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(Cont.)
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REPLACE INSERT

AFTER PAGE
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Table of
Contents
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Contents
(Cont. 3 and 4)
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DESCRIPTION
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The equation of
F,(s) has been
corrected.

%
1
:
:

-

Added new section
number.

Inserted a new
section.

Added a "." on
equatioa (4)

Corrected the explan-

ation of "s'

Line 7: 'differentia;";

added.

» ¥
s

Line 3: “DENSTY"
changed to "D71, D650" §

Changed the sign on
equation (2).

Line 3: "DENSTY" :
changed to “Di1, D650
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8.7-33

}

8.7-34 to

8.7-57

10.1-3
10.1-4

10.1-6

10.2:1
11.4-6

12.0-5
12.0-6

12.0-7

A-1

}
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REPLAC

8.7"2
8.7-33

10.1-3

10.1-4

10.1-6

1\.‘.2-1

11.34-6

12.0-5

12.0-5

OLD PA

B INSERT
GES AFTER PZGE
to! (Note: keep 8.7-16, 8.7-18
to 8.7-27)
8.7-33
-~ or THE
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August 11, 1973

DESCRIPTION

Added a pew section,

Changed *DENSTY™
to "D71" zand/or
changed section
number,

Added new section.

‘Equation (3) and (4)

have been corrected.

Equation (5) and (6)
have been corrected.

Equation (9), (11),
and (22) have been

) corrected._

Equation (i) has been
changed.

Function F has been
corrected.

Added new references
on section 8.

Page number chanée&.

"DENSTY" changed to
"D71, D6SO™
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5.0

THE

TABLE OF CONTENTS -

GEODYN PROGRAM

~

(RBIT AND GEODETIC PARAMFTER ESTIMATION

PROBLEM

2.1
2.2

THE

THE ORBIT PREDICTTON PROBLEM
THE PARAMETER ESTIMATION PROEBELEM

MOTION OF THE EARTH AND RELATED

COORDINATE SYSTEMS

3.1

3.2
3.3
3“

3.5
3.6

THE .RUE OF DATE COORDINATE SYSTEM .
THE INERTIAL COORDINATE SYSTEM .
THE EARTH-FIXED COORDINATE SYSTEM

TRANSFORMATION BETWEEN EARTH-FIXED
AND TRUE OF DATE COCRDINATES

COMPUTATION OF Bg
PRECESSION AND NUTATION - .
3.6.1 Precession

3.6.2 Nutation

LUNI-SOLAR-PLANETARY EPHEMERIDES

THE

5.1

5.2
5.3

5.4

OBSERVER
GEODETIC COORDINATES
TOPOCENTRIC COORDINATE SYSTEMS
TIME REFERENCE SYSTEMS
$.3.1 Time System Transformations
POLAR MOTION | .
5.4.1 EFFECT ON THE POSITION OF STATION
5.4.2 PARTIAL nnRIVATIVEs‘

2.0-1
2.1-1
2.2-1

3.0-1

"~ 3.2-1

3.2-1
3.4-1

3.4"1

3.§-1
3.6-1
3.6-4
3.6-8

400"1

5.0-1
5.1-1
5.2-1
5.3-1
5.3-2
5.4-1
5.4-3
5.4-6
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TABLE OF CONTENTS (Cont.)

Page
5 8.0 F_ORCE MODEL AND VARIATIONAL EQUATIONS' . 8.1-1
v 8.1 EQUATIONS JF MOTION . $.1-1 .
8.2 THE VARIATIONAL EQUATIONS '8.2-1
‘ ' 8.3 THE EARTH'S POTENTIAL 8.3-1 '%
é 8.3.1  Spherical Harmonic Expansion 8.3-2 %
% 8.3.2 Surface Density Layers 8.3-17 2
g 8.3.2.1 Mathematical Representation
% _ of Surface Densities 8.3-17
? : 8.3.2.2 Surface Height Computatibn 8.3-21
; 8.3.2.3 Layer Model Quadrature
5 Errors _ , 8§.3-21
| 8.3.2.4 Constraints 8,3-22
g - . 8.4 SOLAR AND LU&AR GRAVITATIONAL PERTURBATIONS 8.3-1
; 1' 8.5 SOLAR RADIATION PRESSURE s 8.5-1
i 8.6 ATMOSPHERIC DRAG o  8.6-1
L 8.7 ATMOSPHERIC DENSITY 8.7-1
? 8.7.1 Jacchia 1971 Density Model 8.7-1
Y .8.7.1.1 The Assumpticn of the Model 8.7-2
% 8.7.1.2 Variations in the Thermosphere
?‘» and Exosphere - 8.7-4
{ ' 8.7.1.3 Polynorial Fit of Demsity
; - Tables 8.7-15
| 8.7.1.4 The Density Computation 8.7-28
; ' 8.7.1.5 Density Partial Derivatives 8.7-29
% 8.7.2 Jacchia 1965 Density Model 8.7-34
' . 8.7.2.1 The Assumptions of the Model 8.7-35
+ 8.7.2.2 The Exospheric Temperaturc
' Computations 8.7-39

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR




9.0

10.0

11.0

12.0

TABLE OF CONTENTS (tont.)

8.7.2.3 The Density Computation
8.7.2.4 Density Partial Derivatives
8.8 TIDAL POTENTIAL
INTEGRATION AND INTERPOLATION
9.1  INTEGRATION
9.2 THE INTEGRATOR STARTING SCHEME

'9.3 INTERPOLATION

.THE STATISTICAL ESTIMATION PROCEDURE

10.1 BAYESIAN LEAST SQUARES ESTIMATION -
10.2 THE PARTITIONED SOLUTION

16.3 DATA EDITING

10.4 ELECTRONIC BIAS ) '

GENERAL INPUT/OUTPUT DISCUSSION
11.1 INPUT '
11.2 OUTPUT
11.3 COMPUTATIONS FOR RESIDUAL SUMMARY
11.4 KEPLER ELEMENTS
11.4.13 Node Rate and Perigee 3ate

11.4.2 . Period Decrement and Drag Rate

REFERENCES

APPENDIX A INDEX OF SUBROUTINE REFERENCES FOR

GEODYN PROGRAM

Page
8.7-48
s.7f51’
8.8-1
g.1-1
9.1-1
9.3-1
9.3-1
10.0-1
10.1-1
10.2-1
10.3-1
10.4-1
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Page
Description First Used
Matrix partitiou of U2C+Dr associated 3.1-3

with position partials. -

Matrix partition of (BT WB + VAI) 10.2-4
associated with a

Acceleration of satellite due to drag 3.1-2

Matrix partition of (BT WB + V;1) 10.2-4
~accounting for effects between a

and k

Acceleration of satellite due to solar 8.1-2

radiation pressure

Matrix partition of A associated witbh 10.2-6

the rth arc

Matrix partititon of Ay associated with 10.2-7

*
thejr°h arc

Azimuth of satellite (measurement type) 6.2-1

Semi-major axis of refsrence eliipsoid 5.1-2
Semi-major axis of orbit 11.4-1
Acceleration of satellite produced by 8.3-20

the surface densit; potuntizl
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Symbol

[

Description

Vector of parameters associated with
individual arcs, partition of x

Acceleration of satellite due to a
third body potential

Earth's mean equatorial radius
Surface density acceleration

Partition of a associated with the
r*P arc

Polynomial coefficients used to fit
the density table
Py
Matrix partition of Use + D, associated
with velocity partials

Matrix of partial derivatives of computed
measurements with respect to the parame-
ters being determined

 Matrix of partial derivatives of the

measurement- with respect to the biases
A constant measurement bias

EPRODUCIRILITY OF THE
ORIGINAL PAGE IS POCR

ii

Page

First Used

10.2-2

6.1-4
3.3-28

10.2-6

8.7-31

901-3

10.1-4

10.4-2

600’.2.
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GLOSSARY OF SYMBOLS (Cont.)

Description

Molecular mass cf Helium divided by
Avogadros' number

Electronic bias

A set of appropriate coefficients for
the Helium number of density tables

Satellite drag factor ’
Satellite emissivity factor
Matrix éartition of BT W dm

+ VA°1(§(n)-§A)

associated with a

Computed measurement value corres-
ponding to O,

Matrix partitica of (BT wdm + Vil(i(n)-gA)
associated with k “-

. Gravitational harmonic coefficient of

degree n, order m

The cosine coefficient of surface
density constraint equations

iii

Page
First Page

8.7-14

11.3-1

8-7‘31

8.2'2
8.2-2

10.2'4

202-1

10.2-4

6.3-2

8.3-25
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GLOSSARY OF SYMBOLS (Cont.)

Page
Description First Used
Matrix partition of C, associated with 10.2-7
the ;th arc
The computed observation at time t+At 6.0-1
Velocity of light i 7.6-1
Interpolation coefficients 9.3-1 ¢
~Interpolation coefficients 9.3-2

Mean elongation of the Moon from the Sun 3 ,6-11

Matrix containing aKb 8.2-6
P%

Error of observation associated 2.2-1

with Oi

Partition of Qi(n+1) associated with a 10.2-4
{correction vector for arc parameters) :

Partition of da associated with the P 10.2-8
arc (correction vector for the rth arc ’

parameters). )

Correction vector o rth arc 11.4-1
parameters not including common
parameter solution effects

REPRODUCIBILITY G THg
iv ORIGINAL PAGE IS POOR
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Symbols
dE

&

dx(n’l)

dz(n)

ty

B ()

Description

Element of surface area

Partition of gi(“*l) associated with
the common parameters k

Vector of re51dua;s (O C) from the nth
approximaticn to x (same as d (n))

Vector of corrections to the parameters
X

Vector of residuals (0-C) from the nth

approximation (same as dm)

The transponder delay in the relay
satellite

The transpoader delay in the tracked
satellite -

Eccentric anomaly of the orbit

East baseline vector in the topocentric
horizon coordinate system

]

Expected ralue

Input multiplier for editing criteiion

REPRODUCIB -
ORIGINAL PAGR IS ;f'ogg“’
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Page

First Used

8.3-18

10.2-4

10.2-1

10.1-6

100 1"6

6.4-3

6.4-3

11.4"1

5.2-1

11.3-3

10.3-2
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10.7

10.7

GLOSSAKY OF SYMBOLS (Cont.)

Pagz
Description First Used

Weighted RMS of previous outer iteration 10.3-2
Input for first outer iteration

"Elevation of the satellite (measurement 6.2-1
type)
Eccentricity of the reference ellipsoid S$.1-2
Eccentricity of the orbit 11.4-1
Constant of integration - a vector of a 11.4-6

magnitude equal to- the eccentricity of
the orbit and pointing toward perihelion

Mean angular distance of the Moon from 3.0-11
Sun

Matrix containing 3% (same as Y) 8.2-6

3

Base frequéncy for Doppler measurements 7.6-1
Measured frequency for Doppler observa- 7.6-1
tions

Mean of the 10.7 cm. solar flux values 8.7-0

for a given day

Average 10.7 cm. flux strength over 8.7-6
3 solar rotations

vi




Description

Flattening of the Earth
Transmitter frequency

Matrix containing the direct partial
derivatives of X, with respect to g

Back value of acceleration
The true anomaly of the orbit

The geometric relationship defined by
the observation type at time t.

The uni&ersal gravitational censtant
Mean agomaly of the Moon

Mean anomaly of the Sun

Hour angle of the Sun

Altimeter height {(mea:s.. .ent type)
Spheroid height

Integrator sten size

Page

First Used

5.1-1

6.6-3

8.2-6

6.3-2

3.6-11

3.6-11

8.7-7

6.1-3

5.1-2

9.3"2

Local hour angle measurei in the westward 7,4-2
direction fru.. the station to the satellite

vii
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GLO3SARY OF SYMBOLS (Cont.)

Directions

Identity matrix
Inclination of the ecrbit

Julian Ephemeris Date of desirecd
nutation calculation’

Julian Ephemeris Date corresponding tv
1900 January 0.5 Ephemeris Time

" Partition of (BT WB + VAI) associated

with kK
The 3-hourly planetary g<omagnetic index

Vector of parameters common to all arcs;
partition of x

Tidal coefficient of degree 2 called
the 'Love Number'

Direction cosine (measurement type)
Distance from a noint on the earth's
surface to the point at which the po-

tential is to be computed

Mass of the Earth

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

viii

Page

First Used

9.1-3

11.4-1

3.6-10

3.5-10

10.2-4

8.7-9

10.2-2

8.8-1

6.1’7

8.3-18

6'3'2
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GLOSSARY OF SYMBOLS (Cont.)

Description

Number of blocks un the Earth's surface
Number of parameters in x

Mean anomaly of the orbit

Mass of the Earth

Mass of the disturbing tody

Number of unadjusted densities

Number of constraint equations

n Direction cosine (measurement type)

my Mass of the disturbing body for third
body perturbations

m, Computed equivalent of the it! measure-
ment (see Cs and Ct+&t)

ng -Mass of the satellite

N Number of observations in z

N! Maximum degree coefficisnt unaffected
by the surface density layer

{-»
RIGINAL PAGE I3 pogy. ix

Page
First Used

8.3-20

8.3-27

6.1-7

8.4-1

10.2-2

8.5-4

10.1-1

303'27
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p (x)
'p (z)

P (x|2)

GLOSSARY OF SYMBOLS (Cont.)

Description

North baseline unit vector in the
topocentric horizon coordinate system

Residuals contributing to the bias
computation

Direction cosine (imeasurement type) -
Number of residuals

Number of electronic biases

Surface index of refrac;ion

The ith observed measurement value
Vector of parameters to be determined
Legendre polynoﬁi#l

Solar radiation pressure in the vicinity
of the Earth

Joint probability density function x

4+

Joint probability density function for-g

Joint conditional probability density
furcticn for x, given that z has
ocouvrred

Page

First Used

5.2~-1

11.3-1

6.1-7
11.3-1
11.3-1
7.5-5
2.2-1
2.2-1
6.3-2

8.5-4

10.1-1
16.1-1

1001"1
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p (z]x)

R, (t)

R, (t)

R, (t)

GLOSSARY OF SYMBOLS (Cont.)

Page !
Descriptioa First Used {

Joint conditional probability density 10.1-1
function for z give. that x has

occurred '
Parallactic angle in radians 7.5-1
Mean earth radius R 8.8-1
Third body disturbing potential 8.4-1
Distance from center of mass of the 8.8-1

- zarth to the center of mass of the

disturbing tody

Range vector from the center of the 6.4-3
earth to the ground station .t time t

Residual value (dm,) 11.3-1
Unit vector from center cof mass of the 8.8-1
earth to the center of mass of ths

disturbing body

Range sum measurement at time t g 6.4-1
Range vector from the center of the 6.4-3
earth to the reiay satellite at time t

Range vector from the center of the 6.4-3

earth to the tracked satellite at time t

xi
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Description

Down-1link range from the relay satellite

to the ground

Page

First Used

6.4-3

Up-link range from the groun< to the relay 5,4:1

satellite

Relay satellite - tracked satellite range

Tracked sateilite - relay satellite
range

Time derivative of Rs
Time derivative of Rlu
Time derivative of RZd

Distance irom the point of interest to
the center of mass of the earth

Distance from center of mass of the
earth to satellit-

Geocentric satellite position vector
True of date position vector of the
satellite

True of date position vector of third

body for third body gravitational effects

b, xi}

.4-1

[«

6.4-3

604"8

6.4-8

6.4-8

8.3'18

8.8-1

5'1'10

8.7'29

8.4-1
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integrator

GLOSSARY OF SYMBOLS (Cont.)

Bescription

Geocentric position vector of a tracking
station

Unit vector from center of mass of the
Earth to the satellite

True of date unit vector pointing to -
the Sun

The cosine of the enclosed angle between

T and ;ﬁ

Surface of the Earth

The first sum carry along by the
integrator

The second sums carry along by'the

v preveral

Gravitstional harmonic coefficient
of degree n, order m

The sine coefficient of surface density
constraint equgtions TS

Sample variance

A sample layer distributed on the
surface of the EBarth

xiii

First Used

Page

2.2-4

8 . ,3'- 2 5

11.3-1

8.3-25
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Description

Exospheric temperature

'Exospheric temperature

Nighttime minimum global exospheric
temperature for a given day

Average nighttime minimum global
exospheric temperature for a given
period

Geopotential field of the Earth

Spherical harmonics part of total
earth potential

Matrix containing the second partial
derivatives of the gravitaticnal
potentials with respect to the true
of date position coordinates

Central angle between the satellite
vector and a vector pointing toward
the ascending node of the orbit
Unit vector in the direction of 3

~
Covariance matrix of x -

Unit local vertical at the sf:tion.

xiv

Page

First Used

8.7-1°

8.7-7

807‘6

8.7-5

6.4-3

803'18

8.2-6

11.4“7

8.1-2

10.1-5

7.5“2
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Page . E
Symtols Description First Used ] :
. . . i f
vy a grlgrl covarlaanlmatrlx associated 10.2-1 % ;
with X,> same as EA 3
v, Matrix partition of Vi 2 priori co- 10.2-3
: variance matrix associated with a
Vk Matrix partition of VA; a priori co- 10.2-3 F
variance matrix associated with k
:
v, Matrix partition of V_, associated 10.2-6 u ;
with the rth arc * é
‘? N Weighting matrix for observations; 10.2-1 !
) same as I.1 ‘ ;
Z i
W Total potential of the Earth 8.3-18
|
X Crordinat: system direction: 2.1-3 '

a) Direction in the equatorial plane
pointing toward the Greenwich
meridian (Earth-fixed system)

b) In the direction of the true equinox

of date at o?o of the epoch day

- (inertial system)

c¢) In the direction of the true equinox
of date (true of date system)

Xy
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Symbols
X(t+at)

i(t+At)

xa

GLOSSARY OF SYMBOLS (Cont.)

Description

Position partial at time t
Velocity partial at time t

The X angle of the satellite
(measurement type)

Earth-fixed position component

True of date position component

"Matrix containing the variational

partials

Inertial cartesian position coordinates
of the relay satellite

Inertial. cartesian position coordinates
of the tracked satzllite

Time derivative of xli
Time derivative of XZi

True of date X position compnnent
of the satellite

Rotation angle for polar motion

xvi

Page

First Used

9,3-1
9,.3-2

6.1-7

3.4'1
3.4-1

802‘6

6.4-6

6.4-6

6.4-8
6.4-8

202“4

5.4-5

i

|
|
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Description

Vector of M parameters

The '"best' estimate of X

th >

The n~" approximation to x

The a priori estimate of X

The vector describing ¢he true of
date position and velocity of the
satellite

Coordinate system direction
(associated with the X and Z
directions)

Partition of X, a matrix containing
ar

(Y4

Pgrtition of X,s @ matrix containing
3T

aB‘ .

Matrix containing 3T; same as
matrix F 3B

.

The Y angle of the satellite
{measurement type)

Earth-fixed position component

xv i

Page

First Used

10.1-1

10.1-2

10.1-2

10.1-2

2.2-4

2.1-3

9.1-3

9.1-3

901'3

6.1-7

3.4-1
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GLOSSAKY OF SYMBOLS (Cont.)

De_cription

True of date position component

True of date Y position
component of the satellite

Rotation angle for polar motion

Direction of the spin axis of the Earth

for Z direction of coordinate systems.

(Taken at o?a of epoch day for inertial

coordinate system.) Compare X

The zenith baseline unit vector in the
topocentric horizon coordinate system

Earth-£fixed component; same as 2z
Observed zenith angle

True of date Z position coordinate
of the satellite

A precession angle

A vector of N independent observations

xviii

Page

First Used

3.4-1

2.2-4

5'4"5

201‘2

5.2-1

5.1-5
7.5-1
2.2-4
3.1-1

10.1-1
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GLOSSARY OF SYMBOLS (Cont.)

Page ;
Symbols Description First Used g
a Topocentric right ascension of the 6.1-5 i
satellite (measurement type)
a” Observed declination of the satellite 7.4-2 _ :
3 The set of parameteis not affecting - 2.2-3
the dynamics of satellite motion :
[ The set of parameters affecting the 2.2-3
dynamics of satellite motion
Y Parameter of differential corrections 6.4-6
for epoch element and force model parame- g
ter errors
BP.B*p ]
Cowell iutcgration scheme coefficients 9,1-2
YP ’ Y.*P ‘ .
8E; . Area of the surface density block 3.3-18
AL Correction to measurement of direction 7.5-5
cosine &
Am Correction to measurement of direction 7.5-5
cosine m '
AR Differential refraction . 7.5-1

xix
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Aa

Aa

AS

©Ae

Ap

Ap

Ay

GLOSSARY :*MBOLS (Cont.)
Page
sascription First Used

Gewngznet w¢ heating correction to T 8.7-9
Measuremeat timing bias 6.0-2
Transit time for the range Riu 6.4-3
Transit time for the range Ri4 . 6.4-3
Transit time for the range Ry4 6.4-3
Transit time for the range R, 6.4-3
‘Correction to measured X angle 7.6-1
Correction to measured Y angle 7.6-1
Equation of the equinoxes 3.5-2
Right ascension measurement coriection 7.4-1
Declination measurement corrvection 7.4-1
Nutation in obliquity 3.6-11
Correction to range measurement 7.3%-1
Correction to CNES laser range measurement 7.5-2
Nutation in longitude 3.6-8

XX
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Description

Topocentric declination of satellite
(measurement type)

Observed declination of the satellite
beclination cf the Sun
Kronecker delta

The measurewment noise vector
True obliquity of date
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SECTION 1.0
THE GEODYN PROGRAM

g

GEODYN was written for GSFC by WOLF in 1971 and has
been operational since January of 1972. A merger of the
Multi-Arc NONAME program and the GEOSTAR program, GEODYN is
greatly improved in overall capability, accuracy, and versa-
tility over its parent programs. e

A A A 1875 4

GEODYN is one of the most widely used orbit and geo-
detic parameter estimation programs in the world. It is
currently operational at GSFC on the IBM 360 '95S, '91, and
'75; at Ohio State University on the IBM 370/155; and will
shortly be operational at Wallops Island on the GE 635.
Additionally the GEODYN parent program, Multi-Arc NONAME
is operétional at the Goddard institute for Space Studies
in New York on an IBM 350/95 and at the Institut fiir Physik
and Plasmaphysik, Garching, West Germany on an IBM 360/S1.

-

e

#ma

GEODYN has been used for

° determination of definitive orbits

tracking instrument calibration

° satellite operational predictions

geodetic parameter estimation

snd many other items relating to applied research in
N satellite geodesy using virtually all types of satellite
tracking data.

1.0.1




SECTICN 2.0
THE ORBIT AND GECDETIC PARAMETER ESTIMATION PROBLEM

The purpose of this section is to rrovide an under-
standing of the relationship betwe=n the various elements
in the solution of the orbit and geodetic parameter esti-
mation problem. As such, it is a general statement of
the problem and serves to coordinate the detailed solutions
to each element in the problem presented in the sections
which follow.

The problem is divided into two parts:

) the orbit prediction protlem, and

° the parameter estimation problen.
The solution to the first of these problems corresponds to
GEODYN's orbit* generation mode. The solution to the
latter corresponds to GEODYN's data reduction mode and

of course is based on the solution to the former.

The reader should note that there are two key cheices
which dramatically affect the GEODYN solution structure:

¢ .Cowell's method for integraiing the orbit, and

® a Bayesian least squareissta;istical estimation
procedure for the parameter estimation problenm.

-;.9'1,
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2,1 The Orbit Prediction Problem

oal )

There are a number cf approaches to orbit pre-
diction. The GEODYN appreach is to use Cowell's method,
which is the direct numerical integration of the satellite
equations of motion in rectangular ccordinates. The
initial conditions for these differential equations are
the epoch position and velocity; the accelerations of
the satellite must be evalu..ed, o

The acceleration ; 'oducing forces which are cur-
rently modeiled .a GEODYN are the effects of

!
|
|
!
!
i .
!
t
!
!
!
1
\

o the gpopofential,

o surface densities,
o “the luni-solar potentials,
' o planetary potentials of Venus, Mars, Jupiter

and Saturn,
o Radiation pressure,

o carth tidal potential; and

0 atmospheric drag

Perhaps the most outstanding common feature of these forces
is that they are functions of the position of ths satellite
relative to the Earth, Sun, Moon, or.Planets and of the Sun
and Moon relative to the Earth. Only atmospheric drag is a
function ‘of any additicnal quantity,* specifically, the rela-
tive velocity of the satellite with respect to the ~imosphere.

>, Ty . -
IR Gz ¢ e 4.5
o
]

"#Not to be confused with the "fixed" parzmeters in the models.
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The accurate evaluation of. the acceleration of
a satellite therefore invsolves the solution to two

0 the accurate modeling of each force on the
satellite -~ Earth - Sun - Moon - Planet
relationship, and

o The precise modeling of the motions of the o
'Earth, Sun, Moon, and Planets.

The specific details for each model in these solutions
are given elsewhere in Sections 3, 4, and 8. The
question of how these models fit together is in effect
the question of appropriate coordinate systems.

The key factor in the selection of coordinate
systems for the satellite corbit predictior problem is
the motion of the Earth, For the purposes of GEODYN,
this motion consists of:

0 precession and nutation, and

o rotation,
We are considering here the motion of the solid body .
the Carth, as versus the slippage in the Earth's crust

(polar motion) which just affects the position of the
observer.

The precession and nutation define the varigtion

° the direction of the spin axis of the Eartl
(+ 2), and




o the direction of the true equinox of date
(+ X). :

These directions define ine (geocentric) true ~f date
coordinate system. '

|

The rotation rate of the Earth is the time rate
of change of the Greenwich hour angle eg between the
Greenwich meridian and the true egquinox of date. Thus
the Earth-fixed system differs from thé true of date

system according to the rotation angle 88.

The equations of motion for the satellite must be
integrated in an inertial coordinate system, The GEODYN

inertial system is defined as the true of date system
corresponding to 0@0 of a reference epoch.

The coordinate systems in which the accelerations

due to each physical effect are evaluated should be
( noted. The geopotential effects are evaluated in the
Earth-fixed system, and then transformed to true of ‘
date to be combined with the other effects. The others
are evaluated in the true of date system. The total |
acceleration is then transformed to the reference inertial é
g~ . system for use in the integration procedure,

:"g*ﬂﬁ: - The integration procedure used in GEODYN is a

| predictor-corrector type with a fixed time step. There

is an optional variable step procedure. As the integration
algorithms used provide for cutput on an even step, an
interpcl_tion procedure is required.‘

H
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2.2 The Parameter Estimation Problem

Let us consider the relationships between the
cbservations Oi, their corresponding computed values Ci
and P, the vector of parameters to be determined. These
i relationships are given by

) aCi )
0, -'¢C; = — dPJ. - 4o, (1)
=~ 2P.

l J ]

!

! .

;

! where

: i denotes the ith observation or association
with it, '

( de is the correction to the jth parameter, and

dOi is the error of observation associated with
the ith observation.
The basic protlem of parameter estimation is to determine
e a solution to these equations.

The role of data preprocessing is quite apparent
from these equations. First, the observation and its
computed equivalent must be in a common time and spatial
referznce system. Second, there are certain physical
' effects such as atmospheric refraction which do not
o o significantiy vary by any likely change in the parameters
* répresented by P.

g

These computations and corrections may equally
well be applied to the observations as to their computed

Py
o gy
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values. Furthermore, the relationship between the computed
value and the model parvameters P is, in general, neonlinear,
and hence the computed values may have to be evaluated
several times in the estimation procedure. Thus a con-
siderable increase in computational efficiency may be
attained by applying these computaticns and corrections

to the observations; i.e., to preprocess the data.

The preprocessed observations used by GEODYN are
directly related to the position and/or velocity of the
satellite relative to the observer at the given observa-
tion time. These relationships are geometric, hence
computed equivalents‘for these observations are ottained
by svplying these geometric relationships to the computed
values for the positions and velocities of the satelilite
and the observer at the desired time.

Associated with each mcasuresment from each ob-
serving station is a (known) statisticail uncertainty.
This uncertainty is a statistical property of the noise
on the observations. This uncertainty is the reason
a statistical estimation procedure is required for the
GEODYN paramcier defermination.

It should be noted that dOi, the measurement
error, is not the same as the noise on the observations.
The d0; account for all of the discrepancy (0;-C,) which
is not accounted for by the corrections to the parameters
¢P. These d0; represent both
° the contribution from the noise on the

' observation, and

) the incompleteness of the mathematical model
represented by the parameters F.

2.2-2
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By this last we mean either that the parameter set
being determiied is insufficient or that the functional

form of the model is inadeqguate.

GEODYN has two different ways of dealing with

these errors of observation:

1.

The measurement model includes both a

constant bias and a timing bias which may
be determined. ’
There is an automatic editing procedure
to delete bad (statistically unlikely)
measurements.

The nature of the parameters to be determined has
a significant effect on the functional structure of the

solution.

In GEODYN, these parameters are:

the position and velocity of the satellite
at epoch. These are the initial conditions
for the.equations of motion.

force model parémeters. These affect the
motion of the satellite.

station po.itions and biases for station
measurement types. These do not affect the
motion of the satellite.

Thus, the pérameters to be determined are implicitly
partitioned into a set &, which are not concerned with
the dynamics of the satellite moticn and a set B which

are.

2.2'3
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The corputed value Ci for each observation Oi is a

function of

el

op the Earth-fixed position vecteor o the
station, and
Et the true of date position and velocity vector

‘of the satellite {x,y,z,x,y,z}

at the desired observation time. When measurement biases
are used, Ci is also a function of B, the biases associated
with the narticular station measurement type.

Let us consider the effect of the given partitioning
on the required partial derivatives in the observational

equations. The iii become
)2
aC. aC aC,
—1 , (2)
aa arob 9B
¥yl % X (3)
38 x, 9f
X
The partial derivatives 3% are calied the variational

partials. While the other partial derivatives on the
right-hand side of the equations above are computed from
the measurement model at the given time, the variational
pertials must be obtained by integrati..g the variational
equations. As will be shown in Section 8, these equations
are similar to the equations of motion.

2-2"‘
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Tne need for the above mentioned variaticnal
partials obviously has a dramatic effect on any sclution
to the observational equations. In additicn tc integrat-
ing the equations of motion to -~nerate an orbit, the
solution requires that the variacional equations be
integrated.

We have heretofore discussed the elements of the
observational equations; we shall now discuss the solution
of these equations; i.e., the statistical estimation

scheme.

-

There are a nuuber of estimation schemes that
can be used. The method used in GEODYN is a batch
scheme that uses all observations simultaneously to
estimate the parameter sei.. The alternative would be
a sequential scheme that uses the observations se-
quentially to calculute .an updated set of parameters
from each additional observation. Although batch and
sequential schemes are essentially equivalent, practical
numerical problems often occur with sequential schemes,
especially when processing highly accurate observations,
Therefore, a batch scheme was chosen.

The-particular method selected for GEODYN is a
pariitioned Bayesian least squares method as detailed
in Section 10. A Bayesian method is selected because
such a scheme utilizes meaningful a priori information.
The partitioning is such that the arrays which must be
simultaneously in core are arrays associated with
parameters common to all satellite arcs, and arecays
pertaining to the arc being processed. Its purpose is
to dramatically reduce the core storage requirements ot
the program withcut any significant cost in computation

time.

2,2-5
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Theve is an interesting aside related to the use

- . e e et
of 4 priori 1inldi¥matidn

o

n proctice. The uce of a nriori
information for the parameters guarcutees that the esti-
mation procedure will mechanically operate (but not
necessa. ily converge). The user must ensure that nis
data contains information relating to the parameters

he wishes determined.

2.2-6
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. PAGE Is POOR
SECTION 3.0

THE MOTION OF THE EARTH AND ReLA12D COURDINATE SYSTLMS

The major faccor in satellite dynamics is the
gravitational attraction of the Earth. Because of the
{(usual) closeness of the satellite and its primary,
the £arth cannot ke considered a point mass, and hence
any model for the dynanics must contain at least an
implicit mass distribution. The concevn of this section
is the motion of this mass distribhution and its relation

to coordinate systems.

We will first consider the meaning of this motion
of the Earth in terms of the requisite coordinate systems
for the orbit prediction pioblem.

The choice of appropriate coordinate systems is
controlled by several factors:

. In the case of a satellite moving in the
Earth‘s'gravitational fieird, the most
suitable reference system for orbit com-
putation is a system with its origin at
the Earth's center of mass, referred to
as a geocentric reference system.

° The satellite equations of motion must be
integrated in an inertial coordinate systeua.

° ‘The Earth is rotating at a rate ) » which is
the time rate of change of the Greenwich hour
angle. This angle is the hour angle of the
truc equinox of date with respect tc the
Greenwich meridian as measured in the equatorial

plane.
3.0-1
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® The. Earth both precesses and nutates, thus
changing the direciiuns of both thc Earth's
spin axis ~nd the true equinox of date in
inertial space.

The motions of the Earth referred to here are of course
those of the '"solid body" of the Earth, the motion of
the primary mass distribution. The slippage of the
Earth's crust is considered elsewhere in Section 5.2
(golar motion).

-

3.1 The True of Date Coordinate System

Let us consider that at any given time, the spin
axis of the Earth (+ Z) and the direction of the true
equinox of date (+ X) may be used to define a right-handed
geocentric coordinate system. This svsiem is knowa as
the true of date coordinate system. The coordinate
systems of GEODYN will be defined in terms of this system.

REPRODUCIBILITY OF THE

3.2 The Inertial Coordinate Sys tem ORIGINAL PAGE IS POOR

The inertial coordinate system of GEODYN is the
true of date coordinate system defined at o0 of the
reference day for each satellite. This is the system in
which the satellite equations of motion are integrated.

This is a right-handed, Cartesian, geocentric
coordinate system with the X axis directed along the true
equinox of 0.0 >f the reference day and with the 7 axis
divected along the Earth's spin axis toward north at the same
time. The Y axis is of -ourse defined so that the co-

ordinate system is orthogonal,

. 302_'1
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1t should be ncted that the inerilal system Qiffers
frcm the true of date system by the variation in time of
the directions of the Earth's spin axis and the true
equinox of date. This variation is described by the
effects of precession and nutation.

3.3 The Earth-fixed Coorainate System

The Earth-fixed coordinate system is geocentric, :
with the Z axis pointing north along the axis of rotaticn
and with the X axis in the equatorial plane pointing
toward the Greenwich meridian. The system is orthozonal
and iight-handed; thus the Y axis is autumatically defined.

This system is rotating with respect to the true
of date coordinate system. The Z exis, the spin axis of
the Earth, is common te¢ both systems. The rotation rate
is equal to the Earth's angular velocity. Consequently,
the hour angle o _ of the true equinox of date with respect
to the Greenwich méridian {measured gestward in the equa-
torial p}ane) is changing at a rate'ﬁg equal to the angular
velocity of the Earth.

3.4 Transformation Between Earth-fixed and True of
Date Coordinates

The transformation between Earth-fixed and true of XREFIX -

date coordinates is a simple rotation. The Z axis is ~ YBFIX
common to both systems. The angle between’xi, the true XINERT
of date X component vector, and X, the Earth-fixed - YINERT
component vector, is eg, the Greenwich hour angle. The 1Gganax

Y component vectors are similarly relsted. These trans-
formations for X,» Yo, X3, Y4 which ere accomplished in

. Be-
) . . ) - . .
3.4 ~ et 3
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GEODYN by the functions XEFIX, YEFIX, XINERT, and YINERT GRHRAN

are:
_ . ;
] xe Xi cos eg + Yi sin Gg XEFIX _
. o i
° Ye = Xi sin eg + Yi cos eg YEFIX
* xl v Xe cos Bg - Ye sin ag i XINERT ‘
. §
., = +
9 Y1 Xe sin eg Ye ccs ez) YINERT

The transformation of velocities requires taking

into account the rotational velocity, 63, of the Earth-

(: firxed system with respect to the true of date reference
frame. The following relationships should be noted:

- i
. X Ay |
- e . Ye . - -xe 1) |
- 90 28 5

- g o0, |
'...v %
¥ X Y i
;‘ _a_e_i - -Yi ;_;i_., - ‘-i (2) .
t”, é g g

I c |
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The velccity transformations are then OBSDOT
PREDCT

X = [Xi cos eg * Yi sin eg] + Ye ag

Y 8-{-Xi Sin_eg + Yi cos egl - xeeg

4
]

[Xe cos Gg

]
L]

[xe sin 6g + Ye cos eg] + xi es

(” The brackets denote the part of each transform which is
a transformation identical to its coordinate equivalent.

. These same transformations are used in the PREDCT
' transformation of partial derivatives from the Earth-
iixed system to true of date. For the kth measurement,
2 Cy» the partial dexivative transformations are ex-
% plicitly:
: aC oC, - ? : _
i X - k cos ez - -EE sin 9s (%)
; X4 X, aY’ |
P »
bt
£ .
3 aCk ack
$ tloey— $.2 0 - = COS 6
; ax, 8 oy, 8




ey i.e., to transform from true of date to inertial, of pre-

PREDCT

9C 3C oC
‘” o [ K sin o+ - cos 6 1 (4)
* 3Y; laxe & v, gj
oC aC .
+ | —— ¢co0s §_ - — sin @ ]
g P g g
3Xe oYe
ac, | ac ac
—X e} —Kcos e - —Ksine (s)
X, X, & oy,
9 oC ?C
~g§ e | ~K sin g + —K cos 6 {6)
Y, . 19X, &y, 8
(f The brackets have the same meaning as before, XEFIX
YEFIX
These above transforms are used or computed XINERT
using the functions XEFIX, YEFIX, XINERT, or YINERT YINERT
in three GEODYN subroutines: GRHRAN, OBSDOT, and GRHRA.
PREDCT . ' OBSDOT
' - PREDCT

3.5 Computation eof BE

; The computation of the Greenwich hour angle is quite GRHRAN
important because it provides the orientation of the Earth . F :
P relative to the true of date system. ‘The additional sffects, .

.

cession and nutation are sufficiently small that early orbit
analysis programs neglected them. Thus, this angle is thc
(:3 major variable in relating the Earth-fixed systeu to the . :
inertial reference frame in which the satellitezeqnatiane«*if
of motion are integrated. : TR “
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| E ’rhc e\‘ralnotign l_’_\f ﬁg is diS(‘.lQSf:‘d in detail in GRHRA.\'
the Explanatory Supplement, Reference 1. eg is computed F
in subroutines GRHRAN and ¥ from the expression:

ag = ego + At1 91 + At2 e2 + Aa (1).
g where
ity is the integer number of days since
| January (.0 UT of the reference year,
f iy is the fractiocnal UY part of a.day for
the time of interest,
) (f eg is the Greenwich hour angle on
? O January 0.0 UT of the reference year,
81 is the mean advance of the Greenwich
hour angle per wean sclar day,
™ .
e 8, is the mean daily rate of advance of
L YO Greenwich hour angle (2v+9,), and

Aa is tha equation of equinoxes (nutation in
right ascension).

, The initial 6 is obtained from a table of JANTHG .

values containing the® Greenwich hour angle
oL January 0.0 for each year. This table is in
Conmon Block CGEQS and is accessed in JANTHG.

3.8-2
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The equation of eguinoxes, Aa, i5 obtained from GRHRAN
subroutine EPHEM, which calculates the quantity from F
the ephemeris tape data according to the Everett fifth- EPHEM

order interpo]ation scheme.
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3.6. Precession and Nutztion . EQN
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The inertial coordinate system of GEODYN, in NUTATE
which the equations of motion arc integrated, is de- PRECES
fined by the true equator and equinox ~f date for REFCOR
020 of the reference day. However, the Zarth-fixed

coordinate system is related to the tru= equator

and equinox of date at any given instant. Thus, it is
necessary to consider the effects which cuhange the
orientation in space of the equatorial plane and the
ecliptic plane. ' ]

These phenomena are

® the combined gravitational effect of the
" moon and the sun on the Earth's equatorial
bulge, and

. the effect of the gravitational pulls of
the various planets on the Earth's orbit.

The first of these affects the orientation of the
equatorial plane; the second affects the orientation
of the ecliptic plane. Both affect the relationship
between the inertial and Earth-fixed reference systems
‘cf GEODYN.

The effect of these phenomena is to cause pre-
cession and nutation, both for the spin axis of the
Earth and for the ecliptic pole. This precession and
nutation provides the relationship between the inertial
system defined by the true equator and 2quinox of the
reference date and the "instantaneous" inertial system de-

fined by the true equator and ecquinox of date at any

306'1
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given instant. Let us consider the effect of each of EON
these phenomena in greater detail. - EQUATR
NUTATE
The luni-solar effects cause the Earth's axis PRECES
of rotation to precess and nutate about the ecliptic . REFCOR

pole. This precession will not affect the angle be-
tween the equatorial plane and the ecliptic (the
“obliquity of the ecliptic'™ hut will affect the
position of the equinox in the ecliptic plane. Thus
the eifect of luni-solar precession is entirely in
celestial longitude. The nutation will affect bot%,
consejuently we have nutation in longitude and nuta-
tion in ckTiquity.

The effect of the planets on the Earth's orbit
will cause both secular and periodic deviations.
However, the ecliptic is defined to be the mecan plane
of the Earth's orbit. Periodic effects are not con-
sidered to be a change in the orientation of the
ecliptic; they are considered to be a perturbation

of the Earth's celestial latitude. (See Reference 1,)

The secular effect of the planets on the
ecliptic planc is separated into two parts: planetary
precession and a secular change in obliquity. The
effect of planetary precession is entirely in right
ascension.

In summary, the secular effects on the orienta-
tions of the equatorial plane are:

3.6‘2
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® luni-sclar precession,
® planetary precession, and
& a sezular change in obliquity,

As 1s the convention, all of these secular effects are
considered under the heading, "precession." The
periodic effects are

° nutation in longitude, and
e nutation in obliquity.

In terms of the GEODYN system, subroutine PRECES
determines the secular effects; i.el. the rotation
ma2trix which will transform coordinates from the mean
equator and equinox of date to the mean equator and
equinox of 1950.0.

Subroutine NUTATE detevmines the rotation matrix
to transform from true equator and equinox of date to
mean equator and squinox of date. This accounts for
the periodic effects.

GEODYN has two different routines for transform-
ing from one epoch to another, These are EQUATR and

REFCOR, EQUATR will take either mean or true coordinate

input and will output in either mean or true coordinate

8.

REFCOR will take only true coordinate input and will output
only true coordinates. The same general algorithm is used

in both:

3.6-3
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NUTATE
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matrices.

Rotate from true
equinox of input

Rotate from mean
of 1950.0,

Rotate from mean
of outpat date.

Rotate from mean
if required,

3.6.1 Precession

to mean equatoer and

date if required.

of 1950.0 to mean

to true of outpuvt date

-

All of these rotationg are of course done with rotation

Subroutine REFCOR will transform between any
time of da; 3nd 0@0 on a given reference day.
this transform by interpolating linearly beiween the ro-
tation matrices for the day of the input and that day plus

The precession of coordinates from the mean
equator and equinox of one epoch ty to the mean equator
and equinox of ty is accomplished very simply. Ex-
amine Figure 1 and consider a position deccribed by the
vector X in the X;:X5,X; coordinate system which'is

3.6-4
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PRECESSION

L]

Direction of Mean Axis of Motion at 'o

]

Direction of Mean Axis of Motion at t]

[N

Direction of Mean Equinox at 1,

Direaction of Mean Equinox at B

Fig.¥: Rotation Between Mean Equator & Equnox of Epoch
' and ,
Mean Equator & Equinox of Epoch 3
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defined by the mean equator amnd ey invi of ty- Lik

{2

wise, consider the same position as described by the
vector Y in the Yl,Yz,Y3 system defined by the mean
equator and cequinox of ty. The expression relating
these vectors,

L AN G e s 5

Y = R3 ('Z) RZ (e) R3 ('C) x» (1)

follows directly from inspecticn of Figure 1.

It sn.uld be observed that 90° - 7 is the
right ascension of the ascending node of the equator
of epoch t, reckoned from the equinox of ty» 20° - 2
is the right ascension of the node reckoned frem tne
equinox of ty and 8 is tae inclination of the equatcr
of ty to the epoch of ty-

Numerical expressions for thcse votation angles
2,08,¢ were devived by Simon Newcomb, based vartly upen
theoretical considerations but primarily upon actual
observation. (See References for the derivations.)
The formulae used in GEODYN are relative to an ianitial
epcech of 1950.0:

¢ = 2305 953 204 65 x 10°% + R109 749 2 x 107142 (2)
+ Ri7g 097 x 16°2%3
2 = R3g5 957 204 65 x 107 % « R397 204 9 x 10°1%a% (3)

+ Rig1 031 x 107203




p 8 = X266 039 997 54 x 10°

- Ra13 902 x 1072043

6 R 14 .2 (4)

i - 7154 811 8 x 10 "4

PRECES
d

The angles are in radians. The quantity d is the
nvmber of elapsed days since 1950.0.
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3.6.2 Nutation

The nutation cf coordinates between mean and
true squator and equinox of date is readily accomplished
using rotation matrices. Examine Figure 1 and cor:zider
a positioun described by the vector X in the XI’XZ'X3
system which is described by the mear equator and equi-
nox of date. Likewise, comsider the same position &s
described by the vector Z in the Z1s2,,27 system de-

o~

fincd by the true equater and equinox of date. The
expression relating these vectors,
= _. i ) - _ \
Z = Ry (-ep) Ry (-89} Ry (=) X, (2

follows directly from inspection of Figure 1.
The definition c¢f these angles are:
€r - true obliquity of date

€, - mean obliquity of date

Ay - nutation in longitude

Note that ep - € is the nutation in. obliguity.

-

The remaining p-oblem is to compute the nutations
in longitude: and obliquity. The algorithm used in
GEODYN was developed by Woolard and is ccded in sub-

routine EQN.

3.6-3
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Figure 1:

NUTATION

Mean Ooliquity of Date

[ )

M .

«“ = True Obliquity of Date

" Direction of Mean Equinox of Date
Yr * Direction of Time Equinox of Date

Rotation Betwezen Mean Equator & Equinox of Date
and
True Equator & Equinox of Date

. 346"'9,



Woolard's solution 2= it appears 1in references 1 EQN
through 4 is reproduceus in Tzbles la, 1b, and lc. The
Feriodic terms have been rearranged in descending order
of magnitude. The subprogram EGN comput.s the nutation
in lengitude and obliquity by using th-~ algorithm in
Tables 2a, 2b, and 2c. I» Table 2a the angular units
of the fundamental arguments have been changed to
radians aand the time units have been changed to days,
Talbles 2b and 2c are identical to Tables 1b and 1c
~ften neglecting ail periodic terms with coefficients
less than V001 and all secularAportions of the co-
efficient which are less than Y0601. The expressions
for true obliquity of date and nutation in right as-
cension appear in Table 2d.

The definitions of the variables used in these
solutions and additional notation are as ifollows:

J = Julian Ephemeris Date of desired calculation

241 5020.5 (Julian Ephemeris Date corresponding
to 1900 January 0.5 Epnemeris Time)

o
|

T = (J-JD)/36525 = Julian ephemeris centuries of
36525 Ephemeris Days elapsed from Jo to J

4 = J~Jo =~ Ephemeris Days elapsed from J to Io

e

3.6-1¢
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COCRDTNATE SYSIEM: Geocentric, eclipiic and

mean equinox of date:

be

Ay

Aa

mean anomaly - Moon
mean anomaly - Sun

mean angular distance of the Moon from its
asc:nding node

mean elongation of the Moon from the Sun

longitude of the mean ascending node of the
Moon's orbit

mean obliquity of date
true obliquity of date
nutation in obliquity
nutation in longitude

nutation in right ascension
(equation of the equinoxes)

3.6-12
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REPRODUCLBILITY O}T‘ TEHE P
ORIGINAL PACE 1S POOR

? s
- TABLE 1a  FUNDAMENTAL ARGUMENTS ‘
~ g = 206°06"16459 + 13257198°50'56479 T + 33909 T2 » 0518 1° %
g g'=3358°28'33100 +  997359°02'59u10 T - uS9 T - 0120 T *
; F o= 11°15°03920 + 13427 82°01'30154 T - 11uss TZ - w0012 T3
| D = 350°44°14195 + 3

57134°08'31"23 48 T? + 10080 TO
461845 “0059TZ + 0080 T

Q = 259°10'59V79
= 23°27'08.26

+

T

12367307°06'51718 T - SY17 TZ - 20068 T°
T
T

€M

|
| TABLE 1b  NUTATION IN OBLIQUITY

B Series No.

- dc = + (+0Y00091 T + 9'2100) cos ( + 8) 1

| + (0900029 T + 0.5522) cos ( + 2F - 2D+ 20) 2

+ (+0.00604 T - 0.0904) cos ( +28) 3

€ + (-0.00005 T + 0.0884) cos ( + 2F +20) 4

+ (-0.00006 T + 0.0216) cos ( + g' + 2F - 2D + 20) 5

+ 0.0183 <cos ( + 2F + Q) 6

+ (-0.00001 T + 0.0113) cos (+ g + 2F £20) 7

B + (+0.00003 T - 0.0093) cos { - g' 4+ 2F - 2D + ) 8

- - 0.0066 cos ( +2F - 2D+ @) 9

o . - 0.0050 cos (- 8 + 2¥ + 20) 10

‘hg%: ‘ - 0.0031 cos (+ g + Q) 11

O + 0.0030 cos (- g + 0 12

3 - 0.0024 cos (-2g + 2F + Q) 13

i + 0.0023 cos (+ g + 2F + Q) 14
: + 0.0022 cos (- g +#2F - 2D + 20) 15 »
s + 0.0014 cos ( + 2F ¢ 2D + 20) 16 :

: . 0.0011 cos (4 g + 2F - 2D + 29) 17

% + 0.0011 cos (+2g + 2F +20) 18

- 0.0010 cos (- g + 2F + Q) 19

+ 0.0008 cos ( . + g + Q) 20

- 8.0007 cos (- g + D+ Q) 21

306"12
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ORIGINAL PAGE, g p o
TABLE 1b (Cont.)
- Series Nc.‘
- 0.0007 cos (- g - 20+ Q) 22
+ 0.0007 cos (+ g + 2g' + 2F - 2D + 2@) 23
+ 0.0005 cos { - gf + ) 24
+ 0.,0005 cos (- g + 2F + 2D + ) 25
- 0.0003 cos ( + g' + 2F + 21) 26
+ 0.0003 cos ( - g' + 2F + 29) 27
+ 0.0003 cos (+ g + 2F + 2D + 20) 28
+ 0.0003 coz ( + 2D + Q) 25
+ 0.0003 cos (-2g + 2D+ Q) 30
+ 0,0003 cos ( - g' +2F -2D+ Q) 31
- 0.0003 cos (+ g + 2F - 2D+ Q) 32
+ 0.0003 cos ( - 2D+ Q) 33
+ 0.0003 cos ( + 2F + 2D + Q) 34
- 0.0002 cos (+2g + 2F - 2D + 28) 35S
+ 0.,0002 cos ( - 2g' + ¢F - 2D+ Q) 36
- 0.0002 cos (+2g - 2D+ Q) 37
4+ 0.00062 cos (+2g + 2F + Q) 38
- 0.0002 cos ( + g' 4+ 2F -2D+ Q) 39
+ 0.0002 cos (-2g + 2F + 20) 40
TABLE 1c  NUTATION IN LONGITUDE
Series No
AY = + (-0%01737 T - 17V2327) sinm ( « ) 1
+ (-0.00013 T - 1.2729) sin ( + 2F - 2D + 2Q) 2
+ (+0.00002 T + 0.2008) sin ( + 20) 3
+ (-0.00062 T -~ 0.2037) sin ( + 2F + 22) 4
+ (-0.00031 T + 6.1261) sin ( + g ) S
+ (+0.00001 T ¢+ 0.0675) sin (+ g Y 6
+ (+0.00012 7 - 0.0497) sin ( g' *+ 2F - 2D+ 22) 7
+ (-0.00004 T - 0.0342) sin ( + 2F + 2d) 8 3

i S
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REPRUUL\.LL).\lfiﬂ e '
ORIGINAL PAGE I35 POOR

t TABLE 1lc (Cont.)

Series No.

- 0.0261 sin (+ g Q) 9

+ (-0.00005 T + 0.0214) sin ( - g' + 2F - 2D + 20) 10

- 0.0149 sin (* g - 2D ) 11

+ (+0.00001 T + 9.0124) sin ( 4+ 2F - 2D+ Q) 12

+ 0.0114 sin (- g + 2F +20) 13

+ 0.0060 sin ( + 2D ) 14

+ 0.0058 sin (+ g -+ Q) 15

. - 0.0057 sin (- g '+ Q) 16

B - 0.0052 sin (- g + 2F + 2D + 20) 17

o + 0.0045 sin (-2g + 2F + Q) 18

| + 0.0045 sin (+2g ' - 2D } 19

- 0.0044 sin (+ g + 2F + 9) 20

: - 0.0032 sin ( + 2F + 2D + 20) 21

( + 0.0028 sin (+2g )y 22

+ 0.0026 sin (+ g +« 2F - 2D + 29) 23

- 0.,0026 sin (+2g + 2F + 2Q) 24

+ 0.0025 sin ( + 2F Y 2%

B - 0.0L21 sin ( + 2F - 2D ) 26

g~ + 0.0019 sin (- g + 2F + Q) 27

- + (-0.00001 T + 0.0016) sin (  + 2g ) 28

- ™ + (+0.00001 T - 0.0015) sin (  + 2g' + 2F - 2D + 29) 29

n - 0.0015 sin { + g + Q) 30

E + 0.0014 sin (- g +20+ Q) 31

B - 0.0013 sin (+ g -2+ Q) 32

.. - 0.0010 sin ( - - ' + 1) 33

N + 0.0010 sin (+2g - 2F ) 34

. - 0.0009 sin (- g . 2F + 2D + @) 35

& + 0.0007 sin { ¢ g' + 2F » 20) 36

¢ - 0.0007 sin (* g+ & - ) 37

;“;% ¢ + 0.0006 sin (+ g + 2D ) 38
.

; 3 % 3.6-14
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- 0.0006 sin ( - g' + 2F + 2a) 39
- 0.0006 sin (+ g + 2F + 2D + 2a) 40
+ ©0.0006 sin {+2g + 2F - 2D + 28) 41
- 0.0006 sin ( 2D + Q) 42
- 9.0005 sin (-2g 2D + gq) 43
- 0.0005 sin ( - g' +2F-2D¢+ 0) 44
+ $.0005 sin ( g + 2F - 2D + Q) A4S
- 0.0065 sin ( 2D + Q) 46
- 0.0005 sin ( + 2F ¢+ 2D + Q) 47
- 0.0004 sin ( - 2g' + 2F - 2D+ q) 48
REPRODUCB]L,
{ Mr OF
ORIGINA] THE
-~
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TABLE 2b NUTATION In OBLIQUITY

Series No.

AL + 82100 cos { + Q) 1
+ 0.,5522 cos ( + 2F - 2D + 2Q) 2
- 0.0904 cos ( + 29) 3
+ 0.0884 cos ( + 2F + 2Q) 4
+ 0.0216 cos ( + g!' + 2F - 2D + 2Q) S
+ 0.0183 cos [ + 2F + Q) 6
+ 0.0113 cos (+ g ~ + 2F + 29) 7
- 0.06093 cos ( - gt + 2F - 2D + 20) 8
- 0.0066 cos ( + 2F - 2D + Q) 9
- 0.0050 cos (- g + 2F + 2Q) 10
- 0.0031 cos (+ g + Q) 11
+ 0.0030 cos (- g + 1) 12
- 0.0024 cos (-2g + 2F + ) i3
+ 00,0023 cos (+ g + 2F + Q) 14
+ 0.0022 cos (- g + 2F + 2D + 28) 15
+ 0.0014 cos ( + 2F + 2D + 2Q) 16

- 0.0011 cos (*+ g + 2F - 2D + 2Q) 1
+ 0.0011 cos (+2g + 2F + 2Q1) 18
- 0.0010 cos (- g + 2F + Q) 19

3,6-17
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TABLE 2c¢ NUTATION IN LONGITUDE

Series MNo.

A, = + (-0V01737 T - 17%2327) sin ( + 1
1.2729) sin ( £ 2F - 2D + 29) 2
0.2008) sin ( + 20) 3
0.2037) sin { + 2F + 20) 4
0.1261) sin ( + gf ) S
0.0675) sin (+ g ) ) ¢
0.0497) sin { g' + 2F 2D + 2Q) 7
0.0342) sin ( + 2F + 20) 8
0.0261 sin (+ ¢ + 2F Q) 9
0.0214) sin ( - ¢p' + 2F n - ) 10
0.0149 sin (¢ g 2D ) 11
0.0124) sin ( + 2F 20« Q) 12
0.0114 sin (- g + 2F + 2Q) 13
0.0060 sin ( 2D ) 14
0.0058 sin (+ g + Q) 15
0.0057 sin (- g + Q) 16
0.0052 sin (- g + 2F 2D+ 2Q) 17
0.0045 sin (-2g + 2T + Q) 8
0.0045 sin (+2g 20 ) 19
0.0044 sin (+ g + 2F + Q) 20
0.0032 sin ( + 2F + 2D + 2Q) 2}
06.6028 sin (+2¢g ) 2z
0.0026 sin (+ g + 2F - 2D + 2Q) 2%
0.0026 sin {+2g + 2F + 2Q) 24
0.0025 sin ( + 2F ) 25
0.002) sin ( + 2F - 2D ) 26
0.0018 sin (-~ g + 2F + Q) 27
0.0016) sin ( + 2g° j 28

i
{
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peading,

TABLE 2c¢ (Cont.)}

; . 0.0015, sin (  + 2g' + 2F - 2D + 20) 29
| - £.0015 sin ( + g + Q) 30
if + 0.0014 sin (- g + 20+ Q) 31
i - 0.0013 sin (+ g - 2D+ @) 32
o 0.0010 sin (- - g e Q) 33
| + 0.0010 sin (+2g - . ) 34 |
E
; Note: 7o ch= time units for coefficient of 1st term, use
| .475 565 0% = 01737 T

Table 2d: True obliquity of Date and Nutation in ~ight ascension

CT = EM + Ag

A o = Ay cos €y
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SECTION 4.0 : a
LUNI-SOLAR-PLANETARY EPHEMERIS , |
|

GEOLYN uses precomputed equi-spaccd ephemevis data EPHEN j’
. : : . i
in true o date coordinat~s for the Moon, the Sun, Venus,

Mars, Jupiter and Satura. The actual ephemerides are com-

puted using Everett's fifth-order .nterpolation fcrmula., ! |
The interval between ephemerides: i.e., the tabular interval

h, is 0.5 days for the Mcon and the Fquation of the equinoxes
and 4.0 days for the other bodies.

The CLODYN ephemeris tape contains 211 cocrdinates
in tyue of date. The quantities on the tape are

a) geocentric lunar positions and the corresponding
2nd and 4th dificxrcnces,

b) solar positions relative to the earth-moon
’ barycenter and the corresponding 2nd and 4th
differences,

c) heliocentric positions of V~anus, sar<, Jupiter
and Saturi: 2nd the corresponding 2nd and 4th
Aifferences,

d): the equatior of the equinoxes and its 2nd and
4th differences.

The format oX this tape is presented in Volume I[1I
of the GEGDYN documentatic:

This ephemeris tape was prepared from a JPL planetary
ephemeris tape corresponding to "JPL Development Ephemeris
Nuimber 69," Refcrence 1. The program which generates the
GRFODYN ephemeris tape is described in Volume IV of the
GEODYN documentation.

4.0-1
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The {ormulation for Everet-'s fifth-orde~ interpo-

R S WO AT A G Jotara s Mo e

lation 1is
) 2
y(tj+sh) = Y5 F0(1-5)+dj F,(1-s) ()
4 ,
+ d] F4Ll"$)
b y.. Fo(s)+d.2, E (s)
Yje1 F0 je1 28 -
- 5
! d.:)*_1 Fg(s) g
where EPHEM
F,ls) = s
Fo(s) = {(s-1] (s) (s+11]/6
Fy(s) = [{(s-2) (s-1) (s) (s+1) (s+2;]/1%0

The quantity s ig >f course the fractional interval for
the interpolation. The quantities dj are cbtained from

the ephcmeris tape.
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SECTION 5.0 P
’ THE OBSERVER ’

This section is councerned with the position and

cocrdinate systems of the observer. Thus it will cover

. geodetic station position coordinates,
|

s topocentric coordinate systems,
: ® time reference systems, and -
’ ° polar motion.

The geodetic station position coordinates are 2
convenient and quite common way of describing station
(* positions. Consequently, GEODYN contains provisions for
) converting to and from these ccordinates, including the
transformation of the covariance matrix for the de.er-
mined Cartesian station positions.

The topocentric coordinate systems are coordinate
systems to which the observer references his observations.

) The time reference systems are the time systems in

h which ‘he observer specifies his observations. The
transformations betw~en time reference systems are also
given. These latter are used both to coavert the ob-
servation times to Al time, whicu is the independent
variable in the equations of motion, and to convert the
GEODYN output to UTC time, which is the generally recognized
system for outpnt, ‘

S
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4'1

5.0'1

&
F




e s e

The positions of the observers in GEODYN are referred
ii to an Earth-fixed system defined ty the mean pcle of 1900.5
and Greenwich. They are rotated intc the Farth-fix

T ervretnam
- JIJP’VI'!

of date at each observation time by applying "pclar motion",
which is considered tc be slippage of the Earth's

crust.

5.1 GEODETIC COORDINATES

|

f Frequently, it is more convenient t. define the
: station positions in a spherical coordinate system.

i The spherical ceoordinate system uses an oblate spheroid
g or an ellipsoid of revclution as a model for the gec-

i metric shape of the Earth. The Earth is flattened

} slight;y at the poles and bulges a little at the

' equator; thus, a cross section of the Earth is approxi-
i mately an eliipse. Rorating an ellipse about its
shorter axis forms an cblate spheroid.

et e et - ——— A S s e

An oblate spheroid is uniquely defined by specify-
-1ng two dimensions, conventicnally, the semi-major axis
- and the flattening, f, where f = —%E. (see Figure 1)

- This model is used in the GEODYN svstem. The
‘ spherical coordinates utilized are termed geodetic co-
S ordinates and are defined as follows:

() $ is geodetic latitude, the acute angle

. between the semi-major axis and a line
through the observer perpendicuiar to
the spheroid.

‘;’*fﬁ—'
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:
.

.;,'%“

i




? » is east longitude, the angle measured
castyavd in the eanztorial plaae between
" the Greenwich meridian and the chserver’s

meridian.

. h is spheroid height, the perpendicular
height of the observer above the refer-

ence spheroid.

) Consider the problem of coavertime from ¢, A, and
h to Xe, Ye’ and Ze’ the Earth-fixed Caitesian coordinates.

The geometry for zn X-Z plane is illustrated in
Figure 1. The equation for thic eilipse is

2

X% : - al (1)
(1-¢%) o

where the eccentricity has been determines  om the
flattening by the familiar relationship

el = 1- (-H%. (2)

501‘2

SQUANT
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Diagram of Gecdetic and Ceocentric Latitudes

Figure 1
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The equation for the normal to the surface ul the SCUANT 3
. i

t elipse yields i
dX !

tan ¢ = - — (3) P

dz L

' !

}

3

|

' By taking differentials on equatior (1) and applying
!
3 the result in equation (3), we arrive at
|
|

Z 2
- = (1-e”) tan ¢ (34}
X .

The simultaneous solution of equations (1) and (4) for
X yields

. ‘ a cos ¢ '
( X = (s)
/i;ez sinz ¢

From inspection of Figure 1 we have:

- ' X
LS cos ¢ = i (6)

and hence, applying equation (5),

N = . &)

5.1‘4



For an observer at a distance h from the refer- SQUANT

ence ellipsoid, the observer's coordinates (X,2) become

X = Ncos ¢ + hcor ¢ (8)
and

Z = N (l-ez) sin ¢ + h sin ¢. {(9)

The conversion of ¢, X, and h to Xe’ Ye’ and Ze

is then_

X {N+h) cos ¢ cos A

e
Ye = (N+h) cos ¢ sin A {10}
z, (N+h-e% N) sin ¢

In the GEODYN system this convarsion is performed in
subroutine SQUANT.

The problem of converting from X,, Y., and L, to
¢, X, and h is more complex as we cannot start with a
point on the reference elilipsoid. For vhis recason the
determination of accurate values for ¢ and h requires

an iterative technique.

5.1"5
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Conversion to Geodetic Conrdinates

For the problem of converting station coordinates PLHOUT
in Xe’ Ye’ and Ze to ¢, X, and h we know that N 1s on the
order of magnitude of ar Earth radius, and h is a few

meters. Hence

h << N (11)
The Earth is approximately a sphere, hence . '
e << 1. ' (12)

Therefore, again working in our X-Z‘plane (see Trigure 1),
N sin ¢ = Z. {13}

From Figure 1 (see also equation (9)) we have

2

t > Ne® sin ¢, ‘ (14)

or, for an initial approximation,

t 2 et z.




The series of calculations to be performed on

-

each 1iteration is:

Zt = 7 4+ t (16)

!
: ! 1/2
; 2 2 2
| N+h = (ke A P Zt) an
f sin ¢ = 2_ / (18)
| t/ (h) :
| N=a/ (19
f /Zl~e2 sin2 $ )1/2

( t = Ne® sin ¢. | (20)

When t converges, ¢ and h are computed from sin ¢ and
(N+h). The computaticn of A is obvious; it being simply

th:: » = tan’? [y (21)
e /x
o f e :
This procedure for determining ¢, A, and h is that coded
; in subroutine PLHOUT.

PLHOUT

)
w
5.1-7
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There is a different procedure in subroutine

¥
{ PREDCT for computing ¢, A, and h for a satellite. This
1s becausc the accuracy vegGuirlwents 2re less stringent

This differcnt procedure is also used in subroutine
DRAG to evaluate the satellite he.ght for subroutine DENSTY.

Because e << 1, we may write an approximation

to equation (9):

Z = (N+h) (1-e?) sin ¢ = Z, . (22)

From Figure 1,
' —
( X = (N+h) cos ¢ = V§§ + Yg (23)

and by remembering equation (2),

¢ = tan . (24)

5.1-8
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The equ.tion for the ellipse, equation (1}, DRAG :
yields the following formula for the radius of the PREOCT %
ellipsoid:

a(1-9)
Vil 4 22 - — (27)

YU - (25-£%) (-sin” ¢7)

rellipsoid N

where ¢~ is the geocentric latitude. After applying the

Binomial Theorem, we arrive at

3 .20 .2 .. .3 .2 .4 ,] "
Tellipsoid ~ 2 {1 - (f+x £7) 3in” ¢° + 5 £7 sin” ¢ J(LB)

wherein terms on the order of £3 have been neglected. The
{(spheroid) height may then be calculatea frem r, the geo-
centric radius of the satellite:

h = r - (29)

rellipsoid, or
—-2- r 3 - I3 T
h .= ‘/X§+YZ+L8 - a+ kaf+%af2) s1n2¢ -%af251nq¢‘ (50)

The sin% of the geocentric latitude, >in ¢, is of

e
course T




fv;' Subroutine VEVAL 2lso requirzs the partial VEVAL %
Q#ﬁ i\ derivatives of h with respect to position for the diag i
fjf variatienal partials computations: ' i
8 —— = — + 2 sin ' |jaf + — af (31)

A | i Z r. 1 37

R | -3 af? sin’ %' __eg L+ - €

R | ’ r~ r 3r,

o !

'jﬁf where the

ff:f T, are the Earth-fixed components of T; i.e.,
:ﬁf ( In addition to the conversion of the coordinates INGUPT

i : themselves, GEODYN also converts covariance matrices for SQUANT

_4: the station positions to either the ¢, A, h system or PLHOUT ; ;
o the Earth-fixed rectangular system. This is accomplished  VCONV :
 ;¢ in INOUPT, SQUANT, and PLHOUT by calling VCONV to compute }
. ol Yy VCONV
o o~ Vour = P VNP {32}

where VOUT is the output covariance matrix, VIN is the

il
—

e

input covariance matrix,
relating the coordinates
coordinates in the input

and P is the matrix of partials
in the output system to the
systen,

5.1-10




These partial derivatives (ir P) which GEODYN

requires are for X_, Y , Z_ with respect to ¢, &, h and

vice versa.

(<%
©
1

(=3
#

L3
-

|

& =
-~
o

> A
y(b

=

o A

=
L}

o -
=

A

Lo >4
——
-

|

LY
n~<

ok
3
2

+

These partials are:

1
y 2.2 2 .
X2, (1-edy/ ((1-eBy 2 xZevhyezly xByy?
1
Y,z (1-efy/-efy i xiavdyen?y odevdy?
1
2.2 2 2.2 . 2.2 2. 202,37
(x2+¥2) (1-ef) 7 (-e?)? (2erdy « 22y (x3vD)
2.2 ) 33
Yo/ (Xg*Yo) (33)
X/ (Xe+¥e)
0
3
%% (-eza(1~ez)sin¢ cos¢/(1—ezsin2 ¢)7 -Zecos¢/sin2¢)
€
3
3

5% (-eza(l-ez)sin¢ cos@/(l-ezsin2 ¢)7 ~Zecos¢/sinz¢)
e

3

= %% (—eza(l-ez)sin¢ cos¢/(1-ezsin2 ¢)7 ~d cos¢/sin?¢)
e

e

=

J

i v

i ¢

w

501‘11

PLHCUT

.




A

BXe

B

3¢

sh

H

]

i Nez aosZ o}
-singy <o2sA i N+h -

e —
1-e” sin ¢

-{N+h) co~4 sinX

COSP CcosA

-sing sini §N+h - 5

(N+h) c~~¢ cosx

coséd sinl

ezsin2 o

Coso n+N (1~e2) 1+
1-e%sin ¢

sing

The partials for converting from Xe,Ye,Ze to

¢, A, h are computed in subroutine PLHOUT. Those for

converting fron ¢, A, h to xe’Ye’ze are computed in
subroutine SQUANT.
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The observations of a spacecraft are usually

nd therefore an additionsl

set of reference systems is used for this purpose. The
origin of thase¢ systems, retferreu to as topocentric
coordinzec syscems, is5 the obse~2: on the sur{2cc¢ of
the earth.

THrrocentric right ascension and declinaticn dre
measured in an inectial system whose 7 axis and funda-
mental plane are parallel toc those of the geocentric

v

inertial <ystem. The X axis in this case zlso points

toward the vernal equinox.

Tk other major topocentric system is +he Earth-
b

fiv_. system determined bty the .enith and the observer'’s

horizog plane; Titis i< an orthonormal system dexined
by N, E, and Z, which are unit vectcrs which point in
thc came directions as vectors from the observer
pointing mnorth, east, and toward the zenith. Their

definitions are:

(- sin ¢ cos A}

N -= - sin ¢ sin A {1)
i cos ¢
- sin }

E = ccs A (2)

f COS ¢ COs X
cos ¢ sin A (3)
sin ¢

~
"
| e
=N

5.2-1
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where ¢ is the gcodetic latitude and X is th2 east SQUANT
longitude cf the cohserver (see Secticn 5.1). PREGCT
ORSDOT

These N, E, and 7 vectors are computed in
SQUANT for use in PREDCT and OBSDOT.

This latter svstem is the one tc which such
measurements as azinuth and elevation, X and Y angles,

2nd directicn cesines are related.

It should be ncved that the reference systems for
range and range rate must be Earth-fixed, bul the choice of
origin is arbitrary. In GECDYN, range ani range rate are
not considered to be topocentric, but rather geocentric,

5.3 "TIME REFERENCE SYSTEMS

Three »nrincipai time systems ave currsn.., in
u: eph.aeris tine, atomic time, and universal tine.

Ephemeris time is the independent variable in
the eguations of motion of * 2 sun; this time is the
uniform mathematical time. The corvections that must
be applied to universal time to obtain ephemeris time
are published in the American Ephemeris ar~4 Nauticai
Almanac o7 alternatively by BIH, the "Bureau Inter-
national de 1'tHeure."

Atomic :ime is 2 time based on the oscillations
of cesium at zero field. In practice Al time is based
on the mewun frequency of oscillation of several cesium
standards as comparcd with the frequency of ephemeris
tirz. This is the time system in which the sateliite

equations of moticn are integrated in GEODYN.

5.3-1




( Universal time is determined by the rotation of
e Farth. UT1l. the time rcference system used ip . .
GEODYN tc position the Earth, is universal time that :
Las been corrected for polar motion. UTC is the time
of the transritting clock of zny of the «ynchronized
transmitting time sigrnals. The frequency of a UTC
clock is pre-set to a predicted frequency of UTZ time,
where UT2 time is universal time corvected for ob-
served polar motion and extrapolated seascnal variation
in the speed of the earth's rotaticn.

The reader who is unfamiliar with these time

systems should refer to one of the annual reports of

BIH.
( 5.3.1 Time System Transformations
The time system transformations are between any TDLF
combination of the Al, UT1, UT2, or UTC refer. Sys-
tems. These transformations are computed in the g
GEODYN system by subroutine TDIF. ‘
The time transformation between any .nput time 3
system and any output time system is formed by simple
addition and subtraction of the following set of time :
differences: ;
e UTZ - UTL : -
!
e Al - UTi * *
e Al - UTC
C 1
5.3-2 }
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The following equation is used to calculate
(UT2-UT1) for any year:

(UT2-UT1) = + 5022 sin 2#t-5012 cos 2mt (N
- ?006 sin 47t+5007 coc ...

t = {fraction of tne tropical year
elapsed from the heginning of the
Besseliau yéar for which the
calculation is made. .

" (1 tropical year = 365.2422 days)

This difference, (UT2-UT1), is also known by the name
“seasonal variation."

The time difference {A1-UT1) is computed by
iinear interpeclaiion from a table o7 values.
The spacing for the table is every 10 days, which
matches the increment for the ""final time of emiss.on”
data published by the U.S. Naval Observatory in the
bulietin, "Time Sigrals." The differences for this
table are determined by

(A1 - UT1) = (Al - UTC) - (UT1 - UTC)

The values for (UT1 - UTC) are obtained from "Circula~- D",
BlH. The differences (A1 - UTC) are determined according

to the following procedui~.

TDIF




The computation of (Al1-UTC) is simple, but not : :
so straightforward, UTC co..tains discontinuities both
in epoch and in {requency because an attempt ic made
to keep the difference between a UTC rlock and a UT2
clock less than 1. When adjustmentys are made, by
interrational agreement they are madez in steps of 21
and only at the beginning of the month; i.e., at o@c UT
of che first day of the month. The general formula which

is used t: compute (Al-UTC) is

(A1-UTC) = ag *+ a; (t-to) ' (2)

i Ty

Both a2, and 2, are recovered from tables. The values
in che table for a, are the values of [AL-UTC) at the
time of each particular step adjustment. Tae values

TANAE SO SO . iks MR Sl (SRR e

in the table fecr ay are the values for the nev rates s
of change betweer the two systems after each step
adjustment.

Values for ab and 2, are published both by the
U.5. Naval Observatory and BIH.

5.4 POLAR MOTION

Consider the point P which is definza by the POLE
intersection of the Earth's axis of rotation at some
time t with the surface of the Earth. At some time t+At,
the intersection will be at some point P' which is difigrent
than P, Thus the axis of rotation appears to be movinggrela- .
tiv> to a fixed position on the farth: hence the <erm '"mption

of the pole."

5.4-1




Le us establish a rectangular coordinate syst ™ POLE
rentered at a point F fixad un the zurface of the Ea. .
with F near the point P around 19C0, and take measure-
ments of the rectangular coordinates of the point P
during the period 1900.0 - 1906.0. It is observed that
the point P moves in roughly circular motion in this
coordinate system with ¢wo distinct pericuds, one period
of approximately 12 months and one period of 14 months.
We define the mean position of P during this period to
be the point Py , the mean pole of 1900.0 - 1906.q.

The average is taken over a six year period in
order toc average out both the 12 month period and the
14 month period simultaneously (since 6 times 12 months =
72 months and 72/14 = 5 periods approximately of the
14 month term). The radius cf this observed circle
varies between 15-35 feet.

In addition to the periodic motion of P about PO’
by taking six ycar means of P in the years after 1900 -
1906, called Pm’ there is seen to be a secular motion
of the mean position of the pole away from its original
mean pesition P in the years 1900 - 1906 at the rate of

5.4-2
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approximately 0%0032/year in the direction cf the . POLE
meridan 60° W, and a libration motion of a ﬁcriod of
approximaicly 24 ycars with 2 coefficient af about

0%022. The short periodic motions over a periol of

six years average about 02 - OV3.

S5.4.1 <cffect on the Position of a Station

This motion of the poles means that the observing
stations are moving with respect to our "Earth-fixed"
coordinate system used in GEODYN. The station positions

must be corrected for this effect.

The position of the instantaneous or true pole
is computed by linear interpolation in a table of ob-
served values for the true pole r-lative to the mean
pole of 1900 - 1905. The table increment is 10 days;
the current range of data is from Decembe. 1, 1960 to
June 1, 1972. The user should be aware of the fact
that this table is expanded as ncw information becomes
available. If the requested time is hot in the range of
the table, the value for the rlosest time is used.

The data in the table is iu the form of the co-
ordinates of the true pole relative to the mean pole
measured in scconds of arc. This data was obtained from
“Circular D" which is published by BIH. The appropriate
coordinate system and rotation are illustrated in Figuras
1 and 2.

A s vt e e —— s e et e e e

i
'




b
PA = Center of Coordinate System
= Adopted Mean Pole

X3 = Direction of ;st Principal Axis (along meridian

directed to Greenwich)

X, = Direction of Z"d Principal Axis (alcag 90°
West meridian)

Py~ = Instantaneous Axis of Rotation -

x,y = Coordinates o/ PT Relative to PA Measured
in seconds of arc

Figure 1: Coordinates of the Instantaneous nxis of Rotation

-~

%,¥ = Rectangular Coord}nates of PT Retative to PA

Xlxa Plane = Mean Adopted Equator Defined by
Direction of Adopted Pole PA

Yof, Flane = Instantaneous Equator Defined by
Direction of Instantaneous Pole PT

C

Figure 2: Rotation of Coordinate System from Adopted Mean Pcle
System to Instantaneous Pole System

S.4-4
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g’ Consider the station vector X ir a system attached <P |
' to the Earth of the mean po’e and the same vector Y i
in the "Earth-fixed" system of GEODYN, The transforma- t
tion between Y and X consists of a rotation of x about

the XZ axis and a rotation of y about the X1 axis;

that is
Y = R (r) R, (x) X . (1)
—‘ - -,
1 0 0 cos x O sin xl
= 0 cosy siny 0 1 0 X
0 -siny <cos vy sin x 0 cos xj
(“ Because x and y are small angles, their cosines
' are set to 1 and their sines equal to their values in
radians. Consequently,
1 -0 -X
Y = |xy 1 vy i X (2)
X -y 1
In the GEODYN system, the positicn of the true POLE
pole is computed by subroutine POLE. The station vec- TRUEP
tors are referenced to the true pole by subroutine

TRUEP.
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5.4.2 Partial Derivatives .
— \
The coordinate rotaticn is defined as TRUEP
N _ PREDCT
U= R (y) Ry(x) ¥ (1)
where , .

. station vector in a system attached to the
Earth of the me.~ pole, ‘

x!
(]

[ 4

W = station vector in a system attached to the
Earth oi the true pole.,

Rlﬁy) = matrix of rotaticn about tha Xl axis

Rz(x) = matrix ¢f rotation about the X, axis

$.4-6 °*
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August 11, 1973

The rotation matrices are.

1 0 D
thy) = 0 cosy siny
J =Siny cos Yy
COS X c -sin X
Rz(x) = 0 1 0
 sin X 0 cos X N
~ Defining
u = w i+uyjorugk (2)
WV = Wy i+ w, j ¢ wg K (3)
and performing the matrix multip'ications,
Uy = W, 20S X - Wy sin X )
n, = wi Sin x sin y + Wy €OS ¥ + Wq COS sin y .
fug = Wy slf.k €O3 Y -~ Wy sin y + Wg COS X COS ¥y
]
‘!
5.4-7 ’ \
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The fundamental quantitics required for the esti-

mation of polar motion param:icrs are

o 3.
s and ~——
ox o)

where m 1s the satecllite observation.

Using the chain rule PREDCT
32 . am aul . am auz ) om au3 .
ax aul ox au2 ox au3 8xX
(5)
32 ) Inm aul . on auz . 3m aué
3y au1 3y auz oy a1
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August 11, 167:

Tre partial derviatives of tho satellite observation

with Tespect to the true station coovdinates are currently
available in GEODYN, The partial derivatives of the

station coordinates with respcct to the polar motion
parameters are:

g
i
i
%
3111 ]
= Wy sin x - Wy CO5 X %
8x fg
su
S )
oy
.auz
—— = W. €OS X Siny = W, s$in x siny
1 3
3x
(6)
u,
= = Wy sin x ¢cos y - Wo ST .y + W3 COS X COS Y
3y 4
e
303
—= = W, WS XcLsy -
9X

Wy 5in X COS Y

Wy COS Y - Wg COS X Sin'y




August 11, 1 73

Since the angles x and y are small, the fvilowing

’2 approximations may be made,

o

o

P

oy
sin x = Xx . cos x = 1 . S
(7} A

siny = vy gos y = 1 i

i

i

i

‘Sups .ituting equutiors (7) inte eguationc (6) TRUEP

(-3
f4
|
fi
RS U s

v
“W X - W
°x i 3
- ?s.:;
aul . 0 ‘20
— §<~
ay %
: X
{ 1
&
4
ou, i
T WY Ty Xy (8) §
g-i‘
’ 3u, f::
— W, X = I, Y W i d
2 3 :
ay 1 ‘r
w o TsT &
) {
| £
¥
u P
—3 = -w, x Y =Wy Wa Y b i
4 3y 1 H
- e
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AND RELATED DERIVATIVES
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MEASUP :MENT MODEL

The observations in GEODYN are geocentric in nature.

The computed values for the observations are obtained by
applying these geometivic relationships to the computed
values for the relative positions and velocities of the
satellite and the observer at the desired time.

In addition to the geometric relationships; GEODYN
allows for a timing bpias and for a constant tias to be
asscciated with a measurement type from a given station.
Both of these biases are optional.

The measurement model for GEODYN is therefore

Covpnt = fy (r, T, FSb) +b+f, (r, r, ?6b]°At ¢9)
where
Ceant is the computed equivalent of the cb-
servation taken at time t+At,
T is the Earth-fixed position vector of
. the satellite,
Top is the Earth-fixed position vector of .

the station,

6.0-1



sy,

ft(F,?,Fob) is Lie geometvic reizctionship defined
vy the particular cobservation type at
time t,

b is a constant bias on the measurement,
and

At is the timning bias associated with the
neasurement.

The functicnal dependence of f, was explicitly stated for
the general case. Many of the measurements are functions
only of the position vectors and are hence not functions
of ~he satellite velocity vector ¥. We will hereafter -cfer
to ft'without the explicit functional dependence for roira-
tioral convenience.
k4

As was indicated earlier in Section 2.2, we require
the partial derivatives of the computed values for the
measurements with respect to the parameters being determined

(see also Section 10.1). These parameters are:

° +n2 .tue of date position and velocity of the
satellite at epoch. These correspond to the
inertial position and velocity which are the
initial conditions for the equations of motion,

e  fource model Laiameters,
° the E-rth-fixed station positions,
o measurement biases.
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Thes= parameters are implicitly divided into a s¢t
o which are not concerned with the dynamics of satellite

motion, and a set B which are,

The partial derivatives associated with the param-
eters a; i.e., station positions and measurement biases
are computed directly at the given observation times, The
partial derivatives with respect to the parameters B; i.e.,
the epoch pocition and velocity and the force model param-
eters, must be determined according to a chain rule:

Ceant _ Craar %t (2)
9B axt 9B

where
ft is the vector which describes the satellite

position and velocity in true of date co-
ordinates.

aC
+
The partial derivatives — t are computed directly at the
: ax X
given observation times, but the partial derivatives ‘E;
9

may not be so obtained. These iatter relate the true of
date position and velocity of the satellite at the given
time to the parameters at epoch through the satellite

dynamics. )
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The partial derivatives - are called the varia-

>

tional partials and are obtained by direct numerical
integration of the variaticnal equations. As will be
shown in Section 8.2, these equations are znalogous
to the equatiors of motion.

Let us first consider the partial derivatives of
the computed values assoc.ated with the parameters in B.
We have

oC
t+At _ (3)

Y3 3x. 3B

Note that we have dropped the partial derivative with
respect to B of the differential product %tAt. This is
because we use first order Taylor series approximation
in our error model and hence higher order tzrms are
assumed negligible. This linearization is also com-
pletely consistent with the linearization assumptions
made in the solution to the estimation equations
(Section 10.1).
. . . af i
The partial derivatives —— are computed by

Xy of of,

transforming the partial derivatives —— and —
ar ar

from the Earth-fixed system to the true of date system
(see Section 3.4). These last are the partial deriva-
tives of the geometric relationships given later in this

section (6.2).

T e s g e



In summary, the partial derivatives ieguired feor
aCt*At
3B

computed value for a given measuremeznt, are the variational

computing the , the partial devivatives of the

partials and the Earth-fixed geometric partial derivatives.

The partial derivatives of the computed values with
respect to the staticn positions are simply related to
the partial derivatives with respect to the satellite
positic.. at time ¢t:

Coant _ oty o At “
arob arob or

where T is of course the satellite position vector in
Earth-fixed coordinates. This simple relationship is a
direct result of the symmetry in position coordinates.
The function f is a geometric function of the relative
position; i.e., the differences in position coordinates
which will be the same in any coordinate system.

The partial derivatives with respect to the biases
are obvious:

aC
At L (s)
ab

ac , |
—tedt . ¢ (6)
3 (at) _ \
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In the remainder of this section, we will bc con-
cerned with the calculation of the geometric function
ft and its derivatives. These derivatives have tcen
shown above to be the partial derivatives with respect
to satellite positicn and velocity at time t and the

time rate of change of the function, ft'

The subroutine breakdown for the calculation of

these quantities in GEODYN is as follows: The geometric
relationships and the geometric partial derivatives are

implemented in subroutine PREDCT. The time rates of
change are coded in subroutine OBSDOT.

The data preprocessing also requires some use
of these formulas for computing measurement equiva-
lents. These are then also implemented in subroutine
PROCES.

600"6
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6.1 THE GEOMETRIC RELATIONSHIPS

The basic types of observation in GEODYN are:

[ ] ‘rifht ascension and declination

° range

e Tange rate

° £ and m direction cosines i
. X and Y angles

° azimuth and elevation

'0 altimeter height and £ate

The geometric relationship which corresponds to each of
these observations is presented below. It should be noted
that in addition to the Earth-fixed or irertial coordinate
systems, some of these utilize topocentric coordinate
systems. These last are presented in Section §5.2.

60]:‘1
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Range:

Consider the station-satellite vector:

p = T - Fﬁb (1)
where

T is the sateilite position vector (x,y,z) in

the geocentric Earth-fixed system, and
?Qb is the station vectcr in the same system.

The magnitude of this vector, p, is the (slant)
range, whi~*» is one of the nieasurements.

Range rate:

The time rate of change of this vector p is
5 =T ()

as the velocity of the observer in the Earth-fixed sys-
tem is zero. Let us consider that

P = p; ' ' (3
where

u is the unit vector in the direction of 7.

6.1-2
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Thus we have

= pu + pu (4)

o

The quantity p in the above equation is the computed value
for the range rate and is determined by

p = u-. T (5)

Altimeter height:

The altimeter height and rate are unique in that the
satellite is making the observation. While these are
actually measurements from the satellite to the surface
of the Earth, they are taken to be measurements of the

" spheroid height and the time rate of change of that

quantity for obvious reasons. Using the formula for
spheroid height previously determined in Section 5.1.
we have: '/

3 2 (2
Ha.e = T -8, - Py a, f (;) (6)
£a £2) (2)2
+ (a + -8 -
e ;e "

6.1'3
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where
a, is‘the Earth's mean equatorial radius,
f is the Earth's flattening, and
Z is s, the z component of the Earth-fixed

satellite vector.

Altimeter rate:

The altimeter rate is determined by a chain rule:

Halt = VH .

alt

The required partial derivatives are given in the section

on geometric partials.

T
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Right asrension and declination:

The topocentric right ascension a and declination
8§ are inertial coordinate system measurements as illus-
trated in Fivsure 1. GEODYN computes these angles from
the componeants of the Earth-fixed station-satellite vec-
tor and the Greenwich hour angle §

g
) p
« = tan ! (——2-) + 0 . (8)
P g
1
4 [P .
§ = sin~? (—2) (9)
p .

The remaining measurements are in the topocentric
horizon coordinate system, These all require the N, Z,
and E (north, zenith, and east base line) unit vectors
which describe the coordinate system.

6.1-5
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There are three direction cosires associated with
the station-satelli-e vecto: in the topocentric system.

These are:
1 = u . E (10)
m = u . N

>

-

“The £ and m direction cosines are observation types for
CGEODYN.

X and Y angles:

The X and Y angles are illustrated in Figure 2.
They are ~omputed by

X, = tan"! (i) (11)

Y = sin™t (m) (12)

601’7
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FIGURE 2. X and Y Angles
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ii Figure 2 illustrates the measurements of azimuth PREDCT
and elevation. These angies arz comnuted by:
-1 2
Az = tan —_ (13)
m
E, = sin! (n) (14
L : )
PREDCT

6.2 THE GEOMETRIC PARTIAL DERIVATIVES

The partial derivatives for each of the calculated
geometric equivalents with respect to the satellite positions
and velocity are given nere. All are in the geocent~ic,

' Earth-fixed system. (The s refer to the Earth-fixed
(_ components of T.)

Range:

ap

ari

Range rate:

lo:
Ve
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Jude
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p
1 [, e,
p p
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FIGURE 3. Azimuth and Elevation Angles
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aH T. 1 {2
al£=_£+_<23ef+333f2)(—\ (4)

or . T T
1

92z zxi -
ari rz

H 3 .
alt . -——(v Halt) (5)
8ri Brl
32 Halt 1 ari T T. (6)
9T, or t]or rz
i) j
2 2 3
2 - -
R (Za f+3aef)(;) 6 a, £ (r) X
Y [-rv; 32 T, o2 szr, T
—-z com— = .l————"-—- i
Y T ar1 T arj T
A 4 | I
T
r,aj




=
3
a
1)
o
; Q.
)
_ ~
1 ~ ~ ~ (]
) =) -
! c ~ e ~
1
i
m '
A
' ><
} o
)
(I ) f \
R N 4
; M 0
f =
' Ud N
i 0 . .
: © v
) b 1 ’
| ) N _ ~ o~
‘ —t o o L .
! — g
_ ' [ o
; — | X - o
o~
__ ha " & ~ &l
} 2
j o ved - Q + ~l e ' o™
; o - ~t ' a +
! » e T g —" ~
_ o 3] _/ _fm. Q
| + _ e
i
I G ] L] fl  § [ ]
4 o~ > -4
m ® o _M & 8| = a_ ~ .o_r .o_r
¢ (L] vl (3] (1 [3-] - (4] @® o [4-]
| a g
w L I —1 . [ ] | “ o
L |
' v e
| 0 &
! < &
, b= —
__ 5o 0
| 2 a
i
| -y - w

el o e e e e e s




e s 1 2 s tpries b s R bR . e b

PREDCT

(11)

T Py P
p /plz+ozz

96
arz

(12)

VP TPy
p2

98

ar3

ir&.vlnlla‘urm»r.rft Lt nn e

v
(4]
=
ord
172]
[*}
(&
=
o
opd
-
(3]
-3}
ot
ord
[=]

) -~
[ 2] -
4 ()
St S
| ] | L]
e . ord
= 3
ol E
' [
el od
m 4
[F——— | M|
- | a - | a
[} n
ol ot
o o & | o
-] o ® c©

{(15)

6.2’5




X and Y Angles:

2
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At TIME DERIVATIVES

The derivatives of each measuremert type with
respect to time is presented below. All are in the
Earth-fixed system.

Range:

b= 8. F (1)

Range Rate:

The range rate derivative deserves special atten-
tion. Rewembering that

p =T, (2)
We write
L pP'= u-p (3)
g ~ Thus
?
. P -u.'5+uo-6 (4)

1

’
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Because QRSDOT

d ~ ~ * A
— (pu) = pu + pu (5)
dt

ol
]

we may substitute in Equation 4 above for a:

oo 10 . LN .-_ A;‘,
p= —(p-p-pu-p)+up (6)
(o) .
or, as
p= u-p ' ()

we may write

) (8)

In order to obtain p, we use the limited gravity potential
(see Section 8.3).

" 2
GM C,h 2 .
20 0
U = - (1 . ._;I_S_ P, ( sin ¢)) (9)
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N
o

B pppcra - oo s

» -,

rect to the Earth- OBSDOT
fixed position coordinates of the satellite is the part of
a due to the geopotential:

U GM 3 ag C20 2 z
— = - — 1 - —— 5 sin®¢- 1-2 — r,
ari T 2r ri

We must add to this the effect of the rotation of the
coordinate syster. (The Earth-fixed coordinate system
rotates with respect to the true of date coordinates with
a rate ég’ the time rate of change of the Greenwich hour
angle.)

The components of p are then

o au . [ . 3 .

P = ;;I + [x cos eg + y sin 98] eg + T, Og (11)

) aU . . . . Y . Y .

p, = ;;; + [-x sin 8, +ycos 6,] 6, - 1, 0, (12)

, aU U |

Py = — = — (13)
3r3 0z

The bracketted quantities ZuLove correspond to the coordinate OBSDOT
transformations ceded in subroutines XEFIX and YEFIX. These XEFIX

transforms are uscd on the true of date satellite velocity YEFIX

components x and §. The interested reader should refer to

Section 3.4 for further information on transformations

betwecen Earth-fixed and true of date coordinates. .
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It should be noted that all ovantities in ihis

formula, with the exception of those quantities bracket-

ted, are Earth-fixed values.

(The magnitude t is in-

variant with respect to the coordinate system transforma-

tions.)

The remaining time

here:
Right ascension: a =
Declination: § =

Direction Cosines: & =

.

derivatives are tabulated

o (1-ug)
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6.4 472 LLTTE-SATELLITE TRACK:* 7

The fue ! aortal ek stellite mecasurement usecd by
the GEODYN progr.o re showr o 3lsure 1, A signal is transmiiicd
from a ground tracking sta:c - ~n to onc satellite where it is
then relayed to a sccond :::n2ilite. The second satellite in

turn rclays the signal bacl to the first satellite where it is

relayed to the original ground station, The fundamental measure-

mernt mac~ is the transit time for this relay process. Properly
corrected for various time delays, this measuremcnt can be trans-
formed into the sum of the range from the ground station %o the
first satellite and the range from the first satellite to the
second satellite. The time rate of change of this measurement .

is also handled by the GEODYN program.

6.4.1  Satellite-Satellite Tracking Measurement Calculations TROS™: ;

Given the ephemeridcs of the two satellites, the range
sum type reasurcment can be calculated in a rather straight-
forward manner. The most important aspect of the calculation
is to insure that the corrcct times are used for the satellites

and ground station. That is, transit times and transponder

4elays wust be correctly accounted for.

To sce the times needed for the range sum calculation,

refer to Figure 1. Let

the range sum measurement at time t

R(t) =

Riu = the up:link range from the ground to the
relay satcllite

Rog - the relay satellite-tracked satcllite range

60.4-1
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2u
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1d

e -
Rg(t),Rl\t) sRZ(.t)"

at .
{

Aty =

8tia =

The range sum measurement is expressed in terms of the range

componcnts as

ZR_(t) = Ryy + Ry + Ry + Ryy (1)

Each of the ranges on the right hand side is a function of two
Expressing the ranges in terms of the range
vectors from the center of the earth and explicitly indicating
;he times, the measurement R, is cxpressible as

different times.

W—

the tracked satcllitc-relay satellite range

the down-1ink range from the relay satellite

to the ground

the range vector {rom the center of the
ezrth to the ground station, relay satellite,
and tracked satellite, sespectively, at

time t

the transponder delay in the relay satellite

the transponder delay in the tracked satellite

the trarsit time for the range R1u
the transit time for the range RZd
the transit time for the range Rou

the transit time for the range R.

2d
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R (L) = |ﬁ1(t-6t1d) - Eg(t)l

+ le(t-Atld—dl-AtZU) - R](t-Atld-dl)l
(2)

+ !RlFt-Atld-dl~At2u-d2-At2d) - Ig (t-Atld-dl-AtZU-dz

+ IR, (-8t 4-2d, -8t -d,-At, )

R - - - -d. - . i
Rg(t oty 4 2d1 A, dz At,, Atlu)‘

This expression shows that the ground station and satellite
positions must each be known for several different times.
Summariziag:

(
) a. Ground station position needed at times
1. t
b b, Relay satcllite position needed at times
» .
1. t - Atld
2. t - Atld‘dl
3. t - Atld'dl' Atzu-dz'AtZd
4. t - Atld'Zdl'Atzu'dz'Atzd
; i &
i c. Tracked satcllite position needed at times
y ' ,

ko t - Atld'dl-ﬁtzu

~

6.4-4
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The transponder delay which is most critical is that of the

SR 0 IR I T WU S £ an FYNN - -4
tracked saicvliiie vecausée, 107 UNiC nncd tracking

~
asily b

Anmntyrinc
gemelTrices

]
£

2

the range rate between the rclay and tracked <atellite is
expected to be much higher than the greund-relay satellite
range rate. This maximum rate can be only cn the order of

5 x 103 m/sec, however, and a 4 usec transponder delay would
be necessary to introduce a measurcment computation error

of 1 cm. Since actual S-band transponder delays are generally
no longer than this, we may neglect transponder delays in

the measurement calculation and still retain accuracies at the
centimeter level.

With the neglect of transponder del-ys, we are left
with 2 times for which the ground station position must be
computed, 2 times for which the relay satellite position must
be computed, and 1 time for which the tracked satellite
position must be computed. Eqn. (2) can then be written in

the slightly simpler looking form:
& Y d & ROD OOHﬂLIﬁl(ﬂ THE

R
ORIGINAL PAGE 1S POO
2R_(t) = Iﬁl(t-Atld)- Rg(t)l

TWOSTA
+ Iﬁz(t-btld-Atzg)-ﬁl(t-Atld)|

(3)
+ |ﬁ1(t-At]d-AtZu-AtZd)-ﬁz(t~At1d—At2u)|

+ |§1(t4At1d-At2u-At2d)-Kg(t-Atld-At2u4At2d-At1u)|

This is the form used by GEODYN to calculate the range sum
measurement. The range sum rate measurement is calculated from
the time derivative of this expression. To see how this cal-
culation is performed, note that, e.g., the final down leg
range is

IR, (t-8ty4)-F ()] = {[Rl(t-Atld)-ﬁg(t)lollﬁl(t-b‘t;d}'lig(tv)])uz‘

.8
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T et

and that its time dcrivative is

[ﬁl(t—atld)-ﬁ (t)}={ﬁ1(:-5t =T (1))

% [“1(“' tm)‘ﬁg(tl]= - _ N 12
{[Rl(t-Atld)-Rg(t)]'[Rl(t:Atld)—Rg(t)]}

The calculation thus requires the satellite velocities, and

the station inertial velocity, at the same times as were

needed for the range sum computation. The satellite velocities
are always computed by the GEODYN integrator along with the
satellite positions, so only the station inertial velocities

are needed as alditional input to the range sum rate calculation.

. 'l"'“w'r—"wrgmm-ﬁamwmwﬂr WM

6.4.2 Partial Derivative Calculations for Satellite-Satellite
Tracking Measurerents

.

'Diffeiential coirections for epoch element and force
model parameter errors require,the cowputation of the partial
derivatives of the measurements with respect to these adjusted
parameters. Let y be one of thase parameters. Then, since
the range and range rate measurements are explicit functions
of the satellite coordirates only, the partial derivatives

of Rs, e.g., can-be written from Eqn. (1) as

R, 1 [oR, 9Ryy 3Ry, akld] 3X) 4

= + + +
Y 7 L?XI; E2OPRREE ) *FUREE ) SPi I T
. 1], Ry ] Xy (s)
Ty Wy W REPRODUCIBILITY OF THE

@RK3N31.PAGEIE3POOR
where

Xyg» Xy are the inertial cartesian position coordinates
of the relay and tracked satellite, respectively.
Summation over i from 1 to 3 is implied.
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v Mo,

Eqn. (5) is shown in a somewvhat simplificd form, since the

C]‘C G

coordinates at slightly differcnt times.
computations,

ewm on v

+h.n
UpGi: vud

diffcrent range sum componcais d

For partial derivative
however, this slight viwe diftercence is negligible,
with
respect 1o the y parameters are obtained by independently inte-
grating the appropriate variationai equations for cach satcllite
in the same manner in which GEODYN integrated these equat.ions

for one satellite.

The partial derivatives of the satellite ccerdinztes

(5) can be simplified somewhat by noting that

Eqn.
3R aR ]
2d | . 2d (6a)
axli 3X2i
3R oR
Z2u 2u
> G (6b)
1i 2i
anzd ] 3R2u L (6¢c)
9Xy4 RSP
R, P (6d)
RSP 25T
Using (6a) - (6d), Eqn. (5) can be written TNOSTA
O OWy W Wy \ W W

and is a sufficiently accurate form for the range sum partial
derivative caiculation. '

_ The partial derivatives of the ringc sum rute memwsure-
ments are calculated in a aimil&r mnnuor cxcbpt that vclocity




v

partials must now be included. Thus, if down lcg ratc partials
are approximatecly equal to up leg rate partials,

[ ) . . * i d > -

BRS i anlu axli . 3R1u axli . aRZd 3X1i . 3R2d axli
3y axli Y lei Yy axli Y axli Y
X aRZd aXZi . aRZd 3X21 (8)
3X2i Y axZi 3y

As can pe secn from Eqn. (4), reiations comparable to Eqn. (5)
hold also for the rates, and Eqn. (8) :a~ be written

ak, ok, X, Ry, k. 3R, (:axli aX,

-s . _lu + + - 41 - ‘
‘ WOSTA
Y axli Y axli oY axli \ Ay ov
’ / . Iy . '9)
axli v oY
643

» -~ T I*'v‘-‘,r Paa—
o Vel et Y st B




6.5 PCE MEASUREMENTS TYPES' PREDCT

The PCE measurement types are sets of elements pre-
cisely determined in previous GEODYN orbit determination
Tuns.

The inertial Cartesian elements obtained from inter-
polation of the integrator output are used as the calcu'ated
measurements for PCE types, x,y,z,Xx,y,z.

The partials of these measurements are

9x 9x qx 3x Ix 3x 1 0 0 ( 0 0
9x 9y 9z 9x 3y 3z
9y 3y 3y 3y 3y 3y 6 1 0 0 ¢ O
9x 3y 37 3x dy 9z
2z 2z 3z 3z 3z 3z 6 0 1 0 0 0
9Xx 3y 9z 9ax 3y 9z

=
9x 3x 3x 3x 3qx x o 0 0 1 0 0
3x 3y 9z 3¥Ix Ay 3z \
dy 3y 3y 3y 3y ¥y 6 0 0 0 1 0
dx 9y 3z 3x 9y 32
9z 3z 3z 3z 3z 2 6 0o 0 0 ¢ 1
9x 9y 3z 3x 3y 32

/

The osculating elements obtained by conversion of the
above mentioned Cartesian elements are used as the calcuiated
measurements for PCE types, a,e,i,fl,u, M.

The partials for these measurements are given in
t Section 11.4. o )
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6.6 VLBI MEASUREMENT TYPES
TWOSTA

The geometry for the VLBI measurements used by the
GEODYN program is shown in Figure 1. A signal is transmitted
from one satellite tv two ground stations.

VLBI Time Delay Measurement Calculation:

Tg T2 T (1)
p
T, = 1
c .
P2
Ty, = —
c
Tg - is the time delay measurement.
T, - is the light time for the first ground station.

- is the light time for the second ground station.
Py - is the first station-satellite range.
Py - is the second station-satellite range.

¢ - is the velocity of 1light.

’ ‘9,5"1 k
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Figure 1. Geometry of VLBI Measurement Type
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Partial Derivative:
TWOSTA

-~

3t NE N 3P,
..__.g.:-.[__z__ ‘] (2)

eT. clar. aTr.
1 1

ap Bpl
y —— are given in Section 6.2.

oT . oT.
1 1

and the partials

VLBI Fringe Rate Measurement Calculation: - .

o= - [’;z - 51] | (3)

- C

o~

where
f - is transmitter frequency.

Py - is the time derivative of Py

Py - is the time derivative of °1'

Partial Derivative:

[ 3
1

av, f£[2p, p .
._\:F....[__z.. ___l] | (4)

Ipy 30y .
where the partials —=, —= are given in Section 6.2.
ari ari
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6.7  AVERAGE RANGE RATE MEASUREMENT TYPES THOSTA

Figure 1 illustrates the geometry of the average range
rate measurement types. A signal is transmitted from a
transmitter to a satellite, then a ground station receives
the signal from the satellite, and,

Pr - is the transmitter-satellite range

PR - ijs the satellitzs-receiver range

RR - is the position vector of the receiver

ET - is the position vector of the transmitter

Rg - is the position vector of the satellite.

If tg is the recorded time of the end of the doppler
counting interval at the receiver and, if T is the length
of the counting interval, then the average Trange rate
measurement is

> pR(tG’tS) + p'l~(t5’t4) - OR(tS’tZ) - pT(tZ’tl) (1)

p =

2T

Where it is necessary to iterate for the satellite
and traasmitter times,

Pp(te,rte)
R'°6’'"S
tg = tg - —
[

6.7'1
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Figure 1. Geometry for Average Range Rate Mecasurement
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TWOSTA
pr{te,t,)

t, = to - TTo 5 A
~ o C
t3 = t6 -7
-2 3

c
. (S 1ot
1 2

c -

and where

)
=1

(71
~
[ d

7]
et

pR(tﬁ’tS) = lKR(tﬁ)

pT(t59t4) = |§T(t4) - Ks(ts)l

(2)
pR(tS’tZ) = IKR(ts) - Rs(t2)|
pT(tZ’tl) = !ﬁf(tl) - KS(tz)‘

A two-way average range rate measurement is a special
case of the three-way average range rate measurement (i.e.,
the receiver and the transmitter are the same). Therefore,

pp = Pg » Fp * Ry

6.7.3




The Pzoriial Derivatives .are

35 1 [apR(tﬁ,tS)
P +

TWOSTA

-

apT(tS’t4) apR(tS’tZ) aOT(tZ’tl)

9T, 27 L Bri 3ri Bri

ap

where the partial ——- is given in Section €.2.

ari
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SECTION 7.0

The function of data preprocessing is to convert
and correct the data. These corrections and conversions
relate the data to the physical model and to the co-
ordinate 2nd time reference systems used in GEODYN
The data corrections and conversions implement-:d in
GEODYN are to

. transform all observation times to Al time

at the satellite

. ‘refer right zscension and declination ob-
servations to the true equator and equinox
of date.

® correct range measurements for transponder

delay and gating effects

. correct SAC right ascension and declination
observations for diurnal sberration

° correct for refractinn

° convert TRANET Doppler observations into
range rate measurements.

:

These conversions and corrections are applied to the dsta
on the first iteration of each arc. Each of these pre-
processing items is considered in greater detail in the
subsections which follow.
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7.1 TIME PREPROCESSING

ify the

(4]

The time reference system used io 30
time of each observation is determined by a time
identifier on the data record. This identifier also
specifies whether the time recorded was the time at

the satellite or at the observing station.

The preprccessing irn GEQODYN transforms all
observations to Al time in either GEOSRD or DODSRD.
If the time recorded is the time at the station, it
is converted to time at the satellite. This con- ~
version is applicd in subroutine PROCES using a cor-

rection equal to the propagation time between the
spacecraft ana the observing station. The station-
satellite distance used for this correction is computed
from the initial estimate of the trajectory.

There is special preprocessing fdr'right
2scension and declination measurements from the GEOS
satellites when input in National Space Science Data
Center format. If the observation is passive, the
image r. arded is an observation of light reflected
from the satellite and the times are adjusted for
vropagation delay uas above. If the observation is
active, the image recorded is an observation of light
transmitted from the optical beacon on the satellite.
The beacons cn the GEOS satellites are programmed to
produce a sequence of seven flashes at four second
intervals starting on an even minute. For tle sctive
observations, the times are set equal to %‘he programmed
flash time with a correction applied fur known clock
errors (Reference 1), plus half a millisecond, the time
allowed for flasn buildup.

7 » 1'1

DODSRD
GEOSRD
PROCES

GEOSRD
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The corrcctions for the active observations are
applied in GEOSRD, which calls SATCLC and SATCLZ2 to
evaluate the corrections for GEOS 1 and GEOS 2, re-
spectively. These routines compute the correction by
simple linear interpolation in a table of known errors
in the satellite on-board clock.
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CONVERSION TC TRUE OF DATE DODSRD
EQUATR
GEOSRD

The camera observations, right ascension and

declination. may be input rcferred to the mean equctor

and equinox oY date, to the true equator and equinox

of date, or to the mean equatnr and equinox of some

standard epoch. The GEODYN system iransforms these

observations to the true equator and equinox of date

in subroutines GEOSRD and DODSRD. The necessary -

precession and rutation is performed by subroutine

EQUATR.

7.3 TRANSPONDER MELAY AND GATING EFFECTS

The range ob:ervations may be corrected for PROCZS
transponder delay or gating errors. Tf requested, the
GEODYN subroutine PROCES applies the correctiens.

The transponder delay correction is corputed as
a polynomial in the range rate:

Ap = ay + a, o+ a, (;)2 (1)

where 35, Ay, and a,y depend on the characteristics of
the particular satellite. ) '
A gating error is due to the fact that actual

range measurements are either time delays between

(T transmitted and receive. radar pulses or the phase

7.3-1
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shifts in the modulation of a received signal with PROCES

respect to a coherent transmitted signal. Thus there
is the possibility of incorrectly identifying the re-

!
f
i
!
{
i
)

] VA asm N - -
turned pulse or the number 5f integral phase shifts.

The difference between the observed range and the computed
range on the first iteration of the arc is used to deter-
mine the appropriate correction. The correction is such
that *here is less than halr a gate, where the gate is the
range equivalent of the pulse spacing or phase shift. The
appropriate gate of course depends on the particular

station.

7.4 ABERRATION PROCES

Optical measurements may require corrections (Refer-
ence 2) for the effects of annual aberration and diurnal

aberration.

Annual Aberration

4

The corrections to right ascension and declination
measurements for anhual aberration effects are given by

2095 (cos a' cOS & COS £ + sin a' sin o)
Jr

a=a' -
cos &°

& = &' - 2695 [cos e cos ep(tan 24008 §t-sin a' sin §')

+ cos a' sin §' sin @]

M
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where

where

6‘

true right ascension of the satellite
observec¢ right ascension of the satellite
true declination of the satellite
observed declination of the satellite
true obliquity of date

geocentric longitude of the sun in the ecliptic
plane

" Diurnal Aberration

The corrections to right ascension and declination

measurements for diurnal aberration effects are given by

4

a= a' + 07320 cos ¢' cos hs sec 6'

§ = &' + 0%320 cos ¢' sin hs sin §'

0'

geocentric latitude of the station

local hour angle measured in the westward
direction from the station to the satellite

true right ascension of the satellite

observed right ascension of the satellite

7.4-2
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§ - true declination of the satellite

§' - observed declination of the satellite

7.5 REFRACTION CORRECTIONS

The GEODYN system can apply corrections tu all
of the observational types significantly affected by
refraction. The corrections requested are applied by
subroutine PROCES.

Right Ascension and Declination:

Optical measurements may require corrections
(References 3, 4, 5) for the effects of parallactic re-
fraction. These corrections are given by

a = a' - AR sin q/cos ¢

§ = 8" - AR cos q

where the change in the zenith angle, AR, in radians is
given by’

0.435 (4.84813) tan Z,

AR = - — :
p cos 2,
and
a - true right ascension of the satellite
a' - observed right ascension of the satellite

7.5-1
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& - true declination of the satellite PROCES

§' - observed declination of the satellite

Zo - observed zenith angle in radians |
i

p - range from the station - the satellite in

meters
q - parallactic angle in radians
The parallactic angle q is defined by the intersection '
of two planes represented ty their normal vectors Fl and Fz.

where

A

Cp = (0,0,1)

~

v - unit local ve¢rtical at the station

>

u - unit vector pointing from the station to the
satellite in inertial space.

Therefore, the sine and cosine of the parallac*ic angle
are given by '

.

cos q = 61 . Pz

[ ]

‘ sinq-l';:,,.l’2

7.8-2
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where ‘ PROCES

P1 - unit vector in the Fl direction
PZ - unit vector in the FZ direction

and

o B
1]
!

- The parallactic angle, q, is measured in the clockwise
direction abcut the station-satellite vector (i.e., a left-
handed system is used to define this angle). All vectors
and vector cross products used in this formulation conform
to a right-handed system. '

Range; ) PROCES

The refraction correction applied to CNES laser
range data is

bpn. ‘

Ap = ' -
sin Ez + (cot Bz) 10

" and the correction applied to range data from all other
tracking systems is ‘

2.7 ‘
328.5(0.026+sin E,)

705“3
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where

bo, - is that corrcction associated with a range
observation measured along the dircction of
the satellite zenith, and is provided along
with each observation on the data tape,

E, 1is the elevation angle computed from the
initial estimate of the trajectory

and

~

PPM deviation £fium unity of the surface
index of refraction; if this value is not
specified, it is assumed to be 328.5.

Range Rate:

For range-rate, the correction Ap is 6erivgd from

the range correction:

. 2.77n_ cos E .
o = 21— F, (5)
.328.5(0.026+sin E,)*
7.5'4 ’ ' -




( PROCES
where ‘

trie

. is the computed rate of change of elevation.

Elevation:

For elevation observations the correction AEi PROCES
1s computed as follows:

3
ns 10
AE, = (6)
16.44+930 tan Ez

Azimuth is not affected by refraction.

Direction Cosines:

: ﬂé The corrections a2 and Am are derived from the

A elevation correction:
AL = -sin A,sin (EL) ABz (7
Am = -cos A,;sin (EL) LE, | (8)

}3"1"1,‘%“}"0‘“- R PR PE S

705‘5

%!!i :



where A, is the azimuth angle computed from the initial PROCES

estimate of the trajeciory.

X and Y Angles:

For X and Y angles the corrections AX and AY are
computed as follows:

X - - sin AzAﬁz %)
a =2 s 2 2
(sin Ez + sin® A_cos Ez) .

cos A,sin E, AE
AY = - 2 £ L (10)

a
- 2 2
} L-cos® Acos® E

L

Note that these are .130 derived from the eievation correction.

7.6 TRANET LOPPLER OBSERVATIONS

TRANET Doppier observations are received as a GEOSRD
series of measured frequencies with an associated base
frequency for c¢ach station pass. Using the following
‘relationship, the GEODYN system converts these observa-
tions to range rate meas .rements in subroutine GEOSRD:

. c(F,-F.,) .
p = B M | (1)
By
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(,, where GEOSRD
FM is the measured frequency,
FB is the base frequency,
and

c is the velocity of iight.

3
g s
L3
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o 7.7 SATELL_TE-SATELLITE TRACKING DATA PREPROCESSING TWOST A
- Wil L,

o UP i
ssing on the satellite-sat211lite tracking

-3
i
»
$
{
)
)
3

[#]

involves the determination of all the appropriate transit

. W e e e e e =

s T

times. Because of the station-satellite and inter-satellite
distances, this process must be performed iteratively. The

required times are computed during the first iteraiion and

o

are then stored for use in subsequent iterations.

The satellite-satellite tracking measurements are a'so

corrected for tropospheric refraction. The corrections made
here are identical to those which would be made on range and

range rate measurements to the relay satellite only. Althouga
it is theoretically possible for signals from the relay to
low altitude satell.te to pass through the z2tmosphere, such

tracking would vccur at reduced signal intensity and would

be equivalent to the low elevation tracking of satellite from
ground based stations. Such dat~ is seldom used in orbit
estimation.

The standard procedure for transponder delay
corrections on satellite-satelilite tracking is to use
block data constants for each satellite, with a satellite
ID used to identify the appropriate bluck data entiies.
Since constants for the transponders to be used for
satellite-satellit: tracking are not presently available
. tte block data entries must be modified appropriately when
the data becomes available,

707'1
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SECTION 8.U
FORCE MODEL AND VARIATIONAL EQUATICNS

A fundamental part of the GEODYN system requires
computing positions and velocities of the syacecraft
at each observation time. The dynamics of the situa-
tion are expressed by the equations of moticus, which
provide ¢ relationship between tie orbital eiements
at any given instant and the initial conditions of~
enoch. There is an additional requirement for varia-
tional partials, which are the partial derivatives of
the instantaneous orbital elements with respect to the
parametc3s at eparch. These partials are generated
using the variational equations, which are analogous

to the equations of motion.

8.2 EQUATIONS OF MOTION

In a geocentric inertial rectangular coordinate
systen, the eauations of motior for a spacecraft are of

the form.
uT
r = - p’ + K (1)
where
T is the position vector of the
satellite.
P 801-1
- 3 ,, T_M
. . f ~ ’ P ' . \' K -
ORI 0 - .- R
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u is GM, where G is the gravitational constant

and M is thc mass of the Earth.

R is the acceleration causzd by ihe
asphericity of the Earth, extra-
terrestrial gravitational forces, atmos-

pheric drag, and solar radiation.

This provides a system of second order differcntial

equations wuich, given the epoch positien and velocity com-

ponents, may be integrated to obtain the position and velocity
at any other time. This direct integraticn of these
accelerations in Cartesian coordinates is known as.

Cowell's method and is the technigquec used in GEODYN's

orbit generator. This method was selected for its

simplicity and its capacity for easily incorporating
additional perturbative forces,

There is an alternative way of expressing the B

above cquations of motion:

T = VU =+ A~ Kk (2)
where

U is the potential field duc to gravitv,

K, contains the accelerations due to drag,

and

Kk contains the accelerations due to solar
radiation pressure.

8.1"2
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This is, of course, just a regrouping of terms coupled
with a recognition of the existence of a potential field.
) This 1s the form used in GEODYX.

’ The inertial coordinate system in which these
equations of motion are integrated in GEODYN is that
system corresponding to the true of date system of obo

of the reference day. The complete definitions fcr these
coordinate systems (and the Earth-fixed system) are
presented in Section 3.0.

-

The evaluation of the accclerations for T is F
controlled by subroutine F. This evaluation is performed REFCOR
in the true of date system. Tunus there is a requirement
that the inertial position and velccity output from the
integrator be transformed to the true of date system for

( the evaluation of the accelerations, and a requirement to
iransform the computed accelerations from the true of date
system tq the inertial system. These transformations are
performed by subroutine REFCOR (which controls the nre-
cession and nutation routines, PRECES and NUTATE) and is
controiled by subroutine F.

4 8.2 THE VARIATIONAL EQUATIONS
The variational equations have the same relationship VEVAL
; to the variatioral partials as the s~cellite position vector
; docs to the equations of motion. The variational partials
B are defined 85 the °*t where ii spans the true of date
-} ?
& position and velocitg of the satellite at a given time; i.e.,
3 :

8.2.‘1




Et = {x.v.z.X,Y,2} ; VEVAL

and B spans the epoch parameters; i.e.,

the satellite position vector at

Xo1Y0120
epoch

Xg2¥grZa the satellite velocity vector at
epoch '

Cp the satellite drag factor

Cp the time rate of change of the drag

’ factor

CR the satellite emissivity factor

Cnm'snm gravitational harmonic coefficients
for each n, m pair being determined.

X. surface density coefficients

Let us first realize that the variational partials

"may be partitioned according to the satellite positicn

and velccity vectors at the given time. Thus the re-
quired partials are

3 of
—_ — , 1
W IF )
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wheare VEVAL

is the satellite positicn vector (x,y,z)

|

in the true of date system, and

) % is the satellite velocity vec.or (i,;,é)
? in the same system.
{
| The first of these, %%, can be obtained by the double
N integration of .
|
a? (a‘i‘)
— = (2)
at® \3g :
(‘ or rather, since the order of differentiation may be
exchanged,
aT
— (3
- 3B
' ’* kR .
Note that the second set of partials, %%, may be obtained
oy a first order integration of i, Hence we recognize

3B =
that the quantity to be integrated is 2%. Using the second
)

form given for the equations of motion in the previcus
subsection, the variational equations are given hy

Y

ﬂé‘nﬂ:m«a‘m o R T,

'02'3

=
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| %)

=

VEVAL

o) (4)

e,

| w
mll |
Q)

™

. i
where '

t
1
i
!
i
f
i

is the potential field due to gravitational
effects

rnee ot T T T

R is the acceleration due to radiation pressure

B is the ucceleration due to drag

The similarity to the equations of motion is now cbvious.

.

e

Sty




At this point we must consider a few 1tems:

. The potential field is a2 function only of

position. Thus we have

3 3U 3 2%y aT_
— (=) ol (5)
o8 3Ty | me1 \?Ti ¥/ %8

. The partials of solar radiation pressure

with respect to the geopotential co-
efficients, the drag coefficient, and the
satellite velocity are zero, and the par-
tials, with respect to satellite position,
are negligible. .

] DPrag is a function of position, velocity,

and the drag coefficients. The partials,
with respect to the geopotential coefficients
and satellite emissivity, are zerc, but we

¢ Wiane o0y e

have
ﬁ-?_A_D..aStanffE 3_(:2+§2ﬁ (6)
o8 ax, 9 acy ;L 3Cy :aB’
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Let
notation.

n

2c

us write our variational equations in matTix VEVAL
We define

to be the number of epoch parameters in B8

is a 3 x n matrix whose jth column vectors
are 8T
j

is a 3 x 6 matrix whose last 3 columns are
zero and whose first 3 columns are such

that the i, jth element is given by
22 u
is a_3 x 6 matrix whose jth cclumn is defined
by 3p
ax
t.
J
is a 6 x n_matrix whose ith Tow 1is
given by °%§‘. Note that Xn contains the

variational partials.

is a 3 x n matrix who.e first six columns
are zero and whose last n-6 ~¢lumns are
such that the i, jth element iv given by

4= (W + Ky « Kp). Note that the first six

J
colunns correspond to the first six elements

of B which are the epoch position and valocity.
(This matrix contains the direct part’als of
X, with respect to B.)

-'uZ'G




- ( REPRODUCIBILITY OF THE
We may now write ORIGINAL PAGE IS POOR VEVAL

F = [UZc + Dr] Xm + f (7)

This 1s a matrix form of the variational equations.
Note that UZC’ Dr’ and f are evaluated at the

current time, whereas Xm is the output of the integra- '

tion. Initially, the first six columns of X, plus

the six rows form an identity matrix; the rest of the

g0).

matrix is zero(for i=j,xm =1; for i#j, Xn. .
1,) 1,)

Because each force enters into he variational
( equations in a manner which depends diruvctly on its

1
d
i
|
'
!
i
i
|
\

model, the specific contribution ot each force is dis-
cussed in the section with the force mocdel. We shall,
however, note a few clerical decails here. '

The task cf computing these variational equations
in the GEODYN system is largely accomplished by sub-

routine VEVAL. The matrix dimensions given are for
notational convenience; empty rows and columns are not
programmed.

The above equation is alsc e2pplied in subroutine PREDCT
PRELCT to "chain the partials back to -epoch,'" that is, to
relate the partials at the time of each set of measure-
ments back to epoch.

~
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: X
The matrix {or 333 s Xm above, is initialized in ORI
subroutinc ORBIT.
( ~ D71
The contribuiions of subroutincs D71, DASO, DRAG D650
EGRAV, F, SURDEN, and RESPAR will be discusscd as part PRAC
of the foliowing subscctions. The rlatrices U2 and f will [
be referred to in each subsecticn as though the particular RESPAK
force being discussed had the only con.ri ioution, SURDEN
l .
| .
|
|
|
Lo
‘ : .
A
;
i 3.2-8
b




i
8.3 THE EARTH'S POTENTIAL l{
]

In GEODYN che Earth's potential is described by !
tha combination of a spherical harmonic expansion and a
surface density layer. Genrerally, however, the spherical

harmonic cxpansion is used exclusivelv and no surface
density terms are included.

8.3-1




8.2.1 Spherical Harmonic Expansion

The Earth's po*cntial is most conveniently ex- EGRAV
pressed ir. a spherical coordinate system as is shown

in Figure 1. By inspection:

[ ¢, the geocentric latitude, is the angle
measured from 0X, the projection of OF in
the X-Y plane, to the vector OP.

° A, the east longitude, is the angle mcasured
from the positive direction of the X axis
to OX.
o r is the magnitude of the vector OP.
" Let us consider the point P to be the satellite ERRAV

position. Thus, OF is the geocentric Earth-fixed satellite
vector corresponding to T, the true of date satellite
vector, whose components are (x,y,z). The rel~tionship
between the spherical coordinates (Earth-fixed) and the
catellite position'coordinatés (true of date) is then
given by

r = ‘[xZ + yz + zT (1)

¢ = sin’? (-z-) : (2)
X

- 8 (3)
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where 08 is the rotation angle between the true of date EGRAV
system and the Earth-fixed system (see Section 3.4).

The Earth's gravity field is represerted by the
normal potential of an ellipsoid ot revolution and

small irregular variations, expressed by a sum of

spherical harmonics. This formulation, used in the

GEODYN system, is
. ( nmax n_ . o '
_ GM € m . - '
U = il 1+ :Z: (;—) Pn (51n d) [Cnmcos mA + Snm s5in ml]
( n=2 m=0
(4)
where : | :
G is the universal gravitational ccnstant, -
|
M is the mass of the earth, 4
. "7
r is the geocentric satellite distance, E
{

nmax is the upper limit for the summation (highest degree),

a is the Earth's mean equatorial radius,

m———

. -

e g et M Me G ( b A

o (i
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P! is the satellite geocentric latitude, EGRAY
A is the satellite east longitude,

Pﬁ(sin ¢6 indicate the associated &isLegendre

functions, and

C and Sym are the doao-s;fZZA_gravitational

nr
coefficients.

The relationship. between the normalized co- DENORM
efficients (Cnm’r.w) and the denormalized coefficients

are as follows:

;-
[rn-m)s(2n+1)(z-a y | e
Com = = Com (5)
' l (n+m)!
where
) is the Kronecker delta,

om

60m=1 for m=0 anu éom=0 for m#Q.

A similar expression is valid for the relationship
between gnm ard S_ . This conversion factor is com-

nm
puted by the GEODYN system function DENORM.

-— - - e e mae et e s e e m— - - e e —— s swmim b W aam e e e e — - - — b4




The gravitati leratinne in true of date co- EGRAV
ordinates (X,¥,Z) are computed
e

U(r,¢',2), by the chain rule;

.-»m the geopotential, ;

U ar  auU 3¢’ AU A

X = o e e (6)
3r 8x 3¢’ dx  In dx

The accelerations y and z are determined likewise. The i
partial derivatives of U with respect to r, §', and ) are .
given by
- M nmax {aen n
— = — |1+ l___) Z (C, COs mA (7
or r n=2 ‘f m=0 ;
. n .
+ Snm sin m\) (n + 1) Pn (sin ¢) i
SU gy tmax ..n n f
— e E ( Z (S, cos mk - C . sin mA) (8)
ax r n=2 T/ m=0
m P (sin ¢)
)
3y cq Mmax . .n n .
—_— = — z: 2 (C,, cos ma + 5 _ sin m)) L%
1 “ ‘
ae T opez VYT mep
”
[P§+1 (sin ¢) - m tan Q'P: (24n V)] A
803'6
b . . . ) N . . . - —— ) m—
- ——— Y R : ) "'-—"!'—!!g“
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™ALL -3
11 paTiid

1 de
the true of date satellite position components are

T r

rivatives of r, ¢', and X with resnect to

Y (10)
Bri T
3
3¢ 1 zr; %z |
. . (11
T" ' A SV
A 1 ay y B8x
. y (12)
arl : {_;2‘ ar. X or.
8.3-7
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formulae:

Zonagis: m=0

PO (sin ¢) = - [(Zn-l) sin ¢ P, (7" ¢) -

(n-1) Pg_z (sin ¢0\

(sin ¢ = sin ¢

- O

Tesserals: m#0 and m<n

1

1 (sin ¢) = cos #'

o e P

3 Sectorals: m=n

PP = (2n-1) cos ¢ PRI (sin ¢)

AR T -

Pypran

- -
- e
EOr AR P e o

Tae Legendre functions are computed via recursion

m . = b1 . 217 (] m‘l
Pn (sin ¢ Pn_z (sin ¢) + (2n-1) cos ¢ Pn_1

(13)

(14)

(sin ¢")
(15)
(16)

a17)

R et R T

EGRAV




Tha derivative relationship is given by EGRAV

-~
(=%

il (Pﬁ (sin d)) = Pﬁ+1 (sin #) - m tan ¢'P$(sin ¢)
d¢' ' (18)

It should also be noted that =ultiple angle ECRAV
formulas are used for evaluating the sine and cosinre VEVAL
of mi.

These accelerations on the spacecraft are com-
puted in subroutine EGRAV. Arrays containing certain
intermediate data are passed tc subroutine VEVAL for
use in the computations for the variational equations.

These contain the values for:

GM
= (ae L (19)
- B

m

pn

(sin ¢)
sin m)

cos mA

m tan ¢

for each m and/or n.

-

.
iy
N
’:
1.
i
H
¥
3
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The following discussion relates primarily to VEVAL
the mathematical formulations utilized in subroutine
VEVAL.

The variational equations -~equ.:e the computation
of the matrix U,., whose elements are given by

3" u
U - —- (20)
( Zc)i.j a1, o,

where

r, = {x, vy, 2z}, the true of date satellite position.

u is the gcopotential.

Because the Earth's field is in terms of r, sin ¢,

and A, we write

I S
U Cy U, 4 +Z — Gy, (21)

where

range- over the elements r, sin ¢', and )

®x
u, is the matrix whose i, jth element is given
2.
by 3" U_




¢ is the mai:ix whozt i, jth eloment is given VEVAL
by 2% i
3rj |
and
C2k is a set of three matrices whose i, jth
elements are given by 32 ey
Sri 5rj

We compute the second partial derivatives of the
potential U with respect to r, ¢, and A:

320 2GM GM mmax en n
—yr g+ — (n+1) (n+2) F_) 2 (22)
ar T r n=2 T/ ver
(Cpp €OS WA + S __ sin m) pﬁ (sin ¢"
320 M nmax . n n
.- Z (n+1) Z (C,, cos mi (23)
U
ora¢ T =2 r/ a0
9 n
* Snm sin m\) — (Pm (sin M)
¢
2 nmax n n
3°u GM a
-5 Y (m)(-—') Em (24)
aTal r n=? r/  meo

{'Cnm sin mh < Snm cos m\) P: (sin ¢"

C.Sfll




) m«W:mztlag,:,am@%ﬁ,-,(,___“,

aZU GM nmax aen n VEVAL
;'Z - ;_ :E: (:) (Cnm cns mh ¢ Snm sinm\) .
¢ n=2 - m=0
(25)
82 ( m
P® (sin q!))
2e2 D
2 nmnax n n
o°U GM
e E F) S on (-Cpp Sin mA (25)
War v 2\ &
9 m
+ S__cos m\) — (Pr (sin #»
3¢ -
aZU oM nmz,x en n . )
-a—iT = 'r—- 2-‘ -I-.- Zm (Cnm COS mA (27)
w2 m=0

+ S sin ml\) Pﬁ (sin ¢)
where

9
— (?ﬁ (sin di) - P:’l (sin ¢) - m tan ¢ Pﬁ {sin ¢
2¢ (28)

8.3-12

~ oy




VEVAL
(P‘:‘ (sin (p")) = P’:’z(sin ¢) -(m+1)tan ¢ Pﬁ”"(sin ¢"

Q [
. 3

- m tan ¢ [P$+1 (sin ¢) - m tan ¢ Pz(sin ¢3}

- m sec? ¢'P: (sin ¢) (29)

The elements of U2 have almost been computed.
What remains is to transform from (r, ¢, A) to
(r, sin ¢,A). This affects ~rly the partials involving

"
oy 18] ¢!
—_ - — (30)
d sin ¢  3¢' 3 sin ¢
32y 3ot [au 34" 30 ale
= +  —_—
3 sin ¢° 3 sin ¢ \362/ 3 sin & 3¢ : sin 42
(31)
where
¢
= gec ¢ (32)
9 sin ¢
32@ e - -
———— = sin ¢' sec” ¢ 2
9 sin ¢
8.3'13




For the C1 and C2k matrices, the partials of 1, VEVAL
sin ¢', and A are obtained from the usual formuias:
'{ r = \,‘x2+y2+z2 (34)
|
g z
A sin ¢'= - (35)
O r
| ST
| x= tan M-} -8 (36)
| X g
We have for Cl:
. ' or T,
. = _1 (37)
L ari T
o ? sin ¢' -z T, 1 92
B == - (38)
C e arT. r T T,
: i i
"\:
DY 1 2y ax (38)
¥ — = - X —— - Y —
ari X“+y ari ari
;
~ 3
EA
?\
£
¥
v %
A 4
‘Vz&‘
' 8.3-14




The C,, are symmetric. The necessary elements VEVAL
are given by

321' T T; 1 Bri
= ____zl + - - (39)
aria-, T T arj
32 sin ¢ 3z T, T 1 3z 2z ar.]
= % J - —...3, T, ———— rl._. + 2 -—1—
ar. Jr, r é . .
j T i ] i 9 ; J
(40)
azx -Zri Y X
- = ey | X - Y — (41)
dT. Or, (x“+y )z or. T,
1 ] 'L 1 1
1 3x )4 Yy X
+ —— -
x2ay? ary o ary ot
If gravitational constants, C , oT Snm are being RESPAR

estimated, we require their partials in the f matrix
for the variaticnal equations computatioas. These
partials are

2 au cM /a)\" n
- —]= (n+l) — cos (mi) Pn(sin &) (42)
oC ar T T
nm
2 i) GM /a\" n
- —fm - (—% sin (m\) P (sin ') (43)
BCnm 2N b r
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. . n r
3 3u M yay” RESPAR
—— - =Y. - — (J% cos (m)) [pﬁ*l (sin ¢)
1
acnm ¢ T r
- m tan ¢'Pﬁ (sin ﬂ)] (44)

4

The partiale for S, are idertical with cos (m\) re-
placed by sin (mA) and with sin (ml) replaced by
-cos (mi).

These partials are converted to inertial true of
date coordinates using the chain rule; e.g.,

9 U 9 -aU ) ar 3 -3U\aA
- — = — P s § o (45)
3Chm 3x Cppy arJ ax  ac,, \ arfax
9 -au \ 9¢'
+ —
3Chm ag'f ax

This particular set of computations is performed by
subroutine RESPAR. Ths items which EGRAV computes for
VEVAL are also available to RESP/R and are therefore

utilized.




8.3.2 Surface Densitv Layers

[N |

The representation of the carth's gravitatiovnal {icld
in terms of a simple density layer spread over the surface
of the carth was first introduccd by Koch [Reference 10] in
1968. Attempts at determining numerical values for surface
densities on a global scale have been made using voth optical
[Reference 6] and Doppler [Reference 7 ) data. In some cases,
the surface densities have been estimated as alternatives to
the spherical harmonic expansion, and in other cases the
surface densities are a supplemeﬁtary contribution to a set

of "known' low degree and order spherical harmonic coefficients.

The surface densities implemented in the GEODYN program
are basically in the nature of a supplementary potential con-
tribution. The spherical harmonic field is retained for repre-
senting the geopotential on a global scazle and the surface
densities can be intrcduced on either a local or global scale
into any number of olocks of constant density, That is, the
fineness of representation of the geopotential via surface
densities is arbitrarily small, consistsnt with computer core
availability and the existence of data for actually resolving
a large number of surface densities. In addition, t.e capa-
bility now exists in the GEODYN program for simultaneously
adjusting both spnerical harmonic coefficients and surface
layer densities. No investigator has apparently yet attempted
this. When actually making simultaneous adjustments, the
results must be very carefully interpreted. This problem is
considered further below in the discussion of constraints.

8.3.2.1 Mathematical Representation of Surface Densities.
The total potential of the earth 'W' can bte, somewhat
arbitrarily, divided into a spherical harmonict _.art 'U' and
a remainder 'T' to be expressed in some other form

PO
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W=U+T (1\

with

GM N n a -
U= —— 1 + 2: 2: (_2) P_ (sin ¢)
r n=2 m=0 T *
1 9
2 . \ 2 .2 2
(an COS m A+ Snm sin mA/ + 1/2 " r° cos” ¢ (2)

where r is the distance from the point of interest to the center
of mass of the earth and $ and A are geocontric latitude and
longitude. The last term in (2) is omitted if the potential

is beine c¢ormputed outsid- the surface of the earth. In GEODYN,
the ma* - :gree spherical harmonic coefficient is basically
arbitr.c., surmally being limited to the maximum degree for

which coefficients are available.

The potential T can be represented as that of a
simple layer distributed over the surface of .he earth. Mathe-
matically, T is then given by the surface integral

e f[xan (3)
S

where % is the distance frowm a point on the surface to the print
at which the potential is to be computed, dE i3 the element

of surface area, y is the surface density (in units of kg/mz
multiplied by G), and S is the surface of the earth. Figurel
shows the geometry and a portion of the surface areas. To
numerically evaluate the integral in (3), it is ncce3sary to
divide the entire surface into blocks of constant density.

If there arc M such blocks, then (3 ) can bc written

8.3-18




N |

il
4
AA Sateilite
- \\8/ Q

AR -,
—
[

-
Surtace Density Blocks
g

e

~i \\

o

|

| Figurr 3, Geometry of Surface bensity Blocks
. P Reiative to Perourbed sateliite
H
. 8.3-19

R

SR TR e




M
™ - ATV /¢ (d\

. . 0 v
i1 g ’
AT

where x, is ncw the average density on the i'th block and

the integral is te be talen over the area of the i'th block.

The integral in Eqn. (4) must be evaluated numerica’ly.
It is evaluated in GEODYN by dividing the area AE.

4

blocks of equal area and taking thc kernal, 1/2, to be constant

up inta four

over eacih of these sub-blocks. This is the division which
has been most commonly used for surface density lavers and
has be=n shown by Koch [Reference 8] to be a quite yood

approximation, generally accurate to withir a few percent.

Resv. . of numerical tests are z2lso given telow.

With the division inte sub-blocks, the potential due to

surface ensities is

M 4
T=3 x; 2,  BE../%. (s)
i=1 ' j=1 1 i

where AEi' is the area of the j'th sub-division of the i'th
block and gij is the distance from the center of this sub-
division to the point where the potential is to be evaluated.
The acccleration produced by the surface density potential is
obtained by takirg its gredient,

M 4
a = VI= s . (
a)surface densities vi i’—;l X j?-:l AEIJ v(llzlj) 6)

SURDEN

The forcing function for integrating the variation cquations
to obtain the sensitivity of satellitc position to a particular

surface density black is obtaining by differentiating Eqn. (6)
with rcspect to X
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Note that these forcing functions must be computed as part of

the computation of thc surface density acceleration contribut:cn.
GEOIDH
AVGPOT

8.3.2.2 Surface Height Computation. A number of potential

choices are available for locating the surfaces on which the

surface densities are to be spread. Such surfaces inclie

the spheroid, the geoid, aud the physical surface of the

earth. The method which has been implemented i~ GEODYN is

to iocate the density layers on the geoid definied by the

earth and geopotential model being used in the progran.

The model preseanily being employed is tha SAO 1969 Standard

Earth [Reference'g].

The geoid choice for locating the surface densities is
the most naturdl for usc in estimating sirface density values
ir blocks restrictad to ocean areas, as might be one of the
initial uses of the GEOS-C altimeter data. For complete global
density layers, and perhaps incorporating measurements of
surrace gravity, some nther surface may be more convenient.

8.3.2.3 Layer Model Quaarature Errors. The

process of approximating the integral over the area

of a surface density block by 4 sub-blocks with

the kernal estimated at the center introduces some

error into the integration of surface density effects

on the orbit. Koch [Reference 3] has investigated the
error introduced by dividing tne blocks into only 4 sub-
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blocks, and concluded that crrors generally less than a few
’ Y Yy

ncrcent were introducced.

A test was made in GEODYN to determinc the effccts of
differcnt divisicns of a 20° x 20° block for a satellite
of 500 nm altitude passing directly over thc centcr -f the
block. The results for a subdivision into 4, 9 and 16 blocls
are shown in Figure 2. This Figure shows that the 4-block
subdivision does indeed introduce substantial error, but only
when the satellite is directly over the center of the block.
It should be noted that a 29° block size is much l:rger than
would normally be considered for the fine detail representation
of the geopotential. A division into 20° x 20° tlccks on a
glebal scale is, of course, a reasonable possibility.

Figure 3 shows the acceleration effects ¢ue to the 20°
x 20° surface density layer for s couplete revolution of the
50) nm satellite. It wili be noted that the effects are quice
localized, as 1s indeed onz of the azdvantages of the surface
density representation. There is a large perturbation t'en
the satellite is directiy cver the block. There is a definite
but rather smz2ll perturbaticr wnen the satellite comes over
the next revoluticn about 10° away from the edge of the block.
Otnerwise, tne effects of the blocks are rather constanc and

small.
GEOIDH
SURDE
POEM
8.3.2.4 Constraints. For several reasons, it is necessary

to apply certain constraints to the surface density adjuv:c-
ments whkich are to be allowed. That this is necessary can
be seen by noting that the total surfaif density potential
can be ¢xpressed in terms of a sphericaj harmonic series,

} :
\
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vhich is of the identical form as the global spherical
harmonic expension given by Eqn. (2), except that the
expansion is now infinite. It is most significant, how-
ever, that the surface density expansion could actually
include the equivalent perturbations of the normal
spherical harmonic set of coefficients, and that both
numerical ané¢ interpretation problems can arise if bpoth
spherical harmonic coefficients and surface densit.tes
are allowed to adjust simultaneously.

It may also be noted that fir:- degree ccefficients
in (8) would not, in general, be zero. It is thus
necessary to force the distribution of densitites to be
such that these coefficients are 2 .o in order to avoid
moving the center of mass of the earth.

The form which constraints should take can be
found by expressing 1/& in Eqn. (4) in terms of spher-
ical harmonicsy ard identifying coefficients P: (sin ¢)
cos mA and Pﬁ (sin ¢) sin m). Schwarz [Reference 15] has

shown that this leads to expressions for C'nm ad S'nm of
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c' M
Cad
iS'nm ; GM {n+m)! im1
) n COS mA \
xi[[ Gi) Pl (sin ¢) dE (s)
.l AEi € sin m)
where ¢ = 1 if m=0 and zero otherwise. This set of

om
integrals can be obtainc. numerically by breaking the

area AE, up into sub-blocks as was done for the acceler-

ation calculation.

The constraint equations are obtained by setting
C’nm and $',m €qual to zero for every spherical harmonic
coerficient to which the surface densities shculd not
contribute, In GEODYN, the default set of zero coef-
€icients has been set to C'ID’ c'll’ S'llﬁ Additional
constraints (as, e€.g., no contributiocn to 8th degree

or lower degrce coefficients) can be imposed upon

input option.

The GEODYN implementation of constraints is through
the solution for a number of densities equal to the total
number of densities adjusted less the number of constraint
equations. The normal matrix thus contains only inde-
pendent deasities and core reqiirements are minimized.

The procedure for eliminating densities is seen by
writing the constraint equations obtained from (9) as
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P: (sin ¢) cos m) dE = 0 (10a)

[
e
~—

Y]
ol 4

1=] AL,
i
r\" n
- " . . -
X5 3 ?h (sin ¢) sin m\ dE 0 (10b)
i=1 AE. \ € i |
1 |
§
t
for m<n
n < N'
H i
where N' is the maximum degree coefficient unaffected by i j

the surface density layers.

The set of Equs. (10) can be written formally

as

L GEOIDH
= i = M

E Aygxg=0,35=1,H (11)

iel

where the A are given by the surface integrals in (10),

ji
and M' is the number of constrain: equations. The
number M' is related to N' by F
M' = N'(N'+2), (12) )
]
' L]
t
803'27
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as follows from the number of C'nm and S'nm coefficicnts
for whick n < N' and which are not identically zero. On

the assumption that M® < M, {(ii) can bs written

= 3
Aji X; * Aj' 0. (13}

Ml
i=1 irM'+1
Now let the square array with clements A.i and i < j possess
an inverse w osc clements are dencted hv A'ji' Then this
matrix may be used in (13) ¢. solve for the first M' sur-
face densities,

{ PDEN
Xk = :i_ A ‘éf‘ A k=1, M (14)
ST AVRES RN ’

- j
=4 i=M'+1

There are thus M-M' independent densities remaining and
Eqn. (14) can be used to relate the dependent densities.

The integration of the variational equations to
obtair the partials of the trajectory with respect to
the independent surface densities requires that the forc-
ing function for the variational equations include both
the direct and indirect effects of the independert ad-
justed densities. If agp is the surface density
acceleration, then the required forcing function is

8'3_28
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3X; ko1 0%, 9%y

9X
with 5%5 to be obtained from Eqn. (14).
i

It should be noted that GEODYN has the option of
adjusting only a portion of the surface densities. This,
in efrfect, means that there are additional constraint
equations, but they are quite simple to incorporate. The
constraints given by Eqn. (14) are stili required to hzld
with no modification whatsoever. Ordering the densities
such that the unadjusted densities are last in the array,
then Eqn. (15) is modified only to the extent that i has
the range M'+1 to M-Mo, with Mo the number of unadjusted
densities. If there are more constraint equations than
there arc densities to be adjusted, GEODYN will terminate
upon reading the incut deck with the appropriate =r.nr

message.
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R.4 SOLAR, LUNAR, AND PLANETARY GRAVITATIONAL PERTURBATIONS
SUNGRV

The perturbations caused by a third body on a
satellite orbit are treated by defining a function,
Rd, which is the third body disturbing potential.
This potential takes on the fcllowing form:

5\ -1/2
GMmd 2r r T 1
Rdz—’;‘*— 1-;—-5*;—-7 ';5 (1)
d d d 7/ d
where
m, is the mass of the disturbing body.
?d is the geocentric true of ¢ isition

vector to the disturbing b.

S is equal to .he cosine of the
enclosed a- gle between T and T

T is the geocentric true of dete position
vector of the satzllite.

G is the universal gravitational constant,
and

M is the mass of the Karth.

The third body perturbstions considered in GEORYN
are for the Sun,‘the Moon, Venus, Mars, Jupiter, and
Saturn. All areqscompt%ed in subroutine SUNGRV hy

[ 4
Q
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i TR
a, = -GMm d i (2)
d d l_ . L [Ta\l SUNGRV
I
|
where
i
d = T-71,4 g
I = -
D4 ry r Ty S+r i}
These latter quantities, ¢ and D as well as 1)2/3 VEVA? ’i
are passed to subroutine VEVAL for the varia- i
tio.al equation calculations. VEVAL computes g
( the matrix UZC whose i, jth elements is given by :
i
2 ﬁ
) Rd oo ngé ari . Sdi Q. (3) ;
. ari aT. DG arj Ddz;i ;
; hg;: This matrix is a fundamental part of the variational ,

equations. |

8.5 SCLAR RADIATION YRESURE

Ti

* The force due to scla: radiation can have a
significant effect on the «r*its of satellites with
a large area to mass ratio. The accelerations due
10 solar radiation pressure are formulated in the

8.5-1
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GEODYN

where

system as
A ~
= - P
A v IR 5P T (1,
Mg
v is the eclipse factor, such that

v=0 when the satellite is in the Earth's
shadow

v=1 when the satellite is 1llumi-~ated
by the Sun

is a factor depending on the reflective
characteristics c¢f the satellite,

is the cross sectional area of the
satellite;

is the mass of the satellite,

is the solar radiation pressure in the
vicinity of the Earth, a.d

is the (gerocentric) true of date unit vector
pointing to the Sun.

The unit vector fs is dete ined is part of the
luni-solar-planetary cphemeris computations

8.5-2
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The eclipse factor, v, is determined as follows:
Compute

D =T -1 2)

whetrs T is the true of date position vector of the
satellite. If D is positive, the satellite is always
in sunlight. If D is negative, compute the vector ?k

3

ﬁk- T-Dr._. (3)

This vector is perpendicular to r.. If its magnitude

is less than an Earth radius, or rather if
2 .
Fk Fk< a," (3

the satellite is in shadow.

The satellite is assumed to be specularly
reflecting with reflectivity p; thus

G = 1+0 (5)

When a radiation pressure coefficient is deing
determined; i.e., CR’ the partials for the £ matrix

, 80 5‘3 . ' i
- ‘wr' ' EoN »A
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irn the variational equations computation must be
computed. The ith element of this column matrix is

given by
AS 16)
fl = -y — PS I‘Si \
Mg
These computations €for the effects of solar
radiation pressure are done in subroutine F.
8.6 ATMOSPHERIC DRAG
A satellite moving through an atmosphere ex-
periences a drag force. The acceleration due to
this force is given by
1 AS
KD"' 'ECD——QD \'r Vr (1)
m
s
wpere
CD is the satellite drag coefficient
Ag is the cross-sectional area of the satellite

8.6fi
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i,

m & the mass of the satellite,

is the density of the atmosphere at the

satellite position, and

is the velocity vector of the satellite
relative to the atmosphere.

<

Both As and Cp are treated as constants ir GEODYN.
Although A, depends somewhat on satellite attitude, the
use of a mean cross-sectional area does not lead to
significant errors for geoéetically useful satellites.

The factor Ch varies slightly with satellite shape and

atmospneric composition. However, for any geodetically
useful satellite, it may be treated as a sz2tellite

dependent constant,

The relative velocity vector, Vi, is computed
assuming tnat the atmosphere rotates with the Earth.
The true of date components of this vector are then

.
-

X =x+égy

as is indicated from Section 3.4, the subsection on
transformations between Earth-fixed and true of date
systems. The guantities i, }, and z arc of course the
components of T, the satellite velocity vector in true

of date coordinates,

8.6-2
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UKAG
D71
D650

The drag accelerations arc computed in the
GEODYN system by subroutine DRAG, with the atmospheric
density o, being evaluated by subroutine D71, D650, In
addition, subrountine DRAG computes the direct partials
for the f matrix of the variational equations when the
drag coefficient Cp is being determined. These partials

are given by

(5)

=) |m>

w

°p vr vr

When drag is present in an orbit determination VEV. "

run, the Dr matrix in the variational equations must
also be computed. This matrix, which contains the
partial derivatives of the dray acceleration with
respect to the Cartesian orbital elements, is con-
structed in subroutine VEVAL. We have

1A 3V R T
Dp = - S Cp—op Ve = * P = Vp * o=y ¥
m
s . t

where

L] *

N Xy is (x,y,%,x,Y,2); i.e., i;spans T and 7.
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and

r~ ——
0 -@ 0 VEVAL
g
o 0 0
g
0 0 0
= (7)
1 0 0
0 1 0
0 4 1
L —
r. - e
Yy Bg X, Yy eg Yy -y, eg Z.
X, eg x. b eg Yy X, Bg z.
1
0 0 0
T . . - (3)
T X, X, X Y, X, z.
Yr Xr Ye ¥r Ye 2y
Zr X¢ Zr Yo Zr %y
L -
DENSTY

is the matrix containing the partial deriva-
tives of the atmospheric density with respect
to it and is partially computed in subroutine
DENSTY (see section 8.7.4 on atmospheric
density partial derivatives). Because the density

is not a function of the satellite velocity,
3p

the required pactials are ——.
ar
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8.7 ATMOSPHERIC DENSITY

In the computation of drag, it is essential to v/l
obtain models of the atmospheric density which will yield
realistic perturbations due to drag. The GEODYN program uses
the 1971 revised Jacchia Model which considers the densities
between 90 km and 2500 km, and the 1965 Jacchia-Nicolet
Model which gives densities between 120 km and 1000 km with an
extrarolation formula for higher altitudes.

The following discussion will cover primarily the assump-
tions of the models and empirical formulae used in subroutine
D71 and subroutine D650, The procedure for empirically
evaluating the density tables which was developed by WOLF will
also be included in the discussion.

8.7.1 JACCHIA 1971 DENSITY MODEL

The 1971 revised Jacchia model, 2s implemented in sub-
routine D71, is based on Jacchia's 1971 report, "Revised Static
Models of the Thermosphere and Exosphere with Empirical
Temperature Profiles" (Reference 1). The density computation
from ths exospheric temperature as well as from variations
independent of temperature is based on density data appearing
in that report. This data presented in Table 1 shows the density
distribution at varying altitudes and exospheric temperitures.

For further detailed development of these empirical

formulae, the interested reader should consult the afore-
mentioned report and Jacchia's 1970 report (Reference 2).

8.7-1 y
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8.7.1.1 The Assumptions of the Model

The Jacchia 1971 model (J71) is based on empiricaily D71
determined formulae with some inherent simplifying assump-

tions. Such an approach is taken primarily because the

various processes occurring in different regions of the
atmosphere are complex in nature. Moreover, at present, a
thorough comprehension of such processes is lacking. The

present J71 model is patterned after the J65a (Jacchia 1965a)
model which was based upou previous assumptions by Nicclet

(Reference 3).

In Nicolet's atmospheric model, temperature is con-
sidered as the primary paraﬁeter with all other physical
pararsters such as density and pressure derivable from
temperature. This approach was adopted by Jacchia in his
J65a model. However, in the J71 model, there are variations
modeled by Jacchia which are independent of temperature.
They are the semi-annual variations, seasonal-latitudinal
variations of the lower thermosphere, and seasonal-
latitudinal variations of helium, all of which involve a
time dependency. Although in J71 Jacchia mentions variations
in hydrogen concentration, he does not attempt any quantita-
tive evaluation of these variations.

Composition

The J71 model has assumed that the only constituents
of the atmosphere are nitrogen, oxygen, argon, helium, and
hydrogen. This composition is assumed to exist in a state
of mixing at heights below 100 km and in a diffusion state
at higher altitudes. A further assumption on the composition
of the atmosphere is that any variation in the mean molecular
mass, M, in the mixing region is the result of oxygen dissocia-
tion only. The variation in M has been described by an empiri-
cal profile for heights ranging from 92 km to 100 km,

8.7‘2
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It is also believed that gravitational separation D71
for helium exists at lower height than for the other compo-
nents. To avoid the cumbersome ordeal of modeling a separate
homopause for helium, Jacchia has modified the concentration
at sea-level by a certain amount such that at altitudes
where helium becomes a substantial constituent, the modeled
densities will correspond to the observed densities.

Although this will yield a higher helium density below
100 km, the contribution of helium to the overall density
will be negligible below this height.

Hydrogen does not become part of the density model
until a height of 500 km. At this altitude, hydrogen is

assumed to be in the diffusion equilibium state.

Temperature

The temperature above the thermopause is referred to
as the exospheric temperature. Although this temperature
is independent of height, it is subiect to solar activity,
geomagnetic activity, and diurnal and other variations.
The J71 model assumes constant boundary conditions of 90 km
with a constant thermodynamic temperature of 183° K at this
height. From numerous atmospheric conditions it is suggested
that the atmospheric conditions at 90 km do indeed vary
nominally, and thus, this assumption may be reasonably
acceptable (Reference 4). Profiles of the thermodynamic
temperature show that it increases with height and reaches
an iaflection point at 125 km. Above this altitude, this
temperature acymptotically attains the value of the
exospheric tehperature. An analytic model of the atmospheric
densities by Roberts (Reference 4) has been constructed based

on modifications to Jacchia's 1970 temperature profile betweur
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90 km and 125 km. The J71 mcdel assumes that the basic n71
shape of the temperature profiles remain unchanged during
atmospheric heating due to geomagnetic storms. In alil

liklihood, the profiles at low altitudes become distorted

to yield higher temperatures during such occurrences, é

Since the J71 model assumes the atmospher- to be in
static equilibrium, for any sudden changes in solar activity
or in geophysical conditions, which are characteristically
dynamic, the model will generally be unable to properly ;
represent the variations in both temperature end density j
due to this invalid assumption. The priority has been
given to the best representation of density.

8.7.1.2 Variations in the Thermosphere and Exosphere

Several types of vcriations occurring in the different
regions of the atmosphere are incorporated in the J71 model.
These variations are: solar activity variations, diurnal

B S

variations, geomagnetic activity variations, semi-annual
variation, seasonul-latitudinal variations of the lower ;
thermosphere, and seasonal-latitudinal variations of helium.
Still another variation which is not quantitatively evaluated }
by J71 is the rapid density fluctuations believed to be
associated with gravity waves (Reforence 1). Each of the
above variations may be modeled empirically from observable
data. However, because a static model is used, the various
predictions will exhibit different degrees of accuracy for
each variation. It is fundamental, however, to note that
unless the characteristic time for which these variations
occur is much longer than that for the processes of diffusion,
conduction, and convection to occur, the predictions will be

poor (Reference 1).
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Solar Activity

The variations in the thermosphere and exssphere as
a result of solar activity are of a dual natire. One type
of variation is a slow variation which prevails over an
1l1-year period as the average solar fiux strength varies

during the solar cycle. The other type is a rapid day-to-day

variation due to the actively changing solar regions which
appear and disappear as the sun rotates and as sunspots are

formed.

To observe such activities, the 10.7 cm solar flux
line is commonly used as an index of solar activity. The
National Research Council in Ottawa has made daiiy measure-
ments on this flux line since 1947, These values appear
monthly in the "Solar Geophysical Data (Prompt Reports)" by
the National Oceanic and Atmospheric Administration and the
Environmental Data 3Service in Boulder, Colorado (U.S.
Department of Commerce).

A linear relationship exists between the average 10.7
cm flux and the average nighttime minimum global exospheric
temperature (Jacchia 1971) and may be expressed as:

To = 379° + 3.24° F . . (°Kelvin) (1)
where
T, = 1is the average nizhttime minimum global

exospheric temperature averaged over three
solar roiations (81 days).

8.7-5
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is the average 10.7 cm flux strength over D71

three solar rotztions and measured ir uni-:.;
-22

F

10.7

f v of 10 watts m'z (cycle/sec)'l bandwid: . .
Equation (1) expresses the relationship with solar Zlux when
the planetary geomagnetic index, Kp is zerc; i.e., for no
geomagnetic disturbances,

R

The nighttime minimum of the glohal exospheric tempera-
ture for a given day (Reference 1) is

! = ° -
I To + 1.3° (Fig.7 - Fio.9) (2)
! where
FlO 7 is the daily value of the 1C.7 cm solar flux
. ( in the same units as Fio , for one day earlier, |
- ' since there is a one day lag of the temperature ;
variation response to the solar flux (Roemer f
1968) . 5

Thus, Equation (2) models a daily temperature variation
by about the average nighttime minimum global temperature as
determined in Equation 1.

® Diurnal Variations

Computations from drag measuremencs have indicated
that the atmospheric density distributicn varies from day
to night. The densities are at a peak at 2 P.M. local
solar time (LST) approximately at’the latitude of the sub-

i# solar point, and :«t a minimua at 3 A.M. (LST) approximately

"N

Tk 8.7-6




-

%N: RN

of the same latitude in the opposite hemisphere. The D71
diurnal variation of density at any point is ,upject to

seasonal changes. By empirical relationships, this varia-

tion may be described in terms of the temperature. Again,
because a static model is used, the accuracy of this

temperature is open tc question,

At a particular hour and geographic location, the
temperature, Tl’ can be expressed in terms of the actual
global nighttime minimum temperature, Tc’ for the given
day {(Reference 1). Thus, we may write

n cosmn - sinma n °T
Ty = T, (1 + R sin"8) 1 +R -~ C0S - (3)
1 + R sin 6 2
where
R=20.3
n= 2,2
n=3.0

T=H+8 +» p sin(H+y) for (-w<t<m)
A = -37° (lag of the temperature maximum with the

uppermost point of the sun.)
p = + 6° (introduces an asymmetry in the temperature

curve.)
y = +43° (determines the location of the asymmetry

in the temperature curve,)
n = % ABS (¢'-3,)
3 0

0 = 7 ABS ($'+3)
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¢'= geographic (geocentric) latitude D1
6= declination cf the sun
H = hour angle of the su.

(when the point considered, the sun, and cthe

earth's axis are all coplanar, H=06. The hour

angle is measured westward 0° to 360°,)

The parameter R determines the relative amplitude
of the temperature variation. Jacchia and his associates
have undertaken investigations of R which reveal indications
of its variation in time and with altitude. Afte,; consult-
ing 1963-1970 data, Jacchia presently has ibandoned any
attempt at any definitive conclusions about the variations
of R with time or with solar activity (Reference 1). 1In-
stead, he believes this evidence to be the rcsult of inherent
limitaticns of the static atmospheric representation. Con-
sequently, in the J71 model, a constant value of R=0.3 is
maintained.

Geomagnetic Activity

Precise effects of geomagnetic activity cannot be
obtained by present measurements from satellite drag, since
suci techniques can only show averaged values of densities,
It is also realized that the consequences of a geomagnetic
disturbance in view of the atmospheric temperatures and
densities over the global regions are of a complex nature.
However, when such disturbances occur, there are indications
of increases in temperature and denzity in the thermosphere
above the aurora belt. By the tiue this atmospheric dis-
turbance reaches the equatorial .- -cus, a period of roughly
7 hours, the effects are dampcd ..t considerably. (Relerence 1).
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A static modei description of temperacvre and cdensity p71
cannot be viewed accurately since the propaiation time of
the geomagnetic storms is relatively <vort. Therefore, any
empirical formulae used to compute the effe:cte cn the para-
meters yield only a vague picture,.

Jacchia et al (1967) have related the exospheric
temperature to the 3-hourly planetary geomagnetic index Kp' The
quantity K_ is used as a measure of a three-hour va—iation in
the earth's magnetic field. The response of the temperature
change to geomagnetic storms lags the variaticn in K_ by
about €.7 hours. In the foliowing equation (Reference 1) the
correction to the exospheric temperaturc due to geomagnetic

activity is
AT, = 28° Ky + 6.03° exp (K) W

for heights above 200 km.

Although this Kp in equation {4) is a three-hour
planetary geomagnetic index, in subroutine DENSTY an
averaged K_ over a 24-hour period is used to minimize the
amount of input data to GEODYN. The loss of accuracy in
using the daily average of K_ is minimized, since the above
equation is for a smoothed effect of the variations derived
from satellite data,

Below 200 km, density predictions from equation (4)
prove to be too low. Better results are obtained if the
variations were represented as a two-step hybrid formula
in which a correction to the density and to the temperature
is made. Thus, in J71 the following hybrid formula
(Refereace 1) is given as

80?'9
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- (8) Py =Alogygp = 0.012 K + 1.2 f 10 %exp (Kp) D71 |
. (b} AT, = 14° Kp + 0.02° exp (Kp) (5) %
|
( where Alog,qp is the decimal logarithm correction to the i

density p.

§ " The values of a three-hour K_ index are available

| along with the daily solar flux data in the publication

; wSolar Geophysical Data" by the N.0.A.A. and E.D.S,,

| Boulder, Colorado (Department of Commerce). !

| In computing the exospheric temperature, accurate FLUXM
daily values for both the solar and geomagnetic flux must Xﬁgigx

be used. These values are stored in the subroutines FLUXM
and FLUXS of GEODYN, and they are updated as new informa-
tion is received. This information may be updated (sub-

( !E routine ADFLUX) using the appropriate GEODYN Input Cards.
The user should be aware of the fact that these tables are
expanded as new information is made available (Reference 3).

S e e e gy

At the beginning of each run, a file is generated for JANTHG
cach satellite arc which contains the required flux data
for the time period indicated. Subroutine JANTHG sets up
tgi‘ the flux tables as well as averaging thc daily values of
soclar flux over three solar rotation periods. This enables

? the releasing of vast computer storage required for daily
. flux values over 14 years. The selected data is stored in
£ - common block FLXBLK.

A midpoint point average is used to compute the six
solar rctation flux values Fio.7°
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Semiainurl Variation

( i’ The semiannual variation at present is least under- n71
stood of the atmosphéric variations. In past models, J65,
attempts at empirically relating the temperature to this

: variation seemed appropriate in the range of heights,

: ( 250 to 650 ¥m, for which data was available. However. with

? tac availability of new data for a wider range of altitudes,

; Jai1g-r discrepancies in the densities appeared. After close

j scru’ iny, Jacchia in 1971 (Reference 1) found that the

' ». litude of the semiannual density dees nct appear to be 1

connected with the solar activity. It does, however, show

a strong depend-..ce on height and a variation from year to ;
year. Drag aniaiyses from the Explorsr 32 satellite have

revealed that a primary minimum in Juiy and a primary maximum

in October occur for the average density variation (Reference

r—y

. et e—en o ———

1).
, r Jacchia in J71 expresses the semiannual ariation !
I~ L as a product function (Reference 1) in which :
—
- pz = Alogloﬂ = f£(z;g(t) (6) !

: where £(z) is the relationship between the amplitude, i.e.,
?k the difference between the primary maximum and minimum, and
the height, z, and where g(t) is the average density varia- —
tion as a function of time for the amplitude normalized to 1.
The two expressions for £(z) and g(t) which yield the best
fit to the data are

I T ST e e s o
R b

T
e

8»7'11 Q"




gty -

AT
i

T

By

e e i n e e e e e A e ;i = b e A s S e o e ot 4 o = e < = = - reemmm— —- - - . e s mm = e e e = — e e S

£(z) = (5.876 x 1077 22331 4 0.06328) exp (-2.868 x 107°2)

(7
for - in kilometers;
g(t) = 0.02835 + 0.3817f1 + 0.4671 sin (20t + 4,1370]
sin (401 + 4.259)
(8)

where

o + 0.09544{[0.5 + 0.5sin (2n¢ + 6.035)}1-6%0 -o.s}

-
L}

(t - 36204)/365.2422

©
1]

t = time expressed in Modified Julian Days
(M.J.D. = Julian Day minus 2 400 000.5).
M.J.D. = 36204 is for January 1, 1958.

The term ¢ is the phase of the semiwnnual variation which
is the number of days elapsed :.nze Jaruary |, !:5%3 divided by
the number of days for the trop.r:" vear.

Seasonal-Latitudinal Variations of the Lower
Thermosphere

In the lower thermosphere, from about 90 km to 120 km,
there are variations occurring in temperature and density
depending on the laztituds and the season. Only the density
variation is considered because any temperature variation
proves to be too tedious to handle., Between the heights
from 90 km to 100 km, there is a rapid increase in the
amplitude of this variation in density with a maximum ampli-
tude occurring between 105 and 120 km (Reference 1). Abova
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120 km there is no data on which to base p-edictions of D71
the seasonal-latitudinai variations. This variation

appears itu deciéasc in
negligible fluctuations exist at 150 km. Therefore, in
DENSTY, the seasonal-latitudinal variations are neglected

at heights above 160 km.

m
.

litude to thr point where

$3

Jacchia in J71 fits the seasonal variations tc an
empirical correction to the decimal logarithm of the
density (Reference 1) as rfollows:

Py = Alog, 6 = S P P sin® ¢ (9)
where
¢' = geographic latitude
S = 0.014 (2-90) exp [-0.0013(z - 90)7%]
z = height in kilometers
P = siu (219 + 1.72)

¢ = phase as given in equation (8).
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ceasonal-Latitudinal Variations of lelium

Helium in ihe atmosphire
towards the winter pole. The phenomenon of this seasonal
shift in the helium corcentratior in the upper atmosphere
is not yet understocd. It therefore becomes recessary to
perform an empirical fit to drag data from which this
seasonal variation is derived. The expression which is
used in J71 (Reference 1) to describe the helium variation

is
Iéa /0 6 e 2 1

Q;, = slog;y n (He) = 0.65 ~—-[}in‘(-— - - ) - sin” -_](10)
Ve 4 2 |S6a| 4

where

n(H:) = number density of helim (number of particles/cm3)

Ae = declination of the sun
¢ = geographic latitude
£ = obliquity of the ecliptic (e = 23.44°)

The variation of the helium density in subroutine
DENSTY is not considered for heights below 500 km. It is
also neglected for latitudes whose absolute value is less
than 15° between the range of he=ights from 500 km to 800 km.

The correction to the density due to the seasonal laci-
tudinai variations of helium is then

log n{He) Alog n(He) ]
dpp = 10 10 10 10 . 1] c & .3 (11)

where

C is the molecular mass of .leliuwm divided by Avogadro's
Number.,
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8,7.1.3 Polynomial Fit of Density Tables

The data which appears in Table 1 shows the variation p73

of density with altitude and exospheric temperature which
is reproduced from Jacchia's 1971 report (Reference 1).
From heights of 90 km to 100 km, the density values weire
obtained by numerically integrating the barometric equa-
tions. The diffusion equation was numerically integrated
to obtain values of the density; on the ~1ltitude range,

100 km. <Z< 2500 km. In both cases, an empirical tempera-
‘ture profile was used for each exospheric temperature.

In the GEODYN subroutine DENSTY, the atmospheric
density is computed based on the data from Table 1 after

appropriate corrections are applied to the exospheric tempera-

ture. The tabulated densities have been fitted (by WOLF) to
various degree polynomials of the form:

= (i-1) :E: (j-1) s
P, = LOG, 40pr Z h ag; 1 (12
i ]
where
is the density in g/cﬁl3
“pT Y
T is the exospheric temperature,

h is tha spheroidal height (altitude), and

'lj is a set of appropriate coefficients for
the density tables,

8.7-18%
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third degrse £it, The coefficients foy the selected polynomials
for the total dens’i, a.,e skown in Table 2. in Table 3, coeffi-
cients of poiynomials for *he helium number density dre pic:

sented.

The computed densities from the fitted polynomials D71
show a reasonable percentage error from the densities given
in Table 1. For each of the regions and temperature ranges,
the maximum errors are given in Table 4. The largest error
of 12% occurs in the regi~on between 500 - 1G00 km in the
temperature range of 500° - 800°K. In the region of
1000- 2500 km with temperatures between 800° - 1900°K, a
fourth degree fit to the temperature yields a maXximum
error of 11.0% in the densities.

The helium number density fits are also ziven in
Table 4. As one can see, the values of the number density
are quite satisfactorily fitted by the polynomials. The
maximum error in the whole range of heights and temperatures
is only 2.8%.

Overall, these fits could be improved by either using
higher degree polynomials or possibly other functions, or
by furthetr sub-dividing the density table. However, these
maximum eirors ap~car to be tolerable since they are con-
sidered to be within the range of accuracy of the model
presently used. Above 2500 km, the density was found to
be negligibly small, and therefore, was set to zero.
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: TABLE 2.
DENSITY POLYNOMIAL COEFTICIENTS
.‘ (For Decimal Logarithm of Density)
70 7l 52 3
B 90- 200K
| 0 4.22085 0.98393E-2  -.64952E-E  0.1471SE-8
5 nl -0.20134 -.22412E-3  0.15337E-6  -.3467SE-10
| n? 0.78592E-3 0.16966E-5  -.11060E-8  0.25007E-12
| h® -.12087E-5 -.34360E-8  0.22457E-11 -.51069E-15
|
200-500KM for 500°-800°K
n? -.12838E+2 0.40709E-2  0.97074E-5  -.10643E-7
nt 0.82282E-1 -.31215E-3  0.26543E-6  -.55193E-10
n® -.68951E-3 0.24402L-5  -.27058E-8  0.99003E-12
3 ¢ h> 0.11263E-5 -.41807E-8  0.50617E-11 -.20484E-14
ZOO-SOOnﬁ for 800°-1900°K
ho -3.4505 -.15000E-3  -.62640E-6  0.24612E-9
-~ n! -.28385E-1 0. 17760E-6  0.61398E-8  -.23362E-11
. he 0.55998E-5 0.77461E-7  -.59492E-1C 0.14921E-13
.. h’ 0.39434L-8 -.76435E-10 0.S8533L-13 - 1459SE-16
: 500-100KM for 500°-800°K
{ nO -.77659E+2 0.167271 - .S6570E-4  -.S50424E-7
h! 0.50638  -.98036E-3  0.74932F-6  -.331785-10
nt -.38935C-3 0.12073E-5  -,19776F-8 0.141915-12 ~‘;
h’ 0.1£9626-6 -.SAOAOE-9  0.46709E-12 - TI8UGE-16
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TABLE 2
DENSITY POLYNOMIAL COEFFICIENTS

R e e B o i o s i e+ o

—

T0 Tl TZ T3 T‘
500-1000KM for %00°-1300°K
h? 0.50081E+2 -.12600 0.83896E-4  -.18276E-7
n! -.30572 0.61706E-3  -.81443E-6  0.91096E-10
h? 0.41767E-3 -.88743E-6  0.61040E-9  -.13634E-12
h’ -.17955E-6 0.39386E-9  -.27639E-12 0.62649E-16
0.41963E-3  -.21661E-6
-.48214E-6  0.27095E-9
0.16042E-9  -.9905SE-13
-.14085E-13 0.10443E-16
0. s;¢1oaoz 0.216425 3 -,90623E-7  0.13054E-10
Li3E -.46137E-6  0.20179E-S  -.308B8E-13
0. 816335- -.271%H-6  0..97456-9  -.13425E-12 0.21370E-16
-1SPI6E-7 0.496318-10 - 5527813 0.25432E-16 -.41304E-20
ﬁ;




: TABLE 3

100-2500KM for 800°-1900°K

~.94521%-10 0.17387E-12

-.15368E-15 - %

;E_ A 8.6120 -.25363E-2  0.18979E-5  -.73696k-9 o 11}33391“',
: h! -.84847E-2 0.14084E-4  -,11386R-7
n 0.11543E-5 -.198BAE-  0.16635-11 - .
. .

R 4 HELTUM DENSITY POLYNOMIAL COEFFICILNTS i
(DECIMAL LOG OF IELIUM NUMBER BUNSITY) .
5 70 7l d T3 T
- 500-1000KM For 500°-800°K
| h0 9.3712 -.52634E-2  0.52983E-5 -.20471E-8
§ hl - 13141E-1 0.31218E-4  -.32598E-7 0.12573E-10
? ( h? 0.26071E-5 -.75730E-8  0.S30585-11 -.40669E-14
f n3 -.S2156E-9 0.19056E-11  -.26578E-i4 0.12535E-17
|
f 500-1000KM for 800°01900°K
: n? 8.3914 -.16433E-2  0.78032E-6 -.14323E-9
n! -.69049E-2 0,84138E-5  -.44577E-8  0.85627E-12
I 0.10510E-5 -.12663E-R8  0.71134E-12 -.14180E-15
¢ nd -.12222E-9 0.1474SE-12  -.97658E-16 0.21458E-19
1000-2500KM for 500°-800°K
. n® 9.1045 -4,3410E-2  0.40202E-5  -.14522E-8
?z' nl -.12259E-1 0.27951E-4  .-.27972E-7  0.10371E-10
’iﬂ h 0.15893E-5 -.35863E-8  0.35476E-11 -.12985C-14
A B3 -.11829E-9 0.26138E-12  -.25227E-15 0.89714E-19

ot
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2




Height
Range
(kM)

90-200

200-500

200- 500

500-1000

500-1030

TABLE 4

Temperature
Range
(°¥)
500-1900

500-800

800-1900.

500-800

800-1900

PERCENTACE ERROR OF POLYNO.1AL FITS
* TG THE DENSITIES

Maximum Percent Error

Total Density

11.0%

11.6%

5.13%

12.0%

8.85%

llelium Density

1000-2500

IS
"

i ¥
O

4

500-800 a.1% 1.5%

100-2500 800-1900 11.0% : 1.25¢
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ORIGINAL PAGE B PGB .

: ‘. _._:::;, . . \ ] f‘g!ﬂw** . -
? 8.7.1.4 The Density Computation |
a! When all of the terms contributing tc the atmosphere p7y
density are combincd
pp = 10° 0 1723 g % 1) C (14)
§ ’ éﬂere
!
g , . Pp = the atmospheric density in Kg/m3
| )
f P, is given by equation (12), ) '
f P2 is given by equation (é),
: P3 is .given by cquation (9),
é’ ‘: P, is given by equation (5a), 5
' Q1 is given by equation (13iﬂ K g
)kﬁj Qz- is ‘given by equation (10), and g
‘ C  is the molecula: mass of Helium divided by 5
Ayogad?o‘s Number ~_0.6646(1n’23) | E




! 8.7.1.5 Density Partial Derivatives D71
! - VEVAL
| if In addition to the density, GEODYN also requires the
partial derivatives of the density with respect to the
iy Cartesian position coordinates., Tugse partials are used
% in conputing the drag contributions to the variational
é‘ ' equations.
] : The spatial? parii 1 derivatives of the atrospheric
density are
]
3p 3p 36 dp DY 3p oh .
! L2 . 2 . 2 (1)
g r¥s 8 T R g sh or .
where
( h - spheroid height of the satellite é
¢ - sub-satellite latitude i
i .
’ X - sub-satcllite longitude
) | _ i
?? T - truc of date position vecctor of the satellite
-,
Variations in atmospheric density are primarily
: due to changes in height. Therefore, only height varia-
S tions are computed by CEODYN and
i 3p
g .....2 = 0 ) ,
¥ . .
& a" (2)
: P
§:~ u—-l-?- = 0 .
r‘ ak . -

8§.7-29
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and conscqu-ntly : 271

dop 3y d
T 3h

(3) ;

!

(%4
~{
‘

where

3h
-— is prescnted along with the spheroid height

or computation in Section 5.1,

The density is given (Section 8.7.4) by

P,+D +P 47 Q Q
op = 103 {10 1727374 s 10 0?2 -1¢c (4)
where . 1
Pp - density in }:g/m3
n : m . '
_ (i-1) (i-1)
P, = }E: h }E: ag; T (5)
i=1 j=1
o -7, . 2.301 3 -3 L
Pz = g(t)[5.876(10C ") h + 0.06328] exp [-2.:68(10 “)h] (<.
P, =0.014(] ¥ sinZer 3 2
5 =0.014 (h-90) P e sin‘e” cxp [-0.0013(h-90)%) (7)
Py = 0.012 K 4 1.2(107%) eoxp (K. . ' (8)
’
8.7-30




, n m
y 1-1 w(1-1
Q = jiJ w(i-1) j{: bij p(i-1) log,, n(ile) (9)
i=1 j=1 -
= Alo n(lte) ) ) (10)
, Q, £10
)
) . C = tiae molecular mass of Helium divided by Avogadro's
Number.

h = height in Km.

! a5 polynomial coefficients used to £fit_the density
' table. .

bij - polynomial cocfficients used to fit the Helium

' number density table,

( A1l other terms arc defined in Section 8.7.1.4 and need no
further clarification at this point since they are constants

in the partial derivative equations,

Defining two basic derivative formulae,

d : du(x)
"~ | L eu(x) - eu(x) _E_f_ . (11)
dx dx

8.7-31
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D71

| ‘ BT

: — 10 L cu(x)£n10
| dx dx
y 8 |
- 2ul0 cu(x)knlo Sfffl

-

} : <X

? , du(x)

| = 10010 (12)

; ' dx

| k

§ And it follows that

Ly

- -

%

' ? P,+P,+P +P P,+P_+P_ +P 3 .

| 10l 27374 491727374 4010 — (P,+P_+P+P,)

! 172 °3 4

j eh : sh

; {13)

: ® Q Q 3
— 10t =101 gen10 2 © o (18)
(? oh oh )
Diffecrentiating the components of (13) and (14)
T P n . = .
i 1. }E: (i-1) n3-2) :E: a.. T-1) (15)
A 3h - £ 1) .
. i=2 j=1
P, -7 1.331 -3
—<% = g(v){5.876(20"") (2.331) h*° exp [-2.868(10  )h)
3h .
+ 15.876(10°7) n2-3314 0,06328] (-2.868) (107

exp [-2.8568(10°3) h]} (16)




'
1
!
i
i
'
i
i
.
.

it oa

L

0.014 P sin®6” exp [-0.0013(h-90)°]

3h o]

{1 + 2(h-90) 2 (-0.0013)§ (17)

- (18)

. an n

3h

]

m
(i-1) h(i-2) :E: a3 7(3-1) (19)
2 .

i= j=1

-
-

The resulting partials are in the units of (Kg/ms)/Km

and must therefore be multiplied by 1073,

VEVAL

2ppn 9 P +P,+P 4P Q 3 Q
DT 401727574 L not i1y c—10? (20)
ah oh . ah

The units of (20) are then

(kg/n%).
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August 11, 1975

8.7.2 JACCHIA 1965 Density Model

D6SC.

The J-.cchia 1965 Density Model), as imple&entcd in sub-
routine D650 is bascd or Jacchia's !965 report, '"Static
Diffusion Modecls of the Upper Atmosphere with Empirical Tempera-
ture Profiles" (Reference 12). The formulac for computing the
exosﬁhcric temperature have in some cases been modified according
to Jacchia's later papers. The density computation from the
exospheric tempcrature is based on density data provided in that
report, reproduced hercin as Table 5, which presents density
distribution versus altitude and exospheric temperature.

The reader who is interested in the development of these
empiric2l formulas and the rezsoning behind them should censult the
avbove mentioned report and Jacchia's later papers. For the con-
venience of this interested reader, the references 13 for this sec-
tion from a reasonable comprehensive bibliography.

REPRODUCIBILITY OF THE
OPIGINAL PAGE IS POOR

8.7-34 -




August 11, 1973

8.7.2.1 The Assumptions of the Model Deso

. The Jacchia-Nicolet model is based on certain simplifying
assumptions and on cmpirically dctermined formuwlac. This is pri-
marily duc to the complexity and varied naturc of the processes
occurring in different regions of the atmosphere and the general lac
of anything rescmbling a complete understanding of the fundamental
mechanisms involved. The actual derivation of the model is based

upon assumptions first proposed by Nicolet (sce Reference 14); Jacchiaf

sclected the Nicolet approach to generate a model suitable for
satellite dynamics. -

The model of the atmosphere proposed by Nicolet considers that
the fundamental parameter is the temperature. Other physical parametc
such as ‘the pressurc and density were derived from the temperature.
Thus the first concern is the temperaturc variation in the atmosphere.

This tempera‘ure variation is controlled by the following
conditions:

1, Above the thermcpause, the temperature of the atmosphere
does not vary with altitude. The thermopausc varies with
solar activity (and the time of day), ranging

between about 220 km to 400 km. The .
temperature above the thermopause is called D650

the exospheric temperature and is directly
responsive to solar cffccts

O?;éﬁ""%
. Rﬂéﬁ?"Qp:HﬁP
, 3703
8.7-35
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D652
2. At an altitude of 120 km, the temperature,
density, and atmospheric conditions are inde-
. pendent of time. This is an obvious simpli-

-~

P ' fication. Howeve., the variations of these
parancters above 120 kn arec considerably
) larger than thosc occurring at 120 km, and,

considering the other assumpticns, this
assunption rcpresents a rcasonably good

b . approximation. ' : ‘ '

. 3. The atmosphere is assuned to be-in static
equilibrium., With the large day-to-night

. tenperature variations, having a period of the

% same order of magnitude as the conduction tiue
- in the lower thermosphere, and with the nc-

( . casional oceurrence of severe nagnetic storns

»

which give uvise to fairly rapid and large
: temperature variations the validity of this
assumption is open to question. The best

lﬁ .; arguncnt for this assumpi.on is its relative

? simplicity., It should be auticipatad, however,
that in times of rapid change of the solar or
geophysical parameters the predictions of this
model will be in error due to the invalidity
of this e¢ssumption.

The atmospherc is considered to be in diffusive
cquilibrium above 120 km; that is, the density distribu-
tions of cach atnos phcxxc con«tatucnt with height are
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governed irdependently by gravity and temperature. The D650

governing cquations arc the hydrostatic Jaw, rclating

-the pressurce variation with height to the acceleridtion

of gravity, anca the perfect gas law, which relates the

pressure, density and temperature.

With this approach, Nicolet showed that above
250 km the obscr;cd density profiles were rcproduced
satisfactorily if the (exospheric) temperature was as-
sumed to be a2 different constant. He also indicated
that the problem of representing the demsity between ,
120 km and the thermopause was largely a problem of de-
ducing the vertical distribution of temperature.

The contributisn of Jacchia to the so-called
Jacchia-Nicolet model is largely the development of

-~
L™

e

empiriiil [formulas (o compuis Lolh the exospler
tcmpcrathre and vertical tenmperature dic*:. wtution as a
function of exospheric temperature. These formulac are
bascd on satellite obscrvations coupled with physical
recasoning. In addition, Jacchia has updated the boundary
conditions of Nicolet. Thus in effect Jacchia has pro-
vided all but the basic assumptions behind the model.

The fundancntal parameter of the nodel is therefore
the exospheric temperature. This temperature, together
with the boundary conditions, implics a particular vertical
temperature nrofile. These three itows - exospheric
temperatur., voundary éonditiou;, aad temperacure profile -
definc the density at any altitude over 120 km'through the
ciffusive cquilibrium equatien, :

: RPRODJCIBILITY OF THR o
ORIGINAL VAGE I8 POCR |
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Figurc 5, which was taken {ron Reference 14, shows DoSO
a comparison of density and exospheric tomperatures de-
rived from observations of Explorver I satcllite with
solar and geomagnctic parameters. Note the corrcspondence

between the cxospheric temperature and the density.

8.7.2.2 The Exospheric Temperature Computations

To calculate the fundamentsl parameter, the exo-
spheric tempcrature, Jacchia considered four factors which

could causc variations:

1. Solar activity variation |

”

2. Seni-annual variation

3, Diurnal variation REPRODUCIBILITY OF THE
: :AﬁﬂGhﬂﬁ;PAGEISEUOB

4. Geomagnetic activity variation
Each of thesc varidtions was determined to be related
to one or more cbservable parameters (sce Figure 1).

The . iven cmpirical fornmulae are based on thesc parameters.

Solar Activity

There are nany indices of sola? activit)'but tho one -
wiose Vo rxatxons most closely par:llcl those of atmaﬁphcrzn

1he Valnoq bf th

.-)‘
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-longer. In addition, there is a variation in the average
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monthly in the “Solar-Geoph )szcﬁ] Data Reports® of the DGSC
Environmental Sciencc Services Aduwinistration in PBoulder,
Colorado (U.S. Dcpartnent of Conmerce). - :

Most of the time solar activity is much morec intensc
in one solar hcmisphcre.thah the other so that the flux linc
appears to vary with the rotation period of the sun, 27
days. This periodicity frcquently persists for a year or

flux strength with a period of 2bosut 11 yeers which is

related to the solar cycle. - ' \

-
-

. From satellite drag data a linear relatio; between

the average 10.7 cm. flux and the average global nighttime
mininun ‘exospheric temperature has been obtained (Reference 12)
and is expressed as’ R

= ° T
To = 37T +3.60°Fg, . 1)

BE?BODUUEEUHE’OFTHEE
where o AL PAGE 18 POCB

is the averagc 10,7 cm. flux strength ovcr
2 or 3 solar rotations feasured: i units
of 10722 uatts/nzxcyczc/sec,,qggggg i

N
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The varioti r rotation is ex-
pressed {Raference 12) by l
' |
‘ 1
1 = 7 ° N 3
To' = Tg *+ 1.8° (Fyg.7 - Fp,7) (2)
where
Fi0.9 is the mean c¢f the 10.7 cm solar {lux i
for a given day in the same units as
i
X Fi0_7. an? .
' : . '
T0 is the global nighttimc minimum for the

same day,.
This formula accounts {approximately) for the day to day
temperature variation supcrimpoesed on the average global

nighttime minimum temperature determincd by the previous:

formula. : ' o

There is some indication that. the cocfficient 1.8°
actually varies from sunspot maximum to sunspot minimum.
The indicated range of var:ation is frcm about 2.4° doun

to 1.5°.
nmzadnucnmmmﬁrcm'mns
ﬂmnmtmxsm

Semi-Annual Yariatioﬁ"

"The semi- anﬁuai.varnation 1s-£he leaﬂt understood
of the scveral t)pes of vatiqti&aPzn thgﬂﬂppcr atno—~
\'carly, the a&musphcﬁc,émsit& aho*m zeo k:n

sphere.,
veaches
maxinun 3
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(Reference 15) found that the observed density variatioas D650

pausc, and arc roughly proportional to the 10.7 cm flux

linc. It Las been neted that the heisht of the iono-

spheric £, layer shows a scmi-annual variation almost
cxactly in phasc with the observed density variations.
Another sugscstion by F.S. Johnson (Reference 16) concern-
ing the cause of the semi-annual variation, involves
convective transfer at ionospheric levels from the

summey pole to the northevrn pole. This, as yet, does

not scem to account correctly for all the details '
The semi-annual variation is anot _

of ‘this variation.
Jacchia

as stable a fcaturc as the diurnal variation.
(Reference 12) accounted for this featurc in 1965 but has,

with the recent inforrmation of drag data from six satel-
lites, updated-his empirical formula (Reference 6) as

foilows:

-

Tg = T + 2.41 + Flo.710.349+0.206 siz1(21rt+226.5‘°)}

0
: . (3)
sin (471+247.6°)
where : . .
. . 2.16
1 + sin[27(d/Y) + 342.3°) A ¥
T =d/Y + 0.1145 . - - -0.5
2 ' . £

ar——— -

e et e e e et e e
-




day of the ycar couated frow Japuary 1. DeLa

d =
Y = the tropical year in days, ) ’ }
TO = global righttiric nininun temperature for

that day coriected for scmi-annual varia-

tion.

Jacchia, Slowvcy, and Cenpbell (Reference 17) have move

clearly defincd thies variation. As expected, the re-

f

lationship between the temperature and the 10.7 cm flux
linc cannot be considered zccurate. It was concluded 9

that the observed density variations are the result of

tempcerature variations at esscntially the same level as
in the case of the solar effect. However, a variable

altitude shows that the semi-annual variation affects

: | (» the whole atmosphere in the sanc manncy, irrespective
i- : of latitude. ‘ |
. ;

E

. REPRODUCIBILITY OF THE
. QRIGINAL PAGE 18 POOR
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Diurnal Varistion

-

The most regular of the variations is the diurnal’
variation. Onc can ﬁicturc the density distribution as
an atrpospheric bulze with its peak 30° cast of the sub-
solar point, degrading nearly symmetrically on all sicdes,
but a little steeper on the morning side. The density
peaks at 2 P.M. local solar time and the minimun occurs
at 4 A.M. The ratio of the maximun temperature
at the center of the bulge to the minimun in thg opposite
hemispherc renains constont throughout the solar cycle;
the ratio is 1.28 in Jacchia's model) atnosphere.” The
causc of the heating is in dispute. Soite investigators
belicve it is due entircly to extreme ultra-violet (EUV)
radiatigns; others, to ion drift; and still others, to a

combinatiocn of the two.

The temperature, T, at a given hour and geographic
location, can be computed in terms of the correct global
nightiine nininun temperature for that day, TO, using
the follewing foramula which approximates a mathcmatical
description of the atmospheric bulge (Reference 12):

R(coémn-sinme‘ T
T = To(+R si0)| 1 + o cos™ - (5)
) 1+R sin”0 2
REPRODEK&BHJTY’OF‘EHE
ORIGINAL PAGE IS FOOR ’
8.7'4& )

D650
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|
’ where . o D659
: R = 0.26 I
i‘ ]
! n=mnmn-=2.,5 '
i ‘
i . .
| T =10+ B +'p sin (Hey) (-n<t<a)
|
; B = -45°
? p = 12° : ' g
| . .
: Y = 45°
. ) |
| - . no= ABS[ (7 6.)/2) - . |
' i
- C & = ABS{{(y3¢,)/2]
; |
¢ = geographic latitude . g
- - REPRODUCIBILITY OF THE . L
- 6°= deelination of the sun ORIGINAL PAGE IS POOR i
. H = hour angle of the sun ' : i
g (H = 0 occurs when the point considered, -
k the sun, and the carth's axis are coplanar.

H is mecasurcd westward 0° to 36u*)

Based on satellite information, Jacchia (Refercnce 18) assunes
8 maximm doy teaperature 28% higher than che corres-

ponding nichttinme nininmum. The variation is represented”

by ® ia the above cquation, lowever, further investi-
Cpation by Jacchia, Slovey, wnd Canplbel) (Reference 17), re-
veaded thnt the din{ual-yntjntign fd&tcrj(u)'is soimovhat
variable., A valuc of 32% ié‘ﬁpusiﬁércd valid for dates

[
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prior to Fcbhruary 1263, and from August 1963, onvard,
20% variation is considered valid, Between these dates,

”

R is made to decreasce lincarly.

Although in thesc cquations the exponents m and
n, which deteraine the mode of the longitudinal and
latitudinzl tenmperature variations respectively, arc
kept distinct, it was found in practicc that m = n.
These valucs are not really known accurately and could

be as snzll as 2.0.

* . The .onstant B determincs the lag of the tempera-

-

ture maxinun with respect to the uppermost point of the sun;

p introduces an asynmetry in the temperature curve vhose

location is determined by ¥v.

Geonagnetic Activity

To the temperature, T, which is calculated above,
a correction must be added which accounts for atmos-
pheric heating related to changes in the Earth's mag-
netic field. The heating probhably occurs in the E layer
of -the ionosphere, but the mecchanism involved is not
well understood. The temperature correction,. AT, is
givch by Jacchia, Slowey, and Campbell ‘(Reference '17):

P

AT = 1.0° a_ + 100° {l-axp(fo.OSaﬁ)}f

vhere . S

’

S e i

oy

a. 35 the theee-hourly planctary geopagretic indexi

D650

W A o

L I
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' i: The quantity ay is a mecasure of the variation in D650
the carth's magnetic ficeld in a given three hour period.
) -
o ’ During magnctic storms the temperaturce changes
; ) generally lag behind the variations in ap by about five
) hours, duc to conduction. There is some evidence of
) leiger temperature chenges for given valucs of ap as
onc procecds to higher geomagnetic latitudes. However,
the anount of data indicating this is negligible at
) this time.
) : T .
. The D650 subroutine allows for the magnetic
J heating cffects with onc modification. To minimize the
) input Jata for GEODYN, the S-hourly’inﬁex (a.) is )

rcplacea'by a 24-1ourly or daily index (Al).
Generally, magnetic storms last for 2 or 3-days so

that the terparature calculation using A will reflect

o gy e
R
4

a ¢aily change, but not the 3- hou;l) fluctations which

N
H
*
4

occur with ap

The quantity A_ and the solar {lux data is
available from E.S.S.A., Boulder, Colorado. The publi-
cation is, "Solar Geophysical Data, Part I."

-
-

Accurate daily valucs for both the solar and FLUXS
FLUXA®

gcomagnetic flux are required for the computation of
the exospheric .cxpczatu.c. In GEODYX, thesc values
are input via a BLOCK DATA routine, INPT. This 1nfor-
mation may »¢ updated (cf svbrout:nc AD}IU\) using the
“appropriate GEODYN Iaput Cards. The user should be aware.
of the fact that these tables are cxp:ndcd as ncw inf@t*fﬂ
nation becoues avaxlable.. o ‘ e

2




"which is reproduced frem Jacchia's 19€S5 pap
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At the beginnine of cach run, a filc is generated JANTEC

for cach satcllite avc which contains the required {lux
data for thec time spon indicated. Subroutince JANTHG

s the rovtine vhich sets vp the flux tables, including

fude

&)

veraging the daily values of solar flux over two solar
rotation periods. The rteason. for this is to {reec the
large amount of computer storage rcquifcd for daily
flux valucs over six )cars. As a matter of reference,

. the associated COMN\OI BLOCR is PRICRI,

8.7.2.3 Tin Density Computation

The density computation in GEODYN subroutine D650
D650 is based on the density distribution versus

altitude and exospheric temperature presented in Table 12,
T el crence

- - - -

This data was obtained by numerical integrat

<
ti

on of

the diffusion cquation using an enmpirical temperature
profilc for cach indicated exospheric temperature.

' This vast quantity of information was fitted
(by WOLF) to various degree polynonials of the form:

: - N (i- 1) (i 1) | :
LOG,, by }; 2._, ag; T h -

vhere ' o,

pp ~is the density, .

AR
f‘ r
) o 14 -
o “..:,':gi i .’,.
A '
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T is tle Aofahcrnc temperature
] ] ’

.

h is the sphervoid height of the satcllite

(altitude), and .
a is a set of appropriatec coefficicnts

Unfortunately, a single polynonial of the type

-presented is not completely descriptive. An cxamina-

tion of Tablc 1 reveals that density is necarly in-
dependent of temperaturce for low altitudes, but
becomes increasingly dependent for heights above
160 km. Accordingly, appropriate polynomials were
chosen to’account for the varying dependency of the
variables. This necessitated the qcparat1on of
Table 1 into thrce parts. :

' The lower region (120 kn - 160 kn) is expressad
as a sccond degree polynoniul which is solely a function
of altitude. This is duc to the fact that density is
not appreciably dependent on tcmveranure;fn this region.
The remaining regions of 160 ki to 420 kn and 42C kn to
1000 km arc described by pelynonials of fourth degree
in both temperature and altltudc.

-

The coefficients for the sclected polynomirls are
presented in Table 6. These cocfficients have been
modified to compute the natural log rather than the

decimal log ci the demsity. mmawmmm |
LT 1) m i

.

D659

.
W Ve ut s




S e e e e L

August 11,

The densitics produced by these fitted polynomials
differ from the densities in Table 1 by an RMS of 3.7
lowever, the fit does vary in differcent regions
wvherc the

pereent.
of the tab.c.
temperature ic relatively lou (700-1000° K) and the

i, the RIS is somevhat grea

In the region of werst fit,

altitude varies fron 620-84¢C
being about &.5 percent. The largest percent difference

between densities is 13.2 percent and falls within the

- region described.

The {its zbove could be improved by either going
to higher degrce polynomials or by additional segmenta-

tion of the tazble. MNowever, thesc {its are considered

to be as accurate as the model being used.

For satellite altitudes above 1000
is computed atcording to the catraposztion formuls ~iven

by Jacchia (Reference 12):

Pp = P * (51000'D“)°Ib(h—1090)]
where Rﬁ’RODUCIBIIJTY OF THE :
) | ORIGINAL PAGE 18 POOR .
. b = gnﬁ(xn pn) as cvaluatcd at 1000 km,, 
Pe - is