(GgODIH SISTRM
VOLUME I

GEODYN SYSTEM DESCRIPTION

Contract No.: NAS 5-11735 MOD 65 PCN 550W-72416
Prefared By:
M.M. Chin
C.C. Goad
T.V. Martin
Wolf Research and Development Corporation Riverdale, Marylond

For
Goddard Space Flight Center Greenbelt, Maryiand

30 Seprember 1972

DIRECTIONS FOR GEODYN VOL. I CIIANGES

TABLE OF CONTENTS
Page
2.0 THE GEODYN PROGRAM 1.0-1
2.0 THE (RBIT AND GEODETIC PARAMFTER ESTIMATION PROBLEM 2.0-1
2.1 THE ORBIT PREDICTJON PROBLEM 2.1-1
2.2 THE PARAMETER ESTIMATION PRODLEM 2.2-1
3.0 THE MOTION OF THE EARTH AND RELATED COORDINATE SYSTEMS 3.0-1
3.1 THE 1 RUE OF DATE COORDINATE SYSTEM 3.2-1
3.2 THE INERTIAL COORDINATE SYSTEM 3.2-1
3.3 THE EARTH-FIXED COORDINATE SYSTEM 3.4-1
3.4 TRANSFORMATION BETIEEN EARTH-FIXED AND TRUE OF DATE COORDINATES 3.4-1
3.5 COMPUTATION OF ${ }^{9} g$ 3.5-1
3.6 PRECESSION AND NUTATIDN 3.6-1
3.6.1 Precession 3.6-4
3.6.2 Nutation 3.6-8
4.0 LUNI-SOLAR-PLANETARY EPHEMERIDES 4.0-1
5.0 THE OBSERVER 5.0-1
5.1 GEODETIC COORDINATES 5.1-1
5.2 TOPOCENTRIC COORDINATE SYSTEMS 5.2-1
5.3 TIME REFERENCE SYSTEMS 5.3-1
5.3.1 Time System Transformations 5.3-2
5.4 POLAR NOTION 5.4-1
5.4.1 EFFECT ON TIE POSITION OF STATION 5.4-3
5.4.2 PARTIAL EERIVATIVES 5.4-6

TABLE OF CONTENTS (Cont.)
Page
8.0 FORCE MODEL AND VARIATIONAL EQUATIONS 8.1-1
8.1 EQUATIONS JF MOTION 8.1-1
8.2 THE VARIATIONAL EQUATIONS 8.2-1
8.3 THE EARTH'S POTENTIAL 8.3-1
8.3.1 Spherical Harmonic Expansion 3.3-2
8.3.2 Surface Density Layers 8.3-17
8.3.2.1 Nathematical Representation of Surface Densities 8.3-17
8.3.2.2 Surface Height Computation 8.3-2i
8.3.2.3 Layer Nodel Quadrature Errors 8.3-21
8.3.2.4 Constraints 8,3-22
8.4 SOLAR AND LUNAR GRAVITATIONAL PERTURBATIONS 8.3-1
8.5 SOLAR RADIATION PRESSURE 8.5-1
8.6 ATMOSPHERIC DRAG 8.6-1
8.7 ATMOSPHERIC DENSITY 8.7-1
8.7.1 Jacchia 1971 Density Model 8.7.1
8.7.1.1 The Assumption of the Model 8.7-2
8.7.1.2 Variations in the Thermosphere and Exosphere 8.7-4
8.7.1.3. Polynomial Fit of Density Tables 8.7-15
8.7.1.4 The Density Computation 8.7-28
8.7.2.5 Density Partial Derivatives 8.7-29
8.7.2 Jacchia 1965 Uensity Nodel 8.7-34
8.7.2.1 The Assumptions of the Model 8.7:35
8.7.2.2 The Exospheric Temperature Computations 8.7-39
REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

TABLE OF CONTENTS (Cont.)

Page
8.7.2.3 The Density Computation 8.7-48
8.7.2.4 Density Partial Derivatives 8.7-51
8.8 TIDAL POTENTIAL 8.8-1
9.0 INTEGRATION AND INTERPOLATION 9.1-1
9.1 INTEGRATION 9.1-1
9.2 THE I!!TEGRATOR STARTING SCHEME 9.3-1
9.3 INTERPOLATION 9.3-1
10.0 THE STATISTICAL ESTIMATION PROCEDURE 10.0-1
10.1 BAYESIAN LEAST SQUARES ESTIMATION 10.1-1
10.2 THE PARTITIONED SOLUTION 10.2-1
10.3 DATA EDITING 10.3.1
10.4 ELECTRONIC BIAS 10.4-1
11.0 GENERAL INPUT/OUTPUT DISCUSSION 11.1-1
11.1 INPUT 11.1-1
11.2 OUTPUT 11.2-1
11.3 COMPUTATIONS FOR RESIDUAL SUMMARY 11.3-1
11.4 KEPLER ELEMENTS 11.4-1
11.4.1 Node Rate and Perigee Rate 11.4-14
11.4.2. Period Decrement and Drag Rate 11.4-16
12.0 REFERENCES 12.0-1
APPENDIX A INDEX OF SUBROUTINE REFERENCES FOR GEODYN PROGRAM A-1.

GIOSSARY OF SYMROI.S

CIOSSARY OF SYMROIS (Cont.)

Symbol	Description	$\begin{gathered} \text { Page } \\ \text { First Used } \\ \hline \end{gathered}$
a	Vector of parameters associated with individual arcs, partition of x	10.2-2
$\overline{\mathrm{a}}_{\mathrm{d}}$	Acceleration of satellite due to a third body potential	8.5-1
${ }^{\text {a }}$ e	Earth's mean equatorial radius	6.1-4
$\overline{\mathbf{a}}_{\text {SD }}$	Surface density acceleration	3.3-28
$\mathrm{a}_{\mathbf{-}}$	Partition of a associated with the $r^{\text {th }}$ are	10.2-6
${ }^{\mathbf{i}} \mathbf{j}$	Polynomial coefficients used to fit the density table	8.7-31
B	Matrix partition of $U_{2 C}+D_{r}$ associated with velocity partials	9.1-3
B	Matrix of partial derivatives of computed measurements with respect to the parameters being determined	10.1-4
$B^{\text {e }}$	Matrix of partial derivatives of the measurement with respect to the biases	10.4-2
b	A constant measuremert bias	6.0-2

GLOSSARY OF SYMBOLS (Cont.)

Symbol	Description	$\begin{gathered} \text { Page } \\ \text { First Page } \\ \hline \end{gathered}$
C	Molecular mass of Helium divided by	8.7-14
	Avogadros' number	- ${ }^{-}$
$\mathrm{b}_{\text {ej }}$	Electronic bias	11.3-1
$\mathbf{b}_{\mathbf{i j}}$	A. set cf appropriate coefficients for the Helium number of density tables	8.7-31
$C_{\text {D }}$	Satellite drag factor	8.2-2
C_{R}	Satellite emissivity factor	8.2-2
$C_{\text {a }}$	$\begin{aligned} & \text { Matrix partition of } B^{T} W \underline{d m} \\ & \text { associated with } \underline{a} \end{aligned}$	10.2-4
$\mathrm{C}_{\mathbf{i}}$	Computed measurement value corresponding to O_{i}	2.2-1
C_{k}	Matrix fartitica of $\left(B^{T} W_{\underline{d m}}+V_{A}^{-1}\left(\underline{x}^{(n)} \underline{-x}_{A}\right)\right.$ associated with k) 10.2-4
$C_{n m}$	Gravitational harmonic coefficient of degree n, order m	6.3-2
C_{nm}	The cosine coefficient of surface density constraint equations	8.3-25

Symbol	Description	Page First Used
C_{r}	Matrix partition of C_{a} associated with the $:^{\text {th }}$ arc	10.2-7
		-'
$C_{t+\Delta t}$	The conputed observation at time $t+\Delta t$	6.0-1
C	Velocity of light	7.6-1
c_{i}	Interpolation coefficients	9.3-1
c_{i}	Interpolation coefficients	9.3-2
D	Mean elongation of the Moon from the Sun	3.6-11
$\mathrm{D}_{\boldsymbol{r}}$	Matrix containing $\partial \mathbb{A}_{D}$	8.2-6
do_{i}	Error of observation associated with 0_{i}	2.2-1
da	Partition of $\underline{d x}^{(n+i)}$ associated with a (correction vector for arc parameters)	10.2-4
$\underline{d a r}$	Partition of da associated with the $r^{\text {th }}$ arc (correction vector for the $r^{\text {th }}$ arc parameters).	10.2-8
$\underline{d a}$	Correction vector $r^{\text {th }}$ arc parameters not inclucing common parameter solution effects	11.4-1

GLOSSARY OE SYMBOLS (cont.)

Symbols	Description	$\begin{gathered} \text { Page } \\ \text { First Used } \\ \hline \end{gathered}$
dE	Element of surface area	8.3-18
dk	Partition of $\underline{d x}^{(n+1)}$ associated with the common parameters k	10.2-4
dm	Vector of residuals ($0-C$) from the $n^{\text {th }}$. approximation to $\hat{\underline{x}}$ (same as $\mathrm{d}_{2}{ }^{(n)}$)	10.2-1
$\underline{d x}^{(n+1)}$	Vector of corrections to the parameters x	10.1-6
$\underline{d z}^{(n)}$	Vector of residuals ($0-C$) from the $n^{\text {th }}$ approximation (same as dm)	10.1-6
${ }^{\text {d }} 1$	The transponder delay in the relay satellite	6.4-3
d_{2}	The transpoider delay in the tracked satellite	6.4-3
E	Eccentric anomaly of the orbit	11.4-1
\hat{E}	East baseline vector in the topocentric horizon coordinate system	5.2-1
E ()	Expected ralue	11.3-3
E_{M}	Input multiplier for editing Eriteion	10.3-2

GLOSSAKY OF SYMBOLS (Cont.)

Symbols	Description	$\begin{gathered} \text { Page } \\ \text { First Used } \end{gathered}$
E_{R}	Weighted RMS of previous outer iteration Input for first outer iteration	10.3-2
\mathbf{E}_{ℓ}	Elevation of the satellite (measurement type)	$6.2-1$
e	Eccentricity of the reference ellipsoid	5.1-2
e	Eccentricity of the oroit	11.4-1
$\overline{\mathbf{e}}$	Constant of integration - a vector of a magnitude equal to the eccentricity of the orbit and pointing toward perihelion	11.4-6
F	Mean angular distance of the Moon from Sun	3.6-11
F	Matrix containing $\frac{\partial \ddot{\bar{r}}}{\partial \overline{\bar{B}}}$ (same as $\ddot{\gamma}$)	8.2.6
F_{3}	Base frequency for Doppler measurements	7.6-1
F_{M}	Measured frequency for Doppler observations	7.6-1
$F_{10.7}$	Mean of the 10.7 cm . solar flux values for a given day	8.7-6
$F_{10.7}$	Average 10.7 cm . £lux strength over 3 solar rotations	8.7-6

GLOSSAR: OE SMMROLS (COHt.)

	Symbols	Description	Page First Used
	f	clattening of the Earth	5.1-1
	f	Transmitter frequency	6.5-3
	f	Matrix containing the direct partial derivatives of \bar{x}_{t} with respect to $\bar{\beta}$.	8.2-6
	f	Back value of acceleration	9,3-2
	f	The true anomaly of the orbit	i1.4-1
1	f.	The geometric relationship defined by the observation type at time t.	6.0-1
	G	The universal gravitational constant	6.3-2
	g	Wean anomaly of the Moon	3.6-11
	g^{\prime}	Mean anomaly of the Sun	3.6-11
	H	Hour angle of the Sun	8.7-7
	$\mathrm{Halt}_{\text {a }}$	Altimeter height (measwi ent type)	6.1-3
	h	Spheroid height	5.1-2
	h	Integrator sten sizo	9.3-2
c	h_{s}	Local hour angle measurei in the westw direction fru.. the station to the sate	$\text { rd } 7.4-2$ lite

Symbois	Directions	$\begin{gathered} \text { Page } \\ \text { First Us,ed } \\ \hline \end{gathered}$
I	Identity matrix	9.1-3
i	Inclination of the orbit	11.4-1
J	Julian Ephemeris Date of desired nutation calculation	3.6-10
J_{0}	Julian Ephemeris Date corresponding to 1906 January 0.5 Ephemeris Time	3.5-10
K	Partition of ($B^{T} W B+V_{A}^{-1}$) associated with \underline{k}	10.2-4
K_{p}	The 3-hourly planetary goomagnetic index	8.7-9
k	Vector of parameters common to all arcs; partition of \underline{x}	10.2-2
k_{2}	Tidal coefficient of degree 2 called the 'Love Number'	8.8-1
ℓ	Direction cosine (measurement type)	6.1-7
ℓ	```Distance from a point on the earth's surface to the point at which the po- tential is to be computed```	8.3-18
M	Mass of the Earth	6.3-2

GLOSSARI OF SYMBOLS (Cont.)

Symbols	Description	$\begin{gathered} \text { Page } \\ \text { First Used } \\ \hline \end{gathered}$
M	Number of blocks on the Earth's surface	8.3-20
M	Number of parameters in x	10.1-1
M	Mean anomaly of the orbit	11.4-1
M_{e}	Mass of the Earth	8.8-1
Md_{d}	Mass of the disturbing body	8.8-1
M_{0}	Number of unadjusted densities	8.3-29
M^{\prime}	Number of constraint equations	8.3-27
m	Direction cosine (measurement type)	6.1-7
${ }^{m}{ }_{d}$	Mass of the disturbing body for third body perturbations	8.4-1
m_{i}	Computed equivalent of the $i^{\text {th }}$ measurement (see C_{i} and $C_{t+\Delta t)}$	10.2-2
m_{5}	Mass of the satellite	8.5-4
\mathbf{N}	Number of observations in 2	10.1-1
N^{\prime}	Maximum degree coefficient unaffected by. the surface density layer	8.3-27

GLOSSARY OF SYMBOLS (Cont.)

GLOSSARY OF SYMBOLS (Cont.)

Symbols	Description	$\begin{gathered} \text { Page } \\ \text { First Used } \\ \hline \end{gathered}$
$p(\underline{z} \mid \underline{x})$	```Joint conditional probability density function for z give.t that \underline{x}}\mathrm{ has occurred```	10.1-1
q	Parallactic angle in radians	7.5-1
R_{e}	Mean earth radius	8.8-1
R_{d}	Third body disturbing potential	8.4-1
$\mathrm{R}_{\mathbf{d}}$	Distance from center of mass of the earth to the center of mass of the disturbing tody	8.8-1
$R_{g}(t)$	Range vector from the center of the earth to the ground station i.t time t	6.4-3
R_{i}	Residual value ($\mathrm{dm}_{\mathbf{i}}$)	11.3-1
$\hat{\mathbf{R}}_{\text {d }}$	Unit vector from center of mass of the earth to the center of mass of the disturbing body	8.8-1
$R_{s}(t)$	Range sum measurement at time t	6.4-1
$R_{1}(t)$	Range vector from the center of the earth to the relay satellite at time t	6.4-3
$R_{2}(t)$	Range vector from the center of the earth to the tracked sarellite at time	6.4-3

Symbols	Description	Page First Used
$\mathrm{R}_{1 \mathrm{~d}}$	Down-1ink range from the relay satellite to the ground	6.4-3
$\mathrm{R}_{1 \mathrm{u}}$	Up-link range from the grounc. to the relay satellite	y 6.4-1
$\mathrm{R}_{2 \mathrm{~d}}$	Relay satellite - tracked satellite range	6.4-1
$\mathrm{R}_{2 \mathrm{u}}$	Tracked sateilite - relay satelifte range	6.4-3
\dot{R}_{S}	Time derivative of $\mathrm{R}_{\mathbf{S}}$	6.4-8
$\dot{\mathrm{R}}_{1 \mathrm{u}}$	Time derivative of $\mathrm{R}_{1 u}$	6.4-8
$\dot{R}_{2 d}$	Time derivative of $\mathrm{R}_{2 \mathrm{~d}}$	6.4-8
T	Distance from the point of interest to the center of mass of the earth	8.3-18
2	Distance from center of mass of the earth to satellit?	8.8-1
\bar{x}	Geocentric satellite position vector	5.1-10
$\overline{\mathbf{x}}$	True of date position vector of the satellite	8.7-29
$\bar{r}_{\text {d }}$	True of date fosition vector of third body for third body gravitational effects	8.4-1

GLOSSARY OF SYMBOLS (Cont.)

Symbols	Description	Page First Used
$\bar{r}_{\text {ob }}$	Geocentric position vector of a tracking station	2.2-4
$\hat{\mathbf{r}}$	Unit vector from center of mass of the Earth to the satellite	8.8-1
\dot{i}_{s}	True of date unit vector pointing to the Sun	8.5-4
S	The cosine of the enclosed angle between $\overline{\mathbf{r}}_{\text {and }} \overline{\mathrm{r}}_{\mathrm{d}}$	8.4-1
S	Surface of the Earth	.8.3-18
S_{1}	The first sum carry along by the integrator	9.3-1
S_{2}	The second sums carry along by the integrator	9.3-1 $\therefore . .-4$.
$\mathrm{S}_{\text {gm }}$	Gravitational harmonic coefficient of degree n, order m	8.2-2
$S_{\text {nm }}$	The sine coefficient of surface density constraint equations	8.3-25
s^{2}	Sample variance	11.3-1
T	A sample layer distributed on the surface of the Earth	8.3-25

glússáky ú symbuls ícont.j

	Symbols	Description	$\begin{gathered} \text { Page } \\ \text { First Useट } \end{gathered}$
	T	Exospheric lemperature	8.7-15
	Te	Exospheric temperature	8.7-7
	T_{c}	Nighttime minimum global exospheric temperature for a given day	8.7-6
	$\mathbf{T}_{\boldsymbol{\infty}}$	Average nighttime minimum global exospheric temperature for a given period	8.7-5
\%	U	Geopotential field of the Earth	6.4-3
	U	Spherical harmonics part of total earth potential	8.3-18
	$\mathbf{U}_{2 \mathrm{C}}$	Matrix containing the second partial derivatives of the gravitaticnal potentials with respect to the true of date position coordinates	8.2-6
	\mathbf{u}	Central angle between the satellite vector and a vector pointing toward the ascending node of the orbit	11.4-7
	$\hat{\mathbf{u}}$	Unit vector in the direction of \bar{p}	8.1-2
	V	Covariance matrix of \underline{x}	10.1-5
	\hat{v}	Unit local vertical at the station	7.5-2

GLOSGARY OF gYMBOLS (Cont:)

Symbols	Description	$\begin{gathered} \text { Page } \\ \text { First I'sed } \\ \hline \end{gathered}$
$\mathrm{v}_{\text {A }}$	a priori covariance matrix associated with \bar{x}_{A}; same as Σ_{A}^{-1}	10.2-1
V_{a}	Matrix partition of V_{A}; a priori covariance matrix associated with a	$10.2-3$
$\mathrm{V}_{\mathbf{k}}$	Matrix partition of V_{A}; a priori covariance matrix associated with k	10.2-3
$\mathbf{V}_{\mathbf{r}}$	Matrix partition of V_{a} associated with the $r^{\text {th }}$ arc	10.2-6
W	Weighting matrix for observations; same as Σ_{2}^{-1}	30.2-1
W	Total potential of the Earth	8.3-18
X	C ordinat = system direction:	2.1-3
	a) Direction in the equatorial plane pointing toward the Greenwich meridian (Earth-fixed system)	
	b) In the direction of the true equinox of date at oho of the epoch day (inertial system)	
	c) In the direction of the true equinox of date (true of date system)	

GLOSSARY OF SYMBOLS (Cont.)

Symbols	Description	$\begin{gathered} \text { Page } \\ \text { First Used } \\ \hline \end{gathered}$
$X(t+\Delta t)$	Position partial at time t	9.3-1
$\dot{x}(t+\Delta t)$	Velocity partial at time t	$9.3-2$
X_{a}	The X angle of the sateliite (measurement type)	6.1-7
$\chi_{\text {e }}$	Earth-fixed position component	3.4-1
χ_{i}	True of date position component	3.4-1
$x_{\text {III }}$	Matrix containing the variational partials	8. 2-6
$\chi_{1 i}$	Inertial cartesian position coordinates of the relay satellite	6.4-6
$\mathrm{X}_{2 i}$	Inertial. cartesian position coordinates of the tracked satellite	6.4-6
$\dot{x}_{1 i}$	Time derivative of $\mathrm{X}_{1 i}$	6.4-8
$\dot{x}_{2 i}$	Time derivative of $\mathrm{X}_{2 i}$	6.4-8
x	True of date X position compment of the satellite	2. 2-4
x	Rotation angle for polar motion	5.4-5

Symbols	Description	$\begin{gathered} \text { Page } \\ \text { First Used } \\ \hline \end{gathered}$
\underline{x}	Vector of M parameters	10.1-1
$\hat{\hat{x}}$	The "best" estimate of \underline{x}	10.1-2
$\underline{\underline{x}}^{\text {(n) }}$	The $n^{\text {th }}$ approximation to $\hat{\underline{x}}$	10.1-2
$\underline{x}_{\text {A }}$	The a priori estimate of \underline{x}	10.1-2
\bar{x}_{t}	The vector describing the true of date position and velocity of the satellite	2.2-4
Y	Coordinate system direction (associated with the X and Z directions)	2.1-3
Y	```Partition of }\mp@subsup{X}{m}{\prime}\mathrm{ ; a matrix containing \partialr```	9.1-3
Y	\qquad	9.1-3
$\ddot{\boldsymbol{y}}$	Matrix containing $\frac{\partial \ddot{\bar{r}}}{\partial \bar{\beta}}$; same as matrix F	9.1-3
Y_{2}	The Y angle of the satellite (measurement type)	6.1-7
Y_{e}	Earth-fixed position component	3.4-1

GLOSSARY OF SYMBOLS (Cont.)

Symbols	Deicription	$\begin{gathered} \text { Page } \\ \text { First Used } \\ \hline \end{gathered}$
Y_{i}	True of date position component	3.4-1
y	True of date Y position component of the satellite	2.2-4
y	Rotation angle for polar motion	5.4-5
Z	Direction of the spin axis of the Earth for Z direction of coordinate systems. (Taken at oh. of epoch day for inertial coordinate system.) Compare X	2.1-2
\hat{z}	The zenith baseline unit vector in the topocentric horizon coordinate system	5.2-1
2 e	Earth-fixed component; same as z	5,1-5
20	Observed zenith angle	7.5-1
2	True of date 2 position coordinate of the satellite	2.2-4
2	A precession angle	3.1-1
$\underline{2}$	A vector of N independent observations	10.1-1

GLOSSARY OF SYMBOLS (Cont.)

Symbois	Description	$\begin{gathered} \text { Page } \\ \text { First Used } \end{gathered}$
α	Topocentric right ascension of the satellite (measurement type)	6.1-5
x^{\prime}	Observed declination of the satellite	7.4-2
$\bar{\alpha}$	The set of parameters not affecting the dynamics of satellite motion	2.2-3
\bar{B}	The set of parameters affecting the dynamics of satellite motion	2.2-3
$\boldsymbol{\gamma}$	```Parameter of differential corrections for epoch element and force model parame- ter errors```	6.4-6
$\begin{aligned} & { }^{B}{ }_{p}, \beta_{p}^{*} \\ & Y_{p}, Y^{*}{ }_{p} \end{aligned}$	Cowell intcgratiun scheme coefficients	9.1-2
ΔE_{i}	Area of the surface density block	3.3-18
$\Delta \ell$	Correction to measurement of direction cosine \&	7.5-5
$\Delta \mathrm{m}$	Correction to measurement of direction cosine m	7.5-5
$\Delta \mathrm{R}$	Differential refraction	7.5-1

Symbols	scription	$\begin{gathered} \text { Page } \\ \text { First Used } \end{gathered}$
ΔT_{∞}	Gerwagnet is heating correction to T_{ω}	8.7-9
Δt	Measuremeat timing bias	6.0-2
${ }^{\Delta t}{ }_{11}$	Transit time for the range R_{14}	6.4-3
${ }^{\Delta t}{ }_{1 d}$	Transit time for the range $\mathrm{R}_{1 \mathrm{~d}}$	6.4-3
$\Delta t_{2 d}$	Transit time for the range $\mathrm{R}_{2 \mathrm{~d}}$	6.4-3
$\Delta t^{2 u}$	Transit time for the range $\mathrm{R}_{2 u}$	6.4-3
ΔX_{a}	Correction to measured X angle	7.6-1
ΔY_{a}	Correction to measured Y angle	7.6-1
$\Delta \alpha$	Equation of the equinoxes	3.5-2
Δa	Right ascension measurement correction	7.4-1
$\Delta \delta$	Declination measurement correction	7.4-1
$\Delta \varepsilon$	Nutation in obliquity	3.6-11
$\Delta \rho$	Correction to range measurement	7.3-1
Δp_{n}	Correction to CNES laser range measuren	nt 7.5-2
$\Delta \psi$	Nutation in longitude	3.6 .8

GLOSSARY OF SYMBOLS (Cunt.)

Symbol	Description	$\begin{gathered} \text { Page } \\ \text { Firsi Page } \\ \hline \end{gathered}$
v	Satellite eclipse factor	8.5-4
v_{F}	VLBI fringe rate measurement	6.6-3
\bar{p}	The station-satellite vector	6.1-2
${ }^{\rho_{D}}$	Atmospheric density at the satellite. position	8.5-6
${ }^{P}$ D	Atmospheric density in $\mathrm{Kg}_{\mathrm{g}} / \mathrm{m}^{3}$	8.7-28
${ }^{\text {DT }}$	Atmospheric density in $\mathrm{g} / \mathrm{cm}^{3}$	8.7-15
ρ_{s}	Specular refle=tivity of the satellite	8.5-5
\cdots	the $i^{\text {th }}$ station-satellite range	6.6-1
\dot{p}_{i}	Time derivative of i	6.6-3
${ }^{\rho}$ T	Transmitter-satellite range	6.7-1
${ }^{0}$ R	Satellite-receiver sange	6.7-1
$\dot{\bar{\rho}}$	Average range rate measurement	6.7-1
$\Sigma_{\text {A }}$	a priori covariance matrix ascociated with the a priori parameter vector x_{A}	10.1-3
Σ_{z}	Covariance matrix associated with the observations \underline{z}	10.1-2

GIOSSARY OF SYMBOIS (COntinued)

Symbols	Description E	$\begin{gathered} \text { Page } \\ \text { First Page } \\ \hline \end{gathered}$
σ	Standard deviation	11.3-3
$\underline{\sim}$	Vector of noise on the observations $\underline{2}$	10.1-1
${ }^{\tau}{ }_{8}$	VLBI time delay measurement	6.6-3
τ_{i}	Light time for the $i^{\text {th }}$ station	6.6-1
¢	Geoderic latitude	5.1-1
\dagger	Sub-satellite latitude	8.7-29
$\phi^{\prime \prime}$	Geodetic longitude	5.1-1
ϕ^{-}	Geocentric latitude of the station	7.4-1
Ω	Longitude of the ascending node of the Moon's orbit	3.6-11
Ω	Longitude of the ascending node of a satellite orbit	11.4-1
ω	Angular velocity of the earth	8.3-18
ω	Argument of perigee of a satellite orbit	11.4-1
X	Surface density ($\mathrm{kg} / \mathrm{m}^{2}$ multiplied by G)	8.3-18
$\Lambda_{j i}$	Surface integrals	8.3-27
$\Lambda_{j i}^{j}$	Inverse array of $\Lambda_{j i}$	8.3-28

GLOSSARY OF SYMBOLS (Continued)		
Symbols	Description	Fage First Page
-	Gencentric longitude of the sun in the the ecliptic plane	7.4-1
$\log _{10} \mathrm{n}(\mathrm{He})$	Helium number density	8,7-31

SECTION 1.0
THE GEODYN PROGRAM

GEODYN was written for GSFC by WOLF in 1971 and has been operational since January of 1972. A.merger of the Multi-Arc NONANE program and the GEOSTAR programs GEODYN is greatly improved in overall capability, accuracy, and versatility over its parent programs.

GEODYN is one of the most widely used orbit and geodetic parameter estimation programs ir the world. It is currently operational at GSFC on the IBM 360 ' 95 , ' 91 , and '75; at Onio State University on the IBM 370/255; and will shortly be operational at Wallops Island on the GE 635. Additionally the GEODYN parent program, Multi-Arc NONAME is operational at the Goddard institute for Space Studies in New York on an IBM 350/95 and at the Institut für Physik and Plasmaphysik, Garching, West Germany on an IBM 360/S1.

GEODYN has been used for

- determination of definitive orbits
- tracking instrument calibration
- satellite operational predictions
- geodetic parameter estimation
and many other items relating to applied research in satellite geodesy using virtually. all types of satellite tracking data.

SECTICN 2.0
THE ORBIT AND GECDETIC PARAMETER ESTIMATION PROBLEM

The purpose of this section is to provide an understanding of the relationship betwern the various elements in the solution of the orbit and geodetic parameter estimation problem. As such, it is a general statement of the problem and serves to coordinate the detailed solutions to each element in the problem presented in the sections which follow.

The problem is divided into two parts:

- the orbit prediction protlem, and
- the parameter estimation problem.

The solution to the first of these problems corresponds to GEODYN's orbit generation mode. The solution to the latter corresponds to GEODYN's data reduction mode and of course is based on the solution to the former.

The reader should note that there are two key choices which dramatically affect the GEODYN solution structure:

- Cowell's method for integrating the orbit, and
- Bayesian least squares statistical estimation procedure for the parameter estimation problem.

2.1 The Ortit Prediction Problem

There are a number of approaches to orbit prediction. The GEODYN approach is to use Coweil's method, which is the direct numerical integration of the satellite equations of motion in rectangular ccordinates. The initial conditions for these differentiai equations are the epoch position and veiocity; the accelerations of the satellite must be evalunced.

The acceleration f oducing forces which are currentily modeiled an GEODYN are the effects of

- the genpotential,
- surface densities,
- the luni-solar potentials,
- planetary potentials of Venus, Mars, Jupiter and Saturn,
- Radiation pressure,
- carth tidal potentials and
- atmospheric drag

Perhaps the most outstanding common feature of these forces is that they are functions of the position of the satellite relative to the Earth, Sun, Moon, or. Planets and of the Sun and Moon relative to the Earth. Only atmospheric drag is a function of any additional quantity,* specifically, the relative velocity of the satellite with respect to the smosphere.
"Not to be confused with the "fixed" parameters in the models.

The accurate evaluation of the acceleration of a satellite therefore involves the solution to two concomitant problcms:
o the accurate modeling of each force on the satellite - Earth - Sun - Moon - Planer relationship, and

0 The precise modeling of the motions of the Earth, Sun, Moon, and Planets.

The specific details for each model in these solutions are given elsewhere in Sections 3, 4, and 8. The question of how these models fit together is in effect the question of appropriate coordinate systems.

The key factor in the selection of coordinate systems for the satellite orbit pxediction problem is the motion of the Earth. For the purposes of GEODYN, this motion consists of:

- precession and nutation, and
- rotation.

We are considering here the motion of the solid body u. the Earth, as versus the slippage in the Earth's crust (polar motion) which just affects the position of the observer.

The precession and nutation define the variation in

0 the direction of the spin axis of the Eart: (+2), and
o the direction of the true equinox of date (+X).

These directions define ine (geocentric) true of date coordinate system.

The rotation rate of the Earth is the time rate of change of the Greenwich hour angle θ_{g} between the Greenwich meridian and the true equinox of date. Thus the Earth-fixed system differs from the true of date system according to the rotation angle θ_{g}.

The equations of motion for the satellite must be integrated in an inertial coordinate system. The GEODYN inertial system is defined as the true of date system corresponding to 0.0 of a reference epoch.

The coordinate systems in which the accelerations due to each physical effect are evaluated should be noted. The geopotential effects are evaluated in the Earth-fixed system, and then transformed to true of date to be combined with the other effects. The others are evaluated in the true of date system. The total acceleration is then transformed to the reference inertial system for use in the integration procedure.

The integration procedure used in GEODYN is a predictor-corrector type with a fixed time step. There is an optional variable step procedure. As the integration algorithms used provide for cutput on an even step, an interpolition procedure is required.

The Parameter Estimation Problem

Let us consider the relationships between the observations O_{i}, their corresponding computed values C_{i} and \bar{P}, the vector of parameters to be determined. These relationships are given by

$$
\begin{equation*}
o_{i}-C_{i}=\sum_{j} \frac{\partial C_{i}}{\partial P_{j}} d P_{j}-d O_{i} \tag{1}
\end{equation*}
$$

where
i denotes the $i^{\text {th }}$ observation or association with it,
$d P_{j}$ is the correction to the $j^{\text {th }}$ parameter, and
dO_{i} is the error of observation associated with the $i^{\text {th }}$ observation.

The basic problem of parameter estimation is to determine a solution to these equations.

The role of data preprocessing is quite apparent from these equations. First, the observation and its computed equivalent must te in a common time and spatial reference system. Second, there are certain physical effects such as atmospheric refraction which do not significantiy vary by any likely change in the parameters represented by \bar{P}.

These computations and corrections may equally well be applied to the observations as to their computed
values. Furthermore, the relationship between the computed vaiue and the model pāímetexs $\overline{\mathrm{F}}$ is, in general, nonlinear, and hence the computed values may have to be evallated several times in the estimation procedure. Thus a considerable increase in computational efficiency may be attained by applying these computations and corrections to the observations; i.e., to preprocess the data.

The preprocessed observations used by GEODYN are directly related to the position andfor yelocity of the satellite relative to the observer at the given observation time. These relationships are geometric, hence computed equivalents for these observations are ottained by applying these geometric relationsinips to the computed values for tha positions and velocities of the satellite and the observer at the desired time.

Associated with each measurement from each observing station is a (known) statistical urcertainty. This uncertainty is a statistical property of the noise on the observations. This uncertainty is the reason a statistical estimation procedure is required for the GEODYN parameter determinatien.

It should be noted that dO_{i}, the measurement error, is not the same as the noise on the observations. The do O_{i} account for all of the discrepancy $\left(\mathrm{O}_{\mathrm{i}}-\mathrm{C}_{\mathrm{i}}\right)$ which is not accounted for by the corrections to the parameters CP. These dO_{i} represent both

- the contribution from the noise on the observation, and
- the incompleteness of the mathematical model reprisented by the parameters F :

By this last we mean either that the parameter set being determiced is insufficient or that the functional form of the model is inadequate.

GEODYN has two different ways of dealing with these errors of observation:

1. The measurement model includes both a constant bias and a timing bias which may be determined.
2. There is an automatic editing procedure to delete bad (statistically unlikely) measurements.

The nature of the parameters to be determined has a significant effect on the functional structure of the solution. In GEODYN, these parameters are:

- the position and velocity of the satellite at epoch. These are the initial conditions for the equations of motion.
- force model parameters. These affect the motion of the satellite.
- Station positions and blases for station measurement types. These do not affect the motion of the satellite:

Thus, the parameters to be determined are implicitly partitioned into a set $\vec{\alpha}$, which are not concerned with the dynamics of the satellite motion and set \bar{B} which are.

The corputed value C_{i} for each observation O_{i} is a function of
$\bar{r}_{\text {ob }}$ the Earth-fixed position vector or the station, and
\bar{x}_{t} the true of date position and velocity vector of the satellite $\{x, y, z, x, y, z\}$
at the desired observation time. When measurement biases are used, C_{i} is also a furction of B, the biases associated with the particular station measurement type.

Let us consider the effect of the given partitioning on the required partial derivatives in the observational equations. The $\frac{\partial C_{i}}{\partial \bar{P}}$ become

$$
\frac{\partial C_{i}}{\partial \bar{a}}=\left\{\begin{array}{ll}
\frac{\partial C_{i}}{\partial \bar{r}_{o b}}, & \frac{\partial C_{i}}{\partial \bar{B}} \tag{2}
\end{array}\right\}
$$

$$
\begin{equation*}
\frac{\partial C_{i}}{\partial \bar{B}}=\frac{\partial C_{i}}{\partial \bar{x}_{t}} \frac{\partial \bar{x}_{t}}{\partial \bar{B}} \tag{3}
\end{equation*}
$$

The partial derivaiives $\frac{\partial \bar{x}_{t}}{\partial{ }_{\mathrm{B}}}$ are calied the variational partials. While the other partial derivatives on the right-hand side of the equations above are computed from the measurement model at the given time, the variational pertials must be obtained by ineegratia.g the variational equations. As will be shown in Section 8 , these equations ure similar to the equations of motion.

Tue need for the above mentioned variational partials obviously has a dramatic effect on any solution to the observationd equatioñ. In additien to integrating the equations of motion to enerate an orbit, the solution requires that the variacional equations be integrated.

We have heretofore discussed the eleme:ts of the observational equations; we shall now discuss the solution of these equations; i.e., the statistical estimation scheme.

There are a number of estimation schemes that can be used. The method used in GEODYN is a batch scheme that uses all observations simultaneously to estimate the parameter sel. The alternative would be a sequential scheme that uses the observations sequentially to calculate an updated set of parameters from each additional observarion. Although batch and sequential schemes are essentially equivalent, practical numerical protlems often occur with sequential schemes, especially when processing highly accurate observations. Therefore, a batch scheme was chosen.

The particular method selected for GEODYN is a pariitioned Bayesian least squares method as detailed in Section 10. A Bayesian method is selected because such a scheme utilizes meaningful a priori information. The partitioning is such that the arrays which must be simultaneously in core are arrays associated with parameters common to all satellite arcs, and preays periaining to the arc being processed. Its purpose is to dramatically reduce the core storage requirements of the program without any significant cost in computation time.

There is an interesting aside related to tie use of a prius infūination in practice. The use of a prior information for the parameters guarantees that the astimotion procedure will mechanically operate (but not necessai lily converge). The user must ensure that ais data contains information relating to the parameters he wishes determined.

SECTION 3.0

The major faccor in satellite dynamics is the gravitational attraction of the Earth. Because of the (usual) closeness of the satellite and its primary, the Earth cannot be considered a point mass, and hence any model for the dynamics must contain at least an impliiit mass distribution. The concern of this section is the motion of this mass distribution and its relation to coordinate systems.

We will first consider the meaning of this motion of the Earth in terms of the requisite coordinate systems for the orbit prediction problem.

The choice of appropriate coordinate systems is controlled by several factors:

- In the case of a satellite moving in the Earth's grayitational fieid, the most suitable reference system for orbit $=0 \mathrm{~m}$ putation is a system with its origin at the Earth's center of mass, referred to as a geocentric reference system.
- The satellite equations of motion must be integrated in an inertial coordinate systeri.
- The Earth is rotating at a rate $\dot{\theta}_{g}$, which is the time rate of change of the Greenwich hour angle. This angle is the hour angie of the true equinox of date with respect te the Greenwich meridian as measured in the equatorial plane.
- The. Earth boch precesses and nutates, thus changing rine direciivus of tuth the Earth's spin axis and the true equinox of date in inertial space.

The motions of the Earth referred to here are of course those of the "solid body" of the Earth, the motion of the primary mass distribution. The slippage of the Earth's crust is considered elsewhere in Section 5.2 (polar motion).

3.1 The True of Date Coordinate System

Let us consider that at any given time, the spin axis of the Earth (. 2) and the dircction of the true equinox of date ($+X$) may be used to define a right-handed geocentric coordinate system. This sysiem is known as the true of date coordinate system. The coordinate systems of GEODYN will be defined in terms of this system.

3,2 The Inertial Coordinate System

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

The inertial coordinate system of GEODYN is the true of date coordinate system defined at 0.0 of the reference day for each satellite. This is the system in which the satellite equations of motion are integrated.

This is a right-handed, Cartesian, geocentric coordinate system with the X axis directed along the true equinox of $0 . h_{0}$ of the reference day and with the z axis directed along the Earth's spin axis toward north at the same time. The Y axis is of ourse defined so that the coordinate system is orthogonal.

It should be neted that the ineriiai system ziffers from the true of date system by the variation in time of the directions of the Earth's spin axis and the true equinox of date. This variation is described by the effects of precession and nutation.

3.3 The Earth-fixed Coordinate System

The Earth-fixed coordinate system is geocentric, with the 2 axis pointing north along the axis of rotation and with the X axis in the equatorial plane pointing toward the Greenwich meridian. The system is orthogonal and right-handed; thus the Y axis is automatically defined.

This system is rotating with respect to the true of date coordinate system. The Z exis, the spiz axis of the Earth, is common to both s;stems. The rotation rate is equal to the Earth's angular velocity. Consequently, the hour angle $\dot{\partial}_{g}$ of the true equinox of date with respect to tise Greenwich meridian (measured westward in the equatorial plare) is changing at a rate $\dot{\theta}_{g}$ equal to the angular velocity of the Earth.

3.4 Transformation Between Earth-fixed and True of Date Coordinates

The transiormation between Earth-fixed and true of date coordinates is a simple rotation. The Z axis is common to both systems. The angle between X_{i}, the true YEFIX XINERT of date X component vector, and X_{e}, the Earth-fixed YIEERT component vector, is θ_{g}, the Greenwich hour angle. The Y component vectors me similarly related. These trans: formations for $X_{0}, Y_{e}, X_{i}, Y_{i}$ which are accomplished in

GEODYN by the functions XEFIX, YEFIX, XINERT, and YINF,RT are:

$$
\begin{array}{lll}
\bullet & x_{e}=x_{i} \cos \theta_{g}+Y_{i} \sin \theta_{g} & \text { XEFIX } \\
\bullet & Y_{e}=X_{i} \sin \theta_{g}+Y_{i} \cos \theta_{g} & \text { YEFIX } \\
\text { - } & X_{i}=X_{e} \cos \theta_{g}-Y_{e} \sin \theta_{g} & - \\
\text { - } Y_{i}=X_{e} \sin \theta_{g}+Y_{e} \cos \theta_{e} & \text { XINERT }
\end{array}
$$

The transformation of velocities requires taking into account the rotational velocity, θ_{g}, of the Earth. fixed system with respect to the true of date reference frame. The following relationships should be noted:

$$
\begin{equation*}
\frac{\partial X_{e}}{\partial \theta_{g}}=Y_{e} \quad . \quad \frac{\partial Y_{e}}{\partial \theta_{g}}=-X_{e} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial X_{i}}{\partial \theta_{g}}=-Y_{i} \quad \frac{\partial Y_{i}}{\partial \theta_{g}}=X_{i} \tag{2}
\end{equation*}
$$

$$
\begin{aligned}
& \dot{X}_{e}=\left[\dot{X}_{i} \cos \theta_{g}+\dot{Y}_{i} \sin \theta_{g}\right]+Y_{e} \dot{\theta}_{g} \\
& \dot{Y}_{e}=\left[-\dot{X}_{i} \sin \theta_{g}+\dot{Y}_{i} \cos \theta_{g}\right]-X_{e} \dot{\theta}_{g} \\
& \dot{X}_{i}=\left[\dot{X}_{e} \cos \theta_{g}-\dot{Y}_{e} \sin \theta_{g}\right]-Y_{i} \dot{\theta}_{g} \\
& \dot{Y}_{i}=\left[\dot{X}_{e} \sin \theta_{g}+\dot{Y}_{e} \cos \theta_{g}\right]+X_{i} \dot{e}_{g}
\end{aligned}
$$

The brackets denote the part of each transform which is a transformation identical to its coordinate equivalent.

These same transformations are used in the transformation of partial derivatives from the Earthfixed system to true of date. For the $k^{\text {th }}$ measurement, C_{k}, the partial derivative transformations are explicitly:

$$
\begin{align*}
& \frac{\partial c_{k}}{\partial x_{i}}= {\left[\frac{\partial c_{k}}{\partial x_{e}} \cos \theta_{g}-\frac{\partial c_{k}}{\partial y_{e}}\right.} \tag{3}\\
& \sin \theta_{g} \\
&+\left[\begin{array}{lll}
-\frac{\partial c_{k}}{\partial x_{e}} & \sin \theta_{g}-\frac{\partial C_{k}}{\partial y_{e}} \cos \theta_{g}
\end{array}\right] \dot{\theta}_{g}
\end{align*}
$$

$$
\begin{align*}
& \frac{\partial C_{k}}{\partial y_{i}}=\left[\frac{\partial C_{k}}{\partial K_{e}} \sin \theta_{g}+\frac{\partial C_{k}}{\partial V_{e}} \cos \theta_{g}\right] \tag{4}\\
& +\left[\begin{array}{llll}
\frac{\partial C_{k}}{} & \cos \theta_{g}-\frac{\partial C_{k}}{\partial X_{e}} & \sin \theta_{g}
\end{array} \dot{\theta}_{g}\right. \\
& \frac{\partial C_{k}}{\partial X_{i}}=\left[\frac{\partial C_{k}}{\partial X_{e}} \cos \theta_{g}-\frac{\partial C_{k}}{3 Y_{e}} \sin \theta_{8}\right] \tag{5}\\
& \frac{\partial C_{k}}{\partial Y_{i}}=\left[\frac{\partial C_{k}}{\partial X_{e}} \sin A_{g}+\frac{\partial C_{k}}{\partial Y_{e}} \operatorname{ros} \theta_{g}\right] \tag{6}
\end{align*}
$$

The brackets have the same meaning as before.
XEFIX YEFIX XINERT YINERT GRHRA: OBSDOT PREDCT

3.5 Computation of θ_{8}

The computation of the Greenwich hour angle is quite GRHPAF important because it provides the orientation of the Earth F relative to the true of date system. The additional effects; i.e., to transform from true of date to inertial, of pre. cession and nutation are sufficiently small that oarly orbit analysis programs neglected ther. Thus, this angle is the. aajor variable in relating the Earth-fixed system to the inertial reference frame in which the satellite equatione of motion aro integrated.

The evaiuation of g_{g} is discrassod in detail in GRHRA::
the Explanatory Supplement, Reference 1. ϵ_{g} is computed F in subroutines GRHRAN and F from the expression:

$$
\begin{equation*}
{ }_{g}=\theta_{g_{0}}+\Delta t_{1} \dot{\theta}_{1}+\Delta t_{2} \dot{\theta}_{2}+\Delta \alpha \tag{l}
\end{equation*}
$$

where
Δt_{1} is the integer number of days since January 0.0 UT of the reference year,
Δi_{2} is the fractional u part of a day for the time of interest,
${ }^{\boldsymbol{\theta}_{\mathrm{O}}}$ is the Greenwich hour angle on January 0.0 UT of the reference year,
$\dot{\theta}_{1}$ is the mean advance of the Greenwich hour angle per wean sclar day.
$\dot{\theta}_{i}$ is the mean daily rate of advance of Greenwich hour angle $\left(2 \pi r \theta_{1}\right)$, and

A α is the equation of equinoxes (nutation in right ascension).

The initial θ_{0} is obtained from a table of JANTHG values containing the ${ }^{\circ}$ Greenwich hour angle on January 0.0 for each year. This table is in Common Block CGEOS and is accessed in JANTHG.

The equation of equinoxes, $\Delta \alpha$, is obtained from subroutine EPHEM, which calculates the quantity from the ephemeris tape data according to the Everett fifthorder interpolation scheme.

GRHRA.
r
EPHEM
3.6. Precession and Nutation

EQ:
EqUATR
NUTATE
PRECES
REFCOR 0.0 of the reference day. However, the rarth-fixed conrdinate system is related to the trus equator and equinox of date at any given instant. Thus, it is necessary to consider the effects which change the orientation in space of the equatorial plane and the ecliptic plane.

These phenomena are

- the combined gravitational effect of the moon and the sun on the Earth's equatorial bulge, and
- the effect of the gravitational pulls of the various planets on the Earth's orbit.

The first of these affects the orientation of the equatorial plane; the second affects the orientation of the ecliptic plane. Both affect the relationship between the inertial and Earth-fixed reference systems of GEODYN.

The effect of these phenomena is to cause precession and nutation, both for the spin axis of the Earth and for the ecliptic pole. This precession and nutation provides the relationship between the inertial system defined by the true equator and equinox of the reference date and the "instantaneous" inertial system defined by the true equator and equinox of date at any
given instant. Let us consider the effect of each of EQN these phenomena in greater deciail.

The luni-solar effects cause the Earth's axis of rotation to precess and nutate about the ecliptic equatr nutate PRECES pole. This precession will not affect the angle between the equatorial plane and the ecliptic (the "obliquity of the ecliptic" hut will affect the position of the equinox in the ecliptic plane. Thus the exfect of luni-solar precession is entirely in celestial longitude. The nutation will affect both, consequently we have nutation in lungicude and nutation in cheiquity.

The effect of the planets on the Earth's orbit will cause both secular and periodic deviations. However, the ecliptic is defined to be the mean plane of the Earth's orbit. Periodic effects are not considered to be a change in the orientation of the ecliptic; they are considered to be a perturbation of the Earth's celestiai latitude. (See Reference 1.)

The secular effect of the planets on the eciliptic plane is separsted into two parts: planetary precession and a secular change in obliquity. The effect of planetary precession is entirely in right ascension.

In summary, the secular effects on the orientations of the equatorial plane are:

- luni-sclar precession,
- planetary precession, and
- a secular change in obliquity.

EQN Equatr nutate PRECES REFCOR
preces determines the secular effects; i.e., the rotation matrix which will transform coordinates from the mean equator and equirox of date to the mean equator and. equinox of 1950.0.

Subroutine NUTATE determines the rotation matrix to transform from true equator and equinox of date to mean equator and equinox of date. This accounts for the periodic effects.

GEODYN has two different routines for transforming from one epoch to another. These are EqUATR and REFCOR. EQUATR will take cither mean or true coordinate input and will output in either mean or true coordinates. REFCOR will take only true coordinate input and will output only true coordinates. The same general algorithm is used in both:

- Rotate from true to mean equator and equinox of input date if required.
- Rotate from mean oí in̄pit date tomean EGUATR of 1950.0 . kEFCOR
o Rotate from mean of 1950.0 to mean of outpat date.
- Rotate from mean to true of output date if required.

All of these rotations are of course done with rotation matrices.

Subroutine REFCOR will transform between any
REFCOR time of da: and 0 h on a given reference day. It performs this transform by interpolating inearly belween the rotation matrices for the day of the input and that day plus one.

3.6.1 Precession

The precession of coordinates from the mean
PRECES
equator and equinox of one epoch t_{0} to the mean equator and equinox of r_{1} is accomplished very simpiy. Ex. amine figure 1 and consider 3 position de:cribed by the vector X in the X_{1}, X_{2}, X_{3} coordinate system which is

PRECESSION

$$
\begin{aligned}
& p_{1}=\text { Direction of Mean Axis of Motion at } t_{0} \\
& p_{2}=\text { Direction of Mean Axis of Motion at }{ }_{1} \\
& r_{1}=\text { Direction of Mean Equinox at } t_{0} . \\
& r_{2}=\text { Diraction of Mean Equinox at } t_{1}
\end{aligned}
$$

Fig. 1: Rotation Between Mean Equator \& Equnox of Epoch 'o and
Mean Equator a Equinox of Epoch il
defined by the mean equator and equiaux of to bike wise, consider the same position as described by the vector Y in the Y_{1}, Y_{2}, Y_{3} system defined by the mean equator and equinox of t_{1}. The expression relating these vectors,

$$
\begin{equation*}
Y=R_{3}(-z) R_{2}(\theta) R_{3}(-r) X \tag{1}
\end{equation*}
$$

follows directly from inspecticn of Figure 1.

It snuld be observed that $90^{\circ}-\zeta$ is the right ascension of the ascending node of the equator of epoch t_{0} reckoned from the equinox of $t_{0}, 90^{\circ}-2$ is the right ascension of the node reckoned from tne equinox of t_{1} and θ is the inclination of the equatcr of t_{1} to the epoch of t_{0}.

Numerical expressions for those rotation angles z, θ, ζ were derived by Simor Newcomb, based partly upen theoreical considerations but primarily ufnn actual obseryation. (See References for the derivations.) The formulae used in GEODYN are relative to an initial epech of 1950.0:

$$
\begin{aligned}
\zeta= & R_{305} 95320465 \times 10^{-6} \mathrm{~d}+\mathrm{R}_{109} 7492 \times 10^{-14} \mathrm{~d}^{2} \\
& +R_{178} 097 \times 10^{-20} \mathrm{~d}^{3} \\
z= & R_{305} 95320465 \times 10^{-6} \mathrm{~d}+R_{39 \%} 2049 \times 10^{-14} \mathrm{~d}^{2} \\
& +R_{191051 \times 10^{-20} \mathrm{~d}^{3}}
\end{aligned}
$$

$$
\begin{aligned}
\theta= & R_{266} 03999754 \times 10^{-6} \mathrm{i} \cdot \mathrm{R}_{1} .1548118 \times 10^{-14} \mathrm{i}^{2} \quad(4) \quad \text { rRECES } \\
& -R_{4} 43902 \times 10^{-20 \mathrm{~d}^{3}}
\end{aligned}
$$

The angles are in radians. The quanticy d is the number of elapsed days since 1950.0.

3.6 \%

3.6.2 Nutation

The nutation of coordinates between mean and true equator and equinox of date is readily accom?lished using rotation matrices. Examine Figure 1 and consider a position described by the vector X in the X_{1}, X_{2}, x_{3} syotem which is described by the mean equator and equinox of date. Likewise, consider the same position as described by the vector \bar{z} in the z_{1}, z_{2}, z_{3} system defined by the true equator and equinox of date. The expression relating these vectors,

$$
\begin{equation*}
\bar{z}=R_{1}\left(-\varepsilon_{T}\right) R_{3}(-\Delta \psi) R_{1}\left(\varepsilon_{m}\right) \bar{X}_{s} \tag{1}
\end{equation*}
$$

follows directly from inspection of Figure 1.

The definition of these angles are:
ε_{T} - true obliquity of date
$\varepsilon_{m} \cdot$ - mean obliquity of date
$\Delta \psi$ - nutatior in longitude

Note that $\varepsilon_{T}-\varepsilon_{m}$ is the nutation in obliquity.

The remaining problem is to compute the nutations nUTATE in longitude and obliquity. The algorithm used in GEODYN was developed by Woolard and is coded in subroutine EQN.

nuthtion

量
C

${ }^{\prime} M=$ Mean Ooliquity of Date
${ }_{C} T_{\text {F }}=$ True Obliquity of Date
$Y_{M}=$ Direction of Mean Equinox of Date
$r_{T}=$ Direction of Time Equinox of Date

Figure 1: Rotation Between Mean Equator Equinox of Date and

True Equator \& Equinox of Date

Woolard's solution as it appears in references i through 4 is reproduced in Tebles la, $1 b$, and le. The feriodic terms have been rearranged in descending order of magnitude. The subprogram EQN computes the nutation in longitude and obliquity by using the algorithm in Tables 2a, 2 b , and 2c. In Table 2a the argular units of the fundamental arguments have been changed to radians and the time units have been changed to days. Tables $2 b$ and $2 c$ are identical to Tables $1 b$ and $l c$..iten neglecting ail periodic teras with coefficients less than $: 001$ and all secular portions of the coefficient which are less than $: 001$. The expressions for true obliquity of dare and nutation in right ascension appear in Tabie 2d.

The defiritions of the variables used in these solutions and additional notation are as follows:
J = Julian Ephemeris Date of desired calculation
$J_{0}=2415020.5$ (Julian Ephemeris Date corresponding to 1900 January 0.5 Epnemeris Time)
$T=\left(J-J_{0}\right) / 36525=$ Julian aphemeris centuries of 36525 Ephemeris Days elapsed from J_{0} to J
$d=J-J_{0}=$ Epheneris Days elapsed from J to J_{0}
mean equinox of date:
g = mean anomaly - Moon
$g^{\prime}=$ mean anomaly - Sun
\dot{c} mean angular distance of the Moon from its ascending node

D mean elongation of the Moon from the Sun:
$\Omega=$ longitude of the mean ascending node of the Moon's orbit
$\varepsilon_{M}=$ mean obliquity of date
$\varepsilon_{T}=$ true obliquity of date
$\Delta \varepsilon=$ nutation in obliquity
$\Delta \psi=$ nutation in longitude
$\Delta \alpha=$ nutation in right ascension (equation of the equinoxes)

REPRODLCLELLTTY OF THE
ORIGINAL PACE IS FOCR

TABLE la FUNDAMENTAL AKGUMENIS

$$
\begin{aligned}
& g=296^{\circ} 00^{\prime \prime} 16^{\prime}: 59+1325^{r} 198^{\circ} 50^{\prime} 56^{\prime \prime} 79 \mathrm{~T}+33^{\prime \prime} 09 \mathrm{~T}^{2}+\because 0518 \mathrm{~T}^{3} \\
& g^{\prime}=3358^{\circ} 28^{\prime} 33^{\prime \prime}: 00+99^{\mathrm{r}} 359^{\circ} 02 \cdot 59: 10 \mathrm{~T}-\quad: 59 \mathrm{~T}^{2}-10120 \mathrm{~T}^{3} \\
& F=11^{\circ} 15^{\prime} 03^{\prime \prime}: 20+1342^{\mathrm{r}} 82^{\circ} \mathrm{O} 1 \cdot 30: 54 \mathrm{~T}-11: 55 \mathrm{~T}^{2}-: 0012 \mathrm{~T}^{3} \\
& \mathrm{D}=350^{\circ} 44^{\prime} 14^{\prime:} 95+1236^{\mathrm{r}} 307^{\circ} 06^{\prime} 51^{\prime!} 18 \mathrm{~T}-5!17 \mathrm{~T}^{2}-: 0068 \mathrm{~T}^{3} \\
& \Omega=259^{\circ} 10^{\prime} 59^{\prime}: 79-\quad 5^{\mathrm{r}} 134^{\circ} 08^{\prime} 31: 23 \mathrm{~T}+7^{\prime \prime}: 48 \mathrm{~T}^{2}+!0080 \mathrm{~T}^{3} \\
& \varepsilon_{M}=23^{\circ} 27^{\prime} 08^{\prime \prime} 26-46!: 845 T-\because 0059 T^{2}+0080 T^{3}
\end{aligned}
$$

TABLE . 1 b NUTATION IN OBLIQUITY

TABLE 1 b (Cont.)

ORIGRALI PAGE IS PGOR

TABLE 1c (Cont.)

Series No.

$+(-0.00001 \mathrm{~T}+0.0016) \sin (+2 \mathrm{~g}) \quad 28$
$+(+0.00001 \mathrm{~T}-0.0015) \sin (+2 \mathrm{~g}(+2 \mathrm{~F}-2 \mathrm{D}+2 \Omega) 29$
$-0.0015 \sin \left(+g^{\prime}+8\right) 30$
$+0.0014 \sin (-g \quad+2 D+\Omega) 31$
$-0.0013 \sin (+g \quad-2 D+\Omega) 32$
$-0.0010 \sin \left(\cdots g^{\prime} \quad * \quad 3\right) 33$
$+0.0010 \sin (+2 g \quad-2 F) 34$

- $0.0009 \sin (-g \quad 2 F+2 D+8) 35$
$+0.0007 \sin \left(+g^{\prime}+2 F \quad \geqslant 2 \Omega\right) 36$
$-0.0007 \sin (+g+8 \quad-2 r) 37$
$+0.0006 \sin (+g+2 D) \quad 38$

	0.0006	$\sin ($										
	0.0006	$\sin (+g$				+2		$+20$				0
	0.0006	$\sin (+2 g$				+2		2 D				1
	0.0006	$\sin ($						+ 2D	+			2
	3.0005	$\sin (-2 g$						+ 2D	+			3
	0.0005	$\sin ($						- 2D				
	0.0005	$\sin (8$						- 20	+			5
	0.0065	sit.						- 2D	+			46
	0.0005	sin						$+2 \mathrm{D}$	+			
	0.0004	$\sin ($					2F	2D	+	ת)		48

REPRRODUCIBILITY OF THE ORIGINAI PAGE IS POOR

TABLE za FUNDAMENTAL ARGUMENTS

TABLE 2b NUTATION IN OBLIGUITY

$$
\begin{aligned}
& \text { Series No. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { - } 0.0149 \sin (1 \mathrm{~g} \quad-2 D) 11 \\
& +0.0124) \sin (\quad+2 F-2 D+\Omega) 12 \\
& +0.0114 \sin (-g \quad+2 F+2 \Omega) 13 \\
& +0.0060 \sin (\\
& +2 \mathrm{D} \\
& \text {) } 14 \\
& +0.0058 \sin (+g \quad+\Omega) 15 \\
& -0.0057 \sin (-g \quad+\Omega) 16 \\
& -0.0052 \sin (-g \quad+2 F+2 D+2 \Omega) \quad 17 \\
& +0.0045 \sin (-2 g+2 \mathrm{~F}+\Omega) \quad 18 \\
& +0.0045 \sin (+2 g \quad-20 \quad 19 \\
& -0.0044 \sin (+g \quad+2 F \quad+\Omega) 20 \\
& -0.0032 \sin (\quad+2 F \because 20+2 \Omega) 21 \\
& +0.0028 \text { sin }(+2 g) \quad i i \\
& +0.0026 \sin (+g \quad+2 F-2 D+2 \Omega) \quad 23 \\
& -0.0026 \sin (+2 \mathrm{~g} .+2 \mathrm{~F}+2 \Omega) \quad 24 \\
& +0.0025 \sin (\quad+2 F \quad 25 \\
& -0.0031 \sin (\quad+2 F-20) 26 \\
& +0.0019 \sin i=g \quad+2 F \quad+8) 27 \\
& +0.0016) \sin \left(\quad \because 2 g^{\prime}\right.
\end{aligned}
$$

TABLE 2C (Cont.)

Note: To ch: time units for coefficient of lst term, use $.475565 \quad 10^{-6} \mathrm{~d}=.01737 \mathrm{~T}$

Table 2d: True obliquity of Date and Nutation in -ight ascension

$$
\begin{aligned}
& \varepsilon_{\mathrm{T}}=\varepsilon_{\mathrm{M}}+\Delta \varepsilon \\
& \Delta \alpha=\Delta \psi \cos \varepsilon_{\mathrm{T}}
\end{aligned}
$$

GEODYN uses precomputed equi-spaccd ephemeris data
EPHES in true of date coordinatns for the Moon, the Sur, Venus, Mars, Jupiter and Saturn. The actual ephemerides are computed using Everett's fifth-order $\operatorname{sterpolation~formula.~}$ The interval between ephemerides: i.e., the tabular interval h, is 0.5 days for the Moon and the Fquation of the equinoxes and 4.0 days for the other bodies.

The ECODYN ephemeris tape contains pll cocrdinates in true of date. The quantities on the tape are
a) geocencric lunar positions and the corresponding 2nd and 4th difiercaces,
b) solar positions relative to the earth-moon barycenter and the corresponding $2 n d$ and 4 th differences.
c) heliocentric positions of Vonus, Mare, Jupiter and Saturs and the corresponding 2 nd and 4 th તifferences,
d). the equation of the equinoxes and its $2 n d$ and 4 th differences.

The format oi this tape is presented in Volmme III of the GEGDYN documentatic.

This ephemeris tape was prepared from a JPL pianetary ephemeris tape corresponding to "JPL Development Ephemeris Number 69," Reforpnce 1. The program which generates the GFODYN ephemeris tape is described in Volume IV of the GEODYN documentation.

$$
\begin{align*}
y\left(t_{j}+s h\right)= & y_{j} F_{0}(1-s)+d_{j}^{2} F_{2}(1-s) \tag{1}\\
& +d_{j}^{4} F_{4}(1-s) \\
& +y_{j+1} F_{0}(s)+d_{j+1}^{2} F_{2}(s)
\end{align*}
$$

$$
+d_{j+1}^{\prime} F_{f}(s)
$$

$$
\begin{aligned}
& {\underset{\underline{n}}{\underline{n}}}(s)=s \\
& F_{2}(s)=[(s-1)(s)(s+1)] / 6 \\
& F_{4}(s)=[(s-2)(s-1)(s)(s+1)(s+2 j] / 120
\end{aligned}
$$

The quantity s is of course the fractional interval for the interpolation. The quantities d_{j} are obtained from the ephemeris tape.

$$
4.0-2
$$

SECTIOR 5.0
THE OBSERVER

This section is cuncerned with the position and cocrdinate systens of the observer. Thus it will cover

- geodetic station pesition coordinates,
- topocentric $=00 r d i n a t e$ systems,
- time reference systems, and
- polar motion.

The geodecic station position coordinates are a convenient and quite common way of describing station positions. Consequently, GEODYN contains provisions for converting to and from these coordinates; including the transformation of the covariance matrix for the dezermined Cartesian station positions.

The topocentric coordinate systems are coordinate systems to which the observer references his observations.

The time reference systems are the time systems in which the observer specifies his observations. The transformations betwnen time reference systems are also given. These latter are used both to convert the observation times to Al time, whicin is the indeyendent. variable in the equations of motion, and to convert the GEODYN output to UTC time, which is the generally recognized system for outpil.

The positions of the observers in GEODYN are referred to an Earih-fixed system defined ty the mean pcle of 1900.5 and Greenwich. They are rotated into the Earth-fixed syctom of date at each observation time by applying "polar motion", which is considered to be slippage of the Earth's crust.

5.1 GEODETIC COORDINATES

Frequently, it is more conveniert tu define the station positions in a spherical coordinate system. The spherical coordinate system uses an oblate spheroid or an ellipsoid of revclution as a model for the gecmetric shape of the Earth. The Earth is flattened slightly at the poles and bulges a little at the equator; thus, a cross section of the Earth is approximately an ellipse. Rotating an ellipse about its shorter axis forms an cblate spheroid.

An oblate spheroid is uniquely defined by specifying two dimensions, conventionally, the semi-major axis and the flattening, f, where $f=\frac{a-b}{a}$. (See Figure 1)

This model is used in the GEODYN system. The spherical coordinates utilized are termed geodetic coordinates and are defined as follows:

- is geodetic latitude, the acute angle between the semi-major axis and a line through the observer perpendicuiar to tise spheroid.
- λ is east longitude, the angle measured castuind in the equetnrial plane between the Greenwich meridian and the obspryer's meridian.
- h is spheroid height, the perpendicular height of the observer above the referrace spheroid.

Consider the problem of convertino from ϕ, λ, and h to X_{e}, Y_{e}, and Z_{e}, the Earth-fixed Castesian coordinates.

The geometry for $\varepsilon n \times-2$ plane is illustrated in Figure 1. The equation for this eilipse is

$$
\begin{equation*}
x^{2}+\frac{z^{2}}{\left(1-e^{2}\right)}=a^{2} \tag{i}
\end{equation*}
$$

where the eccentricity has been determines on the flattening by the familiar relationship

$$
\begin{equation*}
e^{2}=1 \sim(1-f)^{2} \tag{2}
\end{equation*}
$$

$$
5.1 .2
$$

1

Figure 1: Diagram of Geodetic and Geocentric Latitudes

The equation for the normal to the surface ui the elipse yields

$$
\begin{equation*}
\tan \phi=-\frac{d x}{d z} \tag{3}
\end{equation*}
$$

By taking differentials on equation (1) and applying the result in equation (3), we arrive at

$$
\begin{equation*}
\frac{z}{x}=\left(1-e^{2}\right) \tan \phi \tag{4}
\end{equation*}
$$

The simultaneous solution of equations (1) and (4) for X yields.

$$
\begin{equation*}
x=\frac{a \cos \phi}{\sqrt{1-\mathrm{e}^{2} \sin ^{2} \phi}} \tag{5}
\end{equation*}
$$

From inspection of Figure 1 we have:

$$
\begin{equation*}
\cos \phi=\frac{X}{N} ; \tag{6}
\end{equation*}
$$

and hence, applying equation (5),

$$
\begin{equation*}
N=\frac{a}{\sqrt{1-e^{2} \sin ^{2} \phi}} \tag{7}
\end{equation*}
$$

For an observer at a distance h fron the reference ellipsoid, the observer's coordinates $(X, 2)$ become

$$
\begin{equation*}
X=N \cos \phi+h \cos \phi \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
Z=N\left(1-e^{2}\right) \sin \phi+h \sin \phi \tag{y}
\end{equation*}
$$

The conversion of ϕ, λ, and h to X_{e}, Y_{e}, and Z_{e} is then

$$
\left[\begin{array}{l}
X_{e} \tag{10}\\
Y_{e} \\
Z_{e}
\end{array}\right]=\left[\begin{array}{ll}
(N+h) & \cos \phi \cos \lambda \\
(N+h) & \cos \phi \sin \lambda \\
\left(N+h-e^{2} N\right) & \sin \phi
\end{array}\right]
$$

In the GEODYN system this convirsion is performed in subroutine SQUANT.

The problem of converting from X_{e}, Y_{e}, and Z_{e} to \&, λ, and h is more complex as we cannot start with a point on the reference ellipsoid. For fhis reason the determination of accurate values for ϕ and n requires an iterative technique.

Conversion to Geodetic Conrdinatts

For the problem of converting station coordinates PLHOUT in X_{e}, Y_{e}, and Z_{e} to ϕ, λ, and h we know that N is on tine order of magnitude of an Earth radius, and h is a few meters. Hence

$$
\begin{equation*}
h \ll N \tag{11}
\end{equation*}
$$

The Earth is approximately a sphere, hence

$$
\begin{equation*}
e \ll 1 \tag{12}
\end{equation*}
$$

Therefore, again working in our $X-2$ plane (see rigure l),

$$
\begin{equation*}
N \sin \phi \approx z . \tag{13}
\end{equation*}
$$

From Figure 1 (see also equation (9)) we have

$$
\begin{equation*}
t \therefore \mathrm{Ne}^{2} \sin \phi, \tag{14}
\end{equation*}
$$

or, for an initial approxination,

$$
\begin{equation*}
i \approx e^{2} z \tag{15}
\end{equation*}
$$

The series of calculations to be performed on
PLHOUT each iteration is:

$$
\begin{align*}
& z_{t}=z+t \tag{16}\\
& N+h=\left(x_{e}^{2}+Y_{e}^{2}+z_{t}^{2}\right)^{1 / 2} \tag{17}\\
& \sin \phi=z_{t} /(N+h) \tag{18}\\
& N=a /\left(i-e^{2} \sin ^{2} \phi\right)^{1 / 2} \tag{19}\\
& t=N^{2} \sin \phi . \tag{20}
\end{align*}
$$

When t converges, ϕ and h are computed from $\sin \phi$ and $(N+h)$. The computation of λ is obvious; it being simply

$$
\begin{equation*}
\lambda=\tan ^{-1}\left(Y_{e} / X_{e}\right) \tag{21}
\end{equation*}
$$

This procedure for determining ϕ, λ_{2} and h is that coded in subroutine plhour.

There is a different procedure in subroutine PREDCT for computing ϕ, λ, and h for a satellite. This is becausc the accuady requirciants are less stringent.

This different procedure is also used in subroutine DRAG to evaluate the satellite height for subroutine DENSTY.

Because $\mathrm{e} \ll 1$, we may write an approximation to equation (9):

$$
\begin{equation*}
Z=(N+h)\left(1-e^{2}\right) \sin \phi=z_{e} \tag{22}
\end{equation*}
$$

From Figure 1 :

$$
\begin{equation*}
X=(N+h) \cos \phi=\sqrt{X_{e}^{2}+Y_{e}^{2}} \tag{23}
\end{equation*}
$$

and by remembering equation (2),

$$
\begin{equation*}
\phi=\tan ^{-1}\left[\frac{z_{e}}{(1-f)^{2} \sqrt{x_{e}^{2}+Y_{e}^{2}}}\right] \tag{24}
\end{equation*}
$$

The equation for the ellipse, equation (1), yields the following formula for the radius of the ellipsoid:

$$
\begin{equation*}
r_{\text {ellipsoid }}=\sqrt{x^{2}+z^{2}}=\frac{a(1-f)}{\sqrt{1-\left(2 f-f^{2}\right)\left(1-\sin ^{2} \phi^{\prime}\right)}} \tag{27}
\end{equation*}
$$

where ϕ^{*} is the geocentric latitude. After applying the Binomial Theorem, we arrive at

$$
\begin{equation*}
r_{\text {ellipsoid }}=2\left[1-\left(f+\frac{3}{2} f^{2}\right) \sin ^{2} \phi^{\prime}+\frac{3}{2} f^{2} \sin ^{4} \phi^{-}\right] \tag{28}
\end{equation*}
$$

wherein terms on the order of f^{3} have been neglected. The (spheroid) height may then be calculated from r, the geocentric radius of the satellite:

$$
\begin{align*}
& h=r-r_{e l l i p s o i d, ~ o r ~} \tag{29}\\
& h=\sqrt{X_{e}^{2}+Y_{e}^{2}+Z_{e}^{2}} \cdot a+\left(a f+\frac{3}{2} a f^{2}\right) \sin ^{2} \phi^{\prime}-\frac{3}{2} a f^{2} \sin ^{4} \phi^{\prime} \tag{30}
\end{align*}
$$

The sine of the geocentric latitude, sir $\phi^{\prime \prime}$, is of course $\frac{\mathrm{Z}_{e}}{\mathrm{r}}$.

Subroutine VEVAL also requiras the fartial
VEVAL derivatives of h with respect to position for the dagg variational partials computations:

$$
\begin{align*}
\frac{\partial h}{\partial r_{i}} & =\frac{r_{i}}{r}+2 \sin \phi^{\prime}\left[\left(a f+\frac{3}{2} a e^{2}\right)\right. \tag{31}\\
& \left.\left.-3 a f^{2} \sin ^{2} \phi^{\prime}\right]\left[\begin{array}{l}
2 e^{r} i \\
r^{3}
\end{array}\right] \frac{1}{r} \frac{\partial z e}{\partial r_{i}}\right]
\end{align*}
$$

where the
r_{i} are the Earth-fixed components of $\bar{r} ;$ i.e., $\left\{X_{e}, Y_{e}, Z_{e}\right\}$.

In addition to the conversion of the coordinates

INOUPT SQUAMT plhout vcony the Earth-fixed rectangular system. This is acconplished in INOUPT, SQUANT, and PLHOUT by calling VCONV to compute

$$
v_{\text {OUT }}=\mathrm{p}^{T} \mathrm{v}_{\text {IN }}{ }^{P}
$$

(32) VCONY
where $V_{\text {OUT }}$ is the output covariance matrix, $V_{I N}$ is the input covariance matrix, and F is the matrix of partials relating the coordinates in the output system to the coordinates in the input system.

These partial derivatives (in p) which GEODYN
requires are for X_{e}, Y, Z_{e} with respect to $\phi: \lambda, h$ and vice versa. These partials are:

$$
\begin{align*}
& \frac{\partial \phi}{\partial x_{e}}=-x_{e} z_{e}\left(1-e^{2}\right) /\left(\left(1-e^{2}\right)^{2}\left(X_{e}^{2}+Y_{e}^{2}\right)+z_{e}^{2}\right)\left(X_{e}^{2}+Y_{e}^{2}\right)^{\frac{1}{2}} \\
& \frac{\partial \phi}{\partial Y_{e}}=-Y_{e} Z^{2}\left(1-e^{2}\right) /\left(\left(1-e^{2}\right)^{2}\left(X_{e}^{2}+Y_{e}^{2}\right)+Z_{e}^{2}\right)\left(X_{e}^{2}+Y_{e}^{2}\right)^{\frac{1}{2}} \\
& \left.\frac{\partial \phi}{\partial Z_{e}}=\left(X_{e}^{2}+Y_{e}^{2}\right)\left(1-e^{2}\right) /\left(1-e^{2}\right)^{2}\left(X_{e}^{2}+Y_{e}^{2}\right)+Z_{e}^{2}\right)\left(X_{e}^{2}+Y_{e}^{2}\right)^{\frac{1}{2}} \\
& \frac{\partial \lambda}{\partial X_{e}}=-X_{e} /\left(X_{e}^{2}+Y_{e}^{2}\right) \tag{33}\\
& \frac{\partial \lambda^{2}}{\partial Y_{e}}=X_{e} /\left(X_{e}^{2}+Y_{e}^{2}\right) \\
& \frac{\partial \lambda}{\partial \mathcal{Z}_{e}}=0 \\
& \frac{\partial h}{\partial X_{e}}=\frac{\partial \phi}{\partial X_{e}}\left(-e^{2} a\left(1-e^{2}\right) \sin \phi \cos \phi /\left(1-e^{2} \sin ^{2} \varphi\right)^{\frac{3}{2}}-z_{e} \cos \phi / \sin ^{2} \phi\right) \\
& \frac{\partial h}{\partial Y_{e}}=\frac{\partial \phi}{\partial Y_{e}}\left(-e^{2} a\left(i-e^{2}\right) \sin \phi \cos \phi /\left(1-e^{2} \sin ^{2} \phi\right)^{\frac{3}{2}}-Z_{e} \cos \phi / \sin ^{2} \phi\right) \\
& \frac{\partial L_{e}}{\partial Z_{\epsilon}}=\frac{\partial \phi}{\partial Z_{e}}\left(-e^{2} a\left(1-e^{2}\right) \sin \phi \cos \phi /\left(1-e^{2} \sin ^{2} \phi\right)^{\frac{3}{2}} \cdot-e^{\left.\cos \phi / \sin ^{2} \phi\right)}\right. \\
& +\frac{1}{\sin \phi}
\end{align*}
$$

$$
\begin{aligned}
& \frac{\partial X_{\epsilon}}{\partial \phi}=-\sin \phi \cos \lambda\left[N+h-\frac{N e^{2} \cos ^{2} \phi}{1-e^{2} \sin \phi}\right] \\
& \frac{\partial x_{e}}{\partial \lambda}=-(N+h) \cos \lambda \sin \lambda \\
& \frac{\partial X_{e}}{\partial h}=\cos \phi \cos \lambda \\
& \frac{\partial \gamma_{e}}{\partial \phi}=-\sin \phi \sin \lambda\left[N+h-\frac{N e^{2} \cos ^{2} \phi}{1-e^{2} \sin ^{2} \phi}\right] \\
& \frac{\partial Y \mathrm{e}}{\underline{C}}=(N+h) \operatorname{c} \sim \phi \cos \lambda \\
& \frac{c \gamma}{\partial h}=\cos \phi \sin \lambda \\
& \frac{\partial z_{e}}{\partial \phi}=\cos \phi\left[n+N\left(1-e^{2}\right)\left(1+\frac{e^{2} \sin ^{2} \phi}{1-e^{2} \sin ^{2} \phi}\right)\right] \\
& \frac{\partial Z_{\mathrm{e}}}{\partial \lambda}=0 \\
& \frac{\partial Z_{\epsilon}}{\partial h}=\sin \phi
\end{aligned}
$$

The partials for converting from X_{e}, Y_{e}, Z_{e} to ϕ, λ, h are computed in subroutine PLHOUT. Those for converting fron ϕ, λ, h to X_{e}, Y_{e}, Z_{e} are computed in subroutine SQUANT.

The observations of a spacecraft are usually reformbed iu the cbscric., and therefäo an additional set of reference systems is used for this purpose. The origin of these systems, referreu to as topocentric coordinac systems, is the obsemai on the surface of the earth.

Trocentric right ascension and declination dre measured in ar ine:tial system whose 2 axis and fundameatal plane are parallel to those of the geocentric inertial system. The x axis in this case also points toward the vernai equinox.

Tb: other major copocentric system is the Earthfir - system determined b; the cenith and the observer's horizon plane, Tifis is an orthonormal system deined by \hat{N}, \hat{E}, and \hat{Z}, which are unit vectors which point in thc same directions as vectors from the observer pointing north, east, and toward the zenith. Their definitions are:

$$
\begin{align*}
& \hat{\mathrm{N}}=\left[\begin{array}{c}
-\sin \phi \cos \lambda \\
-\sin \phi \sin \lambda \\
\cos \phi
\end{array}\right] \tag{1}\\
& \hat{\mathrm{E}}=\left[\begin{array}{c}
-\sin \lambda \\
\cos \lambda \\
0
\end{array}\right] \tag{?}\\
& \hat{Z}=\left[\begin{array}{c}
\cos \phi \cos \lambda \\
\cos \phi \sin \lambda \\
\sin \phi
\end{array}\right] \tag{3}
\end{align*}
$$

Where ϕ is the gcoditic latitude and λ is the east
SQUANT longitude of the onserver (see sartion 5.1). PREDCT OBSDOT
Irest \hat{N}, \hat{E}, and \hat{Z} vectors are computed in SQLANT for use in PREDCT and OBSDOT.

This latter system is the one to which such measurements as avinuth and elevarion, X and Y angles, and directicn cosines are related.

It should be noied that the reference systems for rarge and ralige rate must be Earth-fixed, bui the choice of origin is arbitrary. In GECDIN, range and range rate are not considered so be topocentric, but rainer geocentric.

2.3 TIME REFEPENCE SYSTEMS

Three principai time systems aie curron.i, in u: eptuneris tine, atomic time, and universal tine.

Ephemeris time is the independent variable in the equationc of motion of - sun; this time is the imiform mathematical time. The corrections that must be appiied co universal time to obtain ephemeris time are published in the American Ephemeris ani Nauticai Almanac of alternatively by $B I H$, the "Bureau International de l'teure."

Atomic iime is a time based on the oscillations of cesium at zero field. In practice Al time is based on the mean frequency of oscillation of several cesium standards as compared with the frequency of ephemeris timz. Tiis is the time system in which the satcliite equations of motion are integrated in GEODYN.

Universal time is dutermined by the rotarion of \therefore : Farth. UT1, the time reference system used ir GEODYN co position the Earth, is universal time that his been corrected for polar motion. UTC is the time of the transritting clock of any of the synchronized transmitting time sigrals. The frequency of a UTC clock is pre-set to a predicted frequency of UT2 time, where UT2 time is universal time corrected for observed polar motion and extrapolated seasonal variation in the speed of the earth's rotaticn.

The reader who is unfamiliar with these time systems should refer to one of the annual reports of RIH.

5.3.1 Time System Transformations

The time system transformations are between any combination of the Al, UT1, UT2, or UTC refer systems. These transformations are computed in the GEODYN system by subroutine TDIF.

The time rransformation between any nput time system and any output time system is formed by simple addition and subtraction of the following set of time differences:

- UTz - UTI
- AI - UTI
- Al - UTC

The followirg equation is used to calculate (UT2-UTl) for any year:

$$
\begin{align*}
& \text { (UT2-UT1) }=+\$.022 \sin 2 \pi t-.512 \cos 2 \pi t \tag{1}\\
& \text { - } .00 \delta \sin 4 \pi t+.507 \mathrm{cos} . . \mathrm{c}
\end{align*}
$$

$t=f r a c t i o n ~ o f ~ t h e ~ t r o p i c a l ~ y e a r ~$ elapsed from the beginning of the Besselian year for which the calcularion is inade.
(1 tropical year $=365.2422$ days)

This difference, (UT2-UT1), is also known by the name "seasonal variation."

The time difference (Al-UTI) is computed by inear interpolation from a table of values. The spacing for the table is every 10 days, which matches the increment for the "final time of emission" data published by the L.S. Naval Observatory in the bulietin, "Time Sigrals." The differences for this table are determined by
(A1 - UT1) $=(A 1-U T C)-(U T 1-U T C)$

The values for (UTl - UTC) are obtained from "Circula" D ", BlH. The differences (Al - UTC) are determined according . to the following procedurn.

The computation of (Al-UTC) is simple, but not so straightforward, UTC cortains discontinuities both in epoch and in frequency because an attempt is made to keep the difference between a UTC rlock and a UT2 clock less than s. When adjustments are made, by international agreement they are made in steps of ${ }^{3} 1$ and only at the beginning of the month; i.a., at o.c UT of the first day of the month. The general formula which is used to compute (Al-UTC) is

$$
\begin{equation*}
(A 1-U \quad C C)=a_{0}+a_{1}\left(t-t_{0}\right) \tag{2}
\end{equation*}
$$

Borh a 0_{0} ard ${ }^{?_{1}}$ are recovered from tables. The values in the table for a_{0} are the values of (AI-UTC) at the time of each particular step adjustment. The values in the table for a_{1} are the values for the new rates of change between the two systens after each step adjusement.

Values for a_{0} and a_{1} are published both by the U.S. Naval Observatory and BIH.

5.4 PULAR MOTION

Consider the point P which is defined by the
POLE intersection of the Earth's axis of rotation at some time t with the surface of the Earth. At some time $t+\Delta t$, the intersection will be ar some point P^{\prime} which is dificrent than P. Thus the axis of rotation appears to be noving relati $\because=$ ro a fixed position on the Earth; hence the "erm "motion of the pole."

Le us establish a rectangular coordinate sys ${ }^{+\cdots}$ rentered at a point F fixed u the surface of the Ea. . with F near the point P around 1900, and take measurements of the rectangular coordinates of the point P during the period 1900.0-1906.0. It is observed that the point P moves in roughly circular motion in this coordinate system with iwo distinct pericds, one period of approximately 12 months and one period of 14 months. We define the mean position of P during this period to be the point P_{0}, the mean pole of 1900.0-1906.0.

The average is taken over a six year period in order te average out both the 12 month period and the 14 month period simulcaneousiy (since 6 times 12 months $=$ 72 months and $72 / 14=5$ periods approximately of the 14 month term). The radius of this observed circle varies between 15-35 feet.

In addition to the periodic motion of P about P_{0}, by taking six ycar means of P in the years after 1900 1906, called P_{m}, there is seen to be a secular motion of the mean position of the pole away from its original mean position P_{0} in the years 1900 - 1906 at the rate of
approximately $0: 0032 /$ year in the direction of the meridan $60^{\circ} \mathrm{W}$ ，and a libration motion of a period of approximatéy 24 jears with a ceefficient of about 0 OO22．The short periodic motions over a perior of six years average about $0!2-0!3$ ．

5．4．1 Effect on the Position of a Station

This motion of the pole means that the observing stations are moving with respect to our＂Earth－fixed＂ coordinate system used in reODYN．The station positions must be corrected for this effect．

The position of the instantaneous or true pole is computed by linear interpolation in a table of ob－ served values for the true pole riative to the mean pole of 1900－1905．The table increment is io days； the current range of data is from Decembe： 1,1960 to June 1，1972．The user should be aware of the fact that this tabie is expanded as nuw information becomes available．If the requested time is not in the range of the table，the value for the rlosest time is used．

The data in the table is in the form of the co－ ordinates of the true pole relative to the mean pole measured in seconds of arc．This data was obtained from ＂Circular D＂which is published by BIH．The appropriate coordinate system and rotation are illustrated in Figuras 1 and 2.

$$
\begin{aligned}
P_{A}= & \text { Center of Coordinate System } \\
= & \text { Adopted Mean Pole } \\
X_{1}= & \text { Direction of } \text { st Princinal Axis (along meridian }^{\text {directed to Greenwich) }} \\
X_{2}= & \text { Direction of } 2^{\text {nd }} \text { Principal Axis (aloag } 90^{\circ} \\
& \text { West meridian) } \\
P_{Y}= & \text { Instantaneous Axis of Rotation } \\
x_{1} y= & \text { Coordinates oi } P_{T} \text { Relative to } P_{A} \text { Measured } \\
& \text { in seconds of ars }
\end{aligned}
$$

Figure 1: Coordinates of the instanteneous ixis of Rotation

$x, y=$ Rectangular Coordinates of P_{T} Relative to P_{A}
$x_{1} x_{2}$ Plane $=$ Mean Adopted Equator Defined by birection of Adopted Pole P_{A}
Y * F Flane = Instantaneous Equator Defined by Direction of Instantaneous Pole P_{T}
Figure 2: Rotation of Coordinate System from Adopted Mean Pcle System to Instantaneous Pole System

Consider the station vector \bar{X} in a system attached to the Earth of the mean pore and the same vector $\overline{\mathrm{i}}$ in the "Earth-fixed" system of GEODYN. The transformstin between \bar{Y} and \bar{X} consists of a rotation of x about the X_{2} axis and a rotation of y about the X_{1} axis; that is

$$
\begin{align*}
Y & =R_{1}(y) R_{2}(x) X \tag{1}\\
& =\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos y & \sin y \\
0 & -\sin y & \cos y
\end{array}\right]\left[\begin{array}{ccc}
\cos x & 0 & \sin x \\
0 & 1 & 0 \\
\sin x & 0 & \cos x
\end{array}\right] \bar{X}
\end{align*}
$$

Because x and y are small angles, their cosines are set to 1 and their sines equal to their values in radians. Consequently,

$$
Y=\left[\begin{array}{ccc}
1 & -0 & -x \tag{2}\\
x y & 1 & y \\
x & -y & 1
\end{array}\right] \bar{x}
$$

In the GEODYN system, the position of the true pole is computed by subroutine PULE. The station recTRUE tors are referenced to the true pole by subroutine TRUES.

5.4.2 Faitiay Dcrivaijues

The coordinate rotation is defined as

$$
\begin{equation*}
\bar{u}=R_{1}(y) R_{2}(x) \bar{w} \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
\overline{\mathrm{w}}= & \text { station vector in a system attached to the } \\
& \text { Earth of the me. pole. } \\
\overline{\mathrm{u}}= & \text { station vector in a system attached to the } \\
& \text { Earth of the true pole. }
\end{aligned}
$$

$R_{2}(y)=$ matrix of rotation about the X_{1} axis
$F_{L_{2}}(x)=$ matrix of rotation about the X_{2} axis

The rotation matrices are.

$$
\begin{aligned}
& R_{1}(y)=\left[\begin{array}{ccc}
1 & 0 & j \\
0 & \cos y & \sin y \\
j & -\sin y & \cos y
\end{array}\right] \\
& R_{2}(x)=\left[\begin{array}{ccc}
\cos x & 0 & -\sin x \\
0 & 1 & 0 \\
\sin x & 0 & \cos x
\end{array}\right]
\end{aligned}
$$

Defining

$$
\begin{align*}
& \overline{\mathrm{u}}=u_{1} \hat{\mathrm{i}}+u_{2} \hat{j}+u_{3} \hat{k} \tag{2}\\
& \nabla=w_{1} \hat{i}+w_{2} \hat{j}+w_{3} \hat{k} \tag{3}
\end{align*}
$$

and performing the matrix multip. ications.

$$
\begin{align*}
& u_{1}=w_{1} \cos x-w_{3} \sin x \quad \cdots \\
& u_{2}=w_{1} \sin x \sin y+w_{2} \cos y+w_{3} \cos \sin y \tag{4}\\
& u_{3}=w_{1} \sin x \cos y-w_{2} \sin y+w_{3} \cos x \cos y
\end{align*}
$$

$$
5.4-7
$$

The fundamental quantitics required for the estimation of polar motion parametors are
where m is the satellite observation.

> Using the chain rule PREDCT
$\frac{\partial m}{\partial x}=\frac{\partial m}{\partial u_{1}} \frac{\partial u_{1}}{\partial x}+\frac{\partial m}{\partial u_{2}} \frac{\partial u_{2}}{\partial x}+\frac{\partial m}{\partial u_{3}} \frac{\partial u_{3}}{\partial x}$
(5)

$$
\frac{\partial m}{\partial y}=\frac{\partial m}{\partial u_{1}} \frac{\partial u_{1}}{\partial y}+\frac{\partial m}{\partial u_{2}} \frac{\partial u_{2}}{\partial y}+\frac{\partial m}{\partial v} \quad \partial u_{3}
$$

The partial derviatives of the satellite observation with respect to the true station coordinates are currently available in GEODYN. The partial derivatives of the station coordinates with respect to the polar motion parameters are:

$$
\begin{aligned}
& \frac{\partial u_{1}}{\partial x}=-w_{1} \sin x-w_{3} \cos x \\
& \frac{\partial u_{1}}{\partial y}=0 \\
& \frac{\partial u_{2}}{\partial x}=w_{1} \cos x \sin y-w_{3} \sin x \sin y \\
& \frac{\partial u_{2}}{\partial y}=w_{1} \sin x \cos y-w_{2} \sin y w_{3} \cos x \cos y \\
& \frac{\partial u_{3}}{\partial x}=w_{1} \cos x \cos y-w_{3} \sin x \cos y \\
& \frac{\partial u_{3}}{\partial y}=-w_{1} \sin x \sin y-w_{2} \cos y-w_{3} \cos x \sin y
\end{aligned}
$$

Since the angles x and y are small, the ivilowing
震 approximations may be made.

$$
\begin{array}{ll}
\sin x=x & \cos x=1 \tag{7}\\
\sin y=y & \cos y=1
\end{array}
$$

subs itating equations (7) into equation (6)

$$
\frac{\partial c_{1}}{\partial x}=-w_{1} x-w_{3}
$$

$$
\frac{\partial u_{i}}{\partial y}=0
$$

$$
\begin{equation*}
\frac{\partial u_{2}}{\partial x}=w_{1} y-w_{3} x y \tag{8}
\end{equation*}
$$

$$
\begin{gathered}
\frac{\partial u_{2}}{\partial y}=w_{1} x-r_{2} y+w_{3} \\
\frac{\partial u_{3}}{\partial x}=w_{1}-w_{3} x
\end{gathered}
$$

$$
\frac{\partial u_{3}}{\partial y}=-w_{1} \times y-w_{2}-w_{3} y
$$

$$
5.4-10
$$

0σ

SECTION 6.
measuf ament modeling ane related derivatives

The observations in GEODYN are geocentric in nature. The computed values for the observations are obtained by applying these geometric relationships to the computed values for the relative positions and velocities of the satellite and the observer at the desired time.

In addition to the geometric relationships; GEODYN allows for a timing bias and for a constant bias to be asscciated with a measurement type from a given station. Both of these biases are optional.

The measurement model for GEODYN is therefore

$$
\begin{equation*}
c_{t+\Delta t}=f_{t}\left(\bar{r}, \dot{\bar{r}}, \bar{r}_{o b}\right)+b+\dot{f}_{t}\left(\bar{r}, \dot{\bar{r}}, \bar{r}_{o b}\right) \cdot \Delta t \tag{1}
\end{equation*}
$$

where

$$
\begin{array}{ll}
C_{t+\Delta t} \quad \begin{array}{l}
\text { is the computed equivalent of the } \mathrm{cb} \\
\text { servation taken at time } t+\Delta t,
\end{array} \\
\overline{\mathrm{r}} \quad \begin{array}{l}
\text { is the Earth-fixed position vector of } \\
\text { the satellite, }
\end{array} \\
\overline{\mathrm{r}}_{\mathrm{ob}} \quad \begin{array}{l}
\text { is the Earth-fixed position vector } \boldsymbol{\theta} \in \\
\text { the station, }
\end{array}
\end{array}
$$


```
    oy the particular observation type at
    time t,
```

b
is a constant bias on the measurement, and
is the timing bias associated with the measurement.

The functional dependence of f_{t} was explicitly stated for the general case. Many of the measurements are functions onl) of the position vectors and are hence not functions of ;he satellite velocity vector $\overline{\mathrm{r}}$. We will hereafter cefer to f_{t} without the explicit functional dependence for rolatioral convenience.

As was indicated earlier in Section 2.2, we require the partial derivatives of the computed values for the measurements with respect to the parameters being determined (see also Section 10.1). These parameters are:

- tirz irue of date position and velocity of the sarellite at epoch. These correspond to the inertial position and velocity which are the initial conditions for the equations of motion,
- furse model pasameters,
- the Erth-fixed station positions,
- measurement biases.
6.0-2

These parameters are implicitly divided into a set $\bar{\alpha}$ which are not concerned with the dynamics of satellite motion, and a set $\bar{\beta}$ which are.

The partial derivatives associated with the parameters $\bar{\alpha}$; i.e., station positions and measurement biases are computed directly at the given observation times. The partial derivatives with respect to the parameters $\bar{B} ; i . e .$, the epoch position and velocity and the force model parameters, must be determined according to a chain rule:

$$
\begin{equation*}
\frac{\partial C_{t+\Delta t}}{\partial \bar{B}}=\frac{\partial C_{t+\Delta t}}{\partial \bar{x}_{t}} \frac{\partial \bar{x}_{t}}{\partial \bar{B}} \tag{2}
\end{equation*}
$$

where
$\overline{\mathrm{x}}_{\mathrm{t}}$ is the vertor which describes the satellite
position and velocity in true of date co-
ordinates.

The partial derivatives $\frac{\partial C_{t}+\Delta t}{\partial \bar{x}_{t}}$ are computed directly at the given observation times, but the partial derivatives $\frac{\partial \bar{x}_{t}}{\partial \bar{B}}$ may not be so obtained. These iatter relate the true of date position and velocity of the satellite at the given time to the parameters at epoch through the satellite dynamics.

The partial derivatives $\frac{\partial \overline{\bar{x}}}{\partial \overline{\bar{h}}}$ - are called the variational partials and are obtained by direct numerical integration of the variational equations. As will be shown in Section 8.2, these equations are analogous to the equations of motion.

Let us first consider the partial derivatives of the computed values associated with the parameters in $\overline{\operatorname{G}}$. We have

$$
\begin{equation*}
\frac{\partial C_{t+\Delta t}}{\partial \bar{B}}=\frac{\partial f_{t}}{\partial \bar{x}_{t}} \frac{\partial \bar{x}_{t}}{\partial \bar{B}} \tag{3}
\end{equation*}
$$

Note that we have aropped the partial derivative with respect to \bar{B} of the differential product $\dot{f}_{t} \Delta t$. This is because we use first order Taylor series approximation in our error model and hence higher order terms are assumed negligible. This linearization is also completely consistent with the linearization assumptions made in the solution to the estimation equations (Section 10.1).

The partial derivatives $\frac{\partial f_{t}}{\partial \bar{x}_{t}}$ are computed by transforming the partial derivatives $\frac{\partial f_{t}}{\partial \bar{r}}$ and $\frac{\partial f_{t}}{\partial \bar{r}}$ from the Earth-fixed system to the true of date system (see Section 3.4). These last are the partial derivatives of the geometric relationships given later in this section (6.2).

In summary, the partial derivarives sēuiinca for computing the $\frac{\partial C_{t}+\Delta t}{\partial \bar{B}}$, the partial derivatives of the computed value for a given measurement, are the variational partials ind the Earth-fixed geometric partial derivatives.

The partial derivatives of the computed values with respect to the staticn positions are simply related to the partial derivatives with respect to the satellite positic. at time $t:$

$$
\begin{equation*}
\frac{3 C_{t+\Delta t}}{\partial \bar{r}_{o b}}=\frac{\partial E_{t}}{\partial \bar{r}_{O D}}=-\frac{\partial f_{t}}{\partial \bar{r}^{\prime}} \tag{4}
\end{equation*}
$$

where \bar{r} is of course the satellite position vector in Earth-fixed coordinates. This simple relationship is a direct result of the symmetry in position coordinates. The function f is a geometric function of the relative position; i.e., the differences in position coordinates which will be the same in any coordinate system.

The partial derivatives with respect to the biases are obvious:

$$
\begin{equation*}
\frac{\partial C_{t+\Delta t}}{\partial b}=1 \tag{5}
\end{equation*}
$$

$\frac{\partial C_{t+\Delta t}}{\partial(\Delta t)}=\dot{f}_{t}$
6.0-5

In the remainder of thas section, we will be concerned with the calculation of the geometric function f_{t} and its derivatives. These derivatives have been Shown above to be the partial derivatives with respect to satellite position and velocity at time t and the time rate of change of the function, f_{t}.

The subroutine breakdown for the calculation of

PREDCT OBSDOT these quantities in GEODYN is as follows: The geometric relationships and the geometric partial derivatives are inplemented in subroutine PREDCT. The time rates of change are coded in subroutine OBSNOT.

The data preprocessing also requires some use of these formulas for computing measurement equivalents. These are then also implemented in subroctine PROCES.

The basic types of observation in GEODYN are:

- richt ascension and declination
- range
- range rate
- $\quad \ell$ and m direction cosines
- $\quad X$ and Y angles
- azimuth and elevation
- altimeter height and rate

The geometric relationship which corresponds to each of these observations is presented below. It should be noted that in addition to the Earth-fixed or inertial coordinate systems, some of these utilize topocentric coordinate systems. These last are presented in Section 5.2.

Range:

Consider the station-satellite vector:

$$
\begin{equation*}
\bar{\rho}=\bar{r}-\bar{r}_{o b} \tag{1}
\end{equation*}
$$

where
\bar{r} is the satellite position vector (x, y, z) in the geocentric Earth-fixed system, and.
$\bar{r}_{\text {ob }}$ is the station vecter in the same system.
The magnitude of this vector, p, is the (slant) range, whith is one of the nieasurements.

Range rate:

$$
\begin{aligned}
& \text { The time rate of change of this vector } \bar{\rho} \text { is } \\
& \dot{\bar{\rho}}=\dot{\bar{r}} \quad \begin{array}{l}
\text { GRHRAN } \\
\text { PREDCT }
\end{array} \\
& \text { OBSDOT }
\end{aligned}
$$

as the velocity of the observer in the Earth-fixed system is zero. Let us consider that

$$
\begin{equation*}
\bar{\rho}=\hat{\rho u} \tag{3}
\end{equation*}
$$

where
$\hat{\mathbf{u}}$ is the unit vector in the direction of $\overline{\mathrm{p}}$.

Thus we have

$$
\dot{\bar{\rho}}=\dot{\rho u}+\dot{\hat{u}}
$$

The quantity ρ in the above equation is the computed value for the range rate and is determined by

$$
\begin{equation*}
\dot{\rho}=\hat{u} \cdot \dot{\bar{r}} \tag{5}
\end{equation*}
$$

Altimeter height:

The altimeter height and rate are unique in that the satellite is making the observation. While these are actually measurements from the satellite to the surface of the Earth, they are taken to be measurements of the spheroid height and the time rate of change of that quantity for obvious reasons. Using the formula for spheroid height previously determined in Section 5.1. we have: '!

$$
\begin{align*}
H_{a: t}= & r-a_{e}-\frac{3}{2} a_{e} f^{2}\left(\frac{2}{r}\right)^{4} \tag{6}\\
& +\left(a_{e} f+\frac{3}{2} a_{e} f^{2}\right)\left(\frac{2}{r}\right)^{2}
\end{align*}
$$

ae is the Earth's meall equatorial radius,

$f \quad$| is the Earth's flattening, and |
| :--- |
| 2 |\quad| is r_{3}, the z component of the Earth-fixed |
| :--- |
| |
| satellite vector. |

Altimeter rate:

The altimeter rate is determined by a chain rule:
PREDCT

$$
\begin{equation*}
\dot{\mathrm{H}}_{\mathrm{glt}}=\nabla \mathrm{H}_{\mathrm{alt}} \cdot \frac{\dot{\bar{r}}}{} \tag{7}
\end{equation*}
$$

The required partial derivatives are given in the section on geometric partials.

The topocentric right ascension α and declination δ are inertial coordinate system measurements as illustrated in Fisure l. GEODYN computes these angles from the romponents of the Earth-fixed station-satellite vector and the Greenwich hour angle θ_{g}.

$$
\begin{align*}
& \alpha=\tan ^{-1}\left(\frac{\rho_{2}}{\rho_{1}}\right)+\theta_{g} \tag{8}\\
& \delta=\sin ^{-1}\left(\frac{\rho_{3}}{\rho}\right) \tag{9}
\end{align*}
$$

The remaining measurements are in the topocentric horizon coordinate system. These all require the N, Z, and \hat{E} (north, zenith, and east base line) unit vectors which describe the coordinate system.

FIGURE 1. 'Topocentric right ascession \& declination angles

There are three direction cosines associated with PREDCT the station-satelli e vecto: in the topocentric system. These are:

$$
\begin{aligned}
\ell & =\hat{\mathbf{u}} \cdot \hat{\mathbf{E}} \\
m & =\hat{\mathbf{u}} \cdot \hat{N} \\
\eta & =\hat{\mathbf{u}} \cdot \hat{\mathbf{z}}
\end{aligned}
$$

- The ℓ and m direction cosines are observation types for GEODYN.

```
X and Y angles:
```

The X and Y angles are illustrated in Figure 2. They are computed by

$$
\begin{align*}
& x_{a}^{-}=\tan ^{-1}\left(\frac{l}{n}\right) \tag{11}\\
& y_{a}=\sin ^{-1} \quad(m) \tag{12}
\end{align*}
$$

6.1-7

FIGURE 2. X and Y Angles

$$
0.1 .8
$$ and elevation. These angles are computed by:

$$
\begin{align*}
& A_{z}=\tan ^{-1} \frac{\ell}{\mathrm{~m}} \tag{13}\\
& E_{\ell}=\sin ^{-1}(\mathrm{n}) \tag{14}
\end{align*}
$$

6.2 THE GEOMETRIC PARTIAL DERIVATIVES

The paitial derivatives for each of the calculated geometric equivalents with respect to the satellite positions and velocity are given here. All are in the geocent-ic, Earth-fixed system. (The r_{i} refer to the Earth-fixed components of $\overline{\mathrm{r}}$.)

Range:

$$
\begin{equation*}
\frac{\partial \rho}{\partial r_{i}}=\frac{\rho_{i}}{\rho} \tag{1}
\end{equation*}
$$

Range rate:

$$
\begin{equation*}
\frac{\partial \dot{\rho}}{\partial r_{i}}=\frac{1}{\rho}\left[\dot{r}_{i}-\frac{\dot{\rho} \rho_{i}}{\rho}\right] \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial \dot{\rho}}{\partial \dot{r}_{i}}=\frac{\rho_{i}}{\partial} \tag{3}
\end{equation*}
$$

FIGURE 3. Azimuth and Elevation Angles

Altimeter range:

$$
\begin{align*}
\frac{\partial H_{a l} t}{\partial r_{i}}= & \frac{r_{i}}{r}+\frac{1}{r}\left[\left(2 a_{e} f+3 a_{e} f^{2}\right)\left(\frac{z}{z}\right)\right. \tag{4}\\
& \left.-6 a_{e} f^{2}\left(\frac{z}{r}\right)^{3}\right] X \\
& {\left[\frac{\partial z}{\partial r_{i}}: \frac{z x_{i}}{r^{2}}\right] }
\end{align*}
$$

Altimeter Range Rate:

$$
\begin{align*}
\frac{\partial \dot{H}_{a l t}}{\partial r_{i}} & =\frac{\partial}{\partial r_{i}}\left(\nabla H_{a l t}\right) \cdot \dot{\bar{r}} \tag{5}\\
\frac{\partial^{2} H_{a 1 t}}{\partial r_{i}} \partial r_{j} & \frac{1}{r}\left[\frac{\partial r_{i}}{\partial r_{j}}-\frac{r_{i} r_{j}}{r^{2}}\right] \tag{f}\\
& +\left[\left(2 a_{e} f+3 a_{e} f^{2}\right)\left(\frac{2}{r}\right)-6 a_{e} f^{2}\left(\frac{2}{r}\right)^{3}\right] X \\
& {\left[\frac { 1 } { r ^ { 2 } } \left(\frac{-r_{j}}{r} \frac{\partial z}{\partial r_{i}} \cdot \frac{r_{i}}{r} \frac{\partial z}{\partial r_{j}}+\frac{32 r_{i} r_{j}}{r^{3}}\right.\right.} \\
& \left.\left.-\frac{2}{r} \frac{\partial r_{i}}{\partial r_{j}}\right)\right]+
\end{align*}
$$

$$
\begin{gathered}
{\left[\left(2 a_{e} f+3 a_{e} f^{2}\right)-18 a_{e} f^{2}\left(\frac{z}{r}\right)^{2}\right] X} \\
{\left[\frac{1}{r} \frac{\partial z}{\partial r_{i}}-\frac{z r_{i}}{r^{3}}\right]\left[\begin{array}{l}
1 \\
r
\end{array} \frac{\partial z}{\partial r_{j}}-\frac{z r_{j}}{r^{3}}\right]} \\
\frac{\partial \dot{H}_{a l t}}{\partial \dot{r}_{i}}=\frac{\partial H_{a l t}}{\partial r_{i}}
\end{gathered}
$$

Right Ascension:

$$
\begin{align*}
& \frac{\partial \alpha}{\partial r_{1}}=\frac{-\rho_{2}}{\sqrt{\rho_{1}^{2}+\rho_{2}^{2}}} \\
& \frac{\partial \alpha}{-r_{2}} \frac{\rho_{1}}{\sqrt{\rho_{1}^{2}+\rho_{2}^{2}}} \tag{8}
\end{align*}
$$

$$
\begin{equation*}
\frac{\partial \delta}{\partial r_{3}}=0 \tag{9}
\end{equation*}
$$

Declination:

$$
\begin{equation*}
\frac{\partial \delta}{\partial r_{1}}=\frac{-\rho_{1} \rho_{3}}{\rho^{2} \sqrt{\rho_{1}^{2}+\rho_{2}^{2}}} \tag{10}
\end{equation*}
$$

©

$$
\begin{align*}
& \frac{\partial \delta}{\partial r_{2}}=\frac{-\rho_{2} \rho_{3}}{\rho \sqrt{\rho_{1}{ }^{2}+\rho_{2}^{2}}} \\
& \frac{\partial \delta}{\partial r_{3}}=\frac{\sqrt{\rho_{1}{ }^{2}+\rho_{2}{ }^{2}}}{\rho^{2}} \tag{12}
\end{align*}
$$

Direction Cosines:

$$
\begin{align*}
& \frac{\partial \ell}{\partial r_{i}}=\frac{1}{\rho}\left[E_{i}-\ell u_{i}\right] \tag{13}\\
& \frac{\partial m}{\partial r_{i}}=\frac{1}{\rho}\left[N_{i}-m u_{i}\right] \tag{14}\\
& \frac{\partial n}{\partial r_{i}}=\frac{1}{\rho}\left[Z_{i}-n u_{i}\right] \tag{15}
\end{align*}
$$

1

$$
\begin{align*}
& \frac{\partial X_{a}}{\partial r_{i}}=\frac{n E_{i}-l Z_{i}}{\rho\left(1-m^{2}\right)} \tag{16}\\
& \frac{Y_{a}}{\partial r_{i}}=\frac{N_{i}-m u_{i}}{\rho \sqrt{1-m^{2}!}} \tag{17}
\end{align*}
$$

Azimuth and Elevation:
c

$$
\begin{align*}
& \frac{\partial A_{i}}{\partial r_{i}}=\frac{m E_{i}-\ell N_{i}}{\rho \sqrt{1-n^{2}}} \tag{18}\\
& \frac{\partial E_{\ell}}{\partial r_{i}}=\frac{Z_{i}-n u_{i}}{\rho\left(1-n^{2}\right)} \tag{19}
\end{align*}
$$

G.j tine time derivatives

The derivatives of each measuremert type with respect to time is presented beloiv. All are in the Earth-fixed system.

Range:

$$
\begin{equation*}
\dot{p}=\hat{u} \cdot \dot{\bar{r}} \tag{1}
\end{equation*}
$$

Range Rate:

The range rate derivative deserves special attention. Renembering that

$$
\begin{equation*}
\dot{\bar{\rho}}=\dot{\bar{r}}, \tag{2}
\end{equation*}
$$

We write

$$
\begin{equation*}
\dot{\rho}=\hat{u} \cdot \dot{\bar{p}} \tag{3}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\ddot{\rho}=\hat{u} \cdot \dot{\bar{p}}+\dot{\hat{u}} \cdot \ddot{\bar{p}} \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\dot{\bar{\rho}}=\frac{d}{d t}(\rho \hat{u})=\rho \dot{u}+\dot{\rho} \hat{u} \tag{5}
\end{equation*}
$$

we may substitute in Equation 4 above for \hat{u} :

$$
\begin{equation*}
\ddot{\rho}=\frac{1}{\rho}(\dot{\bar{\rho}} \cdot \dot{\bar{\rho}}-\dot{\rho} \hat{u} \cdot \dot{\bar{\rho}})+\hat{u} \cdot \ddot{\bar{\rho}} \tag{6}
\end{equation*}
$$

or, as

$$
\begin{equation*}
\dot{p}=\hat{u} \cdot \dot{\bar{\rho}} \tag{7}
\end{equation*}
$$

we may write

In order to obtain $\ddot{\bar{p}}$, we use the 1 limited gravity potential (see Section 8.3).

$$
\begin{equation*}
U=\frac{G M}{r}\left(1-\frac{C_{20}{ }^{a} e^{2}}{r^{2}} p_{2}^{0}(\sin \phi)\right) \tag{9}
\end{equation*}
$$

The gradient of this potential with respect to the Earth- OBSDOT fixed position coordinates of the satellite is the part of $\ddot{\bar{\beta}}$ due to the geopotential:

$$
\begin{equation*}
\frac{\partial U}{\partial r_{i}}=-\frac{G M}{r^{3}}\left[1-\frac{3 a_{e}^{2} c_{20}}{2 r^{2}}\left(5 \sin ^{2} \phi-1-2 \frac{z}{r_{i}}\right)\right] r_{i} \tag{10}
\end{equation*}
$$

We must add to this the effect of the rotation of the coordinate syster. (The Earth-fixed coordinate system rotates with respect to the true of date coordinates with a rate θ_{g}, the time rate of change of the Greenwich hour angle.)

The components of $\ddot{\bar{\rho}}$ are then

$$
\begin{align*}
\ddot{\rho}_{1} & =\frac{\partial U}{\partial r_{1}}+\left[\dot{x} \cos \theta_{g}+\dot{y} \sin \theta_{g}\right] \dot{\theta}_{g}+\dot{r}_{2} \dot{\theta}_{g} \tag{11}\\
\ddot{\rho}_{2} & =\frac{\partial U}{\partial r_{2}}+\left[-\dot{x} \sin \theta_{g}+\dot{y} \cos \theta_{g}\right] \dot{\theta}_{g} \cdot \dot{r}_{1} \dot{\theta}_{g} \tag{12}\\
\ddot{\rho}_{3} & =\frac{\partial U}{\partial r_{3}}=\frac{\partial U}{\partial z} \tag{13}
\end{align*}
$$

The bracketted quantities suove correspond to the coordinate OBSDOT transformations ceded in subroutines XEFIX and YEFIX. These XEFIX transforms are used or the true of date satellite velocity YEFIX components \dot{x} and \dot{y}. The interested reader should refer to Section 3.4 for further information on transformations between Earth-fixed and true of date coordinates.

It should be noted that ail aunitities in inis
formula, with the exception of those quantities bracketted, are Earth-fixed values. (The magnitude r is invariant with respect to the coordinate system transformations.)

The remaining time derivatives are tabulated here:

$$
\begin{align*}
& \text { Right ascension: } \quad \dot{\alpha}=\frac{u_{1} \dot{r}_{2}-u_{2} \dot{r}_{1}}{\rho\left(1-u_{3}^{2}\right)} \tag{14}\\
& \dot{\delta}=\frac{\dot{r}_{3}-\dot{p} u_{3}}{\rho \sqrt{1-u_{3}{ }^{x}}} \tag{15}\\
& \text { Declination: } \\
& \dot{\ell}=\frac{\dot{\bar{\rho}} \cdot \hat{E}-\ell \dot{\rho}}{\rho} \tag{16}\\
& \dot{m}=\frac{\dot{\bar{\rho}} \cdot \hat{N}-m \dot{\rho}}{\rho} \tag{17}\\
& \text { Direction Cosines: } \dot{\ell}=\frac{\dot{\bar{\rho}} \cdot \hat{E}-\ell \dot{\rho}}{\rho}
\end{align*}
$$

$$
\begin{array}{ll}
X \text { and } Y \text { angles: } & \dot{X}_{a}=\frac{\dot{\bar{\rho}} \cdot(n \hat{E}-\hat{\imath} \hat{L})}{\rho\left(1-m^{2}\right)} \\
& \dot{Y}_{a}=\frac{\dot{\bar{\rho} \cdot \hat{N}-m \rho}}{\rho \sqrt{1-m^{2}}} \\
\text { Azimuth: } & \dot{A}_{2}=\frac{\dot{\bar{\rho}} \cdot(m \hat{E}-\ell \hat{N})}{\rho\left(1-m^{2}\right)} \\
\text { Elevation: } & \dot{E}_{\ell}=\frac{\dot{\bar{\rho}} \cdot \hat{z}-m \dot{\rho}}{\rho \sqrt{1-m^{2}}} \tag{21}
\end{array}
$$

 from a ground tracking sta: :a to one satellite where it is then relayed to a second :aplite. The second satellite in turn relays the signal bact to the first satellite where it is relayed to the original ground station. The fundamental measuremerit mac is the transit time for tins relay process. Properly corrected for various time delays, this measurement can be transformed into the sum of the range from the ground station to the first satellite and the range from the first satellite to the second satellite. The time rate of change of this measurement is also handled by the GEODYN program.

6.4.1 Satellite-Satelite Tracking Measurement Calculations

Given the ephomerides of the two satellites, the range sum type measurement can be calculated in a rather straightforward manner. The most important aspect of the calculation is to insure that the correct times are used for the satellites and ground station. That is, transit times and transponder delays must be correctly accounted for.

To see the times needed for the range sum calculation, refer to Figure 1. Let
$R_{s}(t)=$ the range sum measurement at time t
$R_{1 u} \quad$ the up-link range from the ground to the relay satellite
$R_{2 d} \quad$ = the relay satellite-tracked satellite range

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR
$=C$

Fizure 1. Geometry for Satellite-Satellite Tracking

$\mathrm{K}_{2 \mathrm{u}}=$	the tracked satellite-relay satellite range
${ }^{R} 1 \mathrm{~d}$	the down-ink idage from the relay satrilite to the ground
$R_{g}(t), R_{1}(t), R_{2}(t)=$	the range vector from the center of the eerth to the ground station, relay satellite, and tracked satellite, respectively, at time t
d_{1}	the transponder delay in the relay satellite
d_{2}	the transponder delay in the tracked satellit:
$\Delta t{ }_{\text {cu }}$	the trarsit time for the range $\mathrm{R}_{1 u}$
$\Delta t_{2 d}$	the transit time for the range $\mathbb{R}_{2 d}$
$\Delta t_{2 u}$	the transit time for the range $\mathrm{R}_{2 \mathrm{u}}$
$\Delta t_{1 d}$	the transit time for the range $\mathrm{R}_{\text {id }}$

The range sum measurement is expressed in terms of the range components as

$$
\begin{equation*}
z R_{s}(t)=R_{1 u}+R_{2 d}+R_{2 u}+R_{1 d} \tag{1}
\end{equation*}
$$

Each of the ranges on the right hand side is a function of two different times. Expressing the ranges in terms of the range vectors from the center of the earth and explicitly indicating the times, the measurement R_{s} is expressible as

$$
\begin{aligned}
& 2 R_{s}(t)=\left|\bar{R}_{1}\left(t-\Delta t{ }_{1 d}\right)-\bar{R}_{g}(t)\right| \\
& +\left|\bar{R}_{2}\left(t-\Delta t_{1 d^{-d}}-\Delta t{ }_{2 u}\right)-\bar{R}_{1}\left(t-\Delta t_{1 d^{-d}}\right)\right| \\
& +\left|\bar{R}_{1}\left(t-\Delta t d^{-u_{1}}-\Delta t v^{-d} d_{2}^{-\Delta t} 2 d\right)-\bar{R}_{2}\left(t-\Delta t d^{-d_{1}-\Delta t} 2 u^{-d} d_{2}\right)\right| \\
& +\mid R_{1}\left(t-\Delta t_{1 d}-2 d_{1}-\Delta t_{4}-d_{2}-\Delta t_{2 d}\right) \\
& -R_{g}\left(t-\Delta t_{1 d^{-2}} d_{1}-\Delta t_{2 u}-d_{2}-\Delta t_{2 d^{-\Delta t}}^{1 u}\right)!
\end{aligned}
$$

This expression shows that the ground station and satellite positions must each be known for several different times.
Summarizing:
a. Ground station position needed at times

1. t
2. $t-\Delta t_{1 d^{-2}} d_{1}-\Delta t_{2 u}-d_{2}-\Delta t_{2 d^{-\Delta t}} 1 u$
b. Relay satellite position needed at times

$$
\text { 1. } \quad t-\Delta t_{1 d}
$$

2. $t \cdot \Delta t_{1 d^{-d}}$
3. $t-\Delta t_{1 d^{-d}}^{1}-\Delta t_{2 u}-d_{2}-\Delta t_{2 d}$
4. $t-\Delta t_{1 d^{-2}} d_{1}-\Delta t_{2 u}-d_{2}-\Delta t_{2 d}$
c. Tracked satellite position needed at times
5. $\quad t-\Delta t d^{-d_{1}}-\Delta t_{2 u}$
6. $t-\Delta t_{i d}-d_{1}-\Delta t_{2 u}-d_{2}$

The transponder delay which is most critical is that of the tracked saicilite lecausé, for the plañod tracling goometries, the range rate between the relay and tracked catellite is expected to be much higher than the ground-relay satellite range rate. This maximum rate can be only on the order of $5 \times 10^{3} \mathrm{~m} / \mathrm{sec}$, however, and a 4 sec transponde: delay would be necessary to introduce a measurement computation error of 1 cm . Since actual S-band transponder delays are generally no longer than this, we may neglect transponder delays in the measurement calculation and still retain accuracies at the centimeter level.

With the neglect of transponder del'ys, we are left with 2 times for which the ground station position must be computed, 2 times for which the relay satellite position must be computed, and 1 time for which the tracked satellite position must be computed. Eqn. (2) can then be written in the slightly simpler looking form:

$$
\begin{align*}
2 R_{s}(t) & =\left|\bar{R}_{1}\left(t-\Delta t_{1 d}\right)-\bar{R}_{g}(t)\right| \tag{TwOSTA}\\
& +\left|\bar{R}_{2}\left(t-\Delta t_{1 d}-\Delta t_{2 u}\right)-\bar{R}_{1}\left(t-\Delta t_{1 d}\right)\right| \\
& +\left|\bar{R}_{1}\left(t-\Delta t_{1 d}-\Delta t_{2 u}-\Delta t_{2 d}\right)-\bar{R}_{2}\left(t-\Delta t_{1 d}-\Delta t_{2 u}\right)\right| \tag{3}\\
& +\left|\bar{R}_{1}\left(t-\Delta t_{1 d}-\Delta t_{2 u}-\Delta t_{2 d}\right)-\bar{R}_{g}\left(t-\Delta t_{1 d}-\Delta t_{2 u}-\Delta t_{2 d}-\Delta t_{1 u}\right)\right|
\end{align*}
$$

This is the form used by GEODYN to calculate the range sum measurement. The range sum rate measurement is calculated from the time derivative of this expression. To see how this calculation is performed, note that, e.g., the final down leg range is

$$
\left|\bar{R}_{1}\left(t-\Delta t_{1 d}\right)-\bar{R}_{g}(t)\right|=\left\{\left[\mathbb{R}_{1}\left(t-\Delta t_{1 d}\right) \cdot \dot{R}_{g}(t)\right] \cdot\left[R_{1}\left(t-\Delta t_{1 d}\right\}-\bar{R}_{g}(t)\right]\right\}^{1 / 2}
$$

and that its time derivative is
$\frac{d}{d t}\left[\bar{R}_{1}\left(t-t_{1 d}\right)-\bar{R}_{g}(t)\right]=\frac{\left[\bar{R}_{1}\left(t-\Delta t_{1 d}\right)-\bar{R}_{g}(t)\right\}=\left[\bar{R}_{1}\left(t-\Delta t_{1 d}\right)-\bar{R}_{g}(t)\right]}{\left\{\left[\bar{R}_{1}\left(t-\Delta t_{1 d}\right)-\bar{R}_{g}(t)\right] \cdot\left[\bar{R}_{1}\left(t-\Delta t_{1 d}\right)-R_{g}(t)\right]\right\}^{1 / 2}}$

The calculation thus requires the satellite velocities, and the station inertial velocity, at the same times as were needed for the range sum computation. The satellite velocities are always computed by the GEODYN integrator along with the satellite positions, so only the station inertial velocities are needed as alditional input to the range sum rate calculation.

6.4.2 $\frac{\text { Partial Derivative Calculations for Satellite-Satellite }}{\text { Tracking masuremonts }}$

Differential co; rections for epoch element and force model parameter errors require. the computation of the partial derivatives of the measurements with respect to these adjusted parameters. Let γ be one of thase parameters. Then, since the range and range rate measurements are explicit functions of the satellite coordisates only, the partial derivatives of R_{s}, e.g., can be written from Eqn. (1) as

$$
\frac{\partial R_{s}}{\partial \gamma}=\frac{1}{2}\left[\frac{\partial R_{1 u}}{\partial X_{1 i}}+\frac{\partial R_{2 d}}{\partial X_{1 i}}+\frac{\partial R_{2 u}}{\partial X_{1 i}}+\frac{\partial R_{1 d}}{\partial X_{1 i}}\right] \frac{\partial X_{1 i}}{\partial \gamma}
$$

$$
\begin{equation*}
+\frac{1}{2}\left[\frac{\partial R_{2 d}}{\partial X_{2 i}}+\frac{\partial R_{2 u}}{\partial X_{2 i}}\right] \frac{\partial X_{2 i}}{\partial Y} \tag{5}
\end{equation*}
$$

REPRRODUCIBLLITY OF THE ORIGINAL PAGE IS POOR
where
$x_{1 i}, x_{2 i}$ are the inertial cartesian position coordinates
of the relay and tracked satellite, respectively.
Summation over i from 1 to 3 is implied.

Eqn. (5) is shown in a somewhat simplified form, since the difierent range sum components depeni upon the satellite coordinates at slightly different times. For partial derivative computations, however, this slight iine difterence is negligible. The partial derivatives of the satellite ceordinates with respect is the γ parameters are obtained by indepenciontly integrating the appropriate variationai equations for each satcllite in the same manrer in which GEODYN integrated these equations for one satellite.

Eqn. (5) can be simplified somewhat by noting that

$$
\begin{align*}
& \frac{\partial R_{2 d}}{\partial X_{1 i}}=-\frac{\partial R_{2 d}}{\partial X_{2 i}} \tag{6a}\\
& \frac{\partial R_{2 u}}{\partial X_{1 i}}=-\frac{\partial R_{2 u}}{\partial X_{2 i}} \tag{6b}\\
& \frac{\partial R_{2 d}}{\partial X_{1 i}}=\frac{\partial R_{2 u}}{\partial X_{1 i}} \tag{6c}\\
& \frac{\partial R_{1 u}}{\partial X_{1 i}}=\frac{\partial R_{1 d}}{\partial X_{1 i}} \tag{od}
\end{align*}
$$

Using (6a) - (6d), Eqn. (5) can be writter.
TWOSTA

$$
\begin{equation*}
\frac{\partial R_{s}}{\partial \gamma} \approx \frac{\partial R_{1 d}}{\partial X_{1 i}} \cdot \frac{\partial x_{1 i}}{\partial \gamma}+\frac{\partial R_{2 d}}{\partial X_{1 i}}\left(\frac{\partial x_{1 i}}{\partial \gamma}-\frac{\partial x_{2 i}}{\partial \gamma}\right) \tag{7}
\end{equation*}
$$

and is a sufficiently accurate form'for the range sum partial derivative caiculation.

The partial derivatives of the range sum rate measuroments are calculated in similer pisnior, except that volocity
partials must nov be included. Thus, if down leg rate partials are approximately equal to up leg rate partials,

$$
\begin{align*}
\frac{\partial \dot{R}_{s}}{\partial \gamma} & =\frac{\partial \dot{R}_{1 u}}{\partial X_{1 i}} \frac{\partial x_{1 i}}{\partial \gamma}+\frac{\partial \dot{R}_{1 u}}{\partial \dot{x}_{1 i}} \frac{\partial \dot{x}_{1 i}}{\partial \gamma}+\frac{\partial \dot{R}_{2 d}}{\partial x_{1 i}} \frac{\partial x_{1 i}}{\partial \gamma}+\frac{\partial \dot{R}_{2 d}}{\partial \dot{x}_{1 i}} \frac{\partial \dot{x}_{1 i}}{\partial \gamma} \\
& +\frac{\partial \dot{R}_{2 d}}{\partial x_{2 i}} \frac{\partial x_{2 i}}{\partial \gamma}+\frac{\partial \dot{R}_{2 d}}{\partial \dot{x}_{2 i}} \frac{\partial \dot{x}_{2 i}}{\partial \gamma} \tag{8}
\end{align*}
$$

As can de seen from Eq. (4), relations comparable to Eqn. (5) hold also for the rates, and Eqn. (8) ar be written

$$
\begin{aligned}
\frac{\partial \dot{R}_{s}}{\partial \gamma} & =\frac{\partial \dot{R}_{1 u}}{\partial X_{1 i}} \frac{\partial X_{1 i}}{\partial \gamma}+\frac{\partial R_{1 u}}{\partial x_{1 i}} \frac{\partial \dot{x}_{1 i}}{\partial \gamma}+\frac{\partial \dot{R}_{2 d}}{\partial X_{1 i}}\left(\frac{\partial X_{1 i}}{\partial r}-\frac{\partial x_{2 i}}{\partial r}\right) \\
& +\frac{\partial R_{2 d}}{\partial x_{1 i}}\left(\frac{/ \dot{X}_{1 i}}{\partial r}-\frac{\partial \dot{X}_{2 i}}{\partial \gamma}\right)
\end{aligned}
$$

The PCE measurement types are sets of elements prescicely determined in previous GEODYN orbit determination runs.

The inertial Cartesian elements obtained from interpolation of the integrator output are used as the calculated measurements for PCE types, x, y, z, x, y, z.

The partials of these measurements are

The osculating elements obtained by conversion of the above mentioned Cartesian elements are used as the calculated measurements for PCE types, a,e,i, Ω, ∞, M.

The partials for these measurements are given in

The geometry for the VLB! measurements used by the GEODYN program is shown in Figure 1. A signal is transmitted from one satellite to two ground stations.

VLBI Time Delay Measurement Calculation:

$$
\begin{align*}
& { }^{\tau_{g}}=\tau_{2}-\tau_{1} \tag{1}\\
& { }^{\tau_{1}}=\frac{\rho_{1}}{c} \\
& \tau_{2}=\frac{\rho_{2}}{c}
\end{align*}
$$

$\tau_{g}-$ is the time delay measurement.
${ }^{\tau_{1}}$ - is the light time for the first ground station.
τ_{2} - is the light time for the second ground station.
ρ_{1} - is the first station-satellite range.
ρ_{2} - is the second station-satellite range.
c - is the velocity of light.

Figure 1. Geometry of VLBI Measurement Type

Partial Derivative:

$$
\begin{equation*}
\frac{\partial \tau_{g}}{\partial r_{i}}=\frac{i}{c}\left[\frac{\partial \rho_{2}}{\partial r_{i}}-\frac{\partial \rho_{I}}{\partial r_{i}}\right] \tag{2}
\end{equation*}
$$

and the partials $\frac{\partial \rho_{2}}{\partial r_{i}}, \frac{\partial \rho_{1}}{\partial r_{i}}$ are given in Section 6.2.

VLBI Fringe Rate Measurement Calculation:

$$
\begin{equation*}
u_{F}=\frac{\mathbf{f}}{\mathbf{c}}\left[\dot{\rho}_{2}-\dot{\rho}_{1}\right] \tag{3}
\end{equation*}
$$

where

$$
\begin{aligned}
& f-\text { is transmitter frequency. } \\
& \dot{\rho}_{2}-\text { is the } i \text { mime derivative of } \rho_{2} \\
& \dot{\rho}_{1}-\text { is the time derivative of } \rho_{1} .
\end{aligned}
$$

Partial Derivative:

$$
\frac{\partial \nu_{F}}{\partial r_{i}}=\frac{f}{c}\left[\begin{array}{ll}
\frac{\partial \dot{\rho}_{2}}{\partial r_{i}} & \frac{\partial \dot{\rho}_{1}}{\partial r_{i}} \tag{4}
\end{array}\right]
$$

where the partials $\frac{\partial \dot{\rho}_{2}}{\partial r_{i}}, \frac{\partial \dot{\rho}_{1}}{\partial r_{i}}$ are given in Section 6.2 .

6.7 AVERAGE RANGE RATE MEASUREMENT TYPES

Figure 1 illustrates the geometry of the average range rate measurement t pes. A signal is transmitted from a transmitter to a satellite, then a ground station receives the signal from the satellite, and,
ρ_{T} - is the transmitter-satellite range
ρ_{R} - is the satellite-receiver range
\bar{R}_{R} - is the position vector of the receiver
\bar{R}_{T} - is the position vector of the transmitter
${ }^{F_{S}}$. is the position vector of the satellite.
If t_{6} is the recorded time of the end of the doppler counting interval at the receiver and, if T is the length of the counting interval, then the average range rate measurement is

$$
\begin{equation*}
\dot{\bar{\rho}}=\frac{\rho_{R}\left(t_{6}, t_{5}\right)+\rho_{T}\left(t_{5}, t_{4}\right)-\rho_{R}\left(t_{3}, t_{2}\right)-\rho_{T}\left(t_{2}, t_{1}\right)}{2 T} \tag{1}
\end{equation*}
$$

Where it is necessary to iterate for the satellite and transmitter times,

$$
t_{5}=t_{6}-\frac{\rho_{R}\left(t_{6}, t_{5}\right)}{c}
$$

Figure 1: Geometry for Average Range Rate Measurement

$$
\begin{aligned}
t_{4} & =t_{5}-\frac{\rho_{T}\left(t_{5}, t_{4}\right)}{c} \\
t_{3} & =t_{6}-T \\
t_{2} & =t_{3}-\frac{\rho_{R}\left(t_{3}, t_{2}\right)}{c} \\
t_{1} & =t_{2}-\frac{\rho_{T}\left(t_{2}, t_{1}\right)}{c}
\end{aligned}
$$

and where

$$
\begin{align*}
& \rho_{R}\left(t_{6}, t_{5}\right)=\left|\bar{R}_{R}\left(t_{6}\right)-\bar{R}_{S}\left(t_{5}\right)\right| \\
& \rho_{T}\left(t_{5}, t_{4}\right)=\left|\bar{R}_{T}\left(t_{4}\right)-\bar{R}_{S}\left(t_{5}\right)\right| \tag{2}\\
& \rho_{R}\left(t_{3}, t_{2}\right)=\left|\bar{R}_{R}\left(t_{3}\right)-\bar{R}_{S}\left(t_{2}\right)\right| \\
& \rho_{T}\left(t_{2}, t_{1}\right)=\left|\bar{R}_{T}\left(t_{1}\right)-\bar{R}_{S}\left(t_{2}\right)\right|
\end{align*}
$$

A two-way average range rate measurement is a special case of the three-way average range rate measurement (ie., the receiver and the transmitter are the same). Therefore,

$$
\rho_{T}=\rho_{R}, \quad \bar{R}_{T}=\bar{R}_{R}
$$

C

$$
\frac{\partial \dot{\bar{\rho}}}{\partial r_{i}}=\frac{1}{2^{m}}\left[\frac{\partial \rho_{R}\left(t_{6}, t_{5}\right)}{\partial r_{i}}+\frac{\partial \rho_{T}\left(t_{5}, t_{4}\right)}{\partial r_{i}}-\frac{\partial \rho_{R}\left(t_{3}, t_{2}\right)}{\partial r_{i}}-\frac{\partial o_{T}\left(t_{i}, t_{1}\right)}{\partial r_{i}}\right]
$$

where the partial $\frac{\partial \rho}{\partial r_{i}}$ is given in Section 6.2.

The function of data preprocessing is to convert and correct the data. These corrections and conversions relate the data to the physical model and to the coordinate and time reference systems used in GEODYN The data corrections and conversions implement in geOdYN are to

- transform all observation times to Al time at the satellite
- refer right ascension and declination observations to the true equator and equinox of date.
- correct range measurements for transponder delay and gating effects
- correct SAC right ascension and declination observations for diurnal aberration
- correct for refractinn
- convert TRANET Doppler observations into range rate measurements.

These conversions and corrections are applied to the data on the first iteration of each arc. Each of these preprocessing items is considered in greater detail in the subsections which follow.

7.1. TIME PREPROCESSING

The time reference system used to spocify the time of each observation is determined by a time identifier on the data record. This identifiei also specifies whether the time recorded was the time at the satellite or at the observing station.

The preprocessing in GEODYN transforms all observations to Al time in either GEOSRD or DODSRD. If the time recorded is the time at she station, it is converted to time at the satellite. This conyersion is applicd in subroutine PROCES using a correction equal to the propagation time between the spacecraft and the observing station. The stationsatellite distance used for this correction is computed from the initial estimate of the erajectory.

There is special preprocessing for right pscension and declination measurements from the GEOS sqtellites when input in National Space Science Data Center format. If the observation is passive, the image r, orded is an observation of light reflected from the satellite and the times are adjusted for vropagation delay as above. If the observation is active, the image recorded is an observation of light transmitted from the optical beacon on the satellite. The beacons on the GEOS satellites are programmed to produce a sequence of seven flashes at four second intervals starting on an even minute. For the active observations, the times are set equal to ine programmed flash time with a correction applied for known clock errors (Reference 1), pius half a rillisecond, the time allowed for flasn buildup.

The corrcctions for the active observations are applied in GEOSRD, which calls SATCLC and SATCL2 to evaluate the corrections for GEOS 1 and GEOS 2, respectively. These routines compute the correction by simple linear interpolation in a table of known errors in the satellite on-board clock.
t. 2 REFERENGE BYSTEM CONVESION TO TPUE OF DATE

The camera observations, right ascension and declination may be input referred to the mean equator and equinox of ciate, to the true equator and equinox of date, or to the mean equator and equinox of some standard epoch. The GEODYN system iransforms these observations to the true equator and equinox of date in subroutines GEOSRD and DODSRD. The necessary precession and nutation is performed by subroutine EQUATR.

7.3 TRANSPONDER DELAY AND GATING EFFECTS

The range observations may be corrected for transponder delay or gating errors. If requested, the GEODYN subroutine PROCES applies the correcticns.

The transponder delay correction is cor.putef as a polynomial in the range rate:

$$
\begin{equation*}
\Delta \rho=a_{0}+a_{1} \dot{\rho}+a_{2}(\dot{\rho})^{2} \tag{1}
\end{equation*}
$$

where a_{0}, a_{1}, and a_{2} depend on the characteristics of the particular satellite.

A gating error is due to the fact that actual range measu;ements are either time delays between transmitted and receive, radar pulses or the phase
shifts in the modulation of a received signal with respect to a coherent transmitted signal. Thus there is tine pussiviility of incorrectly identifying the returned pulse or the number of integral phase shifts. The difference between the observed range and the computed range on the first iteration of the arc is used to determine the appropriate correction. The correction is such that there is less than half a gate, where the gate is the range equivalent of the pulse spacing or phase shift. The appropriate gate of course depends on the particular station.

7.4 ABERRATION

PRICES

Optical measurements may require corrections (Reference 2) for the effects of annual aberration and diurnal aberration.

Annual Aberration

The corrections to right ascension and declination measurements for annual aberration effects are given by

```
\alpha=\mp@subsup{\alpha}{}{\prime}}-\frac{20:5(\operatorname{cos}\mp@subsup{\alpha}{}{\prime}\operatorname{cos}\alpha\operatorname{cos}\mp@subsup{\varepsilon}{T}{}+\operatorname{sin}\mp@subsup{\alpha}{}{\prime}\operatorname{sin}\Omega)}{\operatorname{cos}\mp@subsup{\delta}{}{\prime}
```



```
+ cos \mp@subsup{\alpha}{}{\prime}}\operatorname{sin}\mp@subsup{\delta}{}{\prime}\operatorname{sin}0
```

$$
\begin{aligned}
& \alpha \text { - true right ascension of the satellite } \\
& \alpha^{\prime} \text { - observec right ascension of the satellite } \\
& \delta \text { - true declination of the satellite } \\
& \delta^{\prime} \text { - observed declination of the satellite } \\
& \varepsilon_{T} \text { - true obliquity of date } \\
& \text { - - gencentric longitude of the sun in the ecliptic }
\end{aligned}
$$

Diurnal Aberration

The corrections to right ascension and declination measurements for diurnal aberration effects are given by

$$
\begin{aligned}
& \alpha=\alpha^{\prime}+0!320 \cos \phi^{\prime} \cos h_{s} \sec \delta^{\prime} \\
& \delta=\delta^{\prime}+0!320 \cos \phi^{\prime} \sin h_{s} \sin \delta^{\prime}
\end{aligned}
$$

where
ϕ^{\prime} - geocentric latitude of the station
h_{s} - local hour angle measured in the westward direction from the station to the satellite
a - true right ascension of the satellito
a^{\prime} - observed right ascension of the satellite

\%.5 REFRACTION CORPECTIONS

The GEODYN system can apply corrections tu all PROCES of the observational types significantly affected by refraction. The corrections requested are applied by subroutine PROCES.

Right Ascension and Declination:

Optical measurements may require corrections (References 3, 4, 5) for the effects of parallactic refraction. These corrections are given by

$$
\begin{aligned}
& \alpha=\alpha^{\prime}-\Delta R \sin q / \cos \delta \\
& \delta=\delta^{\prime}-\Delta R \cos q
\end{aligned}
$$

where the change in the zenith angle, ΔR, in radians is given by

$$
\Delta R=-\frac{0.435(4.84813) \tan Z_{0}}{\rho \cos Z_{0}}\left[1-e^{(-1.385)} 10^{-4} \rho \cos Z_{0}\right]
$$

and
$\alpha-$ true right ascension of the satellite
α^{\prime} - observed right ascension of the satellite
δ - true declination of the satellite
δ^{\prime} - observed declination of the satellite
Z_{0} - observed zenith angle in radians
p - range from the station:- the satellite in meters
q - parallactic angle in radians

The parallactic angle q is defined by the intersection of two planes represented k their normal vectors \mathbf{F}_{1} and \mathbf{F}_{2}.

$$
\begin{aligned}
& \bar{F}_{1}=\hat{c}_{p} \times \hat{u} \\
& \bar{P}_{2}=\hat{v} \times \hat{\eta}
\end{aligned}
$$

where

$$
\hat{c}_{p}=(0,0,1)
$$

\hat{v} - unit local vertical at the station
\hat{u} - unit vector pointing from the station to the satellite in inertial space.

Therefore, the sine and cosine of the parallactic angle are given by

$$
\begin{aligned}
& \cos q=\hat{\mathrm{p}}_{1} \cdot \hat{\mathrm{p}}_{2} \\
& \sin q=\hat{\mathrm{p}}_{3} \cdot \hat{\mathrm{p}}_{2}
\end{aligned}
$$

where
$\hat{\mathrm{P}}_{1}$ - unit vector in the \bar{F}_{1} direction
$\hat{\mathrm{P}}_{2}$ - unit vector in the \bar{F}_{2} direction
and

$$
\hat{\mathrm{P}}_{3}=\frac{\overline{\mathrm{P}}_{1} \times \hat{\mathrm{u}}}{\left|\overline{\mathrm{P}}_{1} \times \hat{\mathrm{u}}\right|}
$$

The parallactic angle, q, is measured in the clockwise direction abcut the station-satellite vector (i.e., a lefthanded system is used to define this angle). All vectors and vector cross products used in this formulation conform to a right-handed system.

Range:

The refraction correction applied to CNES laser range data is

$$
\Delta \rho=\frac{\Delta \rho_{n}}{\sin E_{l}+\left(\cot E_{\ell}\right) 10^{-3}}
$$

and the correction applied to range data from all other tracking systems is

$$
\begin{equation*}
\Delta \rho=-\frac{2.77 n_{s}}{328.5\left(0.026+\sin E_{\ell}\right)} \tag{4}
\end{equation*}
$$

(where

$\Delta \rho_{n}$ - is that corrcction associated, with a range observation measured along the dircction of the satellite zenith, and is provided along with each observation on the data tape.
E_{ℓ} is the elevation angle computed from the initial estinate of the trajectory
and
n_{s}
PPM deviation fium unity of the surface
index of refraction; if this value is not
specified, it is assumed to be 328.5.

Range Rate:
For range-rate, the correction $\Delta \rho$ is derived from the range correction:

$$
\begin{equation*}
\Delta \dot{p}=\frac{2.77 n_{5} \cos E_{\ell}}{328.5\left(0.026+\sin E_{\ell}\right)^{i}} \dot{E}_{\ell} \tag{5}
\end{equation*}
$$

$\dot{E}_{\ell} \quad$ is the computed rate of change of elevation.

Elevation:

For elevation observations the correction $\Delta \mathrm{E}_{\boldsymbol{\ell}}$
PRDCES ıs computed as follows:

$$
\begin{equation*}
\Delta E_{\ell}=\frac{n_{s} 10^{3}}{16.44+930 \tan E_{\ell}} \tag{6}
\end{equation*}
$$

Azimuth is not affected by refraction.

Direction Cosines:

The corrections Δl and Δm are derived from the elevation correction:

$$
\begin{align*}
& \Delta \ell=-\sin A_{z} \sin \left(E_{\ell}\right) \Delta E_{\ell} \tag{7}\\
& \Delta m=-\cos A_{z} \sin \left(E_{\ell}\right) \Delta E_{\ell} \tag{8}
\end{align*}
$$

where A_{z} is the azimuth angle computed from the initial estimate of the trajeciory.
X and Y Angles:

For X and Y angles the corrections ΔX and ΔY are computed as follows:

$$
\begin{align*}
& \Delta X_{a}=-\frac{\sin A_{2} \Delta E_{\ell}}{\left(\sin ^{2} E_{\ell}+\sin ^{2} A_{z} \cos ^{2} E_{\ell}\right)} \tag{9}\\
& \Delta X_{a}=-\frac{\cos A_{z} \sin E_{\ell} \Delta E_{\ell}}{V 1-\cos ^{2} A_{z} \cos ^{2} E_{\ell}} \tag{10}
\end{align*}
$$

Note that these are . 130 derived from the eievation correction.

7.6 FRANET LOPPLER OBSERVATIGNS

TRANET Doppier observations are received as a series of measured frequencies with an associated base frequency for each station pass. Using the following relationship, the GEODYN system converts these observations to range rate meas sements in subroutine GEOSRD:

$$
\begin{equation*}
\dot{\rho}=\frac{c\left(F_{B}-F_{M}\right)}{F_{M}} \tag{1}
\end{equation*}
$$

F_{M} is the measured frequency,
F_{B} is the base frequency,
and
c is the velocity of light.

7.7 SATELL_TE-SATELLITE TRACKING DATA PREPROCESSING

T:OST. 1 Lif $\mathrm{uCl}_{\mathrm{C}} \mathrm{C}$.
The proprocoscing on the sarelitite-cat plitite tracking jnvolves the determination of all the appropriate transit times. Because of the station-satellite and inter-satellite distances, this process must be performed iteratively. The required times are computed during the first iteraiion and are then stored for use in subsequent iterations.

The satellite-satellite tracking measurements are a'so corrected for tropospheric refraction. The corrections made here are identical to those which would be made on range and range rate measurenents to the relay satellite only. Althougia it is theoretically possible for signals from the relay to low altitude satellıte to pass through the atmosphere, such tracking would sccur at reduced signal intensity and would be equivalent to the low elevation tracking of satellite from ground based stations. Such dat. is seldom used in orbit estimation.

The standard procedure for transponder delay corrections on satellite-satellite tracking is to use block data constants for each satellite, with a saiellite ID used to identify the appropriate tluck data entries. Since constants for the transponders to be used for satellite-sateilit; tracking are not presentiy available tre block data entries must be modified appropriately when the data becomes available.

SECTION 8.0
 FORCE BODEL AND VARIATIONAL EQUATICNS

A fundamental part of the GEODN system requires computing positions and velocities of the sfacecraft at each observation time. The dynamics of the situation are expressed by the equations of motic: , which provide ε relationship between tine orbital eiements at any given instant and the initial conditions of epoch. There is an additional requirement for variational partials, which are the partial derivatives of the instantaneous orbital elements with respect to the parametc:s at epoch. These partials are generated using the variational equations, which are analogous to the equations of motion.
8.2 EQUATIONS OF MOTION

In a geocentric inertial rectangular coordinate systeli, the equations of motior for a spacecraft are of the form.

$$
\begin{equation*}
\ddot{\bar{r}}=-\frac{\mu \bar{r}}{\mathbf{r}^{3}}+\bar{A} \tag{1}
\end{equation*}
$$

where
$\overline{\mathbf{r}} \quad$ is the position vector of the
satellite.
$\mu \quad$ is $G M$, where G is the gravitational constant and M is the mass of the Farth.

A is the acceleration caused by ihe asplericity of the Earth, extraterrestrial gravitational forces, atmospheric drag, and solar radiation.

This provides a system of second order differential equations wiri乞h, given the epoch position and velocity components, may be integrated to obtain the position and velocity at any other time. This direct integration of these accelerations in Cartesian coordinates is known as Cowell's method and is the technique used in GEODYN's orbit generator. This method was selected for its simplicity and its capacity for easily incorporating additional perturbative forces.

There is an alternative way of expressing the above equations of motion:

$$
\begin{equation*}
\ddot{\bar{r}}=\nabla U \div \bar{A}_{D}+\bar{A}_{R} \tag{2}
\end{equation*}
$$

where
\mathbf{U} is the potential field due to gravitv,
π_{D} contains the accelerations due to drag, and
π_{R} contains the accelcrations duc to solar radiation pressure.

This is, of course, just a regrouping of terms coupled with a recognition of the existence of a potential field. This is the form used in GEODY:.

The inertial coordinate system in which these equations of motion are integrated in GEODIN is that system corresponding to the true of daie system of 0.0 of the reference day. The complete definitions fcr these coordirate systems (and the Earth-fixed system) are presented in Section 3.0.

The evaluation of the accelerations for $\overline{\bar{T}}$ is
controlled by subroutine F. This evaluation is performed in the true of date system. Tinus there is a requirement that the inertial position and velccity output from the integrator be transformed to the true of date system for the evaluation of the accelerations, and a requirement to iransform the computed accelerations from the true of date system to the inertial system. These transformetions are performed dy subroutine REFCOR (which controls the nrecession and rutation routines, PRECES and NUTATF; and is controiled by sutroutine F.
8.2 THE VARIATIONAL EQUATIONS

The variational equations have the same relationship to the variational partials as the sicellite position vector does to the equations of motion. The variational partials are defined as the $\frac{\partial \bar{x}_{t}}{\partial \bar{\beta}}$ where \bar{x}_{t} spans the true of date position and velocity of the satellite at a given time; i.e.;

$$
\bar{x}_{t}=\{x, y, z, \dot{x}, \dot{y}, \dot{z}\} ;
$$

and \bar{B} spans the epoch parameters; i.e.,

$x_{0}, y_{0}, z_{0} \quad$| the satellite position vector at |
| :--- |
| epoch |

$\dot{x}_{0} \dot{y}_{0}, \dot{z}_{n} \quad$ the satellite velocity vector at epoch
the satellite drag factor
the time rate of change of the drag factor
$C_{R} \quad$ the satellite emissivity factor
$C_{n m}, S_{n m} \quad$ gravitational harmonic coefficients for each n, mpair being determined.
surface density coefficients
X.

Let us first realize that the variational partials may be parijitioned according to the satellite positien and velecicy vectors at the given time. Thus the required partials are

$$
\begin{equation*}
\frac{\partial \bar{r}}{\partial \bar{B}}, \frac{\partial \dot{\bar{r}}}{\partial \bar{B}} \tag{1}
\end{equation*}
$$

```
\overline{r}}\mathrm{ is the satellite position vector ( }x,y,z
        in the true of date system, and
\dot{\mathbf{r}}}\quad\mathrm{ is the satellite velocity vecior ( }\dot{x},\dot{y},\dot{z}
        in the same system.
```

The first of these, $\frac{\partial \bar{r}}{\partial \bar{B}}$, can be obtained by the double integration of

$$
\begin{equation*}
\frac{d^{2}}{d t^{2}}\left(\frac{\partial \bar{r}}{\partial \bar{B}}\right) \tag{2}
\end{equation*}
$$

or rather, since the order of differentiation may be exchanged,

$$
\frac{\partial \ddot{\bar{r}}}{\partial \bar{\beta}}
$$

Note that the second set of partials, $\frac{\partial \dot{\bar{r}}}{\partial \bar{B}}$, may be obtained oy a firsi order integration of $\frac{\partial \ddot{\bar{r}}}{\partial \bar{\beta}}$. Hence we recognize that the quantity to be integrated is $\frac{\partial \overline{\bar{x}}}{\partial \bar{\beta}}$. Using the second form given for the equations of motion in the previous subsection, the variational equations are given by


```
                                    vEval
where
U is the potential field due to gravitational effects
\(A_{R}\) is the acceleration due to radiation pressure
\(\bar{A}_{D}\) is the acceleration due to drag
```

The similarity to the equations of motion is now cbvious.

At this poinc we must consider a few items:

- The potential field is a function only of position. Thus we have
$\frac{\partial}{\partial \bar{B}}\left(\frac{\partial U}{\partial r_{i}}\right)=\sum_{m=1}^{3}\left(\frac{\partial^{2} U}{\partial r_{i} \partial r_{m}}\right) \frac{\partial r_{m}}{\partial \bar{B}}$
- The partials of solar radiation pressure with respect to the geopotential coefficients, the drag coefficient, and the satellite velocity are zero, and the partials, with respect to satellite position, are negligible.
- Drag is a function of position, velocity, and the drap coefficients. The partials, with respect to the geopotential coefficients and satellite emissivity, are zerc, but we have

$$
\begin{equation*}
\frac{\partial K_{D}}{\partial \bar{B}}=\frac{\partial A_{D}}{\partial \bar{X}_{t}} \frac{\partial \bar{X}_{L_{t}}}{\partial \bar{B}}+\frac{\partial \bar{K}_{D}}{\partial C_{D}} \frac{\partial C_{D}}{\partial \bar{E}}+\frac{\partial \bar{A}_{D}}{\partial \bar{C}_{D}} \cdot \frac{\partial \dot{C}_{D}}{\partial \bar{B}} \tag{6}
\end{equation*}
$$

Let us write our variational equations in matrix
n to be the number of epoch parameters in \bar{B}
F is a $3 \times n$ matrix whose $j^{\text {th }}$ column vectors are $\frac{\partial \ddot{\bar{r}}}{\partial \beta_{j}}$
$\mathrm{U}_{2 \mathrm{c}}$ is a 3×6 matrix whose last 3 columns are zero and whose first 3 columns are such that the $i, j^{\text {th }}$ element is given by $\frac{\partial^{2} U}{\partial r_{i}} \frac{U r_{j}}{j}$
$D_{r} . \quad$ is $\begin{aligned} & \text { a } 3 \times 6 \text { matrix whose } j^{\text {th }} \text { column is defined } \\ & \frac{\partial x_{t_{j}}}{}\end{aligned}$
X_{m} is a $6 \times n^{n}$ matrix whose $i^{\text {th }}$ Tow is given by $\frac{\hat{\sigma} \bar{x}_{t}}{\partial \beta_{j}}$. Note that X_{m} contains the variational partials.
f. is a $3 \times n$ matrix who ie first six columns are zero and whose last n-6 clumps are such that the $i, j{ }^{\text {th }}$ element i " given by $\frac{\partial}{\partial \beta_{j}}\left(\nabla U+\mathbb{A}_{D}+\mathbb{A}_{R}\right)$. Note that the first six columns correspond to the first six elements of \bar{B} which are the epoch position and volecity. (This matrix contains the direct par** 21 s of \bar{x}_{t} with respect to \bar{B}.)

REPRODUCIBILITY OF THE

 We may now writeThis is a matrix form of the variational equations.

Note that $U_{2 c}, D_{r}$, and f are evaluated at the current time, whereas X_{m} is the output of the integration. Initially, the first six columns of X_{m} plus the six rows form an identity matrix; the rest of the matrix is zero(for $i=j, X_{m_{i, j}}=1$; for $i \neq j, X_{m_{i, j}}=0$).

Because each force enters into he variational equations in a manner which depends directly on its model, the specific contribution of each force is discussed in the section with the force nodel. We shall, however, note a few clcrical derails here.

The task cf computing these variational equations in the GEODYN systen: is largely accomplished by subroutine VEVAL. The matrix dimensions given are for notational convenience; empty rows and columns are not programmed.

The above equation is also applied in subroutine
PREDCT PRELCT to "chain the partials back to epoch," that is, to relate the partials at the time of each set of measurements back to epoch.
The matrix for $\frac{\partial \bar{x}_{t}}{\partial \beta}, X_{m}$ above, is initialized in CRBIT subroutine ORBIT.
The contribuifuns of subioutines D?1, D650, DRAG D650 EGRAV, F, SURDEN, and RESPAR will be discussed as part ORAC of the foliowing subscctions. The matrices $U_{2 c}$ and f will ! be referred to in each subserticn as though the particular RESPAK force being discussed had the only concrigution,
8.3 TIIE EARTH'S POTENTTAL

In GEODYN che Earth's potential is described by the combinatinn of a spherical harmonic expansion and a surface densjty layer. Gerecally, however, the spherical harmonic oapansion is used exclusively and no surface density terms are included.

8.3.1 Spherical Harmonic Expansion

The Earth's po ${ }^{+}$ential is most conveniently expressed ir a spherical ccoordinate system as is shown in Figure 1. by inspection:

- $\quad \phi$, the geocentric latitude, is the angle measured from $O A$, the projection of $\overline{O F}$ in the $X-Y$ plane, to the vector $\overline{O P}$.
- λ, the east longitude, is the angle measured from the positive direction of the X axis to $\overline{O A}$.
- $\quad r$ is the magnitude of the vector $\overline{O P}$.

Let us consider the point P to be the satellite position. Thus, $\overline{U P}$ is the geocentric Earth-fixed satellite vector corresponding to \bar{r}, the true of date satellite vector, whose components are (x, y, z). The relationship between the spherical coo:dinates (Earth-fixed) and the satellite position coordinates (true of date) is then given by

$$
\begin{align*}
& r=\sqrt{x^{2}+y^{2}+z^{2}} \tag{1}\\
& \phi^{\prime}=\sin ^{-1}\left(\frac{z}{r}\right) \tag{3}\\
& \lambda=\tan ^{-1}\left(\frac{y}{y}\right) \cdot \theta_{g} \tag{3}
\end{align*}
$$

Figure 1: Spherical Courdinates
where θ_{g} is the rotation angle between the true of date ESTAV system and the Earch-fixed system (see Section 3.4).

The Earth's gravity field is represented by the normal potential of an ellipsoid of revolution and small irregular variations, expressed by a sum of spherical harmonics. This formulation, used in the GEODYN system, is
$U=\frac{G M}{r}\left\{1+\sum_{n=2}^{n \max } \sum_{m=0}^{n}\left(\frac{a}{r}\right)^{n} P_{n}^{m}\left(\sin \phi^{\prime}\right)\left[c_{n m} \cos m \lambda+S_{n m} \sin m \lambda\right]\right\}$
where

G is the universal gravitational constant,
M is the mass of the earth,
\mathbf{r} is the geocentric satellite distance,
max is the upper limit for the summation (highest legree),
a e is the Earth's mean equatorial radius,

$$
8.3-4
$$

ϕ^{\prime} is the satellite geocentric latitude,
λ is the satellite east longitude,
$P_{n}^{m}\left(\sin \Phi{ }^{\prime}\right)$ indicate the associated Legendre functions, and
$C_{n r}$. and $S_{n m}$ are the uxumenalyod coefficients.

The relationship, between the normalized co-
efficient ($\bar{C}_{n m},{ }^{\prime}{ }_{\text {, }}$) and the denormalized coefficients are as follows:

$$
\begin{equation*}
C_{r m}=\left[\frac{(n-m)!(2 n+1)\left(2-s_{0 m}\right)}{(n+m)!}\right]^{1!/ 2} \bar{c}_{n m} \tag{5}
\end{equation*}
$$

where
$\delta_{o m}$ is the Kronecker delta,

$$
\delta_{o m}=1 \text { for } m=0 \text { and } \delta_{o m}=0 \text { for } m \neq 0
$$

A similar expression is valid for the relationship between $S_{n m}$ ard $S_{n m}$. This conversion factor is $=0 m-$ puted by the GEODYN system function DENORM.

The gravitational z=celergtinnc in true of date co- EGRAV ordinates $(\ddot{x}, \ddot{y}, \ddot{z})$ are computed f : m the geopotential, $U\left(r, \phi^{\prime}, \lambda\right)$, by the chain rule; egg.,

$$
\begin{equation*}
\ddot{x}=\frac{\partial U}{\partial r} \frac{\partial r}{\partial x}+\frac{\partial U}{\partial \phi^{\prime}} \frac{\partial \phi^{\prime}}{\partial x}+\frac{\partial U}{\partial i} \frac{\partial \lambda}{\partial x} \tag{6}
\end{equation*}
$$

The accelerations y and z are determined likewise. The partial derivatives of U with respect to r, ψ^{\prime}, and λ are given by

$$
\begin{align*}
\frac{\partial U}{\partial r}= & \frac{G M}{r^{2}}\left[1+\sum_{n=2}^{n \max }\left(\frac{a_{e}}{r}\right)^{n} \sum_{m=0}^{n}\left(C_{n m} \cos m \lambda\right.\right. \tag{7}\\
& \left.\left.+S_{n m} \sin m \lambda\right)(n+1) P_{n}^{m}\left(\sin \phi^{\prime}\right)\right] \\
\frac{\partial U}{\partial \lambda}= & \frac{G M}{r} \sum_{n=2}^{n m a x}\left(\frac{a_{e}}{r}\right)^{n} \sum_{m=0}^{n}\left(S_{n m} \cos m \lambda-C_{n m} \sin m \lambda\right) \tag{8}
\end{align*}
$$

$$
m P_{n}^{m}(\sin \phi)
$$

$$
\frac{\partial U}{\partial \phi^{\prime}}=\frac{G M}{r} \sum_{n=2}^{n \max }\left(\frac{a}{r}\right)^{n} \sum_{m=0}^{n}\left(C_{r a n} \cos m \lambda+s_{i n} \sin m \lambda\right)!9 ;
$$

$$
\left[p_{n}^{m+1}\left(\sin \phi^{\prime}\right) \cdot m \tan \phi^{\prime} p_{n}^{m}(\sin \phi)\right]
$$

$$
8.3-6
$$

The partial derivatives of r, ϕ, and λ with respect to
EGRAV
tine true of date satellite position components are

$$
\begin{align*}
& \frac{\partial r}{\partial r_{i}}=\frac{r_{i}}{r} \tag{10}\\
& \frac{\partial \phi}{\partial r_{i}}=\frac{1}{\sqrt{x^{2}+y^{2}}}\left[-\frac{2 r_{i}}{r^{2}}+\frac{\partial z}{\partial r_{i}}\right] \tag{11}\\
& \frac{\partial \lambda}{\partial r_{i}}=-\frac{1}{\sqrt{x^{2}+y^{2}}}\left[\begin{array}{l}
\left.\frac{\partial y}{\partial r_{i}} \cdot \frac{y}{x} \frac{\partial x}{\partial r_{i}}\right]
\end{array},\right. \tag{12}
\end{align*}
$$

Tie Legendre functions are computed via recursion EGRAV formulae:

$$
\begin{align*}
& \text { Zonsis: } m=0 \\
& \begin{aligned}
P_{n}^{0}(\sin \phi)= & \frac{1}{n}\left[(2 n-1) \sin \phi^{\prime} P_{n-1}^{0}\left(\psi^{\prime} \phi^{\prime}\right)-\right. \\
& \left.(n-1) P_{n-2}^{0}(\sin \phi)\right]
\end{aligned} \\
& P_{1}^{0}\left(\sin \phi^{\prime}\right)=\sin \phi^{\prime}
\end{align*}
$$

Tesserals: $m \neq 0$ and $m \leq n$

$$
\begin{align*}
& P_{n}^{m}\left(\sin \phi^{\prime}\right)=P_{n-2}^{m}\left(\sin \phi^{\prime}\right)+\left(2 n-1 j \cos \phi^{\prime} P_{n-1}^{m-1}\left(\sin \phi^{\prime}\right)\right. \tag{13}\\
& P_{1}^{1}\left(\sin \phi^{\prime}\right)=\cos \phi^{\prime} \tag{16}
\end{align*}
$$

Sectorals: m=n

$$
\begin{equation*}
P_{n}^{m}=(2 n-1) \cos \phi P_{n-2}^{n-j}(\sin \phi) \tag{17}
\end{equation*}
$$

8.3-8

The derivative relationship is given by

$$
\begin{equation*}
\frac{d}{d \phi^{\prime}}\left(p_{n}^{m}(\sin \phi)\right)=p_{n}^{m+1}(\sin M)-m \tan \phi^{\prime} P_{r}^{m}(\sin \phi) \tag{18}
\end{equation*}
$$

It should also be noted that miltiple angle formulas are used for evaluating the sine and cosine VEYAL of $m \lambda$.

These accelerations on the spacec:aft are computed in subroutine EGRAV. Arrays containing certain intermediate data are passed to subroutine VEVAL for use in the computations for the variational equations. These contain the values for:

```
    \(\underset{r}{G M}\left(\frac{a_{e}}{r}\right)^{n}\)
    \(q_{n}^{m}\left(\sin \phi^{\prime}\right)\)
    \(\sin m \lambda\)
    \(\cos m \lambda\)
        \(m \tan \$^{\prime}\)
for each mandor \(n\).
```


The following discussion relates primarily to the mathematical formulations utilized in subroutine VEVAL.

The variational equations require the computation of the matrix $U_{2 c}$, whose elements are given by

$$
\begin{equation*}
\left(U_{2 c}\right)_{i, j}=\frac{\partial^{2} U}{\partial r_{i} \partial r_{j}} \tag{20}
\end{equation*}
$$

where
$r_{i} \&\{x, y, z\}$, the true of date satellite position.
U is the geopotential.

Because the Earth's field is in terms of $r, \sin \phi^{\circ}$, and λ, we write
$U_{2 c}=c_{1}^{T} u_{2} \mathrm{c}_{1}+\sum_{k=1}^{3} \frac{\partial U}{\partial e_{k}} C_{2 k}$
where
e_{k} range ${ }^{*}$ over the elements $r, \sin \phi^{\prime}$, and λ
U_{2} is the matrix whose i, j th element is given by $\frac{\partial^{2} J}{\partial e_{i} \partial \theta_{j}}$
and

We compute the second partial derivatives of the potential U with respect to r, ϕ, and λ :

$$
\begin{align*}
& \frac{\partial^{2} U}{\partial r^{2}}=\frac{2 G M}{r^{3}}+\frac{G M}{r^{3}} \sum_{n=2}^{\operatorname{mnax}}(n+1)(n+2)\left(\frac{e}{r}\right)^{n} \sum_{m=0}^{n} \tag{22}\\
& \left(C_{n m} \cos m \lambda+S_{n m} \sin m \lambda\right) P_{n}^{m}(\sin \phi) \\
& \frac{\partial^{2} U}{\partial r \partial \phi^{\prime}}=-\frac{G M}{r^{2}} \sum_{n=2}^{n m a x}(n+1)\left(\frac{e}{r}\right)^{n} \sum_{m=0}^{n}\left(C_{n m} \cos m \lambda\right.
\end{align*}
$$

$$
\left.+S_{n m} \sin m \lambda\right) \frac{\partial}{\partial \phi^{\prime}}\left(P_{m}^{n}\left(\sin \phi^{\prime}\right)\right)
$$

$$
\frac{\partial^{2} U}{\partial-\partial \lambda}=\frac{G M}{r^{2}} \sum_{n=2}^{n \max }(n+1)\left(\frac{a_{0}}{r}\right)^{n} \sum_{m=0}^{n} m
$$

$$
\left.i-C_{n M} \sin \min +S_{n m} \cos m \lambda\right) P_{n}^{n}(\sin \phi)
$$

$$
8.5-11
$$

$$
\begin{aligned}
& C_{2 k} \text { is a se: of three matrices whose } i, j{ }^{\text {th }} \\
& \text { elements are given by } \frac{\partial^{2} \varepsilon_{k}}{\partial r_{i} \partial r_{j}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { by } \frac{\partial e_{i}}{\partial r_{j}}
\end{aligned}
$$

$$
\begin{equation*}
\frac{\partial^{2} U}{\partial \phi^{\prime 2}}=\frac{G M}{r} \sum_{n=2}^{n \max }\left(\frac{a_{e}}{r}\right)^{n} \sum_{m=0}^{n}\left(C_{n m} \text { cns } m \lambda+s_{n m} \sin m \lambda\right) \tag{25}
\end{equation*}
$$

$$
\begin{align*}
& \frac{\partial^{2}}{\partial \phi^{2}}\left(P_{n}^{m}(\sin \phi)\right) \\
& \frac{\partial^{2} U}{\partial \phi \partial \lambda}=\frac{G M}{r} \sum_{n=2}^{n n a x}\left(\frac{a_{r}}{r}\right)^{n^{\prime}} \sum_{m=0}^{n} m\left(-C_{n m} \sin \pi \lambda\right. \tag{25}\\
& \\
& \left.+S_{n m} \cos m \lambda\right) \frac{\partial}{\partial \phi^{\prime}}\left(P_{r}^{m}\left(\sin \phi^{\prime}\right)\right)
\end{align*}
$$

$$
\begin{equation*}
\frac{\partial^{2} U}{\partial \lambda^{2}}=-\frac{G M}{r} \sum_{n=2}^{n m a x}\left(\frac{a}{r}\right)^{n} \sum_{m=0}^{n} m^{2}\left(C_{n m} \cos m \lambda\right. \tag{27}
\end{equation*}
$$

$$
\left.+S_{n m} \sin m \lambda\right) p_{n}^{m}(\sin \phi)
$$

where

$$
\begin{equation*}
\frac{\partial}{\partial \phi^{\prime}}\left(P_{n}^{m}\left(\sin \phi^{\prime}\right)\right)=p_{n}^{m+1}\left(\sin \phi^{\prime}\right) \cdot m \tan \phi^{\prime} p_{n}^{m}(\sin \phi) \tag{28}
\end{equation*}
$$

$$
\begin{align*}
& \frac{\partial^{2}}{\partial \phi^{\prime 2}}\left(P_{n}^{m}\left(\sin \phi^{\prime}\right)\right)=P_{n}^{\mathrm{n}+2}\left(\sin \phi^{\prime}\right)-\left(m^{\prime}\right) \tan \phi^{\prime} P_{n}^{m+1}\left(\sin \phi^{\prime}\right) \\
& \quad-m \tan \phi^{\prime}\left[P_{n}^{m+1}\left(\sin \phi^{\prime}\right)-m \tan \phi^{\prime} r_{n}^{m}\left(\sin \phi^{\prime}\right)\right] \\
& -m \sec ^{2} \phi P_{n}^{m}\left(\sin \varphi^{\prime}\right) \tag{29}
\end{align*}
$$

The elements of U_{2} have almost been computed. What remains is to transform from (r, ϕ, λ) to ($r, \sin \phi^{\prime}, \lambda$). This affects nn?y the partials involving Φ :

$$
\begin{align*}
& \frac{\partial U}{\partial \sin \phi^{\prime}}=\frac{\partial U}{\partial \phi^{\prime}} \frac{i \phi^{\prime}}{\partial \sin \phi^{\prime}} \tag{30}\\
& \frac{\partial^{2} U}{\partial \sin \phi^{\prime 2}}=\frac{\partial \phi^{\prime}}{\partial \sin \phi^{\prime}}\left(\frac{\partial^{2} U}{\partial \phi^{\prime 2}}\right) \frac{\partial \phi^{\prime}}{\partial \sin \phi^{\prime}}+\frac{\partial U}{\partial \phi^{\prime}} \frac{\partial^{2} \phi^{\prime}}{2 \sin \phi^{\prime 2}} \tag{31}
\end{align*}
$$

where

$$
\begin{align*}
& \frac{2 \phi^{\prime}}{\partial \sin \phi^{\prime}}=\sec \phi^{\prime} \tag{32}\\
& \frac{\partial^{2} \phi^{\prime}}{\partial \sin \phi^{2}}=\sin \phi^{\prime} \sec ^{3} \phi^{\prime} \tag{33}
\end{align*}
$$

For the C_{1} and $C_{2 k}$ matrices, the partials of I, sin ϕ^{\prime}, and i are obtained from the usual formuias:

$$
\begin{align*}
& r=\sqrt{x^{2}+y^{2}+z^{2}} \tag{3/}\\
& \sin \phi^{\prime}=\frac{z}{r} \tag{35}\\
& \lambda=\tan ^{-1}\left(\frac{y}{x}\right)-\theta_{g} \tag{36}
\end{align*}
$$

We have for C_{1} :

$$
\begin{align*}
& \frac{\partial r}{\partial r_{i}}=\frac{r_{i}}{r} \tag{37}\\
& \frac{\partial \sin \phi^{\prime}}{\partial r_{i}}=\frac{-z r_{i}}{r^{3}}+\frac{1}{r} \frac{\partial z}{\partial r_{i}} \tag{38}\\
& \frac{\partial \lambda}{\partial r_{i}}=\frac{1}{x^{2}+y^{2}}\left[x \frac{\partial y}{\partial r_{i}}-y \frac{\partial x}{\partial r_{i}}\right] \tag{38}
\end{align*}
$$

The $C_{2 k}$ are symmetric. The necessary elements
VEVAL are given by

$$
\begin{align*}
& \frac{\partial^{2} r}{\partial r_{i} \partial r_{j}}=\frac{r_{i} r_{j}}{r^{3}}+\frac{1}{r} \frac{\partial r_{i}}{\partial r_{j}} \\
& \frac{\partial^{2} \sin \phi^{\prime}}{\partial r_{i} \partial r_{j}}=\frac{3 z r_{i} r_{j}}{r^{5}}-\frac{1}{r^{3}}\left[r_{j} \frac{\partial z}{\partial z_{i}}+r_{i} \frac{\partial z}{\partial j_{j}}+z \frac{\partial r_{i}}{\partial}\right] \tag{40}\\
& \frac{\partial^{2} \lambda}{\partial r_{i} \partial r_{j}}=\frac{-2 r_{j}}{\left(x^{2}+y^{2} j^{2}\right.}\left[x \frac{\partial y}{\partial r_{i}}-y \frac{\partial x}{\partial r_{i}}\right] \tag{41}\\
&+\frac{1}{x^{2}+y^{2}}\left[\frac{\partial x}{\partial r_{j}} \frac{\partial y}{\partial r_{j}}-\frac{\partial y}{\partial r_{j}} \frac{\partial x}{\partial r_{j}}\right]
\end{align*}
$$

If gravitational constants, $C_{n m}$ or $S_{n n t}$ are being RESPAR estimated, we require their partials in the f matrix for the variaticnal equations computations. These partials are

$$
\begin{align*}
& \frac{\partial}{\partial C_{n m}}\left(-\frac{\partial U}{\partial r}\right)=(n+1) \frac{G M}{r^{2}}\left(\frac{a}{r}\right)^{n} \cos (m \lambda) P_{n}^{m}(\sin \phi) \tag{42}\\
& \frac{\partial}{\partial C_{n m}}\left(-\frac{\partial U}{\partial \lambda}\right)=m \frac{G M}{r}\left(\frac{a}{r}\right)^{n} \sin (m \lambda) P_{n}^{n}(\sin \phi) \tag{43}
\end{align*}
$$

$$
\begin{aligned}
& \frac{\partial}{\partial C_{n m}}\left(-\frac{\partial U}{\partial \phi^{\prime}}\right)=-\frac{G M}{r}\left(\frac{a}{r}\right)^{n} \cos (m \lambda)\left[y_{n}^{m+1}\left(\sin \phi^{\prime}\right)\right. \\
& \left.\quad-m \tan \phi^{\prime} P_{n}^{m}(\sin \phi)\right]
\end{aligned}
$$

The partials for $S_{n m}$ are idertical with $\cos (m \lambda)$ replaced by $\sin (m \lambda)$ and with $\sin (m \lambda)$ replaced by $-\cos (m \lambda)$.

These partials are converted to inertial true of date courdinates using the chain rule; e.g.,

$$
\begin{equation*}
\frac{\partial}{\partial C_{n m}}\left(-\frac{\partial U}{\partial x}\right)=\frac{\partial}{\partial C_{n m}}\left(-\frac{-\partial U}{\partial r}\right) \frac{\partial r}{\partial x}+\frac{\partial}{\partial C_{n m}}\left(\frac{-\partial U}{\partial \lambda}\right) \frac{\partial \lambda}{\partial x} \tag{45}
\end{equation*}
$$

$$
+\frac{\partial}{\partial C_{n m}}\left(\frac{-\partial u}{\partial \phi^{\prime}}\right) \frac{\partial \phi^{\prime}}{\partial x}
$$

This particular set of computations is performed by subroutine RESPAR. Ths items which EGRAV computes for VEVAL are also available to RESP: R and are therofore utilized.

The representation of the carth's gravicatiunal fi气id in terms of a simple density layer spread over the surface of the carth was first introduced by Koch [Reference 10] in 1968. Attempts at determining numerical values for surface densities on a global scale have been made using joth optical [Reference 6] and Doppler [Reference 7] data. In some cases, the surface densities have been estimated as alternatives to the spherical harmonic expansion, and in other cases the surface densities are a supplenentary contribution to a set of "known" low degree and order spherical harmonic coefficients.

The surface densities implemented in the GEODYN proeram are basically in the nature of a supplementary potential contribution. The spherical harmonic field is retained for representing the geopotential on a global scale and the surface densities can be introduced on either a local or global scale into any number of slocks of constant density. That is, the Eineness of representation of the geopotential via surface densities is arbitrarily small, consistent with computer core availability and the existence of data for actually resolving a large number of surface densities. In addition, t.a capability now exists in the GEODYN program for simultaneously adjusting both spnerical harmonic coefficients and surface layer densities. No investigator has apparentiy yet attempted this. When actually making simultaneous adjustments, the resuits must be very carefully interpreted. This problem is considered further beaow in the discussion of constraints.
8.3.2.1 Mathematical Representation of Surface Densities. The total potential of the earth 'W' can ke, somewhat arbitrarily, divided into spherical harmonics fart 'U' and a remainder ' T ' to be expressed in some other form

$$
\begin{equation*}
W=U+T \tag{1}
\end{equation*}
$$

with

$$
\begin{align*}
U= & -\frac{G M}{r}\left[1+\sum_{n=2}^{N} \sum_{m=0}^{n}\left(\frac{a_{e}}{r}\right)^{n} p_{r}^{m}(\sin \phi)\right. \\
& \left.\left(C_{n m} \cos m \lambda+S_{n m} \sin m \lambda\right)\right]+1 / 2 \omega^{2} r^{2} \cos ^{2} \phi \tag{2}
\end{align*}
$$

where r is the distance from the point of interest to the center of mass of the earth and and λ are geocentric latitude and longitude. The last torm in (2) is omitted if the potential is being computed outsid the surface of the earth. In GEODYN. the mav : \quad gree spherical harmonic coefficient is basically arbitr.f: , surmally being limited to the maximum degree for which coefficients are available.

The potential T can be represented as that of a simple layer distributed over the surface of the earth. Nathematically, T is then given by the surface integral

$$
\begin{equation*}
\mathrm{T}=\iint x \mathrm{~d} \mathrm{E} / \ell \tag{3}
\end{equation*}
$$

S
where ℓ is the distance from point on the surface to the pint at which the putential is to be computed, dE is the element of surface area, x is the surface density (in units of $\mathbf{k g} / \mathbf{m}^{2}$ multiplied by G), and S is the surface of the earth. Figure 1 shows the geometry and a portion of the surface areas. To numerically evaluate the integrai in (3), it is necessery to divide the entire surface into blocks of constanc density. If there are M such blocks, then (3) can bc written

$$
\begin{equation*}
r-\sum_{i=1}^{M} x_{i} \iint_{\Delta L_{i}} d \Gamma / 0 \tag{4}
\end{equation*}
$$

where X_{i} is now the average density on the ith block and the integral is to be tanen over the area of the i'th block.

The integral in Eqn. (4) must be evaluated numerica'ly. It is evaluated in GEODY: by dividing the area AE, up into four blocks of equal area and taking the kernal, l / ℓ, to be constant over earin of these sub-blocks. This is the division which has been most commonly used for surface density lavers and has te'n shown by Koch [Reference 8] to be a quite good approximation, generally accurate to withir a fek percent. Resi. . of numerical tests are also given beiow.

With the division inco sub-blocks, the potential due to surface iensities is

$$
\begin{equation*}
T=\sum_{i=1}^{M} x_{i} \sum_{j=1}^{4} \Delta E_{i j} / \ell_{i j} \tag{5}
\end{equation*}
$$

where $\Delta E_{i j}$ is the area of the j 'th sub-division of the $i^{\prime \prime}$ th block and $\ell_{i j}$ is the distance from the center of this sibdivisior to the point where the potential is to be evaluated. The acceleration produced by the surface density potential is obtained by takirg its grajient,
$\bar{a})_{\text {surface densities }}=\nabla T=\sum_{i=1}^{M} x_{i} \sum_{j=1}^{4} \Delta E_{i j} \nabla\left(1 / \ell_{i j}\right)$

The forcing functicr for integratirg the variation equations 10 obtain the sensitivity of satellitc position to a particular surface density block is obtaining by differentiating Eqn. (6) with rospect in X_{i}.

$$
\begin{equation*}
\frac{\partial \bar{a}}{\partial x_{i}}=\sum_{j=1}^{4} \Delta E_{i j} \nabla\left(1 / l_{i j}\right) \tag{7}
\end{equation*}
$$

Note that these forcing functions must be computed as part of the computation of the surface density acceleration contribution.

GEOIni
AVGPOT
8.3.2.2 Surface Height Computation. A number of potarial choices are available for locating the surfaces on which the surface densities are to be spread. Such surfaces incluie the spheroid, the geoid, and the physical surface of the earth. The method which has been implemeated in GEODYN is to locate the density layers on the geoid defined by the earth and geopotential model being used in the program. The model presently being eluployed is the SAO 1969 Standard Earth !Reference 9].

Tre geoid choice for locatirg the surface densities is the most naturdl for use in estimating sarface density values in jlocks restricted to ocean areas, as might be one of the initial uses of the GEOS-C altimeter data. For complete global density laynrs, and perhaps incorporating measurements of suriace gravity, some other surface may be more convenient.
8.3.2.3 Layer Model Quacirature Errors. The process of approximating the integral over the area of a surface density block by 4 sub-blocks with the kernal estimated at the center introduces some error into the integration of surface density effects on the orbit. Koch (Reference 3] has investigated the error introduced by dividing the blocks into only a sub-
blocks, and coricluded that errors generally less that a few nercent were introluced.

A test was made in GEODYN to determinc the effects of differcnt divisions of a $20^{\circ} \times 20^{\circ}$ block for a sacellite of 500 nm altitude passing directly over the center f the block. The results for a subdivision into 4,9 and 16 bloclis are shown in Figure 2. Tinis Figure shows that the 4-block subdivision does indeed introduce substancial error, but orily when the satellite is directly over the center of the block. It should be noted trat a 20° block size is much : arger than would normally be considered for the fine detail representation of the geopotential. A division into $20^{\circ} \times 20^{\circ}$ tlczks on a global scale is, of course, a reasonable possibiJity.

Figure 3 shovs the acceleration effectr due to the 20° $x 20^{\circ}$ surface density layer for a co.dplete revolution of the 500 nm satellite. It wili be noted that the effects are quise localized, as is indeed one of the $2 d v a n+2 g \in s$ of the surface density representation. There is a large perturbation :'en the satellite is directiy cver the block. There is a definite but rather small perturbatior when tize satellite comes over the next revolution about 10° away from the edge of the block. Otnerwise, tne effects of the blocks are rather constanc and small.

GEOIDH SURDEI: PIIFN.
3.3.2.4 Constraints. For several reasons, it is necessary to apply certain constraints to the surface density adjujcments which are to be allowed. That this is necessary can be seen by noting that the total surface density potential can be expressed in terms of a spherical harmonic series,
8.3-22

$$
T=\frac{G M}{\Gamma} \sum_{n=0}^{\infty}\left(\frac{a_{e}}{\Gamma}\right)^{n} \sum_{m=0}^{n} P_{n}^{m}(\sin \rho)\left(C_{n n}^{\prime} \cos m \lambda\right.
$$

$$
\begin{equation*}
\left.+\varepsilon_{n m} \sin m \lambda\right] \tag{8}
\end{equation*}
$$

Abstract

which is of the identical form as the global spherical harmonic expension given by Eqn. (2), except that the expansion is now infinite. It is most significant, however, that the surface density expansion could actually include the equivalent perturbations of the normal spherical harmonic set of coefficierts, and thai both numerical anc interpretation problems can arise if both spherical harmonic coefficients and surface densitites are allowed to adjust simultaneously.

It may also be noted that fir: degree ccefficients in (3) would not, in general, be zero. It is thus necessary to force the distribution of densitites to be such that these coefficients are 2 .o in order to avoid moving the center of mass of the earth.

The form which sonstraints should take can be found by expressing $1 / \ell$ in Eqn. (4) in terms of spherical harmonics ard identifying cozfficients $P_{n}^{m}(\sin)$ $\cos m \lambda$ and $P_{n}^{m}(\sin \phi) \sin m \lambda$. Schwarz [foference 15] has shown that this Jeads to expressions for $C^{\prime}{ }_{n m}$ a.d $S^{\prime}{ }_{n m}$ of

$$
\left\{\begin{array}{l}
C_{n m}^{\prime} \\
S^{\prime} \\
n m
\end{array}\right\}=\frac{\left(2-\delta_{o m}\right)}{G M} \frac{(n-m)!}{(n+m)!} \sum_{i=1}^{M}
$$

$$
\left.x_{i} \iint \Delta E_{i}\left(\frac{r}{a^{2}}\right)^{n} p_{n}^{m} i \sin \phi\right)\left\{\begin{array}{l}
\cos m \lambda \tag{9}\\
\sin m \lambda
\end{array}\right\} d E
$$

whers $\varepsilon_{o m}=1$ if $m=0$ and zero otherwise. This set of integrals can be obtaincu numerically by breaking the area ΔE_{i} up into sub-blocks as was done for the acceleration calculation.

The constraint equations are ubtained by setting $S^{\prime}{ }^{n m}$ and S ' $n m$ equal to zero for every spherical harmonic coeificient to which the surface densities shculd not contribute. In GEODYN, the default set of zero coefficients has been set to $\mathrm{C}_{1}{ }_{10}, \mathrm{C}_{11}, \mathrm{~S} \cdot{ }_{11}$. Additional constraints (as, e.g., no contribution to 8 th degree or lower degree roefficients) can be imposed upon anput oftion.

The GEODYN inplementation of constraints is through the solution for a number of dersities equal to the total number of densities adjusted less the number of constraint. equations. The normal matrix thus contairs only independent deasities and core requirements are minimized. The procedure for eliminating densities is seen by writing the constraint equations obtained from (y) as

$$
\begin{align*}
& \sum_{i=1}^{M} x_{i} \iint_{\Delta E_{i}}\left(\frac{r}{a_{e}}\right)^{n} p_{n}^{m}(\sin \phi) \cos m \lambda d E=0 \tag{10a}\\
& \sum_{i=1}^{M} x_{i} \iint_{\Delta E_{i}}\left(\frac{\varepsilon}{a_{e}}\right)^{n} P_{n}^{m}(\sin \phi) \sin m \lambda d E=0 \tag{10b}
\end{align*}
$$

for

$$
\begin{aligned}
& m \leq n \\
& n \leq N^{\prime}
\end{aligned}
$$

where N^{\prime} is the maximum degree coefficient unaffected by the surface density layers.

The set of Eqnis. (10) can be written formally
as

$$
\begin{equation*}
\sum_{i=1}^{K_{i}} \Lambda_{j i} \chi_{i}=0, j=1, M^{\prime} \tag{11}
\end{equation*}
$$

where the $\Lambda_{j i}$ are given by the surface integrals in (10), and M^{\prime} is the number of constrain: equations. The number M^{\prime} is related to N^{\prime} by

$$
\begin{equation*}
M^{\prime}=N^{\prime}\left(N^{\prime}+2\right), \tag{12}
\end{equation*}
$$

as follows from the number of $C^{\prime}{ }_{n m}$ and $S^{\prime}{ }_{n m}$ coefficients for which $n \leq N^{\prime}$ and which are not identically zero. On

$$
\begin{equation*}
\sum_{i=1}^{M^{\prime}} \Lambda_{j i} x_{i}+\sum_{i \cdot M^{\prime}+1}^{M} \Lambda_{j i} x_{i}=0 . \tag{13}
\end{equation*}
$$

Now let the square array with elements $\Lambda_{j i}$ and $i \leq j$ possess an inverse w'ose elements are dencted by $A^{\prime}{ }_{j i}$. Then this matrix may be used in (13) h solve for the first M ' surface densities,

$$
\begin{equation*}
x_{k}=-\sum_{j=1}^{L^{\prime}} \Lambda_{k j}^{\prime} \sum_{i=M^{\prime}+1}^{M} \Lambda_{j i} x_{i}, k=1, M^{\prime} \tag{14}
\end{equation*}
$$

There are thus $M-M^{\prime}$ independent densities remaining and Eqn. (14) can be used to relate the aapendent densities.

The integration of the variational equations to obtair the partials of the trajectory with respect to the indeyendent surface densities requires that the forcing function for the variational equations include both. the direct and indirect effects of the independert adjusted dersities. If ${ }^{\bar{a}}$ SD is the surface density acceleration, then the required forcing finction is

$$
\begin{equation*}
\left.\frac{\partial \bar{a}_{S D}}{\partial x_{i}}\right|_{\text {tota1 }}=\frac{\partial \bar{a}_{S D}}{\partial x_{i}}+\sum_{k=1}^{M^{\prime}} \frac{\partial \bar{a}_{S D}}{\partial x_{k}} \frac{\partial x_{k}}{\partial x_{i}}, i=N^{\prime}+1, N \tag{15}
\end{equation*}
$$

SIIRDFN
with $\frac{\partial x_{k}}{\partial x_{i}}$ to be outained from Eqn. (14).

It should be noted that GEODYN has the option of adjusting only a portion of the surface densities. This, in efiect, means that there are additional constraint equatiors, but they are quite simple to incorporate. The constraints given by Eqn. (14) are still required to hela with no modification whatsoever. Ordering the densitres such that the unadjusted densities are last in the array, then Eqn. (15) is modified only to the extent that i has the range $M^{\prime}+1$ to $M-M_{0}$, with M_{0} the number of unadjusted densities. If there are more constraint equations than there are densities to be adjusted, GEODYN will terminate upon reading the incut deck with the appropriate or.or message.
8. 4 SOI.AR: LUNAR, AND PLANETARY GRAVITATIONAL PERTURBATIONS

SUNGRV
The perturbations caused by a third body on a satellite orbit are treated by defining a function, R_{d}, which is the thiri body disturbing potential. This potential takes on the following form:

$$
\begin{equation*}
R_{d}=\frac{G M m_{d}}{r_{d}}\left[\left(1-\frac{2 r}{r_{d}} S+\frac{r^{2}}{r_{d}^{2}}\right)^{-1 / 2}-\frac{r}{r_{d}}\right] \tag{1}
\end{equation*}
$$

where
m_{d} is the mass of the disturbing body.
\bar{r}_{d} is the geocentric true of $\Omega \quad$ isition vector to the disturbing bu
S is equal to whe cosine of the enclosed ar lle between \vec{r} and \dot{r}
\bar{r} is the geocentric truc of dete position vector of the satellite.

G is the universal gravitational constant, and

M is the mass of the Earth.

The third body perturbations considered in GEORYN are for the Sun, the Moon, Venus, Mars, Jupiter, and Saturn. All are comp: ${ }^{\circ}$.ed in subroutine SUNGRV by

$$
\begin{equation*}
\bar{a}_{d}=-G M m_{d}\left[\frac{\bar{d}}{\bar{D}_{d}} \cdot \frac{1}{r_{d}}\left(\frac{\bar{r}_{d}}{r_{d}}\right)\right] \tag{2}
\end{equation*}
$$

where

$$
\begin{aligned}
& \bar{d}=\bar{r}-\bar{r}_{d} \\
& D_{d}=\left[r_{d}^{2}-2 r r_{d} s+r^{2}\right]^{3 / 2}
\end{aligned}
$$

These latter quantities, \bar{C} and D as well as $D^{2 / 3}$
VEVh' are passed to subroutine VEVAL for the variatioal equation calculations. VEVAL computes the matrix $U_{2 C}$ whose $i, j^{\text {th }}$ elements is given by

$$
\begin{equation*}
\frac{\partial^{2} R_{d}}{\partial r_{i} \partial r_{j}}=-\frac{G m_{d}}{D_{d}}\left[\frac{\partial r_{i}}{\partial r_{j}}+\frac{\zeta d_{i} a_{j}}{D_{d}^{2 T}}\right] \tag{3}
\end{equation*}
$$

This matrix is fundamental part of the variational equations.

8.5 SOLAR RADIATION YRESSURE

The force due to solac radiation can have a significant effert on the artits of satellitys with a large area to mass ratio. The accelerations due io solar radiation pressure are formulated in the

$$
\begin{equation*}
\pi_{R}=-v C_{R} \frac{A_{s}}{m_{s}} p_{s} \hat{r}_{s} \tag{1}
\end{equation*}
$$

where
v is the eclipse factor, such that
$\nu=0$ when the satellite is in the Earth's shadow
$v=1$ when the satellite is 111 mi rated by the Sun
C_{R} is a factor depending on the reflective characteristics cf the satellite,
A_{s} is the cross sectional area of the satellite;
"s is the mass of the satellite,
P_{s} is the solar radiation pressure in the vicinity of the Earth, add
$\hat{\mathbf{r}}_{s}$ is the (geocentric) true of date unit vector pointing to the Sun.

The unit vector \ddot{r}_{s} is deter inedis part of the luni-solar-planetary ephemeris computations
8.5-2

$$
c-3
$$

The eclipse factor, v, is determined as follows: F Compute

$$
\begin{equation*}
\mathrm{D}=\overline{\mathrm{r}} \cdot \hat{\mathbf{r}}_{s} \tag{2}
\end{equation*}
$$

where \bar{r} is the true of date position vector of the satellite. If D is positive, the satellite is always in sunlight. If D is negative, compute the vector $\overline{\mathrm{P}}_{\mathrm{R}}$.

$$
\begin{equation*}
\bar{P}_{R}=\bar{r}-\mathrm{D} \hat{r}_{\mathrm{s}} . \tag{3}
\end{equation*}
$$

This vector is perpendicular to $\hat{\mathrm{r}}_{\mathrm{s}}$. If its magnitude is less than an Earth radius, or rather if

$$
\begin{equation*}
\bar{P}_{R} \cdot \bar{P}_{R}<a_{e}^{2} \tag{4}
\end{equation*}
$$

the satellite is in shadow.

The satellite is assumed to be specularly reflecting with reflectivity ρ_{s}; thus

$$
\begin{equation*}
C_{R}=1+\rho_{S} \tag{5}
\end{equation*}
$$

When a radiation pressure coefficient is being determined; ice., C_{R}, the partials for the f matrix

$$
8.5-3
$$

ir the variational equations computation must be computed. The $i^{\text {th }}$ element of this column matrix is given by

$$
\begin{equation*}
\mathbf{f}_{i}=-v \frac{\mathbf{A}_{\mathbf{s}}}{\mathbf{m}_{\mathbf{s}}} \mathbf{p}_{\mathbf{s}} \mathbf{r}_{\mathbf{s}_{i}} \tag{6}
\end{equation*}
$$

These computations for the effects of solar radiation pressure are done in subroutine F.

8.6 ATMOSPHERIC DRAG

A satellite moving through an atmosphere experiences a drag force. The acceleration due to this force is given by

$$
\begin{equation*}
\bar{A}_{D}=-\frac{1}{2} C_{D} \frac{A_{s}}{m_{s}} \rho_{D} v_{r} \bar{v}_{r} \tag{1}
\end{equation*}
$$

where
C_{D} is the satellite drag coefficient
A_{s} is the cross-sectional area of the satellite
m_{s} is Lie mass of the satellite, DRAG
ρ_{D} is the density of the atmosphere at the satellite position, and
\bar{v}_{r} is the velocity vector of the satellite relative to the atmosphere.

Both A_{S} and C_{D} are treated as constants in GEODYN. Although A_{s} depends somewhat on satellite attitude, the use of a mean cross-sectional area does not lead to significant errors for geodetically useful satellites. The factor C_{D} varies slightly with satellite shape and atmospheric composition. However, for any geodetically useful satellite, it may be treated as a s?tellite dependent constant.

The relative velocity vector, \vec{v}_{r}, is computed assuming tiat the atmosphere rotates with the Earth. The true of date components of this vector are then

$$
\begin{align*}
& \dot{x}_{r}=\dot{x}+\dot{\theta}_{g} y \tag{2}\\
& \dot{y}_{r}=\dot{y}-\dot{\theta}_{g} x \tag{3}\\
& \dot{z}_{r}=\dot{z} \tag{4}
\end{align*}
$$

as is indicated fron Section 3.4, the subsection on transformations between Earth-fixed and true of date systems. The quantities \dot{x}, \dot{y}, and \dot{z} are of course the components of $\dot{\bar{r}}$, the satellite velocity vector in true of date coordinates.

The drag accelerations are computed in the
GEODYN system by subroutine DRAG, with the atmospheric density ${ }^{5}$ D being evaluated by subroutine D71, D650. In addition, subroutine DRAG computes the direct partials for the f matrix of the variational equations when the drag coefficient C_{D} is being determined. These partials are given by

$$
\begin{equation*}
f=-\frac{1}{2} \frac{A_{S}}{m_{S}} \rho_{D} v_{r} \bar{v}_{r} \tag{5}
\end{equation*}
$$

When drag is present in an orbit determination
VAV: run, the D_{r} matrix in the variational equations must also be computed. This matrix, which contains the partial derivatives of the drag acceleration with respect to the Cartesian orbital elements, is constructed in subroutine VEVAL. We have

$$
D_{r}=-\frac{1}{2} C_{D} \frac{A_{s}}{m_{s}}\left[{ }^{\prime}\left[{ }_{D} v_{r} \frac{\partial \bar{v}_{r}}{\partial \bar{x}_{t}}+\rho_{r} \frac{\partial v_{r}}{\partial \bar{x}_{t}} \bar{v}_{r}+\frac{\partial \rho_{D}}{\partial \bar{x}_{t}} v_{r} \bar{v}_{r}\right]\right.
$$

where

$$
\bar{x}_{t} \text { is }(x, y, y, \dot{x}, \dot{y}, \dot{z}) ; \text { i.e., } \bar{x}_{t} \text { spans } \bar{r} \text { and } \dot{\bar{r}} .
$$

$\frac{\partial \bar{v}_{r}}{\partial \bar{x}_{t}}=\left[\begin{array}{ccc}0 & -\dot{\theta}_{g} & 0 \\ \dot{\theta}_{g} & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
vEVAL
(7)

and
$\frac{\partial \rho_{D}}{\partial \bar{x}_{t}}$ is the matrix containing the partial deriveto \bar{x}_{t} and is partially computed in subroutine DENSTY (see section 8.7.4 on atmospheric density partial derivatives). Because the density is not a function of the satellite velocity, the required partials are $\frac{3 \rho_{D}}{\partial \bar{r}}$.

In the computation of drag, it is essential to wil obtain models of the atmospheric density which will yield realistic perturbations due to drag. The GEODYN program uses the 1971 revised Jacchia Model which considers the densities between 90 km and 2500 km , and the 1965 Jacchia-Nicolet Model which gives densities between 120 km and 1000 kn with an extrafolation formula for higher altitudes.

The following discussion will cover primarily the assumptions of the models and empirical formulae used in subroutine D71 and subroutine D650. The procedure for empirically evaluating the density tables which was developed by WOLF will also be included in the discussion.

8.7.1 JACCHIA 1971 LENSITY MODEL

The 1971 revised Jacchia model, as implemented in subroutine D71, is based on Jacchia's 1971 report, "Revised Static Models of the Thermosphere and Exosphere with Empirical Temperature Profiles" (Reference 1). The density computation from the exospheric temperature as well as from variations independent of temperature is based on density data appearing in that report. This data presented in Table 1 shows the density distribution at varying altitudes and exospheric tempertures.

For further detailed development of these empirical formulae, the interested reader should consult the aforementioned report and Jacchia's 1970 report (Reference 2).

8.7.1.1 The Assumptions of the Model

The Jacchia 1971 model (J71) is based on empiricaiiy \quad if determined formulae with some inherent simplifying assumptions. Such an approach is taken primarily because the various processes occurring in different regions of the atmosphere are complex in nature. Moreover, at present, a thorough comprehension of sich processes is lacking. The present J? ${ }_{\perp}$ model is patterned after the J65a (Jacchia 1965a) model which was based upon previous assumptions by Nicclet (Reference 3).

In Nicolet's atmospheric model, temperature is considered as the primary paraneter with all other physical parareters such as density and pressure dexivable from temperature. This approach was adopted by Jacchia in his J65a model. However, in the $J 71$ model, there are variations modeled by Jacchia which are independent of temperature. They are the semi-annual variations, seasonal-latitudinal variations of the lower thermosphere, and seasonallatitudinal variations of helium, all of which involve a time dependency. Although in J7l Jacchia mentions variations in hydrogen concentration, he does not attempt any quantitative evaluation of these variations.

Composition

The J7l model has assumed that the only constituents of the atmosphere are nitrogen, oxygen, argon; helium, and hydrogen. This composition is assumed to exist in a state of mixing at heights below 100 km and in a diffusion state at higher altitudes. A further assumption on the composition of the atmosphere is that any variation in the mear molecular mass, M, in the mixing region is the result of oxygen dissociation only. The variation in M has been described by an empirical proflle for heights ranging from 90 km to 100 km .

It is also believed that gravitational separation
for helium exists at lower height than for the other components. To avoid the cumbersome ordeal of modeling a separate homopause for helium, Jacchia has modified the concentration at sea-level by a certain amount such that at altitudes where helium becomes a substantial constituent, the modeled densities will correspond to the observed densities. Although this will yield a higher helium density below 100 km , the contribution of helium to the overall density will be negligible below this height.

Hydrogen does not become part of the density model until a height of 500 km . A.t this altitude, hydrogen is assumed to be in the diffusion equilibium state.

Temperature

The temperature above the thermopause is referred to as the exospheric temperature. Although this temperature is independent of height, it is subject to solar activity, geomagnetic activity, and diurnal and other variations. The J7l model assumes constant boundary conditions of 90 km with a constant thermodynamic temperature of $183^{\circ} \mathrm{K}$ at this height. From numerous atmospheric conditions it is suggested that the atmospheric conditions at 90 km do indeed vary nominally, and thus, this assumption may be reasonably acceptable (Reference 4). Profiles of the thermodynamic temperature show that it increascs with height and reaches an inflection point at 125 km . Above this altitude, this temperature asymptotically attains the value of the exospheric temperature. An analytic model of the atmospheric densities by Roberts (Reference 4) has been constructed based on modifications to Jacchia's 1970 temperature profile betwe's.

90 km and 125 km . The $J 71$ model assumes that the basic shape of the temperature profiles remain unchanged during atmospheric heating due to geomagnetic storms. in ail liklihood, the profiles at low altitudes become distorted to yield higher temperatures furing such occurrences.

Since the $\mathrm{J71}$ model assumes the atmospher to be in static equilibrium, for any sudden changes in solar activity or in geophysical conditions, which are characteristically dynamic, the model will generally be unable to properly represent the variations in both temperature end density due to this invalid assumption. The priority has been given to the best representation of density.

8.7.1.2 Variations in the Thermosphere and Exosphere

Several types of variations occurring in the different regions of the atmosphere are incorporated in the $J 71$ model. These variations are: solar activity variations, diurnal variations, geomagnetic activity variations, semi-annual variation, seasonal-latitudinal variations of the lower thermosphere, and seasonal-latitudinal variations of helium. Still another variation which is not quantitatively evaluased by J7l is the rapid density fluctuations believed to be associated with gravity waves (Refarence 1). Each of the above variations may be modeled empirically from observable data. However, because a static model is used, the various predictions will exhibit different degrees of accuracy for each variation. It is fundamental, however, to note that unless the characteristic time for which these variations occur is much longer than that for the processes of diffusion, conduction, and convection to occur, the predictions will be poor (Reference 1).

Solar Activity

The variations in the thermosphere and exosphere as a result of solar activity are of a dual natire. One type of variation is a slow variation which prevails over an 11-year period as the average solar élux strength varies during the solar cycle. The other type is a rapid day-to-day variation due to the actively changing solar regions which appear and disappear as the sun rotates and as sunspots are formed.

To observe such activities, the 10.7 cm solar flux line is commonly used as an index of solar activity, The National Research Council in Ottawa has made daily measurements on this flux line since 1947. These values appear monthly in the "Solar Geophysical Data (Prompt Reports)" by the National Oceanic and Atmospheric Administration and the Environmental Data Service in Boulder, Colorado (U.S. Department of Commerce).

A linear relationship exists between the average 10.7 cm flux and the average nighttime minimum global exospheric temperature (Jacchia 1971) and may be expressed as:

$$
\begin{equation*}
\mathrm{T}_{\infty}=379^{\circ}+3.24^{\circ} \stackrel{\mathrm{F}}{10.7}\left({ }^{\circ} \mathrm{Kelvin}\right) \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathrm{T}_{\infty}= & \text { is the average nighttime minimum global } \\
& \text { exospheric temperature averaged over three } \\
& \text { solax roiations (} 81 \text { day } s) .
\end{aligned}
$$

$$
\begin{aligned}
& \text { F10.7 is the average } 10.7 \mathrm{~cm} \text { flux strength over } \\
& \text { three solar rotations and measured ir uni:. } \\
& \text { of } 10^{-22} \text { watts } \mathrm{m}^{-2} \text { (cycle/sec) } \\
& \text { bandwic:. . }
\end{aligned}
$$

Equation (1.) expresses the relationship with solar Elua when the planetary geonagnetic index, $K p$ is zero; i.e., for no geomagneti= disturbances.

The nighttime minimum of the global exospheric temperature for a given day (Reference 1) is

$$
\begin{equation*}
T_{c}=T_{\infty}+1.3^{\circ}\left(F_{10.7}-F_{10.7}\right) \tag{2}
\end{equation*}
$$

where
$\mathrm{F}_{10.7}$ is the daily value of the 10.7 cm solar flux
in the same units as $\mathrm{F}_{10.7}$ for one day earlier,
since there is a one day lag of the temperature
variation response to the solar flux (Roener
1968).

Thus, Equation (2) models a daily temperature variation about the average nighttime minimum global temperature as determined in Equation 1.

Diurnal Variations

Computations from drag measuremeais have indicated that the atmospheric density distribution varies from day to night. The densities are at a peak at 2 P.M. local solar time (LST) approximately at the latitude of the subsolar point, and it a minimusa at 3 A.M. (LST) approximately
of the same latitude in the opposite hemisphere. The
diurnal variation of density at any point is suoject to seasonal changes. By empirical relationsinips, fhis variation may be described in terms of the temperature. Again, because a static model is used, the accuracy of this temperature is open to question.

At a particular hour and geographic location, the temperature, T_{ℓ}, can be expressed in terms of the actual global nighttime minimum temperature, T_{c}, for the given day (Reference 1). Thus, we may write
$T_{\ell}=T_{c}\left(1+R \sin ^{m_{\theta}}\right)\left(1+R \frac{\cos ^{m_{n}}-\sin ^{m_{\theta}}}{1+R \sin ^{m_{\theta}}}-\cos ^{n} \frac{\tau}{2}\right)$
where

```
R=0.3
m=2.2
n=3.0
\tau=H+\beta+p}\operatorname{sin}(H+\gamma) for (-\pi<r<\pi
P}=-3\mp@subsup{7}{}{\circ}\mathrm{ (lag of the temperature maximum with the
        uppermost point of the sun.)
p=+60}\mathrm{ (introduces an asymmetry in the temperature
    curve.)
\gamma=+43
    in the temperature curve.)
\eta=\frac{1}{2}ABS (\mp@subsup{\phi}{}{\prime}-\mp@subsup{S}{0}{})
0=\frac{1}{2}}\textrm{ABS}(\mp@subsup{\phi}{}{\prime}+\mp@subsup{\delta}{0}{}
```

$$
\begin{aligned}
\phi^{\prime}= & \text { geographic (geocentric) latitude } \\
\delta_{\Theta}= & \text { declination of the sun } \\
H= & \text { hour angle of the sui } \\
& \text { (when the point considered, the sun, and the } \\
& \text { earth's axis are all coplanar, } H=0 \text {. The hour } \\
& \text { angle is measured westward } 0^{\circ} \text { to } 360^{\circ} \text {.) }
\end{aligned}
$$

The parameter R determines the relative amplitude of the temperature variation. Jacchia and his associates have undertaken investigations of R which reveal indications of its variation in time and with altitude. Afte; consulting 1969-1970 cata, Jacchia presently has ibandoned any attempt at any definitive conclusions about the variations of R with time or with solar activity (Reference 1). Instead, he believes this evidence to be the result of inherent limitaticns of the static atnospheric representation. Consequently, in the J71 model, a constant value of $R=0.3$ is maintained.

Geomagnetic Activity.

Precise effects of geomagnetic activity canrot be obtained by present measurements from satellite drag, since suca techniques can only show averaged values of densities. It is also realized that the consequences of a geomagnetic disturbance in view of the atmospherir: temperatures and densities over the global regions are of a complex nature. However, when such disturbances occur, there are indications of increases in temperatire and density in the thermosphere above the aurora belt. By the tise this atmospheric disturbance reaches the equatorial .. ©as, a period of roughly 7 hours, the effects are dampei \therefore considerably. (Reierence 1).

A static modei description of temperacure and density \quad D7l cannot be viewed accurately since the propasation time of the geomagnetic storms is reiatively $=^{2}$ ort. Tiesefore, any empirical formulae used to compute the effacte on the parameters yield only a vague picture.

Jacchia et al (1967) have related the exospheric temperature to the 3 -hourly planetary germagnetic index K_{p}. The quantity K_{p} is used as a measure of a three-hour vaniation in the earth's magnetic field. The response of the temperature change to geomagnetic storms lags the variation in K_{p} by about 6.7 hours. In the following equation (Reference 1) the correction to the exospheric temperaturc due to geomagnetic activity is

$$
\begin{equation*}
\Delta T_{\infty}=28^{\circ} X_{p}+0.03^{\circ} \exp \left(K_{p}\right) \tag{4}
\end{equation*}
$$

for heights above 200 km .

Although this K_{p} in equation (4) is a three-hour planetary geomagnetic index, in subroutine DENSTY an averaged K_{p} over a 24 -hour period is used to minimize the amount of input data to GEODYN. The loss of accuracy in using the daily average of K_{p} is minimized, since the above equation is for a smoothed effect of the variations derived from satellite data.

Below 200 km , density predictions from equation (4) prove to be too low. Better resuits are obtained if the variations were represented as a two-step hybrid formula in which a correction to the density and to the temperature is made. Thus, in $J 71$ the following hybrid formula (Refereace 1) is given as
(a) $\mathrm{P}_{4}=\Delta \log _{10} \rho=0.012 \mathrm{~K}_{\mathrm{p}}+1.2 \times 10^{-5} \exp \left(\mathrm{~K}_{\mathrm{p}}\right)$
(b) $\Delta T_{\infty}=14^{\circ} K_{p}+0.02^{\circ} \exp \left(K_{p}\right)$
where $\Delta \log _{10^{p}}$ is the decimal logarithm correction to the density ρ.

The values of a three-hour K_{p} index are availabie along with the daily solar flux data in the publication "Solar Geophysical Data" by the N.O.A.A. and E.D.S. Boulder, Colorado (Department of Commerce).

In computing the exospheric temperature, accurate

FLUXM FLUXS ADFLUX daily values for both the solar and geomagnetic flux must be used. These values are stored in the subroutines FLUXM and FLUXS of GEODYN, and they are updated as new information is received. This information may be updated (subroutine ADFLUX) using the appropriate GEODYN Input Cards. The user should be aware of the fact that these tables are expanded as new information is made available (Reference 3).

At the beginning of each run, a file is generated for JANTHG each satellite arc which contains the required flux data for the time period indicated. Subroutine JANTHG sets up the flux tables as well as averaging the daily values of solar flux over three solar rotation periods. This enables the releasing of vast computer storage required for daily flux values over 14 years. The selected data is stored in common block FLXBLK.

A midpoint point average is used to compute the six solar rotation flux vaiues $\mathrm{F}_{10.7}{ }^{\circ}$

The semiannual variation at present is lēast inderstood of the atmospheric variations. In past models, J65, attempts at empirically relating the temperature to this variation seemed appropriate in the range of heights, 250 to 650 km , for which data was available. However. with tive ailability of new data for a wider range of altitudes, lang discrepancies in the densities appeared. After close scri iny, Jacchia in 1971 (Reference 1) found that the \because litude of the semiannual density jess nct appear to be crnnected with the solar activity. It does, however, show a strong derend ase on height and a variation from year to year. Drag anayses from the Explorgr 32 satellite have revealed that a primary minimum in July and a primary maximum in Cotober occur for the average density variation (Reference 1).

Jacchia in J 71 expresses the semiannual ariation as a product function (Reference 1) in which

$$
\begin{equation*}
P_{2}=\Delta \log _{10^{\circ}}=f(2 ; g(t) \tag{6}
\end{equation*}
$$

where $f(z)$ is the relationship between the amplitude, i.e., the difference between the primary maximum and minimum, and the height, z, and where $g(t)$ is the average density variation as a function of time for the amplitude normalized to 1. The two expressions for $f(z)$ and $g(t)$ which yield the best fit to the data are
$f(z)=\left(5.876 \times 10^{-7} z^{2.331}+0.05328\right) \exp \left(-2.868 \times 10^{-3} z\right)$
for $=$ in kilometers;

$$
\begin{align*}
g(\tau)= & 0.02835+0.3817[1+0.4671 \sin (2 \pi \tau+4.1370] \\
& \sin (4 \pi+4.259) \tag{8}
\end{align*}
$$

where

$$
\begin{aligned}
\tau= & \Phi+0.09544\left\{[0.5+0.5 \sin (2 \pi+6.035)]^{1.650}-0.5\right\} \\
\tau= & (t-36204) / 365.2422 \\
t= & \text { time expressed in Modified Julian Days } \\
& (\text { M.J.D. }=\text { Julian Day minus } 2400000.5) . \\
& \text { M.J.D. }=36204 \text { is for January } 1,1958 .
\end{aligned}
$$

The term Φ is the phase of the semicnnual variation which is the number of days elapsed sisee Januay 1, ! iss divided by the number of days for the tropiry. year.

Seasonal-Latitudinal Variations of the Lower Thermosphere

In the lower thermosphere, from about 90 km to 120 km , there are variations occurring in temperature and density depending on the letitude and the season. Only the density variation is considered because any temperature variation proves to be too tedious to handle. Between the heights from 90 km to 100 km , there is a rapid increase in the amplitude of this variation in density with a maximum amplitude occurring between 105 and 120 km (Reference 1). Above

120 km there is no data on which to base pedictions of the seasonal-latitudinai variations. This variation appears iu dectease in amplitude to thr point where negligible fluctuations exist at 150 km . Therefore, in DENSTY, the seasonal-latitudinal veriations are neglected at heights above 160 km .

Jacchia in J?l fits the seasonal variations to an empirical correction to the decimal logarithm of the density (Reference 1) as follows:

$$
\begin{equation*}
P_{3}=\Delta \log _{10^{\circ}}=S \frac{\phi^{\prime}}{\left|\phi^{\prime}\right|} P \sin ^{2} \phi^{\prime} \tag{9}
\end{equation*}
$$

where

$$
\begin{aligned}
& t^{\prime}=\text { geographic latirude } \\
& S=0.014(z-90) \exp \left[-0.0013(z-90)^{2}\right] \\
& z=\text { height in kilometers } \\
& \mathrm{P}=\sin (2 \pi \Phi+1.72) \\
& \Phi=\text { phase as given in equation }(8) .
\end{aligned}
$$

Heilum in the atinuphacie has been observed tomgrate n! 1 towards the winter pole. The phenomenon of this seasonal shift in the helium concentration in the upper atmosphere is not yet understood. It therefore becomes necessary to perform an empirical fit to drag data from which this seasonal variation is derived. The expression which is used in J71 (Reference 1) to describe the helium variation. is

$$
\begin{equation*}
Q_{2}=-\log _{10} n(H e)=\left.0.65\right|_{\varepsilon} ^{\delta \theta} \left\lvert\,\left[\sin ^{3}\left(\frac{\pi}{4}-\frac{\phi}{2} \frac{\delta \theta}{|\delta \theta|}\right)-\sin ^{3} \frac{\pi}{4}\right]\right. \tag{i0}
\end{equation*}
$$

where
$n(H=)=$ number density of helim (number of particles $/ \mathrm{cm}^{3}$)
$\Delta \quad=$ declination of the sun
$\phi \quad=$ geographic latitude
$\varepsilon \quad=$ obliquity of the ecliptic $\left(\varepsilon=23.44^{\circ}\right)$

The variation of the helium density in subroutine DENSTY is not considered for heights below 500 km . It is also neglected for latitudes whose absolute value is less than 15° between the range of heights from 500 km to 800 km .

The correction to the density due to the seasonal lacitudinat variations of helium is then

$$
\begin{equation*}
\Delta \rho_{D}=10^{\log _{10} n(\mathrm{He})}\left[10^{\Delta \log _{10} \mathrm{n}(\mathrm{He})}-1\right] \mathrm{c}^{\mathrm{gm} / \mathrm{cm}^{3}} \tag{11}
\end{equation*}
$$

where

C is the molecular mass of leliun divided by Avogadro's Number.

8.7.1.3 Polynomial Fit of Density Tables

The data which appears in Table 1 shows the variation D71 of density with altitude and exospheric temperature which is reproduced from Jacchia's 1971 report (heference l). From heights of 90 km to 100 km , the density values were obtained by numerically integrating the barometric equations. The diffusion equation was numerically integrated to obtain values of the densit; on the oltitude range, $i 00 \mathrm{~km}$. <Z $\leq 2500 \mathrm{~km}$. In both cases, an empirical temperature profile was used for each exospheric temperature.

In the GEODYN subroutine DENSTY, the atmospheric density is computed based on the data from Table 1 after appropriate corrections are applied to the exospheric temperature. The tabulated densities have been fitted (by WOLF) to various degree polynomials of the form:

$$
\begin{equation*}
P_{1}=L O G_{10} \rho_{D T}=\sum_{i} h^{(i-1)} \sum_{j} a_{i j} T^{(j-1)} \tag{12}
\end{equation*}
$$

where

$$
\begin{aligned}
& \text { O }_{\text {DT }} \text { is the density in } \mathrm{g} / \mathrm{cm}^{3} \\
& \mathrm{~T} \text { is the exospheric temperature, } \\
& h \text { is tha spheroidal height (altitude), and } \\
& \text { a if is aet of appropriate coefficients for } \\
& \text { the denity tables. }
\end{aligned}
$$

third degree fit. The coeffictente for the selected polynowials for the total dens:i, a.e shown in Table 2. In Table 3, coefficients of poiynomia!s for the helium number density are pie sented.

The comiuted densities from the fitted polynomials show a reasonable percentage error frow the densities given in Table 1 . For each of the regions and temperature ranges, the maximum errors are given in Table 4 . The largest error of 12% occurs in the reginn between $500-1600 \mathrm{~km}$ in the temperature range of $500^{\circ}-800^{\circ} \mathrm{K}$. In the region of 1000-2500 km with temperatures between 800° • $1900^{\circ} \mathrm{K}$, a fourth degree fit to the temperature yields a maximum error of 11.0% in the densities.

The helium number density fits are also given in Table 4. As one ran see, the values of the number density are quite satisfactorily fitted by the polynomials. The maximum error in the whole range of heights and temperatures is only 2.8\%.

Overall, these fits could be improved by either using higher degree polynomials or possibly other functions, or by further sub-dividing the density table. However, these maximum es rors agnear to be tolerable since they are considered to be within the range of accuracy of the model presently used. Above 2500 km , the density was found to be negligibly small, and therefore, was set to zero.

REPRODUCIBILITY OF THE ORIGINAL PAGE IS PGOR

0

8

$\therefore$$N$
C
0
0
0
0
0
0-10.4133
-11.156-10.013
-11.100
$-1 i .100$
-11.470
9

∞
\vdots

\sim
$\underset{y}{2}$
9
8
8 -13.243
-12.7 .12
-16.118
-1.0252
-14.362
-14.213
-14.039
-14.765
-14.840
-15.013
莫 -10.261
-10.348-10.642
-10.913
-11.151-10.913
-11.153
-11.281(1)-11.864
$-13 .: 54$
503-10.021
$-13.3 \div 2$m

 ? $2 ?$

 0
0
0 8
9
9

 ${ }_{1250}$
 No 9年是品

 ： －品

 Reproduced from
 10.003 408号 －星 Nas

 10．033 $\mathbf{1 0 . 0 0 3}$
-10.326
-10.66 $-19,069$
-13.653
-10.053 －

 so
 710.093
-10.327等 87荡 0
0

 anomasacat

$\stackrel{8}{8}$

 든

ま.

 ORGINAL PAar 19 POOR

1850

40
6
6
6
0
0

 Sumnary of Log Densities Table 1 (cont'd)

$\begin{aligned} & 9 \\ & 2 \end{aligned}$	
$\begin{aligned} & 0 \\ & \text { n } \\ & \text { an } \end{aligned}$	Ningtmming mit + + + + $\rightarrow \rightarrow+\rightarrow-\rightarrow+\cdots$

\qquad

 3505

 - is. A : $\frac{3}{4}$ 8

 80\% inghin क+wath 7adxat3? s.0.05+80t R立popuctartwo wat ompaty, suct boos

 0
0
m
0
0
0

TABLE 2.
density polynominl coefricienst (For Decimal Logarithm of Density)
$T^{0} \quad T^{1} \quad T^{2} \quad T^{3} \quad T^{4}$

90-200 M

h^{0}	4.22035	$0.98393 E-2$	$-.64952 \mathrm{E}-\mathrm{E}$	$0.14715 \mathrm{E}-8$
$\mathrm{~h}^{\mathrm{i}}$	-0.20134	$-.23412 \mathrm{E}-3$	$0.15337 \mathrm{E}-6$	$-.34675 \mathrm{E}-10$
$\mathrm{~h}^{2}$	$0.78592 \mathrm{E}-3$	$0.16966 \mathrm{E}-5$	$-.21060 \mathrm{E}-8$	$0.25007 \mathrm{E}-12$
$\mathrm{~h}^{3}$	$-.12087 \mathrm{E}-5$	$-.34360 \mathrm{E}-8$	$0.22457 \mathrm{E}-11$	$-.51069 \mathrm{E}-15$

200-500K:l for $500^{\circ}-300^{\circ} \mathrm{K}$

h^{0}	$-.12838 \mathrm{E}+2$	$0.40709 \mathrm{E}-2$	$0.97074 \mathrm{E}-5$	$-.10643 \mathrm{E}-7$
h^{3}	$0.82282 \mathrm{E}-1$	$-.31215 \mathrm{E}-3$	$0.26543 \mathrm{E}-6$	$-.55193 \mathrm{E}-10$
$\mathrm{~h}^{2}$	$-.68951 \mathrm{E}-3$	$0.24402 \mathrm{E}-5$	$-.27058 \mathrm{E}-8$	$0.99003 \mathrm{E}-12$
$\mathrm{~h}^{3}$	$0.11263 \mathrm{E}-5$	$-.41807 \mathrm{E}-8$	$0.50617 \mathrm{E}-11$	$-.20484 \mathrm{E}-14$

200-50GKM for $800^{\circ}-1900^{\circ} \mathrm{K}$
$h^{0^{\prime}} \quad-8.4595 \quad-.15000 \mathrm{E}-3 \quad-.62640 \mathrm{E}-6 \quad 0.24612 \mathrm{E}-9$
$h^{1} \quad-.28355 E-1 \quad 0.17760 \mathrm{E}-6 \quad 0.61398 \mathrm{E}-8 \quad$-. 23362E-11
$h^{2} \quad 0.55998 \mathrm{E}-5 \quad 0.77461 \mathrm{E}-7 \quad-.59492 \mathrm{E}-1 \mathrm{C} \quad 0.14921 \mathrm{E}-13$
$h^{3} \quad 0.39434 \mathrm{E}-8 \quad-.76435 \mathrm{E}-10 \quad 0.58353 \mathrm{E}-13 \quad-.14595 \mathrm{E}-16$

500-100KM for $500^{\circ}-800^{\circ} \mathrm{K}$

h^{0}	$-.77659 \mathrm{E}+2$	0.167271	$-.56570 \mathrm{E}-4$	$-.50424 \mathrm{E}-7$
$\mathrm{~h}^{1}$	0.30638	$-.98936 \mathrm{E}-3$	$0.74932 \mathrm{~F}-.6$	$-.55178 \mathrm{E}-20$
h^{2}	$-.38935 \mathrm{E}-3$	$0.12973 \mathrm{E}-5$	$-.19776 \mathrm{E}-8$	$0.14191 \mathrm{E}-12$
h^{3}	$0.15962 \mathrm{E}-6$	$-.54049 \mathrm{E}-9$	$0.46709 \mathrm{E}-12$	$-.71846 \mathrm{E}-16$

REPRODUCIBILITY OF TEX ORIGRNAL PAGE IS POOT

density polynomial coifficients

T^{0}
r^{1}
x^{2}
r^{3}
T^{4}
$500-1000 \mathrm{KM}$ for $800^{\circ}-1900^{\circ} \mathrm{K}$

h^{0}	$0.50081 E+2$	-.12600	$0.83896 E-4$	$-.18276 E-7$
h^{1}	-.30572	$0.61706 E-3$	$-.41443 E-6$	$0.91096 E-10$
h^{2}	$0.41767 E-3$	$-.88743 E-6$	$0.61040 E-9$	$-.13634 E-12$
h^{3}	$-.17955 E-6$	$0.39386 E-9$	$-.27639 E-12$	$0.62649 E-16$

1000-2500KM for $500^{\circ}-800^{\circ} \mathrm{K}$

h^{0}	- 5 S32E+2	-26136	0.41963E-3	-.21661E-6
h^{1}	Q ${ }_{\text {b }}$ 352E-1	0, retide-3	-.48214E-6	0.27095E-9
h^{2}	0 \1141E-4	-7\%	0.16042E-9	-.99055E-13
3	-T0059E-10	$0.64 \mathrm{ysE}-11$	-.14085E-13	0.10443E-16

1000-2500KM for $800^{\circ}-1900^{\circ} \mathrm{K}$

h^{0}	$0.54410 \mathrm{E}+2$		0.21642 [3	-.90623E-7	0.13054E-10
h^{1}	-. 1355	$0.4 \text { KLig-3 }$	-.46137E-6	0.20179E-9	-. 30888E-13
n^{2}	$0.87693 \mathrm{E}-4$	-. 2715 \% 6	0. 9 9745E-9	-.13425E-12	0.21370E-16
h^{3}	- 15/16E-7	0.496312-10	-.55297E-13	0.25432E-16	. $41304 \mathrm{E}+20$

TABLE 3
HELIUM DENSITY POLYNOMIAL COEFFICIISNTS (DECIMAL LOG OF ILELIUM NUMiBER Dỉivify)
T^{0}
T^{1}
T^{2}
T^{3}
($500-1000 \mathrm{KM}$ for $500^{\circ}-800^{\circ} \mathrm{K}$

	h^{0}	9.3712	$-.52634 E-2$	$0.52983 E-5$	$-.20471 \mathrm{E}-8$
	h^{1}	$-.13141 \mathrm{E}-1$	$0.31218 \mathrm{E}-4$	$-.32598 \mathrm{E}-7$	$0.12573 \mathrm{E}-10$
1	h^{2}	$0.26071 \mathrm{E}-5$	$-.75730 \mathrm{E}-8$	$0.93058 \mathrm{E}-11$	$-.40669 \mathrm{E}-14$
	h^{3}	$-.52156 \mathrm{E}-9$	$0.19056 \mathrm{E}-11$	$-.26578 \mathrm{E}-14$	$0.12535 \mathrm{E}-17$

$500-1000 \mathrm{KN}$ for $800^{\circ} 01900^{\circ} \mathrm{K}$

h^{0}	8.3914	$-.16433 E-2$	$0.78032 E-6$	$-.14323 E-9$
h^{1}	$-.69049 E-2$	$0.84138 E-5$	$-.44577 E-8$	$0.85627 E-12$
h^{2}	$0.10510 E-5$	$-.12663 E-8$	$0.71134 \mathrm{E}-12$	$-.14180 \mathrm{E}-15$
h^{3}	$-.12222 \mathrm{E}-9$	$0.14745 \mathrm{E}-12$	$-.97658 \mathrm{E}-16$	$0.21458 \mathrm{E}-19$

1000-2500KM for $500^{\circ}-800^{\circ} \mathrm{K}$

h^{0}	9.1045	$-4.3410 \mathrm{E}-2$	$0.40292 \mathrm{E}-5$	$-.14522 \mathrm{E}-8$
h^{1}	$-.12259 \mathrm{E}-1$	$0.27951 \mathrm{E}-4$	$-.27972 \mathrm{E}-7$	$0.10371 \mathrm{E}-10$
h^{2}	$0.15893 \mathrm{E}-5$	$-.35863 \mathrm{E}-8$	$0.35476 \mathrm{E}-11$	$-.12985 \mathrm{E}-14$
h^{3}	$-.11829 \mathrm{E}-9$	$0.26138 \mathrm{E}-12$	$-.25227 \mathrm{E}-15$	$0.89714 \mathrm{E}-19$

100-2500 KM for $800^{\circ}-1900^{\circ} \mathrm{X}$

h^{0}	8.6120	-.25363E-2	0.18979E-5	-. $73696 t-9$	0.14888 Cl
h^{1}	-.84847E-2	0.14084E-4	-.113868-7	$0.44871 \mathrm{E}-11$	-050004.45
h^{2}	0.11543i-5	- 19884E-	0.166358-11		Q $107066 \cdot 1$
h^{3}	-.945218-10	0.17337E-22	-.153685-15		chay 684

TABLE 4

PERCENTACE ERROR OF POLY:OO:IIAL FITS TG THE DENSITII:S

Helght

(KM)

90-200

Temperature Range $(\circ \mathrm{K})$

500-1900
11.6%
5.13%
12.0%
0.483
8. 85\%
2.88
4.18
1.58
1.258
11.0%

100-2500
800-1900

8.7.1.4 The Density Computation

When all of the terms contributing te the atmosphere \quad pl density are combined

$$
\begin{equation*}
\rho_{D}=10^{3}\left[10^{p_{1}+P_{2}+P_{3}+P_{4}}+10^{\hat{Q}_{1}}\left(10^{Q_{2}}-1\right) \mathrm{C}\right] \tag{14}
\end{equation*}
$$

where
$\rho_{D}=$ the atmospheric density in $\mathrm{Kg} / \mathrm{m}^{3}$
P_{1} is given by equation (12),
P_{2} is given by equation (6),
P_{3} is given by equation (9),
C
P_{4} is given by equation (Sa),
Q_{1} is given by equation (13), .
Q_{2} is given by equation (10), and
C is the molecular mass of Helium divided by Avogadro's Number $=0.6646\left(10^{-23}\right)$

)
 origiNs bars m mog

8.7.1.5 Density lartial berivative:

In addition to the density, GEODYX also requires the partial derivatives of the density with respect to the Cartesian position coordinates. Tiese partials are used in computing the drag contributions to the variational equations.

The spatial parti 1 derivatives of the atmospheric density are

$$
\begin{equation*}
\frac{\partial \rho_{D}}{\partial \bar{r}}=\frac{\partial \rho_{D}}{\partial \phi} \frac{\partial \phi}{\partial \bar{r}}+\frac{\partial \rho_{D}}{\partial \lambda} \frac{\partial \lambda}{\vdots}+\frac{\partial \rho_{D}}{\partial h} \frac{\partial h}{\partial \bar{r}} \tag{1}
\end{equation*}
$$

where
h - spheroid height of the satellite
© - sub-sateliite latitude
λ - sub-satcllite longitude
$\overline{3}$ - truc of date position vector of the satellite

Variations in atmospheric density are primarily due to changes in height. Therefore, only height variations are computed by cEODYN and

$$
\begin{align*}
& \frac{\partial \rho_{D}}{\partial \phi}=0 \tag{2}\\
& \frac{\partial \rho_{D}}{\partial \lambda}=0
\end{align*}
$$

$$
\begin{equation*}
\frac{\partial \rho_{D}}{\partial \bar{r}}-\frac{\partial \rho_{D}}{\partial h} \frac{\dot{\partial} h}{\partial \bar{r}} \tag{3}
\end{equation*}
$$

where

$\frac{\partial h}{\partial \bar{r}}$
 is presented along with the spheroid height computation in Section 5.1.

The density is given (Section 8.7.4) by

$$
\begin{equation*}
\rho_{D}=10^{3}\left[10^{P_{1}+P_{2}+P_{3}+\Gamma_{4}}+10^{Q_{1}}\left(10^{Q_{2}}-1\right) \mathrm{C}\right] \tag{4}
\end{equation*}
$$

where
C

$$
\begin{align*}
& \rho_{D}-\text { density in } K g / m^{3} \\
& P_{1}=\sum_{i=1}^{n} h^{(i-1)} \sum_{j=1}^{m} a_{i j} T^{(j-1)} \\
& P_{2}=g(t)\left[5.876\left(10^{-7}\right) h^{2.3} 11^{n}+0.06528\right] \exp \left[-2 . j 68\left(10^{-3}\right) h\right] \\
& P_{3}=0.014(h-90) P \frac{\phi^{\prime}}{\left|0^{\prime}\right|} \sin ^{2} \phi^{\prime} \exp \left[-0.0015(h-90)^{2}\right] \tag{7}\\
& P_{4}=0.012 \mathrm{~K}_{\mathrm{p}}+1.2\left(10^{-5}\right) \exp \left(\mathrm{K}_{\mathrm{p}}\right) \tag{8}
\end{align*}
$$

$$
8.7-30
$$

$$
\begin{equation*}
Q_{1}=\sum_{i=1}^{n}{ }_{n}(i-1) \sum_{j=1}^{m} b_{i j} T(j-1)=\log _{10} n(11 c) \tag{D 71}
\end{equation*}
$$

$$
\begin{equation*}
Q_{2}=\Delta \log _{10} n(11 e) \tag{10}
\end{equation*}
$$

$C=$ line molecular mass of Helium divided by Avogadro's Number.
$\mathrm{h}=$ height in Km.
$\mathbf{a}_{i j}$ - polynomial coefficients used to fit. the density table.
$b_{i j}$ - polynomial coefficients used to fit the Helium number density table.

All other terms are defined in Section 8.7.1.4 and need no further clarification at this point since they are constants in the partial derivative equations.

Defining two basic derivative formulae,

$$
\begin{equation*}
\frac{d}{d x} e^{u(x)}=e^{u(x)} \frac{d u(x)}{d x} \tag{11}
\end{equation*}
$$

$$
\frac{d}{d x} 10^{u(x)}=\frac{d}{d x} c^{u(x) \ln 10}
$$

$$
\begin{align*}
& =\operatorname{lu10} c^{u(x) \ln 10 \frac{d u(x)}{d x}} \\
& =10^{u(x)} \ell n 10 \frac{d u(x)}{d x} \tag{12}
\end{align*}
$$

And it follows that

$$
\begin{equation*}
\frac{\partial}{\partial h} 10^{P_{1}+P_{2}+P_{3}+P_{4}}=10^{P_{1}+P_{2}+P_{3}+P_{4}} \text { 2n10 } \frac{\partial}{\partial h}\left(P_{1}+P_{2}+P_{3}+P_{4}\right) \tag{13}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial}{\partial \mathrm{h}} 10^{\dot{Q}_{1}}=10^{Q_{1}} \ell n 10 \frac{\partial \gamma_{1}}{\partial \mathrm{~h}} \tag{14}
\end{equation*}
$$

Differentiating the components of (13) and (14)

$$
\begin{equation*}
\frac{\partial P_{1}}{\partial h}=\sum_{i=2}^{n}(i-1) h^{(i-2)} \sum_{j=1}^{m} a_{i j} T^{(j-1)} \tag{15}
\end{equation*}
$$

$$
\begin{align*}
\frac{\partial P_{2}}{\partial h}= & g(t)\left\{3.876\left(10^{-7}\right)(2.331) h^{1.331} \exp \left[-2.868\left(10^{-3}\right) h\right]\right. \\
+ & {\left[5.876\left(10^{-7}\right) h^{2.331}+\right.} \\
& 0.06328](-2.868)\left(10^{-3}\right) \tag{16}\\
& \left.\exp \left[-2.865\left(10^{-3}\right) \mathrm{h}\right]\right\}(16)
\end{align*}
$$

$$
8.7-32
$$

$$
\begin{align*}
\frac{\partial P_{3}}{\partial h}= & 0.014 \mathrm{P} \frac{\phi^{-}}{\left|\phi^{\prime}\right|} \sin ^{2} \phi^{\prime} \exp \left[-0.0013(h-90)^{2}\right] \\
& \left\{1+2(h-90)^{2}(-0.0013)\right\} \tag{17}
\end{align*}
$$

$$
\begin{equation*}
\frac{\partial P_{4}}{\partial h}=0 \tag{18}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial Q_{1}}{\partial h}=\sum_{i=2}^{n}(i-1) h^{(i-2)} \sum_{j=1}^{m} a_{i j} T^{(j-1)} \tag{19}
\end{equation*}
$$

The resulting partials are in the units of $\left(\mathrm{Kg} / \mathrm{m}^{3}\right) / \mathrm{Km}$ and must therefore be multiplied by 10^{-3}.

$$
\begin{equation*}
\frac{\partial \rho_{D}}{\partial h}=\frac{\partial}{\partial h} 10^{P_{1}+P_{2}+P_{3}+P_{4}}+\left(10^{Q_{2}}-1\right) c \frac{\partial}{\partial h} 10^{Q_{1}} \tag{20}
\end{equation*}
$$

The units of (20) are then

$$
\left(\mathrm{Kg} / \mathrm{n}^{4}\right) .
$$

8.7.2 JACCIIIA 1965 Density Sodel

The Jicchia 1.265 Density Modej, as implemented in subroutine Driso. is bascd or Jacchia's 1965 report, "Static Diffusion Kodels of the Upper Atmosphere with Empirical Temperature Profiles" (Rcference 12). The formulac for computing the exospheric temperature have in some cases been modificd according to Jacchia's later papers. The density computation from the exospheric tempcrature is based on density data provided in that report, reproduced hercin as Table 5 , which presents density distribution versus altitude ana exospheric temperature.

The reader who is interested in the development of these empirical formulas and the reasoning behind them should consult the aiove mentioned report and Jacchia's later papers. For the convenience of this interested reader, the references 13 for this section from a reasonable comprehensive bibliography.

RtPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

- The lacchia-Nicolct model is bascd on certain simplifying assumptions and on cmpirically detcrmined formilac. This is primarily duc to the complexity and varied naturc of the processes occurring in different regions of the atmosphe:e and the gencral 1 ach of anything rescmbling a completc understanding of the fundamental mechanisms involved. The actual derivation of the model is based upon assumptions first proposed by Nicolct (sce Reference 14); Jacch: selected the Nicolet approach to generate a model suitable for satellite dynamics.

The model of the atmosphere proposed by Nicolet considers that the fundamental parameter is the temperature. Other physical parameta such as the pressure and density were derived from the temperature. Thus the first concern is the temperature variation in the atmosphere.

This temperature variation is controlled by the following conditions:

1. Above the thermopause, the temperature of the atmosphere does not vary with altitude. The thermopause varies vit: solar açtivity (and the time of day), ranging between about 220 km to 400 km . The temperature above the thermopause is called D650 the exosplioric tenperature and is directis responsive to solar effects.

8.7-35
2. At an altitude of 120 km , the tomerature, density, and atmospheric conditions are independent of time. This is an obvious simplification. Howeve, the variations of these parameters above 120 kn are considerably larger than those occurring at 120 km , and, considering the other assumpticns, this assumpijon represents a reasonably good approximation.
3. The atmosphere is assuand to bci-in static equilibrium. With the largo day-to-night temperature variations, having a period of the same order of magnitude as the conduction tine in the lower thermosphere, and with the necasional ofeurrence of severe magnetic storrs which give :ise to fairly rapid and large temperature variations the validit) of this assunption is open to question. The best argument for this assumpt..on is its relative simplicity. It should be anticipated, hovever, that in tines of rapid change of the solar or geophysical parancters the predictions of this model vill be in crror due to the invalidity of this ussumption.

The atmosphere is considered to be in diffusive equilibriun above 120 km ; that is, the density distributions of each atmospheric constituent with loight are

Abstract

Governed imde;ondentl.; by gravily and temperature. The governing cauations are the hydrostatic Jaw, relating the pressure variation with height to the acceleration of gravity, anci the perfect gas lar, which relates the pressure, density and temperature.

 D650With this approach, Nicolct showed that above 250 km the observed density profiles were reproduced satisfactorily if the (exospheric) tenperature was assumed to be a different constant. He also indicated that the problem of representing the density betreen 120 km and the thermopause vas largely a problen of deducing the verifical distribution of temperature.

The contrihution of Jacchia to the so-called Jacchia-Nicolei model is largely the development of empiricil fornulas to compuif lüla the exusphotic temperature and vertical temperature dis* buiton as a function of exospheric temperature. These formulae are based on satellite observaiions coupled with physical reasoning. In addition, Jacchia has updated the boundary conditions of Xicolet. Thus in effect Jacchia has provided all but the basic assumptions behind the model.

The fundamental parancter of the model is therefore the exospheric temperature. This temperature, together with the boundary conditions implics a particular vertical temperature profile. These three itens e exospheric temperatur., brundary conditions, ad temperacure profile . define the density $2 t$ any altitude over 220 km through the cifrusive cquilibrium equation.
 OXEGNAL PAGY TS POOT'

Figure 5, which was tation fror. licference 14, shows a comparison of ensity and exompicric temprapures derived fron obscriations of Explorer I satcllite with solur and fomagnctic parameters. Note the correspondence between the exospheric tenperature and the density.

8.7.2.2 The Exospheric Tenperature Conputations

To calculate the fundamentsl parameter, the exospheric temperature, Jacchia considered four factors which could cause variatiors:

1. Solar activity variation
2. Semi-annual variation
3. Diurnal variation \quad ISPRODUCROLITY OF THE
4. Geonagnetic activity variation

Each of thesc variations $1:$ as determined to be related to one or more obscriable parancters (sce figure 1). The aven empirical fornulae are based on these parameters.

Solar Activiti

Therc are nany indices of solar activity but the one wince variations nost closely parillel those or atmospheries
 Intensicy of this line has teen mersured eontimuously sinee 1917, by the Daciomal Rescarch Cometi Inotcava on a danty

monthly in the "Solar-Geobhysical Mata Reports" of the Enviromacntal Scicnce Scrvices Administration in Boulder, Colorado (U.S. Department of Comerce).

Host of the time solar activity is much more intense in one solar herisphere than the other so that the flux line appears to vary lij th the rotation period of the sun, 27 days. This periodicity frequently persists for a year or longer. In addition, there is a variation in the average flux strength with a period of at out il years wijich is related to the solar cjele.

Fron satellite drag data a linear relation between the average 10.7 cm . flut and the averane global nighttime minimun exospheric tenperature has been obtained (Reference 12) and is expressed as

$$
\begin{equation*}
T_{0}=357^{\circ}+3.60^{\circ} F_{10.7} \tag{1}
\end{equation*}
$$

where

BEPRODUCCBILITY OF TEX ORICINAL PAGM PSOOR

$\mathrm{F}_{10.7}$ is the average 16.7 cm . flux strength over 2 or 3 solar rotations measured if units of 10^{-22} watts/ $\mathrm{m}^{2} /$ cycic/scc bandathth.
 teperature yeraged oker chog and p prad

 pressed (Noference 12) by

$$
\begin{equation*}
T_{0}^{\prime}=\bar{T}_{0}+1.8^{0}\left(\mathrm{~F}_{10.7}-\bar{F}_{10.7}\right) \tag{2}
\end{equation*}
$$

where

> F $_{10.7}$ is the mean of the 10.7 cm solar flux for given day in the same units as F $_{10.7}$ and
> $T_{0} \quad$ is the global nightime rinimum for the $\therefore \quad$ same day.

This formula accounts (approxinately) for the day to day temperature variation superimposed on the average global nighttime minimum temperature determined by the previous formula.

There is some indication that the cocfficient 1.8° actually varies from sunspot maximum to sunspot mininum. The indicated range of variation is frem about 2.4° down to 1.5°.

> XEPRODUCDILITY OPTHE ORHGAAL PMOE PS POOR

Semi-Anmual Variation

The seni-annuat tarjation is the least understood of the scveral types of variatien in the tpper atmosphere. Yearly, the atmospherfe densty hove roo km reaclics a docn minimatin July folloned oy ahigh

(Reference 15) (oumd that the observed densjty varjntions Doso could be wisamed hy temerature variations in the thermopause, and are roughly proportional to the 10.7 ch flu: linc. It i.is been neted that the height of the ionospheric f_{2} bayer shms a scmi-ammal variation alnost cactly in phase lijth the observed density variations. Another sugecstion by f.S. Johnson (Reference 16) concerning the cause of the semi-amual variation, involves convective transfer at ionospheric levels fron the sumer pole to the northern pole. This, as yet, does not scem to account correctly for all the detajls of this rariation. The semi-annual variation is not as stable a feature as the diurnal variation. Jacchia (Reference 12) accounted for this feature in 1965 but has, with the recent information of drag data from six satellites, updated his empirical formula (Reference of as follows:

$$
\begin{equation*}
T_{0}=T_{0}^{1}+2.41+F_{10.7}\left[10.349+0.206 \sin \left(27 t+226.5^{\circ}\right)\right] \tag{3}
\end{equation*}
$$

$\sin \left(1 \pi \tau+247.6^{\circ}\right)$
where

$$
\left.r=d / Y+0.1145\left(\frac{1+\sin \left[2 \pi(d / Y)+342.3^{\circ}\right]}{2}\right)^{2.16}-0.3^{3}\right)
$$

$d=$ day of the jear conand from Jonuary 1.

$Y=$ the tropical year in days.
$T_{0}=$ global ringtianc miniman temperature for that day corrected for scmi-annual variation.

Jacchia, Slovey, and Carphell (Reference 17) have nore clearly defincd thie variaiion. As expected, the relationship betwecn the temerature and the 10.7 cm flux line camot be considered accurate. It was concluded that the obscrved densit: variations are the result of temperature variations at esscitially the same level as in the case of the solar effect. However, a variable altitude shows that the semi amual variation affects
 of latitude.

REPRODUCIBILITY OF THE ORICINAL: PAGE IS POOR

The nost regular of the varjations is the diumaj. variation. Onc can picture the density distribution as an amospheric bulge with its peak 30° east of the subsolar point, dearadins nearly symetrically on all siecs, but a little steeper on the morning side. The density peaks at 2 P.A. local solar tire and the minimun occirs at 1 A.M. The ratio of the naximatemperature at the conter of the bulge to the minimum in the opposite herispheac ranains constant throughout the solar cycle; the ratio is 1.28 in Jacchia's rodel atmosphere. The cause of the heating is in dispuic. Sone investigators belicec it is due entircly to extrene ultra-violet (EUV) radiations; others, to ion drift; and still.others, to a combination of the two.

The temperature, \bar{i}, at a given hour and geographic locacion, can be computed in teras of the correct global nightime nininu temperature for that day, T_{0}, using the following fomula which approximates a matheratical descriptio: of the atmospheric bulfo (Reforence 12):

$$
\begin{equation*}
T=T_{0}\left(1+R \sin ^{m_{0}} 0\right)\left(1+\frac{R\left(\cos ^{m} n-\sin ^{n} \theta\right)}{1+R \sin ^{n^{n}} \theta} \cos ^{n} \frac{\tau}{2}\right) \tag{5}
\end{equation*}
$$

REPRODUCIBILITY OF TRE ORIGINAL PAGE IS POOR

$$
\begin{aligned}
& R=0.26 \\
& n=m=2.5 \\
& \tau=H+B+p \sin (H+\gamma) \quad(-\pi<\tau<\pi) \\
& B=-45^{\circ} \\
& \mathrm{p}=12^{\circ} \\
& \dot{\gamma}=45^{\circ} \\
& \hat{n}=\operatorname{AbS}\left[\binom{0}{\hat{\theta}_{0}} / 2\right]
\end{aligned}
$$

$$
\begin{aligned}
& \phi^{\prime}=\text { gengraphic latitude }
\end{aligned}
$$

REPRODUCIBILITY OF Try
$\delta_{0}=$ dectination of the sun ORIGINAL PAGE IS POOR
$H=$ hour angle of the sun
($11=0$ occurs when the point considered, the sun, and the carth's axis are coplenar. H1 is measured westward 0° to $30^{\circ} 0^{\prime \prime}$)

Based on satellite jnformation, Jicchia (Reference 18) assumes 2 eaxinum day teaperature 280 higlier than che correspondina nishttime njninum. The variation is represented by it in fhe above equalion. llowever, further investi-
 veadeb ahat the dithan-variation factor (il) is somedhat varjable. A value of 328 is considered valid for dates
prior to february 106.3, and fron August 190. , omard, 26\% variation is consjdered valid. Betueen these datcs, K is made to decrease iineary.

Although in these equations the exponents n and n, Which deteraine the mosic of the longitudinal and latitudinel tenperature variations respectively, are kept distinct, it was found in practice that $m=n$. These valucs are not really known accurately and could be as sraall as 2.0 .

The - onstant B deternines the lag of the temperature maximun lith respect to the uppermost point of the sun; p introciuces an asymetry in the temperature curve whose location is determined bs γ.

Geonasnctic Activity

To the temperature, T, which is calculated above, a correction must be added which accomnts for atmospheric heating related to changes in the Earth's magnetic ficld. The heating probably occurs in the E layer of the ionosphere, but the nechanisn involved is not well understood. The temperature correction, AT, is given by Jacchia, Slowey, and Campbell (Reforence 17):

$$
\begin{equation*}
L^{T}=1.0^{\circ} a_{p}+100^{\circ}\left[1-\exp \left(-0.05 a_{p}\right)\right] \tag{6}
\end{equation*}
$$

where
a_{p} is the theo-lourly phancary nequatictic minox:

The quantity a_{p} is a racasure of the variotion in the earh's magnetic field in a siven three hour poriod.

Durjng magnctic stomes the thaperature changes generally lag behind the variations in ap by about five hours, due to contuction. There is some cridence of leacer temperature changes for given raiues of ap as one procecds to higher geomagnctic latitudes. However, the amount of data indicating this is negligible at this tinc.

The D650 subroutine allows for the magnetic heating offects wit! one modification. To minimize the input eata for GEODYN, the 3 -hourly index (a_{p}) is replaced by a $24-1$ ourl) or daily index (A_{p}). Gencrally, magnetic storms last for 2 or 3 days so that the temerature caiculatio: usins Ap vill reflect a daily change, but not the 3 -hourly fluctations bhich occur victs ap.

The quantity ip and the solar flux data is available from E.S.S.A., Boulder, Colorado. The publication is, "Solar Gcoph;sical Data, Part I."

Accurate dajly valucs for both the solar and geomagnetic flux are requized for the conputation of the exospheric temperature. In GEODYX, these values arc input via a BHOCK DATA routinc, InPT. This information may of undated (cf stbroutinc abploUX) using the appropriate GIODNN I:put Cards. The user should be aware of the fact that these tabjes are expunded as new infornation becowes araisable.

At the befinnimg of cach run, a file is generated
JAMT! : for each satellite are mheh contains the requiyed ilux data for the time spon indicated. Subroutine JANrlig is the rovtine which scts uj the flux tables, including averaging the dajiy values of solar flux over two solar rotation periods. The reason for this is to frec the large anount of computer storace required for daily flux values ovor six years. As a matter of reference, the associated CONON BLOCK is PRIORI.

8.7.2.3 The Density Computation

The density computation in GEODYN subroutine D650 is based on the density distribution versus altitude and exospheric ter!perature presented in Table 12, :hicl! is reproduced Erc: Jacel:ja's. 2065 paper feference This data lias obtained by numerical integration of the diffusion equation using an empirical temperature profile for each indicated exospheric tomperature.

This vast quantity of infornation was fitted (by liolly) to various degrec polynomials of the form:

$$
\begin{equation*}
\operatorname{LOG}_{10} \rho_{D}=\sum_{i} \sum_{j} \dot{a}_{i j} T^{(j-1)} h^{(i-1)} \tag{7}
\end{equation*}
$$

where
P_{D} is the donsity,

I is the exosphoric tomperature, D655
h is the spheroid hejoht of the satellite (adtitude), and
a is a set of appropriate cocfficients

Unfortunately, a single pelynomiai of the type presented is not completely descriptive. An cxamination of Table 1 reveals that density is nearly indepencent of temperature for low altitudes, but becomes increasingly dependent for heightes above 160 km . Accordingly, appropriate polynomials were chosen to account for the varyjng dependency of the variables. Tlis necessitated the separation of Table 1 into three parts.

The lower region ($120 \mathrm{~km}-160 \mathrm{~km}$) is expressed as a second degree polynonial which is solcly a function of altitude. This is due to the fact that density is not appreciably dependent on temperature in this region. The remaining regions of 160 km to 420 km and 42 C kn to 1000 lim are described by polynomials of fourth degree in both temperature and altitude.

The coefficients for the selected polynomials are presented in Table 6. These cocfficients hate been modified to compute the natural log rather than the decimal \log oi the density pernopuciblimy of THE omfental 1aces is poot

The densjtics produced by these fitted polynomials j=0 differ from the densities in Table 1 by an RUS of 3.7 perecnt. However, the fit does vary in different regions of the tab.e. In the region of werst fit, where the temperature is relatively low (?00-1000 K) and the altitude varies from 620-S4今 ha, the RitS is somethat greater being about 8.5 percent. The largest percent difference between densities is 13.2 percent and falls within the region described.

The fits above could be inmroved by either going to higher degree polynomials or by additional segmentation of the table. However, thesc fits are considered to be as accurate as the model being used.

For saicllit: altitudes above 1000 km , the density is computes azcording io the catrapoation fomula niven by Jacchia (Reference 12):

$$
\begin{equation*}
\rho_{D}=\rho_{\omega}+\left(\rho_{\left.1000-\rho_{\infty}\right) c^{[b(h-1000)]}}\right. \tag{8}
\end{equation*}
$$

where

RTPRODUCIBILTY OF THE OBJGRAL PAGE IS POOR

$b=\frac{d}{d i}\left(\ln \rho_{D}\right)$ as evaluated at 1000 km .
$P_{0} \quad$ - is a liniting value for the density. This is zeco in subroutino DAXST
h \because is the spheroid he oht.

8.7.2.4 Density Partial Derivatives

In addition to the density, GEODY ai so requires the partial derivatives of the density with respect te the Cartesian position coordinates. These partials are used in computing the drag contribution to the variational equations.

As demonstrated above, the density is given by

$$
\begin{equation*}
\rho_{D}=\operatorname{cxp}\left(C_{0}+C_{1} \dot{h}+c_{2} h^{2}+C_{3} h^{3}\right) \tag{1}
\end{equation*}
$$

where

h is the spheroid height, ont the
C_{i} are coefficients which are polyneajals in temperature.

We then have ORIGINAL: PAGE IS POOR

$$
\frac{\partial \rho_{D}}{\partial \bar{r}}=\rho_{D}\left(C_{1}+2 C_{2} h+3 C_{3} h^{2}\right) \frac{\partial h}{\partial \bar{r}}
$$

where

TH the true of date position vector of the sitelifte (x, y), he per tho dent

The parial derivatives $\frac{\partial r}{\partial r}$ are computed in subrcutine VEVAL. The quantities h, ρ_{f}, and the C_{i} are computed in DSSO and passed through COMO: BLOCS DRCRL!.

RGPRODUCIBIITY OF TaE OdICNAL PAGE IS POOR

Aunust 11, 1075

Table 5 (Jacchia, Refercnce 12)

Jensities as a function of height and exospheric.temperature.

 14
18.

apoucumsix of 3 m

deponuchillity dr dig

Table 5 （continued）

	2030	2500	1750	290	105：	1000	：190	700	659	1009	135	1500	1450	
	－14	13							－14．423	－16．n33	－14．202			
	－14													
												－15．097	－：5	
92－：acas	－：						－：4．at	－	－	－ 1.713		15		
－nE－io．al	－14．73：	－0．9	ron			－1\％n	－19．31							
39．）－14．731	－84． 70	1．＇												
		138										－15．0．：		
ds	－16．al）		29	96		$1^{10} 01^{\circ}$		－13						
98．）$=14.0$－	＋1		76\％	71	－19．01		？${ }^{1}$－1	－ 21.14	－1	－	－	－1．${ }^{\text {a }}$	－	
！ns！	．						1\％．16			－				
；4．＂														
	， 71	－1	9							－1s				
125－140．014	－1					－${ }^{\text {a }}$	－19	－19．34	－ 15	－1		19．9，98：	－is．esj	
［14－ 15.5 ：	13．0．${ }^{1}$			$1 \% .101$	－19．71）	－19．364	－1s．j	－15．）4	－					
							－	－14．	－1，．41	－1．501				
									15	15.	－15．049			
Te ．isis：	，	$3>$	ino	－15．19	1\％．03	$1 \cdot$						15		
							－15．32			1%	－15．170	（3．C5	－1s	
$190-1 \%-7$ gev－ －	15.74 19.274			9，313	－1\％，	\％．4n	－14．3t	－15						
10		－14．3s				－19．94	－13．57\％	19	15．714	－15．790	－15．e	19．720	－1s．	
1780 -19.928	1s，					1\％．9		－19．09	－19．741	－15．915	13．810	－19．75，	－16．	
$435-87.176$				－19．30．	－15	15．6	1s．0n	－15	$1{ }^{1}$	－19	15	16.	－is	
14＊－14．	，2				－14．9\％		－15．rc	－3．：n	－	19	（1）		do	
（se－270． 11														
		－ 14												
				：		－1	－13．0¢！	－15．019	Ps．714	－1n．03：	－10．c42	an	$1{ }^{\text {a }}$	硣
	19.98		¢力？	－1＇．asis	－1\％．19	－15．19	－15．04	－19．409	－15．41	－10．04 3	－10．1：	10．230	－1． 124	
＋4t	13．96482	－150．09：	$=: 9.60$	－15．109	－1\％．791	－3．31：	${ }_{-1}$	－12．048	－19．09	－：3．300	is	83．217	－1：．12	
－000－14．56	－12．803													
$710-3485$		－1s．	．	，．1	－15．a：	曻．	－15．049	－110	－16．077					
arsout	19．	19	－12．391	1	－13．0ns	11	－15．79	－1n．94	－1．01	－10．181	－18．	a	－10．	10
ison？	？3．np	19．13？	－ $5^{1,74}$	－1P0n3				－10	－16．14	－15		－0．4：	－in．73	1
$\begin{array}{ll}\because & 13000 \\ i\end{array}$		－14．	－19．0413				－ih．0	－IA	－1	2v	－16．11	：0．193	－1A．96\％	
													－1：3，	
					－1／	－1．	－1．01	－11．21	－19	19		－10．321	11	
74， $9+16$														

069 ®\%:\% -

 $\stackrel{C}{i}$

8

 9
\vdots
\vdots
\vdots
\vdots
\vdots
\vdots
\vdots
\vdots
6
6
6
6
6
6
6

 \because
\vdots

$1090-1000$

930

ess

8

$$
190 \quad 1100
$$

1290

O.cc: 0.03

119

-18 -12 -12

15.819 -15.133
-15.19 -15.194

:?
$: 5$.
15.3
14.2
9.244
7.345
$-1 \% .24$
0.29
-18
012荡

TARLE
masity poncomina cormponars (FOR BMURS, l.OG OF masity)

	h^{0}	h^{1}	h^{2}	h^{3}
120-1000				
T^{0}	61.537%	48.60657	6.87280	0.305394
T^{1}	-173.970	93.4870	- 34.1203	0.651270
T^{2}	111.908	-60.34377	9.319754	-0.440330
- T^{3}	-23.3864	12.64406	-1.989:56 ..	0.0950336
160-420				
T^{0}	0.514627	-26.4622	6.28721	- - 66:905:
r^{2}	-36.8.3)	3\%.5157	-9.994692	1.00192
- T^{2}	22.6334	-23.9095	6.780537	-0.695:52
T^{3}	-4.1765\%	4.85017	-1.41853	0.148026
120.160 ly				
	1.13559.1s	- 31.858560	8.7827269	

Repropucistury or tas

(\quad - The gravitational potential originating from solid earth tides caused by a single disturbing body is given (Reference 11).

$$
\begin{align*}
\mathrm{u}_{\mathrm{D}}(r) & =\frac{\mathrm{k}_{2}}{2} \frac{G M_{d}}{R_{d}^{3}} \frac{R_{e}^{5}}{r^{3}}\left[3\left(\hat{R}_{d} \cdot \hat{r}\right)^{2}-1\right] \\
& =\frac{k_{2}}{2} \frac{G M_{e}}{R_{e}}\left(\frac{N_{d}}{M_{e}}\right)\left(\frac{R_{e}}{R_{d}}\right)^{3}\left(\frac{R_{e}}{r}\right)^{3}\left[3\left(\hat{R}_{d} \cdot \hat{r}\right)^{2}-1\right] \tag{1}
\end{align*}
$$

and the resultant acceleration on a satellite due to this potential is

$$
\begin{equation*}
\nabla U_{D}=\frac{k_{2}}{2} \frac{G M_{d}}{R_{d}^{3}} \frac{R_{e}^{5}}{r^{4}}\left\{\left[3-15\left(\hat{R}_{d} \cdot \hat{r}\right)^{2}\right] r+\sigma\left(\hat{R}_{d} \cdot \hat{r}\right) R_{d}\right\} \tag{2}
\end{equation*}
$$

where
k_{2} is the tidal coefficient of degree 2 called the " "Love Number."

G is the universal gravitational constant
M_{e} is the mass oi the earth.
R_{e} is the mean earth radius.
M_{d} is the mass of the disturbing body.

Me is the mass of the earth.
R_{d} is the distance from COMe to COMA*.
r is the distance from cone to satellite.
$\hat{R}_{\mathbf{G}}$ is the unit vector from CON_{e} to COn_{d}.
\hat{i} is the unit vector from Come to satellite.

1

1

* Center of mass of the earth.
**Center of mass of the disturbing body.
8.8-2

SECTION 9.0
integration mid interpolation

GEODYN uses Cowell's Sum merhod for dircet
ORRI ${ }^{\text {F }}$
numerical integration of both the equations of motion and the variational cquations to obtain the position and velocity and the attendant variational partials at each obscrvation timc. The integrator output is not required at actual obscrvation times; it is output on an even integration step. GEODYN uses an interpolation techriaque to obtain values at the actual observation time. The specific numerical. methods used in GEODYN for this integration and interpolation are presented below. These procedures are controlled by subroutine ORBIT.

9.1 INTEGRATION

Ler us first consider the integration of the equations of motion. These equations are three second order differential equations in position, and may be formulated as six first order equations in position and velocity if a first wider integration scheme were used for their solution. For reasons of increased accuracy and stability, the position vector \bar{r} is obtained by a second order integration of the accelerations $\ddot{\bar{r}}$, whereas the velocity vector $\dot{\bar{r}}$ is obtained as the solution of a first order system. These are both multi-step metiods requiring at least one derivative evaluation on each step.

The integration scheme is equivalent to the inter-
COWELL polator with arguments 1 and 0 for predictor and corrector: respectively.

To integrate the position components, the predictor

$$
\begin{equation*}
\bar{r}_{n+1}=\left(S_{2}+\sum_{p=0}^{q} \gamma_{p}^{*} \ddot{\bar{r}}_{n-p}\right) h^{2} \tag{1}
\end{equation*}
$$

is applied, followed by a Cowell corrector:

$$
\begin{equation*}
\bar{r}_{n+1}=\left(s_{2}+\sum_{p=0}^{q} \gamma_{p}^{*} \ddot{\bar{r}}_{n-p+1}\right) h^{2} \tag{2}
\end{equation*}
$$

The velocity components are integrated using the predictor;

$$
\begin{equation*}
\dot{\bar{r}}_{n+1}=\left(S_{1}+\sum_{p=0}^{q+1} \beta_{p}^{*} \overline{\bar{r}}_{n-p}\right) h \tag{3}
\end{equation*}
$$

followed by an Adams -Moulton corrector;

$$
\begin{equation*}
\dot{\bar{r}}_{n+1}=\left(S_{1}+\sum_{p=0}^{q+1} \beta_{p} \ddot{\bar{r}}_{n-p+1}\right) h \tag{4}
\end{equation*}
$$

In these integration formulae, h is the integration step size, q has the value ORDER-2, and $\gamma_{p}, \gamma_{p}^{*}, B_{p}$ and B_{p}^{*} are coefficients whose values are obtained from subroutine CONCOF.*

[^0]$$
9.1-2
$$

Under ceitain conditions, a reduced form of this solution is used. It can be seen from the variational and obscrvation equations that if drag is not a factor and there are no range rate, doppler, or altimeter rate measurements, ihe velocity variational partials are not used. There is then no need to integrate the velccity variational equations. This represents a significant time saving. In the integration algorithm, the B matrix is zero and ($I-H$) is reduced to a three by three.. .

PRECEDING PAGE BLANK NOT FLLMED
A detailed description of the H matrix and the X_{n} and ∇_{n} vectors can $b ?$ found in pages 16,17 of Reference 2.

Backwards integration involves only a few simple modifications to these normal or forward integration procedures. These modifications are to negate the step size, and invert the time completion test.

The above integration procedures are implemented in GEODYN in the subroutine CONELL. The inversions

CONFLL DNVERT for backwards integration are performed by COWELL and ORBIT. The matrix inversion is performed by subroutine DNVERT.

The default step size for these integration procedures is selected on the basis of perigee height and the eccentricity of the orbit. The default step size selection is explained in detail in the Operations Manual, Volume III of the GECDYN System Documentation. This may be reset to sonie other fixed value on input. (See the STEP control card description in the above manual.)

There is an optional variable step mode which is the default mode for high eccentricity orbits. The selecion of lhis mude of operation, in: default initial step size, halving error bourd, and doubling error bound, or variable increase or decrease of step sizc are also explained in Volume III with the STEP control card.

In the wariable step mode, the local error is compared against upper and lower error bounds to determine whether ihe step size should be increased or decreased. This local error is computed as the difference betweon the predicted and corrected values of position. Both the increasing and decreasing procedures require the table: at back values of accelerations to he nodified so as to bu

CONELL
REARG

REARG compatible with the new step size. The decreasing, requires the interpolation for mid-points. This anterpolation is of course on the back position, velocity and acceleration values. The increasing is achicved by discarding every other time point in the table of back values and then the refinement using the decreasing algorithm.

It should be noted tlat 2 (ORDER-1)-1 of back values are saved when GEODYN is operating in veriable step mode. Increasing of the step size is disabled for the following ORDER-2 steps after a step size change; i.e., until the table of back vaiues is again filled.

These increa: ing and decreasing procedures are contained in subroutine REARG.

9.2 THE INTEGRATOR STARTING SCIER:

The predictor-corrector conbination enployed to START proceed with the main integration is not self-starting. That is, each step of the integration requires the knowledge of past values of the solution that are not available at the start of the integration. The method presented here is that implemented in the GEODYN subroutine START.

A Taylor series approximation is used to predict initial values of position and velocity. With these starting values, the Sum array is evaluated using epoch positions and velocities. Now the loop is closed by interpolations for the position; and velocities not at epoch and tr. ir accelerations evaluated. The Sumi are now again evaluated, this procedure continues until the Sums converge to the desired accurazy.

9.3 INTERPOLATION

GEODYN uses interpolation for two functions. The

INTR COEF

The formulas use by INTRP axe:

$$
\begin{equation*}
x(t+\Delta t)=\left(S_{2}(t)+\left(\frac{\Delta t}{h}-1\right) S_{1}(t)+\sum_{i=r}^{n} c_{i}(\Lambda t) f_{n-i}\right) h^{2} \tag{1}
\end{equation*}
$$

for positions and
$\dot{x}(t+\Delta t)=\left(S_{1}(t)+\sum_{i=0}^{n} c_{i}^{\prime}(\Delta t) f_{n-i}\right) h$
(2)
for velocities.
S_{1} and S_{2} are the first and second sums carried along by the integrator, f's are, the back values of acceleration, h the step size, and C_{i}, C_{i} are the interpolation coefficients computed in subroutine COEF. A detailed description 0 e we interpolation formulae can be found un pages 4, 5 of Reference 3.

SECTION 10.0

THE STATISTICAL ES' lMATION SCIIEME

The basic problem in orbit determination is to calculate, from a given set ef observations of the spacecraft, a set of parametcrs specifying the trajectory of a spacecraft. Because there are generally moré observations than parameters, the parameters are overdetermined. Therefore, a statistical estimation scheme is necossary to estimate the "best" sct of parameters.

The estimation schene selected for GEODYN is a partitioned Bayesian least squares method. The comp. ste development of this procedure is presented in this section.

It should be noted that the functional reiationships between the cbscrvations and parameters are in general non-linear; thus an iterative, procedure is necessary to solve the resultant non-linear normal equations. The Newtcr-Raphson iteration formula is used to solve thes: equations.

Consider a vector of N independent observations 2 whose vajues can be expressed as known functions of N parameters denoted by the vector x. The fellowing non-linear regression equation holds:

$$
\begin{equation*}
\underline{\mathbf{z}}=\underline{\mathrm{f}}(\underline{\mathrm{x}})+\underline{\mathrm{o}}, \tag{1}
\end{equation*}
$$

Where \underline{o} is the N vector denoting the noise on the observations. Given $?$, the functional form of \underline{f}, and the statistical properties of $\underline{\sigma}$, we must obtain the estimate of \underline{x} that is "best" in some sense.**

Bayes theorem in probability holds for probabi!ity density functions and can be written as follows:

$$
\begin{equation*}
p(\underline{x} \mid \underline{z})=\frac{p(\underline{x})}{p(\underline{z})} p(\underline{z} \mid \underline{x}) . \tag{2}
\end{equation*}
$$

- .use
$p(\underline{x} \mid \underline{z})$ is the joint conditional probability density function fur the parameter vector x, given that the data vector 2 ias occurred -

```
*Vector notation in this sectic. is that used by
    statisticians; i.e., an underscore denotes a vector.
    The symbol "n" denotes the "best" estimate of the
    superscripted quantity.
**For a complate discussion of the properties of estima-
    tors see Maurice G. Kendall and Alan Stuart, Reference 2.
```

$p(\underset{y}{ })$ is the joint protability density function for the vector \underline{x};
$p(\underline{z})$ is the joint probability density function for the vector \underline{z};
and
p. $\underline{z} \mid \underline{x})$ is the joint conditional density function for the vector \underline{z} given that \underline{x} has occurred;
$p(x)$ is often referred to as the a priori density function of \underline{x}, and $p(\underline{x} \mid \underline{z})$ is referred to as the a posteriori conditional density function. In any Bayesian estimation scheme, we must determine this a posteriori density function and from this function determine a "best" estimate of \underline{x}, which can be denoted \hat{x}.

To obtain the a posieriori conditional density function, we must make an assumption concerning the statistical properties of the noise on the observations: the noise vector $\underline{\sigma}$ has a joint normal distribution with mean vector $\underline{0}$ and a variance-covariance matrix \sum_{2}. \sum_{2} is an NxN matrix and is assumed diagonal, that is; the observations are considered to be independent and uncorrelated. The "best" estimate of \underline{x}, \underline{x}, is defined as that vector maximizing the a posteriori density function; this is equivalent to choosing the mean value of this distribution. An estimator of this type has been referred to as the maximum likelihood estimate in the Bayesian sense. (Reference 2)

A further assemption is that the a priori density function $p(\underline{x})$ is a joint normal distribution and is wititen as follows:

$$
\begin{equation*}
p(\underline{\hat{x}})=\left[\frac{\operatorname{Det}\left(\varepsilon_{A}^{-1}\right)}{2 \pi^{1 / 2}}\right]^{\frac{1}{2}} \exp \left\{\frac{1}{2}\left(\underline{x}_{A}-\underline{\underline{x}}\right)^{T} \sum_{A}^{-1}\left(\underline{x}_{A}-\underline{\underline{\theta}}\right)\right\} \tag{3}
\end{equation*}
$$

where
\underline{x}_{A} is the a priori estimate of he parameter vector,
\sum_{A} is the a priori variance-covariance matrix associated with the a priori parareter vector. \sum_{A} is an MXN matrix, winich may or may not be diagunal.

The conditional density function $: \mid \hat{\underline{x}}$) can be witten as follows:

$$
\begin{equation*}
p(\underline{z} \mid \underline{\hat{x}})=\left[\frac{\operatorname{Det}\left(\Sigma_{z}^{-1}\right)}{2 \pi^{N}}\right]^{\frac{1}{2}} \exp \left\{-\frac{1}{2}[\underline{\underline{E}} \underline{\underline{f}(\hat{\hat{N}})}]^{\mathrm{T}} \sum^{-1}[\underline{z}-\underline{\underline{f}}(\underline{\hat{\hat{N}})}]\}\right. \tag{4}
\end{equation*}
$$

It can be shown that naximizing the a poste, iori density function $p(\underline{\hat{x}} \mid \underline{z})$ is equivalent to maximizing the product $p(\underline{\hat{x}}) p(\underline{z} \mid \underline{\hat{x}})$ becalise the density function $p(\underline{\underline{x}})$ is a constant valucd function. Further, this reduces to minimizing the following quadratic form:

$$
\begin{equation*}
\left(\underline{x} \Lambda^{-\hat{\ell}}\right)^{T} \sum_{\dot{A}}^{-1}\left(\underline{x}_{i}-\underline{\hat{x}}\right)+(\underline{z}-f(\underline{\hat{x}}))^{T} \sum_{2}^{-1}(\underline{z}-\underline{f}(\underline{\hat{x}})) . \tag{5}
\end{equation*}
$$

This results in the following sct of M non-linear equations:

$$
\begin{equation*}
B^{T} \sum_{3}^{-1}(\underline{2}-\underline{f}(\underline{x}))+\sum_{\Delta}^{-1}\left(\underline{x}_{A}-\underline{x}\right)=0 \tag{6}
\end{equation*}
$$

Where B is an Nxil matrix with elements

$$
B_{N M}=\left.\frac{\partial f_{N}(\underline{(x})}{\partial x_{M}}\right|_{\underline{x}=\underline{x}} \quad \begin{gathered}
\text { REPRODUCIBLITY OF THE } \\
\text { ORICNAL PAGE IS POOR }
\end{gathered}
$$

This cquation defines the Bayesian ieast squares estimation procedure. We have not suted how the a priori parameter vector and variance =ovariance matrix were obtained. In practice these a priori values are almost always estimates that have been obtained from sone previous data. In rhese cases the Bayesian estimates arc identical to the classical maxinum likelihood estinates that would be obtained if all the data were used; in this context the a priori parameters can be consicered as additional observations.
10.1-1

The variance-covariance matrix of $\hat{\underline{x}}, \hat{y}$, is given by the following formula:

$$
\begin{equation*}
v=\left[B^{T} \sum_{2}^{-1} B+\sum_{A}^{-1}\right]^{-1} \tag{7}
\end{equation*}
$$

Solution of the Estimation Formula

Equation 6 defines a set of M non-linear equatrons in M unknowns \underline{x}; these equations are solved using the Newton-Raphson iteration formula. Equation 6 can be written as follows:

$$
\underline{F}(\underline{\hat{x}})=0 .
$$

The iteration formula is

$$
\begin{equation*}
\hat{\underline{x}}^{(n+1)}=\underline{\hat{x}}^{(n)}-\left(\frac{\partial \underline{\underline{z}}(\underline{\hat{x}})}{\partial \underline{\hat{x}}}\right)^{-1} E\left(\underline{\hat{x}}^{(n)}\right) \tag{8}
\end{equation*}
$$

ninere
solution $\underset{\hat{x}}{\hat{x}}{ }^{(n)}$ is the $n^{\text {th }}$ approximation to the true
(1) Now

$$
\begin{equation*}
F(\hat{y})=B^{T} \sum_{z}^{-1}(\underline{z}-\underline{\underline{E}}(\hat{\underline{x}}))+\sum_{A}^{-1}\left(\underline{x}_{A}-\underline{Q}\right)=0 \tag{9}
\end{equation*}
$$

Then differentiating and neglecting second derivelives,

$$
\begin{equation*}
\left(\frac{\partial \underline{F}(\hat{\hat{x}})}{\partial \underline{\hat{x}}}\right)=\left[\left(\mathrm{B}^{T} \sum_{2}^{-1} \mathrm{~B}\right)\right]+\sum_{A}^{-1} \tag{10}
\end{equation*}
$$

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

Substituting equation 10 in equation ε gives

$$
\begin{align*}
& \hat{\underline{x}}^{(n+1)}-\hat{\underline{x}}^{(n)}=\left(B^{T} \sum_{z}^{-1} B+\sum_{A}^{-1}\right)^{-1} \int_{B^{T}}^{T} \sum_{z}^{-1}(\underline{z} \underline{f}(\underline{\hat{x}})(n)) \\
&\left.+\sum_{A}^{-1}\left(\underline{x}_{A}-\underline{\hat{x}}^{(n)}\right)\right) \tag{11}
\end{align*}
$$

Now let $\underline{\hat{x}}^{(n+1)} \underline{\hat{x}}^{(n)}$, the correction to the n^{n} approxmarion, be denoted by $\mathrm{dx}^{(n+1)}$, and let $\underline{\underline{-f}} \underline{(}_{\left(\hat{x}^{(n)}\right) \text {, the }}$ vector of residuals from the $n^{\text {th }}$ approximation, be $\underline{d i}^{(a)}$. Equation 11 becomes
$\left.d \underline{x}^{(n+1)}=\left.\left(b^{T} \sum_{2}^{-1} B+\sum_{A}^{-1}\right)^{-1}\right|^{1} B^{T} \sum_{2}^{-1} \underline{z}^{(n)}+\sum_{i}^{-1}\left(\underline{x}_{i}^{-\underline{x}^{(n)}}\right)\right)$
(12)

In a multi-satellite, multi-arc estination program such á GLOMO, it is necessary to formulate the estimation scheme in a manier such that the infermation for all satcllite arcs are nct in core simultancously. The procedure used in GEODY is a partitioned Bayesinn Escimation Schene which requixes only common parameter information and the information for a single arc tu be in core at any given time. The qevelopnent of the GEODYN sclution is given here.

The Bayesiar cstimaion formula has been developed in the previous section as

$$
\begin{equation*}
\underline{d x}^{(n+1)}=\left(B^{T} \forall B+V_{A}^{-1}\right)^{-1}\left[B^{T} \underline{W d n}+V_{A}^{-1}\left(\underline{x}_{A}-\hat{x}^{(n)}\right)\right] \tag{1}
\end{equation*}
$$

where REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR
\underline{x}_{A} is the apriori estimate of \underline{x}.
. V_{A} is the apriori cuvariance matrix associated with X_{A}.
W is the weighting matrix associated with the observations.
$\underline{x}^{(n)}$ is the $n^{t h}$ approxinstion to x.
dm is the vector of residuals ($0-C$) from the $n^{\text {th }}$ approximation.
$d x(n+1)$ is the vector of corrections to the parameters; i.c.,

$$
\underline{x}^{n+1}=\underline{x}^{n}+\underline{d x}^{(n+1)}
$$

B - is the matrix of partial derivatives of the observations with respect to the parameters where the i, $;^{\text {th }}$ element is given by $\frac{\partial m_{i}}{\partial x_{j}}$

The iteration formula given by this equation. solves the non-linear normal equations formed b; minimizing the sum of squares of the weighted residuals.

Ne desire a solution wherein x is partitioned according to \underline{a}, the vector of parameters associared only with individual arcs; and k, the vector of parameters $=0$ mmon to all arcs. For geodetic parameter estimation a consists of the sets of orbital elements, satellite parameters, and measurement biases associated with each arc, whereas k consists of the geopotential coefficients and station coordinates.

As a result of this partitioning, we may write B, the matrix of partial derivatives of the observations, as

$$
\begin{equation*}
\text { B. } \mathrm{ra}:\left[B_{a}, B_{k}\right] \tag{2}
\end{equation*}
$$

$$
\left[B_{a}\right]_{i, j}=\frac{\partial m_{i}}{\partial a_{j}}
$$

and

$$
\left[B_{k}\right]_{i, j}=\frac{\partial m_{i}}{\partial k_{j}} .
$$

We may also write V_{A}, the covariance matrix of the parameters as

$$
v_{A}=\left[\begin{array}{cc}
v_{a} & 0 \tag{3}\\
0 & v_{k}
\end{array}\right]
$$

where we have assumed the independence of the a priori information on the arc parameters and common parameters (in practice valid to an extremely high degree).

$$
\begin{align*}
& {\left[\begin{array}{c}
\underline{d a} \\
-D
\end{array}\right]=\left[\begin{array}{l:l}
R_{a}^{T} W B_{a}+v_{a} & B_{a}^{T} W B_{k} \\
\left.\hdashline B_{a}^{T} W B_{k}\right]^{T} & \\
\hdashline B_{k}^{T} W B_{k}+v_{k}
\end{array}\right] X} \tag{4}\\
& {\left[\begin{array}{l}
B_{a}^{T} W d m(n)+V_{a}\left(a^{(a)}-a_{A}\right) \\
\hdashline B_{k} W d m(n)+V_{k}\left(\underline{x}^{(n)}-\underline{k}_{A}\right)
\end{array}\right]} \\
& =\left[\begin{array}{ll}
A & A_{k} \\
A_{k}^{T} & K
\end{array}\right]^{-1}\left[\begin{array}{l}
C_{B} \\
C_{k}
\end{array}\right]
\end{align*}
$$

,

The required matrix inversion is obtained by partitioning. We write

$$
\left[\begin{array}{ll}
N_{1} & N_{2} \tag{5}\\
N_{2}^{T} & N_{4}
\end{array}\right] \cdot\left[\begin{array}{ll}
A & A_{k} \\
A^{T} & k
\end{array}\right]=I
$$

and, s.lving the resulting equations, determine

$$
\begin{equation*}
N_{1}=A^{-1}+\left[A^{-1} A_{k}\right] N_{4}\left[A_{k}^{T} A^{-1}\right] \tag{6}
\end{equation*}
$$

$$
N_{2}=-\Lambda^{-1} A_{k} N_{4}
$$

(7) ESTIM
and

$$
\begin{equation*}
N_{4}=\left[K-A_{k}^{T} A^{-i} A_{k}\right]^{-1} \tag{8}
\end{equation*}
$$

There is no problem associated with inverting A because the existence of the a prior information alone guarantees this property. On the other hand, the inverse of $K-A_{k}^{T} A^{-1} A_{k}$ is not guaranteed to exist. High correlations between the parameters could make the matrix near singular. In practice, however, the use of a reasonable amount of a priori information eliminates any inversion difficulties.

The iteration formula may now be written as

$$
\left[\begin{array}{l}
\frac{d a}{d k}
\end{array}\right]=\left[\begin{array}{ll}
N_{2} & N_{2} \tag{9}\\
N_{2}^{T} & N_{4}
\end{array}\right]\left[\begin{array}{l}
C_{a} \\
C_{k}
\end{array}\right]
$$

or

$$
\begin{align*}
& \frac{d a}{}=\left[A^{-1}+\left(A^{-1} A_{k}\right) N_{4}\left(A_{k}^{T} A^{-1}\right)\right] C_{a}-A^{-1} A_{k} N_{4} C_{k} \tag{10}\\
& \frac{d k}{}=-N_{4} \Lambda_{k}^{T} A^{-1} C_{a}+N_{4} C_{k} \tag{11}
\end{align*}
$$ - Noting the similarities between da ana dr, ve write ESTIM

$$
\begin{equation*}
\underline{d a}=A^{-1} c_{a} \cdot A^{-1} A_{k} \underline{d k} \tag{12}
\end{equation*}
$$

and rewrite dk as

$$
\begin{equation*}
\underline{d k}=N_{4}\left(C_{k}-A_{k}^{T} A^{-1} C_{a}\right) \tag{13}
\end{equation*}
$$

Note that most of the elements of A are zero because the measurements in any given arc are independent of the arc parameters of any other. arc. Also, the covariances between the a piori information associated with each arc is assumed to be zero. Thus both A and V_{a} are composed of zeroes except for matrices, A_{r} and V_{r}, respectively, along the diagonal, where

$$
\begin{align*}
& r \text { is a subscript denoting the } r^{\text {th }} \text { arc, } \\
& \text { e.g., }{ }_{-}^{a} \\
& {\left[A_{r}\right]_{i, j}=\sum_{\ell} \frac{\partial m_{\ell}}{\partial a} \frac{1}{\sigma_{\ell}^{2}} \frac{\partial m_{\ell}}{\partial a_{i}}+\left[v_{r}^{-1}\right]_{i, j}} \tag{14}
\end{align*}
$$

where \& ranges over the measurements in the $r^{\text {rh }}$ arc and i, j range over the parameters in the $r^{\text {th }}$ arc, a_{r}.

$$
\begin{aligned}
& V_{r} \text { is the partition of } v_{a} \text { associated with the } \\
& r^{\text {th }} \text { arc. }
\end{aligned}
$$

The reader should note that A^{-2}, like Λ, is composed of zeroes except for matrices A_{r}^{-1} along the diagonal.

We shall also require the partitions of A_{k} and C_{a} according to each arc. These partitions are given by

$$
\begin{equation*}
\left[A_{\mathrm{rk}}\right]_{i, j}=\sum_{\ell} \frac{\partial m_{\ell}}{\partial a_{r_{i}}} \frac{i}{\sigma_{\ell}^{2}} \frac{\partial m_{\ell}}{\partial k_{j}} \tag{15}
\end{equation*}
$$

c

$$
\begin{equation*}
\left[c_{r}\right]_{i}=\sum_{\ell} \frac{\partial m_{\ell}}{\partial a_{r_{i}}} \frac{1}{\sigma_{\ell}^{2}} \operatorname{dm}_{2} \tag{16}
\end{equation*}
$$

where the iduscript r again denotes the $r^{\text {th }}$ are and ℓ ranges over the measurement partials and residuals in the $r^{\text {th }}$ arc.

Let us now investigate the matrix partitions in the solutions for da and dk. We consider A^{-1} to be a diagonal matrix with diagonal elements $A_{f}{ }^{-1}$ and C_{a} to be a column vector with elements C_{r}. Herice

$$
\left[\begin{array}{ll}
A^{-1} & C_{a} \tag{17}
\end{array}\right]_{r}=A_{r}^{-1} C_{r}
$$

is the $r^{\text {th }}$ element of the product matrix. λ_{k} is considered to be a column rector .int elements $A_{r k}$, thus

$$
\begin{equation*}
\left\{A_{k}^{T} A^{-1} c_{a}\right\}=A_{r k}^{T} A_{r}^{-1} C_{r} \tag{18}
\end{equation*}
$$

The elements in the product $\Lambda^{-1} A_{k}$ are given by

$$
\left[\because^{-1} A_{k}\right]_{r}=A_{r}^{-1} A_{r k} \quad \begin{align*}
& \text { REPRODUCIBILITY OF THE } \tag{19}\\
& \text { ORIGNAL PAGE IS POOR }
\end{align*}
$$

We also require the product $A_{i}^{T} A^{-1} A_{k}$. Its elements are given by

$$
\begin{equation*}
\left[A_{k}^{T} A^{-1} A_{k}\right]_{r, r}=A_{r k}^{T} A_{r}^{-1} A_{r k} \tag{20}
\end{equation*}
$$

The solutions for da and dk may now be rewritten taking into account the partitioning by arc:

$$
\begin{align*}
& \underline{d a}=A_{r}^{-1} C_{r}-A_{r}^{-1} A_{r k} \underline{d k} \tag{21}\\
& \underline{d k}=N_{i}\left(C_{k}-\sum_{i}^{r} A_{r k}^{T}:_{r}^{-1} r_{r}\right) \tag{22}
\end{align*}
$$

the c

$$
\begin{equation*}
N_{4}=\left[\kappa-\sum_{r} \lambda_{r k}^{T} \lambda_{r}^{-1} A_{r l}\right]-1 \tag{23}
\end{equation*}
$$

These solutions form the partitioned Bayesian estimaton scheme used in GEODY.

Additionally, the covariance matrix for the arc parameters must be updated to account for the simultaneous adjustment of the common parameters:

$$
\begin{equation*}
\left[N_{1}\right]_{r}=A_{r}^{-1}+\left(A_{r}^{-1} A_{r k}\right) N_{4}\left(A_{r k}^{T} A_{r}^{-1}\right) \tag{24}
\end{equation*}
$$

REPRODUCIBILITY OF TAIF: original paige is pour

The procedure for computer implementation is illustrated in Figure 1. This procedure is:

1, Integrate through each arc forming the matrices $A_{r}, A_{r k}$, and C_{r}; and simultaneously accumulate into the common parameter matrices K and C_{k}.
2. At the end of each are, form

$$
\begin{equation*}
\frac{d a_{r}^{*}}{T}=A_{r}^{-1} C_{r} \tag{25}
\end{equation*}
$$

and modify the common parameter matrices as felons:

$$
K=K-A_{r k}^{T} A_{r}^{-1} A_{r k}
$$

and

$$
\begin{equation*}
c_{k}=c_{k}-A_{r k}^{T} \frac{d a}{r} \tag{27}
\end{equation*}
$$

The matrices $\underset{r}{\text { © }}, A_{r k}$, and A_{r}^{-1} must also be put in external storage.
3. After processing all of the arcs; inc., at the end o: a global or "outer" iteration, determine l k . Note that K has become N_{4}^{-1} and C_{k} has been modified so that

$$
\begin{equation*}
\underline{d k}=K^{-1} C_{k} \tag{23}
\end{equation*}
$$

The updated values for the common parameters are of course riveri by

$$
\begin{equation*}
\underline{k}^{(n+1)}=\underline{\underline{r}}^{(n)}+\underline{d k} \tag{29}
\end{equation*}
$$

The are peyamekers are then updated to account fere this simultaneous solution of the cons ammeters. Information for each arc is ?now in turn; that is, the previously
10.2-10
stored da', Ark, and A^{-1}. The correction vactor to the updated are parancters is given by

$$
\begin{equation*}
{\underset{d a}{r}}=\frac{d a}{r}-\left(A_{r}^{-1} A_{r k}\right) d k \tag{30}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\underline{a}_{r}^{(n+1)}=\underline{a}_{r}^{(n)}+\underline{d a} r \tag{31}
\end{equation*}
$$

The covariance matrix for the arc parameters, A_{r}^{-1}, is updated uy

$$
\begin{equation*}
A_{r}^{-1}=A_{r}^{-1}+\left(A_{r}^{-1} A_{r k}\right) N^{-1}\left(A_{r k} A_{r}^{-1}\right) \tag{32}
\end{equation*}
$$

This completes the global iteration.

It should be noted that if only the arc paraneters are being determined, as is the case for "inner" itera: tions, the solution vector is da' and hence the updated arc parameters are computed b;

$$
\begin{equation*}
\underline{a}_{r}^{(n+1)}={\underset{a}{r}}^{(n)}+\underline{d a}_{r}^{\prime} \tag{33}
\end{equation*}
$$

Figurc l: Partitzoned listimation lrocedure

Figure 1: Partitioncd listimation Procedure (Cont.)

Fi: re 1: Partitioncd Eetimation Procedure (Cont.)
The comon parameter matrix k is carjed as a symmetric matrix. It is core-resident timounhout the estimation procedurc. Its dimension is set by the number of coman parancters being determined and remains constant throughout tnc procedure.
Thé arc parametcr matrices A_{r} are also car-ied as symetric matrices. Their dimensions vary from arc to arc according to the number of arc parameters being determined. Only one are parameter matrix A_{r} and the corresponding covariance matrix $\Lambda_{r k}$ are resident in core at any given tinc. These arc parameter matrices are stored on disk during step 2 if the above sumary and recovered during step 3.
The a priori covariance matrix V_{k} is not carried as a full matrix. The correlation cefficients between each coordinate of a given station position are carricd. The position coordinates of different stations and the geopoiential corficicic.ts are considered to be uncosrelated.
The a priori covariance matrices V are also not carricd as full matrices. The trag cocfficient, radiation pressure coefficient, and each bias are considered to be uncorrelatec. The covariance metrix for the epoch elements is carried.

In terms of a subrou.inc breakdown within GFODN, this entire section is inplemented in subroutine ESTIM with the exception of the matrix inversions. These inversions are done by s routine SMiNV.

10.3 DATA EDITING

The data editing procedures for GEDDW: have two forms:

- hand editing using input caros to delete specific points or sets of points, and
- automatic editing depending on the weighted residual as component to a given rejection levcl.

The hand cditing is a simple matching of the
GEOSR appropriate GEODYN control card information with the DODSKS set of observations. This calling procedure is done in GLUUYN subroutines GEOSRD or DODSRD.

The automatic editing of bad observations from
3 set of data during a data reduction run is performed in the GEODYN main program. Observations are rejected when
where

0 is the cbscrvation

C is the computed observation
σ is the a priori standard deviation associated with the observation (input)
$k \quad$ is the rejection level.

The rejection level can apply either for all observations of a given type or for all observations of a given type from a particular station. This rejection level is computed from

$$
\begin{equation*}
k=E_{M} \cdot E_{R} \tag{2}
\end{equation*}
$$

where
E_{M} is an input multiplier, and
E_{R} is the weighted RNS of the previous "outer" or flo wal iteration. The initial value of E_{R} is set on input.

It should be noted that both E_{M} and E_{i} hove default values,

For certain types of cje t tronic tracking data （e．g．，Boprer data），biases exist which are differert from one pass to the next．In many cases，these biases are of no interest per se，althoush their existence must be appropriately accounted for＇jf the data is to be uscd in an orbit or geodetic parameter estimation．In addition，a single data reduction may have hundreas of passes of such clectronic data，and the compleie snilution for each bias would require the use of an excessively large amount of computer core for stowing the normal matrix for the conplete set of adjusted parameters．

The effects of electrcaic biases can be removed， with the use of only a small amount of additional core， based on the partjtioning of the biases from the other parameters bごミno adjusted in the Eujesian least squães estimation．The form which this partitioning takes can be seen from the solution of the basic measurement equation
wherc

$$
\begin{align*}
& \delta m=B_{c} \Delta h+ \text { RAX }+\varepsilon \tag{1}\\
& \text { REPRODUCIBILITY OH THE } \\
& \text { CRIGINAL PAGE IS PUOR }
\end{align*}
$$

i:: = the set of corrections to be made to alt the otior adjustable paraneters,
$B \quad=$ the mal: : a uf pastial deifitatives of the measurements with respect to the x paraneters,
$\varepsilon=$ tue measurement noise vector.

The least squares solution of (1) is
with $l f$ the woight matrix $\left(\mathbb{K}^{1}=E\left(\varepsilon \varepsilon^{T}\right)\right.$), taken to be coafictely diagonal in CEGDYN. The $\Delta \hat{x}$ part of (2) can be shot:n to be

$$
\begin{align*}
\hat{\Delta x}= & {\left[B^{T} W B-B^{T} W B_{e}\left(B_{e}^{T} T_{W B_{e}}\right)^{-1} B_{e}^{T}{ }^{T} W B\right]^{-1} } \tag{3}\\
& \lambda\left[B^{T} W \delta M-B^{T} W B_{e}\left(B_{e}^{T} T_{e}\right)^{-1} B_{e}^{T} T_{W \delta m]}\right.
\end{align*}
$$

To effectively remove the electronic bias effects, Eqn (3) states that the nomal mariv* $B^{T} \| B$ mast have $B^{T} W R_{e}\left(B_{e} T_{W B_{e}}\right){ }^{-1}$ $B_{c} T_{W B}$ subtracted from it and the vector $A^{T} W$ mim must have $B^{T} W_{c}\left(B_{e} T_{N B}\right)^{-1} B_{e} T_{\text {l'òm subtracted }}$ from it. Duc to the assumed independence of diffurent measurements, it follows that these quantitics which nust be subtracted are a sum of contritation. for different passes,
$\therefore 4$

Where n_{b} is the total number of passes :isth electronic biases and the subscript p denotes an array for measurements of pass p. The computation of the right hand sides of (4) and (5) requires the arrays

$$
\begin{align*}
& { }_{B}{ }^{T}{ }^{1 W_{p} B_{p}}=\quad \text { na } \times 1 \text { array } \\
& { }^{B} e_{p} T_{W_{p}}{ }_{p} c_{p}=1 \times 1 \operatorname{arrs} y \tag{6}\\
& { }^{B} e_{p}{ }^{T} N_{p} \delta m_{p}=1 \times 1 \text { array }
\end{align*}
$$

where na is the number of adjusted parameters other than biases affecting the arc in which the bases occur. Thus, na +2 storage locations must be assigned for every bias which exists at any one time.

The individual biases may be adjusted, based on the previous iteration orbital elements and force model parameters. This bias can then be used, along with the above accumulated arrays to properiy correct the sum of weighted squared residuals upon which the program does dynamic editing. Otherwise, however, it will not le possible for the statestical summaries to incorporate the adjusted values of the electronic biases unless substantial ahational core is allocated.

GEODV: is a powerful yet fiexible tool for investigating the problems of satellite gcodesy anc orbit analysis. This sane policr and flexibility causes cxtreme variation in both input and ouiput requirements, Consequently, Gronio contains a great deal of programming associated with input and output.
11.1 INPUT

There are two major functions associated with the input structure:

These are the input of

- Observation data, and
- GEODI: Input Cards.

The observation data utilized by GLODYN includus data from all the major satellite tracking networks. The observational types used to date, together with their originating networks and instrument qjpes, sre:

- Pight Ascension and Declination

SAO	Baker-Nunn cameras
STADAN	MOTS-cameras

1i.2-1

USAF	nC- 1000 cancras
USC\&GS	BC- 4 cameras
SPEOPT	All of above except Baker-Nuna
	cameras

- Range

STADAN	GRARR S-Band
	GSFC Laser
SAO	Laser
ANS	SECOR
C-Band	FPQ-6 Radar
	FPS-16 Radar
MSFN	S-Band Radar

- Range Rate

C
$\cdots 1$

- Frequency Shift

TRANET - Doppler

- Direction Cosines

STADAN Minitrack interferometcr

- X and Y Angles

STADAN	GRAER
MSFN	S-Band Radars

- Azimuth and Elevation Angles

STADAN	GSEC Laser
C-BAND	FPQ-6 Radar
	FPS-16 Radar

- Time Delay and Fringe Rate C-bAND VLBI Radars

The observations are reçuired to be in either the format specified by the National Space Science Data Center (NSSDC) or the GSFC. DODS System.

The NSSDC format includes indicators to identify
GEOSKD observation type, instrumentation source, reduction method, coordinate system, and information concerning tropospheric and ionospheric refraction corrections. Data in this format is input vie subroutine GEOSRD.

The DODS format includes indicators to identify
DODSRD observation type, satellite identification, ambiguity DATBSE corrections, transponder channel when applicable, timing correction, and time reference system information. It also contains flags to indicate the need for transit time correction or other types of preprocessing corrections. Data in this format is input. via subroutines DODSRD and DATBSE.

The GEODYN Control Cards are the complete specifications for the problem to be solved including INOUPT special output requests. Their input, controlled through subroutines ADFLUX and INOUPT, consists of data and perhaps variances for

- Carcesian orbital elements
- Satellite drag coofficients
- Satelifte emissivity
- Zero set measurement biases to be adjusted
- Station positions
- Geoputential cocfficients
- Surface densities
- Earth tidal parameters
and data for
- Satellite cross-sectional area
- Satellite mass
- Integration times for the orbit
- Epoch time of elements
- Criteria for iteration convergence and data editing
- Solar and geomagnetic flux

Subroutine ADFLUX modifies the program internal data tables of soiar and magnetic flux according to the input. requests. It also generates the scratch file of flux information to be used with each are.

Subroutine INOUPT interprets the GEODYN Control Cards and sets the appropriate run parameters: It also gencrates the GEODrX run description and the descriptions for all ares.

Subroutine INOUPT references other routines to
INOURT

DODEL: elements for some arcs ma; be recovered from the DODS Data Basc by subroutine DODELM.

11.2 Output

Most of the output from GEODIN, not counting the descriptions of the input or run farameiers, is produced by the NONAME program. Exceptions to this are the ORBI tape output, the residual summary and the run summary page.

The printed output consists of a measurement and residual printout, residual summaries, and solution summaries as detailed below.

For each arc:

Measurement and Residual Printout

- Neasurement date
- Measurement station
- Measurement type
- Measurement value

Residual Summary by Type

- Measurement type
- Numbe of weighted residuals
- Neighter RUS about zero
- Weighted M MS about zero for all types together

Element Summary

- a priori Cartesian clements
- Previous Cartesicn elements
- Adjusted Cartesian :lements
- Adjustment to Cartesiăl elements (delta)
- Standard deviations of fit (sigmas)
- Position RNS
- Velocity RMS
- a priori Kepler elements
- Previous Kepler elements
- Adjusted Kepler elenents.
- Adjustrient to kepler elements (delta)
- Double precision adjusted Cartesian elements (current best elements for arc)

Adjusted Force Model Parameter Summary for Arc

- Drag Coefficients, Solar Radiation Pressire Coefficient, and/or resonant geopotential coefficierts.
- a priori coefficient value
- Adjusted coefficient value
- apriori standard deviations for coefficient
- Standard deviation of fit for cocfficient
-

Adjusted. Parameter Summary

- Instrument biases - timing bias and/or constant bias
- a priori bias value
- Adjusted bias value
- apriori standard deviation for bias
- Standard deviation of fit for bias
- Time period of coverage

The following items are printed on the last inner iteration of every outer iteration.

- Apogee and perigee heights
- "Node rate and perigec rate
- Period of the ortit
- Drag rate and period decrement if drag is being applied
- Updated covariance matrix for Cartesian arc elements
- Adjusted arc parameter corrclation coefficients

After all arcs:

Total Residual Summary.

- Total number of weighted measurements for each measurcment type
- Total weighted RNS for each measurement type
- Total number of weighted measurements
- Total weighted RNSStation Summary- Eartin-fixed rectangular coordinates andgeodetic ($\varphi, \lambda, \mathrm{h}$) coordinates
- a priori coordinate values- a priori standard deviations for coordinatevalues
- Adjusted coordinate values
- Standard deviation of fit for coordinate valucs
- Correlations between determined coordinatevalues
Gecpotential Summary- $C_{n m}$ and $S_{n m}$ coofficients for each n, m setdetermined
- apriori values
- Adjusted values
- Ratios of adjusted sigma to a priori sigmafor each cocfficient
- Standard deviations of fit for coefficientsSurface Density Sumary- Surface Density Block Centors
- Block Areas
- a priori values- "adjusted values- a priori uncertainties
- adjusted uncertainties
frc Summary for Outer Iteration - For each arc
- Updated Cartesian elements for arc- Correlation cocfficients between individualarc parameters- Standard deviation of fit for arc parameters- Correlation coefficients betwien individualarc paramcters and parameters common to allarcs
Common Parameter Correlation Coefficients
- Geopotential coefficients
- Cartesian station positions
- Surface Densities
11.2-7

GEODYN also produces an $X Y Z$ and Ground Track listing upon request. This is the normal printout for Orbit Generation Mode. In adㄹition an osculating clement printout is provided on option.

The tape output from GEODYN consists of

- the ORB1 tape,
- 'the XYZ and Ground Track tape,
- a DODS formatted data tape,
- a binary residual tape
- a simulation data tape.

The $X V Z$ and Ground Track tape and the binary residual tapes are used as input to GEODYN support programs.

11. 3 Computations for Residual Summary

The residual summary information is computed in subroutine STAINF for printing by the main program. The formulas used in this subroutine for computing cach statistic are presented below.

The mean is

$$
\begin{equation*}
H_{c}=\frac{i}{n}\left[\sum_{i=1}^{n} R_{i} \cdot \sum_{j=1}^{n_{b}} N_{b_{j}}{ }^{n} c_{j}\right] \tag{1}
\end{equation*}
$$

where
$4 \quad=\quad R_{i}$ are the residuals
n is the number of residuals
n_{b} is the number of electronic biases
$N_{b_{j}}$ are the residuals contributing to the bias
$b_{e_{j}}$ is the value of the electronic bias.

$$
\begin{equation*}
\text { RMS }=\sqrt{s^{2}} \tag{2}
\end{equation*}
$$

where

$$
s^{2}=\frac{1}{n}\left[\sum_{i=1}^{n} R_{i}^{2} \cdots \sum_{j=1}^{n_{b}} N_{b_{j}} b_{e_{j}}^{2}\right]
$$

The expected value of the sample variance differs from the population variance σ^{2} :

$$
\begin{equation*}
E\left(s^{2}\right)=\sigma^{2}-\operatorname{var}\left(\mu_{c}\right) \tag{3}
\end{equation*}
$$

or rather

$$
\begin{equation*}
E\left(s^{2}\right)=a^{2}\left(1-\frac{1}{n}\right) \tag{4}
\end{equation*}
$$

Hence we may make a better estimate of σ^{2} by computing

$$
\begin{equation*}
0^{2}=\frac{n}{n-1} s^{2} \tag{5}
\end{equation*}
$$

(. - This is known as Bessel's correction. This conputed valuc for the standard deviation, σ, is also called the RMS about zero.

The randomess measure used in GEODYN is from a mean souare succossive difference test. We have

$$
\begin{equation*}
\operatorname{RND}=\frac{\mathrm{d}^{2}}{\mathrm{~s}^{2}} \tag{6}
\end{equation*}
$$

when

RND is the random normal deviate, our statistic;
s^{2} is the unbiased sample variance; anc

$$
d^{2}=\frac{1}{2(n-1)} \sum_{i=1}^{n-1}\left(R_{i+1}-R_{i}\right)^{2}
$$

Note that d^{2} is the mean square successive difference: For each i the difference $R_{i+1}-R_{i}$ has mean zero and variance $2 \sigma^{2}$ under the null hypothesis that ($R_{1}, \ldots . R_{n}$) is a random sample from a population with variance σ^{2}. The expected value of d^{2} is then σ^{2}. If a trend is present d^{2} is not altered nearly so much as the variance estimate s^{2}, which increzses greatly. Thus the critical region RND constant is empioyed in testing against. the alternative of a trend, (Reference 1) necessary to know the distribution of the RND. It can be shown that in the case of a normal popuiation the expected value is given by

$$
\begin{equation*}
E(R N D)=1 \tag{7}
\end{equation*}
$$

the variance is given by

$$
\begin{equation*}
\operatorname{var}(R N D)=\frac{1}{n+1}\left(1-\frac{1}{n-1}\right) ; \tag{8}
\end{equation*}
$$

and that the test statistic, RND, is approximately
normal for large samples $(n>20)$.

11.4 Kepier Eloments

The Kepler elements describe the position of the satellite as referred to an ellipse inclined to the orbit planc. This is shown in Figures 1 and 2. The definitions of these elcments are:
a - semi-major axis of.the orbit
e - eccentricity of the orbit
i. - inclination of the orbit plane
Ω - longitude of the ascending node
i - argument of perigee

M - mean anomaly

E - eccentric anomaly
: - true anomaly

Apogee height and perigee height are sometimes used
in place of a and e to describe the shape of the orbit. As can be seen in Figure 1 , the radius at perigee is a(d-e) and tnat at apogee is $a(1+e)$. The heighics arc determined t; subtracting the radius of the reference elipsoid at the given latitude from the spheroid height of the satellite, The computations of these last are detailed in section 5.1.

$$
\cdot \quad 11.4-1
$$

Figure 1: Orbital Ellipse
C

Figure 2: Orbital Orientation

The computation of kepler elcments from the Cartesian positions and velocities x, y, z, x, y, z is as follows:

Compute the angular momentum vector per unit mass:

$$
\begin{equation*}
\kappa=\overline{\mathbf{r}} \times \dot{\bar{r}} \tag{1}
\end{equation*}
$$

where $\overline{\mathbf{r}}$ is the position vector and $\dot{\bar{r}}$ is the velocity vector. Note that $v^{2}=\dot{\bar{r}} \cdot \dot{\bar{r}}$. The inclination is given by

$$
\begin{equation*}
i=\cos ^{-1}\left[\frac{h_{z}}{h^{2}}\right] \tag{2}
\end{equation*}
$$

From the vis-viva or energy integral we have

$$
\begin{equation*}
v^{2}=\operatorname{GN}\left(\frac{2}{r}-\frac{1}{a}\right) \tag{3}
\end{equation*}
$$

where G is the universal gravitational constant and $\cdot N$ is the mass of: the primary about which the satellite is
orbiting. Thus we have

$$
\begin{equation*}
a=\left[\frac{2}{r}-\frac{v^{2}}{6.1}\right]- \tag{4}
\end{equation*}
$$

Recalling Kepler's Third Law,

$$
\begin{equation*}
h^{2}=G M a\left(1-e^{2}\right), \tag{5}
\end{equation*}
$$

we determine

$$
\begin{equation*}
e=\left[1-\left(\frac{h^{2}}{a G M}\right)\right]^{1 / 2} \tag{6}
\end{equation*}
$$

The longitude of the ascending node is aiso determined fron the angular momentum vector:

$$
\begin{equation*}
\Omega=\tan ^{-1} \cdot\left(\frac{h_{x}}{-h_{y}}\right) \tag{7}
\end{equation*}
$$

The true anomaly, f, is computed next. Note that in integrating

$$
\begin{equation*}
\ddot{\overline{\mathrm{r}}} \times \boldsymbol{K}=\mathrm{GN} \dot{\overline{\mathrm{r}}} / \dot{\mathrm{r}} \tag{8}
\end{equation*}
$$

one arrives at
c

$$
\dot{\bar{r}} \times \bar{h}=G . Y(\bar{r}+\overline{\mathrm{e}})
$$

(9) ELEM
where \bar{e} is a constant of integration of magnitude equal to the eccentricity and pointing toward perihelion. Thus,

$$
\begin{equation*}
\bar{r} \times \bar{e}=r e \sin f\left(\frac{-\hbar}{\hbar}\right) \tag{10}
\end{equation*}
$$

or, performing a little algebra,

$$
\begin{equation*}
\sin f=\frac{a\left(1-e^{2}\right) \bar{r} \cdot \dot{\bar{r}}}{r e h} \tag{11}
\end{equation*}
$$

(. The cosine of the true anomaly comes from

$$
\begin{equation*}
r=\frac{a\left(1-e^{2}\right)}{1+e \cos f} \tag{12}
\end{equation*}
$$

that is

$$
\begin{equation*}
\cos f=\frac{a\left(1-e^{2}\right)}{e r}-\frac{1}{e} \tag{13}
\end{equation*}
$$

The true anomaly is then

$$
\begin{equation*}
f=\tan ^{-1}\left(\frac{\sin f}{\cos f}\right) \tag{14}
\end{equation*}
$$

At this peint a decision mast be made as to wether the orbit is a cllipse ($1>0 \geqslant 0$) or a hyperbola ($1<0<\infty$). For an elliptic orbit, the eccentric anomaly is computed from the true anonaly:

ELES

$$
\begin{align*}
& \cos E=\frac{\cos f+e}{1+c \cos f}, \tag{15}\\
& \sin E=\frac{\sqrt{1-e^{2}} \sin f}{1+c \cos f}, \tag{16}
\end{align*}
$$

anc.

$$
\begin{equation*}
E=\tan ^{-1}\left(\frac{\sin E}{\cos E}\right) \tag{17}
\end{equation*}
$$

The mean anomaly is then computed from Kepler's equation:

$$
\begin{equation*}
\mathrm{M}=\mathrm{E}-\mathrm{c} \sin \mathrm{E} . \tag{18a}
\end{equation*}
$$

In the case of a hyperbolic orbit, we use an equation analogous to Kepler's equation by incroducing F, in place of E. The cccertric anomaly is the same as above;

$$
F=\tanh ^{-1}\left(\frac{\sinh F}{\operatorname{cosin} F}\right)
$$

where

PPMODUCIBILITY OP THE
 RITAL PAGE IS PCOR

$$
\begin{aligned}
& \sinh \because=\frac{\sqrt{1-e^{2} \sin f}}{1+e \cos f} \\
& \cosh \because=\frac{\cos f+e}{1+e \cos f}
\end{aligned}
$$

Page 6 of 6

HODIFICATIO: M10:0S:1 :19-194

REPPRODUCIBIITYY OF THE
ORIGINAL PAGE IS POOR.

* aDDED mODUles

Figure 3. Lozic Dlagraz of the hodificatfone

The mean anomaly is

$$
\begin{equation*}
N=e \sinh F-F \tag{18b}
\end{equation*}
$$

where $F=\ell n[\sinh F+\cosh F]$
F is computed by using the definition of \sinh and cosh

$$
\begin{aligned}
\sinh \dot{F}=\frac{e^{F}-e^{-F}}{2} \\
\begin{aligned}
\cosh F= & \frac{e^{F}+e^{-F}}{2} \\
(\sinh F+\cosh F) & =\frac{1}{2}\left(e^{F}-e^{-F}+e^{F}+e^{-F}\right) \\
& =e^{F}
\end{aligned}
\end{aligned}
$$

The central angle u is the angle between the satellite vector and a vector pointing toward the ascending node:

$$
\begin{align*}
& \cos u=\frac{x \cos \hat{\Omega}+\frac{y \sin \Omega}{r}}{x} \tag{19}\\
& \sin u=\frac{(y \cos \Omega-x \sin \Omega) \cos i+z \sin i}{r} \tag{20}\\
& u=\tan ^{-1}\left(\frac{\sin u}{\cos \frac{u}{u}}\right) \tag{21}
\end{align*}
$$

The argliment of perigee is then

$$
\begin{equation*}
\omega \dot{\approx} \mathbf{u}-\mathbf{f} \tag{22}
\end{equation*}
$$

$$
11-4-7
$$

```
                        The partial derjurt : \becausei Kepler elments with
respect :% A,y,z,x,\because, : sollows:
```

D.D.* of inciination.

$$
\begin{aligned}
& \frac{\partial}{\partial x} \cdot 1=A\left[B\left(\dot{y} \cdot h_{z}-\dot{z} \cdot h_{y}\right)-\dot{y}\right] \\
& \frac{\partial}{\partial y} i=A\left[B\left(\dot{z} \cdot h_{x}-\dot{x} \cdot h_{z}\right)+\dot{x}\right] \\
& \frac{\partial}{\partial z} i=A B\left(\dot{x} \cdot h_{y}-\dot{y} \cdot h_{x}\right) \\
& \frac{\partial}{\partial x} i=A\left[B\left(z \cdot h_{y}-y \cdot h_{z}\right)+y\right] \\
& \frac{\partial}{\partial y} i=A\left[B\left(x \cdot h_{z}-z \cdot h_{x}\right)-x\right] \\
& \frac{\partial}{\partial z} i=A B\left(y \cdot h_{x}-x \cdot h_{y}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& A=\frac{1}{h \cdot \sin \cdot i} \\
& B=\frac{\cos i}{h}
\end{aligned}
$$

P.D. of semi-major axis:

FP, D. partial derivatives
where

$$
\begin{aligned}
& V=x, y, z, \text { respectively. } \\
& \frac{\partial}{\partial V} a=\frac{\dot{V} \cdot 2 z^{2}}{G M} \\
& \dot{V}=\dot{x}, \dot{y}, \dot{z}, \text { respectively. }
\end{aligned}
$$

where
P.D. of eccentricity:

$$
\begin{aligned}
& \frac{\partial}{\partial x} e=C\left[x \cdot D-\frac{1}{a}\left(\dot{y} \cdot h_{z}-\dot{z} \cdot h_{y}\right)\right] \\
& \frac{\partial}{\partial y} e=C\left[y \cdot D-\frac{1}{a}\left(\dot{z} \cdot h_{x}-\dot{x} \cdot h_{z}\right)\right] \\
& \frac{\partial}{\partial z} e=C\left[z \cdot D-\frac{1}{2}\left(\dot{x} \cdot h_{y}-\dot{y} h_{x}\right)\right] \\
& \frac{\partial}{\partial x} e=C\left[\dot{x} \cdot D^{\prime}-\frac{1}{2}\left(z \cdot h_{y}-y \cdot h_{z}\right)\right] \\
& \frac{\partial}{\partial y} e=C\left[y \cdot D^{\prime}-\frac{1}{2}\left(x \cdot h_{z}-z h_{x}\right)\right] \\
& \frac{\partial}{\partial z} e=C\left[z \cdot D^{\prime}-\frac{1}{a}\left(y \cdot h_{x}-x \cdot h_{y}\right)\right]
\end{aligned}
$$

where

$$
\begin{aligned}
& C=\frac{1}{0 \cdot 6 \pi} \\
& D=\frac{h^{2}}{r^{3}} \\
& D^{\prime}=\frac{h^{2}}{677}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial}{\partial x} \Omega=H \cdot \dot{z} \cdot h_{x} \\
& \frac{\partial}{\partial y} \Omega=11 \cdot \dot{z} \cdot h_{y} \\
& \frac{\partial}{\partial z} \Omega=-H\left(\dot{y} \cdot h_{y}, \dot{x} \cdot h_{x}\right) \\
& \frac{\partial}{\partial \dot{x}} \Omega=-11 \cdot z \cdot h_{x} \\
& \frac{\partial}{\partial y} \Omega=-H_{z} \cdot h_{y} \\
& \frac{\partial}{\partial z} \Omega=H\left(y \cdot h_{y}+x \cdot h_{x}\right)
\end{aligned}
$$

where

$$
H=\frac{1}{h_{i}{ }^{2}+h_{y}^{2}}
$$

P.D. of mean anomaly:

$$
\frac{\partial}{\partial V} M=\frac{r}{a} S-\sin E \frac{\partial e}{\partial V}
$$

where

$$
S=\left(\frac{1}{a}\left(\frac{\partial r}{\partial v}-\frac{r}{a} \frac{\partial a}{\partial v}\right)+\cos E \frac{\partial e}{\partial \stackrel{v}{v}}\right) / \theta \sin E
$$

v represents $x, y, z, \dot{x}, \dot{y}, 亡$ respectively, and $\frac{\partial r}{\partial x} \frac{x}{r}, \frac{\partial r}{\partial y} y_{r}, \frac{\partial r}{\partial z} x_{r}$,

$$
\frac{\partial r}{\partial \dot{x}}=0, \frac{\dot{\partial} r}{\partial \dot{y}}=0, \frac{\partial y}{\partial \dot{z}}=0
$$

> P.D. of the argument of perigee:

$$
\frac{-}{\partial v} w=\frac{\partial u}{\partial v}-\frac{\partial \hat{f}}{\partial v}
$$

where

$$
\begin{aligned}
\frac{\partial u}{\partial v} & =\frac{\partial}{\partial v}\left(\tan ^{-1} \frac{\sin u}{\cos u}\right) \\
& =\cos ^{2} u \frac{\partial u}{\partial v} \sin u \frac{\partial}{\partial v} \cos u
\end{aligned}
$$

$$
\frac{\partial u}{\partial v}=\frac{-1}{\sin u} \frac{\partial}{\partial v} \cos u
$$

(c and

$$
\frac{\partial f}{\partial V}=\frac{\partial}{\partial Y}\left(\tan ^{-1} \frac{\sin f}{\cos f}\right)
$$

similarity

$$
\frac{\partial f}{\partial V}=\frac{-1}{\sin f} \frac{\partial}{\partial X} \cos f
$$

and

Where and $\frac{\partial z}{\partial y}$ ropresonts tho state ofotoxe.

In GEODYX, this conversion fron $x, y, z, \dot{x}, \dot{y}, \dot{z}$ to a, e, i, Ω, $0, N$ and the partial derivatives are performed by subroutine ELEM.

Conversion From Kepler Elements

The input elements are considered to be a, e,i, a, ω, and in and the Cartesian elements are required.

An iterative procedure, Newton's method, is used to recover the eccentric anomaly. For an elliptic orbit, the iterative procedure is, from Kepler's equation ($N=E-e \sin E$),

$$
E^{\prime}=E \cdot \frac{E-e \sin E-M}{1-e \cos E}
$$

For a hyperbolic orbit, the iterative precedure is

$$
F^{\prime}=F-\frac{e \sinh F-F-M}{e \cosh F-1}
$$

where F, sinh : and cosh F are defined previously.

This conversion procedure for converting a, e, i, Ω, ω, M to $x, y, z, \dot{x}, \dot{y}, \dot{z}$ is performed in the GEODYN system by s.broutine POSVEL.

The vectors T and $\bar{\pi}$ are computed. $\bar{\Lambda}$ is a vector in the orbit plane directed toward peri center with a magnitude equal to the seni-major axis of the orbit:

$$
\bar{A}=a\left[\begin{array}{c}
\cos \omega \cos \Omega-\sin \omega \sin \Omega \cos i \tag{23}\\
\cos \omega \sin \Omega+\sin \omega \cos \Omega \cos i \\
\sin \omega \sin i
\end{array}\right]
$$

E is a vector in the orbit plane directed 90° counter clockwise from \bar{A} with a magnitude equal to the semiminor axis of the orbit.

$$
E=a \sqrt{1-e^{2}}\left[\begin{array}{c}
-\sin \omega \cos \Omega-\cos \omega \sin \Omega \cos i \\
-\sin \omega \sin \alpha+\cos \omega \cos \Omega \cos i \\
\cos \omega \sin i
\end{array}\right] \text { (24) POSIEL }
$$

The position vector $\overline{\mathrm{r}}$ is then

$$
\begin{equation*}
\overline{\mathbf{r}}=(\cos E-e) \bar{A}+(\sin E) \bar{B} \tag{25}
\end{equation*}
$$

The velocity vector is given by

$$
\begin{equation*}
\dot{\bar{r}}=\dot{E}[(-\sin E) \pi+(\cos E) E] \tag{26}
\end{equation*}
$$

where \dot{E} is given by

$$
\begin{equation*}
\dot{E}=\sqrt{\frac{-6 y}{a^{3}}} \tag{27}
\end{equation*}
$$

11.4.1 Node Rate and perigee pate

The node rate \dot{R} and perigee rate $\dot{\omega}$ are computed from Lagrange's planetary Equations. As these are for printout. only, GZODY uses just the Earth oblateness term in the geopotential. From Reference 4, page 39 , we have

$$
\begin{align*}
& \dot{\Omega}=\left[\frac{3}{2} c_{20} \sqrt{\frac{G M}{a} e^{3}}\right]\left(\frac{a}{a_{e}}\right)^{-3.5} \frac{\cos i}{\left(1-e^{2}\right)^{2}} \tag{1}\\
& \dot{\omega}=\left[\frac{3}{4} c_{20} \sqrt{\frac{G M}{a^{3}}}\right]\left(\frac{a}{a}\right)^{-3.5} \frac{\left(1-5 \cos ^{2} i\right)}{\left(1-e^{2}\right)^{2}} \tag{2}
\end{align*}
$$

in radians per second, or rather

$$
\begin{equation*}
\dot{\omega}=-4.98\left(\frac{a}{a}\right)^{-3.5} \frac{\left(1-5 \cos ^{2} i\right)}{\left(1-e^{2}\right)^{2}} \tag{4}
\end{equation*}
$$

in degrees per day. The quantities used in the above equations are defined as:
a_{c} is the semi-major axis of the Earth
GM is the product of the universal gravitational constant G and the mass of the Earth M
E_{20} is the Earth oblateness term in the geopotential (see Section 8.3).
a scmi-major axis of the orbit

- eccentricity of the orbit
i inclination of the orbit

11.4.2 Period Decrement and Drag Rate

The period decrement and the drag rate are determined from the partial derivatives of the position and velocity with respect to the drag cocfilcient at the final integrator time step in the given arc. These (multiplied by the drag coefficient) represent the sensitivity of the position or velocity to drag effects. Let us define

$$
\begin{equation*}
\overline{\Delta D}=\frac{\partial}{\partial C_{D}}(\bar{r}) \cdot C_{D} \tag{1}
\end{equation*}
$$

where
$\overline{\mathbf{r}}$ is the satellite inertial) position vector
C_{D} is the drag coefficient

Ne also define

$$
\begin{equation*}
\dot{\bar{\Delta} \dot{G}}=\frac{\partial}{\partial C_{D}}(\dot{\bar{x}}) \cdot C_{D} \tag{2}
\end{equation*}
$$

The (two-body) period of the orbit is

$$
\begin{equation*}
P=2 \pi \sqrt{\frac{a^{3}}{G M}} \tag{3}
\end{equation*}
$$

where
a is the semi-major axis of the orbit
GM is the product of G, the universal gravitational constant, and M, the mass of the Earth.

Thus

$$
\begin{equation*}
\Delta P=3 \pi \sqrt{\frac{a}{G M}} \Delta a . \tag{4}
\end{equation*}
$$

The vis viva or energy integral has

$$
v^{2}=G M\left(\begin{array}{ll}
2 & \frac{1}{r} \tag{5}\\
- & \frac{a}{a}
\end{array}\right)
$$

hence

$$
\begin{equation*}
a=\frac{1}{\left[\frac{1}{2}-\frac{\dot{\bar{r}} \cdot \dot{\bar{r}}}{G M}\right]} \tag{6}
\end{equation*}
$$

Recognizing that $\Delta(\bar{r})$ is $\overline{\Delta D}$ and $\Delta(\dot{\bar{r}})$ is $\dot{\overline{\Delta D}}$,

$$
\begin{equation*}
\Delta a=\frac{2}{\left[\frac{2}{r} \frac{\dot{\bar{r}} \cdot \frac{\dot{r}}{\mathrm{r}}}{\mathrm{G}}\right]^{2}}\left[\frac{\bar{r} \cdot \Delta \Delta}{r^{3}}+\frac{\dot{\bar{r}} \cdot \dot{\Delta D}}{6.4}\right] \tag{7}
\end{equation*}
$$

The effect of the drag on the period is then given by

$$
\begin{equation*}
\Delta P=\frac{6 \pi}{a^{2}} \sqrt{\frac{a}{G M}}\left[\frac{\bar{r} \cdot \overline{\Delta I}}{r^{3}}+\frac{\dot{\bar{r}} \cdot \dot{\bar{A} D}}{G M}\right] \tag{8}
\end{equation*}
$$

The daily rate or period decrement is computed as $\Delta P / \Delta t$ where Δt is the elapsed time (in days) between the last integrator time point and epoch.

The drag rate is computed from the along track actually normal) portion of $\overline{\Delta D}$, that is ΔD_{N}. We need to cunstruct the unit vector along track, \hat{L}. The velocity vector $\dot{\bar{L}}$ may be resolved into a radial component and a compnent nornal to the radius vector. The magnitude of the nermal component is found by the Pythagorean Theorem:

$$
\begin{equation*}
A=\sqrt{\dot{\bar{r}} \cdot \dot{\bar{r}} \cdot\left(\frac{1}{r} \bar{r} \cdot \dot{\bar{r}}\right)^{2}} \tag{9}
\end{equation*}
$$

The unit normal vector $\hat{\mathrm{L}}$ is then

$$
\begin{equation*}
\hat{\mathrm{L}}=\left(\dot{\bar{r}}-\frac{1}{\mathrm{r}} \dot{\bar{r}} \cdot \dot{\bar{r}}\right) / \mathrm{A} \tag{10}
\end{equation*}
$$

The normal portion of $\overline{\Delta D}$ is then

$$
\begin{equation*}
\Delta D_{N}=\hat{L} \cdot \Delta D \tag{11}
\end{equation*}
$$

This $\overline{\Delta D}$ represents the along-track position effect duc to drag over the integrated time span. The drag rate is computed as $\angle D_{N} / \Delta t^{2}$ where Δt is again the elapscd time in days.

GENERAL:

1. Explanatory Supplement to the Astronomical Ephemeris and the American Ephemeris and Nautical Almanac, Published by Her Majesty's Stationery Office, London, 1961.
2. William M. Kaula. "Theory of Satellite Geodesy," Blaisdell Publishing Company, Naltham, Massachusetts, 1966.

SECTION 3:

1. A Joint Supplement to the American Ephemeris and the British Nautical Almanac," Improved Lunar Ephemeris 1952-1959," pages IX and X.
2. Astronomical Papers Prepared for the Use of the American Ephemeris and Nautical Almanac, Volume. 15, Part 1, page 153, "Theory of the Rotation of the Earth Around its Center of Mass," published by the United States Government Printing Office, Washington, D.C., 195:.
3. Explanatory Supploment to the Astronomical Ephomeris and the American Ephemeris and Nautical Almanac, published by ller Majesty's Stationery Office, London, 1961.

REFERENCES (COSTR.)

SECTION 3 :

4. S. Newcomb. "A New Determination of the Precessional Constant witl tl $=$ Resulting Precessiona) Motions," Astronomical Papers prepared for the use of the American Epheneris, $18 \subseteq 7$.
5. Edgar W. Woolard. "A Redevelopment of the Theory of Nutaticn," Astronomical Journal, February 1953, Vo1. 58, No. 1, pages 1-3.

SECTION 4 :

> 1. C.J. Devine. "JPL Development Ephemeris Number $19, "$ JPL Technical Report $32-1181$, Pasadena, California, November 15,1967 .

SECTION 5:

1. Bernard Guinot and Nartine Feissal. "Annual Report for 196," Bureau International De L'Heure, published for the International Council of Scientific Unions, Paris, 1969.

REFERENCES (CONI.)

SECTION 7:

1. "GEOS-A Clock Calibration for Days 321, 1965 to 50, 1966," Johns lopkins Univercity Appied Physics Laboratory Report, 196.
2. TIBT-BOOK ON SPHERICAL ASTRONOM', W.M. Smart, Cambridge University Press, 1965.

3: George Veis, "Smithsonian Contributions tc Astrophysics," Vol. 3, No. 9, 1960.
4. C.A. Lunḑuist and G. Veis, "Geodetic Parameters for 2 1966 Smithsonian Institution Siandard Earth," S.A.O. Special Report No. 200, 1960.
5. W. Woolard and G.M. Clemence, "Spherical Astronomy," Academic Press, 1966.

SECTION $8:$

1. Jacchia, L:G.

1971 "Revised Static Models of the Thermosphere and Exosphere with Empirical Temperature Profiles," Special Report 332., Smithsonian Institution Astrophysical Observatory (SAO), Cambridge, Massaihusetts.

2:. 1970 "New Static Nodels of the Thermosphere and Exosphere with Empirical Temperature Profiles," Special Keport 313, SAO.
3. Gotz, R.

1968 "Density of the Upper Atmosphere," Vicif Research" and Development Corporation, Riveragle, Haryland.
4. Roberts, C.I., Jx. 1070 "An Analytical Nodel for Upper Atmospnere Deasi-

- tics Based Upon Jacchia's 1970 Models," Celestial Nechanjes 4 (1971), D. Reidel Publishing Company, Lordrecht, Holland.

5. Koch, K.R., "Alternate Representation of the Earth's Gravitational Ficld fo. Satellite Geodesy," Boll. Geofis., 10, 318-325, 1968.

ט. Koch, K.R. and F. Morrison, A Simple Layer Kodol of the Geoporential from a Combination of Satellite and Gravity Data," J. Geophys. Res., 75, 1483-1492, 1970.
7. Koch, K.R. and B.U. Nitte, Earth's Gravity Ficld Represented by a Simple-Layer Potential from Doppler Tracking of Satellites," J. Gcophis. Res., 76. 8471-8479, 1971.
8. Koch, in.R., "Errors of Quadrature Connected with the Simple layer Model of the Geopotential," U.S. Dept. of Commerce Memo NOMA TM NOS 11 , December 1971.
9. Gaposchkin, E.M. and K. Lambeck, 1969 Smithsonian Standard Earth. Smithsonian Astrophisieal Ohser: yatory Special Roport iio. 315, Slay 18. 1970 ,
10. Schuari, C.R., "Gravity Ficld lefinowent b) Sacellite to Satelifte Dopner Tracking," Gaio State Demartment uf Geodet; Scionce kenort No. 14/, Jecember 197 u .
11. "Error fodels for Solid Earth and Ocean Tidal Effects in Satellite Systems Analysis", liolf Research and Develor:ont Cornoration, Contract So. NAS 5-11735-Yad 57. July 1972.
12. Jacchia, L.G., "Static Djffusion :odels of the Upper Atmosphere vith Enpirical Tomperature Profiles," Special Report 170, SAO, 1965.
13. !.S. Standard Atmosphere, 1966. Sponsored by National Aeronautics and Space Adninistration, U.S. Air Force and U.S. Heather Bureau, Hashington, D.C. (Decerber).
14. Jacchia, L.G., "Densiry Yariation in the Hetropshere," Special Report 184, S40 (Septeriber 20)., 1965
15. Jacchia, L.G., "The Temperature Above the Thermopause," Special Feport 150, Srithsonian Institution Astrophysical Obsurvatory (SAO), Cambricge, Hassachusetts, 1965.
16. Johnson, F.S., "Circulation at Ionospheric Lavels," Southest Center for Adranced Studies, Report on Contract Ciio 10531, (Jamuary 30), 1964.
17. Jacchia, L.G., Carpbell, I.G., and Slowcy, J.K. "SemzAnnuia Density Variations in the lipper itriosphere, 1958 to 1966 " Special Report $2 u 5$, SAO, (January 15), 1968.
18. Jacchia, L.G., "IV. The Upper Atro: \quad here," lhilosophical Transactions of the Royal Society, 1967, A. Vol. 262, pp. 157-171.

SECTIO: 9:

1. "Cowcll Type Numerical Integration as Applied t, Satellite Orbit Ccoputations," J.L. Naury, Jr., G.D. Brodsky, GSFC X-555-69-i6, Dec. 1969.
2. "Geostar-I, A Geo:otential and Station Positions Recovery System," C.E. Velez, G.P. Brodsky, GSFC X-53-69-544, December 1969.
3. "Geostar-II, A Gecpotential and Station Position Recovery Systen," C.E. Yelez, G.D. Brodsky, GSFC X-553-70-372, Oct. 1970 .

SECIION $10:$

1. Maurice G. Kendal and dlan Stuart. "The Advanced Theory of Statistics," Vol. II, Londan, 1961.
2. Robert C.K. Lee, "Optimal Estimation, Identification and Control," Candriage, Nassachusetts, 1964.
3. "The GEOSTAR Plan for Geodetic Parameter Estimation," Holf Rescarch and Develcpment Corroration, Contract No. NAS 5-9756-152: Noveraber 1968.

RHPRODUCIBILSTY OF THE oritinal page is poor

REFERENCLS (CO:T.)

SECTIG: 11:

1. B.N. Lindgren. "Statistical Theory," The Aacmillan Comrany, New York, 126 .
2. "Support Activity of the Gcodetic Satellite Data Service," Nationul Space Scicnce Data Center Report, Goddard Space Flight Center, November 1965.
3. J. Topping. "Errors of Observation and Their Treatment," Chapman and Hall, Ltd., London, 1965.
4. Nilliam K. Kaula. "Theory of Satellite Geodesy," Blaisdell Pubiishing Company, Naltham, Massachusetts, 1966.

REPRODUCIBLITY OF TAE ORIGINAL PAGE IS POOR

Aparaind A
INDEA OF SUD:OUTI:iE RITERENCES FOR GEODY: PROGRAM

SUBROUTINE
ADFLIIX
APPER
AVGPOT
BSCO:3
COEF
COBELL
DATBSE
DEAORM
D71
D650
DNVERT
DOUELM
DODSRD
DRAG
EGRAV
ELEM
EPIEM.
EQN
EqUATR
ESTIM
F
Flydim
FLUXS
GEOTDII
GEOSRD
GRHPAS
INOUPT
INTRP
Jastic:

SECTION
8.:.2, 11.1
11.4
8.3.2.2
10.4
9.3
$9 . \overline{1}$
11.1
8.3 .1
$8.2,8.6,8.7$
$8.2,8.6,8.7$
9.1
11.1
7.1, 7.2,.10.3, 11.1
5.1, 8.2, 8.6
8.3 .1
11.4
3.5, 4.0
3.6, 3.6.2
3.6,7.2
10.2
3.5, ․1. 2.2, 8.5:
8.7.2
8.7 .2
8.3.2.2, 8.3.2.4
7.1, 7.2, 7.6, 10.3, 11.1
3.4, 3.5, 6.1
5.1., 11.1
 ORYGNAL PAGE IS POUR

Sumbinitit
NuTATE
OBSDOT
ORBIT
ORB1
PDEN
PLHOUT
POLE
POSVEL
PRECES
PREDCT
PROCES
REARG
REFEOR
REFION
RESPAR
SATCL2
SATCLC
TIDAL
SQUANT
STAINF
START
SUMMARY
SUNGRV
SURDEN
SYMINV
THIF
TRUEF
THOSTA
TYPOBR
UPDOHN
VCoiny
VEVAL XPFIX

SECTIOX
3.6, 3.6.2
$3.4,5.2,6.0,6.1,6.3$
8.2, 2.0
11.2
8.3.2.4
5.1
5.4
11.4
3.6, 3.6.1
3.4, 5.1, 5.2, 6.0, 6.1, 6.2, 8.2
$6.0,7.1,7.3,7.4,7.5$
9.1
3.6, 8.1
7.5
8.2, 8.3.1
9.1
7.1
8.8
5.1, 5.2
11.3

9,2
11.2
8.4
8.2, 8.3.2.1, 8.3.2.4
10.2
5.3 .1
5.4
$6.4 .1,6.4 .2,6.5,6.6,6.7,7.7$
21.2
7.7
5.1
$5.1,8,2,8.3 .1,8.4,8.5,8.6,8,7.5$
3 3. 6.3

	SURROUTINE	
$=$	SIECTIO:	
	$=$	3.4
	YINERT	$3.4,6.3$
	YINEPT	3.4

[^0]: * Published numbers are in Reference 1.

