
t

!

: ".9_[

' I/
|

/

nM_ 1 {Wolf R_pam-ch and

.) ]95 p _C $10.25 : ":CSCL 08_. Unclas i

_ G3/_,3 03461 :

VOLUME I

GEODYN SYSTEM DESCRIPTION ,.

d)

Contract No.: NAS 5-i1735 MOD 65 I
PCN 550W-72416

¢,

Pre_-_red By :

¢ M.M. Chin
C.C. Goad

T.V. Martin

Wolf Research and Development Corporation
Riverdale, Mary?,_-m.4 t

For ,

Goddard Space Flight Center
,. Greenbelt, Maryland

i 30 September 1972 I__. CJ'_,'4_. ..._

, I

1975003343

https://ntrs.nasa.gov/search.jsp?R=19750003343 2020-03-23T03:01:03+00:00Z



August i[, 1973 ._

, DIRECTIONS FOR CEODYN VOL. I CIIANGES '
l,

l

NEW REPLACE INSERT
PAGES OLD PAGES AFTER PAGE DESCRIPTION

I

;i

Table of Table of • , '
Contents Contents -'.'i

1

' Table of Table of i
! Contsnts Contents

- (Cont.) (Cont. 5 and 4}
t_

• tl4.0-.2 4.0-2 The equation of
Fa(s) has been

cGrrected. I
I

I

' 5.4-3 5.4-5 Added new section
' ' numb e r '

5.4-6 to} 5.4-5 Inserted a new5.4-10 section.

t[
7.5- 5 7.S- 3 Added a "-" on

equation ('4)

7.S-4 7.5-4 - Corrected the explan-

ation of ns•

8.1-2 8.1-2 Line 7: 'di££erentia1"

"_ " ' 'OF T11_ added•

":' 8 2-8 8 2-8 OttIGINAL PAGE IS pOOR• " • Line 5: "DENSTY"

changed to "DTI, D650"

mJ

8.6-2 8.6-2 . Changed the sign on
equation (2).

" 8.6- 5 8.6- 3 Line 3: "DENSTY"
: ' changed tO "D'_'I, D650"

i °
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August 11_ 1973

NEIV REPLACE INSERT
PAGES OLD PAGES AFTER P_GE DESCRIPTION

41h

_.Y-I 8.7-i Added a n_w section.
g

I I Changed "DEN_TY"

" 8.7-2 'to g.7-2 to (Note" keep 8.7-16, 8 7-18 "D71"• " " to and/or ;
8.7-33 8.7-33 to 8.7-27) changed section i

number.

_ 8.7-34 to_ 8.7-33 Added new section.

!8.7-57

'i
,, I0.I-3 i0.I-3 Equation (3) and (4)

I " have been corrected. |

J10.1-4 10.1-4 . , Equation (5} and (6)
have been corrected.

I0.I-6 I0.I-6 Equation (9), (II),
.... and (12) have been

corrected.

I0.2_I lu.2-1 Equation (i) has been
changed.

11.4-6 II._-6 Function F has been
corrected.

12.0-5_ 12.0-5 _ Added new references

12.0-6 _ on section 8.

12.0-7 12.0-3 Page number changed.

A-I A-I _ "DENSTY" changed to
"' "D71, D650"

-nn_3

01_I6_"
' q

N

•
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August 11, 1973

TABLE OF CONTEhTS "

- 2.0 THE fRBIT AND GEODETIC PARA_IFTER ESTIbIATION
PROBL EN 2 . 0- I

2.1 THE ORBIT PREDICTION PROBLEM 2.1-1

2.2 THE PARAlqETER ESTIIqATION PROBLEM 2.2-1

"3.0 THE blOTION OF THE EARTII AND RELATED
COORDINATE SYSTEMS 3.0- I

5.1 THE _RUE OF DATE COORDINATE SYSTEbl . 5.2-1

5.2 THE INERTIAL COORDINATE SYSTEm! . 3.2-i !

!
3.3 THE EARTH-FIXED COORDINATE SYSTE/,! 3.4-1 t

i

3.4 TRANSFOR_IATION BETI','EENEARTH-FIXED i

AND TRUE OF DATE COORDINATES 5.4-I i
.4

3.5-1
i 3.5 C0_IPUTATION OF egJ I

3.6 PRECESSION _ND NUTATION . 5.6-I

5.6.1 Precession 5.6-4

3.6.2 Nutation 3.6-8

_" 4 0 LUNI-SOLAR-PLANETARY EPHEMERIDES 4.0-1e

5.0 THE OBSERVER 5.0-I

"" " 5.1 GEODETIC COORDINATES S.I-1

5.2 TOPOCENTRIC COORDINATE SYSTE_IS 5.2-1

S.3 TIME REFERENCE SYSTE_IS 5.3-I

- 5.3.1 Time System Transformations 5.3-2

5.4 POLAR _SOTION $.4-I
t •

5.4.1 EFFECT ON TIIE POSITION OF STATION 5.4-3
• .

_ 5.4.2 PARTIAL DERIVATIVES . 5.4-6.
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TABLE OF CONTENTS (Cont.)

; i

l

_ 8.0 FORCE MODEL AND VARIATIONAL EQUATIONS" 8.1-1 i

8.1 EQUATIONS 9F NOTION . 8.1-1 • i
, i

• , I
8.2 THE VARIATIONAL EQUATIONS 8 2-1 .? _

18.5 THE EARTH'S POTENTIAL 8.5"1

8.3.1 Spherical Harmonic Expansion 8.3-2 _

8.3.2 Surface Density Layers 8.3-17 l

8.3.2.1 Mathematical Representation
of Surface Densities 8.3-17

8.3.2.2 Sur£ace Height Computation 8.3-21

, 8.5.2.5 Layer Model Quadrature
Errors 8.3-21

8.5.2.4 Constraints 8.3-22

_ 8.4 SOLAR AND LUNAR GRAVITATIONAL PERTURBATIONS 8.5-1

I 8.5 SOLAR RADIATION PRESSURE " 8.E-I
8.6 AT_IOSPHERIC DRAG 8.6-1

8.7 ATHOSPHERIC DENSITY 8.7-1

%

8.7.1 Jacchia 1971 Density _[odel 8.7-1

• 8.7.1.1 The Assumption o£ the Model 8.7-2
t

8.7.1.2 Variations in the Thermosphereand Exosphere 8.7-4

" 8.7.1.3 Polynomial Fit o£ Density
Tables 8.7-15

8.7.1.4 The Density Computation 8.7-28

8.7.1.5 Densitf Partial Derivatives 8.7-29

8.7.2 Jacchia 196S Density Hodel 8.7-54

" 8.7.2.1 The Assumptions of the Model 8.7255

i . 8.7.2.2 The Exospheric TemperatureComputations 8.7-39
o

t',

REPRODUCIBILITYOF THE

ORIGINAL PAGE ISPOOR

I
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10.2 THE PARTITIONED SOLUTION 10.2-1
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1L.1 INPUT 11.1-1

11.2 OUTPUT 11.2-1

II.3 COMPUTATIONS FOR RESIDUAL SU_BIARY II.Z-I

11.4 KEPLER ELEMENTS 11.4=1

11.4.1 Node Rate and Perigee Rate 11.4-14

11.4,2. Period Decrement and Drag Rate II.4-16
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APPENDIX A INDEX OF SUBROUTINE REFERENCES FOR
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Page
_bol Description First Used

A Matrix partition of U2c+D r associated 9.1-3

wit), position partials.
e

A Matrix partition of (BT WB �VaI) 10.2-4

associated with a

I

XD Acceleration of satellite due to drag 3.1-2

Ak Matrix partition of (BT WB �VAI) 10.2-4
accounting for effects between a

and k

I XR Acceleration of satellite due to sola_ 8.1-2
radiation pressure

Ar Matrix partition of A associated with i0.2-6
the rth arc

" Ark Matrix partititon of Ak associated with I0.2-7

the rth arc

Az Azimuth of satellite (measurement type) 6.2-1

a Semi-major axis of referenc_ ellipsoid $.1-2
,

_ ' a Semi-major axis of orbit 11.4-1

4,

Acceleration of satellite produced by 8.3-20

i the surface denstt7 potential

_ OEIG_A L PAGE ISPOOB I

] 97500:3343-007



.... - ........................................ ..................

Page
S_/,mbol Description First Used

Vector of parameters associated with 10.2-2 ,_
individual arcs, partition of x-

aa Acceleration of satellite due to a 8.5-I

third body potential

i

ae Earth's mean equatorial radius 6.1-4

ESD Surface density acceleration a.3-28

£r Partition of a associated with the 10.2-6

rth arc

(
i" aij Polynomial coefficients used to fit 8.7-31I

the density table

J

B Matrix partition of U2C + Dr associated 9.1-3

with veiocity partials

B Matrix of partial derivatives of computed 10.1-4

measurements with respect to the parame-

ters being determined

Be Matrix of partial derivatives of the 10.4-2
measurement-with respect to the biases

¢

_.:- b A constant measuremer_t bias 6.0-2

OGmAUPAOEm Poor
_ ii "
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GLOSSARY OF S_MBOLS (Cont.)

Page

Description First Page, ,,

C Molecular mass of Helium divided by 8.7-14 !

Avogadros' number

bej Electronic bias 11.5-1 !

bij A set of appropriate coefficients for 8.7-31
the Helium number of density tables

f

CD Satellite drag factor P 8.2-2 .

CR Satellite emissivity factor 8.2-2

t
( Ca Matrix partition of BT W dm i0.2-4 i

�VA-I.(n)"EA)
associated with a

Ci Compute4 measurement value corres- 2.2-I :

-._ ponding to 0 i

Ck Matrix FartitiGn of (BT Wdm + VAI(_(n)-_A) i0.2-4
. associated with k

• Gravitational harmonic coefficient of 6°3-2Cnm
degree n, order m

i

t

l

T: Cnm The cosine coefficient of surface 8.3-25
density constraint equations

, ¢
' iii '"
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9.1._.q.qARYOF SYMBOLS [Cont.)

Page
Symbol Description First Used

Cr Matrix partition of Ca associated with 10.2-7 i
ththe z arc

I
_ L

Ct,At The computed observation at time t+At 6.0-1
$

c Velocity of light 7.6-i

ci Interpolation coefficients 9.3-1

ci _nterpolation coefficients 9.3-2

D Mean elongation of the Moon from the Sun 5.6-11

f
Dr Matrix containing _)[D 8.2-6

_t

dOi Error of observation associated 2.2-1

with 0i

*_ d..a.a Partition of d_xx(n+i) associated with a_ 10.2-4

. (correction vector for arc parameters)

.dar Partition of da.aassociated with the rth 10.2-8
arc (correction vector for the r th arc

parameters)

" rt
" da r Correction vector ._.o h arc 11.4-1

parameters not Including common

, parameter solution effects

/

_;" REPRODUCIBILITY OF THE ,
; _, iv ORIGINAL PAG_ ISPOOR -
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t CLOSSARY OF SYMBOLS (cont.)

Page
Symbols Description First Used

dE Element of surface area 8.5-18

dk Partition of dx (n+l) associated with 10.2'-4 "

the common parameters k

dm Vector o£ residuals (O-C) from the nth I0.2-I
A f

approximation to _ (same as dz(n) )

I

d_x(n �•�Vectorof corrections to the parameters 10.1-6
X

dz(n) Vector of residuals (O-C) from the nth 10.1-6

( approximation (same as dm)

dI The transponder delay in the relay 6.4-3
satellite

d2 The transpo;_der delay in the tracked 6.4-3
satellite

E Eccentric anomaly of the orbit 11.4-1

East baseline vector in the topocentric 5.2-I

horizon coordinate system

"- E ( ) Expected value II.3-3

EH Input multiplier for editing trite, ion I0.3-2 ,

'C

R_RODUCIBIL1TyOF
OmO_AL PAQ_m Poor

¥
e
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a GLOSSARY OF SYMBOLS (Cont.)
qm"

Page
, Symbo]s Description First Used

ER Weighted RMS of previous outer iteration 10.5-2
Input for first outer iteration

i

E£ Elevation of the satellite (measure_..ent 6.2-1 ,
type)

|
e Eccentricity of the reference ellipsoid _.]-2 '_

e Eccentricity of the orbit II.4-i

Constant of integration a vector of a Ii.4-6 ]
magnitude equal to the eccentricity of

• : (. the orbit and pointing toward perihelion

F Mean angular distance of the Moon from 3.6-ii

Sun

_r (same as Y) 8.2-6
F Matrix containing

_, _B Base frequency for Doppler measurements 7.6-1

% FM Measured frequency for Doppler observa- 7.6-1
- tions

FI0.7 Mean of the 10.7 cm. solar flux values 8.7-6

-- for a given day

'_ FI0.7 Average I0.7 cm. flux strength over 8.7-6
3 solar rotations

, i!

] 975003343-0 ] 2



Page
Sy._bol__ Description First Used

! f Flattening of the Earth 5.1-1

f Transmitter frequency 6.6:3 !

!f Matrix containing the direct partial 8.2-6

derivatives of _t with respect to

P
! f Back value of acceleration 9,3-2
i

f The true anomaly of the orbit i!.4-1

• f, The geometric relationship defined by 6.0-1

' ( the observation type at time t.

G The universal gravita=ional censtant 6.3-2

g b/ean anomaly of the Moon 5.6-il

g' Mean anomaly of the Sun 5.6-11

H Hour angle of the Sun 8.7-7

Hal t Altimeter height (mes:_; eat t)rpe) 6.1-3

h Spheroid height 5.1-2

h Integrator st_p sizo 9.3-2

,_ ( hs Local hour angle measurel in the westward 7.,,-2direction fr_,,, the station to th_ satellite

vii

] 975003343-01:3



GLO3SARY OF SYMBOLS (Cont.)
q

i

Page i
S_xmbo!s Directions First U_,ed i

I Identity matrix 9.1-3

! Inclination of the orbit 11.4-1

J Julian Ephemeris Date of desired 5.6-]0

nutation calculation

J0 Julian Ephemeris Date corresponding tu 3.5-10

1900 January 0.5 Ephemeris Time '_

K Partition of (BT NB + VA I) associated !0.2-4

with K

Kp The 3-hourly planetary geomagnetic index 8.7-9

Vector of parameters common to all arcs; 10.7-2

-_ partition of x

"_ k_ Tidal coeffi:ient of degree 2 called 8.8-1&

the 'Love Number'

"_ L Direction cosine (measurement type) 6.1-7

£ Distance from a point on the earth's 8.3-18

surface to the point at which the po-
t

_ , tential is to be computed

M Mass of the Earth 6.3-Z

p_PRODUCIBILITY OF THE
ORIGINAL PAGE [8 POOR

viii

b,
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. _ GLOSSARY OF SYMBOLS (Cont.)

Page
Symbols Descriptio_ First Used

M Number of blockb on the Earth's surface 8°5-20

0

I M Number of parameters in x 10.i-1

M Mean anomaly of the orbit II.4-I

b

Me Mass of the Earth 8.8-1

Md Mass of the disturbing body 8.8-1

Mo Ntmber of unadjusted densities 8.3-_9

M' Number of constraint equations 8.3-27

Direction cosine (measurement type) 6.1-7

md Mass of.the disturbing body for third 8.4-1

body perturbations

m i Computed equivalent of the ith measure- 10.2-2

"_ _ ment Csee Ci and Ct+At )

ms . Mass of the satellite 8.5-4

_. N , Number of observations in z I0.I-I

e;

_ N' Maximum degree coefficient unaffected 8.3-27

;_. by. the surface density layer

2 L

I

q97500:3343-0] 5



GLOSSARY OF SYMBOLS (Cont.)

Page
Sjmbols Description First Used

North baseline unit vector in the 5.2-I

topocentric horizon coordinate system

l

Nbi Residuals contributing to the bias 11.5-1J

computation

n Direction cosine (measurement type) " 6.1-7

I ,
n Number of residuals 11.5-1

|

nb Number of electronic biases 11.5-1

i ns Surface index of refraction 7.5-_

O i The ith observed measurement value 2.2-1

F Vector of parameters to be determined 2.2-I

n

Pm ( } Legendre polynomial 6.3-2

Ps Solar radiation pressure in the vicinity 8.5-4
of the Earth

p (x_ Joint probability density function _ I0.I-I

f

- p (_) Joint probability density function for _ I0.I-I

p (x_[z_)Joint conditional probability density I0.I-I

fv_tion for x, given that z has

oc___rred

[,

1'!X ,

M
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i GLOSSARY OF SYMBOLS (Cont.)

Page
Symbols Description First Used I

p {z[x) Joint conditional probability density i0.I-I
)

function for z give._ that x has

occurred
0

q Parallactic angle in radians 7.5=1

Re Mean earth radius . $.8-1

Rd Third body disturbing potential 8.4-1

Rd Distance from center of mass of the 8.8-I
_arth to the center of mass of the

disturbing body

Rg(t) Range vector from the center o£ the 6.4-5
earth to the ground station ct time t

Ri Residual value (dmi} 11.3-1

#%

. Rd Unit vector from center of mass of the 8.8-I

earth to the center of mass of the

_ disturbing body

R_(t} Range sum measurement at time t < 6.4-I

h

,_._, Rl(t) Range vector from the center of the 6.4=5
-_'; earth to the re_ay satellite at time t

R2(t) Range vector from the center of the 6.4-3
earth to the tracked satellite at time t

_, xl " •

m
i 4 )_ "_' " 'I '

[
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I

l

i J

!
4_ GLOSSARY OF SYMBOLS (Cont.) !

(

Page t

i Symbols Description First Used

.i Rld DoN-link range from the relay satellite 6.4-3
to the ground

Rlu Up-link range from the ground to the relay 6.4-I
satellite

R2d Relay satellite - tracked satellite range 6.4-I

R2u Tracked satellite - relay satellite 6.4=3
range

Rs Time derivative of Rs 6,4=S

( RIu Time derivative of Rlu 6.4-8

R2d Time derivative of g2d 6.4=8

r Distanca _rom the point of interest to 8.3-18

the center of mass of the earth

_ Distance from center of mass of the 8.8-1

- earth to satellit_

Geocentric satellite position vector S,l-10

'O

:_: '_ r_ True of date position vector of the 8.7-29

_: satellite

4, "

_ _d True of da_e Fosition vector of third 8.4-1

_i_ _ body for third body gravitational effects

1975003343-018



I GLOSSARY OF SYM3OLS (Cont.)

Page i
S_bols Description First Used I

rob Geocentric position vector of a tracking 2.2-4
station

A

r Unit vector from center of mass of the 8".8;1

E&rth to the satellite

:s TruetheSun°£date unit vector pointing to 8.5-4 , i
E

S The cosine of the enclosed angle between 8.4-1 i

_ and _'d i

S Surface of the Earth .8.3-18 '

1

SI The first sum carry along by the 9.,.3-_I 1
integrator i

1

S2 The second sums carry along by the 9.3-1 i
, !ntei grator ...._ ..........:.LaI ....-,.

Snm " Gravitational harmonic coefficient 8.2-2 i

.of degree n, order m . ,:.._

Snmt The sine coefficient of surface d6nsLty 8.3-25.

constraint equations ,:. = ,.c _2

.' 4 :

_ s 2 Sample vari'ance 11.3-1

T A sample layer distributed on the 8.3-25

surface of the Earth

xiil
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GLOSSARY OF SYMBOLS (toni.)

Page
S_mbols Description First Used

T Exospheric temperature 8,7-15

Te Exospheric temperature $. ?-? '

Tc Nighttime minimum global exo_pheric 8.?-6
temperature for a given day

T Average nighttime minimum global 8.?-5

exospheric temperature for a given

period

t

, ( U Geopotential field of the Earth 6.4-5

O Spherical harmonics part o£ total 8.3-18

earth potential

_- U2C Matrix containing the second partial 8.2-6
derivatives of the gravitaticnal

potentials with respect to the true
of date position coordinates

{ ,

u Central angle between the satellite 11.4-7

vector and a vector pointing toward

the ascending node of the orbit

-_ u Unit vector in the direction of _ 8.1-2

_ V Covariance matrix of X 10.1"$

v Unit local vertical at the station ?.S-g

't-, xiv

r
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Page
Symbols Description First Used

YA ai priori covariancc matrix associated 10.2-1

with [A; same as Z_I
I

Va Matrix partition of VA; £ priori co- 10.2-3
variance matrix associated with a

Vk Matrix partition of VA; a priori co- 10.2-5
variance matrix associated with k

V r Matrix partition of Va associated 10.2-6
_ith the rth arc

_. W Weighting matrix for observations; 10.2-1

same as _;I

W Total potential of the £arth 8.5_18

X C,ordina't: system direction: 2.1-5

a) Direction in the equatorial plane ,

pointing toward the Greenwich

meridian (Earth-fixed system)
!

b) In the direction of the true equinox

(. of date at o_o of the epoch day
- (inertial system)

c) In the direction of the true equinox
o£ date (true of date system)

e

_. . q-
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GLOSSARY OF SYMBOLS (Cont.)
V

Page
Symbols Description First Used

X(t  �˜�Positionpartial at time t 9 5-I

X(t+At) Velocity partial at time t 9.3-.2

Xa The X angle of the satellite 6.1-7

(measurement type)

Xe Earth-fixed position component 3.4-1
!

Xi True of date position component 5.4-I

Xm Matrix containing the variational 8.2-6

. partials

Xli Inertial cartesian position coordinates 6.4-6

of the relay satellite

XZi Inertial. cartesian position coordinates 6.4-6
of the tracked satellite

_ ili Time derivative o£ Xli 6.4-8 ,

!
-.

X2i Time derivative of X2i 6.4-,8 ,

x True of date X position component 2.2-4

of the satellite
J

: x Rotation angle for polar motion 5.4-5 _

N'

. _.. xvi :

l
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_T r'%CC ADV _ ...... .

".e FI
S_ymbol s Description First Used il

x_ Vector of H parameters i0.i-I

x The "best" estimate of x 10.1...-2

#%

x (n) The n th approximation to x 10,1-2

D

_A The a p,rior£ estimate of _ 10.1-2

f

_t The vector describing the true of 2.2-4

date position and velocity of the

satellite

Y Coordinate system direction 2.1-3
(associated with the X and Z

directions)

Y Partition o£ Xm; a matrix containing 9.1-3
_r

_ Y Partition of Xm; a matrix containing 9.I-5

Matrix containing _r; same as 9.1-3

matrix F 8_

_ ¥a The Y angle of the satellite 6.1-7
,,_ (measurement type)

_ v Earth-fixed position component 3.4-1

' _ xv" i.

197500:3343-023



e GLOSSAkY OF SYMBOLS (Cont.)
g

Page
Symbols Description First Used

YI" True of date position component 5.4-1 _!

y True of date Y position 2.2-4

component of the satellite

y Rotation angle for polar motion S.4-5

!Z Direction of the spin axis of th_ Earth 2.1-2

for Z direction of coordinate systems.

(Taken at o9o of epoch day for inertial

coordinate system.) Compare X

The zenith baseline unit vector in the 5.2-I

(" topocentric horizon coordinate system

Ze Earth-£ixed component; same as z S,I-S

Zo Observed zenith angle 7.5-I

z True of date Z position coordinate 2.2-4
of the satellite

z A precession angle 3,1-1

z A vector of N _ndependent observations 10.1-1

xviii
&

! •
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,_ GLOSSARY OF SYMBOLS (Cont.)

Page
Szmbois Description First Used

Topocentric right ascension of ths 6.1-5

satellite (measurement type)

/ )

a _ Observed declination of the satellite 7.4-2

The set of paramete_ not affecting - 2.2-3

the dynamics of satellite motion

The set of parameters affecting the 2.2-5

dynamics of satellite motion

¥ Parameter of differential corrections 6.4-6

( for epoch element and force model parame-

ter errors

8p,B*
P Cowell i:_tcgration scheme coefficients 9.1-2

Yp, Y*p

bE i Area of the surface density block 3.5-18

b_ Correction to measurement of direction _.5-5

cosine

Am Correction to measurement of direction 7.5-5
a

cosine m

IL

": bR Differential refraction ? 5=1

xix
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GLOSSARY ,_ :=MBOLS (Cont.)
A
W

Page
S_,mbo'4 __, _;.:_.scription. First Used

i

_ _L_._ :.c heating correction to T_ 8 7-9
:!

! At Measureme,lt timing bias 6.0-2
¢

6tlu Transit time for the range Rlu 6.4-5"'

!
6tld Transit time for the range Rid . 6.4-3

At2d Transit time for the range R2d 6.4-5 I'

At2u Transit time for the range R2u 6.4-3
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SECTION 1.0

THE GEODYN PROGRAM

q

GEODYN was written for GSFC by WOLF in 1971 and has

been operational since January of 1972. A merger of the

_alti-Arc NONA_ program and the GEOSTAR program, GEODYN is

greatly improved in overall capability, accuracy, and versa-

tility over its parent programs. ..

,: GEODYN is one of the most widely used orbit and geo-

detic parameter estimation programs in the world. It isi

f currently operational at GSFC on the IBM 360 '95, %91, and

'75; at Ohio State University on the IBM 370/155; and will

shortly be operational at Wallops Island on the GE 635.

Additionally the GEODYN parent program, Multi-Arc NONA_

is operational at the Goddard institute for Space Studies

in New York on an IBM 350/95 and at the Institut £_r Physik

_ and Plasmaphysik, Garching, West Germany on an IBM 360/_I.

GEODYN has been used for

• determination of definitive orbits

• tracking instrument calibration

• satellite operational predictions "I

l• geodetic parameter estimation

and many other items relating to applied research in

'. satellite geodesy using virtually all types of satellite

tracking data.

1.0-1

!
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SECTION 2.0

THE ORBIT AND GECDETIC PARAMETER ESTIHATION PROBLEH i

The purpose of this section is to _ro_ide an under- 14!

standing of the relationship between the various elements

in the solution of. the orbit and geodetic parameter esti- '

mation problem. As such, it is a general statement of

the problem and serves to coordinate the detailed solutions

i to each element in the problem presented in the sections .

I which follow.

The problem is divided into two parts:

• the orbit prediction problem, and

i • the parameter estimation problem.

The solution to the first of these problems corresponds to

GEODYII's orbi_ generation mode. The solution to the

latter corresponds to GEODYN's data reduction mode and

of course is based on the solution to the former.

The reader should note that there are two key choices

_. which dramatically affect the GEODYN solution structure:

• Cowell's method for integrating the orbit, and
J

_ • a Bayesian Ieast squares statistical estimation

procedure for the parameter estimation problem.

: 201
- , o • . . . ,

I
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2.1 The Orbit Prediction Problem

| There are a number of approaches to orbit pre-

diction. The GEODYN approach is to use Cowell's method,

which is the direct numerical integration of the satellite

equations of motion in rectangular coordinates. The

initial conditions for there differential equations are t

the epoch position and v=[oclty; the accelerations of

the satellite must be evalu._ed. t

The acceleration ; "oducing forces which are cur-

rently modelled _i GEODYN are the effects of

o the gp_potential,

o surface densities,

o the luni-solar potentials,

: (
: o planetary potentials of Venus, Mars, Jupiter

i and Saturn,

: o Radiation pressure,
#

o earth tidal potential, and

: o atmospheric drag

Perhaps the most outstanding common feature "o._ these forces

_ is that they are functions of the position of _he satellite

relative to the Ear,h, Sgn0 Moon, or. Planets and o£ the Sun

"* and Moon relative to the Earth. Only atmospheric drag is a

£unction of any additional quantity,* speci£ically, the rela-,

tire velocity o£ the .satellite with respect to the _mosphere.

*Not tO be con£used with the "fixed!' parameters in the models.
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The accurate evaluation of the acceleration of _

a satellite therefore involves the solution to two
•

o the accurate modeling of each force on the

satellite - 5arth - Sun - Moon - Planet

relationship, and

o The precise modeling of the motions of the ..

Earth, Sun, Moon, and Planets.

The specific details for each model in these solutions

are given elsewhere in Sections 3, 4, and 8. The !
|

question of how these models fit together is in effect

the question of appropriate coordinate systems.

The key factor in the selection of coordinate

systems for the satellite orbit prediction problem is

the motion of the Earth. For the purposes of GEODYN,
\

this motion consists of:

o precession and nutation, and

o rotation'.

We are considering here the motion of the solid body _. i

the _arth, as versus the slippage in the Earth's crust

(polar motion) which just _ffects the position of the

observer.

The precession and nutation define the variatio_

in

o the direction og the spin axis o_ the Earth

( �Z),and

= C"*" =

I
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o the direction of the true equinox of date

C+x).
a
V

These directions define ghe (geocentric) true ef date

coordinate system.

The rotation rate of the Earth is the time rate

of change of the Greenwich hour angle _ between theg
Greenwich meridian and the true equinox of date. Thus

the Earth-fixed system differs from the true of date

system according to the rotation angle Og.

The equations of motion for the satellite must be

integrated in an inertial coordinate system. The GEODYN

inertial system is defined as the true of date system

corresponding to 0_0 of a reference epoch.

The coordinate systems in which the accelerations

due to each physical effect are evaluated should be

noted. The geopotential effects are evaluated in the

Earth-fixed system, and then transformed to true of

date to be combined with the other effects. The others

are evaluated in the true of date system. The total

acceleration is then .transformed to the reference inertial

system for use in the integration procedure.

._ The integration procedure used in GEODYN is a

., predictor-corrector type with a fixed time step, There

is an optional variable step procedure, As the integration

algorithms used provide for output on an even step, an

_ Interpol=tion procedure is required.

/

i

t

C

2.1-3
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2.2 The Parameter Estimation Problem

!
Let us consider the relationships between the

observations Oi, their corresponding computed values C i
and P, the vector of parameters to be determined. These i

relationships are given by

_Ci ..°i -ci _ _ 7 dpj - dOi C1_J J

where

i denotes the i th observation or association

with it,

dPj is the correction to the jth parameter, and

dOi is the error of observation associated with
the i th observation.

The basic problem of parameter estimation is to determine

4, a solution to these equations.

The role of data preprocessing is quite apparent

from these equations. First, the observation and its

compu'[ed equivalent must be in a common time and spatial

reference system. Second, there are certain physical

effects such as atmospheric refraction which do not

-- significantly vary by any likely change in the parameters

rel_,resentedby l_.

These computations and corrections may equally

_: well be applied to the observations as to their computed
¢

t

2.2-1
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values. Furthermore, the relationship between the computed :
value d th ' " pa_ _ :- : ....... _ _ _,_,- ,an e muuel ameters _ _, -,, 6_',_-_-, --.- ,

and hence the computed values may hav_ to be evaluated :I
; several times in the estimation procedure. Thus a con-

i siderable increase in computational efficiency may be
"1

attained by applying these computations and corrections

to the observations; i.e., to preprocess the data.

The preprocessed observations used by GEODYN are

directly related to the position and/or velocity of the

satellite relative to the observer at the given observa-

tion time. These relationships are geometric, hence ' _
!

computed equivalents for these observations are obtained i'

by ,uplying these geometric relationships to the computed I
values for the positions and velocities of the satellite i

. iand the observer at the desired time

Associated with each meazurement from each ob-

serving station is a (known) statistical un:ertainty.

This uncertainty is a statistical property of the noise

on the observations. This uncertainty is the reason

a statistical estimation procedure is required for the

GEODYN parameter determination.

It should be noted that dOi, the measurement
error, is not the same as the noise on the observations.

•The dOi account for all of the discrepsacy .(Oi-Ci)which

is not _ccounted for by the corrections to the parameters

"_l_. These dOi represent both
'i

i, - • the contribu_ion from the noise on the

observation, a_d

l

_ C i the incompleteness of the mathematical model
repr,_sented by the parameters F_

i 2.2-2 "
i;

-_ml
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_ By this last we mean either that the parameter set

being determi',ed is insufficient or that the functional
]

form of th_ model is inadequate. I

GEODYN has two different ways of dealing with I
these errors of observation:

I. The measurement model includes both a

constant bias and a timing bias which may

be determined.

2. There is an automatic editing procedure

to delete bad (statistically unlikely)

measurements.

The nature of the parameters to be determined has

- a significant effect on the functional structure of the
_- solution. In GEODYN, these parameters are:

• the position and velocity of the satellite

at epoch. These are the initial conditions i

for the.equations of motion, i

• force model parameters. These affect the I
J

, motion of the satellite, j
I

• station positions and b,ases for station )

measurement types. These do not affect the

motion of the satellite.

t_

Thus, the parameters to be determined are implicitly

partitioned into a set a, which are no__ttconcerned with

the dynamics of the satellite motion and a set _[which

C are.

| _ I1'
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The co_rputed value Ci for each observation 0i is a

function of

' rob the Earth-fixed position vector o" the

station, and

' _t the true of date position and. velocity, vector
"of the satellite {x,y,z,x,y,z}

at the desired observation time. When measurement biases

are used, Ci is also a function of _, the blases associated

with the particular station measurement type.

Ket us con_ider the effect of the given partitioning

on the required partial derivatives in the observational

equations. The 8Ci become

_ci I_ci _ci I (2)

_ . _ _ (s)

(

)_t
The partial derivatives _ are calied the variational
partials. Wh_le the other partial derivatives on the

t right-hand side of the equations above are computed from

t_e measurement model at the given time, the variational

" ps,tials must be obtained by integrating the variational

equations. As will be shown in Section 8, these equations

C are similar to the equations of motion.
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The need for the above mentioned variational

partials obviously has a dramatic effect on any solution

Zo the observatiuJ_i _quations I, _,._ ^_ _

ing the equations of motion to _nerate an orbit, the

solution requires that the variauional equations be

integrated.
!

We have heretofore discussed the eleme'.:ts of the . 1

• observational equations; we shall now discuss the solution

of these equations; i.e., the statistical estimation ¢

scheme.

!
• iThere are a nu_,_ber of estimation schemes that I

J

can be used, The method used in GEODYN is a batch i_

scheme that uses all observations simultaneously to _

• estimate the parameter se_. The alternative would be

_: a sequential scheme that uses the observations se- i

( quentially to calculate .an updated set of parameters
from each additional observation. Although batch and

sequential schemes are essentially equivalent, practical

numerical problems often occur with sequential schemes,

especially when processing highly accurate observations,

Therefore, a batch scheme was chosen.

._ The particular method selected for G£ODYN is a
par%itioned Bayesian least squares method as detailed

in Section 10. A Bayesian method is selected because

such a scheme utilizes meaningful a 2riori information.

The partitioning is such that the arrays which must be

simultaneously in core ar_ arrays associated with

, parameters common to all satelll, te arcs, and _v'_ys

per£aining to the arc being processed. Its purpose is

to dramatically reduce the core storase requirements of

the program without any significant cost in computation

f_ time

2.2-$

'1

m _ ml,
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I Theue is interesting aside related to the
an use

of a priuzl inf--;-'-tion_:..... +;,'_ zh. ,,_ ._ a nrioriJILQ. ........

information for the parameters gaarz._,tees that the esti-

mation procedure will mechanically operate (but not

necessarily converge). The user must ensure that his :

data contains information relating to the parameters

he wishes determined.
I ."

i

t

¢

[

2.2-6
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Rh_RoIJbcitilLI]T OF ]HE
ORIGINAL PAGE iS PC_R l

6 SECTION 3.0 '
THE MOTION OF THE EARTIt AND R_-LAI2D COORDINATE ..........,.) I 0 " l.l'lJ

1

The lnajor factor in sate!!ite dynamics is the i
gravitational attraction of the Earth. Because of the

(usual) closeness of the satellite an3 its primary,

the Earth cannot be considered a point mass, and hence

any model for the dynmnic:; must contain at least an

implicit mass distributioh. The concern of this _ection

is the motion of this mass distribution and its relation

to coordinate systems.

: We will first consider the meaning of this motion

of the Earth in terms of the requislte coordinate systems

for the orbit prediction p_oblem.

(-

The choice of appropriate coordinate systems is

• controlled by several factors:

• In the case of a satellite moving in the

_. Earth's gravitational field, the most

suitable reference system for orbit com-

putation is a system with its origin at

the Earth's center of mass, referred to

as a geocentric reference system.

• The satellite equations of motion must be

integrated in an inertial coordinate system.

" • "The Earth is rotating at a rate eg_ which is
the time rate of change of the Greenwich hour

_, llb angle. This angle is the hour angle of the

true equinox of date with respect to ths

' Greenwich meriflian as measured in the equatorial

plane.
i _ 3.0-1 _;.

r
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{
• The Earth both precesses and nutates, thus

chan ng the dir_uLiu,L_ u[ ova,, _,,_ .......

spin axis _nd the true equinox of date in

inertial space.

i

The motions of the Earth referred to here are of course I
those of the "solid body" of the Earth, the motion of

, the primary mass distr±Sution. The slippage of the

L
Earth's crust is considered elsewhere in Section 5.2

! (polar motion).

_ z

• 5.I Th_ True of Date Coordinate System

Let us consider that at any given time, the spin

axis of the Earth ( and the dircction of the true

( equinox of date (+ X) may be used to define a right-handed

geocentric coordinate system. This system £_ _known as

the true of date coordinate system. The coordinate

systems of GEODYN will be defined in terms of this system,

REPRODUCIBILITY OF THE

3,2 The Inertial Coordinate System ORIGINAL PAGE IS POOR

The inertial coordinate system of GEODYN is the
%

true of date coordinate system defined at 0h0 of the

reference day for each satellite. This is the system in

which ehe satellite equations of motion are integrated.
a

i

/ This is a right-handed, Cartesian, geocentric

• coordinate s_stem with the X axis directed along the true
equinox of 0':0 of the reference day and with the Z axis

_. directed along the Earth's spin axis toward north at _he same

'" _ _ time. The Y axis is of -ourse defined so that the co-

_ ordinate system _s orthogonal,

i
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It should be noted that the inerLial system _:_.

from the true of date system by the variation in time of

: the directions of the Earth's spin axis and the true ;

i equinox of date. This variation is described by the {

iI effects of precession and nutation.

i

3.3 The Earth-fixed Coordinate System

#

Th_ Earth-fixed coordinate system is g_ocentric, ' _

with the Z axis pointin E north alon E the axis of rotation

and with the X axis in the equatorial plane pointing

toward the Greenwich meridian. The system is orthogonal

and right-handed; thus the Y axis is automatically defined.

( This system is rotating with respect to the true

of date coordinate system. The Z _xis, the spin axis of

the Earth, is common to both systems. The rotation rate

is equal to the Earth's angular velocity. Consequently,

the hour angle _ of the true equinox of date with respect
g

to the Greenwich _dridian (measured westward in the equa-
_ o

torial plane) is _hanging at a rate eg equal to the angular
velocity'of the Earth.

5.4 Transformation Between Earth-fixed'and True of •
Date Co6rdinates -: _ ......

_,.. The transformat'£on between Earth-fixed and true o£ _ _F-FIX _

date coordinates is a simple rotation. Th', g axis is TBFIX

common to both systems. The angle between Xi , the true XINERT

of date X component vector, and Xe, the _arth-fixed YINERT ,

_ (" component vector, is _g, the Greenwich hour angle, The G_RAN _ :

_ Y component vectors are-similarly relsted. These .trans- -.

formations for Xe, Ye' Xl' Yt Whlch are a¢co.mp!tshed-in ,i;:

I
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|
GEODYN by the functions XEFIX, YEFIX, XINERT, and YINERT GRHRAN

are :

• Xe = X.• cos 8g + Y.x sin 8g XEFIX

• Ye " Xi sin 8g + Yi cos 8g YEFIX

Xi , Xe cos 8g Ye sin Og XINERT

Yi " Xe sin Og * Ye ccs O_, ¥INERT

The transformation of velocities requires taking

into account the rotational velocity, eg, of the Earth-.

fixed with to the true of date referencesys_e_ respect

frame. The followiv= relationships should be noted:



C The brackets d_no_e the pert of each transform which is
a transformation identical to its coordinate equivalent.

These same tzansformations are used in the PREDCT

transformation of partial d,rivatives from the Earth-

fixed system to true of date. For the kth measurement,

-_ Ck, the p_rtial derivative transformations are ex-

plicitly:





)

i

I

;

I
_ ..... _,,-*_- _ A i_ di_c,l_d ].n detail in GRHRA::g

; the Explanatory Supplement, Reference I. Og is computed F
in subroutines GRHRAN and F from the expression:

l

l

= + AtI 81 + At2 ;2 + Aa (1) [

, Og Og° " !

where
i

At 1 is the integer number of days since I
January 0.0 UT of the reference year,

A_2 is the fractional UY part o£ a day for

the time of interest,

f 8 is the Greenwich hour angle on
:" go
! January 0.0 UT of the reference year, _

8 is the mean advance of the Greenwich

hour angle per _ean solar day,
I,

,. e2 is the mean daily rate of advance of

Greenwich hour ansle (2_01) , and
J

.. Aa i$ th_ equation of equinoxes (nutation in

right ascension).

•_ _ The initial 0 is obtained from a table of JANTHG •

_ value_ containing thle° Greenwich hour angle

on January 0.0 for each year. Thls table is in ,

Common Block CGE@S and is accessed in JANTHG.

3.S-2

/
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The equation of equinoxes, As, is obtained from GRHRAX

subroutine EPHEM, which calculates the quantity from _

i the ephemeri_ tape data according to the Everett fifth- EPHEN i

, order interpolation scheme.
!



_ S.6. Precession and Nutation EQN

The inertial coordinate system of GEODYN, in NUTATE

which the equations of motion arc integrated, is de- PRECES

fined by the true equator and equinox zf date for REFCOR

0_0 of the reference day. However, the Earth-fixed

coordinate system is related to the tru_ equator

and equinox of date at any given instant. Thus, it is

necessary to consider the effects which ci,ange the

orientation in space of the equatorial plane and the

ecliptic plane.

These phenomena are

$ the combined gravitational effect of the

moon and the sun on the Earth's equatorial

('" bulge, and
| i,

• the effect of the gravitational pulls of

the various planets on the Earth's orbit.

The first of these atfects the orientation of the

equatorial plane; the second affects the orientation

._ of the ecliptic plane, Both affect the relationship
between the inertial and Earth-fixed reference systems

"of GEODYN.

The effect of these phenomena is to cause pre-

cession and nutation, both for the spin axis of the

i Earth and for the ecliptic pole. This precession and

nutation provides the relationship between the inertial

_ system defined by the true equator and e_Jinox o£ the
! reference date and the "instantaneous" inertial system de-

A _

_..; fined by the true equator and equinox of date at any

3.6-1
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given instant. Let us consider the effect of each of EQN

these phenomena in greater _e_ai_. _,,

NUTATE

The luni-solar effects cause the Earth's axis PRECES

of rotation to precess and nutate about the ecliptic REFCOR

pole. This precession will not affect the angle be-

tween the equatorial plane and the ecliptic (the

"obliquity of the ecliptic ''_but will affect the

position of the equinox in the ecliptic plane. Thus

the effect of luni-solar precession is entirely in

--: c_l¢_tial longitude. The nutation will affect both,

:, consequently we have nutation in longitude and nuta-

tion in eb _iquity.

The effeLt o_ the planets on the Earth's orbit

will cause both secular and pe@iodic deviations.

(- However, the ecliptic is defined to be the mean plane
of the Earth's orbit,, Periodic effectsare not con-

sidered to be a change in the orientation of the

ecliptic; they are considered to be a perturbation

of the Earth's celestial latitude. (See Reference I.)

The secular effect of the planets on the

ecliptic plane is separated into two parts: planetary ,

precession and a secula;c change 5n obliquity. The

effect of planetary precession is entirely in right

ascension.

In summary, the secular effects on the orienta o

tions of the equatorial plane are:

4.

_; 3.6-2
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: L.........................................................

!
• !uni-_elar precession, EQN

EQUATR

• planetar 7 precession, and NUTATE

PRECES

• a secular change in obliquity. REFCOR

As is the convention, all of these secular effects are

consider¢:d under the heading, "precession." The

periodic effects are

1
i nutation in longitude, and

• nutation in obliquity.

In terms of the GEODYN system, subroutine PRECES PRECES

determines the secular effects; i.e., the rotation

matrix which will transform coordinates from the mean ,
equator and equinox or" date to the mean equator and, "_

equinox of 1950.0.

Subroutine NUTATE determines the rotation matrix NUTATE ,

to transform from true equator and equinox of date to

mean equator and equinox of date. This accounts for

the periodic effects.

GEODYN has two different routines for transform- EQUATR ;

ing from one epoch to another, These are E_UATR and REFCOR

REFCOR. EQUATR will take either mean or true coordinate

input and will output in either mean or true coordinates.

REFCOR will take only true coordinate input and will outputit

" : only true coordinates. The same general algorithm is used i

in both: _

t .i:

; ¢

, __ 3.6-3,
, |
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o Rotate from true to mean equator and

e_uinox of input date if required,

o Rotate from mea1_ of ' ...... _-*^ to ....... ,

of 1950.0. REFCOR

o Rotate from mean of 1950,0 to mean

of outpat date.

o Rotate from mean to true of outpt, t date

if required,

All of these rotations are of course done with rotation
matrices.

Subroutine REFCOR will transform between any REFCOR

time of day _nd 0_0 on a given reference day. It performs

this transform by interpolating linearly be_een the re-

tation matrices for the day of the input and that day plus

: one.

3.6.1 Precession

The precession of coordxnates from th_ mean PRECES

equator and equinox of one epoch to to the mean equator

. and equinox of tI is accomplished very simply. Ex- '

amine Figure I and consider a position de=cribed by the

vector _ in the X1,X2,X 3 coordinate system which is

8

X.

L

• ¢
c

:i 3.6-4
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_ PRECESSION

PI = Direction of Mean Axis of Motion at to

P2 " Direction of Mean Axis of Motion at tl

Yl : Direction of Mean Equinox at to.

_ X2 " Direction of Mean Equinox at tI

j Fig.l: Rotation Between Mean Equator & Equnox of Epoch t0
): _lb and
;r

Mean Equator & Equinox of Epoch tl

_ 3.6-5
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(
defined by the mean equator a,d _Lii, ox of to . Like- PAECEZ

wise, consider the samc position as described by the

vector _ in the YI,Y2,Y 3 system defined by tile mean

equator and equinox of tl The expression relating )•

these vectors %

N

7 = R3 C-z)Rz C9)R3 (-_)_, CI) 1
|

follows directly from inspection of Figure I. )

It sn.uld be observed that 90 ° - _ is the

right ascension of _he ascending node of the equator

of epoch t0 reckoned from the equinox of t0, 90 ° - z

is the right ascension of the node reckoned from tee

equinox of tI and 0 is ti,e inclinatlon Of the equator

of tI to the epoch of t O .

Namerical expressions for those rotation angles

o_ z,0,_ were derived by Simon Newcomb, based par_iy upun

i theoretical conslderatl.ons but primarily u_nn actual

observation. (See References for the derivations.)

The formulae used in GEODYN are relative to an iaitial

epoch of 1950.0:

= _305 953 Z04 65 x 10"6d + _I09 749 2 x I0"14_ 2 (2)

+ _178 097 x 16"20d 3

z = _305 953 204 65 x 10"6d + _397 204 9 x 10"14d 2 (3)

) _' + _191 051 x 1O'20d 3

3.6-6
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I I

0 = R266 039 997 54 x I0-6,_ - P.'IS4 8il 8 x I0-14,i 2 (4) ?RECES

- .R413 901 x 10-2% 3

The angles are in radians. The quanti_y d i_ [he

number of elapsed days since 1950 0
• .

t¢

I '
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!
5.6.2 Nutatlon NUTATE

The nutation of coordinates between mean and ]

true equator and equinox of date is readily accomplished !

using rotation matrices. Examine Figure i and con_i_er

|,
., a position described by the vector g in the XI.X2,X 3
: system which is described by the meat. equator and equi-
E

nox of date. Likewise, consider the same position as

described by the vector Z in the ZI,Z2,Z 5 system de-

., fined by the true equator and equin-_x of date. The .

i expression relating these vectors,

=- R1 (-CT) R5 (-A_) E1 (c) _, (1)

follows directly from inspection of Figure 1.

The definition c,f these angles are: ,,

CT " true obliquity of date

_ £m " mea,l obliquity of date

A_ - nutation in longitude

.. Note that CT " .¢m is the nutation in.obliquity,

, The remaining problem is to compute the nutations NUTATE

'* in longitude, and obliquity. The algorithm used in _QN

GEODYNwas developed by Woolard aud is code4 in sub-

,_* routine EQN.

!
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J

Mean Ooliqulty of Date

- 'T" True Obliquity of Date

YM = Direction of Mean Equinox of Date

_ YT " Direction of Ttme Equinox of Date

1 i _ Figure 1: Rotation Between Mean Equator & EcLutnox of Date

: ' and

True Equator &Equtnox of Oate

: !i_'/il "

• ) :
'" • 3..6-9. ,-
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m ............................................................ _ ........................................

Woolard's solution a_ it appears In reference_ 1 EQN

through 4 is reproduceJ in Tzbles la, Ib, and ic. The

Feriodic terms have been rearranged in descending order

of magnitude. The subprogram EQN computes the mutation

in longitude and obliquity by using th_ algorithm in

Tables 2a, 2b, and 2c. I? Table 2a the angular units
L

, of the fundamental arguments have been changed to

' radians and the time units have been changed to days. i

ITables 2b and 2c are identical to Tables Ib and ic

..ftenneglecting all periodic terms with coefficients

less than ?001 and all secular portions of the co-

efficient which are less than _001. The expressions

for true obliquity of date and mutation in right as-

cension appea, in Table 2d.

(_- The definitions of the variables used in thesesolutions and additional notation are as follows:

J _ Julian Ephemeris Date of desired calculatlon

Jo " 241 5020.5 (lulian Ephemeris Date corresponding
to 1900 January 0.5 Ephemeris Time)

T - (J-Jo)/56525 = Jul_an ephemeris centuries of

_ 365Z5 Ephemeris Days elapsed from Jo to J

d - J_Jo " Ephemeris Days elapsed from J to Jo

I"
I._. _.6-1_
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i

I

i
. ° • _ .. •

COORD.TNATESY5rt_1: Geocencric, ec'-11_uJ.u _.- """

mean equino:_ of date:

g = mean anomaly -- Moon

g' = mean anomaly - _u:l

- mean angular distance of the Moon from its

; ascmding node

!

: D = mean elongation o6 the Moon from the Sun
i

R = longitude of the mean ascending node of the

Moon's orbit

_b_ = mean obliquity of date
f.

CT " true obliquity of date

Ac - nutation in obliquity

4, At = nutation in longitude

&a = nutation in right ascension

: (equation of the equinoxes)

o, • , -"

[, .
ili._1 _. _-I_.
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: R_SRODUCI_ILI'[Y OF THh_ i

" ORIGINAL PACE IS POGR I

.m TABLE la FUNDAMENTAL ARI_UMENYS I

v

3 i
g = 296°06"16':59 + 13zsr198°50'56'.'79 T + 33';09 T 2 + ':0SIS

g'=3358°28'33':00 + 99r359°02'59';I0 T ':59 T 2 - "0120 T 3

F = Ii°15'03':20 + 1342 r 82°0.1'30"54 T I!':55 T 2 - ':0012 T3

D = 350°44t14';95 + 1236r307°06'5!'.'18 T - 5':17 T 2 - ':0068 T 3

[_ = 259°I0'59"79 sr134°08'31':23 T + 7':48 _2 + '10080 T 3

CM= 23°27_08'.'26 46'.'845T - ':0059T2 + ':0080 T 3
., -- _ ' n .... mll, , inn nnI :

TABLE .Ib NUTATION IN OBLIQUITY
|. J i m ,, . . , i, , ,,•, i || l L I

Series No.

,%c " + C 1T + 9':2100) cos C 1

�C-0"00029T �0.5522)cos C�2F - 2D 2

+ (+0.00004 T 0.0904) cos C + 2_) 3

+ (-0.00005 T + 0.0884) cos ( + 2F + 2[_) 4

+ [-0.00006 T + 0.0216) cos ( + g' + 2F - 2D + 2fl) 5

+ 0.01_3 cos ( + 2]: + fl) 6

+ (-0.00001 T + 0.0113) COS (+ g + 2F + 2_%) 7

:;" + (+0.00003.T - 0.0093) cos ( - g' + 2F - 2D + . _) 8

- 0'.0066 cos ( + 2F - 2D + _I_ 9"-. 7

:. - 0.00S0 cos (- g * 21; + 2_) 10

- 0.0031 cos C+ g + 1%} 11

{:i: + 0.0030 cos C- g + ll) 12
;_ - 0.0024 cos (-2g + 2F + 1%) 13

+ 0 0023 cos (+ g + 2F + g) 14
g

i! + 0.0022 cos (- g + 2F - 2P + Z_) 1S :

�0.0014cos ( + 2Y + ZO + 2_) 16,: • 0.0011 cos (+ g + 2F - 2D + 2f_) 17

+ 0.0011 cos [+2g + 2F + 2_) 18- 0;0010 cos (- g + 21= �fl) 19

l tl_ , 0.0008 cos ( �g'+ _) 20

- 0.0007 cos (- g + D + fl) 21

l 3.6-12•
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i',_'J,PRODUC_rqLiT ,

ORI.G.IN'ALPAGE [8 POOR
i

I TABLE Ib (Cont.)
- i

Series _.

0.0007 cos (- g - 20 + fl) 22

+ 0.0007 cos (+ g + 2g' - 2P + 2_) 23

+ 0.0005 cos ( - g' + P.) 24

+ 0.0005 cos (- g + 2F * 2D + f_) 25

- 0.0003 cos ( + g' + 2F + 2_) 26 i

i
+ 0.0003 cos ( - g' + 2F + 2fl} 27

+ 0.0003 cos (+ g + 2F + 2D + 2_) 28

+ 0.0003 co_'-( + 2D + f_) 2g

+ 0.0003 cos (-2g + 2D + fl) 30

+ 0.0003 cos ( - g' + 2F - 2D + _) 31

- 0.0003 cos (+ g + 2F - 2D + fl) 32

+ 0.0003 cos ( - 2D + _) 33

+ 0.0003 cos ( + 2F + 2D + _) 34

- 0.0002 cos (+2g + 2F - 2D + 2fl) 3S

C + 0.0002 cos ( - 2g' + 2F - 2D + flj 36

- 0.0002 cos (+2g - 2D + II) 37

4 0.0002 cos (+2g + 2F + _) 38

_, 0.0002 cos ( + g' + 2F - 2D + _) 39

' + 0.0002 cos (-2g + 2F + Z_] 40
- J. i Jim _ • i i Nmi JILL_

I

TABLE Ic NUTATION IN LONGITUDE
• i • , • ,, lirai im i ii m I

,i ........ Series No

i a_ = + (-0V01737 T - 17':2327) sin ( �I_)1i

; + (-0.00013 T - 1.272g) sin ( + 2F - 2D + Zfl) 2

l + (+O 00002 T + 0 2008) sin ( • �2n)3]_. i= 4

_ + (-0.000G2 T - 0,,2037) sin ( + 2F + 20) 4

_, + (-0.00031 T + 0.1261) sin ( + g' ) S

_:' + (+0 00001 T + 0 0675) sin r+ g ) 6

+ (+0,00012 1' - 0.0497) sin ( g' + 2F - 2D + 2_3) 7

_-' + (-0.00004 T .. 0.0342) sin ( + 2F + 2_) 8

! 3.6-13
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.....................................................................................................

•. ORIGJNAI, PAGE iS POOR

TABLE lc (Cont.)

Series No.

- 0.0261 sin (+ g R) 9
J+ (-O.0000S T + 0.0214) sin ( - g' + 2F - 2D + 2_) l0

- 0.0149 sin (+ g - 2D ) II

+ (+0.00001 T + 0.0124) sin ( + 2F - 2D + R) 12

+ 0.0114 sin (- g�2F + 2_) 13

+ 0.0060 sin ( ) 14

+ 0.0058 sin (+ g " 15

- 0.0057 sin (- g + _) 16

- 0.0052 sin (- g�IF + 2D 17

+ 0.0045 sin (-2g �2F + _) 18

+ 0.0045 sin (+2g - 2D ) 19

- 0.0044 si_ (+ g + 2F + _) 20

. - 0.0032 sin ( + 2F + 2D + 2R) 21at

+ 0.0028 sin (+2g ) 22

+ 0.0026 sin (+ g + 2F - 2D + 2_) 23

- 0.0026 sin (+2g �2F+ 2_) 24

+ 0.0025 sin ( + 2F ) 25

- .0.0b_.l sin ( + 2F - 2D ) 26

"'_ + 0.0019 sin (- g �2F+ R) 27

: + (-0.00001 T + 0.0016) sin ( + 2g' ) 28

+ (+0.00001 T - 0.0015) sir, ( + 2g' + 2F - 2D + 2fl) Z9

" - 0.0015 sin { + g' + R) 30

+ 0.0014 sin (- g + 2D + _) 31

- 0.0013 sin (+ g 2D + R) 32

- 0.0010 sin ( ' - g' �l)33

+ 0.0010 sin (+2g - 2F ) 34

_ - 0_0009 sin (- g 2F + 2D _" _) 35

-. + 0.0007 sin ( + g' _ 2F + 2_) 36
J

- 0.0007 sin (+ g * _ - 2_ ) 37

�0.0006sin(+ g �)
,,alo,,_v_, ,J! I , , I • ,1. III 7_ _ _ , - " . ......

_ 3.6-14
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f

ii

k___

0.0006 sln ( - g' + 2F + 2,q) 39

- 0.0006 sln (+ g + 2F 4.2D + 2_} 40

+ 0.0006 sxn (+2g + ZF - 2D + 2i2) 41

- 0.0006 sin { ¢ 2D _ g) 42

- 0.0005 sln (-2g + 2D + fl) 43

- 0.000S sxn ( " g' + 2F - 2D + t2) 44 t

* O.000S sxn ( g * 2F - _D + (2) 4S

- 0,0005 SXh ( - 2D + fl) 46

- 0.0005 sin ( + 2F + 2D + f_) 47

- 0.0004 sin ( - 2g _ + 2F - 2D + i_) 48

• - i i i iHii
i

c
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TABLE 2b NUTATION ia OBLIQUITY

Series No.

_a = + 972100 cos ( + fl) 1

+ 0.5522 cos ( + 2F 2D + 2fl) 2 1

- 0.0904 cos ( _ 2$q) 3 ]

I + 0.0884 cos ( + 2F + 2_'1 4
I

+ 0.0216 cos ( + g' + 2F ZD + 2R) 5

�0.0183cos { + ZF + fl) 6

, + 0.0113 cos (+ g + 2F ) 2.q) 7
r

- 0_{)093 COS ( - g_ + 2F - 2D + 2_) 8
I

, - 0.0066 cos ( + 2F - 2D + (I) 9

- 0.0050 cos (- 8:�2F + 2II) I0

- 0.0031 cos (+ g II

+ 0.0030 cos (- g + fZ) 12

- 0.0024 cos (-Tg + 2F + fl) 13

4 1_L + 0.0023 cos (+ g + 2F + _) 14

+ 0.0022 cos (- g + ZF + ZD + 2fl) !5

+ 0.0014 cos ( + 2F + 2D + 2(1) 16

0.0011 cos ( + 2F - 2D �2fl)17

+ 0.0011 cos (+2g + 2F + 2Q) 18

_'- - 0.0010 cos (- g + ZF + II) 19

%



t TABLE 2c NUTATION IN LONGITUDE

Series ?_o.

A_ , (-0"01757 T- 17"2327) si]) { + [2) 1
1.2729) sin ( + 2F 2D + 2fl) 2 ..

�0.2008)sin ( * 2f_) 3

- 0.2037) sin ( ¢ 2F + 2E) 4

4 0.)261) sin ( + g, ) 5

�0.0675)sin (_ g ) 6 i

0.0497) sin ( g' + 2F - 2D 7
I

! - 0.0342) sil_ ( + 2F + 2,q_ 8
i
i

' 0 0261 sxn (+ " + 2F _) 9

i + 0.0214) s_n ( - g' + 2F - 2D < 2fl) 10• t

- 0.0149 sxn {_ g - 2D ) 1_

+ 0.0124) sin ( + 2F - 2D * _) 12

+ 0.0114 san {- g + 21" + 2_) 13
+ 0.0060 szn { + 2D ) 14

•: + _) 15+ 0.005_, szn (+ g

- 0.0057 sin (- g + fl) 16

- 0.0052 sin (- g + 2F + 2D + 2_) 17

+ 0.0045 sin (-2g + 2F + fl) lg '

: . ' + 0.9045 sin (+2g - 2D ) 19 !
": fl) 20 "

"_ - 0 0044 sin (+ g + 2F +

• 0.0032 sh_ ( �2F .r, 2D + 2fl) 21 i". ) 22 ,
+ 0.0028 _in (_'2g

+ 0.0026 sin (+ g + 2F - 2D + 2_) 23 :,

= 0.0026 sin [+2g + 2F + 2fl) 24

+ 0,0025 sin [ * ZF } 2S

,, ' - 0.002] sin ( + iF - 2D ) 26
" ,( �0.001(3_in (- g + 2F ¢ t'l) 27

-, + 0.0016) si)_ { _,-2g' ) 2g

•?_i

3.6-18
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(
TABLE 2c (Cont.)

- 0.0015) szn ( + 2g' + 2F 2D + 2_) 29

- e.ools sln ( + g' * fO 30 ',

r. + 0.001'I SZn (- g + 2D + _q) 31 i

0.0013 sln (+ g - 2D + f_) 32

•- 0.0010 sln (. - g' �a)33

+ 0.0010 szn (+2g - 2F ) 34 ,

i

Note: To ch_ time units for coefficient of ist term, use

,475 S6b _,O'6d = .01737 T

Table 2d: True obliquity of Date and,,_ Nutation, in _ight ascension 1 _r'_
: cT : cM + Ae .;.

A _ : A,,pcos eT :,_'.__
•

_ l. -j
J ,

)

I

l
i,

f

c.

1

3.6-19
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aEt_ I ,ON 4.0

LUNi - SOLAR- PLA};ET._RY EPHEHERtS

1
GEODYN uses precomputed equi-sp_ccd ephemeris data EPHE,',.!

in true oi date coordinat,--o for the Noon, the Sun, Venus,

Mars, Jupiter and Saturn. The actual ephemerides are com-

puted using Everett's fifth-order _nterpolation fcrmula.
+.

lhe intervaJ between ephemerides; i.e., the tabular " - " _

h, is 0.5 days for the Moon and the _quation of the equinoxes _.,

and 4.0 days for the other bodies. _

The GZODYN ephemeris tape contains Pll coc, rdinates

in t_'ue of date. The quantiuies on the tape are

a) geocentric lunar posit_ons and the corresponding

2nd and 4th dif£.'r¢ aces,

b) solar positions relative to the earth-moon

barycenter and the corresponding 2nd and 4th

( differences,

c) heliocentric positions of V_nus, Mar_, Jupiter

and Saturl: and the corresponding 2nd and 4th

_ifferences,

_ d)" the equation of the equinoxes and its 2rid and' 4th differences.

The format of this tape is presented in Volume III

of the GEODYN documentatio."

This ephemez'is tape was prepared from a JPL planetary

-_- ephemeris tape corresponding to "JPL Development Ephemeris

" Reference I The program which generates theNumber 69,

GEODYN ephemeris tape is described in Volume IV of the

" GEODYN documentation.



I

. I
lJ.
I]

• lation isi'hcformulation for Everet.'s fifth-orde_ interpo-, i!
,.

2

yft_+sh) = Yj FO(1-s)+d j F2 (l-s) (!)

. dj 4 r4(1-s)
&

' _-d 2 (s)+Yj+z Fo(S) j+1 Fz

. )i

' 1.I dj+ 1 F_ (s)

( where EPHE.XI

•F_ rs) : s

rzCs)-- iCs-1) Cs) (s+11]/6

F4Cs) = [(s-2) {s-l) (s) (s+l) (s+2)]/1Z0

The quantity s is .)f course thc fractional interval for

the interpolation. The quantities d. are obtained from
J ".

the ephemeris tape.

4.0-2
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iS_CTiO_s.0
| _l_OBSERW_ i

This section is concerned with the position and !

coordinate system,s of th_ observer. Thus it will cover i

• geodetic station position coordinates,

I

• topocentric coordinate systems, 1• time reference systems, and " .

• polar motion.

The geodetic station position coordinates are a

convenient and quite common way of describing station

positions. Consequently, GEODYN contains provisions for
converting to and from these coordinates, including the

transformation of the covariance matrix for the de,er-

mined Cartesian station positions.

The topocentric coordinate systems are coordinate

_ystems to which the observer references his ob._ervatioas.

_ The time reference systems are the time systems in

which :he observer specifies his observations, The

transformations betw^_n time reference systems are also

given. These latter are used both to convert the ob-

servation times to A1 time, which is the independent

_: variable in the equations of motion, and to convert the

_ GEODYNoutput to UTC time, which is the generally recognized

_ system for ou_.pu%.

' ' t' I
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i

The positions of the observers in GEODYN are referred I

t tO an Earth-fixed system defined by the mean pcle of 1900.5 iand Greenwich. They are rotated int_ t_. _=.+h-;_o_ ....*--

of date at each observation time by applying "polar motion",

which is considered ta be slippage of the Earth's crust.

5.i GEODETIC COORDINATES
|

_ Frequently, it is more convenient t_ define the

station positions in a spherical coordinate system.

The spherical coordinate system uses an oblate spheroid
or an ellipsoid of revolution as a model for the geo-

metric _hape of the Earth. The Earth is flattened

, slightly at the poles and bulges a little at the

' equator; thus, a cross section of the Earth is approxi-

mately an ellipse. Ro-.ating an ellipse about its
shorter axis forms an cb!ate spheroid.

- ¢
An oblate spheroid is uniquely defined by specify-

ing two dimensions, conventionally, the semi-major axis

- and the flattening, f, where f . --.a'b(See Figure I)
., a

. This model is used in the GEODYN system. The

spherical coordinates utilized are termed geodetic co-

ordinates and are defined as follows:

• • $ is geodetic latitude, the acute angle

, between the semi-major axis and a line t

i through the observer.perpendicuiar to 1the spheroid.

$:1-I i

q _ q
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• h is east longitude, the angle ,measured
I _._---'......,.."A- ..._- .r,_..... -o,,_tnrial__ . plaile begween

the Greenwich meridian and the vbserver's

meridian.

$ h is spheroid height, the perpendicular

height o£ the observer above the refer-

ence spheroid.

Consider the problem of convert_a from @, _, and SQUAXT

h to Xe, Ye' and Ze, the Earth-fixed Caxtesian coordinates.
I

The geometry for An X-Z plane is illustrated in

Figure 1. The equation for this ellipse £s

Z2

X2 �=a2 (i)

where the eccentricity has been determineo om the

£1attening by the familiar relationship

Z
e - 1 - (1-£)2. (2)

li ¢
$.1-2 k.t,
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{

Th_ equation for the normal to the surface uf _.= _ ...... i

t _iipse yields I

tan ¢ = -- (3) I
dZ ,

By taking differentials on equatio- (1) and applying

the result in equation (3), we arrive at

Z
(1-e 2) ta_ _ (4)

X

The simultaneous solution of equations (I) and (4) for

X yields

a cos
• ([. x - (s)

A-e 2 sinz + {
_. From inspection of Figure 1 we have:

__ cos+ - - ; (6)

'_; and hence, applying equation ($),

N - _--_-. _ - . (7}
¢i'ez nz,

i

5,1-4
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, 't

' Per an observer at a distance h from the refer- SQUANT i

It 'ence ellipsoid, the observer's coordinates (X,Z) become

!

,1 X _ N cos ¢ + h c._s_ (8) !

and

Z - N (l-e2) sin ¢ + h sin I. (9)
t °
1

1

The conversion of O, X, and h to Xe, Ye' and Ze
is then

Yo cos,sin,|
Ze [(N+h-e 2 N) sin _ J

%

In the GEODYN system this conv;rsion is performed in

'_ subroutine SQUANT.

_ The problem of converting from Xe, Ye' and Ze to

,_ @, _, and h is more complex as we cannot start with a
_., point on the reference ellipsoid. For _:his reason the

determination o£ accurate values for ¢ and h requires

an iterative technique.

C

L(,. S.l-S
' ' ' ' t

I
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Conversion to Geodetic Coordinat6s

!
For the problem of converting station coordinates PLHOUT ;

in Xe, Ye' and Ze to ¢, k, and h we know that N zs on the

order o£ magnitude of an Earth radius, and h is a few

meters, Hence

i
i

i h << N (11)

The Earth i£ approximately a sphere, hence

e << 1. (12)

" Therefore, again working in our X-Z plane (see Figure I),

N sin ¢ z Z. (ll}

From Figure I (.=ee also e_uation (9)) we have

t -_Ne 2 sin ¢), (i4) '



The series of calculations to be performed on PLHOUT

each iteration is:

1
1

Zt = Z + t (16) i

, 1/2 i

sin ¢ = Zt / (18)
/ iN+h)

m

l,
l-e sin 2 ¢

(" t = Ne2 sin ¢. (20)

When t converges, _ and h are computed from sin ¢ and

(N+h). The computatien of k is obvious; it being simply

.. This procedure for determining ¢, t, and h is that coded

in subroutine PLHOUT. •

., _,_

5.1-7
I J ,

_ I, , ,/

t

, • , . . , , . .
F

- ¢ ,, , =
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There is a different procedure in subroutine n.R_.C

_' PREDCT for computing ¢, X, and h for a satellite. This PRF,DCT

is because the a_._..u-_._ ,_,._._ ........... less ......

This diffe_nt procedure !._ also used in subroutine i
DRAG to evaluate the satellite height for subroutine DENSTY.

,_.

Because e << l, be may write an approximation

to equation (9) :

Z = (N+h) (1-e 2) sin ¢ = Ze " (22)

From Figure i,

_fX2 , y2 '( X = (N+h) cos # = e e (23)

and by remembering equation (2),

[ ]¢ tan "1 Ze -.] . ---------. (24)

rd

i'

"_i S.1-8 -.

1 "' I

] 975003343-079



i

- The equ.tion for the ellipse, equation (i), DRAG ,
yields the following formula for the radius of the PREDCT '_

ellipsoid:
?

I

rellJp soid _-.__+ Z_ = ._ a (l-f) (27)

¢ (2f---f2) (1-s_7 ¢ ") t!

where ¢" is the geocentric latitude. After applying the li

iBinomial Theorem, we arrive at

wherein terms on the order of f5 have been neglected. The

( (spheroid) height may then be calculatea from r, the geo-
centric radius of the satellite:

h = r - rellipsoid, or (29)

4

2 2
h. = _Xe+Ye+Ze T- a + (af #°sin2O'-_f2sina¢" (30)

The sin_eOf the geocentric latitude, _in 0", is of
course _--.

l,

5.1"9
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Subroutine VEVAL also requires £he Fartial VEVAL

derivatives of h with respect to position for the dlag

v_ri ational martials computations :

[( ,_h = __r + 2 sin ¢' af + -- af (31)

_r i r I' 2

Z r. 1 _Y

-3 af 2 sin 2 _' . e 1 + e

r 3 r _r i

where the

r i are the Earth-fixed components of ¥; i.e.,

{Xe' Ye' Ze}"

In ad#ition to the conversion of the coordinates INOUPT

( themselves, GEODYN also converts covariance matrices for SQUAXT

the station positions to either the ¢, I, h system or PLHOUT

the Earth-fixed rectangular system. This is accomplished VCONV

in INOUPTj SQUANT, _nd PLHOUT by calling VCONV to compute

= pTVINP _ _ VCONV
VOU T f32.

where VOU T is the output covariance matrix, VIN is the

input covariance matrix, and P is the matrix of partials

relating the coordinates in the output system to the

coordinates in the input system.

1
S.!-IO

I
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)

_ These partial derivatives (iP P) which GEODYN PLHOUT

requires are for X , Y , Z with respect to _, X, h and

• vice versa. These Far_:ials are"

_ . ,2 .,2)7 '__¢ -XeZe(!-e2)/((1-e2)2(Xe2+Y2)+Ze 2) t_e+_e?,Xe _.
1 it

aO _ -yeZ (l-e2)/{(l.e2)2fX2+y2)+ 2 2 2 2 :,' _Ye e " e e Ze) (Xe.+Ye) #'

_, 2 2 __2 2(x_+y__ , ;_ 2 2__-'_e= (Xe+Ye) (1 ) / (1-e 21 . Z") (Xe+Ye)
)

_X

3

(" %_h = _@Xe (-e2a(1-e2)sin@ cos@/(1 - e2sin 2 ¢)Y -ZeC.OS@/sin2_0)
3

ah ;IO 2 a 2)
_--%=_'Y'e(-e {i-e sin¢ cos¢/Cl-e2sin 2 ¢)g -ZeCOSO/sin2¢)

3

ah = . "e 2 .e z ,_ { eZaCl )sinO cos,/{l sin 2 (_')_"--eCOS*/sin2*)
e

(

I
+ g3i7"3-0

£
o

5.1-ii
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• L

The partials for converting from Xe,Ye,Z e to ;L

¢, l, h are computed in subroutine PLHOUT. Those for

converting froia @, X, h to Xe,Ye,Z e are computed in

subroutine SQUANT. , m

r_

s.1-:2 - _

_-"'t

¢,-m,l

• _ . 2z___A__-- /. ............ .=.
• .'; , /j ; , , .., _.
% , , , ,
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5 2 TOI"_J,']L._I_.'C C _ .... n,,.'_T'; SvqT_:,,:S

The ob_er;'ations of a spacecraft are usually

I_ft:l_,l_u L'._ the "_ ..... a_,d t _'_''_ nn _,4dirional

set of reference systems is used for this purpose. The

origin of these- systems, referrea to as topocentric

coordinate sv_ eros, is _he obse-":; on the surt'_:_ of

*_ earth.
,

T_pocentric right ascen:_ion and declination _re _

measured in an inertial system whose Z axis and funda- -_

mental plane are ?arallel to r_hose of the geocentric
2 _

inertial a?atem. The X axis in this case also po:_nts

toward the vernal equinox.

°

Tb other major to _ +p,__en,.r_¢ system i_ .h_ Earth- SQUANT
!.

f_'__- system determined b)" the _enith and the observer's

I I • ;_

horizon plane, T,,Is is an orthonormal system definedi% .% ,%

{ by N, E, and Z, which are unit vectors _hich point in•
!be same directions as v_ctors from the observer

. pointing north, east, and toward the zenith. Their I

definitions are: iI

" N -= sin _ sin _ (I) 1

- 1i " Sl_l 1

_.^: I cos x (_) I

ii lo . i
- Z ; I cos ¢ sin X {3)

___ sin ¢ j

5.2-1
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I

where _ is the geodetic l_titude and X is th*z east SQUANT

longitude cf the observer fsee _"<txon b i) PREDCT :
i

OBSDOT

Thes_ N, E, and Z vectors are computed in _i_ P_.nD_T and OBSDOT.SQUANT for us_ in _ _

This latter system is the one tc which such

measurements as azinuth and elevation, X and Y angles,

_nd direction cosines are related.

It should be nc*.ed that the reference systems for

range and ra::gc rate must be Earth-fixed, but the choice of

origin is arbitrary. In GEODYN, range an._ range rate are

not considered to be topocentric, but ra;her geocentric.

_.3 TIME REFERENCE SYSTEMS
(

Three principal time systems are curr_n.i; in

u: ep.h_aeris ti-ae, atomic time, and universal time.

Ephemeris time is the independent variable in

the equation_ of motion of " e sun; this time is the

_,niform mathematical time. The corrections that must

e be _ppiied _o universal time to obtain ephemeris time

ar_ published in the American Ephemeris a74 Nauticai

Almanac or alternatively by BIH, the "Bureau Inter-

national de l'|{eure."

Atomic time is a time based on the oscillatio_

of cesium at zero field. In practice A1 time is based

on the mean frequency of oscillation of several cesium

standards as compared with the frequency of ephemeri&

{- tire. T'_is is the time system in which the satellite

equations of motien are integrated in GEODYN.

5.3-I
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Universal time is d_termined _'" the rotation of

_ Earth. UTI. the time reference system used ip

GEODYN to position tile Earth, is univer3al time that

h_s been corrected for polar motion. UTC is the time

of the transmitting clock of any of the _ynchronized

transmitting time signals The frequency of a U'[C

clock is pie-set to a predicted frequency of UT2 time,

where UT2 time is universal time corrected for ob-

served polar motion and extrapolatel seasonal variation

in the speed of the earth's rotation.

The reader who is unfamiliar with these time

systems should refer to one of the annual reports of

PIH.

( 5.3.1 Time System Transformations

The time system transformations are between any TDiF

combination of the AI, UTI, UT2, or UTC refer_ sys-

tems. These transformations are computed in the

GEODYN system by subroutine TDIF.

I
. - The time _ransformation between any .nput time

_ system and any output time system is formed by simple

addition and subtraction of the following set of time

differences:

• UT2 - UTI

' i. • AI - UTI

• AI UTC k

-?

4 %

$.5-2 >

] 975003343-086



I

The following equation is used to calculate TDIF

(UT2-UTI) for any year:

(UT2-UTI) : + "¢.022sin 2_Tt-s012 cos 2zt _:I)

- s.006 sin 4_t+s007 co * .,,_

: t = fraction of the tropical year

elapsed from the beginning of the

Besseliai, _,ear for which the

calculation is Jnade.

(I tropical year = 365.2422 days)

This difference, (UT2-UYI), is also known by the name

"seasonal variation."

( The time difference {AI-UTI) is computed by

linear interpolation from a table oC values,

The spacing for the table is _very i0 days, which I

matches the increment for the "final time of _misslon"

data p_blished by the U.S. Naval Observatory in the

bulletin, "Time Signals." The differences for this

table are determined by

(AI - UTI) = (AI - UTC) - (UT! - UTC)

The values for (UTI - UTC) are obtained from "Circula- D",

' BIH. The differences (AI - UTC) are determined according

. to the following procedur ",

• C

3.3-3
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The computation of (AI-UTC) is simple, but not

so straightforward DTC co._tains discontinuit:es both

in epoch and in frequency because an attempt is made

to keep the difference between a UTC flock and a UT2

clock less than Sl.. When adjustments are made, by

international agreement they are mad? in _teps of _i

and only at the beginning of the month; i.e., at o_o UT

of _he first day of the month. The general formula which

is used to compute (AI-UTC) is I

I
(AI-UTC) = a0 + aI (t-to) (2) ,

Both a 0 and _'I are recovered from tables. The values

in the table for a 0 are the values of [AI-UTC) at the

( time of each particular step adjustment. The values

in the table fcr a 1 are the values for the nev rates

of change bet'weep the two systems after each step

adjustment.

Values for a 0 and a I are published both by the

U.S. Naval Observatory and BIH.

5.4 POLAR MOTION

Consider the point P which is defined by the POLE

_ntersection of the Earth's axis of _otation at some

ti_e t with the surface of the Earth. At some time t+_t,

the intersection will be at some point P' which is diff rent

than P. Thus _he axis of rotation appears to be moving rela-

t ti'.'_ _o a fixed Dosition on the Earth; hence the term "_ _tion
of the pole."

5.4-1 _
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'f Le us establish a rectangular coordinate syst-_ POLE
e

Centered at a Doint F fixed _n the zurface of the Ea. _

with F near the point P around 1900, and take measure-

ments of the rectangular coordinates of the point P |

I

during the period 1900.0 - 1906.0. It is observed that

the point P moves in roughly circular inotion in this

coordinate system with _wo distinct periods, one period

! of approximately 12 months and one period of 14 months.

We define the mean position of P during this period to ]

abe the point P0 ' the mean pole of 1900.0 - 1906.0.

The average is taken over a six year period in

order to average out both the 12 month period and the

14 month period simultaneously (since 6 times 12 months

7Z months and 72/14 = 5 periods approximately of the

14 month term), The radius of this observed circle

" varies between 15-35 feet.

In addition to the periodic motion of P about P0'

by taking six year means of P in the years after 1900 -

1906, called Pm' there is seen to be a secular motion

of the mean position of the pole away from its origina!

mean position P0 in the years 1900 - 1906 at tbz rate of

m q
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approximately 0"0032/year in the direction ef the POLE

_, ;aeridan 60° N, and a libration motion of a period of

apprvxima _e _, j,_o, ._ ......................

- 0"022. The short periodic motions over a period of

six years average about 0"2 - 0':3.

5.4.1 Effect on the Position of a Station

This motion of the pol_ means that the observing ",

stations are moving with respect to our "Earth-fixed"

coordinate system used in GEODYN. The station positions

must be corrected for this effect. "

The position of the instantaneous or true pole

is computed by linear interpolation in a table of ob-

served values for the true pole r,lative to the mean

( pole of 1900 - 1905. The table increment is i0 days;

: the current range of data is from December I, 1960 to

June I, 1972. The user.should be aware of the fact

that this table is expanded as n_w information becomes

available. If the requested time is hot in the range of
I,

the table, the value for the rlosest time is used.

_N_ The data in the table i.e i_L the form of the co-

-... ordinates o _ the t-ue pole relative to the mean pole
measured in seconds of arc. This datawas obthined from

"Circular D" _hich is published by BIH. The appropriate

coordinate system and rotation are illustrated in Figures

1 and 2.

t
7

| S',4- Y?, .,

!
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Xl
x

. y

pT4_ ........

PA = Center of Coordinate System
= Adopted Mean Pole

Xl = Direction of ;st Principal Axis (along meridian
directed to Greenwich)

X2 = Direction of 2nd Principal Axis (alo._g go°
; West meridian)

PT = Instantaneous Axis of Rotation

x,y = Coordinates OF PT Relative to PA Measured
in seconds of arc

Figure I: Coordinates of the Instantaneous _xIs of Rotation

(

,#

x,y = Rectangular Coordinates of PT Relative to PA

• llX 2 Plane = Mean Adopted Equator Defined by
blrectlon of Adopted Pole PA

Y_2 Plane • Instantaneous Equator Defined by'_ C Direction of Instantaneous Pole PT

Figure 2: Rotation of Coordinate System from Adopted Mean Pole

System to Instantaneous Pole System
,

,.I $.4-4
mm
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'i

Consider the station vector X iv a system attached !P

to the Earth of the mean pole and the same vector wx

in the "Earth-fixed" system of GEODYN. The transforme-

tion between Y and X consists of a rotation of x about

the X2 axis and a rotation of y about the X1 axis;
that is

Y = aI C3,3R2 Cx)* C1)

1 co x 0 -x i _!
- cos y sin 1 0

-sin y cos /sin x 0 cos x

(_ Because • and y are small angles, their cosines
are set to i and their sines equal to their values in

radians° Consequently,

Ifi • 0 -x .-y I

In the GEODYN system, the position o£ the true POLE

pole is computed by subroutine POLE. The station vec- TRUEP

tors are referenced to the true pole by subroutine

TRUEP.

(

,_ 5.4-5

] 975003343-092



(
u_* _v.tlVCS

The coordinate rotation is defir.ed as TRUEP

P_EDCT

(I)

where

• !
i _ _ station vector in a system attached to the ,

' Earth of the me_, pole.

t7 = station vector in a s_'stem attached to the

( Earth of the true pole.

RI(y) = matrix of rotation about the X1 axis

R2(x) = matrix Qf rotation about the X2 axis

t
5.4-6 '
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August il, 1973

The rotation matrices arc.

Rliy) = cos y sin y
-sin y cos y i

,

I

R2(x) = I 0
Lsin x 0 cos .

• 1 'Defining ",
. I

= u1 i + u2 j + u3 k (2)
(

A A A

W = wI i + w2 j + w5 k (3)

m

and performing the matrix multip ._icatio.nS.

Ul = _I zos x - _v3 .sin x .. ,

u_ = w I sin x sin y + w 2 cos y + w3 cos sin y • (4)
6"

:U3 = Wl al__ _ coa y - w 2 sin y + w 3 cos x cos y

I w

c . \5.4-7
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The. fur:damcntal quantities required for tile est[-

: mation of .polar motion param._ters are

1
--- and --

_x _;,

where m is the satellite observation.

Using the chain rule PREDCT

t
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August !i, 1575

TI:e partial dcrviative.,; of th( satcllitc observati¢,n

with respcc_ to the true statio_ coordinates arc current!7

_vailoble in CEODYN. The partial dcrivatives of the
(

station coordinates with rcspcct to the polar morion

parameters are:

_ui
-- = -w 1 sin x - w3 cos x ._

_Ul 1

• @u2
---- -- w i cos x sin y - w 3 sin x sin y_x

(

_u 2
-- = w I sin x cos y - w 2 s" , y + w 3 cos x cos y
By

B

0

_)u3 w I cos x ccs y w 3 sin x cos y i_x

_u 3
= -wI sin x s;.uy - w2 cos y - w3 cos x sin y

i" v

._.4-9 ',
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MEASUP_MENT MODELING AN_ RELATED DERIVATIVES

The observations in GEODYN are geocentric in nature.

The computed values for the observations are obtained by

applying these geometric relationships to the computed

values for the relative positions and velocities of the
satellite and the observer at the desired time.

In addition to the geometric relationships; GEODYN

allows for a timing bias and for a constant bias to 5e

associated with a measurement type from a given station.

Both of these biases are optional.

The measurement model for GEDDYN is therefore

(
Ct+At = ft (_' r, rob) + b + ft (_' r, rob).At (1)

where

i_._ Ct+At is the computed equivalent of the ob-
servation taken at time t+Atp



Lr,r b J -s Lilt g_.._t. .......... r -
by the particular observation type at

time t,

b is a constant bias on the measurement,

and

At is the ti,aing bias associated with the

measurement•

The functional dependence of ft was explicitly stated for
the general case. Many of the measurements are functions

onl) of the position vectors and are hence not functions

of =he satellite velocity vector _. We will hereafter -clef

to ft without the explicit fuz,ctional dependence for ro_a-
tio_al convenience.

As was indicated earlier in Section 2.2, we require

the partial derivatives of the computed values for the

measurements _ith respect to the parameters being determined

(see also Section I0.i). These parameters are:

• th3 .zue of date position and velocity of the

s_llite at epoch. These correspond to the

inertial position and velocity which are the

-_ initial conditions £or the equations of motion,

• fu_ce model _,=x=,,leters,

. • the _.:.rth-f[xed station positions,

• measurement biases.

' C

6.0-2
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£

These parameters are implicitly divided into a set

which are not zoncerned with the dynamics of satellite

motion, and a set _ which are,

l

The partial derivatives associated with the param-
eters _; i.e., station positions and measurement biases

, are computed directly at the given observation times. The
r

partial derivatives with respect to the parameters _; i.e., 1

tthe epoch position and velocity and the force model param-

eters, must be determined according to a chain rule"

_Ct+At = _Ct @���_t(2)

( where

_t is the vector which describes the satellite
position and velocity in true of date co-

ordinates,

lCt+At
The partial derivatives are computed directly at the

--Xt )_t
given observation times,Bbut the partial derivatives --

may not be so obtalned. These iatter relate the true of

date position and velocity of the satellite at the given

time to the parameters at epoch through the satellite

dynamics.

;/

t

| 6.0-5
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II _x t

The partial derivatives _-_- are called the varia-

tional partials and are obtained by direct numerical

integration of the variational equations. As will be

shown in Section 8.2, these equations are analogous

to the equations of motion.

Let us first consider the partial derivatives of

the computed values associated with the parameters in _.
We have

_Ct D���\�8�=aft axt (3)

Note that we have dropped the partial derivative with

respect to E of the differential product ftAt. This is
because we use first order Taylor series approximation

in our error model and hence higher order terms are

assumed negligible• This linearization is also com-

pletely consistent with the linearization assumptions

made in the solution to the estimation equations

(Section I0.I),

_ft
The partial derivatives _-=-are computed by

transforning the partial derzvatives ---_and -v_

from the Earth-fixed system to the true of date system

(see Section 3.4). These last are the partial deriva-

tives of the geometric relationships given later in this

section (6.Z).

6.0-4
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" Il In summary, the partial deriv_rive_ _equircd for
act+ht

computing the a8 , the partial derivatives of the

computed value for a given measurement, are the variational

partials "tndthe Earth-fixed geometric partial derivatives.

The partial derivatives of the computed values with

respect to the stat_=- positions are simply related to

the partial derivatives with respect to the satellite

positic._ at time t:

o

" where _ is of course the satellite position vector in

Earth-fixed coordinates. This simple relationship is a

direct result of the symmetry in position coordinates.

The function f is a geometric function of the relative

position; i.e., the differences in position coordinates

which will be the same in any coordinate system.

The partial derivatives with respect to the biases
are obvious:

%
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J

° Ig In the remainder of this section, w= wx_, _ .... t

cerned with the calculation of the geometric funct!on [

ft and its derivatives. These derivatives have _cen
shown above to be the partial derivatives with respect

to satellite positien and velocity at time t and the

time rate of change of the function, ft"

The subroutine breakdown for the calculation of PREDCT

: these quantities in GEODYN is as follows: The geometric OBSDOT
!

relationships and the geometric partial derivatives are
°

implemented in subroutine PREDCT. The time rates of

change are coded in subroutine OBSDOT.

The data preprocessing also requires some use PROCES

of these formulas for computing measurement equiva-

lents. These _re then also implemented in subroutine

(i PROCES.

¢

! 6.0-6
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6.1 THE GEOMETRIC RELATIONSHIPS

The basic types of observation in GEODYN are:

• riEht ascension and declination

• range

• range rate

• £ and m direction cosines

• X and Y angles

• azimuth and elevation

(_ • altimeter height and rate

The geometric relationship which corresponds to each of

these observations is presented below. It should be noted

that in addition to the Earth-fixed or ipertial coordinate

systems, some of these utilize topocentric coordinate

systems. These last are presented in Section S.2.
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t

L
1

Range :

I
Consider the station-satellite vector: GRHRAN ,I

t

where

is the satellite position vector (x,y,z) in

the geocentric Earth-fixed system, and

_ob is the station vecter in the same system.

The.magnitude of this vector, O, is.the (slant)

range, whi _ is one of the measurements.

(
Range rate:

Tile time rate o£ change of this vector _ is GRHRAN
PREDCT

"- "- (2) OBSDOTp = r

as the velocity of the observer in the Earth-fixed sys-

tem is zero. Let us consider that

. pu (5)

where
4

u is the unit vector in the direction o£ "_.

¢
a

6.1-2
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l

Thus we have GRHRAN

PREDCT

. .^ L OBSDOT
p _ pu + pu (4)

The quantity p in the above equation is the computed value
i

for the range rate and is determined by

• " - (s)p " U • r

Altimeter height:

The altimeter height and rate are unique in that the PREDCT

i" satellite is making the observation. While these are

actually measurements from the satellite to the surface

of the Earth, they are taken to be msasurements of the

spheroid height and the time rate of change of that

quantity for obvious reasons. Using the £ormula for

spheroi_ height previously determined in Section 5.1.

we have: :{

Hal t - r - a e " _ a e (6)

". + (a e £ + _" a e )

e

t 6.1-3
": i
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where PREDCT
I
I

I

ae is the Earth's mean equatorial radius, J

f is the Earth's fl_ttening, and

z is r3, the z component of the Earth-fixed
satellite vector.

Altimeter rate:
o

The altimeter rate is determined by a chain rule: PREDCT

Halt = VHal_- " _ (7)

The required partial derivatives are given in the section

on geometric partials.

_,,
_ 6 1-4
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w "'-b°_"h+..........==r_n_ion and declination: P}dI,DCT |

The topocentric rlght ascension a and declination

6 are inertial coordinate system measurements as illus-

i trated in Fi:,ure i. GEODYN computes these angles from

the (.omponents of the Earth-fixed station-satelllte vec-

tor and the Greenwich hour angle 8
g"

- tan "I -- + Og (8)
Pl

The remaining nleasurements are in the topocentsic

horizon coordinate system. These all requi,e the N, Z.

and E (north, zenith, and east base line) unit vectors

which describe the coordinate system.
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Observe%
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i
I

?

i

FIGURE I. 'ropocentrtc right ascension _ declination angles

I'
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There are three direction co_ipes associated with PREDCT
t

the station-satellie vectov in the topocentric system.
I '

These are:

#% #%

9. = u • F. (xo)

A A

m = u • N

A A e

n = u • Z

I

"The £ and m direction cosines are observation types for

GEODYN.

_.

X and Y angles:

The X and Y angles are illustrated in Figure 2.

They are computed by

Xa - tan "1 (11)
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ZENITH

NORT Tracking Station

. Local Horizontct Plane

FIGURE 2. X and Y Angleb

t

e

• t
I
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m Pig_,re X .illustrates the measurements of azimuth PREDCT
" .

and elevation. These angles are cor_puted by:

-1
Az = tan - (13)

E£ = sin -1 (n) C14)

o

6.2 THE GEOMETRIC PARTIAL DERIVATIVES PREDCT

The partial derivatives for each of the calculated

geometric equivalents with respect to the satellite positions

and velocity are given here. All are in the geocentric,

Earth-fixed system. (The ri refer to the Earth-fixed

(. components of _.)

Range :

Pi (I)
_ri P .



i

, i

FIGURE 3. Azimuth and Elevation Angles
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Altimeter range- PREDCT

("

_Halt = r1_ + - 2 a e f + 3 a e f2 (4)
ar i r r /



+ _ ae f2 "a e f 3 a e f2 18 X

?r i r _r. r 3J

aa Pl
-- (8)

--- o (9)
_rx

6.2-4

f
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_6 P2 P3
-- = (ii) PREDCT

_r2 p _12+p2 2

B6 /p12+p2 2
-- = " 2 (12)
_r3 P

Direction Cosines:

t

,, ]--= - Ei - _ui (13)
_ri P

-- = - N i - mui (14)
_ri P

,n'i ]__ ,..,.. Zi nu i [,IS)
_r i P

I

rr

'_" C

1
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p,

f
X and Y Angles: PREDCT :j ,

_Xa nEi-£Zi

t _ri p(l_m2 ) (16)
I
I

i Ya Ni'mui
= (17)

_r i p/_Z7 o
!

J
Azimuth and Elevation:

C -iN.•_Az__ . mEi i (18)

ari o_

_E£ Zi-_.ui

_ri p(l.n2 ) {19)
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I_ _.3 THE "IHE_ DE_IVAT_¥ES nRqnnT_.

The derivatives of each measurement type with

respect to time Js presented below. All are in the

Earth-fixed system.

Range:

p- u. r (1) !

Range Rate :

The range rate derivative deserves special atten-

tion. Re_rembering that

w m

p - r, C2)

p - u. p (3)

• Thus

•. ^ - _, ._. '

i , p " U. p + U • p (4)

¢ '

, _ 6.3-1 ;

I 'b •
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Because OBSDOT

, d ,, _, ,,,
p = -- (pu) = pu * pu (s)

dt

A

we may substitute in Equation 4 above for u:

o• 1 • • • #w o•

p = - • p - p + u.p (6)
p

; orj as

• A Q

p = u. p (7)
(

we may write

P " - "P - + P " (8)
P

, d

, In order to obtain _, we use the limited gra_'.ty potential

(see Section 8.3).

G_I (C20aeZ 0 . )U - -- 1 - rZ P ( sin ¢) (9).'_, T

;- (LP

; 6 3-Z
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t
• The gradient of thi_ po_,,_:-I ..,-+_,,_,,..._t .... ta the Earth- OBSDOT

fixed position coordinates o£ the satellite is the part of

due to the geopotentiat:

,a2 (_ri - r-_ 1 2er2CzO 5 sin2¢ - I-2 ri

([10)

We must add to this the effect of the rotation of the

coordinate syster. ([TheEarth-fixed coordinate system

rotates with respect to the true. of date coordinates with

a rate eg, the time rate of change of the Greenwich hour
angle.)

The components of _ are then

-- + y sin eg + r 2 B ([11)pI = + [x cos eg eg] g
,, _r I

•. _U

_" P2 = -- �"[-xsin eg + y cos eg] ()g - ;1 eg ([[12)
_r 2

•. _U _U

' O3 - _ = -- (Ill)
i _r 5 _z
k

)

The bracketted quantities _bove correspond to the coordinate OBSDOT

!_ transformations coded iv subroutines XEFIX and YEFIX. These XEFIX

_. transforms ._re used or, the true of date satellite velocity YEFIX

i components x and y. Tho interested reader should refer to

Section 5.4 for further information on transform_tlons P

i ¢,. between Earth-fixed and true of date coordinates.

m' 6.3-3 ....:
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........................................................................................................ i

i
!

;, i
I I

1 1

. i i!
i

It should be noted that all o,._an_itle_i. L**s_ ......
: i?

formula, with the exception of those quantities bracket- "! I
ted, are Earth-fixed values. (The magnitude r is in- !I tv t
variant with respect to the coordinate system transforma- ;_ i

tions.) ' ,

• !
The remaining time derivatives are tabulated :' +

• Ihere : ._
I

I
L

" " i! I

• Ul r2"u2 rl _+ I'
Right ascension: a = 325- (14)p (l-u :+ +,

I
I

I

t • i

• r 5" 0 uI 1
Declination: g . (15) i

P 5 I

'+ i

• fip " .

Direction Cosines: £ . (16) I
P

+
i

, m " (17) I
P

',, 6.3-4 +_,.
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i

• A A

- (
X and Y angles: Xa= _ (18)

(z-m_)

p * -

ya = (19)

p •

Azimuth: Az= p (l-m2) (20)
o

• p • -mp

lilevation: I_9= (21)
_X:7

i
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6.4 ,__V=LLITE-SATELLITE TR3C/, "

:., .t._ _c' ' tellite measurement used by

the GEODYN proL,'.,,_ :_,.. _h,.,,,'_- . _:gure 1. A signal Xs transmitted

from a ground trac].i_. :,ta:-',:_ to one satellite wl.ere it is

then relayed to a secorL,] :,:..':;!tire. The second satellite in

turn relays the signal bac}" to the first satellite where it is

relayed to the original grour, d station. The fundamental measure-

ment wad _ is the transit time for tibia relay process. Properly
f

i corrected for various time delays, this measurement can be trans-J

formed into the sum of the range from the grotmd station to the

first satellite and the range from the first satellite to thet

[ second satellite. The time rate of change of this.measurement

Iis also handled by the GEOI)Y;_ program.

i,
)
I

6°4.1 Satellite-Satellite Tracking Measurement Calculations TI_'OS--

( Given the ephemerides of th'e two satellites, the range i

sum type r, easurement can be calcula*.ed in a rather straight-

forward manner. The most important aspect of the calculatio:_

is to insure that the correct times are used for the satellites

and ground station. That is, transit times and transponder i

4clays _,_ust be c_rrectly accounted for.

_%k To see the times needed for the range sum calculation,

refer to Figure 1. Let

Rs(t) = the range sum measurement at time t

, Rlu = the up-'link range from the ground to the
' relay satellite

4

RZd • the relay satellite-tracked satellite ran£e

- �_K
L

i 6..4-i
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REPRODUCIBILITY OF THE
ORIG._AL PAGE ISPOOR

J

:iC
w

I;

. Fi3ure I. geometry for Satellite ..Itell/to Trncking

2 - N, "

6,4-2

f
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R2u = the tracked satellite-relay satellite range

P. = the do_,'n-iink _a_i_e from the relay s,_tollite

to the ground

Rg (t),Rl(t) ,ml2(t)= the range vector from the center of the ,
earth to the ground station, relay satellite,

and tracked satellite, respectivel)', at

time t

d 1 = the transponder delay in the relay satellite

d2 _ the transponder delay in the tracked satellite

At u = the transit time for the range Rlu

6t2d _ the transit time for the range R2d

(
At.2u * the transit time for the range R2u

Atld = the transit time for the ra._ge Rid

The range sum measurement is expressed in terms of the range

components as

-. 2Rs(t) = R1u + R2d + R2u + Rid (I}

Each of the ranges on the right hand side is a function of two

different times. Expressing the ranges in terms of the range

vectors from the center of the earth and expllcitlyindicating

the tim_s, the measurement Rs is expressible as

! 6.4"3 1

• .* ,;%
1

]975003343-]25



{

ZRsCt) = li_ICt-._tld)- l_gCt){ _ I!

. 1_2(t-Atld-dl-At2u) - ]_]Ct-Atld=dl )1

C2)

+ l_lCt-Atld-dl-At2u-d2-At2d ) o _ Ct-Atld'dl-At2u-d2Jl

+ }_lCt-Atld-Zdl-At ,,-d2-At2d)

-_g (t-&t ld- 2dl-At2u-d2-At2d-Atlu )

This expression shows that the ground station and satellite

positions must each be known for several different times.

Summari zi_g :

(
' a. Ground station position needed at times

1, t

2. t - Atld'2dl-At2u'd2-_tZd'Atlu

b. Relay satellite position needed at times

1. t- Atld

2. t- Atld-dl

3. t- Atld-dl- &t2u'dz'&tZd

4. t- &tld-Zdl-_t2u-dz-&tZd

c. Tracked satollite position needed at times

C _. t - Atld-dl-AtZu

Atld-Ol-&tzu-d2_ , .. ", ._
2, t

1975003343-126



I

t

The transponder delay which is most critical is that of the
I ....... "

tracked _,_ilite u_-_,u=_, for "_'- -' .... _ ,_._l-_ ..... __
the range rate between thc relay and tracked <atellite is

expected to be much I, igher than the ground-relay satellite

range rate. This maximum rate can be only on the order of

,'. 5 x 19 3 m/see, however, end a 4 _sec transponder delay v.'ould

i be necessary to introduce a measurement computation error

of 1 cm. Since actual S-band transponder delays are generally

I no longer than this, we may neglect transponder delays in

the measurement calculation and still retain accuracies at the

; centimeter 1eve!.

t
(
I

, With the neglect of transponder de?'ys, we are left

with 2 tin, es for which the ground station Fosition must be

computedp 2 times __orwhich the relay satellite position must

be computed, and 1 time for which the tracked satellite

position must be computed. Eqn. (2) can then be written in

f. the slightly simpler looking form:
x. REPRODOGIBILITY OF THE

" ORIGINAL PAGE IS POOR

2Rs(t) = IRl(t-atld)-  g(t)l
TWOSTA

, + [l_2(t-atld-at2u)-l_l(t-atld) ]

(3)
+ ll_l(t-at]d-ht2u- at2d)-l_2(t-htld-ht2u) [

�J_l(t'htld'ht2u'ht2d)'l_g(t'htld'ht2u=ht2d'htlu)I

This is the form used by GEODYN to calculate the range sum

measurement. The range sum rate measurement is calculated £rom

the time derivative of this expression. To see how this cal-

culation is performed, note that, e.g., the final down leg

rahge is '

Jill (t'Atld)'l_g (t}[" { []Ii(t'htld)'_g(t) ]*[_l(t'6tld)'gg(t)]}1/i _

L
]975003343--]27



and that its time derivative is
• @

( _d trl_l(t- tld)-]_g(t).ll= [l-_l(t'htld)"_g(t)]'['_'l(t-^+-'ld )-_g.ft3]. (4)

{ JR1 (t- Atld) -Rg (t) ]. [R1 (t-" At ld) "Rg (t) ] } 1/2

3ho. calculation thus requires the satellite velocities, and

the station inertial velocity, at the same times as were

needed for the range sum computation. The satellite velocities

are always computed by the GEODYN integrator along with the

satellite positions, so only the station inertial velocities

are needed as additional input to the range sum rate calculation.
i

6.4.2 Partial Derivative Calculations for Satellite-Satellite
Tracking '+easurer_.nts

• Differential corrections for epoch element and force

model parameter errors require.the computation of the partial

derivatives of the measurements with respect to these adjusted

parameters. Let ¥ be one of these parameters. Then, since

the range and range rate measurements are explicit functions

of the satellite coordinates only, the partial derivatives

of R, e.g., can be written from Eqn. (1) as
*

_Rs I _Rlu SR2d -_R2u 8Rld ] SXll

[_R2d + _R2u 1 8X2i ($)

aE Rovu mn• OItlGI_ALPAGEIS IKlOg
where

"' Xli, X2i are the inertial cartesian position coordinates
' of the relay and tracked satellite, respectively.

Summation over I from I to 3 IS implied.

+,

• . . +_ +,. ,, ,, •

"", +' , ++_, ._ _,' _ .'," _ ,,p_.+_' ; 1''+ + ,_ _' _' ';+_.,2 . '.' , ,

975003343- 28



Eqn. (5) is sho_¢n in a somewhat simplified form, since the
[

( dxfl-ercnt range sum co,q)oJ_.ts u_l,_.d'.... ....._v_ .................+_'" -.._11;._ .
coordinates at slightly different times. For partial derivati,re I

', computations, however, this slight _i,,,e difference is negligible.

' The partial derivatives of the satellite ceerdinatc_ "¢tth

respect Lo the y parameters are obtained by indepenC,,ntly inte-

grating the appropriate variational equations for each satellite

in the same manner in which GEODYN integrated these equations

for one satellite.

Eqn. (S) can be simplified somewhat by noting that
o

-----_R2d= _R2d (6a)

' _Xli _X2i

_R2u _Rzu

(
'" _R2d _R2u (6c)

9Xli _Xli

_Rlu _Rld (6d)

_Xli _Xli



- f

partials must now be included. Thus, if down leg rate partials

¢- arv approximately e_ual to uu le_ rate partials,

]_s _Rlu _Xli _[_lu _Xli _R2d _Xli ]Rzd _Xli
-- _t .... + +

_R2d _X2i _R2d _Xti (8)+ 4.

_X2i _ _X2i _Y

As can be seen from Eq.n- (4), relations comparable to Eqn. (5)

hold also for the rates, and Eqn. (8_ :a _ be written
p

!

_ _xli _y _xli _ _xli \ _ _. / _'os_n

{9}

6.4-_ .' ,
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6.5 PCE MEASUREMENTSTYPES • PREDCT 1
I

The PCE measurement types are sets of elements pre-

cisely determined in previous GEODYN orbit determination
run s.

The inertial Cartesian elements obtained from inter-

polation of the integrator output are used as the calcu'ated

measurements for PCE types, x,y,z,x,y,z.

The osculating elements obtained by conversion of the
above mentioned Cartesian elements are used as the calculated

measurements for PCE ty_es, a,e,i,fl,_,M.

The partials for these measux'emen_s are given in "1.

Section 11 4. " ' "_1_* ''_"'¢ -
• II i_,_,' ,_v" '; ,_

---_._,,,• .:.'......".i_'.:..,,': ..,.:....

] 975003343-] 3]



............................................................................. ++ ..................................

6.6 VLBI _ASUREMENT TYPES
i TWOSTA

The geometry for the VLB! measurements used by the

GEODYN program is shown in Figure 1. A signal is transmitted

from one satellite to two ground stations.

VLBI Time Delay Measurement Calculation:

,,"t - "r (1)tg 2 1

: Pl

c o

P2
T2_ --

c

" z - is the time delay measurement.
g

Zl " is the light time for the first ground station.

T 2 - is the light time £or the second ground ststion.

01 - is the first station-satellite range.

P2 " is the second station-satellite range.

c - is the velocity of llght.

_m

I" i, ++11,6-I "

, . ... ++:'.... +..,,:: ...._++ .'+ ++ ++" ".:?:,+?, 'L :'.++
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r ...............

I °* .c

atellite

/_ - ,
/ I
I

/ i
( °2/ 1 :

/ . I Station 1
Station 2

_. ' Figure 1. Geometry of VLBI "Measurement Type
• #-

"I!c
:_j 6.6-2
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m q

•, • • ¢"

' _ Partial Derivative: T_'OSTA i

aT 1[ap z apll= .... (2)

ap 2 aP 1

and the partials ;ri_ , _ri*_ are given in Section 6.2. i

VLBI Fringe Rate Neasurement Calculation: ° ,

!,
I

_=- Z" 1
• C , .

L

( where
l-

f - is transmitter frequency.

o is the _me derivative of P2PZ

Pl " is the time derivative of PI"

" Partial Derivative :

._!L _r i C L_ r i _ rlJ

,_ t C where the partials ---, ---- are given in Section 6.2.
_ _ r i _ r L

it 6.6-s- i"" i 'b
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6.7 AVERAGE RANGE RATE MEASUREmeNT TYPES T_SFA
/

Figure 1 illustrates the geometry of the average range

rate measurement t) pes. A signal is transmitted from a

transmitter to a satellite) then a ground station receives

the signal from the satellite, and,

0 T - is the transmitter-satellite range

OR - is the satellite-receiver range

_R - is the pgsition vector o£ the receiver

_T " is the position vector of the transmitter

_S - is the position vector o£ the satellite.

(
If t 6 is the recorded time of the end of the doppler

counting interval at the receiver _nd, if T is the length

of the counting interval, then the average range rate

measurement is

•== PR(t6,ts) + PT(tS,t4) - OR(tB,t 2) - PT(t2,tl)
p .= (i)ZT

Where it is necessary to iterste for the satellite

and tra_smitter times,

_ 0R(t6,t5 )
t$ = t 6 ......

c

r

!e
F

6.7-1
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r

P

Satellite

/ ' I/ ,
I

_r _
/

/ _s._ ;

Receiver i

Figure 1; Geometry for Average Range Rate Measurement

6.7-2
', -, ,
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PT (ts' t4) Tl,'OS7A
( t, = tc

t5 = t 6 - T

PR(t3,t2)
t2 ffit 3 -

C

PT(t2,t 1)
t I = t 2 -

C

and where

pRCt6,ts) - l]_RCt6) - ]_sCts))

( PT(ts't4 ) - l_T(t4) - I_s(t5)]
(z)

PR(ts,t2) = [I_R(t3) - ]_s(t2)[

PT(t2,tl) = ]i_T(tl) - ]_s(t2)[

A two-way average range rate measurement is a special

case o£ the three-way average range rate measurement (i.e.,

the receiver and the transmitter ace the _ame). Therefore,

, 6.7-3
' !

1.q7._rlrl_gA 9_i _-7



The Partial Derivatives are Th'O$TA

( ;l

ri" [!'L ri ri ri ri ]

a_ 1 PR(t6,ts) i) PT(ts,t4) i) PR(t3,t2) aOT(tz,tl)

a 2_ | a _ _ a

_here the partial D_.p_o_is given in Section 6.2.

_r i

_4

(

6.7-4

I! | I
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SECTION 7.0

DATA PREPROCSSSING

The function of data preprocessing is to convert

and correct the dat_. These corrections and conversions

relate the data to the physical model and to the co-

ordinate _nd time reference systems used in GEODYN

The data corrections and conversions implemented in

G_ODYN are to
i p

s

• transform all observation times to AI time }

at the satellite J

• refer right ascension and declination ob _

servations to the true equator and equinox

{ of date.

• correct range measurements for transponder

delay and gating effects

• correct SAO right ascension and declination

observations for diurnal aberration

.. • correct for refraction

• convert TRANET Doppler observations into

range rate measurements.

These conversions and corrections are applied to th_ d_ca

" on the first iteration of each arc. Each of these pre-

processing items is considered in greater detail in the
subsections which follow.

• ¢_ 7.0-1

' I "
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7.! Tlb_ PKEPROCESS!NG

The time reference system u_d to spcci c''_;*_o..._

time of e3ch observation is determined by a time

identifier on the data record. This identifier also

specifies whether the time recorded was the time at

the satellite or at the observ;ng station.

The preprecessing in GEODYN transforms all DODSRD

observations to AI time in either GEOSRD or DODSRD. GEOSRD

If the time recorded is the time at the station, it PROCES

is converted to time at the satellite, This con-

version is applied in subroutine PROCES using a cor-

rection equal to the propagation time between the

spacecraft and the observing station. The station-

satellite distance used for this correction is computed

from the initial estimate of the trajectory.

(
There is special preprocessing fer right GEOSRD

_scension and declination measurements from the GEOS

s_tellites when input in National Space Science Data

Center format. If the observation is passive, the

;_ image r.-._rded is an"observation of light reflected

. from the satellite and the times are adjusted for

_ropagation delay _s above. If the observation is i

, active, the image recorded is an observation of light

transmitted from the optical beacon on the satellite.

The beacons c,n the GEOS satellites are programmed to

@roduce a sequence of seven flashes at four second

intervals starting on an even minute. For the rJctlve

_. observations, the times are set equal to the programmed

._- flash time with a correction applied f_r known clock

errors {Reference 1), p:us half a _ll_.second, the time

_- _ allowed for flash bui_ dup.

7.1-I

i
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f
The corrections for the active observatxons are CEOSR9

applied in GEOSRD, which calls SATCLC and SATCL2 to SATCLC

evaluate the corrections for GEOS 1 and GEOS 2, re- SATCL2

spectively. These routines compute tile correction by

simple linear interpolation in a table of known errors

in the satellite on-board clock.
t

I

C

7.1:2

1975003343-141



7 2 "'' _ DODSRD

EQUATR

GEOSRD

The camera observations, right ascension and

declination, ma,rbe input referred to the mean equator

and equinox o£ date, to the true equator and equinox

of date, or to the mean equator and equinox of some

standard epoch. The GEODYN s_,stem _ransforms these

observations to the true equator and equinox of date

in subroutines GEOSRD and DODSRD. The necessary -
f

, precession and vutation is performed by subroutine

EQUATe.

7.3 TRANSPONDER rELAY AND GATING EFFECTS

( The range observations may be corrected for PROCES

transponder delay or gating errors. Tf requested, the

GEODYN subroutine PROCES applies the corrections.

The transponder delay correction is co_.pute4 as

a polynomial in the range rate:

-. Ap = a0 + aI p _ a 2 (p)2 (1)

where a0, a I, and a2 depend on the characteristics of
, the particular satellite. ,
?

,j

A ga_ing error is due to the fact that actual

! range measui'ements are either time delays between

I _ C transmitted and receive_ radar pulses or the phase

!!.
q
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shifts in the modulation of a received signal with PROCES

respect to a coherent transmitted signal. Thus there

---:_:':_,- ^_ _-_-_elv identifvin_ the re-

turned pulse or the number )f integral phase shifts.

The difference between the observed range and the computed

range on the first iteration of the arc is used to deter-

mine the appropriate correction. The correction is such

that there is less than half a gate, where the gate is the

range equivalent of the pulse spscing or phase shift. The

appropriate gate of course depends on the particular

station.

I i

7 • 4 ABERRATION PROCES

Optical measurements may require corrections (Refer-

ence 2) for the effects of _annual aberration and diurnal

aberration.

The corrections to right ascension and declination

measurements for animal aberration effects are given by

_ 20_S (cos _' cos 6 cos er + sin a' sin ,)
. _ s Qt . -= ................... _....

_' COS 6_
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• ,, "--" -" ; ,. ,I, I li ....:: .,.,._ i', _" .-_'-2---...,..mi':-_..__.Z... --'-- ' '

I

where PROCES

( a - true right ascension of the satellite i

5
a t - observe6 right ascension of the satellite

6 - true declination of the satellite

6' - observed declination of the satellite

eT - true obliquity of date

s - geocentric longitude of the sun in the ecliptic

plane

Diurnal Aberration

- The correcti-ons to right ascension and declination
measurements for diurnal aberration effects are given by

%

a - a' + 0V320 cos _' cos hs sec 6'

6 - 6' + 07320 cos _' sin hs sin 6'

where

_' - geocentric latitude of the statibn

h s - local hour angle measured in the westward
, direction from the station to the satellite

a = true right ascension of the satellite
)

It •: a' - observed right ascension of the satellite ;

! .

? .4-2
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6 - true declination'o_" the satellite

6' - observed declination of the satellite

7.5 REFRACTION CORP_CTIONS

The GEODYN system can apply corrections tu all PROCES
1

of the observational types significantly affected by

refraction. The corrections requested are applied by
subroutine PROCES.

Right Ascension and Declination:

Optical measurements may require corrections

(References 3, 4, 5) for the effects of parallactic _e-

fraction. These corrections are given by

(
a - a' AR sin q/cos

6 - 6' - AR cos q

where the change in the zenith angle, AR, in radians is

g iven by"
,/

0.435 (4.84813) tan Zo
_R = - [l-e ('1"38s) 10"4 P cos Zo]

p cos Zo

and

s

a t_ue right ascension of the satellite

C' a' - observed right ascension of the satellite

! °
l

I i_ _I__ "

i " ir
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6 - true declination of the satellite PROCES

6' - obse,ved declination of the satellite

Zo - observed zenith angle in radians

p - range from the station "- the satellite in

meters

q - parallactic an&le in radians

The parall_ctic angle q is defined by the inlersection

of two planes represented ty their normal vectors F 1 and F2"

IY2 = CX"

where
• "1

A

Cp " (0,0,1) !

A

v - unit local v_rtical at the station

u - unit vector pointing from the station to the

satellite in inertial space•
m

|

Therefore, the sine and cosine of the parallac*Ic angle

, are given by I

I= B =

cos q P1 " PZ

^ [

,i _ sinq-P5 P2 [

7.S-Z
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Where PROCES

A

P1 " unit ve_.tor ill the _1 direction
A

P2 - unit vector in the 15"2 direction

and

^ P-lXU
P3 -

The parallactic angle, q, is measured in the clockwise

direction about the station-satellite vector (i.e_, a left-

handed system is used to define this angle). All vectors..

and vector cross products used in this formulation conform

to a right-handed system.

Range : PROCES

The refraction correction applied to CNE$ laser

range data is

• & Pn "

40= .....

• .,.cot •

and the correction applied to range data from all other

tracking systems is ..

_ 2.77ns

_' _p =......... --_ (41
-_ 328.5(O.026+sin EL)

t

•" _

i!
!
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J

; _ where

APn - is that correction associated with a range
observation measured along the direction of

the satellite zenith, and is provided along

with each observation on the data tape,
• .,

Et is the elevation angle computed from the
_nitial estinlate of the trajectory

i

and

ns PPH deviation f_m unity of _e surface
index of refraction; if this value is not

specified, it is assumed to be 328.5.

Range Rate:

For range-rate, the correction AO is derived from

W_ the range correction:
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where PROCES

F._ is the computed rate of change of elevation.

Elevation:

For elevation observations the correction AE_ PROCES
•s computed as follows:

n s lO s
AE_ - (6)

16.44+930 tan E_

Azimuth is not affected by refraction.

Direction Cosines:

: ._ The corrections n_ and Am are derived from the
_,, elevation correction:

A_ = -sin Azsin (E_) AE_ (7)

Am = -cos Azsln CEL) AEL (8)

,I

¢
?,5-$

, k II I
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" where A z is the azimuth angle computed from the initial PROCES

estimate of the trajectory.

X and Y Angles:

For X and Y angles the corrections AX and AY are

computed as follows:

sin AzAE _
Axa = - (9) ..

(sin2 E_ + sin2 AzCOS2 E_)

cos Azsin E_ AER
AYa = - (10) !

l-cos z AzCOS2 E_

I

Note that these are .!_o derived from theelevation correction. I

7.6 TRANET DOPPLER OBSERVATIONS i•

TRANET Doppler observations are received as a GEOSRD }i,

series of measured frequencies with an associated base Ii
frequency for each station pass. Using the following

relationship, the GEODYN system converts these observa-

tions to range rate meas'.Lements in subroutine GEOSRD:

_._, . c(FB-FM)
,_. (i)

,_;. FM

g

,:_ 7.6"I
' I
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-. where GEOSRD

F).! is the measured £requeT_cy,

FB is the base frequency,

and

c is the velocil:y of light.

: !:

( it

¢

i -,,,...
! _ '?', i
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2.

, 7.7 SATELL_TE-SATELLITE TRACKING DATA PREPROCESSING
/ "IL':(3_A

) _ UP bC;'...

involves the determination of all the appropriate transit
) times. Because of the station-satellite and inter-satellite 'I-

distances, this process must be performed iteratively. The li) required times are computed during the first iteration and

t"are then stored for use in subsequent iterations.

The satel!ite-satellite tracking measurements are also

corrected for tropospheric refraction. The corrections made

here are identical to those which would be made on range and

range rate measurements to the relay satellite only. Althout;h

it is theoretically possible for signals from the relay to

low altitude satellite to pass through the atmosphere, such

tracking would vccur at reduced signal intensity and would ,)|

be equivalent to the low elevation tracking of satellite from idOL

ground based stations. Such dat_ is seldom used in orbit

( estimation.

The standard procedure for transponder delaycorrections on satellite-satellite tracking fs to use

block data constants for each satellite, ;¢ith a satelllte !

J ID used to identify *he appropriate block data entaieo.

Since constants for the transponders to be used for

.! ¢__ satellite-sate_l!t; tracking are not presently available

tt.e block data entries must be modified appropriately _hen

: the data b_.comes available.

i

, }..

It .
i

',, #-

• 7.7 -1 it_.'_:_
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SECTION 8.0

|
FORCE MODEL AND VARIATIONAL EQUATICNS

A fundamental part of the GEODYN system requires Lo

computing positions and velocities of the s[acecraft
at each observation time. The dynamics of the situa-

tion are expressed by the equations of motio,', which

provide z relationship between the orbital elements

at any given instant and the initial conditions of"
epoch. There is an additional requirement for varia- 1

tional partials, which are the oartial derivatives of

the instantaneous orbital elements with respect to the

paramet_ s at epoch. These partials are generated

using the variational equations, which are analogous

( to the eqaations of motion.

8.1 EQUATIONS OF MOTION

In a geocentric inertial rectangular coordinate

system, the equations of motior for a spacecraft are of

the form.

m

•. ]Jr

r - + (l)

where

.%

¥ is the position vector of the
satellite.

.11 ....

,,_ I ._ I• II I I I III IIII , ,m,

\' /

....... I
i
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is GM, where G is the gravitatiohal constant

and M is the mass of the Earth.

i

K is the acceleratlon caused by th_

asphcricity of the Earth, extra-

terrestrial gravitational f3rces, atmos-

pheric drag, and solar radiation.

This provides a system of second order differential

equations w;Lich, given the epoch positien and velocity com-

ponents, may be integrated to obtain the position and velocity

at any other time• This direct integration of those

accelerations in Cartesian coordinates is known as

Cowell's method and is the technique used in GEODYN's

orbit generator. This method was selected for its

simplicity and its capacity for easily incorporating

additional perturbative forces.

{
%

There is an alternative way of expressing the F

above equations of motion:

where

U is the potential field due to gravity,

_[D contains the acceleratio.s due to drag,
, and

• ._

_"

KR contains the accelerations due to solar

i C radiation pressure.

8.1-2

i aN I I ' I
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This is, of course, just a regrouping of terms coupled

with a recognition of the existence of a potential field.

b This is the form used in GEODYN.

I The inertial coordinate system in which these

equations of motion are integrated in GEODYN is that

i ) system corresponding to the true of date system of o_o

, of the reference day. The complete definitions fcr these

coordinate systems (and the Earth-fixed system] are

t pre_ented in Section 3.0.
I

The evalaation of the accelerations for _ is F

controlled by subroutine F. This evaluation is performed REFCOR

in the true of date system. 3has there is a requirement

that the inertial position and velocity output from the

integrator be transformed to the true of date system for

( the evaluation of the accelerations, and a requirement to

transform the computed accelerations from the true of date

system tq the inertia] system. These transformations are

performed by subroutine REFCOR (which controls the pre-

cession and nutation routines, PRSCES and NUTATE) and is

controlled by subroutine F.

% 8.2 THE VARIATIONAL EQUATIONS

The variational equations have the same relationship VEVAL

go the variational partials as the s-._ellite position vector

does to the equatiovs of motion. The variational partlal$

_: are 4efined as the _xt where _'t spans the true Of date

_ position and velocity oz the satellite at a given time; i.e.,
7

t"
$.2-1
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(
¥ = {x v,z y • VEVAL
°'t _*°')) )

and g spans the e_och parameters; J. e ,

• It

Xo,Yo,Z o the satellite pos£tion vector at
epoch

J Xo_Yo,Z n the satellite velocity vector at
epoch ' r

CD the satellite drag factor

Q

CD the time rate of change of the drag

-- factor

CR the satellite emissivity factor

_. Cnm,Snm gravitational harmonic coefficients
for each n, m pair being determined. i

X. surface density coefficients

i Let us first realize that the variational partials

i may be partitioned according to the satellite position

and velaci_y vectors at the given time. Thus the re-

quired partials are

$

8.1-2 :,

• _, ,,
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) (
.-'.here VEVAL

)
is tke satelli_e positien vector {x,y,z)

I in the true of date _ystem, and

*_.

} r is the satellite velocity vecLor (x,y,z)

in the same system.

The first of these, -_, can be obtained by the double
integration of

d 2

[ or rather, since the order of differentiation may be
exchanged,

_r

Note that the second set of partials, _, may be obtained

OF a first order integration of ---._r Hence we recognize

that the quantity to be integrated is _. Using the sec_-_

form given for the equations of motion in the previau_

: subsecti0n, the variational equations are given by
.:o

i _ 8.2-3 .:.

i,t
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.o

a_ a VEVAL

(' _ _

where

i U is the potential field due to gravitational
effects

_R is the acceleration due to radiation pressure

_D is the _cceleration due to drag

The similarity to the equations of motion is now obvious.
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_T_IT_ T

At this.point we must consider a few ztems: ,.....

' i
• The _otentlal field is a function only of 'i_

I position. Thus we have

)

)___ = m (s)

o

• The partials of solar radia=ion pressure

with respect to the geopotential co-

efficients, the drag coefficient, and the J

satellite velocity are zero, and the par- 1
rials, with respect to satellite position,

( are negligible.

e Drag is a function of position, v_locity,

and the draR coefficients. The partials,

with re_pgct to the geopotential coefficients

and satellite emissivity, are zerc, but we

_. have

4

= --- + -_- (6)
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f
Let us write our variational equation_ in matrix VEVAL

notation. We define _i

n to be the number of epoch parameters in B

.th
P is a 3 x n matrix whose j column vectors

..

are _r

U2c is a 5 x 6 matrix whose last 3 columns are
zero and whose first 3 columns are such

•th
that the i, _ element is given by

_2 U

_ri ar_

Dr. is a 3 x 6 matrix whose jth column is definsd

_ ( b,/_q,.
: J

X is a 6 x n matrix whose ith row _s

given by °xt . Nots that Xm contains the

•) variatiohal partials.

f" is a 3 x n matrix who..e first sim columns
_. a_e zero and whose last n-6 _clumns are

such that the i, jth element !,"given by

: .¢ (VU + _D + _R )" Noto that the _irst six
columns correspond to the'first six elem_ts

, of _ which are the epoch position _nd_iocity.

(This matrix contains the direct par_ls of

_t with respect to _.)

C

.a,2-6

,b , ,

n p, I u "
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t ( REPRODUCIBILITY OF THE
We may now write ORIGZNAL PAGE IS POOR VEVAL

= + X + f (7)
I _ [o2, Dr] m

I
This is a matrix form of the variational equations.

Note that U2c , Dr, and f are evaluated at the

current time, whereas Xm is the output of the integra-

tion. Initially, the first six columns of Xm plus
the six rows for,u an identity matrix; the rest of the

matrix is zero(for i=j,Xm. =1; for i_j, Xm. -0).
1,j 1,j

Because each force enters into he vsriational

equations in a manner which depends dir,:ctly on its

(- model, the specific contribution of each force is dis-

cussed in the section with the force model. We shall,

however, note a few clerical details here. "

The task cf computing these variational equations

in the GEODYN system is largely accomplished by sub-

routine VEVAL. The matrix dimensions given are for

notational convenience; empty rows and columns are not
.
-. programmed.

The above equation is als_ applied in subroutine PREDCT

" that is toPREDCT to "chain the partials back to .epoch, ,

_- relate the partials at the time of each set of measure-

ments back to epoch.

i!.= i

' I
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August 11 , 1973
,i

i a_t
The matrix for a--_ , Xm abovc, is initialized in (,RglTh

subroutine ORBIT.

( DT1

The contributiu,is of- -'"......*'-"" n',1 n_._n_ nRAC, D6SO "i
EGRAV, F, SURDEN, and RESPAR will be discussed as part DRAC i'of the following subsections. The matrices Uzc and f will 1"

i be referred to in each subsection as though the particular RESPAk

force being discussed had the only con_ri;_ution. SURDEN

° .

t

i
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........................... 0 .......

J_

8.,_ TIIE EART_I'S POTENT:AL i
I

f .i

In GEOD_N the Earth's potential is described by l
•_he ¢o_b_nnt]nn of a spherical harmonic expansion and a

surface density layer. Generally, ho_¢ever, the spherical

harmonic _xpansion is used exclusivel-, and no surface
density terms are included.

o

t

(

I*

I _ _ I I I _



' 8.Z.1 Spherical Harmonic Expansion

The Earth's po+cntial is most conveniently ex- EGRAV

pressed in a spherical coordinate system as is shown

in Figure I. By inspection:

• ¢', the geocentric latitude, is the angle

measured from ITS, the projection of UF in

the X-Y plane, to the vector _.

• k, the east iongitude, is the angle measured

from the positive direction of the X axis ,,

to 0-_. i

• r is the magnitude of the vector _Y.

• !f

Let us consider the point P to be the satellite E_,RAV

i position. Thus, _-Iy is the geocentric Earth-fixed satellite '_

vector corresponding to 5, the true of date satellite

vector, whose components are (x,y,z). The re!_tionship

between the spherical coordinates (Earth-fixed) and the

satellite position coordinates (true of date) is then

i given by

CX ' y2 .....r = 2 + + zz" (I)

!_ _, = sin "I . (z)

"_.

: , (:I__ _ = tan"1 Y - eg (3) _R

I :8.3-2 _,ii_:
P i--
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I

(
i

Ftgure 1: SphericalCoordinates

_n

: 8.3-3
I

It i
m

I
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i where 0g is the rotation angle between the true o£ date EGKAVsystem and the Earth-fixed system (see Section 3.4). i!
f

, The Earth's gravity field is represented by the i

normal potential of an ellipsoid o_ revolution and Iil
I small irregular variations, expressed by a sllmof

spherical harmonics. This formulation, used in theP GEODfN system, is

_ GM n pm
U - _-- I + n in CnmCOS ml _ Snm sin m_

n=2 m=0

(4)

where
i

G is the universal gravitational ccnstant, i..

- M is the mass of the earth,

L;

r is the geocentric satellite distance, _i

_. . nmax is the upper limit for the summation (highest ,legre.e),

_.- a e is the EarthVs mesh equatorial radius,

4

'/ t o

'< t
C :i

t

8.3-4

t •

' I , , mr,
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%

¢' is the satellite geocentric latitude, EGRAV

k is the satellite east longitude,

i

pm(sin _ indicate the associated _Legendre in t
functions, and I

'i %
.: Cnm and Snm are the gravitational 1

coefficients.

iThe relationship_ between th_ normalized co- OENORN I

efficients (gnm" .m) and the denormalized coefficients
are as follows:

i

1 1/2

fn-m) ![2n+l) (2-6om)
c = C (s)

( nm [ (n �nm

where

6 is the Kronecker delta,
Om

_ 6 -I for m=0 and 6 =0 for m_0.
om om

A similar expression is valid for the relationship

between gnm an4 Snm. This conversion factor is com-

puted by the fiEODYN system function DENORM.

I

m

_.3-5

.w .... .,..n_, ,.......................................... _............. _1= 7.:_-:_=_....-:'-.___=: "i-.
t
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....... :--+;^..1 o--alaratinn¢ _n true of date co- EGRAV

ordinates (_,_,_) are computed f: ,m the geopotenti_!,

{ U(r,_',l), by the chain rule; e.g.,

•. au 8r aU a_' au ax
x = + + (6)

The accelerations y and z are determined likewise. The k

partial derivatives of U with respect to r, _', and X are [

g iven by

nmax , .n n

n=2 _r! m_,O

-I

+ Snm sin mX) (n + l) P_ (sin q_'){

t _ = -- (Snm cos mk - Cnm sin mk} (8)
ak r n=2 xr/ m=O

I

m (sin _')m Pn



,|
*_t,_....p..'.i-"-!Aor_vatives___ of r. ¢', and X with respect to EGRAV

the true of date satellite position components are

I

_r r i I- --- (1o)
at. r

1

]

_4 1 [ zri _z 1

- l I
w _ - -- (12)

ar i ._/_y'T _r i x ar i

f;

J._-7

IIII _ ................. iiii III ................. _ ..r ""_' "IIimlmlIi..__ ... . ,
,,4--,__ J,' .... " ,.

r
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.................. '
I ..............................................

The Le_endre functions are computed via recursion EGRAV
£ormu]ae :

Zong]s: mffiO

pO (sin _ = - (2n-l) sin _'pC •
n n n-1 (' - ¢9 (13)

(n-l) pO (sin _]n-2 !

o (sin ¢_ = sin ¢' (14)P1

. Tesserals: m_0 and m<n

pmn (sin ¢_ -pmn.2 (sin @_ + (2n-l) cos ¢'Pnm'l_{sin _f)

ClS)

° _ P_ Csin ¥) = cos @* C16)

#

"x Sectorals : m-n
J

pm . (2n-1) cos #' Pn-n'_.rsin _ (17), lq
)

f

':"_, i! 8.3-8



d_' (iS) i
It should also be noted that _ultiple angle ECRAV {

Jformulas are used for evaluating the sine and cosine VEVAL

of ink.
i

These accelerations on the spacecraft are com-

puted in subroutine EGRAV. Arrays containing certain

intermediate data are passed to subroutine VEVAL for

use in the computations for the variational equations.

These contain the values for:

¢
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!
The following discussion, relates primarily to VEVAL

the mathematical formulations utilized in subroutine

VEVAL.

The variational equations :equL_'e the co,_putation

of the matrix U2c, whose elements are gxven by

2

U2c i,j _r. _r.1 j

where

ri _ {x, y, z}, the true of date satellite position.

C U is the gcopotentlal.

Because the Earth's field is in terms of r, sin _',

and X, we write

3

U2c CI '_2 t_l E _U' + _ C2a (21)

_*-_ k=I aek

&

where

,j

e k range, over the elements r, sin _*, and X

" il)-- U2 is the matrix whose i, j th element is Liven
_2by U

y

' _ 310 • t L
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and

.th
C2k is a set of three matrices whose i, j

2
elements are gJ.venby _ ek

I

We compute the second partial derivatives of the

potential U with respect to r, _',and _:

n-2 m-o

(Cnm cos mt+ Snm sin mr) pmn (sin @_



8,3-1Z

, "' "1 , , 1
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The elements of U2 have almost been computed.
What remains is to transform from (r, _', X) to

(r, sin _',,_) This affects --ty the partials involvin_

#:

alJ aU _6t
- -- (30)

a sin _' a_' a sin _'

,_. aZ'U a_' (aZo t a_, ao a2_ •
, a sin _,2 a sin 4 a sin 4 a_' " sin

. (31)

where



I

! r
For the C i and C2k matrices, the partials of r VEVAL i

sin _" and X are obtained from the usual formulas: l
p

/h

=_

r = __ (3/,)

"/ ; sin _' z- - (3s)
r

. X = tan -1 - eg (36)

We have for C
I:

,L (
: - Dr r.

,o i

: -- (37)
[ Dr. r

1

0 _ _ sin _b' -z ri 1 _z
= '3 + - -- (3s)

.,: _r. r r Dr.

_rl _ x -- y (38) ;• _r i

g-

o ,

1t.3-14

r .

• .w . . . , . ,r_mmw=,,_mqmwm__
..................... _ .................................................. --"............ " "' /2: _ -. . !

I
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The C2k axe symmetric. The necessary elements VEVAL
are given by

I

?2r ___ 1 _r i= + CSg)
_r._y. r r _r.

!

_r 1 _r. r5 --_ rj -- + r.- + z i• j r _ i i Bj

(40) |

_2X -2rj i-x _y _x ]

= .... Y -- C41)

_ri _r. (x2+yZT2" _r. _ri

! �....

, j _rj

+,

If gravitat.+.onalconstants, Cnm or Snm are being RF.SPAR

i estimated, we require their partials in the f matrix

for the variational equations computations. These

partials are
I

- _Cnm _i" C'_ ðcos Cm_.)Pn
,

+(++o,,(+,,.-- - m- sin (mr) Pn (sin 0') (43)

L !

8.3-1S

, ._,.

p+. ' _ ............ '= .......... ' • , ,i ,+

'- _-+-- v - - . ..... _ e' ++ •

I
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t!

°Md im--/= -- cos Cm_,)p °+'3(: +Cnm r

- m tan _'pm ('_in_)] (44)n

J

(

The partials for Snm are lder,tical with cos CruX)re-

placed by sin (mX) and with sin CmX) replaced by i-cos Crux).

These partials are converted to inertial true of

date coordinates using the chain rule; e.g.,

- = _r/-- �--_x(45)+Cnm aCnm ax +Cnm

aCnm _x

This particular set of computations is performed by

subroutine RESPAR. Th_ items which EGRAV computes for

VEVAL are also available to R_SP_R and are therefore

utilized.

¢

, ' ¢

_-.- ...... ..... _._ _ • ," _ .. _, ,o, i

-.w
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8.3.2 Surface Density Layers

The representation of the earth's gravi_atiuaal f_c 1_

in terms of a simple density layer spread over the surface

( of she earth was first introduced by Koch [Reference 10] in i
1968. Attempts at determining numerical values for surface

densities on a global scale have been made using both optical ][Reference 6] and Doppler [Reference 7] data. In some cases,

( the surface densities have bee_ estimated as alternatives to

the spherical harmonic expansiov, and in other cases the

surface densities are a supplementary contribution to a set Jof "known" low degree and order spherical harmonic coefficients.

!

The surface densities implemented in th_ GEODYN program

are basically in the nature of a supplementary potential con-

tributiov. The spherical harmonic field is retained for repre-

senting the geopotential on a global sczle and the surface

densities can be introduced on either a local or global scale

into any number of Slocks of constant del,sity. That is, the

fineness of representation of che geopotential via surface

densities is arbitrarily small, consistent with computer core

availability and the sxxstence of data for actually resolving

a large number of surface densities• In addition, t..ecapa-

bility now ezists in the GEODYN program for simultaneously

"#_ adjusting both spherical harmonic coefficients and surface

layer densities. No investigator has apparently yet attempted

this. When actually making simultaneous adjustments, the

resvlts must be very carefully interpreted. This problem is

considered further below in the discussion of constraints.

8.3.2.1 Mathematical Representation of Surface Densities.

The total potential of the ear*.h 'W' can b_., somewhat

•_ ,, (_ arbitrarily, divided into a spherical harmonic,, ]art 'U' anda remainder 'T' to be expres._ed in some other form

@.5-I? _'}_
- m II I Ill I

41, _.,
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W = U (i_

with

U -- -- i " _ Pm (sin %)
' . r n=2 m=O n

nm cos J,t_ + Snm sin mA + 1/2 _ r cos 2 _ (2)
t

=

where r is the distance from the point of interest to the centerv

of mass of the earth and ,_ and _ are geocentric latitude and

' longitude. The last t_rm in (2) is omitted if the potential

is being c_mputed outsid - the surface of the ear._h. In GF.ODYN:

the ma- ._ :gree spherical harmonic coefficient is basically

arbitr_r:., ,.Jrmally being limit.ed to the maximum degree fo_

I, which coefficients are available.
\

• 'o

..: The potential T can be repre3ented as .that of a

simple layer distributed over the surface of _he earth. Mathe-

I. matically, T is then given by the surface integral

I- -

#- #"

_t

s
?

where _ is the d_stance fro,,_a point on the surface to the p)int

I at which the Fjtcn_.ial is to be computed, dE is the element

of surface area, X is the surface dcnsit! (in units o£ kg/m2

multiplied by G), and S is the surface el thu earth. Figure I

shows the geometry and a po;tion of the surface areas. To

_ numerically evaluate the integral in (5), it is nece_s_.ry to

_ divide the entire surface into blocks of constan_ densit},.

If there are M such blocks, then (3 _ can bc written

- t_ ' 8.3-18

i

I-_ 't

|
q'

1975003343-180



I !

---7

m

i i

" i
$3ftmce Densuty Blocks

J

111

l::,guro ;. Gconetry o' '¢ur!acc I)ensity Blocks
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i=l JJ

AF..
1

l

!
( where Xi is now the average density on the i'th block and i

the integral is to be taken over the area of the i'th block, i :
1

The integral in Eqn. (4) must be evaluated numerically. 1 !

It is evaluated in GEODY?4by dividing the area _.£._ up into four I !
blocks of equal area and taking the kernal, 1/_, to be constant i
over each of these sub-blocks This is the _

. d.v..sion which | i
has been most commonly used for surface density layers and

has be,m shown by Koch [Reference 8 ] to be a quite good
i

approximation, genexally accurate to w;thir, a few percent.
Res,_. of numerical tests are also given below.

With the division in'co sub-blocks, the potential due to
( surface ,lensities is

M 4

T-- _ ×i _ AEij/£ij (Sli=l j=l

where t_E.. is the area of the j'th sub-division of the i'th
xj

block and £.. is the distance from the center of this sub-
x3

division to the point where the potential is to be evaluated.

, The acceleration produced by the surface density potential is

obtai-ed by taking its gr_lient,

M 4

_)surface densities = gr: _ ×i _ AEij v(1/_ij ) (6)i=l j-1
SURDEN

The forcing function for integrating the variation equations

to obtain the sensitivity of satellize position to a particular 3

( surface dcnsity bleck is obtaining by differentiating Eqn.(6)
with respect to ×.,

8._,-2U ,.m,

I
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4
a_ka = _ _E . v 1/

a× i j=l ij _ij (7)SURDEN

Note that these forcing functions must be computed as part of ]I
the computation of the surface density acceleration contributlm_, i;

t

GEO1P_i
AVGPOT

8,3.2.2 Surface Height Computation. A number of potcr.tlal

choices are available for locating the surfaces on which the

surface densities are to be spread. Such surfaces inclL,-ie

the spheroid, the geoid, wad the physical surface of th_

earth. The method which has been implemented i_ GEODYN i_

to locate the density layer's on the geoid defi=_ed by the

earth and geopotential model being used in the prograM.

( The model presently being eBploy_d is th_ SAO 1969 Standard

Earth .fReference 9]. !

The geoid choice for locati_,g the surface densities is i,
the

most natural fo_"use in _timating s._rface density values i;

i_ blocks restricted to ocean areas, as might be one of the i¢
: initial uses of the GEOS-C altimeter data. For complete global

_%"_ density layers, and perhaps incorporating measurements of

; surface gravity, some other surface may be more convenie:Lt.

8.3.2.3 Layer Model Quadrature Errors. The

pxocess of spproximating zhe integral over the area

of a surface density block by 4 sub-blocks with

the kernal estimated at the center introduces some

error into the integration of surface density effects

" I on the orbit. Koch [Reference 3] has investigated the
" error introduced by dividing the blocks into only 4 sub-

i 8.3-21
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blocks, and cot, eluded that errors generally less thal, a few

9orcent were introduced.

A test v.'as made in GEODYN to determine the c.ffects of

different divisions of a 20 ° x 20 ° block for a sa'cellite

of S00 nm altitude passin_ airectly over the centcr _f the

block. The results for a subdivision into 4, 9 and 16 blocl.s i

are sho_n in Figure 2. This Figure shows that the 4-block !

subdivision does indeed introduce substantial error, but or,!y
t

when the satellite is directly over *.he center of the block.

It should be noted tkat a 29 ° block size is much _"_rger than

•would normally be considered for the fine detail representation

geopotential. A division into 20 ° x 20 ° blczks on a I
of the

global scale is, of course, a reasonable possibility.

Figure 3 sho'vs the acceleration effect. _ Gue to the 20 °

x 20 ° surface density layer for a co.._plete revolution nf the

' i 503 nm satellite. It will be noted that tl_e effects are qu1_.e

localized, as is indeed one of the advantnges of the surface

density representation. There is a large perturbation ,',en

the satellite is directly ever the block. There is a definite

but rather small perturbatio_ when the satellite comes over

the next revolution about I0 ° away from the edge af the block.

: Oti_erwise_ the effects of the blocks are rather constan_ and

small.

)' GEO IDH
SURDE_
pDp),!

8.3.2.4 Censtraints. For several reasons, it is ne_essa)'y

to apply certain constraints to the surface density adjust-

ments w_:ich are to be allowed. That this is necessary can

be seen by noting that the total surface density potentlal
can be (xpressed in terms of a spherlca_ harmonic series,

.: 0

i£ ,
L

: 8.3"22 q'
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!

i
i
I
i

I

:i ( T = -_-GMZ Pmn (sin _)[C'nm cos mk
11 n=O m=O

!

( + £'nm sin m_] (8) I

f which is of the identical form as the global spherical

harmonic expension gzven by Eqn. (2), except that the

expansion is now infinite. It is most significant, how-

ever, that the surface density expansion could actually
include the equivalent perturbations of the normal

T spherical harmonic set of coefficients, and tha_ both

numerical and interpretation problems can arise if both

spherical harmonic coefficients and surface densitltes

are allowed to adjust simultaneously.

It may also be noted that fir_ degree ccefficients

in (B) would not, in general, be zero. It is thus

necessary to force the distribution of densitites to be

" such that shese coefficients are z .o in order to avoid

_ moving the center of mass of the earth.

The form which =onstraints should take can be

found by e;_prossinp 1/6 in Eqn. (4) in terms of spher-

ical harmonics ard identifying coefficients pm (sin 0)n

cos mt and pm (sin _) sin m_ Schwarz [Reference 15] has
n

_:'dS' ofshown that this leads to expressions for C'nm nm

i

4

' ¢ 8.5-25
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l

p_

{ 'n°l
I s' I GM (n+m) 1 _-#

nm " i-!

i

Xi r m
Pn (sin _) dE (9)

( El [sln m_t

I

l
I = I if m=O and zero otherwise. This set of

!
wher_ %m -
integrals can be obtain_ numerically by breaking the

area hE. up into sub-blocks as 'was done for the acceler-J I

ation calculation.

The constraint equa£ions are obtained by setting

C'nm and S nm equal to zero for every spherical harmonic
I

coefficient to which the surface densities shculd not

contribute. In GEODYN, the default set of z_ro coef-

=- ficients has been set to C' C' S" Additional10' 11' ii'
constraints (as, e,g., no contribution to 8th degree

or lower degree coefficients} can be imposed upon

• nput option.
r

The GEODYN i_plsmentation of constraints is through

the solution for a number o£ densities equal to the total

number of densities adjusted less the number of constrain_

equations. The norn, al matrix _hus contains only inde-

,,_ pendent densities and core req,airements are minimized.

The procedure for eliminating densities is seen by

writing the constraint equations obtained.£rom (_) as

¢
,, 8.3-26 -
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I

M n

H(r){ &--# ×i __ pm (sin _) cos mX dE = 0 (lOa_
i=I AEi ae n

D ss ()"I Xi _ P_ (sin ¢1 sin ml dE = 0 (lOb)
"= Ei

foz" m < n

n < N'

- 1
t

where N' is the maximum degree coefficient unaffected by I
I

the surface density layers.

( The set of Eqns. (I0) can be written formally
8S

1_: GEOIDH

E aji Xi ' j I,
0 M,s

(11)
i-1

wherP the Aji are given by the surface integrals in {I0),
and M' is the number of constrain" equations. The

number M' is related to N' by

x' - N'(N'+Z), (12) ,,,
i

P
i

( ,

8.3-27 L"
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as follows from the number of C' and S' coe_'ficic_,ts

( nm nmfor which n < N' and which are not identically zero. On

tile assumption that H: _ M, (11) can be written

: ( M'E AJi Xi + AJi Xi = 0. (13)
i_l i_M _+I

#
\

Now let the square array with elements Aji and i < j possess
an inverse w'ose elements are denoted b,, A' Then this

ji"
matrix may be used in (13) C_ solv,a for the first M' sur-

face densities,

j_.__¢ _ PDENXk = A'kj _ i ' 'kj Xi k = I M' (14)

' ( i'M'+l

There are thus M-M' independent densities remaining and

Eqn. (14) can be used to relate the dependent densities.

The integration of the variational equations to

W_ obtair the partials of th_ trajectory with respect to :

. the independent surface densities requires that the forc-

ing function for the variational equations include both

the direct and indirect effects nf the inde_endert ad-

justed de-__ities. I'fa-SD is the surfac_ density

acceleratl.on, then the required forcing function is

,_,.

, (

i_ 8. :3-28
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(( - = __-_aSD . _asD 3×k , i = N' + 1,_1 (153

l l " - : -- ._qllRDrN
total

i ( a×k

with a--X_ to be obtained from Eqn. (14).

It should be noted that GEODYNhas the option of

{ adjusting only a portion of the surface densities. This,

in efiect, means that there are additional constraint

equations, but they are quite simple to incorporate. Tlle

constraints given by Eqn. (14) are still requi_ed to h:Id 1
!with no modification whatsoever, Ordering the densitles

such that the unadjusted densities are last in the array,

then Eqn. (IS) is modified only to the extent that i ha.s

the range bi'+1 to M-Mo, with No the number of unadjusted

( densities. If there are more constraint equations than
there are densities to be adjusted, GEODYN will terminate

upon reading the i_ut deck with the appropriate _._.or

message.
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_.4 _O!.AR. LUNAR. AND PLANETARY GRAVITATIONAL PERTURBATIONS

SUNGRV

The perturbations caused by a third body on a

( satellite orbit are treated by defining a function,

Rd, which is the thir_ body disturbing potential.

This potential takes on the following form:

Rd -- --- 1 -- S + --"Z - S (1)
r d r d r d r d

whe_-e

m d is the mass of the disturbing body.

( Yd is the geocentric true of ¢ ,sition

vector to the disturbing bt

S is equal to ,.he cosine of tile

enclosed a ,,Jle between r and r

" _ is the geocentric true of d_.te position

:; vector Of the satollite.

G is the universal gravitational constant,

and

M is the mass of the Earth.

The third body perturbations considered _n GEOP,YN

- Sun ,Q , ,are for the the Moon Venus Hers Jupiter, and

•, _ Saturn. All are_comp','ted in subroutine SUNGRV by

_ : 8,4"I
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where

i

Dd = Ird2 - 2r r d S + r2 I 312 I

These latter quantities, _ and D as well as D2/3 VEVAV

• are passed to subroutine VEVAL for the va,-ia-

tio.Lal equation calculations. V_VAL computes

:- ( the matrix U2C whose i, jth elements is given by
I

, °° tJ Dd 1

,_, This matrix is a fundamental part of the _ariationsl ,r
• :. equations. ",

8.5 SOLAR RADIATION FRE3SiJRE

The force due to s_l_ radiation1 can have a F

significant effe_.t on the .o'rbitsof satellit_s with

a large area to mass ratio. The accelerations due

._, %0 solar radiation pressure are formulated in the

8.5-1

t, ,

"' II I i
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I

(
GEODYN system as F

ms
I

t
1 where

is the eclipse factors such that

v=O when the satellite is in the Esrth':_

shadow

v=l when the _atellite is 111umi_.ated

by the Sun
C

: CR is a factor dependinR on the reflective
character_stics cf the satellite,

As is the cross sectiona! area of the
satellite;

_)s is the mass of the satellite,

J

Ps is the solar radiation pres'sure in the
_,icinity of the Earth, a.d

rs is the (g_ocentric) true of dste un£t vector
I

_ pointin_ to the Sun.

l,

The unit vector r s is dete _ned _s part of the
luni-solar-planetary ephemeris computations p
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I

The eclipse factor, _, is determined as follows: F

Compute

A

D = r • rs (2)

t

{ wLero _ is the true of date position vector of the

satellite. If D is positive, the satellite is always

in sunlight. If D is negative, compute the vector PR.

_R"_ D rs. (_)

This vector is perpendicular to r s. !f its magnitude
( is less than an Earth radius, or rather if

t. the satellite is in shadow.

1

The satellite is assumed to be specularly
I

reflecting with reflectivlty Os; thus

, cR - 1 s (s)

,, When a radiation pressure coefficient is beins

• determined; i.e., CR, the partials for _he g matrix

1975003343-195



in the variational equations computation must be F
.th V_VAL

computed. The 1 element of this column matrix is

given by

A S

fi = v -- P (6)s rs i
m s

These computations for the effects of solar _ .

Jradiation pressure are done in subroutine F.
!

8.6 ATMOSPHERIC DRAG !e '-

I

A satellite moving through an atmosphere ex- DRAG _,

( periences a drag force. The acceleration due to .,
i

this force is given by i

1 A

' _D" "_ cDs °Dvr_r (1)

'.here

CD is the satellite drag coefficientJ

As is the cross-sectional area of the satellite

!_ s.6-,
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#

I_DAC
ms ,s,1.:_emass of the satellite, .......

PD is the density of the atmosphere at the

( satellite position, and i

I
Vr is the velocity vector of the satellite 1

relative to the atmosphere• I
i
I

' Both As and CD are treated as constants in GEODYN. I

Although As depends somewhat on satellite attitude, the [
f

use of a mean cross-sectional area does not lead to L
significant errors for geodetically useful satellites.

The factor CD varies slightly with satellite shape and
atmospheric compesition. However, for any geodetically

useful satellite, it may be treated as a s_tellite

dependent constant,

The relative velocity vector, _r' is computed
assuming that the atmosphere rotates with the Earth.

The true of date components of this vector are then

xr = x + Og Y (Z)

Yr * y - eg x {3)
]

• Q

zr ,, z (4)

as is indicated froa Section 3.4, the subsection on

transformations between Earth-fixed and true of date

, systems The quantities x, 7, and z are of course _he

components of _, the satellite velocity vector in true

of date coordinates,

8.6"2
t i.,:_._._.

' J
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!
\

The drag accelerations are computed in the UK_G

GEODYN system by subroutine DP_G, with the atmospheric D71

density _D being evaluated by subroutine DTI, D650. In D650

addition, subroutD1e DRAG computes the direct partials
J

for the f matrix of the variational equations when the

drag coefficient CD is being determined. These partials
are given by

1 As
f = - -- 0D vr Vr (5) :

2 ms

When drag is present in an orbit determination VEVt

run, the Dr matrix in the variational equations must
also be computed. This matrix, which contains the

partial derivatives of the drag acceleration with

, (_ respect to the Cartesian orbital elements, is con-
: " structed in subroutine. VEVAL. We have

_, . _ _ __r 9-r2 a_ 3Z

_._ where

_ "_t is (x,y,z,x,y,i); i e., x-tspans _ and r.': _ •

' It

i , s.6.
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0 -0 0 VEVAL
g

• )

o 0 0- )

_r 0 0 0 i{7)

0 1 0

( o o 1 i

m

• • • • • Q • • •

-Yr Og x r -Yr 0g Yr -y.. 0g zr Ix r 0g x r x r 0g Yr x r 8g z r

8vr _ _ 1 0 0 0 I

• • o, • • •

Yr Xr Yr Yr Yr Zr

Zr xr Zr Yr Zr Zr

,_ and

_PD
is the matrix containi_g the partial deriva- DENSTY

I @xt tives of the atmospheric density with respect

to xt and is partially computed in subroutine
DENSTY (see section 8.7.4 on atmospheric

density partial derivatives)• Because the density

, is not a function of the satellite velocity,

_JPD
the required pa_'tial_ are----.

"i (

l ,

$.'6-4
o n._,-
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8.7 ATMOSPHERIC DENSITY

,!
In the computation of drag, it is es3ential to Uii

obtain models of the atmospheric density which w_ll yield

realistic perturbations due to drag. The GEODYN program uses

( the 1971 revised Jacchia Model which considers the densities

between 90 km and 2500 km, and the 1965 Jacchia-Nicolet i

Model which gives densities between 120 km and i000 knt with an
4

extraFolation formula for higher altitudes.
I

{
The following discussion will cover primarily the assump-

tions of the models and empirical formulae used in subroutine I

D71 a_d subroutine D650. The procedure for empirically

evaluating the density tables which was developed by WOLF will

also be included in the discussion.

8.7.1 JACCHIA 1971 DENSITY MODEL

(" The 1971 revised Jacchia model, as implemented in sub-

: routine DTI, is based on Jacchia's 1971 report, "Revised Static

Mode!s of the Thermosphere and Exosphere with Empirical

Temperature Profiles" (Reference i). The density computation

from the exospheric temperature as well as from variations

independent of temperature is based ell density data appearing

in that report. This data presented in Table 1 shows the density

distribution at varying altitudes and exospheric temperatures.

i Fo, further detailed development of these empirical

formulae, the interested reader should consult the afore-

mentioned report and Jaccbia's 1970 report (Reference 2).

L

;'2

3 8.7-1 -

"'_' C

I
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8.7.1.1 The Assumptions of the Model
I

\ The Jacchia 1971 model (JYl) is based on empirically DYl

determined formulae with some inherent simplifying assump-

tions. Such an approach is taken primarily because the

( various processes occurring in different regions of the
atmosphere are complex illnature. Moreover, at present, a i

thorough comprehension of such processes is lacking. The

present J7/ model is patterned after the J65a (Jacchia 1965a)

model which was based upou previous assumptions by Nicclet i J

(Reference 3). 1 I

In Nicolet's atmospheric model, temperature is con- iL

sidered as the primary parameter with all other physical [

parameters such as density and pressure derivable from i_

temperature. This approach was adopted by Jacchia in his

, J65a model. However, in the JYl model, there are variations
modeled by Jacchia which are independunt of temperature.

. They are the semi-annual variations, seasonal-latitudinal
variations of the lower thermosphere, and seasonal-

latitudinal variations of helium, all of which involve a

time dependency. Although in JYl Jacchia mentions variations

in hydrogen concentration, he does not attempt any quantita-

tive evaluation of these variations.

Composition

The J71 modsl has assumed that the only constituents

of the atmosphere are nitrogen, oxygen, argon, helium, and

hydrogen. This composition is assumed to exist in a state

of mixing at heights below I00 km and in a diffusion state

at higher altitudes. A further assumption on the composition

of the atmosphere is that any variation in the mean molecular

mass, M, in the mixing region is the result of oxygen dlssocia-

tion only. The variation in M has bee_ described by an empiri-

(" cal profile for heights ranging fro_ 9_ km to I00 km.

: 8.7-2 "
t
i
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It is also believed that gravitational separation D71

| for helium exists at lower height than for the other compo-

nents. To avoid the cumbersome ordeal of modeling a separate

homopause for helium, Jacchia has modified the concentration

at sea-level by a certain amount such that at _ititudes !

( where helium becomes a substantial constituent, the modeled 1

densities will correspond to the observed densities.

Although this will yield a higher helium density below

i00 km, the contribution of helium to tbe overall densit]

will be negligible below this height.I

Hydrogen does not become part of the density model i

until a height of 500 km. At this altitude, hydrogen is

assumed to be in the diffusion equilibium state.
i

Temperature

The temperature above the thermopause is referred to

{ as the exospheric temperature. Although this temperature
is independent of height, it is subject to solar activity,

geomagnetic activity, and diurnal and other variations.

The JTl model assumes constant boundary conditions of 90 km

with a constant thermodynamic temperature of 183 ° K at this i

height. From numerous atmospheric conditions it is suggested

that the atmospheric conditions at 90 km do indeed vary

nominally, and thus, this assumption may be reasonably

acceptable (Reference 4). Profiles of the thermodynamic

temperature show that it increases with height and reaches

an inflection point at 125 km. Above this altitude, this

temperature asymptotically attains the value of the

exospheric temperature. An analytic model of the atmospheric

, densities by Roberts (Reference 4) has been constructed based I

on modifications to Jacchia's 1970 temperature profile between
l

f

8.7-3
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I

' 90 km and 125 km- The J71 model assumes that the basj.c D71

( sbape of the temperature profiles remain unchanged during

atmospheric heating due to geomagnetic storms, in a11

liklihood, the profiles at low altitudes become distorted

to yield higher temperatures 5uring such occurrences, l
, (

i Since the J71 model assumes the atmospher- to be in
' w

static equilibrium, for any sudden changes in solar activity

or in geophysical conditions, which are characteristically

dynamic, the model will generally be unable to properly

represent the variations in bot____htemperature &nd density

due to this invalid assumption. The priority has been

given to the best representation of density. I

!
8.7.1.2 Variations in the Thermosphere and Exosphere

Several types of variations occurring in the different

t regions of the atmosphere are incorporated in the JT1 model.

• These variations are: solar activity variations, diurnal

variations, geomagnetic activity variations, semi-annual

variation, season_l-latitudinal variations of the lower

thermosphere, and seasonal-latitudinal variations of helium.

_. Still another variation which is not quantitatively evaluated

by JTl is the rapid density fluctuations believed to be

associated with gravity waves (Rcf.'rence I). Each of the

. above variations may be modeled empirically from observable

data. However, because a static model is used, the various

predictions will exhibit different degrees of accuracy for

each variation. It is fundamental, however, to note that

unless the characteristic time for which these variations

occur is much longer than that for the processes of diffusion,

conduction, and convection to occur, the predictions will be

poor (Reference 1).

"_ (.

!_ 8.7-4
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Solar Activity

i
The variations in the thermosphere aA_dex_sphcre _s 071

a result of solar activity are of a dual nat,.re. Oae type

of v_riation is a slow variation which prevails over an

II year period as the average solar flux strength varies(
during the solar cycle, The other type is a rapid day-to-day i

variation due to the actively changing solar regions which

appear and disappear as the sun rotates and as sunspots are
formed.

(

To observe such activities, the 10.7 cm solar flux

line is commonl Z used as an index of solar activity. The

National Research Council in Ottawa has made daily measure-

ments on this flux line since 1947. These values appear

monthly in the "Solar Geophysical Data (Prompt Reports)" by

the National Oceanic and Atmospheric Administration and the

Environmental Data Service in Boulder, Colorado (U.S,

Department of Commerce).

A linear relationship exists between the average 10.7

cm flux and the average nighttime minimum global exospheric

temperature (Jacchia 1971) and may be expressed as:

_ T® = 379 ° + 3.Z4 ° F19.7 (°Kelvin) (1)

where

T_ = is the average nighttime minimum global

( exospheric temperature averaged over three
_ solar rotations (81 _ays).

" t
j;

-,, 8.7-5
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_10.7 is the average 10.7 cm flux strength over D71

I three solar rotztions and measured in uni_
- of 10-22 watts m "2 (eye!e/see) -I handwid_..

Equation (].J expresses the relationship with solar Clu;: when
1

the planetary geomagnetic index, Kp is zero; i.e,, for no

geomagnetic disturbances.

The nighttime minimum of the global exospheric tempera-

ture for a given day (Reference I) is

Tc ,, 'r + 1.3o (F10.7 -_'10.7 ) (2)

where

FlO.7 is the daily value of the 10.7 cm solar flux

in the same units as _i0.7 for one day earlier,
since there is a one day lag of the temperature

variation response to the solar £1ux (Roemer

- 1968).

Thus, Equation (2) models a daily temperature variation

about the average nighttime minimum global temperature as

: determined in Equation 1.

Diurnal Variations

ComFutations from dr_,g measuremen_ h_ve indicated

that the atmospheric density alstributien varies from day

to night. The densities are at a peak at 2 P.M. local
t'

solar time (LST) approximately at the latitude of the sub-

solar point, and ,t a minimum at 3 A.M. (LST) approximately .

, 8.7-6

I
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of the s_me latitude in the opposite hemisphere. The D71

diurnal variation of density at any point is ouoject to [

seasonal changes. By empirical relationships, this v_ria- !I
tion maX be described in terms of the temperature Again, i

because a static model is used, the accuracy of this

( temperature is open to questiou.

At a particular hour and geographic location, the

temperature, T£, can be expressed in terms of the actual

! global nighttime minimum temperature, Tc, for the given
day (Reference 1). Thus, we may write

T£ = Tc (i + R sinme) 1 + R cosn (3)
1 + R sinm8

where

R=0. 3
i .i
i m=2.2

, n=3.0

, _ = H + 8 _ p sin(H+7) for (-_<_<_)

_ = -37° (lag of the temperature maximum with the

uppermost point o£ the _un )

p = + 6" (introduces an asymmetry in the temperature
: curve.)

i y = +43 ° (determines the location of the asymmetry

, in the temperature curve.)

8 = _ ABS (_'+6e)

l

8.7-7
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¢'= geographic (geocentric) latitude D"I

6_= declination cf the sun

H = hour angle of the suA

(when the point considered, the sun, and che

earth's axis are all coplanar, H=0. The hour l

|

angle is measured westward 0° tO 560Q.)

The parameter R determines the relative amplitude

of the temperature variation. Jacchia and his associates _

have undertaken investigations of R which reveal indications

of its variation in time and with altitude. Afte; consult-

|Jng 1969-1970 data, Jacchia presently has _bandoned any

at any definitive conclusions aboul the variations Iattempt
!

of R with time or with solar activity (Reference I). In-
stead, he believes this evidence to be the result of inherent !
limitaticns of the static atmospheric representation. Con-

sequently, in the JTl model, a constant value of R=0.5 is

maintained.

Geomagnetic Activit__
f

Precise effects of geomagnetic activity cannot be

_ obtained by present measurements from satellite drag, since

such techniques can only show averaged values of densities.

: It is also realized _haZ the consequences of a geomagnetic

disturbance in view of the atmospheric: temperatures and

densities over the global regions are of a complex nature.

However, when such disturbances occur, there are indications

of increases in temperature and density in the thermosphere

above the aurora belt. By the t_",,ethis atmospheric dis-

turbance reaches the equatorial .. 'o:,s, a period of roughly

_ 7 hours, the effects are dampo_ ¢_.r considerably. (Re;erence 1).

2 '

o,

• f "

3.7-8

1975003343-207



A static model description of tempera_t_Te and density D?I

cannot be viewed accurately since the propa_,ation time of
the geomagnetic storms is rciativuly _)rt. TLerefore. any

' empirical formelae used to compute the eff_:t_ cn the para-

meters yield only a vague picture.

Jacchia et al (1967) have related the exosphe£ic

temperature to the 3-hourly planetary geomagnetic index Kp. The

quantity Kp is used as a measure of a three-hour variation in
the earthts magnetic field. The response of the temperature

change to geomagnetic storms lags the variation in Kp by
about 6.7 hours. In the following equation (Reference 1) the

correction to the exospheric temperaturc due to geomagnetic

activity is

AT® = 28 ° Kp + 0.03 Q exp (Kp) _4)

for heights above 200 km.

Although this Kp in equation (4) is a three-hour
planetary geomagnetic index, in subroutine DENSTY an

averaged K over a 24-hour period is used to minimize the
P

amount of _nput data to GEODYN. T11e loss of accuracy in

•_ using the dally average of Kp is minimized, since the above
equation is for a smoothed e_f_ct of the variations derived

from satellite data.

Below ZOO km, _ensity predictions from equation (4)

prove to be too low. Better results are obtained if the

_ variations were represented as a two-step hybrid formula

,_ in which a correction to the density and to the temperature

- is made. Thus, in J71 the following hybrid formula

,., (Reference I} is given as
@ :,

1975003343-208



f
I
I

.Sexp L
(a) P4 = Al°gl0P = 0.012 K + 1.2 x i0 (Kp) D71 i

" P iI V
l

= + 0.02_ exp (Kp) (S) :(b) AT® 14° Kp

( where Alogl0P is the decimal logarithm correction to the
density p.

The values of a three-hour Kp index are available
( along with the daily solar flux data in the publication

VSolar Geophysical Data" by the N.O.A.A. and E.D.S,,

Boulder, Colorado (Department of Commerce).

In computing the exaspheric temperature, accurate FLUXM
FLUXS

daily values for both the solar and geomagnetic flux must _FLUX
be used. These values are stored in the subroutines FLUXM

and PLUXS of GEODYN, and they are updated as new informa-

tion is received. This information may be updated (sub-

I _. routine ADFLUX) using the appropriat e GEOD_N Input Cards,
The user should be aware of the fact that these tables are

expanded as new information is made available (Reference 5).

At the beginning of each run, a file is generated for J/_NTHG

each satellite arc which contains the required flux data

for the time period indicated. Subroutine JANTHG sets up

the flux tables as well as averaging thc daily values o£

solar flux over three so_ar rotation periods. This enables

: the releasing of vast computer storage required for daily

_i flux values over 14 years. The selected data is stored in

_,_. common block FLXBLK.

_ A midpoint point average is used to compute the six

*'i solar rotation flux vaiuesI_i0.7.
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Semi_Jmupl Variation
i

(' I The semiannual variation at present 1_ least under- D71

stood of the atmospheric variations. In past models, J65,

attempts at empirically relating the temperature to this

i variation seemed appropriate in the range of heights, i

I ( 250 to 650 km, for which data was available. However. with i

tt tn_ availability of new data for a wider range of altitudes,
!

! ]a_g r dlscrepancles in the densities appeared. After close
I _cr_'iny, Jacchia in 1971 (Reference 1) found that the

Y

, _ litude-c_ the semlannual density does nct appear to be

c_rmected with the solar activity. It does, however, show
|

a strong deFend_.._e on height and a variation from year to

year. Drag an_iyses from the Explorer 52 satellite have

reveal_d tha_ a primary minimum in July and a primary maximum i:

in October occur for the average density variation (Reference

I).

Jacchia in J71 expresses the semiannual sriatiov.

,_. as a product function (Reference 1) in which

P2 = Al°gl0_ = fCz)g(t) (6) ,

where £(z) is the relationship between the amplltude, i.e., ,
the dlfference between the primary maximum and minimum, and

[: the height, z, and where g(t) is the average d_ns_y varia-

tion as a function o£ time for the amplitude normalized to i.
t
, The two expressions for f(z) and g(t) which yield the besti

! fit to the data are

_-_

8,7-11 .
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f(z) = (5.876 x 10 "? z 2"3_1 + 0.06328) exp (-2.868 x 10"3z) _71

for = in kilometers;

( gCt) = 0.02835 + 0.381711 + 0.4671 sin C2PT + 4.1370]
sin (4H + 4.259)

(8)
:

( where

T - _,• o.09s44{[o.s._o.ssi,_(2,,_ �6.03s)]1"6s°-o.s/

0 = Ct - 36204)/365.2422

!

t = time expressed in Modified Julian Days

,I (M.J.D. = Julian Day minus 2 400 000.5).

M.J.D. = 56204 is for January I, 1958.

T'he term 0 is the phase of the semiannual varlat..on which

, is the number of days elapsed :_r::e .Tanuary 1, .f :,,_ divided by

the number of days for the tro_;.r_ year.

-_ Seasonal-Latitudinal Variations of the Lower
; Th'ermost)her e

In the lower thermosphere, from about 90 km to 120 km,

q there are variations occurring in temperature and density

depending on the latitud8 and the season. Only the density

variation is considered because any temperature variation

proves to be too tedious to handle., Between the heights

_ from 90 km to 100 km_ there is a rapid increase in the

amplitude of this variation in density with a maxlmum ampli-_

,. rude occurring between 105 and 120 Im (Reference 1). Abova
t
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120 km there is no data on which to base p_edictions of D71

the seasonal-latitudinal variations. This variation
,a
tV appears Lu u_,_=_ _,,_...._..._I_*"_ in_the peint where

negligible fluctuations exist at 150 kin. Therefore, in

DENETY, the seasonal-latitudinal variations are neglected

at heights above 160 km. t/-

(

Jacchia in JTl fits the seasonal variations to an

empirical correction to the decimal logarithm of the

density (Reference i) as follows:
(

I

P3 = AI°gl0P = S -- P sin2 ¢' (9)

,0, il
where

' = geographic latitude

,( S - 0,014 (z-90) exp [-O.O013(z - 90) 2 ]

z = height in kilometers IP = si,, (2_¢ + 1.72)

L-¢ = phase as given in equation (8),
• 9_

t,
A

'" "" '8 i

_- 8 7-13
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oeasonal-Latitudinal Variations of Helium

'_ Helium in the ..... _--^ _- k.... _=,_,r._ tn m4gr_te _ _aLmu_p,_uL _ ._ _ ................. p) l

towards the winter pole. The phenomenon of this seasonal

shift in the helium concentratio_ in the upper atmosphere

is not yet understood. It therefore becomes necessary to

( uerform an empirical fit to drag data from which this

i seasonal variation is derived. The exFression which is

used in J71 (Refe£ence i) £o describe the helium variation

: is
i
t {

Q2 = Ll°gl0 n (He) = 0.65 -- in _ - sin 3 - (i0) "-
c 4 z 1601 4

!

where

n(H. _) = number density of helim (number of particles/era 3) L

( Ae = declination of the sun

: ¢ = geographic latitude i

= obliquity of the ecliptic (e = 23.44 °)
I

The variation of the helium density in subroutine ,:

'- DENSTY is not considered for heights below 500 km. It is

also neglected for latitudes whose absolute value is less

*_" than lS* between the range of heights from 500 km to 800 km. ,

Tho correction to the density due to the seasonal lati-

tudinal variations of helium is then

]Oglo n(He)[ _log n(He) ]
AOD = I0 I0 I0 - ! C gm/cm3 (II)

where
i

C is the molecular mass of ,leliun, divided b)" Avogadro's

" ( Namb e r.

'_ 8.7-14 "
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8,7.1.3 Polynomial Fit of Denslty Tables
.G

(,
Tho data which appears in Table 1 .shows the variation D71

of density with altitude and exospheric temperature which

is reproduced from Jacchia's 1971 report (Keference 1).

( From heights of 90 km to i00 km, the density values wele
obtained by nu:aerically integrating the barometric equa-

tions. The diffusion equation was numerically integrated ,

to obtain values of the density on the _ltitude range,

100 km. <Z_ 2500 km. In both cases, an empirical tempera-
tur8 profile was used for each exospheric temperature.

11,the GEODYN subroutine DENSTY, the atmospheric

density is computed based on the data from Table 1 after

appropriate corrections are applied to the exospheric tempera-

ture. The tabulated densities have been fitted (by NOLF) to

various degree polynomials of the form:

i
: P1 " LOG10PDT = Z h(i-1) _ aij T(J-1) (12)

i J

where ,_

I

PDT is the density in g/cm3

T is the exospheric temperature,

h is the spheroidal height (altitude), and

( atj £8 a set of appropriate coef£1cients for
the den4tty tables,

: 8.7-15 "
*

I
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J
J

third deq_ree flt. The ¢oe_£icientm for the selecte_ polynomta!s

.J fnr the total dens._/ _:e shown in Table 2. In Table 3, coeffi-(,
cients of poiynomia_s for the helium number density ar_ p_c

sented.

The computed densities £r¢_ the fitted polynomials D71
I

( show a reasonable percentage error from the densities given

in Table 1. _or each of the regions and temperature ranges,

the maximum errors are given in Table 4. The largest error

of 12% occurs in the reg_n between 500 - 1G00 km in the

( temperature range of 500" - 800°K. In the region of

100O- 2500 km with temueratures between 800" 1900°K, a

fourth degree fit to the temperature yields a maximum

error of 11.0% in the densi_ies. !

The helium number density fits are also 2iven in

1 Table 4. As one can see, the values of the number density

are quite satisfactorily fittsd by the polynomials. The

maximum error in the whole range of heights and temperatures

_( is only 2.8%.

Overall, these fits could be improved by either using

higner degree polynomials or possibly other functions, or
l

by further sub-dividlng the density table. However, these

maximum e_rors aF-ear to be tolerable since they are con-

sidered to be within the range of accuracy of the model

_. presently used. Above 2500 km, the density was found to

. be negligibly small, and therefore, was set to zero.
(

(

|

: 8.7-17 -

1975003343-215



1975003343-216



I

!
I
t

|
/

|; I | I J | I I | | I I I | | | | ||| ||It| | I 4 I || |l|t_ II | |t| | |

|

e_

,u .._

,-4 4-)

j _ 0 . " .... ": :
; S

I-, o

• t .g

, r= " ..... " " " .... * " " " " "- -------°""
u ";_';7";T';';_'7 ";T";";T '; ";T ,'; ";__';_ ";","T";';. ";";;", 7";'; ,';7";';';7

....., '....._ .;_:-."_..- ;,:' I_ _' • t I I) i II,I IIt _ t el • _l

]975003343-2]7



.- ............................................................................... _ ........................ ++_,......

I(
Ca _D. i') ;I ;j , "-tl. )t- r _ _ -,j it _b

•,, +.+_...,_'_'_"..,., ,_,...,,_..._..:_; ,.._-;_.;_._'.. .. ......:'_-+,.. -;,.'-.,+,.,
I I I | I I | I t I IIi I III _ I I I I t I I t I I I i I I I I I I I



•i.. ........................
................. Z........

o t

1975003343-219



+. ............................................................................................

- !



,1

1



!

TABLE 2.

DENSITY POLYNOHIAL COEFFICIE_TS

I, (For Decimal Logarithm of Density) i
L

TO T1 T2 T5 T4

! 90- 200_|
t

h0 4.22085 0,98393E-2 -.64952E-E 0.14715E-8

h i -0.20134 -.25412E-5 0.15337E-6 -.34675E-10

h 2 0.78592E-3 0.16966E-5 -.!1060E-8 0.25007E-12

h 5 -.12087E-5 -.34360E-8 0.22457E-11 -.51069E-15

200-500K_! for 500°--SOO°K

h 0 -.12838E+2 0.40709E-2 0.97074E-5 -.10643E-7

h I 0.82282E-1 -.51215E-5 0.26545E-6 .55193E-10

h 2 -.68951E-3 0.24402L-5 -.27058E-8 0.99005E-12

:J {: h 3 0.11263E-5 -.41807E-8 0.50617E-11 -.20484E-14

200-500_! for 800°-1900°K

h0 -8.4595 -.15000E-5 -,62640E-6 0.24612E-9

_- h I .28395E-1 0 17760E-6 0 61598E-8 -.25362E-11

h2 0.55998E-5 0.77461E-7 -.59492E-10 0.14921E-15
• h3 0.59434E-8 -.76455E-I0 o,sg353E-13 -.14595E-16



TABLE 2

I]ENSlTY POLYNONIAL COEFFICIENTS

(,- TO T1 T2 T3 T4 q
I

500-1000104 for _O0°-I900eK i
J

h0 O, SO081E+Z -. IZ600 O. 83896E*4 -.!8Z76E-7 I
I

h1 -.30572 0.61706£-3 -.41443E-6 0.91096E-10 i
, (

h2 O. 41767E-3 -. 8874SE-6 O. 61040E-9 -.13654E-12

h3 -.17955E-6 0.39386E-9 -.Z'I639E-1;Z 0.62649E-16
,:-..

.. q..
• "-'.-.';-. ""

zooo-2soot.fo_-.soo°-eoo'i':;:.%

ho _'_f_S3ZF_ �ä�gi__(' o.,xgez_-s -.zz66zz-6

' h I _352E-I _ _I_-3 -.4SZI4E-6 0,'709SP---9

( hz ,:;i_Z4z_--"")_i _'_'' o.,04zF.-9 -.990ss_--_
h 3 - sgE-IO 0 -11 -.14085E-15 0.10443£-16

•:_,:... ,.,:_._..._
,'::.:; ".

• e •

looo-zso._ for ._,O0"-Zg00-"X_ii-

h I ' , _,, , , •-.t_j_iS 0.___ Z_, -.46zs_e-6 0 ZOZ?raiz-9 - SOSSSe-Zz

: h 2 0.8:._._3E-4 -.Z?I:"_-6 0,,._745E-9 -,134ZSg-lZ 0.ZlZ70E-16

I h3 .1._6E-7 0,496Z1|-I0 -,:]_$29-?_B-,ZZ O.Z$4_Zg-16 -.41304E,20

• , ,"'.: . . . : .

t

_,,,:,, " ,, :_', , ,": _,, _e,:_.:... '. • .... , , ", " : . • ...,.... ,.,., .... _ , " .. ;.. _ .,.. ,

_97500334:3-223



TABLE 3

t
L_ tlELIUM DENSITY POLYNO_IAL COEFFICIF'NTS i

(DECIIqAL LOG OF I[ELIUt4 NU_iB/SRDENSITY) t

, TO T1 T2 T3 T4
l

i ( 500-1000K_! for SO0°-800°K

h 0 9,3712 -.52634E-2 0.52983E-5 -.20471E-8
i

h I .i3141E-1 0.31218E-4 -.32598E-7 0,12573E-10

( h2 0.26071E-5 -.75730E-8 o.g3058E-11 o.40669E-14

h 3 -.52156F-9 0.19056E-11 -.26578E-i4 0.1253SE-17

S00-1000K_! for 800°01900°K

h 0 8.3914 -,16433E-2 6,78032E-6 -.14323E-9

h 1 -.69049E-2 0,84138E'S ".14S77E-8 0.85627E-1Z

h 2 0.10SIOE-S ,1_663E-8 0.71134E-12 -.14180E'15

" h3 -.12222E-9 0.14745E-12 -,97658E-16 0.214SSE-19 I
I



9 TABLE 4
PERCE_rAGE ERROROF POLY:'O:.ilAL FITS

TI4E DENSIT1 rs

' Hetgh_ Ten_erature MaxLmum Percent Error
( Range gange Total Density Ilelium Density

, (_} CTM)
[

90-200 500-1900 11.0_

[ ( 200-500 500-800 11 6t "
[

!

i 200. _00 800-1900 5.13t -
i

i SO0-1000 S00-6011 1Z. Ot O. 44t!

.4

I;00-1000 600-'1900 8,85t "" 2.0_

v,

'" 1000-2500 SO0-800 4. I t 1.5t

100- 2500 800-1900 11. Ot 1. 251;

¢

.,,<:

,¢. '_
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i 8.7.1.4 The I}ensit)'Co,r,putation

I l_'henall of the terms contributin£ tc the atmosphc_'e DTI
density are combined [

• !

| b

where

' PD = the atmospheric dens.ity in Kg/m 3

¢

' P1 is given by equation (12),
} "'

P2 is given by equation (6},

P3 is -given by equation (9),

'
:" P4 is given by equation (Sa),

Q1 is given by equation (13), ,

_ Q2 isgiven by equation [10), and_"
:3'

d"

W_ C is the molecula_ mass of Helium divided by
,_ Avogadro's Number - 0.6646(I0 "23)

F '

_ _ _ _ L • - , ,_ ",: " '.
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- • ,, °

8 T 1 5 l),:nsity Partial Derivative:; D71" ' " V12VAL

O
In nddition to the density, GEODYN also requires the

partial derivatives of the density u'ith respect to tile

: Cartesian position coordinates. These partial_ are used

in compu_iug the drag contributions to the variational

I equations.

! Tile spatia3 part i 1 derivatives of the atmospheric

density are

I
I

aOD _O D _0 apD i_X aOD ah .- _ + _ -- + Cl) {

where

h - sphero'd height of the satellite
'

0 - sub-satellite latitude

, X - sub-satellite longitude

•_ _ - true of date position vector of the satellite

Variations in atmospheric density are primarily

: due to changes in ],eight. Therefore, only height varia-

" tions arc computed by C£ODYN and
i:

_. _PD
--- = 0

i apn
a), " @

t

Z ,b ... ''
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f

and conseclu,'nt ly JTl

( _o D _p D _h
CZ) h

_ _h _T

09

{

J where
,)

-!|
J ah
!, o

I -- is presented along wlth the spheroid height

I _ computation in Section 5.I.

I

[' The density is given (Section 8.7.47 by
P

t

, = + 10 % C!OQ2 - 1) C C4)

where

' pD - density in l,g/m 3

%

• n Ill

", Pz- _ h(i-1) _ aij T(J"I) (S)
_. i=l j=l

,b

' P2 = g(t)[S'876(!O'7) h2"3°1¢ 0.06528] exp [-2. s68(lO'3)h] (_

_ P3 =0. 014 Ch- 90) P !L sin2¢" oxp [-0.0013(h-00121 (7)
_: I¢'I
_ ,
,a

a. P4 = 0.012 Kp ¢ i.2(lO "5) oxp (Kp) • (8) .
lb

¢ ,
8.7-30
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n m D71

Q1 = E _,(i-l) E bij T(J']) = IOgl0 n(lle) (91
i--1 j--1

(

Q2 = AI°P-IO n(l!e) (I0)
I

P

'i I C = the molecular mass of llelium divided by Avogadro's

Number.
I

h = height in Kin.

b

aij - polynomial coefficients used to fit.the density
' table. ..

!
i -

bij - polynomial coefficients used to fit the Helium
number density table.

All other terms are defined in Section 8.7.1_4 and need no/

further clarification at this point since they are constants

in the partial derivative equations.

Defining two basic derivative.formulae,
I

d eu(x)auCx)
eu(x) = (i11

dx dx
"i

_ 8.7-31
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D71

d oUrX_j d u(x)£nlOm 1 - e
dx dx

,!
u(x)_nlO du(x)= _ulO c

t ('.x

I duCx)
= loU(X) £nlO C12)

L t dx

And it follows that
b

! o

PI+P2+P3+P4 PI+P2+P3+P4 _ .
I0 = I0 £nlO _ CPI+P2+P3+P 4)

_h _h
C13)

10 = 10 £nlO _ (14)

; f Bh @h
T

Differentiating the components of (13) and (14)

"it t= (i-l) h (i'2} aij T Cj'l) (1S)
_h i=2 j -I

"-$/

' _P2 {
_ ----= gCt) 5.876(I0"71 (2.331) h1"331 exp [-2.868(10"3)h1
: _h

-_ * [5 876(10 "7) h 2"331 �0,06328](-2 868) (10 "3}

exp [-2.865(I0 "3) h] (IC.)

8.7-32

p,q

1975003343-230



t J..*sdh

_)P3 ¢"
- 0.014 P _ sin2¢" cxp [-0.0013(h-90) 2]

l+'l

O {I + 2(h'90) 2 (-0"0013) I (17)

@P4 l[,-,; .(181)
: ;)h

BQ1 n t-- E T (j-l) (19)= (i-l) h (i-2) aij
_h i=Z j =i

$

}

The resulting partials are in the units of (Kg/m3)/Km

and must therefore be multipiied by 10 .

(
--- VEVAL

gOD B PI+P2+Ps+P4
., , - 10 + (10q2 - 1) C- 10QI (20)

{

, The units of (20) are thcn

: (Kg/m4)

v'

, g

'" _ _' 8 7-33
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August l], 1tj73

} _ 8.7.2 J_CCIIIA 196.,_.Dcnsit.>: .,.ode1 i
D6SO.

| The J_cchia ].965 Densit)' Mode], as implemented in sub-
routine D6SO. is based or Jacchia's J965 report, "Static

I Diffusion l,:odelsof the Upper Atmosphere with Empirical Tempera-ture Profiles" (Reference 12). The formulae for computing the

[ ! exospheric temperature have in some cases been modified according
to Jacchia's later papers. The density computation from the

exospheric temperature is based on density data provided in that

, report, reproduced herein as Table 5, which presents density

, distribution versus altitude and exospheric temperature.

The reader who is interested in the development of these

empirical formulas and the rezsoning behind them should consult the

above mentioned report and Jacobin's later papers. For the con-

venience of this interested reader, the references 13 for this sec-

( tion from a reasonable comprehensive bibliography.
k

J
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#* D6SO
,,lo(,el8.7.2.1 The Assuml)tions of the ' '

The ]acchia-Ni.colct model is based on certain simplifying

assumptions and on cmpiric.all}" determined formvlac. This is pri-

murily due to the complexity and varied nature of the processes

occurring in different regions of the atmosphere (.nd the general lack

of anything rescnb]ing n complete understanding of the fundamental

mechanisms involved. The actual derivation of the model is based

upon assumptions first proposed by Nicolct (see Reference 14); Jacob!

selected the Nicolet approach to generate a model suitable for

satellite dynamics.

The model of the atmosphere proposed by Nicolet considers that

the fundamental parameter i3 the temperature. Other physical paramet

such as the pressure and density were derived from the temperature.

Thus the first concern is the temperature variation in the atmosphere

( This temperature variation is controlled by the following

conditions :

I. Above the theTmopause, the temperature of the atmosphere

does not vary w_th altitude. The thermopause varies wit!:

solar a,ctivity (and the tlme of day), ranging

betwee, about 220 km to 400 km. The

temi:crature above the thermopaus¢ is called D650

the exosph(.ric t(:mperature cu_d is directly

responsive to sol.at effects.

.

•
B.7-35

w ' '! , . %

, '¢ , !-
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( D650
2. At an altitude of 120 I;);_, the tcml)e_'ature,

density, and atmospheric conditioi_s are inde-

• pendent of time. This is an obvious simpli-

, fication, floe:eve.,the variations of these

parameters above 120 km arc considerably

I_ larger than those occurrin_ at 120 kin, and, !
consider_n,_ the other assumptic,ns, this

8ssumption represents i re_sonabl): good

. approximation. . I

{

3. The atmosphere is assu:_ed to be-in s_atic I'
| equilibrium. 1%'iththe largo day-to-night

_emperature variations, having a perxod of the

same order of magnitude as the conduction ti_e

in the lower thermosphere, anJ with the oc-

casional occurrence of sex,e_'e _._agncticstorr.:s

which give _ise to fairly _-apid and large

temperature variations ti,e validity of this

assumption is open to question. The best

argumen_ for this assur.:pt...on is its relative t

'_'_ simplicity. It should be auticipated, ho:.:ever,
that _n times of rapid changc of the sol_r or

_' geophysical parm._cters the predictions of this ""

model _v:11be in error due to the inva].._dity

': of th)s ussumption.

'_ Tho atmosphere is considered to be i,,diffusive

'_ cquil.ibritu:_above 120 kin;_hat is, the d_uSity distribu-

tions of each atmospheric constituent wii'.l_hoight are .,
w

L
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L
°

i (. governed i.-,Icpcmlcntlyby gravity and "ce_.,,)e.,',,'ature. The D650

governing equations arc the hydrostatic ]m.,;,relatSng

,4 .the prcssure variation _,,ithheicJhtto _,:hcacceleration

of gravity, and the pcrfect gas law, which relates the

pressure, density and tcmpcraturc.

Q

friththis approach, Nicolct showed that above

250 km the observed density profiles wcre reproduced

[i satisfactorily if the (exospheric) temperature was as-sumed to bca different constant.. He also indicated

_ that the prob]em of representing the density bet_'een ' I

!, 120 km and the thermopause _'as largely a problem ..of de- !
ducing the vertical distribution of temperature.

The contribution of Jacchia to the so-called

Jacchia-Nicolet model is largely the development of
, (i, empiri._l formvlas to co_%,uLeboth ti,e_Av_,,,_z"-".c
J
; tcmperature and vertical temperature di._*, t,utionas a ' '

, function of exosphcric temperature, l"he._e formulae arc
%

. based on satellite obscrvations coupled with physical

reasoning. In addition, Jacchia has updatcd the boundary

conditions of Nicolet. Thus in effect Jacchia has pro-

vided all but the basic assumptions behind the model,

The fundamental parameter of the model is therefore ,

l the cxospher_ c This together
temperature. tempc_-a.turci

J

•_ with the boundary conditions_ Ir.apliesa particular vertical

tesperature nrofile. The.ce three items - exospheric

'_ , temperatur , boundary conditions, a'tdtdmperncure )rofilc -

":_. define the density at roD'altitude over 120 km through the

i ._.f.us ; ce ectuilibriumequation, .

' i.' , ,% , ' " ' '
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Figure S, which was takcn fret,, l'.cfc, rencc 14, shows u6SO

a COnl|),'ll'.iSOll of density :.)m uxo:,],,,,...;ic ,,...,.v.= .......

rived trro:;! obs'crvationa of Explorer I satellite w_th

solar vnd ,':eomagnetic parmv, eters. Note the correspondence

between the exospl_cric temperature and the density.

8.7.2.2 The l_xosp.heric Tempervture Computations

To calculate the fundamentsl pmrameter_ the exo-

spheric temperature, Jacchia considcred four factors _..,hich
could cause variations:

• °

1. Solar activity variation .
O'b

@B

Z. Semi- annual variation "
f

( ._. Diurnal variation _- RODU_ OF
".ORIGIIS_I,PAGE ISPOOB

4. Geomagnctic activity variation

1975003343-237



( monthly in the "Solar-C, eoi)hysJca] .Data lIcl+ort.s" of tile ,,_,,"_-_"

Enx.irom_cntal Science Scrviccs AdmiJ_istration Jn Boulder,

Colorado (U.S. Dcpartr._ent of Conmerce). "



i
i

I

i

3"he variation _..'ithinone solar rot_,tion _s ex D650 ' I

pressed r,,..
k_,,.rcrcuce 12) by

, ! 1

t
I

To'= r-o+ 1"_° Cr_o.7" _lo.71 (21 I
• !

P

I iwhere i

J
!

FI0,7 is the mean Gf the 10,7 cm solar flux i
I

£or a given .day in the salne units as {

_I0.7" and - '
j •

I

" TO is the global nightt'_me _inimum for the

- same day.
° o

This formula accounts [approximately) for the. day to day

C temperature variation supcrimposed on the average global

nighttime mini_,'_um tcmpcrature determincd by the previous

formula.
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' i

', ( (Kefercncc iS) fmm(l that the observed dc'n.',_t)'varJ_tio:is D650 ]
could b:" _.i_]ai::.ed b)' trm!,eralure var._ations _n lhc thcr,av- i '

I pause, and are roughly proportio:_al to the 10.7 cm flux II

line, It ],'_sbeen noted that the height of the iono- I

.t spheric F 2 ].ayer shm-:s a semi-annual variation almost I
J exact]), in phr:SC wil-b the observed density variations, i

i

t Another su_cstxo.! by F.S. Johnson (Reference 16) concern- i
ing the cause of the semi-annual variation, involves l

convective transfer at ionospheric levels from the I

i summer pole to the northern pole. This, as yet, does t

I not seem to account correc.tl)" for all the details i
ofthis _,ariation. The semi-annual variation is not "

i ' Ii t as stable a feature as the diurnal variation. Ja'cchia "
-.

• i_ (Refcrcncc 12)accounted for this feature in 1965 but has,

with the recent information of drag data from six satel-

1 "-" lites, updated.his empirical formula (Reference 6) as

_ fo_ lows :

T0 = T_ + 2.41 + IT.10.7[0.349+0.296 sinC2_rx+226.5°)]

• . C3)

sin (4_ 6°)

. where
f

•i sinI2_CdlY)�342:
• -dlY+o.114s. - ...... "

i ---.

I_._

.- . ' ."," ". ', ": ",_-'%-'.'._-_,°'_,'." ',_.:"" - ' _,_::'.1,. _:v_?, " t .,:_" .... ', '" .'_., "_':" " .:q '.',_,_': ::,,_,,_., '_:"

. ,".',..,,',._-,:%,_:L':'-.o_:,_!_.-_.__ . _',:.'._z%:_,'""¢._::_''"_'" .....:"":"( '_:'_ "' ' _i" "'_*

" "_ " __'_'_ _ .-',',_,_,'J._._A.._,_._,_*,:_,- _ _[_ IV_ _, _ -.'_,_'<'_,:.";,_"__, - •" " " _ ,_" .._:-'_.-" (:_'._.j.,_,."._,_-.,_

_ , . , . . ' ,. ;; _,' , , ,
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L

d = day of the )'car counted fro:._January i. D6LO

. !
Y = the tropical year in day_.

= mi_,L.a,.,temperature for
T0 global nighItir'e "'_'-'

that day corr_.ctcd for semi-annual varia-

tion.

Jacchia, Slm:cy, and Car.:pbell (Refcrcncc 17) have more

clearly defined this x:ariation. As expected, the re-

lationsh._p betreen the temperature and tl_e 10.7 cm flux

linc cannot be consider.cd accurate. It i¢as concluded t

! that the observed dcnsity variations are thc refult of i
I

temperature variations at essentially the same level as#-

' in the case of the sol_r effect. However, a variable +

' altitude shows that the seai-.annual variati'on affects :,

I the _-;holeatmospbe're in the _an: raanncr, ..... _......

=i b ¢ latitudei- of •
+
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I Diurnal Variation D650
• t

t

: The J._ost regular of the v:lrJations is tl)e'diurnr,]"

variatio}'. Ol,e can picture the denvity distribution as

' an atuos_,,c-ric 1,ulge _:,i.th its p¢.ak 30" east of the sub-
I
I

solar point, degrading z.lea_'l)" s)'_a_netricall)' on all s_Ces,

but a little steeper on the morning side. "the density

peeks at 2 P.:.i. local solar tir._e and the lainirurl occurs

at 4 A.bl. The ratio of the r.a..ir.:m._", temperature

at the center of the bulge to the mini_aum in the opposite

he3r,isph_,::'c remains constant throughout the solar c),clc;

the ratio is 1.28 in Jac.chia's r.:odel atndsphcre. The
I

cause of the heating is in dispute. So;,:e investigators

believe it is due entirely to extreme ultra-violet (EUV)

radiations, others, to ion dri t+• _; and still others, to a •
, -

.. t _. combiaaticn of the t_.:o.

The temperature, T, at a given hour and geographic

location, can be computed in tenas of the correct global

, . nighttii::e ;.:In:.-.:u:.a te:nperature for that day, TO, using
• _" _r,

,_: the folle i_._ forr.mla _,'hieh approxin;ates a mather.mtical
descriptio:: of the atmospheric bulge (Reference 1.23:

; T = TO(I+R sinm0) 1 + cosn _ (5)
_ I+R sinm0 2 -

OF
ORIGINALPAGEIS POOR " .

t

8.7-44 ,. :i,'
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I , DGSD iwhere

• l
R_ 0.26

n : m = 2,S

Q

= II+ B +p sin (1_._')(-_<_<_)

B = -4S°

" ' Ip = 12°
• o,

? = 45° , •

: A_s[C_:_)/2] ..

b
= ._.c,C,Lk,_,,,.,Oji _J

_'--.geographic latitude

REPRODUCIBILITY.OF _E .

6 = declination of the sun ORIGINAL PAGE IS POOR

u

H = hour nngle of the sun

._ (I!= 0 occurs _,'hcnthc point considcred,

.' ". the sun, and the c_rth's axis are r,oplanar.

:_ II is _c_surcd'westward 0° to" 360")
t

&

._. Bo.sed ou satellite infornation, ,Incchia (Rcfcrcnce 18) assumes

_ s ,n._xi,:t_mch,y temp('rntvro28% higl_crzhan _he corrcs-

_' pondi':"ni_htt:" The vari_ttionis represcn£cd

l,yR in tli(iabove cqt_,atJon.However, further iux'esti-

. ' @. i,_,_}(:_b)',]acci_i_, Sle"cv. tnd Ca_,:pl_¢1](i'..cfcro::ce17), re- ,...
,'c_It'dtl,:.',the dit_i:m!-ya_"intion f:ictor (P,)is some_ch,_ ' "

, - . . LI

v_rJ:_i,]c.A value o.f32% is co1;Si_Jore_1v,_lidfor datcs

i975003343-243
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c, - D6SO
C prior to Fel_r.uary ]..6._, and fro:n Au£,ust 1963, om:ard,

t 26% variatiop, is considered va]_d. Bet_:'ccn these dates, |
tR is made to decrease iiucar]y. " -

]I Although in these equations the exponents ra and

t n, _..'hich deternine the .mode of the longitudinal and
lititudinal te_.2perature variations respectively, are ,.-:

t
kept distinct, it was found in practice that m -- n. t|

These values are not really knm:'n accurately and could

be as sr.,,all as 2.0, _'
:jI

. The _onstant B determines the lag" of the tempera-
|

"_ uith rcspect to theuppermost point of the sun;j ture _.taxa,..um

,| p introduces an asymmetry in the temperature curve v:hose

location is determined by y,
• o

:ic
I" "Geo_____2aznetie Act ivity

: To the temperature, T, _.,,hich is calculated above,
:, a correction v.ust be added _:'hich accounts for at_:ms-

pheric hea_in¢_rclatcd to chanooesin the Earth's mag-'b m

. :: nctic field. The heating probably occurs in the E layer

! of-the ionosphere, but the mechanism inx,o!ved is not

well understood. The temperature correction, AT, is

i g'ivenby Jacchia, Slou'ey,.and Campbell '(Rofercnce 17):

av = I 0° ap + I00° [l-axpf-O.OSa_)']i * _":'_:_=::_)/;_i'__

, %'° _ , .

• =

"_ L ap iS tlie'th._;ce-hourly .planetar¥,.geopa_;neli_...kndax:".... . .:.... . : .. :.:...
•_ '', .',! ".. • _ - ',. . .,-,.
; .::.... . .... .,. .... .,' , , # , ,

..... :, .: . , .._k'. ....... .,, _'_>:_':i_ .............. .... : .... .,_.:... :.:] :..:..'-'_:.._ _. . . -.,, ...

_._,_ ":. "' ;:"....',*__i;,'_"_.h__:'_"_':;";":_:::_,_',:',' ' ' " .' ":;;'...._''_"¢'._',._,-.....;.,_'_'_z._,_-.,.,..)":_.._. ..g:..,.i:._,,...":'::".v._''...."" '_:':,.'"_'....,_..-.,,":_"":' _'" ' , *',,_,'-::_:,_';,• , ",_..,. " • _. " I',:.• _ ,,',_kl_,.'."._,. v.. t, _ ;_,,i'._" "." ,'".1-':/' "'" ,'

1975003343-244



I

August 11, !973 I

_ The qua_tJt)" ap is a measure of the variation ill D6SO
the earth's r'-_-,,o'._c field in a given three hour period.

b

-: During magnetic storr;s the t, mperature changesI

. _ generally lag behind the variations in ap by about five
} hours, due to conduction. 1"bcreis some cvidcnce of

I | la_ger telaperaturec]:a_:gcsfor given values of ap as
i one pro.cecdsto higher geom3onctic_,latitudcs. However,
.[
i the maount of dora i_dicating this is ncgligible at

I this time. Q

I i
o

! The D6SO subroutine allows for the magnetic

I } heating effects with one modification. To minimize the
F

I I input ,:.':_tafor C_ODYN, the 3-hourly index (ap) is

I replaccd'by a 24-I_url)'or daily indcx (Ap)
i _1 Genera!ly, magnetic storr.:slast for 2 or 5.claysso

!iC
,, that ::he te:-Tera_.u,,:- cai_t:!ut_,', ue_n- Ap _.:ilI reflect

a daily change, but not the 3-houri)-f!uctations which

occur with ap.

. The quantity Ap and the solar flux data is

._ _ available from E.S.S.A._ Boulder, Colorado. The publi-

cation is, "Solar Geoph)'sicalData, Part I."

Accurate daily values for both the solar and FLI_XS
FLUXA;"

geoaagnetic flux are requ£icd for the ,cor,_putation of

the exosphcric temperature. In GEODYX, these,values

are inputvia a BLOCK DA'rAroutilze,I_:i?T.This infer- ..

marion may :_Cul_dat,_d(of subroutine ADFI,SX)using the, , •, .
appropriate GEODYNI:_put Cards. Tho ,user Should. be. aware-.:. ,"

of the fatt _hat these tables are.CXl;:mded,aSIn_,wh(fot_ ',""
n,_t]o_t becozes available.

i *

II
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!

At the bcgin:l_n(., of e::ch run, a file is generated 3AXTI!::

(_ for each sote].lite a'_'c ;.:hich co;L_'ain.g the rcquJ:'ed flux

data for the ti;ae sp_n indicai:ed. Subroutine. JARTIIG

is the rot'time uhich sets t_l) the flux tables, including

a:'er,".gin2, the daily val,.tcs of solar flux over t_:,o solar

rotation periods. The reason for this is to free the :

largo a];_ount o£ co!::putcr stora_c requ]l:cd for daily

fl_x v81ucs over six years. As a matter of reference,I
the associated CO.,_,_O._BLOCK is PRIORI.

D
• f

8.7.2.3 TIP Density Computation

The density co_;_putation in GEODYN subroutine D650

D650 is based on the density distribution versus

altitude and exospheric tcr:perature presented $n Table 12,

C _,h_ch _ rcpred::ce: _. frc:= Jacc]:]a's.19_5 paper _...... ".'e:'.ccThis data was obtained by nu=:erical integration of

the diffusion equation using an empirical te3aperature

profile _or each indicated exospheric tcm]_erature.

This vast quantity of information _'as fitted

(by l':OLl:) to various degree polynomials of the form:

i

LOGIoP, ". Z.., -:tcJ-1}],ci-1). (7)
t j , •

, i, ,

, lore. . ""_ " , '_:"%_', ' '"":':': '"• , f

.... ', ," ..I , • , "' _ _.,., .. , ,% , ,. ." : _T_

mt• , , .... : " ".":- '_ h._"_ ._'_..i:_:_': _,:_,_:_,_,_"" •"':_:;:
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T is the cxor, phcric tc.'._l)cralul'e, D659 I

i
J C h i_ the spheroid hei?,ht o£ the satc].lite " !}

t (altitude), and

i a is a set of.appropriate coefficients
• ". )r

I Unfortunate].)', a single pol)'nonial of the type ;

.p_esented is not completely descriptive. An examine- (,

tion of Tab]e 1 reveals, ',:hat density is nea_'ly in-

J dependent of ter..peraturc for low altitudes, but "

-! becomes " " "" .Inc_eas_ns]y dependent for heizht's above

160 kin. Accordingly, _ppropr_ate" p.ol),nomials_el_e

i¢ chosen to'account for the varying dependenc)" of the ":

') variables. This necessitated the separation of.

Table: 1 h/to thrce parts.

i "
(" ' The !ov:er region (120 kr._ - 160 tin) is expressed

as a second degree po]ynonial _.,'hichis _clely a functiont

: . s duo to the fact that d_nsity is; of altitude This i
i
t not appreciabl)" dependent on teL_pera_ure, 2_, this region.

The rcma[ning :regions of 160 k_:.to 4Z0 I,'..._and 42_ ku to

_ I000 km arc described by pelyno_ials• of fourth det_ree :

-,,_ The coefficients for the selected polynomials are

presented £n Table 6. These coefficients l_ave bcQn

modified to cor,_pUte the na_uTal log r_thc.r than tha

dens vmmnBI_IBILITY ':
decimal log c i the it)'.m Or _ .

c'_"-'" . ..... ,"_, , -',,_' _,,_:_' ,','' , , , ':', _J..'_,_ ',_',_,_". .... " " • "., .; • ,_ . ." 'i " ,%_."?_ | .... ". ". .; r.'_ ' . ,
,,_,v,,.4.:,,_,,',,_, _ ,, _,.,-., , . .:'_. , _ _-,t* '<,_ ",, ." ", % "_'_,_,_"\'-_,'e," _-*)_ ; • "". _ , ' , :, • ' • ,7 "' ' ' ._"' ". ;'- "_'l'&'l_ _'_ ¢",_"'"_' " '-"¢
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q

$.7.2.4 Density Part.ial Derivatives D65.3

C VIIVA}.

In ,-.ddLtion to the dc:nsJty, GEODYN a]_o re6iuircs

tile partial derivatives of the density with respect

to tile Cartesian position coordinatcs. These partials

are used in COml,uting t,:e drag contribution to tho

variational equations.

As demonstrated above, the density is given by
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TABLE 6

f ,_, .... _,..liAI. COEFFIC]].>,'ISj l)l!',:s]'rY -n, .,..,.,-.,. • ,',

(FOR _A'lO!,:d, I,OG OF ]L;._S]'[Y)
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8 8 TIDAL POTENTIAL TIDAl, "
I

i

_ -7-- The gravitational potential originating from solid i

earth tides caused by a single disturbing body is given .
{Reference ll).

5

k2 G'Md Re [ ^ • ^ I]- 3-- -_ 3 (Rd r) Z
UD(r) 2 Rd r

k2 G_le _id\/n \3 3

and the resultant acceleration on a satellite due to this

potential is

k GM_ 5 { . }
:- VUD Z Re _ ^ ;)Rd ,

Cz)

where

e

k Z is the tidal coefficient of degree 2 called the
""Love Number."

[
\

G is the universal gra_itatlonal constanZ

Me is the mass of the earth. .:

_- is the mGan earth radius :: ,"', Re • . ..,

..... •:., , ,s".,,"',:_,/,._....:_,_,i_,,'"::'_:_.;.:_,.:',-*:.-,_,..,., :_",, . _!" _'"_
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SECTION 9.0

INTEGRATION AND INTERPOI,ATION

: GEODYN uses Cowell's gum method for direct Opt!'_,_
|

nmaerica! integration of both the equations of motion _:_
and the variational equations to obtain the position

and ve!ocity and the attendant variational part]als

at each observation tilne. The integrator output is

not required at actual observation time:;; it is

oatput on an even integration step. 6EODYN uses an

interpolation tecl,niaue to obtain values at the
'l
, actual observation time. The specific numerical.

i methods used in GEODYN for this integration andi
l

interpolation are presented below. These procedures

are controlled by subroutine ORBIT.

_ (- 9.1 INTEGRATION
I

Let us first consider the integration of the COI_'ELL

equations of motion. These eqvations are three

second order differential equations in position, and

may be formulated as six first order equations in
,_-_,

: , position and velocity if a first _,'der integration

scheme were used for their solution. For reasons of
increased accuracy and stability, the position vector

" _ is obtained by a second order integration of the

accelerations _, whereas the velocity vector _ is

:: obtained as the solution of a first order s),stem.
#

These are both multi-step methods requiring at least
,

¢, _. one derivative evaluation on each step.

9.1-I '

-""7,. "'" , , ..... .' --- ...............................=........ --7-/

.... " _ = _"....... _ ..... "........ _'=**'_ =_ '*""_" I
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The integration scheme is cquivai,-nt to the inter- COb'El.I,

polator with arguments 1 and 0 for predictor and corrcctor

respectivcly. ,i
_J

To integrate the position uumponent3, _.._prod

q

r-n = (S +E Yp rn-p)h22 (_-) .i
p=0

P •

is applied, followed by a Cowell corrector:

l

o
!

q

E * r-n-p+l)h2%+1 = CS2 + yp (2)
p=O

The ve!ocity components are integrated using the

predictor;•

- q+l "

' r--n+l= ($1 + E Bp _n_p)h (3)
p=O

i followed by an Adams-Noulton corrector;

= q+l
- = +rn+I (SI 4.# Sp rn.p+l)h (4)

p=O

In these integration formulae, h is'the integration step
r • t

size, q hag the value ORDER-2 and _'p, Vp, 8p and gp are co-
efficients whose values, are obtained'from subroutine COWCOF.*

¢.

• : *Published numbers are in Reference 1. " .

. , .................._. ._. , ,
-=-., ..___'-.__. .,. _ ._--_., _
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Under certain conditions, a reduced form of this

solution is used. It can be seen from the variational

and observation equations that if drag is not a factori-

l- and there are no range rate, doppler, or altimeter rate '_i

" measurements, the..v_iocity variational --_=r_,,15*_are [
}

not used. There is then no need to integrate the

, velocity variational equations. This represents a|
. significant time saving. In the integration algorithm,

J
the B matrix is zero and (l-}l) is reduced to a three

I } by three.- •

PRECEDING PAGE BLANK NOT FILMED

A detailed description of the H matrix and the

I _ and Vn vectors can be found in pages 16, 17 of
I

Reference 2.

I Backwards integration involves only a few simple

modifications to these normal or forward integration

procedures. These modifications are to negate the

step size, and invert the time completion test.

(
The above integration procedures are implemented COI_'ELL

in GEODYN in the subroutine COI';ELL. The inversions DNVERT

for backwards integration are performed by COWELL andD

:.' ORBIT. The matrix inversion is performed by subroutine

: DNVERT.

_ The default step _ize for these integration pro-
: cedures is selected on the basis of perigee height and

, the eccentricity of the orbit. The default step size

,_ selection is explained in detail in the Operations _tanual,
,:

'_ Volume III of the GECDYN System Documentation. This may

_ be reset to son_e other fixed value on input. (See the

• _ STEP control card description in the above manual.)

, , . , •

. -' , ,

,, ' . , f' , " , "J , 'r . " : '
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Variable Step Mode _

There is an optional variable step mode u'hich is i!

( tile default iaode for high eccentricity orbits. The :1
selection of this ---' .1.,uae of Ol?C -- ˜Aecault _n_ti._]

step size, halving error bound, and doubling error bound,

or variable increase or decrease of step size are also

explained in Volume III with the STEP control card.

In the .variable step mode, the local error is CONELL

compared against upper and lo_.;er error bounds to determine REARG

whether the step size should be increased or decreased.

This local error is computed as t'he difference bet_¢een the

predicted and corrected values of position. Both'the

increasin_ and decreasin_ procedures require the table= ,_t

back values of accelerations to he' ",_cdified s'o "as to be REARG

.compatible with the new step size. The decreasin_ requires

the interp61ation for mid-points. This _,nterpola_,ion is

of course,on the back position, velocity and acceleration

( values. The in_'easing is achieved by discarding every
other time point in the table of back values and then the

refinenmnt using the decreasing algorithm.

I It should be noted that 2(ORDER-1)-I of b_ck values

are saved when GEODYN is operating in v_iable step mode.

Increasing of _he step size is disabled for the following

, ORDER-2 steps after a ste_ size change; i.e._ until the

table of back value_ is again filled.

These Jncrea_ing and decreasing procedures are con-

tained in Subroutine REARG.

• ¢

i i" $.1-$
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I

9.2 TIlE INTEGRATOR STARTING SC]IEHI'; i
!

|

__ The predictor-corrector combination elnployed to START

I -- proceed with the main integration is not self-starting• .

That .is, each _tep of the integration reouires the

knowledge of past va!ucs of the solution that are not

available at the ;tart o[ the integration. The method .

presentcd here 1_ that implmnented in the GEODYN

subroutine STAR'.".

A Taylor series approximation is used to predict

initial values of position and velocity. I?ith _hese start-

ing values, the Sum array is evaluated using epoch positions

and velocities. Now the loop is closed by interpolations

fer the position_ and velocities not at epoch and tl. :r

accelerations evaluated. The Suma are nm_ again evaluated,

this procedure continues until the Sums converge to the

desired accurazy.

(
9.3 INTERPOLATION

GEODYN uses interpolation for two functions. The INTRP

first is the interFolation of the orbit elements and var- COEF

iational par.ials to the observation times; the second

is the interpolation for m_d-polnts when the integrstor is

decreasing the step size.

The formulas use: by INTRP are:

At n

X(t+At) = (S2(t) +(--- I) Sl(t) + E Ci (St),fnii)h 2
h i-r (I)

C
: - 9.3-I

I
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for positions and

t n
X (t + At) = (Sl(t) + C i (At) fn.i)h (2)"

i-0

for velocities. I

S] and S2 are the first and second sums carried alor:g

by the integrator_ f's are the back values of acceleration,

o *

h the step s_ze, and Ci, C i are the interpolation coefficient.s

computed in subroutine COEF. A detailed description o:_. '_he

interpolation formulae can be found un pages 4, _ of Refer-

I ence 3. •
i
)
J

4

,¢

9.3-2 ,
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SECTIOX I0.0

1 TttE STATISTICAl, ES"I_TION SCIIE:.iEP
s

The basic problem in orbit determination is to

I calculate, from a given set cf observations of the

I spacecraft, a set of parameters specifying the

j trajectory of a spacecraft. Because there are gen-

erally more obsexvations than parameters, the parame-

I ters are overdctermined. Therefore, a statistical

t estimation scheme is necessary to estimate the

i "best" set of parameters.
I 4

t The estimation schmae selected for GEODYN1

• : [ is a partitioned Bayesian least squares method.
The comp._te development of this procedure is pre-

) sented in this section.

C
It should be noted that the functional re-

lationships bet_een the cbservat£ans and parameters

are in general non-linear; thu_ an iterative, pro-}

r_ cedure is necessary to solve the resultant non-linear
normal equations. The Newtcr-Raphson iteration

formula is used to solve thc_2 equations.

.o

y,.

k
_r

- ¢
_'- 1(I 0-1
'5"r

_ ,j"
: ........... , . . ,, ,, ; ,,' ,,,:.,,,_..

I I n w:: :. _..._ "-. t. , ,
, . / t /

• ¢
o

m
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I

i

10.1 BAYESIAN LEAST SQUARES ESTIHATIO_*

Consider a vector of N independent observations . :!

whose values can bc expressed as known functions of t -
parameters de_oted by the vector x. The £cllowing

non-linear regression equation holds:

z_= f Cx) + E, (13

where o_ is tl_e N vector denoting the noise on the ob-

serva',:ions. Given _., the functional form of f_, and

the statis,*ical properties of c_, we must obtain the
estimate of x that is "best" in soae sense.**

e Bayes theorem in probability holds for proba-

[ bi._.ity density functions and can b.e written as follows:

' ( !

p (x_)
pCxl_) = -- pCz_lx_). (2) ,

m p CD

+

" p(_lz) is the joint conditional probability

A

_, density function for the p_rameter vector x, given
that _he data vector z has occurred -

_, _ct'or notation in "this sectic._ is that used by
. " ._tatisticians; i.e., an underscore denotes a vector.

The symbol "^" denotes the "best" estimate of the
superscripted quantity.

**For a compl_.te discussion of the properties of estima-
tors see ._;aurice G. Kendall and Alan Stuart, Roference 1.

¢
o

10.1-1

• j_ _

_' ' b

--- v-_ . ........... _,_ . oi
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!

m

p(.x) is the joint probability density functionI
for the vector x;

t

' L
p(_z) is the joint probability density function

) for the vcctor z;

I

l and
b

p_z[x_} is the joint conditional density function

i for the vector z__given that x has occurred;

" p(x_) is often referred to as the .apriori density '

I function of x, and p(x]z) is referred to as theI

[ a posteriori conditional density function. In
_ any Bayesian estimation scheme, we must determine

: } this aposteriori density function and from this

function determine a "b_st" estimate of x, whichC• _" can be denoted x.
_ -
,t

To obtain the a pos_eriori condition_l density
_" _

. _ function, we must make an assumption concerning the

_. statistical properties of the noise on the observations:
_,

_._- the noise vector o_has a joint normal distribution with

..'_ mean veer.or O_and a.varianc¢-covariance matrix _z"

z is an NxN matrix and is assumed diagonal, that is_

_. the observations are considered to be independent and

_: uncorrelate4. The "best" estimate of x, x, is defined
_ as that vector maximizing the a posteriori density

function; this is equivalent to choosing the mean value

of this distribution. An estimator of this type has¢

been referred to as the maximum llkelihood estimate in

ths Bayesian sense. (Reference 2)
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A furtlicr ass':;_ption is that the a__priori density

{ function p(_) is a joint normal distribution and is
'.. w_itten as follo_s:
!

ot
- . 2 A

i t
I where I

x A is the a priori estimate ol he parameter
} vector, ,
1 Q.

!

ZA is the a priq_.i variance-covariance matrix
associated _:'ith the a_riori parar.eter vector,

A is an Ax:,I matrix, _hich may or _a), not be

( diaguna!.

The conditional dens]t)' function "i-_) can be I
_¢ritten as follov:s: {

i
i

ot :. T 1 T -1 1
,_ p(_zI._: [ z,_ ] exp -_ -'_--it.C) "! (4)

¢

It can be shown th,_t maximizing the a poste, iori density

function P(-ql_:)is equivalent to maximizing the product

p(*_x)p(&]_)because the density £unciion p(_) is a con-

stant valued function. Fugther, this reduces to mini-

mizing the followiug quadra:.ic forln:
• t

10.1-3

;_-J & ,,,......_.
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Aul3_st 11, 197_,

-1

*t 2.

I

I This results in the fol!m.:ing set of M non-linear

I eq'ua tions ;

-i -I

t z . A .

I
I

,j where B is an N_,I _atrix with eler.ents

I .  frCe_) •

';t

f

_j This equation defines the Bayesian iea;t 3quares

i _stimation procedure. We have not 5X_tcd how the

: a priori parameter vector and variancf_-cbvariance

_, matrix were obtained. In practice th62se a prior;.
values arc almost ah.:ays estir, ates that h_ve been

"'_ obtained from sorae prcvious data. In _hese cases

the Bayesian estimates are identical to the classical

maximum likelihood est£1natcs that would be obtained

_' if all the data _,'ereused; in this context tlle

i a priori paralneters can be considc_'ed as additional

2" }_ obscrvations.

C

[' I,
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I t A

_ The variance-covariance matrix of x, Vt is

I _ given by the following formula:

}

, j V -- B �(7)
'i z A

i J
Solution of the _.stimation Formula

I

Equation 6 _efines a set'of H non-linear equa-
p ^

tions in H unkno_ns _; these equations are solveg ,
I

i using the Newton-Raphson iteration formula. Equation 6
t

can be _ritten as follows:

C°,

t
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August 11, 1973

I

' NOW

: f i
t

-1 -1 t

i:( ) : !-fC ) _ : o C9)
A

Then diffe_zntJ.ating a_Id neglecting second deriva-

tives,
REPRODUCIBILITf OF T_

"1 1 -1 .
I a£(_) -

< >= • Z] c,o
z A " Ii

!
i"

I Substituting equation I0 in equation g gives i

(-- I,

•!' " __Cn+l) . _xon) : [B T_ B * _z.fC._x) On) ,i
i

"i !

_ "

\"_. .
Now let xCn+.ll-x (n), the correction to the n---._pproxz-

marion, be dcnotcd by and let ) the
-- ' th

• v_ctor of .-esiduals from the n approximation, be

._ d!z on) . Equation 11 becomes

: 2_, l_ + 1 I_.T z,'._'-C'_)+ --;"_._. dx.x Cn ) !? X:-'_ 1 x ._In

\ z A /

C12)

10.1-6

: ' "ql
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)

10.Z TIIE PARTITIO:,EilSOLUTION ESTi?.|

if In a multi-satellite, multi-arc estination program .
|

such a,_GZOIYN, it is necessary to formulat'e the estima-

tion schcme in a manner such that the information for

all satellite arcs are not in core simultaneously. The

procedure used in GEODYX is a partitioned Bayesian

E_timation Scheme which requires only common parameter

information and the information for a single arc tu be

in core at an)"given time. The _evelopment of the

GEODYN solution is given here.
I

" tthe Bayesian c.;timaLion formula has been devel-

oped in the previous section as i.

( )- •= BT Wdm + VAI -d__x(n+l) " BT I';B+ VA "I i __ A

(
I_EPRODUCIBIL/TyOP THE

where O_IG_AL PAG_ IS POOR

x A is the a___riori estimate _>f x.

.VA is the a priori covariance matrix associated

with xA.

W is the weighting matrix associated with the

observations.

x (n) is the nth approxim..tion to x'.

dm is the vcctor of residuals (0-C) from the_Q

n th apl)roxiration. [b

I0,2-I .

, , }

i
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dx (n+1) is the vector of corrections to the ESTI;]
parameters; i.e.,

n+1 xn i)x = 4.dx(n+

P

B is _he matrix of partial derivatives of the

observations _,ith respect to the parameters

where the i, ,_th element is given by

@mi

! X_ "

I

i The iteration formula given by this equation.

solves the non-linear normal equations formed by mini-

.mizing the sum of squares of the weighted residuals.

_Vc desire a solution _herein _ is partitioned

according to a, the vector of parameters associated

only with individual arcs; and k, the vector of parame-

te_,_ common to all arcs_ For geodetic parameter esti-

mation a Eonsists of the sets of orbital elements,

satellite parameters, and _easurement biases associated

with each arc, whereas k consists of the geopotential

_'_ coefficients and station coordinates. "

"_

As a result of this partitionini:, we may write

B, the matrix of partial derivatives o[ the observations,

,- [ ]_ B, "" Ba, Bk (2),

" •
e

j!, 10.Z-2
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_ where LST]_,i

_ i,j ;a.J

and

i,j _kj

We may also _¢rite VA, the covariance matrix of ,
the parameters as

j,

! °l'_ vA -- Va (3)
, (_" V

! •

where we have assumed the independence of the a__priori

_1 information on the arc parameters and common parameters

(in practice valid to an extremely high degree).

i_ .

• i

2

-_. • ...................... . ....... --_'_'".......... ,, ,.,
J , .°
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IVe may no_v rewrite our .iteration formula: ESTI:.I '

- !' °

.......... _,.....:............. X (4)
' '] i

B iVBk ' B l_'gk + V

li •

BaT IVdm(n) # (:'0 -
+ vat_ " b,).

,-_--]i_i ....
[_,,_d_ +,,,<t_o'_-_,<)

I

[' ;,1-'r .l
( The required matrix inversion is obtained by

partitioning. IVe write

N1 N2 . A
- I (s)

.



N 2 = .,_-IAk N4 (7) F.STIH {

i
• wg

and

[ 1-1N4 _ K A A': Ak - (S)
J

There is no problem associated with inverting A

because the existence of the a priori information °alone

guarantees this property. On the other hand, the

inverse of K - A_ A "I Ak is not guaranteed to exist.

High correlations between the parameters could make

the matrix near singular. In practice, however, the

use of a reasonable amount of a priori information

i ( eliminates any inversion difficulties.

The iteration formula may now be written as
%

da N2 Ca

.f or
%-

, d_ . A"I �(A"I Ak?N4 (A_A-z) ca . A-IAkN4Ck

(lo1

C d_ . .x4A_A"t c. �_,,ck (11)

• #F

10.2-5

• .,_ ".,., ._ ... ,

1975003343-275



_. ._ Noting the simil.arities between d;_[lan_ d__k.,_,.'_ write ESTI._:
s

dc._2.t= A"I Ca A "I Ak dk (12)

and rewrite dk as

dk = N4 (Ck - AT A"I Ca). (13)K i

" I.
Note that most of the elements of A are zero r-

because the measurements in any given arc are inde-

pendent'of the arc parameters of any other, arc. Also,

} the covariances between the a priori information

C associated _ith each arc is assumed to be zero. Thus
both A and Va are composed of zeroes except for matrices,

Ar and Vr, respectively, along the diagonal, where

l

r is a subscript denoting the r th arc,

" e.g., a_r

Ar i j _ _arj i,j (141). ' _arl

• j

_. where Z ranges over the measurements in the r ch

_ arc and i, J range over the parar_eters in the :

r th arc, a r.
i, •
1

Ir _

o

10.2-6 :

_" -," • _ " _ • _tv
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|

i

is the partition of Va associated :.,'ith the ESTI.q

' ( ....-- Vr rth arc. :.i

.. i i

The reader shotId note thatA; 1A"I , like A, is cnmposed of ii._

zeroes except for matrices along the diagonal.

;

We shall also require the partitions of Ak and ._i
Ca according'to each arc. These partitions are given
by i!

(-

• '" Cr i aarx ag. t

: .'_ g

° _- where the ,,abscr_pt r agai_ denotes the r th arc and

' ranges over the measurement partials and residuals in

i-i_ the r th arc.

; Let us now investigate the matrix partitions

-i, i in the solutions for da and d_kk, We consider A"I to be

_ -" -Iand Ca,. _ a diagonal mat_,._.xuith diagona£ elements A_

,_ to be a colur_i vector with elements Cr, ller,:e

III

, I0.2-7

," ........ IIIII - '...... , .....................
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Ca I EST 1:1 '
- -1 c (.1_) i

A'I = ar r " iL -Jr

is the r tl" e.lement of the product matrix. Ak is con-

sidered to be a column vector ,,itl, ele;'_ents Ark, thus

' r1

. _aj rk Arl

-" o

The elements in the product h -I Ak are gix'en by ]

' ! -1 ^k A;IA k._ = _,l/,t.,ItODUCIBthIC'i'YOF TIIE (19)

i [ ] r 0RIGNAL P'AGE IS POOR

, f"

" 1Ve also require the product AT_ A"] Ak. Its elements

are given by

' A AI Ak = ATrk " Ark q,20)

._

The solutions for da_and dk may now be rewritten

taking into account the pax titioni_,g by arc:

dar . hrI Cr - Arl Ark dk (21)
%

"; 10.2-8
,¢_

I
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i Additionally, the covariance matrix for the arc

' ) parameters must be updated to account for the simdaltau-

eous adjustment of the common parameters: k

! I '

;,' N1 = $,;1 , Ark N4 rk (24)
I J!" ' '

f
" REPRODUCIBILITYOF TtIE

Summary. ORIGINAL pAGE IS POOR (

f

: The procedure for computer implementation is )

illustrated in Figure 1. This procedure is: i

/

_ 14 Integrate through each arc forming the
matrices Ar, Ark, and Cr; and simultan-°. _;

eously accumulate into the common

'" parameter matrices K and Ck.

!.. Z. At the end of each arc, form

-i _ - (2s)
2

'; _: e and modify the common parametec matricesas follou's:

i; 10.2-D
e k_

' "_ m I ! I
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_. I':STI?.lK = K AT -I (26) '

rk Ar Ark i

I and

!

!

. • Ck = Ck - ATrk d__ (273

|

i The _atrices d_a',Ark , and ArI must also

be put in e):ternal storage.
J

I 3. After processing all of the arcs; i.e., !

at the end o_ a global or "outer" iteration,

' I determine dk. Note that K has become _1
. and Ck has been modified so that

dk = K"z Ck (2S)
I •

_-_ The updated vr_lucs for the common parameters

are of course -iw-n by

k(n+l) = ):(n) + dk (29)

•_ The arc pa_-_eters are then updatcd to
%

accou_ f,,_ t._.,_simultaneous 3olution of

:_ the coi=;:c_,_.,.,;,,_otcvs.Infor_uation for each

arc iv_ _.,,,_:u',-_.n ttrrn; that is, tb.e previously

'l • :

,_:

I0.2-10
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...... i g

I
i
4

i
!

-1 !
stored da' Ark and A The correction ESTI:,I i

( v_ctor to the updated arc par:meters is i I
given by _ !

t i
.!a_-- mr (^$I :' , - Ark ) dt_i (30) i

i i

,

i and hence !

I

-ra Cn+l] = -ra Cn) + __dar " C31) !

i'
!

The covariance matrix for the arc parameters, ]

Ar-l, is updated _y ,

I

( . k

A_}-" + _.I _:--I A_.I) (32) ,.Arl (A Ark ) (Ark i,

This completes tile global iteration. !.
I

e

i,

It should be noted that if only the arc parameters

I,% are b_ing determined, as is the case for "inner" itera- ,

. tions, the solutiou vector is da_ and hence the updated

arc parameters are computed bF

a_r (n+l) ,,a_r(n) + --rda' ($3) .

" C

• [_o.z.li
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_ ]'ig_=_'o 1: l_av':ltioned l'._tin_a_._on Procedure (Co_t.)

I
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The common l)arametcr nlatrix 1( is carried as a
t

symlnctric matrix. It is core-residc_,t tilrough_ut the i
estimation proccdu,:e. Its dimension is set by the

!
: I number of corn:non parameters being determined and remains ..

1 constant throughout the procedure.

lh_ arc parameter matrices Ar are also car-led as
symn_ctric matrices. Their dimensions vary from arc to

} arc according to the number of arc parameters being deter-

} mined. Only one arc parameter matrix Ar and the corres-

ponding covariance matrix Ark are resident in core atD

1 an), given time. These arc parmaeter matrices are stored

l on disk during step 2 n± ti_e above summar)" and recovered

during step 3.

The covariance matr._ _ is carried

, as a full matrix. The correlation c ,efficients be-

tween each coordinate of a given station position are

carried. The position coordinates of different stations

b and the g'eopotential coof£icie:,ts are considered to be

_. uncorrelated. .

The a priori covariance matrices are also notVr
carried as full matrices. The 5rag coefficient, radi-

ation pressure coefficient, and each bias are considered

to be uncorrelated. The covariance matrix for the epoch

el.emen*,s is carried. [

, ,_goDUCmtL£_'X t_OS

r'_ P I r
I

]975003343-287



i

In terms of a subrou.ine breakdo',_n _,'ithin GEODYN, I'STI'_ !

this entire section is implemented ill subroutine ESTI',I SY:,_IXV t .

i with the exception of the matrix inversions. These _]
inversions are done b)' s routine SY).!IX\'.

I

10.3 DATA EDITI:,_G

The data editing procedures for GEODylq have two

forms :

• hand editing using input cards to delete

specific points or sets of points, and _"

• automatic editing depending on the weighted

residual as ¢ompon'cnt to a given rejection

f" level.

The hand editing is a simple matching of the GEOSF,D

appropriate GEODYX control card information with the DODSRD

set of observations. This calling procedure is done

' in GLUDf_ subroutines GEOSRD or DODSRD.

_-_ The automatic editing of bad observations from" NONA:4E

" a set of data during a data reduction run is performed

in the GI:ODh'Nmain program. Observations ale rejected

when



where z_OXA:.IE I

0 is the Gbservation

C _s the co.:_.putedobservation
# Q

o is the a priori standard deviation

associated with the observation (input)

k is the rejection level, l ,
._

The rejection level can apply either for all

obsorvations of a given type or for all observations

( of a given type from a particular station. This re-
= jection leve] is computed from

k ': • ER (2)

where

" EM is an input multiplier, and

ER is the weighted RMS of the previous "outer"

or global iteration. The initial value of

ER is s_.t on input.

" It should be noted that both Ebl and E,,_,have default values,

" C
Q

lb

i _0.3-2

in I m r
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10.4 Electronic Bias BSCC.,.,

For certain types of elc:tronic tracking data

(e.g., i)oprter data), biases exist which arc diffelcnt

from one pass to the next. In many cases, these biases

are of no interest per so, althoud_ tl'eir existence

must be appropriately accounted far'if the data is to be

used in an cfrb_t or geodetic parameter estimation. In

addition, a single data reduction may have bundreos of

passes o£ such e!ectronic data, and the complete s_iution

for each bias would require the use of an excessively
!

large amount of comnuter core for storinp the normal ]

matrix for the complete set of adjusted parameters.

The ef.fects of electrcaic biases can be removed,

with the use of only a small amount of additional core,

based on the partitioning of the biases from the other

( '_ *'-^ _a)'caian Icr-_t square3parameters _ilig -'.'_ju_,tad in ....

estimation. The form which this partitioning takes can

be seen from the solution of the basic measurement

- equat i on
I

_" 6m = BoAb'* B.xX + -..¢ ' OF TItI_ (1)
BzpRoDuClBILIrY

'_'_ where CglG_AL pAGE IS pOOR

6m = the vector of residuals (0.-C),

&b = Zl'e set of correcLions that should be

r.a(:'.' to. ti_e el..tronic biases,

_i Be = the rv,trix of partial derivatives of the

mer.5'..;':cF, enLs with respect to the biases.

" C, 'rl:c clc:.,ov, t. _, of Ibis m:_tri:., are eith,.,r

• l's or O':i,

f
, i

_:,"_ 10.4"!I;
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Lx = the set of corrections to 1)c made to all P,SCC.K.

the other adjustable parameters,

B = the x,aL''.x uf paxLia] derivatives of _"-. _llk;

measurements with respect to the x

, parameters,

t _: = t,,c measureaent noise vector.

I

1_. 'to effectively remove the e!ectronic bias effects, Eqn (3)

BTNBe (BeTNBestates that the normal ,a_zri:" BTi_'B must have )-1

BeTIVB subtracted from it and the vector BTI_'6m must have

BTIVBe (BeTI_'Be)'1 BeTI_'6m subtracted from it. Due to th, assmned
independence of different measurm;_ents, it follmes thac these

quantities _,'hich must be subtracted are a su_n of contril,:t._ons

for different passes,

|i

j._ In.4-2 I'_,_ ' P ltD"
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......................................................................... 7.--- ...........................

I

L_

nb B-C _' -

![#" BTh'Be ;_,,cT!:'Le)-IR--e l_v_ = _ -PRl'l<pBcpfBc ]'N_Be )-1 Be TI.,.pBp (4_.
p= 1 P P P -

, nb

BepT1;'p_T, _ Tl';6m =E BpTi:" B ( ) T|;, 5m (S), BT'_";_(ge "J Be p e ep Be p pp= 1 P P

_,'here n b is 'the total, number of passes with electronic

biases and the subscript p denotes, an array for measure-

ments of pass p. The computation oJT the right hand sides

of (4) and (5) requires the arrays

BpT_pB = na x 1 array
P

B TNpBOp 1 x l aVra)" (6)( %

BepTRp_m p = 1 x 1 array

_" where na is the number of adjusted paraa_eters other than

biases affecting the arc in which the baises occur. Thus,

'_ na + 2 storage locations mist be assigued for every bias

_ which exists at any one time.

The individual biases may be adjusted, based on the

previous iteration orbital elements.an4 force model para-

_ meters. 1'hi,_ bias can then be used, aloug witl, the above

, accumulated arrays to properly correct the su_ of weighted

!

:' squared residuals upon which the program does d)'nartic editing.

!: Otherwise, however, it _:ill not |,e po. sible for tlW statis-

._ _._:" ¢ lical ._.t,r,.'.,,aries to _nco,-l;or.atc the adiu:_ted., values of the,
v ElECtronic I',iasc.s unless attbstm_,tial :tddil"io:lal-coro is allo_'a:ted. ,

• _' ,,- '. '7" ' " )_' .'."'"C ":"a?. JE '

1975003343-292



a

!

I
4" "- SECT]ON 11.0 !
t -- I

GI'NERAL iNI'UT/O;ITI'UT DISCUSSION !

GEODYNis a powerful yet flexible tool for

investigating the pl'ob]emsof satel].itegeodesy and

orbit analysis. This sane power and flexibility

i causes extreme variation in both input and ouLput
, %'Xt.I requirement_ Consequently, GEOI),., contains a great!

i' deal of programming associated with input and output.
I

i, .

' II.I I_PUT

.I

There are two major functions associated with

i the input structure:

( These are the input of

• Observation data, and

• GEOD_ Input Cards.

.The observation data util_zod by GEODYN in-
W

clud_,sdata _r'_mall the _ajor satellite tracking

networks. The observational types used to date,

together with their originating networks and instru-

ment types, sre:

• ._-ightAscension and Declination

i SAO Baker-Nunn camerasSTADAN MOTS-camerns ' _,
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i o _" USAF PC-IO00 cameras

USCf_GS F,C-4 cameras

SPEOPT All of above except Baker-Nunn

cameras

• Range

STADAN GRARR S-Band

GSFC Laser
l

'f SAO Laser
' A_IS SECOR "t

C:Band FPQ-6 Radar

FPS-16 Radar

.MSFN S-Band Radar

e. Range Rate

C
STADAN GRARR S-Band

I,ISFN S-Band Radar

_i o" Frequency Shift

TRANET - Doppler

• Direction Cosines



i
I
I

• I

!
, !

• Azimuth and Elevation Angles !
i

I (_ STADAN CcrC... Laser _ t;• [ :

I C-BAND FPQ-6 Radar . i i--
!

FPS-16 Radar 1
I
t

) • Time Delay and Fringe Rate I
l

) C-BAND VLBI Radars I

, T_e Observations are required to be in either t

' the format specified by the National Space Science [[
| Data Center (NSSDC) or the GSFC DODS System. [f

&

The NSSDC format includes indicators to identify GEOSRD
)

observation type, instrumentation source, reduction|
#

b method, coordinate system, and information concerning

tropospheric and ionospheric refraction corrections.

! Data in this format is input vi_ subroutine GEOSRD.

C
The DODS format includes indicators to identify DODSRD

observation type, satellitc identification, ambiguity DATBSE

corrections, transponder channel when applicable,

timing correction, and time reference sys'tem informa-

tion. It also contains flags to indicate the need

_ for transit time correction or other types of pre-

_. processing corrections. Data" in this format is input.
via subroutines DODSRD and DATBSE.

The GEODYN Control Cards are the complete ADFLUX

specifications for the problem to be solved including INOUPT

special output requests. Their input, controlled

i '" through subroutines ADFLUX and INOUPT, consists of

.,_, data and perhaps variances for
f,

!io •
• Cartesian orbital elements

" $' .
• Satellite dr_g coefficlcnts .
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................................................................ t._

• Sateliitc emissivity ADFLUX

I IXOU_T I

• Zero s_t measurement biases to be adjusted

• Station positions

• Gcopotential coefficients

• Surface densities

• Earth tidal parameters

and data for T

i
• Satellite cross-sectional area I

!

i

• " Satellite mass
(
!

( ,• Integration times for the orbit

i

e Epoch time:of elements
. !

• Criteria for iteration convergence and data

editing

• Solar and geomagnetic flux

Subroutine ADFLUX modifies the program internal

data tables of solar and magnetic flux according to the |
input requests. It also generates the scratch file of

flux information t.o be used with each a_-c.

Subroutine INOUPT interprets the _EODYN Control _

Cards and sets the appropriate run para_etersi " It' ,_ ._j':,

also generates the {II.:ODYNrun description and the ,. _., ;.,,..

descriptions for all arcs ", ,":,.:_

11 1-4 ! r '' __:
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Subroutine !NOUPT references other routines to I'_OUPT

set up run _-*ors run
itel'lain .....1',,- ....... Or tO list selected

parameters in a particular format..

J It should be noted that the starting orbital DODEL:.I

elements for some arcs _.ay be recovered from the DODS '

t Data Base by subroutine DODELM.

11.2 9utput
I

" L
[ Nest of the output from GEODYN, not counting the NONA_IE
f}

descriptions of the input or run paramet.ers, is pro- ORB1

duced by the NONAME program. Exceptions to this are SU,_I._IARY

i the ORB1 tape output, the residual summary and the run TYPOBBt

!1 summary page.

The printed output consists of a measurement!

and residual printout, residual summaries, and solutioni

summari_.s as detailed below.

!t
For each arc:

o
¢

Measurement and Residual Printout

( • _leasurement date

e _leasurement station

_i • • _teasurcment type
_, (

• Measurement value

1!.2-I *

i
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............. "-.......................... ¢......

• Measurement _csidua].

• Ratio to sigma

• Satellite elevation

Re_id'ual Summary b_" Station and Ty.pe

• Station

• • Measure,_ent type

!

• Number of measu£_ments

• Mean of residuals

! e Randomness measure

• Residual RMS about zero

j

_ • Number of weighted residuals

e. _.lean ratio to sigma for weighted residual_

• Randomness measure for weighted residuals

• RMS about zero for weighted residuals

i 11 .2"2 _

1975003343-298



Residual Summary by Type

• Hea'.urement type

• Numbe, of weighted re._,iduals

• Weighted Pal,IS about zero

o Weighted "_'_,,,,,o about zero for all types together

P

Element Summary

£ priori Cartesian elements

• Previous Cartesiz, n elements

(_ • Adjusted Cartesian :lements

• Adjustment to Cartesian elements (delta)

• Standard deviations of £xt (sigmas) ,

"_._,

. e. Position _lS

",_ • Velocity _\tS
e

• s priori Kepler elcments

, • Previous Kepler elements

• II ,2-3" i
!

f
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( • Adjusted Keplcr elements-
I
)

• Adjustment to Kepler elements (delta)

) • D3uble precision adjusted Cartesian elements

t (current best .elements for arc)

I
O b

Adjusted Force _lodel Parameter Summary for Arc !

! i

I • Drag Coefficients, Solar Radiation Pressure Coef- 'l

!

ficient, and/or resonant geopotential" coefficients. °
i

• a priori coefficient value
,i

: t • Adjusted coefficient value

( • a..prioti standard deviations for coefficient

• Standard deviation of fit for coefficient

it

Adjusted. Parameter Summary

, Instrument biases - timing bias and/or
+, _" constant bias

\.

• _bias value

" • Adjusted bias value

4

_: • a priori standard deviation for bias

) _ _ • Standard deviation of fit for bias

:_ 11.2-4 "
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(

I

i
' _ • Time period of coverage

IP

' The following items are printed on the last inner iteration

of ever), outer iteration.
II

) • Apogee and. perigee heights

• Node rate and perigee rate

, • Period of the orbit

t

• Drag rate and period decrement if drag is J

' being applied

• e Updated covariance matrix for. Cartesiam arc

elements

_ • Adjusted arc parameter correlation coefficients

After all arcs:

,_', Total Regidual Summary.

• Total number of weighted measurements for"

each measurement type

• Total weighted RHS for each measurement type

_, , • Total number of weighted measurements

• Total weighted RNS

e
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I _ --_ Station Summary
!

• Earth-fixed rectangular coordinates and

geodetic (4',,_,h) coordinates

) I
) • a priori coordinate values =

I .
• "a priori standard deviations for coordinate !

values !

I

• • Adjusted coordinate values
f

• Standard deviation of fit for coordinate values ,

t .e Correlations betueen determined coordinate

t values

Gecpotential Summary

, • Cnm and Snm coefficients for each n,m set
)

determined

,_ e. a priori values i

• Adjusted values

• Ratios of adjusted sigma to a _ sigma
._ for each coefficient

i
" • Standard deviations of fLt for coefficients

k

C
• :1.2.,6 ".
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Surface Density Summary

d_

• S:_rface Density Block Centers

• Block Areas

• a. priori values

m b

• adjusted values

• a priori uncertainties

• adjusted uncertainties

Arc Summary for Outer Iteration - Fer each arc

• Updated Cartesian elements for arc

{ • Correlation coefficients between individual

arc parameters

-o Standard deviation of fit for arc parameters

• Corr.elation coefficients betwaen individual

' arc paramcters and parameters common to all

arcs

_! Common Parameter Correlation Coefficients

i • • CeopotentiaI coefficients

• Cartesian station positions

• Surface Densities
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GEODYR also produces an XYZ and Ground Track
i

listing upon request. 'rhis is the normal printout for

) _ 2-_ Orbit Generatioii Uode. In addlti_.n an osculating ele-

! ment printout is provided on option.

The tape output from GEOI)YR consists of

• the ORB1 tape,

J

# b

• the XYZ and Ground Track tape,

• a DODS formatted data tape,
k

• a binary residual tape

• a simulation data tape,
t

The XYZ and Ground Track tape and the binary residual

i tapes are used as input to GEODYR support programs.

1,1.3 CoR_utations for Residual Summary

The residual summary information is computed in STAINF

subroutine STAINF for printing by th_ main program.

_ The formulas used in this subroutine for cu_vuting
each statistic are presented below.

The mean is

abn

Nbj ';.t_:. =¢ . _ ., ; el)
n - ]

l
m

1975003343-304



where

t ---- Ri are the _esidua!s
t

n is the number of residuals

n b is the number of electronic biases ..

Nb_ are the residuals contributing to the bias
J _omputation

bej is the value of the electronic bias.



The R,MS i3 the square root of the sample STAIXF

" -- variance:

n b

s21[ Ri2 ]= _ .-. Nb. b2

n i=1 . J ej . ' L
!
i
!

The expected value of the sample variance differs from

• he.population variance 02:

,. (_ Efs2) = 02 - var (Vc) (Z)

or rather



(_ .W_ This is kno_vJ_ _cssc!'s correction. Thisas co_puted STAIXF

value for the standard deviation, o, is also called

lthe R_IS about zero.

The randomness measure used in GEODYN is from a .. _!

imean square successive difference test. _e have

, d 2

I RRD = _ (6)
l S

|

f ! when
l

.i RND is the random normal deviate, "our statistic;

: ( s2 is the unbiased sample variance; an_

I n-I

' d2. " Z CRi-l" Ri)2
:, 2(n-l) i-1

_i Note that d2 is the mean square successive difference:

" i_ For each i the difference Ri �1- Ri has _ean zero
and variance 20 2 under the null hypothesis that

i (RI' ....Rn_ is a random sample from a population with
i variance o-. The expected value of d 2 is then 02

,; If a trend is present d 2 is not altered nearly so much
• _ _
.... . as the variance estimate s 2, which increeses g_'eatly.

Thus.the critical region,RND constant is employed in

" testxng against, the alternative of a trend. (Reference I]
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, { In order to use this test, of course, it is STAIX};
' necessary to know the distribution of the RND. It|

can be sbc_'n that in the case o£ a normal popuiation

the expected value is given b)"

)

!
!

E (R,_D)-- 1, (_)
• $

the variance is given by

,
-- - ", (S)

, n+l
I
" I

ii

and that the test statistic, RND, is approximatelyAr+

t normal for large samples (n > 20)

++

,j++ . ++,
+

" t

. +, , ,
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(- ii.4 Kepler Elements

The Kepler elements describe the position of the

s_tellite as referred to an ellipse inclined to the orbit

plane. This is shown in Figures 1 and 2. The definitions

of "these elements are:

a - semi-major axis of.the orbit

e - eccentricity of the orbit
o

i-- inclination of the orbit plane

fl - longitude of the ascending node

- argument of perigee

( M mean anomaly

E - eccentric anomaly

b

. - true anomaly

, ..,,., Apogee height and perigee height are sometimes used APPE_

,. in place of a and e to describe tileshape of t_ie orbit. As

can be seen in Figure I, the radius at perigee is a(1-e)

and tnat at apogee is a(l*e). -The heights are determined

_) subtracting the radius of the reference elipsoid at the

_ ... given latitude from the spheroid height of the. sat_llite,
, _ .The computations of these last are detailed in section
•- " 5.I.

i

_' ' 0

.:

.1

I
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J
!

• I
,{ I

Figure 1. Orbital Ellipse

(
i

I

" L I t__

• ¢

Figure 2: Orbltal OrlentatiOn "

• II.4-2 "

]975003343--3]0



f -- Conversion to Kepler Elements ELEM
•

The computation of !'cpler elements from the

Cartesian positions and velocities x,y,z,x,y,z is as
fol lows :

Compute the "angular momentum vector per unit mass:

- _ x r Cl)
o

where _ is the position vector and _ is the velocity
v 2 • .vector. Note that - r • r. The inclination is

given by

¢ •

":* Prom the via-viva or energy integral we have

= GM 2 I- , (3)
e'

_ where g is the universal gravitational constant and-_!

_ is the mass oi." the primary about which the satellite is

C

] 975003343--3] ]



_ orbiting. Thus we have ._LE,X! ;

a - V2

} G:q • C4)

! Recalling Ke_Icr's Third Law,

, h2 = GMa (1-e2), (5)
I

}
we determine



l . t
........ i

• 1

I

"-- _ (9) ELE,I if
J

where e is a constant of integration of magnitude equal !!
to the eccentricity and pointing tcueard perihelion. [

I

Thu s, ip
i

r x e = re sin £ , I

t
- Lor, performing a little algebra, '

sin f = a .2Ll.e ) _ . r (11)reh .L .

i" The cosine of the true anomaly comes from

r _ a (!-c2_l+e co's ' (lZ)

t

that is

cos_ - a O-e2),. 1_ (13)er e "

The true anomaly is then

f " tan'l \cos(sin f)f (14] I_

:. ll.4-S "

' ' _' ..... _" , ', ,,,;i " _'
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I

At this peint a dec;sion r:ust be l:::-de as to whether the

orbit is a ellipse (l>e>O) or a h,vperbola (l<e< _).- i
For an elliptic orbit, ttle eccentric anomaly is computed i

" from the true ano_:al)': ELE:,I

cos f + e (lS)
cos g = l+e cos f '

5i,-.r -- A T. T sin r (16)
l+e cos f

I

and

1

I -,

' E = tan'l \c-_/sin EE) ' (17)|
!

" I The mean anomaly is then computed from }Ceplcr's(, equation:

' N = E - e sin E. (18a)

i
, In the case of a hyperbolic orbit, we use an

equation analogoas to Kepler's equation by introducing
!

F, in .place of E. The eccentric anomaly is the same
! as above ;

.!

i F -- tanh-l( sinh I:_cosi_ "F"
t

' !, where _ PAP,I{ 1_

"_ S n f
"_ 5inh 1" - -.
;! ' I + e cos f "

_ Cos f + e ,,

"_ ¢ ('osh I:.-

_ I.+ e cos.f

i 11.4 -6" i;_
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I

i
f
h
i

, The mean ano,naly isI

(18b)
: M = e s inh F - F "

1

whore F -- tn [sinh F + cosh F]

F is computed by using the definition of sinh and cosh

- . F -F
e - esinh F -

2

eF + e"Fcosh F-
2 "

(sinh F + cosh F} _ _ (eF-e'F, eF+o'F)

= e F

I f The central angle u is the angle between the satellite

vector and a vector pointing toward the ascending node:

i ,. x cos _ + Y sin
;" cOS U " ...... . .... l _ ( 1 9 )• r

_i • (Y cos n - x sin _3 cos i sin i C20)'_: sln u = -- - :-: ....... - :: : ...........
_., Ir

!:: u - tan"i i_o,.i (_I)

The arguL_nt of perigee is tl, en

1
(2z)

] 975003343-3] 6



!

PARTIAl, I)ERIV:_TIVES Oi ._PLI'R ELEMENTS . )

.. ELE:,I , t

i _':-.-.,_t._partial deri, v__- ., .:f Kepler elements with .

re sI_ect L.-) .,y,z,x,:,,,: t :.ollows:

U.D.* of inclinatior,;

- .by) -Yl_-._.i,= A[B(y.h z z

.a_
i : 'ArBFZ'hx'X'h:)+xl-- z- -ay

, a (:-.hy-_h_ "_-i : AB . )

I

a .hy-y hz)+Y]-,-i - A[B(z .
8x

i = A[B(x.hz-z.hx)-x]
8y

;}z

_',B, " partial dcrivatives

ii .4-8
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I

! I:'here ELE._!

V = x,y,z, rcspectivcly.

• 2a2i a V.

_V GM

where
6

• # •x,y,z, respectively.

P.D. of eccentr£city:



4

P.D. of ascending node : ELEM

where

-1

t (

P,D. of mean anomaly:
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P.D. of the argumeut of perigee: ELE.X_

i _-Vw - _v _v

} where
|

I
O

__.Uu= .._ (tan-I sin u )
_v _v cos u

,, cos2u _u sin u cos u
t

, i

_-_ sxn-'-u _-_-cos u

_ and

_f 3 (tan-! sin __" _-ff.=_r . eos--T-TJ

,_: simiiarily

".. _, f

"" and :; :'_ _" :: -"i_; ' ","

; ' , " "-._¢_.O_f'-------_ [c(l.-c.)(a_._-r_)-,r{.r-{z(l*'O .))_r_,;O] : _, -:_';.
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In GEODYN, tl:is conv'crsion frola x,y,z,x,y,z to a,e,i,_,

__ ,o,I',!and the partial derivatives .are performed by subroutineELEI_I. .

p

,' Conversion From Kepler Elements

The input elements are considered to be a,e,i, POSVEL
i2,w, and &I_nd the Cartesian elements are required.

I

i An iterative procedure, Newton's method, is

used to recover the eccentric anomaly. For an ellip-

. tic orbit, the ite.rative procedure is, £rom Kepler's

: equation (_I = E - e sin E),

I
i

' E' ,' E - E - e sin E - ,_!
1 - e cos E

C For a hyperbolic orbit, the iterative proce¢_.ure is

F' = F - • sinh F - F - N
e cosh F - 1

where F, sinh _ and cosh F are defined previously•

:_,_ Thls conversion procedure for converting "
a,e,i,_,w,H to x,y,z,x,y,; is performed in the GEODYNsys_e_

• _ by s-_broutine POSVEL•

,' , : .

f h
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w

_. The vectors _ and ._. are co,,_pi,ted. A is a vector

in the orbit plane directed to_,'ard pcri center _ith a

magnitude equal to the sen,i-majGr axis of the orbit:

cos _ cos fl - sin _ sin 9. cos i[

K - a [cos _ sin _ + sin _ cos a cos iJ (25). . [ sin _ sin i

is a v'ector in the orbit plane directed 90° counter

clocka#ise from _ with a magnitude equal to the _emi-

minor axis of the orbit.

[_ sin _ cos _ - cos _ sin flcos il POSVEL

- a _/l-e--_ sin _ sin ,l �cosm cos fl COS (241
cos _ sin £

• (
.

The position vector _ is then

l

- (c_'E - e) _, (sinF.)_ (2S)

V The velocity vector is given by

,._

where 'E is given by
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. -.--_.11.4.1 Node Rale and Perigee Rate

The no4e rate 0 and perigee rate _ are computed from

Lagrange's ?ianetary Equationc., As these are for printout

only, GEODYN uses just the Earth oblateness term in the

geopot.entia!. From REferEnce 4, page 39, we have

i

C20 • e |., el [ile_)'2 "

(1)

in radians per second, or rather

• : _.. -9.9'7 -- (3)
"

{ (a__'3"5 (1-S cos2 I)

in degrees per day. Tho. quantities osed..In the at,eve :!quatiozis, ,"

are defined as: - _:, ', _

• ,. -' , t ': :"

'" _'"_ ' U, " " "

: , ," . ' .- , , ' "' ,"', k ', ....



(- i

a e is the semi-major axis of the Earth 1

Gb! is the product of the universal gravitational

I constant G and the mass of the Earth M
I

i

it! C20 .is the Earth oblateness term in the gco-
I potential (see Section 8.3).

!
t

: a semi-major axis of the orbitt I

II o

,' "e eccentricity of the orbit

1;

i i inclinatio,_ of the orbit



r $
• i

i

1

i

( 11.4.2 Period Decre]aent and Drag Rate i

The period decrement and the drag rate are deternined

from the partial derivatives of the position and velocity

with respect to the drag cocfficient at the final integrator

time step in the given arc. These (multiplied by the drag

coefficiefft)'reoresent the sensitivity of the position or

velocity to drag cf£ects. Let ds define

o

-- -- C_') • CD (1)
ac D

where

( _ is the satellite (inertial) position vector

CD is the drag coefficient

_e also define

a

ac D
• i

_The Ctwo-body) peri2d of tho orbit is

k

i , ._° "- P- 2_ (31
I. V Gv,t

•: i: C
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where

a is the semi-major axis of the orbit

G[,! is the product of G, the universal gravitational

constant, and M, the mass of the Earth.

Thus

AP _- 3_ _a. (4)

The vis viva or energy integral has

v = GN , (S]
a

hdnce

1

a - ...... C6)

GM .J

Recognizing that A(_) is _ and A(r} is _]i,

2 IP. _I_ _. _] [7)++ i,Aa .. ........-___-. +

1_. 4.£7 ....
',++, , + ,+ .°

,., z, ,+ ,' ! , + , __ , .
. . . . , • , +
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L L,,_=n _'_= --- _ _'. . I1_• I III "_' -- ' ' ..........."_ " ......

................................................................................ .:=a .:__.......

l

J

(
I The effect of the drag on the period is then given by

6_ a_ r • _T_
_m

AP = a:_ - ,, _ (8)i
G. jI

• t

The daily rate or period decre_,,ent is computed as AP/A t
where At is the elapsed time Cin days) betx,'een the last

, integrator time point and epoch.

I

, The drag rate is computed from the along track
I

"_ctually normal) portion of i_'g, that is ADN. Ne need to
1

, construct the unit vector along track, L. The velocity

• vector _" may be resolved into a radial component and a

i ' compenent normal to the radius vector. The magnitude of

( the normal component is found by the Pythagorean Theorem:

1 n
A = • - - T . (9)

• r

" , The unit normal vector L is then'

-
- ,, - - 7 . A CI01
_' r

t

J

The normal portion of Z_ :s then

aDN ,, L • _II (ll)

Ix.4.1s
i
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1
J

o

IL This A---DN represents the along-track position effect "i

: due to drag over the integrated time span, The drag ratc

is computed as /_Dx/;_t2 M_ere At is again the elapsc -_ time
in days.

(

t
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Stationer)" Office, London, 1961.
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I. A Joint Supplement to the American Ephemeris and
%

the British Nautical Almanac," Improved Lunar

.,') Ephemeris 1952-1959," pages IX and X.

i)
• 2. Astronomical Papers Prepared for the Use of the
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