-
ated heat conduction, gives a temperature of only 25,000 oK; and for
o = i.2Z, giveé 14;600 OK.. Evidenﬁly tﬁe estiﬁate-of thé temperature
that we have derived from equation (7) is much too high.

The source of difficulty lies not with the equation itself,
which is fundamental, or with the estimate of the terms on the left
hand Side, the least weil known one being an upper boun&. Hence the
problem m;st lie with the right hand side of the équation.

TWD possibilities suggesf themselveg. The first 1s that the
classical transport coefficient of heat conduction 6 X 10-7-c.g.s.
units (and the fesulting estimate of heat flux 1,04 x 10-2erg cmhls_
at earth) is too large. The second is that the hypothesis of effec-
tive extinction of the heat conduction flux at large distances beyond
earth by the closing magnetic field lines 1s too severe,

That the former is true has been inferred previously on a variety

of different empirical and solar wind- theoretical grounds by Montgomery
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(1972), Scudder (1972)1 Barnes and Hartle (1972), Whang (1972); and
Cuperman and Harten (1972)., Estimates of the requlred reductlon based
on solar wind theory range from a factor of 2 to 5.5 . Numbefs at
the high end of the range_aré consistent both with the prediétiong

of the polytrope law and Scudder s interpretation of the conduction

heat flux in the steady solar W1nd derlved from measured electron
'distributions. Corresponding in our calculation to a reduction factor
of five, the heat flux- 2% 10-3 erg cmpzs'l is typical of the numbers
quoted by Scudder;in the "convergence region", i.e, the third moment of
the distribution function cut off between. 200 and 300 ev. CWiEh re-A-
gard to the cut off point, it is noted that the r.m,s. valuelof the
Maxmillian.distribution for the electron temperature at 1 a, u, 1s 40 ev,)
1f using the quoted reduced heat flux at earth, we recompute from equa-
tion (7) the estimate of the température at‘the shock we find 14,000 oK,
the pfediction of thé polytrope law for o= 1.2,

"In the reference cited; Scudder also has observations relevant fo
the ‘possibility that the effective coefficient of heat conduction trans-
verse to the interplanetary magnetic field is not greatly reduced with
respeét to the coefficient in the field free or field parallel case.
Looking at thé direétional distribution of the heat flux‘vectﬁr about
the magnetic‘field lines, he finds that the flux due to unsteadf injec~
tions of high température electrons into the solar wind i; ducted by
about a factor of three by the magnetic field lines. But for the steady-
'electron population in the Eonvergence region the direct interpretation
of the data presented is that conduction transverse to the field is not
greatly reduéed, apparently-only by a facfor of about 0.7 » With re-

spect to the field aligned component.
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If in addition to the reduced heat flux at earth we accept tﬂe
direct interpretation of Scudder's data,.namely that the steady com-
ponent of the electron heat £lux transverse to the magnetic field is
transmitted with only a factor of 0.3 attenuation, the estimate of
the temperature out near the shock is reduced to only 400 °K . we
take this value to be a lawer bound on the temperature and the previous
estimate 14,000 °k to be an upper bound, It is noted that the tem-
perature predicted by fhg strictly adiabatic polytrope expansion 1s
130 °x .

Thus in the present state of uncertainty the range of temperature
estimates in the supersonic solar wind near the shock essentially dupli-
cates tﬂat'in the interstellar medium., Hence we can take as a rule of.
thumb that the temperature in the far supersonic solar wind is compar-
able with that in the interstellar medium, Accordingly; the speed of
sound is at most 20 km . and the preshock Mach number is at least
of the order of 20 .

Because the Mach number in the preshock éuperéonic solar wind is so
high, the post shock pressure and temperature are only very weakly de-
pendent on the preshock pressure and temperature through the strong
shock relations, Making use of the relations developed in section 1.2

we find that the post shock and stagnation pressures are given respec-

tively by
2
2 2f7e} - ,
P2 = e—— pV (—E-) and ‘ ( -3'14)

2(F |
Pg = 2%3%1).pevé ('f%)' - o (1.3-15)
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The coefficients in equations (14) and (15) differ only by about 1%%,.
Then the subsonic solar wind is only slightly compressible, the'bos;
shock density being given by equation (1.2-20). Hence the tempefature

in the subsonic solar wind may be considered isothermal with value given

by
v2_ .
T2 (Y+1)2 &~ 1.8 x 10 K . 7<1.3 16)

Thus we close this section by noting as a second rule of thumb that
the temperature in the subsonic solar wind replicates that at the base

of the corona,
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4. ﬁodern De%elopments_- Particle Interactions

In the historical context, one can equate the €arly development of
the subject with the establishment of the flowfield by classical continuum
methods, the focus of our discussion to this peint, Tﬁis phase spanned.
six years culminating in the publication of Parker’'s (1963) book.

Signaled by the publication in the same year of papers by Axford,
Dessler, and Gottlieb (1963) and Patterson, Johnson, and Hanson {1963),
the modern developmenf is characterized by the occupation witﬁ filling
in a wealth of physical detail missing in the early macroscopic models.
Much of the effort has been éoncerned with identifying the important
microscopic physical processes underlying bulk behavior within and between
the solar wind and the interstellar medium, The progress of research,

. involving of practical necessity the rather piecemeal testing of concepts
in the evolving corporate model,.has now led to the point of gnderstanding
where it is timely to enfer é ﬁew era of anélysis irom syﬁcheéis. |

Thus the present.section summarizes, unifies énd in some particulars
clarifies the contributions to the physical model made in the recent liter-
ature, The remainder of the thesis is then concerned with producing a
céherent mathematical model adequate to explore features of the combined
flow proﬁlem with the increased accuracy and for the subtlety of detail
the added physics portends.

The paper by Axford, Eﬂ.él' (1963) touched on wany noteworthy topics
including the role of the 1nterplénetary magnetic field in the dynamics of
the solar wind, a subject we treat in Chap;ers IT. and IV. But the point of
greatest significance to the present devélopment, at least, is the recogni-
tion of the compelling likelihood of the charge exchange interaction between

solar wind protons and atoms of neutral hydrogen. The neutral hydrogen
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is of interstellar o%igin and is éble to invade the cavity occgpiéd By
the solar wind in the galactic magnetic field. The authors also"tén—
tatively estimated the effect of photoionization of atomic hyd?ogen by
solar ultra-violet radiation in the Lyman-continuum. h

Patterson,'gg al, then introduced the important notion of using
measurements of extraterréstrial Lyman-¢  radiation to infer b?th pfo;
perties of the interstellar medium and structure of the solar wind through
correspondence with prédictions of an interdependent physical model. As
the result of large wavelength dispersion, the Lyman-g was considgred_
to originate in backscatter of solar radiation from hot interplanetary
neutral hydrogen., The hot interplanetary hydrogen, in turm, was sup-
posed to be the product of charge exchange reactions between hot seolar
wind protons and interstellar hydrogen which at that time was thought
to be cold { .100 .K)° Following Axford, et al.g the reaqtlons were
assumed ﬁo.take place in a fhiq shell subsoﬁic reéion;

- Hundhausen (1968) recognized the thin shell assumption to be falla-
cious on grounds of the large mean free path for charge exchange. in a
more systematic model, he thgn showed that the assumption the Lyman-g
gscattering sﬁould come from secondary hydrogen leads fo an unrecoﬁcilable
theoretical contradiction in the location of the shock surface in the
solar wind, .

Semar (1970), following the work of Biermann, Brosowski, aﬁd échmidt
(L967i for cometary flow, pioneered numerical calculations.of silér windl.
flow using one dimensional gas dynamic equations. The equations featured
sourée terms for ﬁass, momentum, and energy additions baséd on photo-

jonization and charge exchange reactions with interstellar hydrogen.
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Blum and Fahr (1970,1971), Fahr 1972, Holzer and Axford (_'1976 a,b) |
Holzer (1972) and others have elaborated various aspects of the_ﬁransport
of interstellar neutral hydrogen into the supersonic solar wiﬁﬁ region,
the influence of charge exchange with this hydrogen on the loéation,of
the shock,-and the interpretation of Lyman-o scattering from such hydro-
gen. (See Axford (1972) for additional‘references and a comprehensive‘
review.) In .the present context, all the forementioﬁed work has sﬁfferéd
from the failing to iﬁcorporate both (1) a high temperature velocity dis-
tribution and (2) the effect (see bélow) of solar Lyman-g radiation pres-
sure on the interstellar hydrogen gas. |

Finally, Thomas (1972) brought to the field in modern context (but
.see also Brandt, 1960) the idea developed.by Wilson (1960) that the radi-
ation pressure of solar Lyman~¢ approximately cancels solar gravitation
with respect to tﬁe transport of interstellar neutral hyd?ogen. Also in-
corporaciﬁg an isotfﬁpiéally distributed velocity compbnenf to roughly |
simulate a temperature distribution for the hydrogen, Thomas was able to
gain an estimate of the speed of the interstellar wind,

Using Thomas' estimate of the speed ( .6 km/s) and the resulting
estimates of the flowfiéld parameters based on the extended Parker solu-
tion (se;tions 2. and 3,), We now turn our attention to the physical
processes mentioned above and to demonstrating the scale of their effects.
Based on results obtained in the earlier sections, Table 4 callecté nomi -
.nal vélues for parameters of the solar wind regions and the interétellar
wind, |

a, Phetoionization

A hydrogen atom exposed to solar ultraviolet radiation of wave-

length at or below the Lyman edge 912 A may absorb a photén and become
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ionized, The Erocess thus contributes one free proton and one;fréé
electron to the plasma‘df the flow regime in which the event océ#rs.
1f the absorbed photon has a wavelength less than 912 A , cofrésppn-
ding to the hydrogen ionization threshold of 13.59lev, the résidual
energy of the photon appeafs largely as kinetic energy of the freed -
electron, |

The photoionization rate per atom of hydrogen is given by

o = [ £(v) cp(v).dv‘ ' | | (;.4-})

Yo

1
Table &. Nominal values for parameters of solar wind and
interstellar wind flow regimes

SOLAR WIND ) INTERSTELLAR WIND
SUPERSONIC  SUBSONIC JONIZED NEUTRAL
NUMBER 5 0.001 0,01 0.1
DENSITY 4 )
- T
(em 7)
TEMPERATURE 10~ 10% 10* 10*
(OK) ro.4 :
velocity axto] <10’ 6x10° 6x10°
(cm/s) :
MACH >7 <0.5 0.4 0.4

NUMBER

Ll Jdistances r in astronomical units,

where Yo is the frequency at the Lyman edge, f(v) 1is the photon

flux density, and cb(v) is photoionization cross section. As the
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result of the approximate v-3 frequency dependence of the cross section
above the Lyman edge;'the integral is rapidly convergent; and Ehe gffec-
tive wavelength band is approximately Y to ZvD . Using the solar

u, v . flux measurements of Hintegregger, et al. (1965), Banks ahdr
Kockarts (1971) have computed the photéionization rate ab to be

7 -1
s .

1.5 x 10° at 1 a, u, The integrated flux fo over the effective

wavelength band is 2.8 X 1010 photons r:m-zs-1 and the .average photo?

18cm2 (Holzer, 1972).

~ ionization cross section Ep is 5.4 x 10
Assuming the v-3 Vdependence for the cross section and uniform

photon flux permits an easy estimate of the average kinetic enefgy of

the photoelectrons, i.e, the average excess energy of the absorbed pho-

tons, When the integration is carried out over the interval Y5 to ZVO,

the average photon energy is 4/3 hvb where hvo is the photon energy

'13.5§'év at the Lyman edge.
Coﬁsedue;;ly Eﬁé-avérage energy residiné ;n the‘ﬁhotoelectrons is
roughly 1/3 hv_ ~or 4,5 év. This number is only half the 10 ev figufe
adopted by Semar from Biermann's (1967) estiméte for heavy molecules of
cometary fIOW._iEVidently fﬁg latter number is inappropraite for hydrogén.

. The mean free path for photons is
A—(NE)'i - . - (142)
Y P ' : T : T
where N 1is the number density for hydrogen. At most, N has [the
Y

/
equals or exceeds 1.85 X ].01B ecm or roughly 105 a, u. Sinée the

interstellar number density No = 0.1'cm-3; and, consequently

characteristic dimensions of the flowfield are less than 10"3 A.u,,

attenuation of the ionizing flux is not a factor in the problem, With
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b
. ' T YA
the assumption of spherical symmetry, the flux then varies as T .
Hence from equation (1), « may be represented in terms of the éomel

puted value ape at earth by
; , S
e .

% = %e (;?) ’ (174“3}

The mean free time Tp for hydrogen before photoionization is
given by the reciprocai of ap . The characteristic speed for the ;rans- .
port of interstellar neutral hydrogen into the solar wind is the mean
thermal speed at 104 °k . Then the mean free path against photoioﬁi-
zation is the product of the characteristic speed 1.5 X 106cm/s with
the mean free time, yielding h: = 0.6 r*z where as béfore the asterisks
, signify quantities measured in asﬁronomical units,

The differential relationship between hydrogen number density and

mean free path is

av=- Zn. - | (1.4-4)
Assuming for purposes of the present rough esfimation that the hydrogen
moves radially toward the sun we have df = - dr . Then with the approxi;
mate Fepresentation for the mean free path foqnd above, equation (4) may
be {ntegrated to give N = No exp (-1,5/r*) . Evidently a fraction on
the order of 15% of the interstellar hydrogen is unable to éurvive photo-'
ionizaticn to reach 10 a. u., while only 1% suffers photoionization in
passing through thé subsonic region to reacﬁ the (shock) b&undary of the

supersonic region.

The protons which are added thusly to the supersonic solar wind carry

mass and, in coﬁjunction with charge exchange, act through momentum
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consexrvation to'retardthe velocity of the far éupersonic solar ﬁidd;
A needed parameter in a subsequent calculation of ve16c1ty retardatlon
- (subsection c.) is the amount by which the proton flux of the super-
sonlc solar wind is augmented by photoionization. |

The conservation law form of the equation governlng protoﬁ nuﬁbef
density n in the steady solar wind (Chépter 11.) is |

div. (av) =n | - (L.4-5)

°

where nP is the volume rate of photoionizations given by

With the aSSumptlon of spherlcally symmetrlc radlal flow in the supersonlc
region, EquaLLDnS \3) and (6) may be expreabeu as
1

(nvr ) r

d
2 @ Yo Te 2 ¢ (1.4-D)

Recognizing the quantity under the differential dperator to be the

proton flux ¢ , we integrate equation (7) giving

T

P - 9, %, o N P

= P :...e_u - -

- 2 [ wdr= 22 @-r) (1.4-8)
e ee r, ee - _

b. Charge exchange
In the charge exchange reaction, a proton is passage of a hydrogen
atom acquires the temporally shared electron. Since in the case of charge

exchange between protons and hydrogen the product species are identical
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in kind with the reactants, the process is said to be reSondnt;1 Thaﬁ is,
the reaction requires no exchange of kinetic for chemical pdteﬁtiél energy.
As a consequence the reaction is more probable the longer the réa;tgnts
are in proximity; and, accordingly, the cross sections are hiéhér_fo:
lower relative velocities between the reacting particles.

| The charge exchange cross section hés been calculated over thé energy
range of our problem, 1l ev tol Kev by Dalgarno and Yada§ (1953).'l

At 1 ev, corre5ponding.abproximately to the case of protons and hydrogen

interacting in the interstellar wind at lOa'oK , Dalgarno and Yadav find

the cross section to be 47.3 X 10“'16 cm2 . At 1 Kev, corresponding
approximately to the case of supersonic solar wind protons colliding
with interstellar neutral hydrogen, the calculated cross sectionm .is
16.5 x 10™Cen’ . | |

Over the subrénge 20 ev to } Kev the charge exchaﬁge cross section
has been determined experimentally DYy Fite; Sﬁith and Stebbings (196z).
The measurements are foﬁnd to be about 10% higher but qualitatively fit
the calculated cross sections very well. Indeed to accuracy well within
that of the experimental.measurementé, Fite, et al. find the measure-

ments fit the semi-empirical law for symmetric resonance cross sections

(Palgarno, 1957).

112 . ] : . .
where dilz has units of 1078cm and B is in ev.

Expressing E in terms of the relative velocity of the particles,

we find by squaring equation (1) the relation for the charge exchange

v
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cross section

. _ . _ )
g, = 62.3 - 33.5 log10 v + 4,5 loglo v o (1.4b-2)

In equation (2) the cross seétion has units of 10-16cm2 and the velo-
city is in units of 106cm/s. All charge exchange cross sections used
in the thesis are derived from equation (2).

The charge exchange cross section plays its role in the reaction
rate formulas. There the determining quantity is the product o of
the cross section with the relative velbcity of the reactants. Hence
the quantity P , which we term the primitive rate coefficient is the
thing for which we desire an effective mathematical representation,

In thisrconngction it is noted that Axford, et al. (1963) suggested
taking @ constant, a choice tha? can 1ead to errors somewhat exceeding
a factor of tﬁc when applied ov:rlthc entire solar wind regime, But
because the cross section is slﬁwly varying with velocity, roughly like
v T 1/3 over the sdlér wind regime, recent aufhors (e.g., Semar, 1968;
Holzer, 1972; Fahr, 1972) have taken the charge exchange cross section
to be the constant appropriate to the solar wind velocity at earth,

The latter choice of itself, implies errors of less than a factor of
two, But taking g, constant implies the mathematical problem of
treating the relative velocity, in the past with some appfoximation that
introduqes additionél error inte @ . Whereas taking o constant
obviates the necessity to prescfibe the relati ve velocity. Using equa-
tion (2) we investigate analytically the question of making an effective

formulation for o .
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First it is noted that the coefficient of the last term in equa-
tion (2) is small offering the opportunity for effectiVe linearization
in ‘1og10 Vv . To this end we consider variations in velocity abouf

some constant velocity Vo ! Then equation (2) may be expressed as

o, = 62.3 - 33.5 loglo vo f 4,5 loglo vo {1.4b-3)
- v 2 v
- {33.5 - ?.0 loglo vo) log10 (;;) + 4.5 10310(;;) .

Taking v, = 40 corresponding to the velocity of the supersonic solar
wind at earth and expressing the result in natural logarithms we have

from equation (3)

. v 0
O = 20 - 8.25 ;; +‘0.8$ {n .

<l<

(L.4b-4)

In the subsonic solar wind we base the cross section on v_= 10
which is characteristic of both the post shock velocity and thermal
speed. The choice yields
4 2 4 ~
g ., = 33.3 - 10,6 sn (_X) + 0.85 in (ﬁz) . (1.4b-5)
c2 v v ‘. 7
e e
Lastly in the interstellar wind regime we base the cross section on the

characteristic thermal speed for which ;; = 2 , 1In this case we gét

. -V ' 2 v
Gy = 52.6 - 13.4 n (ox7o® * 0-85 4n” (53g9) ~ (L.4b-6)
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Equation (4), (5), and (6) have the form

(1.4b-7)

<la

+ T !}‘12
VO 2 0

Expanding in Taylor series about v, gives, with &v=v -v_,

. o 2
bv v, Av 1 bv
9= 0, - o FARUnG) Ty () ¥ e
(1.4b-8)
bo,) 2
&v “ﬁ + 2 fiyl]
_.00-0'1-{’—‘1' ) (V) + oo

Finally multiplying equation (8) by v gives the series for the

primitive rate coefficient

AL ANN 2
T= a + v, (o, -c)§3+ N-i—m——( ) I (1.4b=9)
0

In the equation the symbol '3; represents the, product v, o °

Table 5. Parameters of formulae for primitive rate coeff1c1ents
for charge exchange

'y 2 2
: ' - ' ‘ (cr+402)
_ Region vo Uo Ul ?b (gb-gl)vo. -_E___'vo
: supersonic | y '
solar wind 40 _ 20.0 8.25 8.04 4.70 2.33
subsoni.c 10 33.3 10.6 333 2.27 0.7
solar wind T St ' ' - 10
interstellar _ ‘
inte 2 52,6  13.4 1,05 0.784  0.17

L velocity in units of 106cm/s

cross sections in units of 10 ‘ 5 L
8 -

-16 2
cm :
products of cross section with velocity have units of 10 “ems

3
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Table 5, is a compendium of parameters of the primitive rate
coefficient for the thfeé'regions of flow., We note first that the
terms in the last three columns decrease monotonically to the right.
Then inspection of equation (9) reveals that in any sub regioﬁ where

éz << 1 the first temm E; in the series provides an excellent approxi-

m:tibn to the p;imitivé rate coefficient, But more to the point, in any
region where éﬁ ~ 1, a good approximation is provided by the linear
representation znvolviﬁg the first two terms. And in the context of the
overall development of the subject, taking only the first term could be
considered adequate, 1In the succeeding subseczion c, we shali make

use of the linear representation for « in a linear thoery for the

supersonic solar wind region.

The reaction rates per particle for protons and hydrogen atoms are

given respectively by

or: = aN and ' ) (1.4b-10)
a, = on ' ' o (1.4b-11)

where for protons N is the number density of target hydrogen atoms
and for.hydrogen atoms ﬁ is the number density of target protons.
The corregponding mean free times against charge-exchange for a proton
or a hydrogen atom are given respectively‘by the reciprocals of az
and o Finally the volume rate§ for charge exchﬁnge reactions for

protons and hydrogen obey the symmetric relations

n =« n=agNn and - (1.4b-12)

o+

N.=oN=ognN . SR . (1,4b-13)
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For charge exchange in the interstellar wind region, the flow is
. 6 i
subsonic and the characteristic speed 2 X 10 cm/s is the square root

&
of two times the mean square velocity for hydrogen at 10 °¢ . From

A — -8
Table 5. the primitive rate coefficient @, has the value 1 x 10
cm3fs . From equation (10) the reaction rate and mean free time for
protons against charge-exéhange in the interstellar wind are then

1 % 1071 and 1 x10° s respectively; and for hydrogen atoms,

-1 10

1 x10° 9% ana 1 x1080% s .

Based on the mean free times we can construct some revealing mean
"free paths for interactions. First for the protons in the ionozed
interstellar‘wind; the characteristié speed for bulk transport betwéen
charge éxchange interactions is the bulk velocity 6 X loscm/s . The
wmean free path. X+ for bulk transPOft of protons is given by the pro-
duct of the bulk veloéit&'with the ﬁean free time, The resﬁit is
At = 6 x 1014cm or 40 a,u.

The cross section for hydrogen-atoms to scétter.hydrogen atoms is

giveﬁ approximately by &nai where a is the first Bohr radjius
529 x 10~%em . The cross section is thus roughly 3.5 X 10'16cm2 .
Taking the.reciprocal of the prodﬁct of the cross section with the
hydroggn density (J.l_c:m-3 provides the sélf scattering mean‘free
path . 3 X 1016cm or 2000 a.u. |

Lastly taking the product of the characteristic thermal speed
‘1.5 X 106cm/s with the mean free time for charge exchange gives the

mean free path hé for hydrogen to interact with the ionized inter-

stellar wind as 1.5 Xx 1016cm'or 1000 a.u,
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The characteristic dimension of the flowfield for theriﬁﬁerstellar
wind can be taken as fhé distance from the sun to tﬁe‘heliﬁpauée.bouﬁ- .
_ dary, roughly 300 a;u. Comparing this value with the mean ffée paths
for protons and hydrogen atoms we observe a striking diéhotomy.; Speci;
fically, as was stated in section 2,, the mean free path for hy@rdgen
to collide with either itself or the protons of the interstellar.wind ié
long compared to the dimensions of the flowfield. This resultrperﬁits.
the use of collisionléss kinetié theory to describe the transport of
interstellar hydrogen into the solar wind.

On the other hand, the mean free path for charge exchange in the
bulk transport of protons of the ionized interstellar wind is small
compared to the characteristic dimension of the flowfield. Consequent-
ly the protons of the ionized interstellar wind frequently will be ex-~
éhanged for new ones obtained from the nevtral wind, But the ionized
interstellar wind, flowing as a continuum fluid a;ound the heliopause,

- does not have the same mean velocity as does the neutral hydrogen which
13 not significantly deflected by the flow of the ionized component,

Hence each charge exchange event in the interstellar wind in the wvici-

nity of the sun results in an exchange of momentum contributing to a met -

impulse on the ionized interstellar wind; Quité evidentiy the impulse
is in the direction of the bulk velbcity of the neutral hydrogen and
results in pressuxe of the ionizéd intersféllar Qind on the heliqpéuse.
fhe Mach number of the interstellar wind is low and the random
velocities of the protons exceed their bulk speed, Consequently what
small percentage of the primary neutral hydrogen does suffer charge
exchange close to the sun'Will to a large extent be replaced by sec-

ondary hydrogen with nearly the same velocity distribution as that of
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P

the primary hydrogen., Hence the flux of hydrogen ac;oss the helio-
.pause into the subsonic solar wind is hardly altered by the presence
of the ijonized interstellar wind, . Thus in evaluating the transport
of neutral hydrogen into the solariwind (Chapter II.) we assume at
the heliopause‘boundary the compon;ntsiof thg differential flux of
hydrogen directed into thé solar wind region to be given by the
Maxwellian distribution with temperature and density characteristic
of the undistributed_interstellar medium.

'for charge exchange in the Subsénic solar wind the characteristic
speed of relative motion is the mean velocity i07cﬁ/s_for the tem-
perature 106 %% of the subsonic solar wind, From Table 5, the pri-
:mitive rate coeffic;ent is 3.33 X.lOHSCm3S‘R Following equations (10)
and (11) with densities from Table 4., we fiﬁd the charge exchange rate

and mean free time for protons te be 3,33 X 10_93-1 and 3 x'loss_;

for hydrogen,  3.33 x 10" Ys™' and 3 x 107 .

Looking :irst at the numbers for hjdrogen we see that the mean
free time 3 X 10105 is the same whilé the characteristic speed is
thrice as great in the subsonic solar wind as in the ionized infer-
stellar wind, Thus the mean free path ( . 3000 a,u.) is three times
as long in the subsonic solar wind as in the interstellar medium,
Hence the pre;ence of the subsonic solar wind also does not greatly
effect the transport of interstellar neutrél hydrogen iﬁto the super-

sonic solar wind.

Next considering the mean free time for subsonic solar wind pro-

: . /
tons, we have that the corresponding mean free path is 3 X 1015 cm

based on the post shock bulk speed of 107cm/s . Since the mean free

path ( . 200 a.u.) 1s comparable with the characteristic dimension

-
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of the subsonic region, as measu;edrby the thickness ( . 180 a.u.) for
example, each solar wind proton has a éigpificant probaéility of suf-
fering a charge exchange event in the region,

For charge exchange in the supersonic solaf wind the character-
istic speed is the bulk velocity 4 % 107cm/s~{ From Table 5. the
primitive rate éoefficiﬁnt‘is 8 x 10“8cm3/s .. From equation (10)
with Table 4,, the charge exchange rate and mecan free time for protons
afe 8 .x 10-95 and 1.2 X 1083 reépectively. Similarly for hydrogen

. -7, % -2 -1 .
the rate per atom iz 4 X 10 "(r) s and the mean free time is

-2 x7106r*zs .

Based on the mean thermal speed 1.5 X 106cm/s , the mean free
path for hydrogen is 3 X 1012r*2cm or 0.2 1."*2 a,u, Virtually all
of the hydrogen that passes within a few a.u. of the sun.will suffer
charge exchange while beyond ten a;u. hydrogen is not greatly affected.

Based on the bulk speed, Lﬁé mean frée path for protons is 5 X 1015cm
hr 300 a.u., The radius of the supersonic region being half the méan free
path, a significant frac;ion-of the sola; wind protons will undergo charge
exchange in the supersonic region,

\

Table 6. Mean free pathé for chafge'eXChange and characteristic
flowfield dimensions by region.

supersonic - subsonic interstellar

solar wind solar wind wind
proton mean
free path - 300 . 200 ' 49
hydrogen mean 2
free path 0.2r _ 3000 | 1000
gharac?eristic 145 _ 185 . 300
imension .

L lengths in astronomical units



A convenient compgrigon of mean free paths with‘characteristic lengths
for the relevant regions canrbe made in Table 6, whose conten;s'spmmarizé
the previous discussion. We now address the physical chseduéncéé of
charge exchange in the solar ﬁind-regions. | |

Since (1) the mass of the electron is small, (2) thelsquafe foot of
the cross section for the reaction is large (. SA) compared tolﬁhe size
of the bound atom thereby prdviding for large separations of the nuclei
in passage, (3) the electron acts to electroétatically shield the.nuclei,

and (4) the kinetic energy of relative motion is large compared to the

potential energy of the electron in the neutral atom, the exchange of
momentum between nucleil in the charge exchange encounter is very slight,
Thus while exchanging the electron, the nuclei may be taken to change

neither speed nor direction as a result of the encounter,

In the act of shocking the solér wind, aé we have seen, exchanges
momentum flux for pressure, a process which on the particle level sefves
to randomize direction of motion but 1ea§es subsfantially unchanged the
characteristic high velocities ( .. 107cm/s) of the protons. But in
the same heliocentric reference f?ame, the characteristic speed of the
interstellar neutral hydrogen is only 106cm/s ..'Hence the result of a

. \ . S _
charge exchange event in either the supersonic or subsonic solar wind
;egions.is the exchange of a high speed proton forAa low speed one and
thelnet loss of a lot of particle kinetic energy from the solar wind.
The loss of energy per event of course nésides in the secondary or

"fast' hydrogen atom,
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If the event tékes place in the subsonic region, fhe loss iﬂlpfoton
kinetic energy is primarily reflected in a redﬁction of bulk ingerﬁal |
energy and-température as tﬁe result of the random motion theﬁéé';Ihe
pressure being roughly a conserved quanfity in the subsonic 301ét wind,
the loss of internal energy is balanced there by gains in density:and
Vmagnetic field strength,

If the event takes place in the superéonic region, the net loss
in particle momentum is reflected in a corresponding loss in bulk mo-
ment um flug due to the highly ordered nature of pérticle motion in the
hypersonic radial flow., 1In the light of the shock termination model
of se;tion 3., the loss in momentum flux is seen to result in a re-
duction of the radial distance to the shock as previously e;timated
in the absence of this additional factor in the pressure - momentum
flux balance. We estimate the effect and others due both to photo-
ijonization and charge exchéngerin the following.

c. Linear theory for the supersonic region

With the omission of magnetic stress.and hydrodynamic pressure
terms which together only amount to about 3% of the momentum flux of
the supersonic wind at earth, the momentum equation in conservation

law form for steady flow with sources (Chapter II) may be written
div (pv V) = mn_p ' ' g I {(1.4c-1)

where p is the net momentum gain to the solar wind per charge exchange

event. If we neglect the 1% momentum contribution of the primary hydro-

gen atom and assume spherically symmetric radial flow then from the pre-

vious discussion p= - m v e and equation (1) may be expressed

~. ~
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1 d 2 2 ’ P
:2 dr (r'pv) = - n,mv . . : (1.4::-2)
Substituting equation (1.4b-12) for the volume rate of chargerexéhange

and making the identification p v r2 = m ¢ for the mass flux permits

equation (2) to be cast

(l.4c-3) -

ﬂal =3
i<
+
18
-+
R
=2
il
o

S|~

From the results obtained in section 4a. (equation (8) we express the

proton flux in equation (3) by the approximate linear relation

o N
P9 (4 Ly a9, (L), (1.4e-4)
: e e
' e

Evidently in the bracketed term of the linear expression we have

aEpNn

n_v
e e

to unity. For « , use is made of the linear approximation

. r whlch‘is smali ( ~ 0.001) compared

dropped a quancity -
. e

a.= cpvo + (06 - 01)(v f vo) =0, v, + (Ub - 01) v. (1.4c-5)

where the parameters are to be chosen from Table 5. for the supersonic

e

region. Then equation (3) becomes

-1 )
dv . - )N+__E_QEN(1+__aePN°r) v+ovN=0 1.4¢c-6
dr (oo 9 nevé n Vv, I1Ve™ T (1.4¢c-6)

Lastly we take N = No which is a good apﬁroximation over most of the

supersonic region and treat equation (6) as a first order perturbation

a, N,
nwv
e e

problem in the small.quantities

r , (UD - Ul) ND r , ete.
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. : a N -1 :
Accordingly, we expand the binomial expression (1 + EE%—Er) - in
ee :

power series to first order and are left to solve an‘equation of the

form
dv 2 . o
Fris (al a, r) v=-a; v, (1,§¢-?)
- uépNo
wherg‘ al {0 -~ 01) No + pa— s
_ e e
%a No
a, = —£2 , and a, = olN .
2 nv 3 1o
ee
The solution of the zero order problem is
v=c, e + e, . | - _' (1.4c-8)

1
Wnen tihe constant <, is replaced by the variablie [unclion A(r) aud

the solution substituted in equation (7) there results

_J' 2 -a,r 2 _ N ’ :
(A -8, T A) e 1. + (al— a, r) cy +.a3 o = 0-. (1.4c-9)

Finally, the quantity ar being small in equation (9) we expand. A
(and A") and the exponential in power series and set the resulting,
coefficients of powers of r to zero. Through first order the result

is
+ a, ¢, +a ve = 0 and ‘ {1l.4c-10)

2 2 . ' ' o
2 €1 ta, A= 0 7 | | (l.4¢-11)
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We have above only two equations in three unknowns AD ,'Al , and

c The needed third relation is provided by the initial condition

1 L
v=v, which, consistent with the linearization of the problem, we

apply at r = 0 giving

A tc,-v. =0 : o (1.4c-12)

a a2 a2 '
_ 3 2 - 2 :
AO = v, (1 + T~ -3 , Al = - A {1.4¢c-13)
1 a 1
1
a a2
3 2
and ¢, = ~vi — - —5 .
1 ey a 2
1 al

Thence with expression (8) and the subsequent discussion, the solution

of equation (7) is

2 2
a a a a
3 2 . - ' 3 2
V=, [1+ Folili) (1 + alr)J (1 --alr) - T +-§I (1.4c-14)
1 ay : - 1 a; '

to first order, When the binomial products are expanded the relation

\ :
is seen to reduce to the exceédingly simple form

v = v, (1 - (a, f a3) ]

) o N
ep o
vy [1 - (N + ;‘_e%:) r] . , . _ (l.4ec-15)
/

The number density may now be obtained by dividing the proton flux,

Wi

equation (4), by the product v 2 yielding
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2
T
_ e
=n, ;;- [ 1+ (a1 + a, + a3) r]
rz o, No
=0, ;;— [ 1+ (GONo + 2 E;%;— Yy rl | (1.4¢c-16)

to first order,
Next multiplying the shock relation, equation (1.2-17) , by r2

provides the equivalent expression

Mgv = r2ps . (l.4c-17)

+3
2(y+1)
In equation (17) the product v obtained from expression (4) and

(15) is
PV = .V, 1+ (32 -a, - a3) r ]

= qv, [1 - oN ] | | (1.4c-18)

to first order, ¥
‘With numbers garnered from the previous discussion we have that
. o N : B
- - -17 -
o N =20 x10 7en ™t and 22 = 7,5 x 107 et .
o o nv
ee
These parameters are proportional to the chérge exchange and photo-

ionization rates used by other authors. Because the photoionization

rate is only about 3/8 the rate for charge exchange, it has been



66

presumed Fahr (i972), Holzer (1972) Axford (1972) thag photoionizétion
is "relatiﬁély" unimportant but "qualitatively" has m;ch the same in-
fluence on the.system.' Equation (15), with the numbers above, shows
that the presdmption is true for the velocity; Equation (16) shows
that photoionization and cﬁarge exchange are of comparable importance
in incréasing the density, a fact that has been more or less under-
stood. But equations (17) and (18) show that, in a different way, the
présumptioh is not valid for the momentum f£lux and, therefore,.the
location of the shock transition, For in the latter case the first
order effects of photoionization in decréésing the velocity are exactly
cancelled by the increase in mass flux due to the added particles,
Hence in so far as first order effects of any relative magnitude are
concerned ouly thg charge exchange process plays a role in determining
the shock 1ocation. |

There is additionaily something Lo be learued here fivw Faui's
{1972) analysis viewed in the light of the foregoihg. In part, the
point we wish to make involves the desirability of employing to a con-
sistent level of abproximation the lowest order set of moment equations
Aecessary to describe the phenomena in question.

In his ;nalysis of the modified shock location Fahr assumed a
priori that photoionization had negligible effect on the problem and
took the mass flux to be conserved. Aé we have shown this assumption
leads to no first ofder error in the computation of the shock location,
Further Fahr assumed, as we have done; that temperature effects were
negligible, He then described the variatién of the velocity of the

solar wind through an enetgy equation with a source term.
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Though it is not specifically described as such, Fahr's equ;t{on
is not a totalrenergy équation in which thermal energy effects have
been neglected; and his source term is not simply the net energy lost
to the flow in the escape of the primary proton, Rather,.his equation
is the so called "mechanical energy equation" of fluid dynamics and his
source term is twice the net energy lost to thé flow. Fahr argues
for his source term by adding to the net loss of energy to the flow the
additional "work" doné by the remaining fluid in accelerating the secon-
dary proton, Fahr's result is correct but because of the complexity of
the underlying mechanisms his method of getting the needed source term
requires insight that as argued, at least, is not fully convincing.

By cohtrast in the momentum equation formulation the source term
-is the net momentum lost to the flow in the escape of the primary pro-
ton, while momentum is conserved -in the interaction of the indistin-
guishéble secondary;proton and the remainder of the fiow,

Iﬁe connection between the two formulations which have yielded
identical results is very simple. In fluid dynamics the mechanical
enexrgy eqﬁation is obtained from the momentum equation by multiplying
the latter Fhrough by the velocity, a process which gives directly and
unambiguously the source term used by Fahr,

Since Fahr's source term, the kinetic energy loss is twice the
total energy loss of the flow, it is of interest to identify where the
remaining kinetic energy goes. We recall that after the charge éxchange
event momentum was conserved in the interaétion between the secondary
proton and the remainding flow. The process terminates when‘gge secon-
dary proton reaches the bulk flow speed, But this scenario describes

_the "perfectly inelastic collision" of elementary mechanics. In such
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collisions, we recall, momentum is conserved but kinetic energy.ié”
not; the process is dissipative, converting the lost'#inetic eﬁe;gy
to heat. - .

Thus without understanding the underlying mechanisms we.aisb.
attribute the added loss of kinetic energy in thé charge exchéqge
interaction to dissipative heating of the flow, Indeed in a reféf-
ence frame fixed in tge flow, in which the initial velocity of the
secondary proton is -v , Fahr's "work" may be seen as done against
friction in slowing down the secondary proton to rest.

Returning to the computation of the reduced shock radius, we:
find that combiﬁing equations (17) and (18) results in the quadratic

-equation

r2 +2 X + 3 m¢evecoNo r .Y +3 ™e'e
4y + 1) Py 2(v+ 1) pg

= 0 (1.4c~19)

In the absence of the second term, the equation gives the .classical
solution Yo obtained previously, equation (1.2-18). Hence equation

(19) may be written

‘ 2 céﬂo 2 . - |
r+ 2 Teo 5 r-r =20 : B - ~  (L.b4e-20) .

When 1 in equation (32) is normalized by Teo ? the solution obtained

from the quadratic formula is

1+

_ ‘oonor goN Y o 2 1,2. )
r= . —a-20 (——;—’—Sﬁ) +1 . (1.4c-21)
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The quantity — .has the value 0,145 based on numbers devel-
oped to this point. Thus the radical may be expanded .in a powefrseries_

giving

]
Hi
1
Q
Oy
Q
H
u
Q
—
R
=
[=]
2
n
[w]
"
+

(1.4¢-22)

Thus the inclusion of particle processes in the model serves to reduce
the estimate of the shock radius by some 14% to 125 a.u. from .the

previous estimate of 145 a,u.
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d. Lyman alpha scattering and radiation pressure on hydrogen

The chromosphere of the sun emits a strong, broad line of hydrogen
Lyman-¢ radiation centered at 1215.67 A in the ultraviolet.__Repqrted
rocket measurements (Purcell qnd Tousey, 1960;Bruner and Parkgr; 1569)
place the integrated flux in the line at about 6 erg/cm2 sec énd tﬁe iine
width at roughly O.BA .

Bruner and Rense (1969) have calibrated the flux spectral density
profile over the line. The line profile features a broad solar absorp-
tioh ninimum of some 0;3 A width about the line center. Based on twice
the most probable thermal speed, the effective doppler width of the absorp-
tion spectrum for the bulk of the hot interstellar hydrogen is 0.1 R;
falling well within the self absorpFion notch in the emission spgctrum.
There the solar flux spectral density is 4,2 X 1011 photons em 2L AL,

The rate g at which an atom of hydrogen scatters solar Lyman-o

phetons is given (2,5, Baxrth, 10690} by
A Tre ' ’ |
(nF ) s £ _ : (L.4d-1)
e ,
where HFX is the flux spectral density per unit wavelength , A and

v are the wavelength and frequency of the radiation, and £ Is the quan-
tum mechanical oscillator strength 0.416, Using the quoted flux density
we find g to have the value 2,28 X 10'33_1 aﬁ 1 a.u.

The hydrogen absorbs momentum from an essentially plane wave pro-
pagatipg radially from the sun and scatters (emits) symmetrically as a
dipole. Hence in eéch scattering event a hydrogen afom suffers an impulse
that is directed radially outward and equal to the momentum of the photon

hv/e . Thus the net force of radiation pressure in the Lyman-o line is the

product of the scattering rate by the impulse per event

g oDy o L (1.4d-2)
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With the value found for g , the force of radiation preséufe at
1 a,u, 1is estimated té bé 1.24 ¥ 10-24 dyne. Solar éravity cqﬁ;ribuﬁes.
an opposing radial force 0.9§ X 10"24 dyne at 1 a,u. The 25% Hifference
‘between these two numbers falls within both experimental error in a”single
flux measurement (Bruner anﬁ Parker, 1969) and measured flux variation
over the period of a soiar rotation (Meir, 1969). The extent to-WEicﬁ
solar Lyman- emission varies over a solar cycle is not known but there
are indications it is Qithin a factor of two and at least compafable with
fhe variation over a rotation (see Banks and Kockarts, 1973 £for related
discussion). B

Since interste11a¥ hydrogen moves with a speed only on the-order of
2 a.u, per year with respect to the sun, all solar flux variationé in=-
cluding those over a solar cycle will be largely averaged out in the
transport of hydrogen into the inner solar system. Thus in the absence
of any more definitive information and for the compelling mathematical
advantages the assumption affords, we assume the force of radiatioh pfes-
sure exactly balances solar gravitation in the transport éf interstellér
atomic hydrogen. In this connection we note that the Lyman-o flux varies
as r'2 when the sun is assumed to be a point Sourcé scattering iﬁ an
isotropic meéium. Hence if we were to assume the forces of radiation
pressure and gravity balance anywhere, we just as well assume they Bal-
ance everywhere and the hydrogen particle trajectories become straight

-

lines into the solar system,

The atomic absorption line width in scattering is given in terms of

frequency interval by Stone (1963). Converted to wavelength interval
2

by the relation &\ = %- bv ', the absorptioh line width is

e = 8 (I5) - 7.4 x 1075 e
e . -
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Hence the atomic absorption line width is very much nafrowef théﬁﬂthe
0.1:3 doppler bfoadened absorption.band genefated over the distfibution
of the scattering atoms.

The effective solar £lux for scattering within an atomic ébsorption

line is

o = (TF))8 . . L (1.43-6)
And the definition of the atomic cross section c, for scattering is
g=0@_ 0 . ’ (1.4d-5)

With the relation A = ¢/v , equations (1), (3), (4), and (5) can be
combined to give

2 - . R = -
3\ | _ -
o, = g £ . o - (1.4d-6)

The cross sectién has thé value 7,35 % 10-12cm2 .

For purposes of estimating the mean free path for sﬁattering Lyman-¢
photons, we assume the hydrogen to be uniformly distributed over the O,I,R
dopplgt broadened absorption band., Then the density NA of hydrégen

atoms occupying any absorption line in the band is roughly

D
A

dop

N, =

A N . | | (1.4d-7)

—
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Accordingly the mean free path for Lyman-o photons is

1 dop 1 PO
l = = - - . - (1;413-8)
g NAGS Aks Nos A

Assuming the hydrogen to have the undisturbed interstellar number dégsity
;0.1 cm—3,_the mean free path is found to be of the order 10 a.q.' From
the way in which the doppler bandwidth ﬁas defined, the above number is
appropriate to shotons scattered from the bulk of hydrogen under the peak
of the distribution function., For hydrogen in the velocity tail of the
distribution, the number'density is considerably less and the mean free
path is commensurately greater,

The volume rate of scéttering is the product of the raté g per
atom and the hydrogen number density N . Assuming the single scattering
model, wé get the.contribgtion.to.tﬁe obseryed intensity from sodrces in
dr  al -r- to be | o

gN ' ' . -
dI = Zﬁ dr . ‘ V . - (1.4‘1"9)

The total intensity is then given by the integral of equation (9) taken
over the line of sight. WNeglecting the effect of aspherically symmetric
multiple scattering, we assume the solar flux and, hence, g to decrease

as r 2 nd

e e N - _
p- f;g d¢ . T © (1.4d-10)

Equation (10) finds use in Chapter III where we calculate the lnten51ty

of Lyman-¢ backscatter from the distribution of 1nterplanetary hydrogen )
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that we find, We now turn our attehtion to completing the mathemdtical

model including the problem of the transport of hot interstellar neutral

hydrogen into the solar wind.
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Chapter IXI., A Mathématical Model

In chapter I. we have seen that the mean free pa£hs for protons to
interact with ﬁydrogen in either flow regime are short compared to charac-
teristic flowfield d;mensions. This fact and other plasma properties
involving short characteristic lengéhs lead us ultimately to treat the

. ’ 4
ionized fraction of the gas through a c0ntin&um model,

On the other hané, except very near the éun, the mean free paths
for hydrogen to interact with either itself or the ionized fraction in
either flow regime are very large compared to characteristic flowfield
dimensions, This fact leads us to treat the transport of hydrogen
through a single particle description.

But the state of the two gases are igterdependent through the photo-
fonization and charge exchange frocesses. The global formulation including
the interaction between the two gases is best understood if we‘begin the
Adicovgeieon where the twc-descriptians maﬁa contact, at thgir £ound#£ious
in the kinetic theory.

.
"

1. Distribution Functions, Boltzmann's Equations, and tbe Plasma
Transport Equations.

y The étate of the partially ionized gas in either flow regime, solar
wind or interstellar wind, is specified by the set of distribution func~

tions fe s £ fh for the three species comprising the gas — electrons,

i. 2
"ions (protons), and neutral hydrogen atoms, The distribution functions
which are the locally averaged particle density functions in the six

dimensional phase épace of position and velocity are solutions of

Boltzmann's equation

ot axB

£) + &— (a

avﬂ Bf) =C+5 , o (2.1-1)

p
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We emphasize for the sake of the. subsequent dlSCussion that for each
species of particle there is a separate equatlon of the type descrlbed
by equation (1).

In equation (1) the -summation convention is invoked for repeated
subscript indicesl The quantities:§aB  are tﬁe cartesian components of
‘particle acceleration due to wmacroscopic fieids ~ gravitation, radiation,
electric, and magnetic, The symbsls C and' § represent functions de-
scribingldiscontinuous additions and subtractions of particles from unit
volumé of phase space,.

~ The symbol C stands for collisions in which particles of the given
species interact with ﬁarticles of either the same or different species,
all particles being changed in velocity but uﬁchanged in kind by the
interaction., In fact only Coulomb collisions within and between the popu-
lation of electrons‘and protons are iﬁportsst in the problem, and for hydro-
gei cﬁ iz effectively sero. 7 . |
| The symbol 5 representsA particle psocessesAin which changes of.
kind do occur. | Here the processes are photolonizatlon and charge exchange,
The interactions between hydrogen and the ionized species are described

by the functions Se 0 55 » S These are intimately mathematically

N °
.re}ated and provide the basis for the source terms of the continuum
equations for the plasma.

The macroscopic quantities number demsity n-, bulk selocity Vv
and total specific kinetic energy' ¢ ate giveﬁ by the first thrse velosity
moments of the distribﬁtion function

n=[£ Ay - ' (2.1-2)
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s Jyedve @19
V.V

1 M 3 _1 _

= [ 2= fdv=g<y v >, (2.1-4)

by

T ' . (2.1-5)

LA R U L . (2.1-6)

(6) shows the decomposition of the total specific kinetic energy
sum oL Che Wuln speciiic.klnetic'anergy E'V and the spoeific
energy, the latter to which we give the standard symbol VE .
mowment equations for a species result from taking‘successive

moments of the associated Boltzmann equation. The continuum

transport equations in conservation law form for the macroscopic quanti-

ties n , VvV, ¢ derive from the first three moment equations which are

Sn .3 L 3 3 - o

S+ —axB (n < VB-}) = [fedv+ [sav (;.1-7)
- ém-(n <v_ >+ a_ {n < v.v >y = n<a >

ot o ax P o o

B _
+fvedv+fvsdy (2.1-8)
o o '
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3 mn 3 o 3
3t (5 < vay&>) +4axg G5 < vdvdvs>) =

3
vava cdv

o=

n< aﬁvB >+ I

S 3 19y
+ j-z- vy, sdV (2.1-.9;_

In equation (8) for thé mathematical convenience we have represeﬁted
the vector equation by the set of scalar cartesian component equationg
for o=1, 2, 3.

| . By virtue of the comservation of particles in collisions, by de-
finition, the first integral on the right hand side of equation (7)

is identically zero. Then from equations (7) and (9) multiplied by
the parficle mass m and by using equations (3) , (4) , (5), and (6)

we get the continuum transport equations for a plasma species.

3p . e - |

B'E + Exs(pvﬁ) = (2.1-10)
a d B . . '

3t (pvo) + '-éxB (pVBVa +p 6E - UBQ) = n FQ_ + P: + PSQ {2,1-11)
2 -——-"2 +e)] + &= v’ + e) + v+ ]

3 PGt e axa["f’ﬂ('f te) ¥ oVg -t g T g

L] [ ]

=n Fava-+ €a + €g (2.1?12)

where the mass density p= mn .
In accord with the standard definitions from kinetic theory, in equations
(10) , (11), and (12) the pressure p , deviatoric stress tensor components

c and conduction heat flux vector components qB are represented by

o ’
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=R F - ©¢2.1-13
p=§ <vivi> | (2.1-13)
- o ! | (2.1-14)
050! pﬁﬂa p<vva,> | ‘( . )_
'2 . -', - N
- - . o

With equation (13) and the definition of the specific internal energy,‘

equation (6), we get the state equation

. S : (2.1416)

®

b
]
o o

Lastly a temperature can be defined for the species by

(2.1-17)

w]
o
Wity .
=B
n

When n , V, and T are sufficiently slowlj varying in space
and time, the distribution function will approximate a Maxwellian as
quafanteéd by the Boltzmann li- Theorem for the relaxation process.
Uﬁder such conditions the distribution function may be represented by
a fifst 6rder perturbation expansion the first, zeroth order, term of
which is the Maxwellian distribution. By the method of Chapman and
Enskog the Boltzmann equation can be solved aﬁproxim&tely for the first
.order'perburbation which is linear in the space derivatives of o , V ,
and T . The approach-permits the integration of relations (14) and (15)
to give approximafe expressions for the coﬁponents of the.deviatoric

shear stress tensor and conduction heat flux wvector that are linear re-

spectively in the derivatives of the velocity and the temperature,
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In the absence of a magneticAfiéld the components of shear stress

and heat flux take the form

v dv ov o

= 8o 2 _€ _18Y

Coy ™ ¥ (a"a+ e T3 Soq 3% ) | (2.1-18)
and .
g
ol . -

=y 2= : _ . 2.1
qB 13 axﬁ (2.1-19)

in which the single (scalar) coefficients yu and u are termed the
viscosity and thermal conductivity, respectively. Using the method

suggested above, Chapman (1954) has obtained coefficients which may be

expressed
5 m. KT, 1/ 2KTi 2
et (2 (5
i 16A i 2
i e : .
1/2 2
_ 5 {mpKTe) / 2KTe \ 2. 1-21)
Pe 16Ae ﬁ e, / L& J
. 75K K'Ta Lz ZKTeVZ :
o= == (__,_) . ( ) . (2.1-22)
e 64A T /. 2
e a e
, _ 2 '
K, = X (K—-—Ti)ll (mi)2 (2.1-23)
i _ 64Ai ™, ' e2

\.
LKT

where A = {n (Tua) -1
en

- for 5%31/3 s> 1 as‘ occurs everywhere in our problem.
en ' -

When the plasma contains a magnetic field such that the gylo radifi:
: ‘ /
of particle orbits in the field are short compared to the characteristic
mean free path for Coulomb collisions, a great deal of anisotropy is

found in the medjum, Then the,heat flux vector and shear stress tensor
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are not described by single scalaricoefficients but by sets of coéeffi-
cients that can differ markedly according to direction relative to the
magnetic field vector. Braginskii (1965) has derived expressions fbr the.
transport coefficients in the presence of such a magnetic field,

lWhen w;itten in terms of our d;fin{fion gf shear stress components

and the components ha of the unit vector h in the direction of the

magnetic field, Braginskii's expressions become

%p = Mo Yoap t ¥1 M1ap t Ba Vagg = B3 W3ep m Wy Wigp

3 1
woaB 5 (hahB -3 6@5) hphv wuv

1 .2

wlas Fr(sau 6Bv + 6&6 e v) va
(2.1-24)
W, =(s" hoh +86 hh)w
208 o PV Bv "a v Tpv
W, . =1 (5% e rot o Yh w
308 2 “Top Byv Bv Tavp’ Ty uv .

W, = (hh. + hoh h
4ap (wueﬁw, 8™ Soyi) Py v
ov av ov
- X, _B8_ 2 . _¢ L. -
whére waﬂ 3% 5 B 3 BaB ax s aaﬁ = GaB hahB
6&3 is the Kronecker delta, and € By is the unit antisymetric
tensor.

For protons the coefficients are given by

.
Wy T 0.96 niKTiTi E

nKT, T

b

2
+ 2.23)
M 1

Uﬂd\
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i 2 n R Ty
wy = %y O + 2038 =
n KT, T,

i 24 2 iii
py = 5 Ry t2.23)———=
1 | 5 M Azi

o niKTiTi
ZXi(axi + 2.38) T——'——‘

2i

(2.1-25)

T
[
[

where TS is the mean free time between coulomb collisions for protons

with protons, x; = ®;T; is identically the ratio of gyro radius to

mean free path for coulomb collisions and w, = %EC is the Larmor or
i
" cyclotron frequency. Then the parameters Ai and aﬁi are given by
4 2 |
Ai = X4 +‘4.03 Xy + 2,33 and

4 2
by, = 16 x; + 16.12 x; + 2,33 .

Finally the mean free time is

l/ani(KTi)3/27 SN
= 7 - 7 (2.1-26)
Bre ni{nA

T

3 3/2

VTtg

where, Spitzer (1962), A= (E%)
- e

is the ratio of the Debye shielding distance to the impact parameter for
7 90° coulomb collisions. The Debye shielding distance

172
h = (KTE 2) ‘ | ' (2.1-27)

4ﬂnie

is the characteristic length over which thermal energy can support local
fluctuations in electrical charge density in the'plésma‘and is used as

the effective cutoff distance for coulomb collisions,
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For the electron gas the coefficients of viscosity are given by

e e 2 neKTeTe
By = 0.733 neKTe're s o T (8.2 Xa ~ 8.50) ~—¢—
e
: .t KT T n KT T
e 2 e ee e 2 e ee
o = (2,05 %+ 8.50) —5——— 5, py = - (b y, + 7.91) —
2 e | Ae 3 @ AZe
e 2 r:‘eKTe'r«e
by = = (xg + 7.91) — 35— (2.1-28)
: e
eB
where very similarly to the case for protons %e = WaTe W, = m,C
4 2
Ae = %e + 13.8 Xa + 11,6 and
2 2
%e = 16 Xe + 55.2 %o + 11.6 .,
The electron collision time is
3,./21m (KT )3/2 ‘
r = " e £ . (2.1-29)
€ 8me ne.bnA
Similarly, for the heat flux conducted by the electron gas,
. Braginskii's expressions may be represented
e eT ev , ’ »
a =4 +q with (2.1-30)
éT e e ' e
= - h . -
2 MR T Te T X BXTT) mny A XTI,
ev i
= (B h . - vh - B, b oxlh x (vl ]

i
+ By h X (v - v)) nkr,
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In the above expressions, the coefficients of thermal conductivity are

n KT 7

a e e e , ¢

H,= 3.2 - '

I . 4
e 2 neKzTeTe

n = (6.66 x, + 11.9) —= (2,1-31

] e e
2
n KT r
e _ 3 2 e ee
KA = xe(Z %o + 21.7) ——-"--—A;me

and the coefficients for the additional transport due to collisions

between electrons and ions are

2

= (5.1 %,

- 1
B]im 0.7 , Bl +. 2.68) e

(2.1-32)

3 2 1
Bp= %o (5 Xg * 309777 » with

Ne =+ 148 x2+ 377

vy For the proton gas Braginskiigives

11 i

L E x (E X 2 Ti)

”’.if‘. X VT, & \ (2.1-33)
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where
2
T, T.
ni = 3,9 EEE——iIi
I @
. 2 _‘:
1 2 niK TiTi *
wo= (2xi+ 2.65) Fm. i (2.1-34)
L i i - .
. ’ ' 2
i 5 2 nRT T,

mp T %y (G %y +4-85) “&m,

and A7 =y

2
: 1+2'7Xi+0°68 .

The exposition of terms in the plasma transport equations is
continued now with considerations of the body force F = m < a > which
appears in equations (11) and (12). For the protons the force is given

by

(2.1-35)

where E and B are the macroscopic electric field and magnetic in-
duction respectively and e is the charge of the electron and ¢ the
speed of light, Gaussian units being employed. Similarly, for the

e%ectron'gas the force 1is
v r
F =-eE - e‘g XB - GMm =3 . : (2.1-36)

From equations (7), (8) and (9) the source terms of the pliasma

transport equations are defined by

m = Iﬁ s d7v o - (2.1-3D)
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P, = Img ¢ &y (2.1-38)
P, = [mv Sdv | (2.1-39)
oS8 ~ ‘ B
I m 2 3 ' 2 o

e, = f’i vee dv 7 .(2.1_-40)
e, = [2visdd ' (2.1-41) -
5 2 ‘ *

The source term m represenfs the time rate of adding new mass
bearing particles to unit wvolume of the plasma, In charge exchange
the number of plasma particles is conserved and only photoionization
contributes to the source term, Since there is one proton and one
electron contributed per event the source term is given by the product

m n where n is the photoionizations rate for hydrogen (section 1.4a)

a = [o g’y = oy | ' (2.1-42)

The cource term Ec is the time rate 6f change of momentum per
unit volume due to coulemb collisions, Since total momentum is con-
gserved in such collisions, there is no contribution to the source term
from collisions between members of the given species. For the same

reason, the sum of the source terms for ions and electrons is identi-

cally zero or

Gi ‘e ' . .
P, = - P (2.1-43)

Representing the transfer of momentum between the electron and ion

gases, the source term gives rise to the electrical resistivity of the
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plasma in the one-fluid description, Where common parameters are the

same as in the similar representation for the heat f£lux, Braginski finds

s ' ' 4 :
h.(ye-vl) - By n K (h . VI) (2.1-44)
, e i
# o, B x X 0 - yhT e g ngk [ x G x 73]
e i | '
S B X - - gy K T T

A

In the relations the coéfficients of dynamical friction are

m 0

b, = 0.51 —2 . o ‘ 2.1-4
| Te : : o ‘ ( 3)
b —(A'-64‘2+134)i€23
L e *% Xe : AT
e a
2 mene
Y = e .
bA xe(l.7 %e + 0.78) A;_,Te .

The source term ES , equation (39) , is.the time rate of change
of momentum per unit volume due to photoionization and, in the case of
protons only, chargé excﬁange. The source term for electrons, due to
their small mass relative to the protons, does not contribute signifi-
.cantly to Fhe formulation and is omitted here, The source term for -

protons is given by
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éi = I m.vie + o) £ d3v ;.I m,ve £ d3v . (2.1-46)
8 i p ¢’ "N in ¢ i o

In the equatioﬁ the first integral evidently represents the addition
of momenta of the new protons arising from photoionization and charge
exchange with hyérogen. The sécon& integral represents the loss of

3
‘momenta of sglar wind protons which undergoacharge ex;hange with hydro-
gen, Retaining only the first tefm in the e#pansion for a', we get
the useful approximate relation (see equations (1.4b-9, 10, and 11)) .

P

i L

s Img (ap + Eoni)deBV - EﬁNpivi . (2.1-47)

The source term ;c defined by equation (37) is the time rate of
changé of total kinetic energy per unit volume due to coulomb collisions,
Since t;tal kinetic energy is conserved among the partjc}es in such colli-
sicns, there ie ng contriburion to the source temm from collisiuvas Leiween
members of the given species. For the samé‘reason, the sum of the source

terms for ions and electrons is identically zero or
e = -€ ., . : (2.1-48)

Representing the exchanges pf energy between the electron and proton
gases, the source terms play rno explici; role in the one-fluid formulation
and will not be given‘here. However the procesées which the tejrs repre-
sent do play an important implicit role in keeping the temperatire of the

two gases comparable in circumstances where the one-fluid formulation is

most effective.
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Lastly the source term €g is the time rate of change of total
kinetic energy per unit volume due to photoionization and charge exchange.
For the electron gas photoionization contributes the excess energy of

the ionizing photons. As we found in section 1l,4a, the average excess

energy per -event amounts to roughly % h v, or 4.5 e, v. and the source
term is given by '

‘e 1 o _ L , :

¢, =3 hyn, =3 hvocrpN . ‘ (2.1-49)

Similarly to the case for the corresponding momentum source term, the
energy source term for the proton gas is evidently
m

o .
i 2 3 i 2 +_. .3
< J‘ 7V (ap + czc)fnd v - ‘r 7 v arcfid v

M =
It

kR

Ti\."2( +-—n)]'.'u.33vv~-'{n 'in-i- 2,3
2 aﬁ %17 N %' iVF 2 i

——

Having laid much of the groundwork for the global formulation, we
now direct our attention in the next section to the one-fluid or mag-
netohydrodynamic formulation of the plasma flow problem. Following that,
a formulétion of the hydrogen transport problem as an approximate solu-

tion of the Boltzmann equation concludes the chapter,
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2., The Magnétbhydrodynamic Description
The magnetohydrodynamic déscription of the plasma flow préblem is
a synthesis of Maxwell's equations, the plasha transport equatibﬁs,
‘and equations of state into a reduced set of equations for thé s&éte of‘-
a single icnized fluid and_thé embedded magnetic field, |

‘a., Maxvell's equations and the MHD approximation

The presence of the rarefied hydrogen gas contributing no signi-
ficant effect, the electric and magnetic fields which appear in the
body force terms, equations (2.1-35 and 36), of the plasma traﬁSport

equations are governed by Maxwell's equations for charges in a vacuum

oE
.17 b, o
TxB- o ot | (2281
"V ,B=0 (2.2a-2)
, 3B
SxE: --Ea—t (2.23-3)
V.E-=d4m@, -n) (2.2a-4)

In the equations, written for Gaussian units, j 1is the current density

given by
§=e@, v - ¥ . | | (2.22-5)

The principal assumption .of magnetohydrodynamics is that the plasma
is electrically quasi neutral over the volume element of mathematical

interest, i.e. one whose dimension is large compared to the scale of
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charge density fluctuations as heasured by the Debye shielding distance
but small compared to characteristic flowfield dimensions. Debye }engths
being short,on the order of kilometers, the assumption is applicable in

our problem and we take the state variable for particle density

i .
¢

4

Then from equation (5) we understand the density of electrical current

flowing in the piasma to be given approximately by
j=en -v% | . (2.2a-7)

We now and hencforth explicitely assume a steady flow problem in
the ﬁeliocentric reference frame and ignore the unsteady terms in
Maxwell's equat;ons and the plasma transport equations. Aécordingly,
the latter combined with fhe state equation we now write in vector

form explicitely for each Species.

div (ini) =mn, _ . (2.2a-8)
A
. p n,e
[ ] i ~ ~ _ 1 i )
div (piY"TE +p,I = 0) = nyek + ——(V X B) (2.2a-9)
GM p . .
- L;— r+ P4t
T ~ ~C -3
” .
v P ~
14,5 Py i, 1. 1
div [piz (—"2"*' 3 'E;I) - O'i. Y' + S ] = niEE . Y' (2.2a-10)
. GM_p cr ey
ofl 1 i
- r3 : - X + 11 + es
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o

div (p V%) = m 0, (2.2a-11)
e ~ ~ nee e
div (p ¥V + p.I - ) = - n_eE - ——(V° X B) (2.2a-12)
GMope ’ N
S AL >
.V P ~
v [p V(52 +2-2) -, . V¥ + ¢ 1= -neE . V"  (2.2a-13)
. o e L a e .~ -
GM_p, . .
-Tr.v + ¢ + ¢
r ~ ~

' The one-fluid hydrodynamic equations are obtained by adding the
corresponding plasma transport equations for electroms and protons,

Thus the continuity equation is

div (pV) = m ' ' (2.2a-14)

rwhere P =Py + Pa * m = my + m, and the bulk velocity of the plasma

i

) 1 e ~
is defined by Y.“ -6 (pi\l + peY ) . Since n, << m, and n, =0y

i
Pe << Py and for all intents and purpoées p=mn= p and V = V1 .

With the above definitions, approximations, and a'ssumpti‘ons, the

one-fluid momentum equation is effectively

div (pVV + pI - o) = Ej XB «—-1+P ' (2.2a-15)
o~ -~ Lo r np L
- _ ~_~ ~ O‘Ie -e ci 01
where p—pe'l-pi,d'— st oy and I:-PC+BB+PC+EB .
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In equation (15) the omission of a body force term inveolving the electric

field introdices an error only of order (V/c)2 . Again since m, << m,

and the coefficients of viscosity (section 2,1) are proportional to the

masses of the plasma species, it is evident that only the protons con-

tribute significantly to the shear stress and o = gy - From equations
i

(2}1 - 43 and 46) and the accompanying discussion we have also P = B; .

Similarly the one-fluid eénergy equation is obtained as

‘ V2 5 - _ GMop' .
Aiv [pV (= + 2B -oc.Vv+ql=E. § - r+ ¢  (2.2a-16)
2 2 p° ~ - ,,, - r3 ~ . .
e i - -e ui .
where q=q +q and e = €y + e (see equation 2,1-48.).

When it is assumed finally that the plasma is in local thermodynamic
equilibrium at temperature T = Ti = Te » there results the state equation

p = 20RT = 2pRT | S : (2.2a-17)

where ® is the universal gas constant.

The set of six equations (1) , (3), (14), (15), (16), and (17) are
now found to involve the seven unknowns E , B , j, p, V,p,and T,
The equaﬁion neéﬁed to form a closed set is obtained by combining equations
(6) : (7) , and (17) with the equétions of motion for the electrons equa-
“tion (12). As the resulf of the small mass of the electron, the viscous
and inertia terms, except'the source term invoiving dynamic friction
from Coulemb collisions, may be dropped in the latter equation. Since
in our problem Xé =0T, rig-always severél orders of magnitude greater

‘than unity, the source term for dynamic frictioh, equation (2.1-44),

greatly simplifies to



94

. me-n e i N ) .
P° = . ¢ wt -y (2.2a-18)
G T ~ ~ .
e .
Mee e i
+049 ——h . (V -V
e Land L2 L

-0.7nKh. VT
e . Le

Then the final result we seek may be expressed as a relation for the

electric field

S 1 )
— 1 XB -3 Vp+ 0] (2.2a-19)

Pl o]
It
1
0l

V XB+

S

-0.491]25.33-0.7—“-2-('@) . BB .
B~ .~ eb -~ -

Equation (19) is regarded as the. generalized Ohm's law for the plasma;

the electrical resistivity 1 rappearihg therein is given by

1= — . - ' (2.2a-20)

The terms on the right hand side of equation (19) are ordered from
the leftlroughly according to importance. as determined from dimensional
analysis based on characteristic parameters of the flowfield from Chapter I.
Except in the immediate vicinity of the stagnation point where the velocity
- is very small, the first term is érders of magnitude larger than the others,
The second and third terms are of comparable importance followed with lesser
importance by the.remainder. Then as a matter of mathematical convenience

that introduces no inordinate error we drop the last two small terms that

involve anisotropy.
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For steady flow, the first of Maxwell's equations, ‘equation (1),

implies

div j =0, ' _ (2.2a-21)

e

| 4
Then substituting equatioﬁ {19) in (3) and using equations (1) , (2)

and (21) ve get

y
W g%y o me .
Zm VB 41pe [(§ 'Y)E X E (S X E) ° EE
1 327 1 :
+-Ev p xv—zﬂ;v p X(B.vB)] (2.2a-22)

- WDE (DR AED Y =0
The last thiee teiws Iu equaiion (22) derive from the génerally doﬁinaut
first term of equation (19) and taken alone describe the apparent'tranSQ
port of the magnetic field lines with the fluid in the so called frozen
field approximation; Where the approximation is valid the equaficn nay
be written succinctly
A

4

Ix (VXB)=0

- ' Finally, from Maxwells equations the vector identities for steady flow

- 2

1 1. ~

ciXBEgm div (B8 o L
'and

E = = <-4div (E X B)

E. = 4m P
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permit the momentum and energy equations, equations (15) and (16),

to be cast

]'32 ~ BB . GM p . .
div [PW + (p+5) I - 7= - ol = - g T+ P (2.2a-24)
P r "~ ~

- v2 5p c ~
leEpY(E +‘§'—§)+4—T’TEXE“1{=U+S]

an_p ‘(2.23-25)

=3 r-ite
T

Equations (1} and (19) can be used to eliminate j and E from
the momentum and energy equations. Then collecting from section 2,1
transport and source terms appropriate to strong magnetic fields (x >> 1),

we have the hydrodynamic equations.

div (pV) = mn _ : (2.2a-26)
2
Ta ' ' o
n= o, :3 N - _ (2.2a-26a)
g2 ~ ~ BB GM _p .
div [pW+ (p+ ) I~ 0 -] = - 3 r + P (2.2a-27)
N ~
- ~ A :
o=0,,e.e (2.2a-27a)
ij ij ‘

2
i 1 B
woij 5 B (BlBj -3 6 J) B Bswasl
av v av
Wy ='a"£i"+s;€j”§51 53?15
PKT7
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. 8
X" @’
_ 3/2m(mKe 3/2 P (g_p_jllg (53) 3/2
T 8m gn A p ? 2 \m e2
R,
. e o 3 -
P = I ‘l(O’per_i + =) £,d7V - o NpY (2.2a-27b)
2 L2 '
v, 3P LBy P _
divrl:pz(z + 3 5 4 émp) V. (0+ 7 BB) (2.2a-28)
+S—BxvV (p+B2)"'—~——E——B %X (B VSB
8mne . " . T 7= (4ﬁ)2ne - e ~
2 2 2 ' GM p .
e Mgl e - ..
G Vet gl YR Ale e
a2 mm L (9 xB) KT (2.22-28a)
S B2 Lk ’ ~ 4.”&]32 ~ o ¢ ~ x ~ :
o = 3 pKTT
| T 372 172
a
S .
: m_ 2 Te o 3 . '
= = — + 2 .2a-2
g I 57 v (abe r2 + =~ p) de v 7 (2.2a-28b)
2
2 r
- v KT 1 e
..qONp (—5-"1' -E[E-)'l'—?;h\.’oape:z-N

-,

When the distribution function fN for hydrogen is regarded as known,
equations (22) or (23), (26), (27), and (28) with the equation of state,
equation (17), form a complete set in the unknowns B , p , V, p , and

~

T . We refer to the set as the magnetohydrodynamic equations.

b. Discontinuity relations of the MIHD formulation
The dewell's equatioﬁs (2) and (3) and the hydfodynamic equations

(14), (24)} and (25) admit respectively the following integral relations
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across a surface of discontinuity

2 ‘ ,
Bl =0 (2.2b-1)
nl . :
4 2 : '
[E xn]l =0 . (2.2b-2)
A |
2 :
[pv 17 =0 (2.2b-3)
n
1
. BZ BB~ 2 '
[pvv, + @+ 0 - -0 nj; =0 (2.2b-4)
v 5 P ¢ ' ' ~ 2
[eV (5 + 5 E) +77 ®xB) .n-V.o,nt qn]1 =0 (2.2b-5)
In the relations, n is‘arunit vector normal to the surface of dis-

continuity and Bn

[
-~

n , etec,

guation (19), i.e. take

When only tho firct torm ie retained in

i

!
I
i
o
-
<
1w

(2.2b-6)

the substitution made in equations (2) and (5), and the viscous terms

in equations (4) and (5) dropped, there results the set of approximate

L 4

relations
[Bn]f =0 | S (2.26-7)
2
[Bv - vBl =0 - : (2/2b-8)

ol o ;

[ov ]i = 0 o . (2.2b-9)
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o B2 BnB 2 i
[pvn\i + (p + —8"1-'{—) i T Al T 0 ‘ (2.2b-10)
2 2 :
v 5p, B 1 2
— S S e ) - = . = 2.2b-
{an(z * 32 p * éﬁp) bt BnE Y]l 0 (2.2b-11)

The normal component of equation (8) vanishes identically leaving for

the component tangential to the surface

[B_V

2 .
- = - - 2
n.t VnEt]l 0 : (2.26-12)

For the normal component of equation (10) we have

2 B Ba

while for the tangential component,

JGAAS -};ﬂ BnBL]i -0 (2.2b-14)

Two classes of solutions of equations (7), (9), (11), (12), (13) ,
and (14) are of interest, The tangential discontinuity relations and
the quasi;normal shock relations. The former class of solutions is able
to describe cogditions across the surface of contact between flows of in-
dependent character and origin. Evidently in our problem such relations
should be applied at the boundary between the solar and interstellar winds.
The latter class of solutions apply toconditions across the shock in the

supersonic solar wind.

For the tangential discontinuity relations, as a matter of definition

vV =0. ' © o (2,.2b-15)
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Then from equations (7),.(12) and (14) we demand.
B =0 ) | | (2.2b-16)
since the alternative demands (of the "contact' discontinuity relations)
[Ytlg = 0 and [Et]f_ =0
would be too restrictive to describe the phenomena of interest. Equation

(11) is then satisfied identically by equations (15) and (16). Lastly,

equation (13) provides a total pressure balance condition

Be
P+l =0 | : (2.2b-17)

Retrospectively and for consistency with the foragcaing, the wisa
cous terms omitted from the analysis should be small and therefore

approximately satisfy the compatibility conditions

Ll = %2 = O - (2.2b-18)

2 - , ' '

(o, 1) =0 _ : (2.2b-19)
2 ‘ .

v, o, +al =0 | _ (2.2b-20)

or they should be retained with the other ferms.‘ In the light of equa-
tion (16) and Braginskii's finding (section 2,2a) that the viscous shear

stress is greatly reduced in directions along and across strong magnetic
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field lines and similarly for the conduction heat flux normal to field
lines, the terms in equations (19) and (20) are indeéd small and their
omission from fhe ensuing development is warranted, But iflviscous
terms are to be retained in the overall formulation then equation (18)
.is not justified and instead equation (17) is replaced by

2.
B c 9 .
e A = . 2.2b~
fp + arr 0nn]1 0 ( 21)
The relations that we shall now derive and term the quasi-normal
shock relations hold when the momentum flux greatly exceeds the stresses
. 2
of the magnetic field (pV2 >> %ﬁ) in the supersonic region and the
flow approaches the surface of discontinuity at nearly normal incidence.

Such is believed to be the case in the solar wind, We begin the develop-

ment with relations (7), (9), (12), (14), (13), and (11) which can be

B = const A _ (2.2b-22)
pv = const (2.2b-23)
1 _ 2 2
Y [E Et]l a [VhEt]l B Bn [Etll . (2.2b-24)
B . . . .
2 ®n 2. _ _ =
pvn[Yt] 1= T {gtll (22b-25)
35 2 -
(v +p+gil =0 :/(2.2b-26)
2
2 B 2 B :
vV, 53p,_ty .. n 12 .
Mol3* 55+ Tmply " am e Bell . (2.2-2D)
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By hypothesis the right hand sides of equations (24), (25), and
(27) are second or higher order small quantities, Accordingly, we seek

as an approximate solution a solution to the set

2 ) 1 2 e :
W TG =0 2. 2-29)
2 BE 2 | | |
. Vi 5 p B? 2
[-—-—2- + 3 *p- -+ ZT—fp]l =0 (2.21’)-30)

along with relations (22) and (23), Within the scheme equation (25)
is now regarded as providing the jump in Ve after Bt is found from
equations (28), (29), and (30) .

When u = Vn » J=pu, and & = uBt, then equations (28), (29}

and f?@) may he exnressed ewplicitely in the form
& = const : ’ (2.2b-31)
‘ 2 2
= b+ (=B Ty + =2 5l (2.2b-32)
2 1 1 8nu1 B2 :
\ 22 2
B u Bp.u -2 u p,u 2
L, 5 7F271 o . _ 1.5 “171 o
7 *277 Ywwum T2 Y7 7Tt (2.26-33)
where the parameter B is defined
B = u2/u1 . (2.2b-34)

Substituting equation (32) in (33) provides the equation
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2 P -
B-1,23 . 3 a1yt -
5t 3 B (1 ? +5 (8 1)Ju1 + (2f2p 35).

K
1.5
- [Z( -+ (1 -8l 3
B AnIull
Fquation (35) has two roots B =1 and
2 U
1 P1 o
B=g5 1+5 Gy U, + gﬁ:u3 )] (2.2b-36)
2 2 2 1/2
+—{[1+5( + 2 3)]+1E"I’3 ]
1 8nJu1 8nJu1

The former solution represents

here. For the latter solution
P; P 2

3% =_1 2 << 1 and 3

1 p].u]. 8173111

continuous flow and is of no interest
in the supersonic solar wind region both

B
<< 1.

3“919f

Then expanding equation (36) in the appropriate coﬁvergent power series

and retaining oﬁly terms to first order yields the strong shock solution

. : 2
P B
8 = % [1+5 —=5 s 4 [1+ §§-+ —25— ] (2.2b-37)
' pu1 8oy Yy M My
In the latter representation of the solution Ml and Mﬁtl are respec-

tively the ordinary presﬁock Mach number and the preshock Alfvén Mach

number based on the transverse component of the magnetic field,

Thus from equat1ons (34),

(22), (23), (28), (25), and (29) with

2] given by equation (37) we have the complete approximate solutlon

V =

n2 anl

(2.2b-38)
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- T (2.2bo3¢
Byo = Pni ‘ (2.20-39)
1 - 
=3 P . (2.2b-40)
B =L ‘ | (2.2b-61)

t2 B tl . : B
v oy 4 QB Pnl (2.20-42)
EZ El B fmplvnl ~tl : _
2 _
2. B
- 2 _(-8) _t1 .

As was the case for the tangential discontinuity relations, i€
viscous terms are to be retained in the formulgtion then it should be
éufficient to add the normal stresses to eithgr side of equation (43).
It is expeéted that the omission of shearing stresses is appreopriate
in the region of nearly normal flow where the above reiations apply.

c. Equations of quasi-one-dimensional compressible flow

With certain assumptions it is possible to construct an essentially
one dimensional flow pr;blem that embodies major features of the termi-
nation of the solar wind. ﬁith certain approximations the resulting
mathematical formulation involves an equation which in the absence of
magnetic fields reduces to the pne—dimensional compreésible flow equation
of gas.dynamics.

| in the interstellar wind region, the assumptions are that i‘ the
uniform flow far upstream of the sun the velo;ity vector is parallel to
the solar equatorial plane and the magnetic field is orthégonal to the

velocity., In the solar wind region, symmetry is assumed with respect to
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t he solar equatorial plane. Then the regimes of quasi-one-dimensional

flow are about the upstream and downstream axes throigh the sun.

1 .
The approximations are that E = - Py V ¥ B and the viscous terms

in the hydrodynamic equations can either be ignored or treated as pre-

seribed functions in the solution of the equations by iterative methods,
o

Then the mass equation (2.2a-26)

div (pV) = mn ' (2.2c-1)

with the familiar vector identities permits the momentum and energy
equations (2.22-27 and 28) to be cast respectively
2 ' 2

v B 1 ;
T FIIY KX D F T+ D) gy v 5B

= pg +div o+ P - mV (2.2c-2)

3 P 1
AR AR A S
o ‘ ~ ’ e
\ =pg.V+ (divyg) .V+o: W
- 2 . 2 .
- L L V 5 B
+ €+Q - Il (T.z' +-§%+4_TT-p) (2.2(:-3)
GMo . ‘
where g = - ~5- T and Q = - div q . When equation (2) is dotted

with the velocity and the result subtracted from equation (3) the

difference is the generalized heat equation

"
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: 2 2
P B _(P4;B 1
2"3 ?,(p)J’Y,'fan (p+fmp)y Ep f-'mEE Y!
L] L] L) 2 2 o
- . v._2p_B o . 9 9a-
=g +0Q E z + mn (2 36 4ﬁp) + o Eg (?.ZC 4)

Finally with equation (2,2&-2), equation (2,2a2-23) may be written '

B.W-V.VB -(9.V)B=20 (2.2c-5)

For one dimensional flow equations (1), (2), (4), and (5) find

expression
' 2 2 . do
du  dp 1 dB 1 B ’ XX
PG & Bnax Tany, T T E Y Romu e (GEeD
3wl &) + 3 B4 & + EE dp _ 22 u
7 P dx p 8m dx p 1‘rp) dx  4m Ty
a o -* - 2 2
- u_3p _ B du
= g+ Q - qu + mn(2 2 o 4np) + 0 Tx (2.2¢-8)
u B lim 1 d | | | '
B f% L ol (uds) B =0 . (2.2¢c-9)

In the equation As is a differential element of area normal to the
axis of flow and h and r, are the local radii of curvature of the
magnetic field lines and the normal surfaces to the velocity field

respectively.
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i ! lim 1 das X
We approximate both T and s by As—0 Tx dx Then

ceasing the repetitious writing of the limit 4s—0 , 'we can rewrite

equations (6)}-(9) in the forms

ldp_ 1 du 1 dés  mn " (2.2¢-10)
p dx u X As dx pu 3
du  1d 1 dag? 82 1 da I
I LA B B 1 dbs (2.2c-11)
dx o dx 8np dx 8mp As dx
: . do
X u 1 X%
= - 4l o - 4 -

BT TP Tdx
34, 1w’ p 3% 14y 3% 1 ams (2.2-12)
7 &P tempax TG Ty v B B ax «2c

L] L] 2 2
- Loy 22 - 2R.B du
'—pu {e+Q-qu+mn(2 2p l;np)+dxx E}
1 d —1/2 : L N D I 1Y
{ubds / 3y —‘VC . e aC=L12)

Tsi/2 dx

Equation (13) provides an immediate integral which squared and then

differentiated yields

\ .LEEZ;_EELEE_EEL.@_QE : (2.2c-14)
8m dx 4w u dx 8w As dx * . ‘
Differentiating p = (%) p we have
ldp 4 p py L dp )
p dx = dx(p) (p) p dx ° (/2.2(:-15)

In equations (1l1) and (12) we substitute for the quantities on the

left hand sides of equations (10), (14), and (15). 1In the resulting
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2
equations we then replace % by % a2 and Z%E by A~ where a2 and

A2 are the squares of the speeds of sound and Alfven waves respectively.

The results of doing the above are

2 . 2 2
du 3 da 3'u du _ 3 a” djs 3a )
“HTEE TS2d 5Es axT5e ™ (2.2¢-16)
P . do
u du X u 1 XX
‘;1'221’;"'3*'5""5“’“"" ax
A
9 da? 3u du 3 a’das 3 al °
Todx "5 2@t 5 m & S (2.2¢-17)
T cw? 3 2 du
=E{3+Q-qu+mn(-—§-:?-a)+dxx'a;
where M‘f-z— is the Mach number and MAEE- is the Alfven Mach number.

Finally when equations (17) is multiplied by -§— » subtracted from equa-

[R5

. ) 2
tien {18}, and the resulting differonce tvided by w” | we arrive at the

equation for quasi-one-dimensional compressible flow

1

' 1.1 1 1

(1 -=5--) 2g5==") = —— - (2.2c-18)
M2 Mi u dx M2 As  dx u2
4mt°1+5px__2_ et . 1 (dcrxx _2 Ei‘i)
3 ou 3 pu2 3 pu3 b 2 dx 3 u dx
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3. Transporé of Hydrogen of Iptefstellar Origin and ﬁoments of the

Distribution Function

The transport of interstellar atomic hydrﬁgen into the solar wind ié
governed b& Boltzmann's equation (2.1-1). 1In the equation the self colli-
sion term C caﬁ be neglected as:fhe ;eSult_cf the associated large mean
free path compared to the characteristic dimé;sion'of the solar wind cavity
(section 1.4b). -In section 1.4d we have provided a rationale for omitting
from the equation the forcing term involving macroscopic fields. Finally
in the heliocentric reference frame in which the problem is regarded as

- steady, the Boltzmann equation for hydrogen is reduced to

. (2.3-1)

di £y =
iv (E N)‘ S
Since the fast secondary hydrogen that is the product of charge
exchange has been shown bv Hundhausen (1968) and Holzer (1877) tn be.

unimportant in the problem, the source term § involves only losses

N

of primary interstellar hydrogen as the result of both photolonization

and charge exchange. Then the source term is

sy G a0 £ | | . (2.3-2)
2
re —
= - o 3+ £y

with rate constants defined in sections 1.4a and 1.4b,
We note that equation (2) depends on the proton number density n
of the plasma flow problem. Since the hydrodynamic equations of the

latter problem depend on fN through their source terms, the two problems
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are coupled, But the solution of the plasma flow problem is at the
forefront of cqmputational capability even to the extent the distri-
bution of hydrogen is known. Thus hope of solving the combined problem
hinges on the separation of the two.

We have seen in section l.4c that the source terms represent only
-a first order perturbation.on the plasma flow problem, Hence the ap-
proach we adopt (at least for a first iteration) is to assume the unper-

" turbed, extended Parker solution for n ., That solution we recall as

2
T
n, —% in the supersonic region
o r _
n = 2 » . (2.3-3)
T ,
4 n, —% in the subsonic region.
r .
8

Finally because the peculiar velocity is an independent variable

we have

divv=10 . o I (2.3-4)

v.vEf =85 N o (2.3-5)

with the approximations (2) and (3). : ' |
As the result of the assumptions, the trajectories of hydrogen

into the solar wind are straight lines and equation (5) may bexinter-

preted
N _ N S .
d v ‘ (2.3-86)
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where v = %w and d2 is an infinitesmal element of length aloné a
trajectory.
In the light of equations (2) and (3), calling S, = - & fN and

dropping the subscript N we have

o
= Lay. - S (2.3-7)

Formally the solution of equation (7) is
= Q 1, ' :
£= £ exp - | - de : (2.3-8)
L

vhere f0 .is the unattenuated distribution function which in the rest
frame of the gas ig Maxwellian,

In order to carry out the integrations implied by equation (8) g
y and (3} we ﬁov'ﬁakc up scme gesmetrical con-
siderations. As in the case of the extended Parker solution, we take
the positive x axis of a heliocentric cartesian reference frame
(x ,y , 2) tohave the Same direction and sense as the velocity vec-
tor Yo of the sun with respect to the local interstellar gas. With-
out 1ossrof generality we consider a point in the x , y plane, the
'pqint'being described by the conventional polar coordinates r , 0 .
Somelgeometric relations governing linear trajectories of‘primary inter-
stellar hydrogen atoms passing through such a point follow.

The peculiar velocities of the hydrogen atoms with respect to their
mean velocity - Yc is the vector field E‘ represented in conventional

spherical polar coordinates. as ¢, N , £ based on the positive X

direction, The velocity v of a hydrogen atom relative to the sun is
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then given by o (2.3:9)
2 = ,,C, - Zo o . " (2.3-9)

(c cos T - VO) o, + ¢ sin 1] cos £ ny + ¢ sin 1} sin § n,

- ~>,j ~
If B is the elevation angle the.trajectory'of a hydrogen atom makes

with the =x direction in passing through the point r , § then (Figure 2.)

- : . c sin 7
tan g = V, - ¢ cos T

(2.3-10)

The trajectory vector T of such an atom is described by the coordinates

Xx =1 cos §+R cos B
y = ¥ sin £ + R sin B cos § {23113
Z = K sin B sin §

where R is the distance of a point on the trajectory from the point
r , 68 and, in terms of the angle coordinate § of the peculiar velo-
ci$y of an atom describing the trajectory, the azimuthal trajectory angle

€ is given by
- E=€-m | _ (2.3-12)

The distance of the sun from a point on the trajectory is

To @+ 2R cos y+ tH2 - . (2.3-13)



X

‘Figure 2. Geomet-ry of the hydrogen transport problem.-

v

g1l .
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In equation (13) the angle y 1lies at the apex between the incomiﬁg
trajectory to the point r , 8 and fhe prolongation.6£ the liﬁe from
the sun to the point r , 8 . Finally, in oEtaining the magnpfﬁ&e T
from equation (1l1), ore arrives at the useful identity | o

cosy = cos B cos B+ sin B sin B cos § (2.3-14)

As a practical mapter we do not - compute f£(r,8) in the‘helio-
centric reference frame since we need only its moments for the source
terms (section 2.2a) of the hydrodynamic equations. Rather we compute
the contributions to the moments of £(r,0) from atoms in the distri-
bution expressed in the rest frame of the hydrogen.gas. Then to get
the moments we sum the contributions over the coordinates c , 1, §
of the distribution expressed in the rest frame,

For atoms in the differential velocity space element 8c ,. 6T , OF
the contribution 6N° to the zeroth moment or number density N
at large distances from the sun is given according to hypothesis by fhe
Maxwellian distribution as
n-3/2 c2

6N =N

o = N, /cg exp ( - c2/c:) sin | §c &M 6 . (2.3;15)

In the heliocentric reference frame such atoms have the velocity given

by equation (9) and the associated speed

v .-=-(c2 - 2c Vo cos M + Vi)lf2 ' 7 ‘ (2.3-16)

along the trajectory whose parameters in the heliocentric frame are

eiven by equations (10), (11), (12), (13), and (14), Then in the
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vicinity of the sun where there has been some perturbing effect due to
photoionization and (ff'the trajectory has intersected the solar wind
cavity, section l.4) charge exchange, the contribution of the remaining

atoms &N to N -will be given, from equation (8), by

N

- oy -
8N = 8N _ exp - [ - | (2.3-17)
1

Evidently from the discussion above the parameters of the line integral
over the attenuating path ¢ are all functions of ¢ , T, E as is
8N and, hence, &N . Substituting for o = a, +oa from equation

{2), we have

| ) _
o o T Q’
—ds” = - ”BE_Eﬂ ar” o -
-foar= - [ (2.3-18)

Hl

7 - ]
1 L 4
with u given by equation (3).
To carry out the integrations explicitely we éhoose as the dﬁmmy
variable of integration the distance R of the trajectory point from
the end point t , 8 . Then, since photoionization acts everywﬂere, we

have for the first integral on the right hand side, from equation (13),

2 2, _
e e dyp” ape & dR
- J‘"E;-— 5 = = —5—— 5 (2.3-19)
L T w R +2rR cosvy +r :
r2
_ aée e ¥

In the integrated expression vy in the numerator may be seen to be the
angle subtended at the sunm by the entire trajectory to the end point
r , 8: and in the denominater r sinvy is the closest épproach of

the trajectory (or its prolongation beyond r , Q) to the sun,
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Thie second integral in quatién (18} in general may- contain integra-
tions over segments of the trajectory intersecting bbth the subsonic and
superSOnic,doméins of the solar wind. In the case of the subsonic region
(I1), the 501ar.wind proton number density n 1is coastant, from equation
(3); and the contribution to the iétegfal involves simply the total geo-

N
metric path length PL 1I ia the region

Egn 450ner:
- ——d¢" = = ——— (PLII) . (2.3-20)
111 s
In the supersonic region (I), the solar wind proton density varies as

r as has been the case treated for photoionization and the contribution

to the integral (18) is

& n

oee Yo ' |
I ~ s TEmy v (8AT) . (2'3-2¥)

-where MI is the angle subtended at the sun by the segment of the

trajectory intersecting the supersonic region. The angle is given by

cos™h IEINY .y LT |r<x

s
8
, M= - | (2.3-22)
2 -::os—1 I—%EE~1- ‘| r > L
E

To summarize the integrations we have

' ' « er:Y (/
BN(e,M,E) = &N (c,M,8) exp - | Pt (2.3-23)

vr sin vy

— 2
4“6“ T,
+

vr sin vy

-aonere
(PLII) + ————— (M) .
vy

w oo



117

With equation (23), the moments of £(r,8) required for the mass,

momentum, and energy source terms in the hydrodynamic equations, see
equations (2.2a-26a, 27b, 28b), are
w= [ £advs [ffoN(e,mO | (2.3-24)
o
3 ) - : ‘
[vEdv = [ff v(e,1,8) 8N(e,M;8) (2.3-25)

J"vzf Oy = [If v2(c,m, 8 8(c,M,E) ‘ (2.3-26)
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Chapter ITII. Numeriecal Results -
Toterplanetary Neutral Hydrogen and the Speed

of the Interstellar Wind

In this chapter we descfibe and present some particular feé@fts
from a numerical élgorithm developed to compute the moments of:thé'
distfibution of primary nequal hydroéen and the associated source terms
in the hydrodynamic equatiocns. Specifically, from computed neutral hy-
drogen number density profiles on the upstream and downstream axes of
flow‘we further compute the intensity of backscattered solar Lyman-u
radiation expected to be observed at 1 a.u. The computations have been
carried out for a varied set of condiéions with respect to number density,
temperature, and velocity of the local interstellar gas. Finally the
theoretical predictions répresented by our computations are compared
with wmeasurements of Lyman-u radiation from earth satellites. Given
current cstimates of the temperature of the interstellar gas, the com-
parison suggests a meaningful eéﬁimate of the speed.of thé interstellar
wind.

1. Algorithm for Computing Moments of the Hydrogen Distr?bution

Function.

The algorithm described in this sectioh implements tha approéch
described in éeafion 2.3. We retaiﬁ here the geémetry and notation
‘previocusly défined.

Thé algorithm makes use of the fact that hydrogen atoms whose tra-
jectories pass through the peint r , 8 and that have the same peculiar.
velocity coordinate all have trajectories lying in the same plane E =
E - m that contains a line through r , © parallel to the x axis.

The given line is viewed as a polar axis of rotation and the azimuthal
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angles E are measured with the y axis in the y , z plane, For
evident reason the planes E constant for § constant are termed
trajectory planés for the point r , 8 . Within a trajectory plané
a given trajectory line is described by the angle § , Figure 2,

From equations (2.3-10 and 16) both the angle of the trajectory
iing and the §peed of an atom along the line depend jointly on the pecu-
liar velocity coordinates ¢ and T , i.e. a multiplicity of pairs
¢ , N find trajectories along the same trajectory line. For a given
trajectory characterized by ¢ and T , the attenuation path length —
the argument of the exponential attenuation factor in equation (2,3-23)
~ {5 seen to be the product of the reciprocal of the speed v and a
function composed solely of geometxic factors depending only on r , 8,
B, and E , the geometry of the plasma flowfield being given. The
geometric function which we term Fhe velocity path length contains the
essence of the preblem and is cectly to ccmﬁLtc. Accordingly, gince tho
velocity path length is the samé for the rultiplicity of trajectories
that can fall along a'given trajectory line, for each point r , § and
computational plane E the velocity path length is pretabulated at
appropriately fine B intervals for 1a£er look-up and interpolation as
a functibh of PB(c,T) during integrationm. . -

The computation of the moments of the distribution function is per-
formed by integrating equations (2.3-24,25, and 26) with equation (2.3-23),
in order over 1], d ; E (E) . These independent variables are of course
quantized and the integratious are performed using Simpson's ruyZ with

/
the output of the present level of integraﬁion being tabulateqfas argu-

ments for the next,
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For each & plane, in the process of integrating the contribu—
tions to the mqmcnﬁs of f the speed v and the velocity v are com-
puted for each coordinate pair 7 and ¢ from equations (2,3-9 and 16).
The augle P 1is computed from equation (2.3-10) and the velocity path
length obtained from the ihterpolation table as suggested above. The
attenuation path length for the trajectory is then simply the velocity
path length divided by the Speed.v' and tﬁe associated EXponential atten-
uation factor is compﬁted. |

The initial unattenuated number density element BNO which appears
as the coefficient of the attenuation factor in equation (2,3-23) is‘
given by equation (2,3-15) where it is seen to involve only ‘the product

" of a function of ¢ by a function of 1 , both functions independent of
.E ., For the evident economy of computation,these homogeneous functions
have also been.precomputed and tabulaﬁed for the quantized values of
i'.'ueix. argumenis < 'audr n' used iul Ll i.ui_e.gra-t'i;qn..'-

In computing the interpolation table for velocity path length, the
figure of the heliopause‘boundary is approximated by an ellipsoid -
cylinder, Figure 3. The sun is at the focus of the ellipsoid which fits
the extended Parkér solution exactly at the stagnation point and again
in a plaﬁe that includes the sun and is normal to the axis ;f flow.
Downistream of the sun, the cylinder perminatesthe ellipsoid smoothly at
the sehiminor axis providing another.fit to the'extended Parker solution
asympiotically,

Making available the analytical geometric power of quadratic sur-
faces, the ellipsoid cylinder approximation permits closed gnalytic

espressions for a nuﬁber of geometric parameters including the length

of the trajectory segment in the subsonic solar wind region, equation
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(2.3-20). In toto the approach results in closed analytic expressions
for the velocity path length and obviates otherwise prohibitively costly
numerical integration along trajectories, such integration involving

searches for intersectioﬁs with the heliopause boundary surface.

2. Axial Profiles of Hydrogen Number Densigy

With reference to the algorithm of thé previous section, the results
presented below were computed with tﬁe angles M and € each quantized
in 30. increments over the interval ©° to 180° {converted to radians),
The speeds ‘¢ were quéntized in 0.1 cg increments over the interval
0 to 3.5 <y wherg Cg is the most probable thermal speed in the Maxwellian
distribution, The velocity path length tablé had 129 entries spaced equal-
ly oﬁer the interval 0 to . |

Figures &4 and 5 show profiles of lydrogen number density cpmputed on
ﬁhe upstream and downstream axes bf flow in the solar wind. In both fig-
ures.the results shown are for No = 0.1 cm_3 and Tol= 104 OK; Figurerh
is for v, = 16.6 km/sec and Figure 5, for 8 km/s, The former speed is
sonic with respect to the iénized componené of the interstellar wind,
The latter subsonic speed is typical of the estimate we determine in the
next section from comparing additional computed results with experimental
me;suremEnté of Rayleigh backscatter of éolar Lyman-¢¢ radiation. Also
plotted for comparison in Figures 4 and 5 are curves derived from an
analytical formula for the caselof zero temperature hydrogen penetrating
along the upstream éxis of flow. |

The fleowfield described by the extended Parker solution (gection 1.2
and to which Figure 4 refers has the shock at 123 a.u. and th; stagnation

point at 182 a,u, Similarly for Figure 5 the respective numbers are

142 a,u, and 282 a.u, -
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Looking first at Figure 4 and comparing the numbex density pkofiles
for hot and co;d hydrogen on the upstream axis, we find close quaqtitative
as well as qualitative agreement for distances beyond 10 a.u. from the
sun,, Within 10 a.ﬁ., however, the predicted surviving density of hot
hydrogen is systematically higher than for cold,
| The trend within 10 a.u. is easily understood particularly when one
notes thgt the bulk speed and most probable thermal speed are comparable
and where the trend becomes pronounced the surviving number dénsity has
fallen to roughly hélf the.far field vélue. The interpretation is based
on the fact that the peculiar velocity components for the f;action of
hot hydrogen in the forward T cone (T < %) of the distribution tend
to reduce the speed v of penetration albng thé trajectory and thus in-
-créase the attenuation while the converse is true in the rearward 1
cone, Thﬁs after mucﬁ of the slower hot hydrogen in the forward cone
has been lost to atcenuation the surviving hot hydruvgen 1s peneivabing
relatively faster than the surviviﬁg_cold hydrogen and thence penétrating
deeper into the solar wind béfore suffering pﬁotoionizatién or charge
exchange. The same trend is apparent in Figure 5 but there because the
peculiar velocities a?e relatively higher than the bulk speed the effect
is consiéerably enhanced, .
In Figure 6 we observe the steep drop in hydrogen number density in

passing through the relatively proton dense subsonic solar wind region

.

on the upstream axis. Between the two curves for the upstream ins,
the drop in number density is greater through the thicker subsohic region
associated with the slower bulk velocity Vo = 8 km/s , //

On the downstream axis the existence of -any neutral hydrogen is the

result of the transverse peculiar velocity components associated with
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temperature, The higher the therﬁﬁl speed relative t; the bulk épeed
the steeper Lhe angles B for trajectories and the‘closér to the sun
can hydrogen atoms fill in the cavity on the downstream axis. Farther
from the sun on the downstream axis the mean penetration distance through
the subsonic region and the mean pgnetfationjspeed govern the surviving
number density jointly. The former decreasés while the latter increases
with Vo 1eadiné to increased penetratiﬁn oé the solar wind and in
Figure 6 the result that the two number dénsity profiles for the rear-

ward axis eventually cross. The existence of maxima and subsequent de-

cline in
wlth the
hand and

subsonic

both profiles with distance on the rearward axis is associated
evasion of the denser solar wind regions near the sun on the one
the progressive lengthening of attenuation paths through the

solar wind region on the other,

Finally in Figure 6 we obscrve that for hydrogen at the same tem-
perature a difference in assumed bulk speed has a consideraply greater
impact on predicted surviving number density on the foreward axis than

on the rearward,

3. Predicted'Intensity of Solar Lyman-¢ Backscatter from Hydrogen

When the intensity of solar Lyman-¢ backscatter at 1 a.u, is mea-
\ : 6 _ . . :
photons cm 2 sec 1ster 1)

sured in Rayleighs (1 Rayleigh ~ o the
derivative of the intensity and the intensity (section l.4d) are re-
presented on the axis of flow by
dai _ Be'e N |
=2 = = (3.3-1)
dz 106 r2
g r *®
. ee N
1-=8 (% g (3.3-2)
1
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{ Figure 7. Derivative of the Lyman-¢ backscatter intensity
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where N is the hydrogeﬁ number density, 8o the single atom scattering
"rate at 1 a,u., has the value 2.28 X 1073 671 » T is-l.S X 1043em s

and r is measured in a,u. For the number density profiles shown ‘in
_Figure S5 for hot hydrogen, the profiles of the derivative of the inten-
sity are plotted in Figure 7. We note that the largest contributions

to the predicted intensity.come from distances closer to 1 a.u. on the
upstream axis than om the downstream axis and that the intensity integrals
in both directions find effective convergence in the vicinity of 100 or
200 a.u. B

Table 7 contains relevant parameters and results from a varied ;et

of computer runs made with the model., In the table U and D stand
respectively for the predicted intensities at 1 a.u. on the upstream and
downstream éxes of flow and U/D stands for the ratio of these intensities,

L3

Inspection of the table reveals the following qualitative trends

U oD du/D
yfo >0 s yfo;’> 0 ’ ﬁ; <0
du ) /D g
gf >> 0 y 5_\7 < {0 s _gﬁ— >0 (3,3-3)
0 0 (o] .
- Ju oD AU/D o
Sﬁo» o , B-ﬁo» o, N 0

The trends evident in the last column in relations (3) make the
ratio U/D an attractive estimator of the interstellar wind velocity

from satellite measurements of Lyman-¢ backscattex, The ratio of

measurements is independent of error in the absolute calibration of the

measuring instruments. And the ratio of predicted intensities are

S U S
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Tablé 7. Synopsis of computer runs with model predicting

stream axes of flow

solar Lyman-o backscatter on upstream and down-

TO
°x)
10
" .

"

10
4x10
10
5x10
10

5x10

5x10°

10

N
.0
(cn™)

0.2

n

0.1

T

v
0

U

D

(km/s) (Rayleigh)

16.6
6

0.6

10

10

1510
788
312
1604
1256
788
666
636

666

- 3803

666
530
580
516
454
531

468

339
374
205
liB?
827
374
259
84

259

194
255

259

254
176
181
185
193

197

u/D

4,45
2.11
1.52

1.35

1.52

2,11
2,57
7.57

2.51

2,56

3.15
2,57

2,09

3,29

2,85

2.45
2.75

2.38

INT.
LIM.

(a.u,)

100

it

"

200

H

n

R
8

98

124

129

35

80

124

139

150

139

147

134

139

144
133
138
142
138

142

X -
o]

(a.u.) (Q,a.)
129

779

161

195

256
257
231
257
289
218
257
319
223
248
281
248

281

256
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insensitive to the estimate of the density of the interstellar gas.
Thus the estimator oflfhe interstellar wind velocity:from the U/D -
ratio is sensitive mostly to the estimate of the temperature of the
interstellar gas,

From the déta of Table 7 the predicted ratios U/D are plotted
versus interstellar wind speed in Figure 8. The points plotted with
an x .are for integrations cut off at 100 a.u. and with a + at
-ZQO‘a.u. Where tWOAOE more points are for the same temperature, curves
of constant temperature are drawn. Evidently substantial portions of
the constant temperature curves for -Io = 104 °k and To = 5 X 103 %
approximate straight lines which intercept the point (1,0). Theoreti-
cally the point (1,0) would be occupied in the instance of the spheri-
.cally symmetric flowfield that would obtain were the sun at rest in the
intérstellar gas. Straight 1ine;.to indicate both the trend of the con:
stant temperature curves and the spatial organization of the data with
temperature have been Qrawn through the points - even single ones --for
all temperatures represented in the set of computatioms.

Because the.angles that trajectory lines make for different Vo
and és are geometric invariants for constant ratio Volcs (or equi-
valently .VoﬁJff; ), it is of interest to replot the data of Table 7
and Figure 8 as the rétios Volcs vs U/D . Figure 9 shows the data so
plotted, With the exception of cne p;int the data so orgénized describe

a universal curve for which VOLJ To can be regarded as the independent

variable.

For the points which fall on the curve; the dashed line indicates

the curve is hiéhly linear for Volc8 <1 . The point for Vo = 0.6 km/s,

T = 104 °k falls off the curve but in the region of the graph

o

(volcB <« 1, U/D . 1) where the curve is linear. The point for



- : .. + =~ integration cutoff at 200 a.u.

 x - integration cutoff at 100 a.u,

u/D

Figure 9. Universal plot of ratio of interstellar wind velocity to most probable thermal
speed vs. ratio of computed upstream to downstream Lyman-¢r backscatter intensities,

€T
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4 : '
v, = 16,6 km/s, To = 10° %k falls on the curve but out of the region of

linearity (Volcs > 1): The evidence is that the mo@el predicts results
that describe a curve that is linear and will occupy Eﬁe point kl;Oj oniy
iﬁ the 1imit To - w‘, Vo lérge and finite but that such a cﬁ?ve 15 not
described for T, finite §nd' Vo- small approaching the 1imif..Vo'f‘0 .
As can be seen in the model for the extended Parker solution, .the condi-
tions securiné the doﬁain‘of linearify above have to do physicaiiy Wifh_
restricting.the size and relative importance of the subsonic region of
the solar wind i# favof of the supersonic region; For small Vo--the
aspherical subsonic region becomes enormous (Table 7).
4, Estimate ofrthe Mach Number and Speeﬂ of the Interstellar Wind

Table 8 contains intensity ratios L ax /Imin obtained frém
satellite Qeasurements reported by Bertaux and Blamont (1971, 19??)
and Thomas and Krassa (1971). (See Thomas, 1972,) The authors cited .
have argued the correspondence of their obsérvations to the physical
model to which we have given the mathematical representation and from
which computed ﬁhe predicfed intensity ratios U/D above. 1In particulér
and in conformity with the predictions of our model, they have 1nferreﬁ
that the maximum and minimum intensities should be observed respectively
_ when the qbservational lines of sight are'along the upstream and déﬁn-

stream axes of flow.

Table 8 - Maximum and minimum intensity1
of solar Lyman-o backscatter measured
by earth satellite at 1 a.u.

Maximum Minimum -Ratio Instrument
580 240 2.42 LASP
570 . 250 . 2,28 LASP
460 | 180 2,55 | Paris
525 200 2,62 Paris
1

data extracted from Figure 3 of Thomas (1972)
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We note that the measured intensity ratios fall in the linear portion of

our universal curve whi;h accordingly we may represent by the expression

. _
__volcs =57 '(U/D -1 . (3.4-1)

Since the speeds of sound in eithé; the neutral or iﬁnized com=
ponents of the interstellar gas and the most probable thermal speed in
| ghe neutral gas are all proportiomnal teo VE: s the left hand side of
equation (3.4-]1) is pgoportional to the Mach number in the continuum
flow sf the ioniéed fraction. Thus from equation k3.4-1) with the
inferred correspondence betﬁeen I /1 and U/D and from measuréments

max’ min

of T /

naxX Imin we derive the direct estimator of the Mach number of the

sun in the'intgrstellar wind
.

~ 1 _ .
The mean of the'intensity ratios in.Table 8 is 2.47 for which
equat;on (2) gives the Mach number 0.475. Rounding off meahingléss
‘digits, we take 0.5 as our estimate fér the Mach number of the sun in
the local interstéllar medium. -
Further taking 164 %k for the estimate of To we have 12,8 ku/s
for -;s ,; Then from equation (3.4-1) with U/D replaced by the estimate

2,47 for Imax,I

N .
in Ve set 7.84 km/s for V, - Thus we take 8 km/s as

our estimate of the speed of the sun with respect to the iocal interstel-
lar gas.

This number differs substantially but not radically from the earlie%
estimate of 6 km/s found for the same assumed temperature (104 0K) by
Thoqas, 1972 with a less detailed model, Thomas' model featured an inter-
stellar wind having a single constant speed, isotropically distributed

thermal component traversing a constant speed supersonic solar wind of

infinite extent.
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Chapter IV - Summary and Discussion
The termination of the solar wind has been described from the
theoretical point of view as the problem'of finding a model for the

éxtended solar corona such that admissible boundary conditions match

A
v

conditions in the perturbed local inferéfellag medium
Co i

As a preludé to formulating a mathematiéél model, certain theoretical
foundations of our understanding of the problém have been reexamined in
Ghapter I. in the light of most recent findings concerning the states of
the séiar wind and the local interstellar medium., 1In particular, the
findings that have had the greatest impact on the present expoSitioh and
have served in considerable measure to distingﬁish it from earlier work are
that the local interstellar medium has a high temperature 104 OK, is par-
. tially ionized .l0%, and blows past the sun with subsonic velocity.Mach 0.5.

Given these findings, investigation of Parker's ear}y (1961) anaLyQ;-
cal model for the términation of the solar wind suggested that a simple
reinterpretatjion or extention of the model provides a useful approkimate
desgription of the adjacent‘flows of the solar wind and the ionized inter-
stellar wind.

An investigation of solar wind temperature along lines of the one
dimgnsionéi compreséible flow equation and heating associated with poly-
trope solutions brought to light additional evidence that ejther or both
the classical coefficient of thermal conductivity is too high — perhaps
by as much as & factor of five -~ and the associated classical inhibition
of heat conduction by the embedded transverse magnetic field is overstated
for the bulk of low temperature (..,105 oK) eléctrons comprising the quiet
golar wind in the vicinity 6? earth.

The scale of effects of pﬁotoionization and charge exchange are investi-

gated both for protons and neutral hydrogen atoms in the three regimes of
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plasma flow — supersonic solar wihd, subsonic selar wind, and io;ized
interstellar wind. In the anaiysis the properties of,the plasma flow
regimes were taken from the extended Parker solution. The results
suggest that in the ionizZed interstgllar wind region photoionizatien and
charge exchange may be ignored in é%e sslutiqﬁ of the hydrogen transport
problem but that charge exchange does contriﬁute a significant drag on
the flow of the ionized component of the inteﬁstellar wind around the
heliopause. In the subsonic solar wind region photoionization'is not
important; charge exchange, however, while having only small effect on
the transport of hydrogen, acts significantly to cool the flow of the solar
wind; In the supersonic solar wind both photoionization and charge
exchange hqﬁe an impact on the transport of hydrogen and on the flow of
the solar wind.

In the latter region a linea? perturbation solution has beén found
that adequately describes the effects of béth processes‘on the solar.wind
flow; The 801ufion exhibits the point that as the result of photoioﬁizah
tion of hydrogen the a&ditiqn of mass and associated decrease of velocity
of the supersonic solar wind has no first order effect on the momentum
flux and thus the location of the shock surface, The effect of charge
exshange was found to decre;se by 14% the estimate of the shock radius
as given by the extended Parker solution,

The preliminary investigation conﬁluded with the finding that within
experimental uncertainties the opposing forces of solar gravitation and
radiation pressure from solar Lyman-o scattering are in balance for hydro-
gen; Then, in view also of the lérge mean free paths for collisions of

all kinds, the assumption was made that the trajectories of interstellar

ﬁydrogen atoms are straight lines into the solar system,
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In Chapter II. a mathematihalrmodel was formulated to descriﬁe the
transport of interstellar hydrﬁgen into the solar wind and the adjacent
flow of the solér wind with the ionized:COmponent of the interstellar
wind, The global_formulétion begiqg with the Boltzmann's equations for
both neutral and plasma species, b ;f

Ultimately fhe flow of the plasma speci;s is deseribed through a
model on the level of one-fluid magnetohydrod?namics; The model is
developed through the plasma transport equafions in the manner of and
with the transport terms given by Braginskii (1965). Source terms for
the mass, momentum, and energy equations in conservation law form derive
from the interaction of the neutral component of the interstellar wind
with the solar wind and ionized interstellar wind plasmas. Except in
the ifmmediate wicinity of the stagnation point siﬁgularity, the frozen
magnetic field approximatfon has validity. 1In the solar wind, quasi1
normal, strong shock relations apply on a closed surface surrounding
the sun, Tangential discontinuity relations apply at the free surface
(heliopause) between the sdlar wind and ionized iﬁgerstellar wind flows,

We note that the latter rélations demand that the normal coﬁponent
of magnetic field vanish at the heliopause. Except in the unlikely case
of“purely'field aligned flow, the vanishing of the normal field component
will lead to an imbalance of magnetic field strength around the perimeter
of the intersection of the heliopause with any plane normal to the axis
of flow. The associated imbalance in the Lorenfz forces of pressure nor-
mal to the perimeter. and tension along the perimetér must then progressive-
ly push in the perimeter where the field is-concentrated and permit the

perimeter to squish out where the field is weakened, the motion taking place

in time as the plane and the perimeter are convected downstream with the flow.
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Thus the shape of the heliopause dd&nstream of the sun is not gxbebted to
be axisymmetric as described by the extended Parker solution bﬁt, father,
to be '"delta winged", tapering from more or leés ciregiar cross sections'
near the sun to thin ellipse-iike sections far downstream. Of'csﬁfse, the
asphericity of thé near interplanet;ry magnetic field embedded in the solar
wind must also contribute t; the departure ofjthe heliopause froﬁ a#isym-
metry., To describe in some quantitative fashion the scale of the depérj
ture of the heliopause-from axisymmetry must be regarded as one.of the
outstanding theoretical problems associated with the termination of the
solar wind.

In the field free,‘single collision approximation adopted for the
transport of neutral hydrogen, the Boltzmann equation reduces to a con=-
tinuity equation for the distribution function. Since the fast secondary
hydrogen products of charge exchange have been shown by Holzer (1972) to
have negligible importance, the continuity equation has ‘only source terms
for removal of hydrogen through photoionization and charge exchange. But .
the source term for the neutrals to suffer charge exchange depends on’the
density of ions and the_saufce terms of the hydrodynamic equations fof the
plasma flow depend on the density of neutrals. Thus the two formulations
are coupled. To resolve thé impasse at least for the first iteration of
soiution,the;extended Parker Qolution was assumed for the plasma and the
hydrogen transport.problem solved in the approximation afforded.

To the latter end, an efficient semianalytical numerical algorithm
(Chapter III.) has been developed to carry out the solution on the needed
level of moments of the hydrogen distribution function. The algorithm
depends on approximating the figure of the heliopause by a prolate ellip-
soid — cylinder which is fit to the helibpause, first, at the stagnation
point; secondly, in a plane thét includes the sun and is noréal to the axis

of flow; and, finally, assymptotically‘fat downstream,
, :
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The algorithm has been used té compute profiles of hydrogen ﬁumber
density on tﬁe upstream and downstream axes of flow.' Using the single
scattering modél developed at the end of Chapter I., we have computed
intensities of chkscattéred solar_}ymanea radiation predicted to be
observed at 1 a,u. as the result ogiécgfter £rom hydrogen distributed
according to thé previously computed axial p;pfiles. The results of
computations for a varied set of parameters éf the interstellar wind has
been found over a substantial range to exhibit a strong linear dependence
betweén predicted ratios of upstream to downstream backscatter intensity
and the ratios of the independent variables bulk veleocity and most prob-
able thermal speed of the interstellar hydrogen.

Bertaux and Blamont (1972) and Thomas (1972) have provided the inter-
pretation that the maximum and minimum backscatter intensities found in
satellite observations occur repectively when the lines of sight are'along
the upstream and downstream axes of flow. Since the ratios of maximum to
minimum intensity observed by satellite fall in the linear ,range of our
predictive model for upstréam fo dowvnstream intensity ratios and éiven
the inferred correspondence between these ratios, we inferred that obser-
vation of maximum to minimum backscatter intensity provides a'sensitive.
measure of the ratio of the speed of the sun through the local interstellar
gas to the most probable thermal speed of the gas. Further, since the
most probable thermal speed and the speed of sound are in constant ratio,
the observation of Lyman-o backscatter provides‘a sensitive wmeasure of the
Mach number of the sun through the interstellar gas. Based on the ratios
of observed maximum to minimug backscatter intensity reported by Bertaux
and Blamont (1971) and Thomﬁs and Krassa (1971) the Mach number that we

found is 0.5 with respect to the ionized component of the interstellar wind.
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Civen-the estimate i04 °k for the temperature of the interstellérlmedium?
the corresponding estimate for the speed of the interstellar ﬁiﬁd is 3 km/s.
*-i> We note that with respect to Mach number, consistency has.béeﬁ_foundr
bétween the predictions of the model and the assumption that fhe‘fldw_is
subsonic as required by the extended Parker solution, While being fully
c¢ognizant it is.only an approximation, the latter solution we haﬁerrebrén
sented as being a useful approximation for the amalytical purposes wé have
made of it, 1In particﬁlar since the backscatter intensity intégral finds
effective convergenée well within the distance to the stagnation point

and most of the scattering comes from within the supersonic region, we do
fiot -expect anticipated departures of the solution from that used here to-
greatly affect the estimate of the Mach number,

" However, as Holzer (1972) and Axford (1972) have discussed, the

dﬂtrengthening of the magnetic field lines by stretching and éurvature in
both the‘subsonic region of theAsolar wind aﬁd in the interstellar wind

and -by cooling of the subsonic solar wind through charge exchange introduces
additional compression in Ehe region beyond that predicted by the Bernoulli
equation, To assess the scale of these additional, highly nonlinear, |
three dimensional effects on the dimensions of the flowfield really
réquires ; full numerical seclution of a model on the order of that
developed here. Given present uncertainty in the measurement of astro;
physical quantities, such a spolution may not provide measurably greéter
informétion than we currently possess about the absolute state of fhe ‘
system, And obtaining such a solution will be a formidable and costly
task, but having a solution for even one seﬁ of nominal coﬁditions -
hopefully with a transverse interstellar magnetic field — would COnsfi-

tute a most fascinating contribution in structural detail,
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