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SUBSONIC WIND-TUNNEL INVESTIGATION OF A TWIN-ENGINE ATTACK
AIRPLANE MODEL HAVING NONMETRIC POWERED NACELLES

By Vernard E. Lockwood and Aniello Matarazzo™*
Langley Research Center

SUMMARY

A 1/10-scale powered model of a twin-engine attack airplane was investigated in
the Langley high-speed 7- by 10-foot tunnel. The study was made at several Mach num-
bers between 0.225 and 0.75 which correspond to Reynolds numbers, based on the mean
aerodynamic chord, between 1,35 X 106 and 3.34 x 106, Unheated compressed air was
used for jet simulation in the nonmetric engine nacelles which were located ahead of and
above the horizontal stabilizer. The aerodynamic coefficients were affected most at the
lowest Mach number where the thrust coefficients were the greatest. The lift increments
resulting from nacelle blowing were all positive but generally decreased as the elevator
deflections became more negative. The pitching-moment increments were usually nega-
tive for elevator deflections of 00 and ~100, but were positive for elevator deflections of
-15° and -250, The lateral-directional characteristics were only slightly affected by
nacelle blowing. Reducing the model height above the ground plane induced nose-down
pitching moments and reduced the trim lift coefficients. Nacelle blowing increased the
elevator hinge moments for negative elevator deflections; however, nacelle blowing had
less effect on the relationship between the model pitching moments and the elevator hinge
moments. Nacelle blowing increased the rudder hinge moments when the sideslip angle
and rudder deflection were in directions such that the angle between the rudder chord
plane and the free stream was increased.

INTRODUCTION

The National Aeronautics and Space Administration has made a wind-tunnel investi-
gation of a 1/10-scale powered model of a subsonic attack airplane. The principal objec-
tive of the power testing was to assess the interference effects of the separately mounted
propulsion system on the aerodynamic characteristics of the model. The model was
equipped with ejector-type engine nacelles using cold air to simulate jet engine flow char-
acteristics. Since the nacelles were supported rigidly and independently from the rest of
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the model, thrust measurements could be obtained only by wake survey methods. The
maximum thrust coefficients based on such measurements varied from approximately 0.91
at the lowest Mach number to 0,08 at the highest Mach number. Longitudinal stability and
control characteristics were obtained from measurements made over an angle-of-attack
range which varied from -4° to as high as 17°. Directional stability and control charac-
teristics were obtained from measurements made over a similar angle-of-attack range at
sideslip angles of 9° and -9° for the lowest Mach number only.

In the high-lift configuration with trailing-edge flaps deflected 30° and landing gear
attached to the model, data were obtained both with and without the ground plane. The
ground plane was simulated by installation of a board beneath the model which divided the
tunnel test section. With the ground plane in place, the tests were made with the angle of
attack held fixed and the model height and elevator deflection varied.

The tests were made in the Langley high-speed 7- by 10-foot tunnel over a Mach
number range from 0.225 to 0.75 which corresponds to a variation in Reynolds number
based on the wing mean aerodynamic chord from 1.35 X 108 to 3.34 x 106, In addition
to the usual six-component balance measurements, elevator and rudder hinge-moment
measurements were taken, All data are presented in coefficient form.

" SYMBOLS

The coefficients of forces and moments are referred to the stability-axis system.
The model moments are referred to a point located on the plane of symmetry longitudinally
at 0.25 of the mean aerodynamic chord and vertically at 0.0918 of the mean aerodynamic
chord below the model reference line. Measurements and calculations were made in the
U.S. Customary Units. They are presented herein in the International System of Units
(SI) with the equivalent values given parenthetically in the U.S. Customary Units, The
symbols used in this paper are defined as follows:

b wing span

c mean aerodynamic chord
Ce elevator moment arm

Cr rudder moment arm

1995} drag coefficient, %g_



~ yawing-moment coefficient,

Elevator hinge moment

elevator hinge-moment coefficient,

Zéeseqoo
rudder hinge-moment coefficient, Rudder h_inge. moment
2chrq°°
lift coefficient, LA
[> o]

trim lift coefficient

Rolling moment
Sbq

Pitching moment

rolling-moment coefficient,

pitching-moment coefficient,

Scq,,
Yawing moment
Sbq

Ppne - P
nacelle exit static-pressure coefficient, D€ - "o

S e]

' 2050 ne
gross thrust coefficient of both nacelles, q + Cp,ne 5

[~ e}
Side force

side-force coefficient,
Sq

©
distance between main wheels and the ground plane with tunnel inoperative
nacelle incidence, positive nose up, deg

freé—stream Mach number

nacelle exit static pressure

nacelle exit total pressure

free-stream static pressure

nacelle exit dynamic pressure

~ free-stream dynamic pressure

model reference area



Se elevator area aft of hinge line

She nacelle exit area

Sni nacelle inlet area

Sy rudder area aft of hinge line

a angle of attack of model reference line, deg

B angle of sideslip, deg

v ratio of specific heats for air, 1.4

e elevator deflection, positiye trailing edge down, deg

Of flé.p deflection, positive trailing edge down, deg

Vﬁr rudder deflection, positive trailing edge to the left, deg

MODEL DESCRIPTION

The model used for this investigation was a 1/10-scale version of a close air sup-
port aircraft, Drawings showing dimensions and photographs of the model mounted in the
Langley high-speed 7- by -10-foot tunnel are presented in figures 1 to 4; additional dimen-
sions are presented in table I. The model was sting supported by means of a six-
component balance. The nonmetric nacelles had air ejectors which were supplied with
compressed air through an overhead strut assembly as shown in figure 1. For the ground-
effect studies a plywood board spanned the tunnel and was supported by brackets as shown
in figure 4. '

The model had a low wing with an aspect ratio of 6.0 and a taper ratio of 0.69. The
wing had an NACA 6716 airfoil section from the root to 34.2 percent of the semispan from
which it varied linearly to an NACA 6713 airfoil section at the tip. In addition, the wing
had pylons and landing gear pods as shown in figures 1 and 3. For the landing and takeoff
configurations the model used single slotted extensible flaps deflected 30° and landing gear
as shown in figures 4(a) and 4(b). v

‘The tail had a horizontal stabilizer and remotely controlled elevator endplated by
fins with an adjustable rudder. The right elevator and rudder had electrical strain gages
to measure the control surface hinge moments.
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The powered nacelles were positioned between the wing and the horizontal tail and
were attached to an overhead strut assembly with a pylon as shown in figure 1. A small
gap separated the pylon from the fuselage to prevent contact.

Although the ejectors used to simulate the engine flow were similar to those illus-
trated in figure 1 of reference 1, they were larger and employed 76 nozzles in place of the
177 smaller ones shown in the illustration. The three air passages in the strut for each
engine or a total of six supplied air to 4 common opening in the nacelle support. High
pressure unheated air was brought with flexible hoses through the slot openings in the
floor of the test section to the overhead sting as shown in figures 3 and 4. Throttle valves
attached to the main supply line in the sphere surrounding the test section balanced the
flow to the two ejectors, and a valve placed in the single line set the operating level of
the ejectors. A pressure tap in each ejector plenum monitored the pressure level in
the nacelle. In addition, an eight-tube manifold total-pressure rake indicated pressure
at the nacelle exit (see fig. 4(b)). A 20-tube survey rake which contained both static-
and total-pressure tubes was utilized to measure the pressures in the thrust calibration
since the overall design made direct thrust measurements impractical.

TEST CONDITIONS

The test conditions are presented in the following table:

: - Average stagnation
Mach number bynamic pressure temperature Reynolds number
, Pa 1b/ft2 K OR
0.225 3 496.7 73.03 284 511 1.352 x 109
.45 12 549.8 262.11 294 - 529 2.420
.60 20 135.4 420.54 299 539 2.934
.70 25 188.2 526.07 308 555 3.146
3 26 611.2 | 555.79 321 578 3.063
.75 27 620.0 576.86 303 ° 545 3.344

The Reynolds number is based on the mean aerodynamic chord: the lower Reynolds num-

ber noted in the table for M =0.73, as compared with M = 0.70, results from a higher
tunnel operating temperature.

In order to insure turbulent flow in the boundary layer, a 0.254-cm (0.10-in.) wide
strip of No. 90 carborundum grains was placed 2.54 cm (1 in,) behind the leading edge of
all surfaces. For the fuselage and landing gear pods, the grit was piaced 3.81 cm (1.50 in.)
aft of the nose. A discussion of transition fixing on the model for testing is given in ref-
erence 2. The tests without the ground plane were made by varying the angle of attack at
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fixed control surface defleqtion and constant thrust values. When the model was tested in
the presence of the ground plane, the angle of attack was held constant and the height of
the model and the elevator deflections were varied. '

MEASUREMENTS AND CORRECTIONS
The model was equipped with a six-component strain-gage balance for measuring
the forces and moments. The nacelle was supported independently as shown in figure 3(b);
consequently, the forces and moments on the nacelle are not included in the measured
model data, An accelerometer was installed in the nose of the model for measuring the
pitch angle directly. The sideslip angles were obtained by offsetting the sting coupling
angles of 9° and -9°. No corrections were applied to the sideslip angle for deflection of
the sting and balance under load. '

A single static-pressure tube measured the difference in static pressure between
the base of the model and the free stream, and this difference in static pressure was used
to adjust the axial force to a free-stream condition.

Jet-boundary corrections calculated by the method presented in reference 3 were
applied to the data obtained without the ground plane. The corrections to angle of attack
and drag coefficient are listed as follows: »

®corrected = ®measured - 0-274Cp,

= 2
Cp,corrected = €D, measured - 0.00473Cy,

The principal objective of the power testing was to assess the interference effects
of the fuselage-mounted propulsion system on the aerodynamic characteristics of the air-
plane. The thrust coefficient is the accepted correlating parameter since it relates the
exiting momentum of the propulsion system to the free-stream momentum. The gross
thrust coefficient is defined as

29pe : Sne
Cr = <qw * C,P’“‘;_s‘

where the nacelle exit dynamicApressure is measured by a total-pressure rake installed
for the calibration. Because of the design of the nacelle support system, direct thrust
‘measurements were impractical. The calibration of the right and left nacelles was made
with the tunnel in operation at M = 0.225 to prevent frost from forming inside the ejector.




By use of the compressible flow equations, the gross thrust coefficient may also be
written in terms of the measurable jet exit conditions as

=

v-1
Crn = ——25ne <Pne,t\ 14 (pne)yl - (Y + 1\/pne> _r -1

T- (y - 1)SM2 poo/ p 2y \Pg 2y

ool -

The gross thrust coefficient is a function of the Mach number squared, the ratio of exit
total pressure to free-stream static pressure, and the ratio of exit static pressure to
free-stream static pressure. For subsonic exit velocities, the static-pressure ratio is
taken to be 1; therefore, the thrust coefficient can be computed from the measured nacelle
exit total pressure and free-stream static pressure. The result of this computation is -
shown by the broken line in figure 5. There is good agreement between the two methods
of determining thrust coefficient. '

The range of thrust coefficients obtained at each Mach number is shown in figure 6.
The expected full-scale gross thrust coefficient at various flight conditions are included
for comparison. As may be seen from this figure, the investigation encompassed a major
part of the airplane flight envelope. The minimum values shown in figure 6 and in the
data figures correspond to the momentum in the free stream minus ejector losses.

PRESENTATION OF RESULTS

The data obtained in the investigation are presented in figures 5 to 34, and the follow-
ing table summarizes these data: ' . :

Figure
Nacelle thrust calibration . . . . .. ... ... ........... T e e e e e 5 and 6
Longitudinal aerodynamic characteristics:
Effect of thrust coefficient for various elevator deflection and Mach numbers,
h=w,and 8=00 . ... .. e 7 to 11
Effect of elevator deflection for various thrust coefficients and Mach numbers,
h=o,and 6=0° ... ............... e e 12 to 16
Effect of thrust coefficient for various elevator deflections, M = 0.225,
h=cw, 6=300and i;=4%..................... 17
Effect of thrust coefficient for various elevator deflections, M = 0.225,
h=w, 8=30%and iy=2%....... ... .. ... ... .. ... 18
Effect of thrust coefficient and elevator deflection for various model heights,
landing gear on, M =0,225 and 6;=300. .. ... ... .. I - 19



Figure
Effect of thrust coefficient and model height, for landing gear on, M = 0.225,
6p=30%and a=0° .. ... ... ... 20

Lateral stability and control characteristics:
Effect of thrust coefficient for various rudder deflections, M = 0.225,
h=o,and G=00 . . . . . . . . i i ittt ittt e et 21 and 22

Control hinge-moment characteristics:
Effect of thrust coefficient and elevator deflection for various Mach numbers,

h=owo,and S¢=00. . . .. . . ... . ittt i ittt 23
Effect of thrust coefficient and elevator deflection for M = 0 225, h = «,
66=30% and in=4% L ... e 24
Effect of thrust coefficient and elevator deflection for M = 0.225, h = o,
2 6;=30%and ip=2° . ... ... L. L. e e 25
Effect of thrust coefficient, elevator deflection, and model height for M = 0,225,
cand G =300 L L L L e 26
Effect of thrust coefﬁcie_nt, elevator deflection, and model height for M = 0,225, A
g =300 and i =4% ... ... 217
Effect of thrust coefficient, sideslip angle, and rudder deflection for M 0.225,
6=0% h=o,and 6,=0......... e e e 28
Summary data:
Effect of Mach number and flap deflection on the longitudinal control
parameter ... ... e e e e e e e e e e e e e e e 29
Increment in lift, drag, and pitching-moment coefficients due to nacelle
blowing ... ..... e e e e e e e e et s e e et et e e e e e e 30
Effect of nacelle incidence on the maximum trim lift coefficient of the model
FOT B =250 . o i it e e e e e e e 31

Effect of thrust coefficient and elevator deflectlon on the pitching moment with
ground plane inplace for a =00 . . . . ..t e e 32
Effect of thrust coefficient on maximum trim lift of the model with ground

D 33

plane in place for &g = -25°
Effect of nacelle thrust coefficient and model height on the variation of pitching-
moment coefficient with elevator hinge moments for a=0°. .. ... .. .. 34

DISCUSSION OF RESULTS

The basic purpose of this investigation was to determine the effect of nacelle blowing
on the model characteristics. Since the model was equipped with nonmetric nacelles, the
induced effects on the model were of primary interest. The gross thrust coefficient CT



is used as the blowing parameter. The relationship between values obtained with a

1/ 10-séale model and those of the full-scale airplane for the maximum thrust condition at
various altitudes are shown in figure 6. The airplane idling thrust condition has also
been included.

Longitudinal Aerodynamic Characteristics

Flaps neutral.- The pitching-moment data with the flaps in the neutral position
shown in figures 7 to 11 indicate that most of the effect of nacelle blowing is dependent on
the elevator deflection. These effects are probably also a function of the horizontal-tail
incidence which was kept constant at -5° for this investigation. Since the maximum
change in the pitching-moment characteristics occurred at low speeds where the thrust
coefficients are the greatest, this discussion is restricted to the results obtained at
M = 0.225. Power induces a negative pitching-moment increment at 5, = 0° and a pos-
itive pitching-moment increment at 5e = -150. The net result is an increase in elévator
effectiveness Cp, be'

A plot of the ratio of Cm6 with power to Cpy 6 without power is shown in fig- .
e e

ure 29 for Cy =0.5. The increase in elevator effectiveness is directly proportional to
the increase in thrust coefficient and relatively independent of Mach number. Data
obtained with the flaps down also show similar increases in elevator effectiveness (fig. 29).

300 flap setting.- Aerodynamic characteristics obtained with various amounts of

blowing and elevator deflections at nacelle incidences of 4° and 2° are presented in fig-
ures 17 and 18, respectively. Incremental lift, drag, and pitching-moment coefficients
obtained from figure 17 where i, = 4° are shown in figure 30 as a function of thrust
coefficient for angles of attack of 0° and 10°. The drag increments may be either positive
or negative depending on the angle of attack and the elevator deflection. At all elevator
deflections the lift-coefficient increments are positive, but as the elevator is deflected
negatively (upward into the engine exhaust), the lift generally decreases both with elevator
deflection and thrust coefficient. The pitching-moment increments which are negative at
b = 0° progressively become more positive as the elevator deflection is increased to
-250, This change in the sign of the pitching-moment increments plus the reduction in
lift increments probably was a result of reduced air circulation over the horizontal tail.
In addition, the engine efflux may also cause a reaction on the elevator. Both conditions
would produce greater trim lift coefficients. The increased effectiveness of the elevator
to trim (6, = -25°) with power is illustrated in figure 31, where C[, trim is increased '
from 1.17 to 2.03 (or a lift increment of 0.86) with an increase in Ct from 0.03 to 0.61.
A change of nacelle incidence to 2° reduced CL,trim from 2.03 to 1.73 at Cr of 0.6.
The CL,trim' values quqted are with the nonmetric nacelle. With the nacelle attaqhed,



however, the trim lift coefficients may be entirely different because of the lift, drag, and
thrust forces transmitted from the nacelle.

300 flap setting in ground effect. - The effects of nacelle blowing in the presence of a
ground plane are presented in figure 19 for a limited angle-of-attack range and in fig-
ure 20 for the range of elevator deflections at « = 09. The power effects on the lift and
the pitching-moment coefficients are similar to those obtained without the ground plane.
For example, blowing induces a positive lift increment and a negative pitching-moment
increment at 5, = 00, whereas with g = -25° the lift increments are substantially
reduced and the pitching-moments increments become more positive resulting in higher
trim lift coefficients, Generally, decreasing the model height induces nose-down pitching
moments as shown in figures 20 and 32 and thereby reduces the trim lift coefficients
(tig. 33). With the thrust coefficient at a value of 0.61 and &, = -259, CL,trim Wwas
reduced from 2,03 without ground plane to 1.25 at h/b = 0. Power-off data likewise show
a large reduction in trim lift coefficient with decreased height.

Lateral Stability and Control

- The data obtained with the model in sideslip and with the rudder deflected show no
significant effects on the rolling- and yawing-moment characteristics when the thrust
coefficient was varied. '

Control Hinge-Moment Characteristics

The elevator hinge-moment characteristics obtained through the Mach number range
for & =0° are presented in figure 23. The data indicate that the maximum power
effects occur at the lowest Mach numbers which correspond to the highest thrust coeffi-
cient. These data in conjunction with those obtained with flaps deflected (figs. 24 and 25)
show that power reverses the sign of the elevator hinge moments between 9 e = 0° and
6e = -109, In addition, the magnitude of the power effect increases and the elevator deflec-
tion is increased to -25°. A summary plot showing Cy, as a function of Ch,e for
several thrust coefficients and model heights is presented in figure 34. These data corre-
spond to the various elevator deflections at o = 00. The effect of power on the relation-
ship of Ch, e 0 Cy, appears to be relatively small; there is, however, a tendency for
the elevator hinge moments to become more positive for a given pitching moment as the
model height is reduced.

The power effects on the rudder hinge moments were relatively small compared
with the hinge moments resuiting from rudder deflection as shown in figure 28. Nacelle
blowing increased the magnitude of the hinge moments when the sideslip angle and rud-
der deflection were in directions such that the angle between the rudder chord plane and
the free stream was increased,
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CONCLUSIONS

A 1/10-scale powered model of a twin-engine attack airplane was studied in the
Langley high-speed 7~ by 10-foot tunnel over a Mach number range from 0,225 to 0.75.
Two nonmetric air ejector engines were used to simulate the efflux from jet engines.
The investigation indicated the following conclusions:

1. As might be expected, the major effect on the aerodynamic coefficients from
nacelle blowing occurred at the lowest Mach number where the thrust coefficient was the
greatest.

2, At the higher thrust coefficients, the lift increments were all positive but were
generally less for negative elevator deflections than for zero deflection,

3. The drag increments were either positive or negative depending on the angle of
attack and the elevator deflection, '

4, The pitching-moment increments were generally negative for 0° and -10° elevator
deflections and positive for elevator deflections of -15° and -25°, An increase in the
thrust coefficient from 0.03 to 0.61 increased the trim lift coefficient by a lift increment
0.86 with an elevator deflection of -25°,

5. Reducing the model height above a ground plane induced nose-down pitching
moments and thereby decreased the trim lift coefficients.

6. Power generally had only minor effects on the rolling moments, yawing moments,
and side forces with the model in sideslip and with the rudder deflected.

7. Power increased the elevator hinge moments for negative elevator deflections;
however, there was little effect on the relationship between model pitching moments and
the elevator hinge moments.

8. Power increased the rudder hinge moments when the sideslip angle and rudder
deflection were in directions such that the angle between the rudder chord plane and the
free stream was increased,

Langley Research Center,

National Aeronautics and Space Administration,
Hampton, Va., August 5, 1974.
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TABLE I.- MODEL GEOMETRY

Wing:
Reference area, m2 (ft2) . . . . . . . . . . ittt e 0.4459  (4.80)
Span,m (ft) . . . . ... ... e P 1.6368 (5.37)
Aspectratio . . . . . . . . . L L e e e e e e e e e e e e e e e 6.0
Taper ratio . ... .. e e e e e e e e e e e e e e e e e e e e e e e 0.69
Dihedral angle, deg, for — b
010 0.342b/2 . . . . ... e e e e e e e e e e e e e e e 0
0.342b/2 10 1.0D/2 « + v - v i e e e e e e e s e e e e 7
Rootchord, m (ft) .. ... ..., ... ... ... euneenee.. . 0.2944  (0.966)
Tipchord, m (ft) . . . . . . . . . 0t 0t it it e e e 0.2094 (0.687)
Mean aerodynamic chord, m (ft) . . . . . . .« v it e et . 0.2764 (0.907)
Incidence, deg . . . . . . . . . .. . e e e e e e e e e e e e -1.0
Geometrictwist . . . . . . . . L . .. e e e e e e e e e 0
Leading-edge sweep angle, deg, for — ’
0t00.3420/2 . . . .. . i e e e e e e e e e e et e e e e e e e e e 0
0.3420/2t0 1.OD/2 . . vt i e e e e e e e 5.75
Quarter-chord sweep angle, deg, for — .
0t00.342b/2 . ........ e e e e e e e et e e e e e e e e e e -0
0.342b/210 LOB/2 . . L . L Lt e e e e e e e 3.2
Airfoil section — . :
ROOt t0 0.342h/2 . . . i v v i s e e e e e e e e e e e e e e e e NACA 6716
Tip ... e e e e e e e e e e e e e e e e e .... NACAG6713
Flaps: .
Type Single slotted extensible
Total area, m2 (ft2) , .. ... e e e e e e e e w..... 0.0817  (0.88)
Inboard location, fractionof b/2-. . . . . . . . . oo, e e e 0.118
Outboard location, fraction of b/2 . . . v« s s e vv e vm s e e 0.612
Ratio of flap chord to wing chord for -
0.118b/2t0 0.342b/2 . . . . .. ... .. ... ... e e 0.35
0.612 & . L e e e e e e e e e e e e e e e e e e e e ~. 0.34
Fuselage:
Frontal area, m2 (f2) . . .. .. .. ... 0.0232  (0.25)
Length, m (ft) . . . .. . . . . . . .. . i i ittt . 1.582 (5.19)
Depth (maximum), m (ft)
Without canopy . . . . . .t v v st e e e e e e e e e e e e e e e 0.177 (0.58)
Withcanopy . ......... e e e e e e e e e e e e e e e e e 0.213 (0.70)
Width (maximum), m (ft) . . . . .. . . e 0.134 (0.44)
Balance chamber area, m2 (ft2) . . . .. . . .t e e e e e e , 0.00424 (0.0456)



TABLE IL- MODEL GEOMETRY - Concluded

Horizontal tail:
Area, m2 (ft2) -

Theoretical . . . . . . ¢ i i v o i e e e s s b e s e e e e e e e e 0.1096 (1.18)
EXPOSEd . . . v v v i it et e e s e e e e e e e e et e e e e 0.0873 (0.94)
Span, m (ft) . . . . . . L e e e e e e e e e e e e e e 0.5730 (1.88)
Aspectratio . . . . . ... ... . e e e e e e e e e e e e e e e e e 3.00
Taper ratio . . . . . . . . 0 i it e e e e e e e e e e e e e e e e e e e e e e 1.0
Incidence, deg . . . . . v v i v o bt e e e e e v e e e e e e e e e e e e e e e e e e e -5.0
Dihedral,deg . . ... ............... D e e e e e e e e e e e e e 0
Chord,m (ft) .. ............ e e e e e e e e e e e e e v ... 0.1917 (0.6292)
Tail length (0.25 wing M.A.C. t0 0.25 tail M.A.C.), m (ft). . .. ... ... .. 0.6782  (2.225)
Quarter-chord sweep angle, deg . . . . . . . v v v v o et e e e 0
Airfoil section . . . ... ... e e NACA 64(112)A013
Elevator hinge line, %tail chord . . . . . . . . . . . i it v it it e e e 70
Sweep of elevator hinge line, deg . . . . . . . « . ¢ ¢ v v o i it i e e e e e 0
Elevator area aft of hinge line (per side), m2 (ft2) .. ............. 0.0132 (0.1422)
Centroid of elevator area (aft of hinge line), m (ft) . . . ... ... ... ... ‘0.0287 (0.0943)
Elevator moment area (per side), m3 M) e 0.000380 (0.0134)
Vertical tail:
Area (total), m2 (ft2) . . . . . . . ... . e e e e e 0.0975  (1.05)
Span, m (1) . . . . . i e e e e e e i e e e e e e e e e e e e e e e, 0.305 (1.0)
Aspect ratio . . . . . L . i L et i e e e e e e e e e e et e e e e e e e e e e e 1.89
Taper ratio ... .. e e et et e e e e e e e e e e e e e e e e 0.61
Root chord, m (ft) .. ...... e e e e e e e e s e e e e e e e 0.2121 (0.696)
Tipchord, m (ft) . ........ e e e e e e e e e e e e e e e e e e e e e 0.1295 (0.425)
Mean aerodynamic chord, m (ft) . . .. ... ....... e e e e e 0.1786  (0.586)
Airfoil section — . )
30 NACA 64(112)A013
THD v o v e e e e e e e e e e e e e e e e e e NACA 641A012
Tail length (0.25 wing M.A.C. to 0.25 tail M.A.C.), m (ft). . .. .. ... ... 0.6730  (2.208)
Leading-edge sweepangle, deg . . . . . . v vt v v it b e b i et e e e e e e e e 12.0
Quarter-chord sweep angle, deg . . . . . . . . . h e e e e e e e e e e e “... 170
Rudder hinge line (% V.T. chord) . . .. ..... T, e e 77.5
Rudder area aft of hinge line (per side), m2 (f2) . . .. o v v v v v e . 0.0102 (0.1104)
Centroid of rudder area to hinge line, m (ft} ... .. ... .. e e e e e e 0.0198 (0.0651)
Moment area (per side), m3 (ft3) . .. .. e e e e e e e e e 0.000204 (0.0072)
Wetted areas:
Fuselage, m2 (ft2) , ., ... ............. F 0.641  (6.90)
wing, m2 (f2) . ... ... e e cve.. 0777 (8.38)
Gear pods, m2 (ft2) . ............ e e e +. 0.078 (0.84)
Horizontal tail, m2 (£2) . .. ... ... ........... e e . 0.186  (2.00)
Vertical tail, m2 (ft2) .. ..,........ e e 0.186  (2.00)
Store pylon, m2 (ft2) . .......... e e e e e e e e e 0.116  (1.25)
Nacelle:
Inletarea, m2 (ft2) . . ............ e e e e 0.00535 (0.0576)
- Exitarea, m2 (ft2) ... ......... e e e e e 0.00558 (0.0601)
Inlet diameter, m (ft) ... ........ C 4 e e e e et e e s e e e e 0.0826 (0.271)
" Exit diameter, m (ft) . .......... e e e e e e .. 0.084  {0.277)
Length (along axis of nozzle), m (ft) . . . . . e e e e e . ... 0,331 (1.085)
Outside diameter (ellipse), m (ft) ~
Verticalplane . . . . ... ........... e e e e et e e e e s 0.149  (0.489)
Horizontalplane . ... .. .. ... ... ... ..., 0.141  (0.464)
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Engine thrust condition
i i . Altitude, m (ft) Day Power
|6 it _— Variable Idle
i 0 0 _ Tropic Maximum
R 1524 5000 Tropic ~ Maximum
14k it i 1524 5000 - Standard =~ Maximum
T o 7620 25 000 Tropic - Maximum
s ———— —— 1620 25 000 Standard Maximum
|.2 [ g  Model
HH il ] i : :I T i T
I B f Il
10 il ‘ :
i |
AN [
i AR t t i
Cr 8 1
HH X } E 1
e i L i !
i 4 i il i
6 o |
N
4 i T ;
H s i i ! ‘ i il
o il +h :::: ‘
i T I
Hi R i DR TR R S i, il i
O i % Z HI o i‘f H i : ik “‘__ R R {'_.‘u il! i
0 I 2 3 4 5 N4

Figure 6.- Variation of airplane gross thrust coefficient with Mach number

for various conditions. Square symbols indicate model thrust coeffi -
cients used. | ‘
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a,deg

Figure T.- Effect of nacelle thrust coefficient on model characteristics.
' M=0.225; & =00; B=00; i, =4% h=cw,
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(b) Ge = -150.

Figure 7.- Continued.
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(b) Concluded.
Figure 7.- Concluded.



(a) 8o = 0°,

Figure 8.- Effect of nacelle thrust coefficient on model characteristics,
M =0.45; 6 =00 B=0% i =4% h=c.
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(b) 6, = -5°.

Figure 8.- Continued.
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(c) 6o = -15C. -

Figure 8.- Continued.
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(c) Concluded.
Figure 8.- Concluded.
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Figure 9.- Effect of nacelle thrust coefficient on model characteristics.
M =0.60; & =00; pg=00; i =49 h=-.
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Figure 9.- Continued.
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(b) 5, = -15°,

Figure 9.- Continued.
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(a) &g =00,

Figure 10,- Effect of nacelle thrust coefficient on model characteristics.
M= 0.70; 6¢f=00;, B=00; in=49; h=oo,
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Figure 10.- Continued.
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(b) b = -15°,

Figure 10.- Continued.
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(b) Concluded.

Figure 10.- Concluded.
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-16f
a,deg

(a) 6 =0°.

Figure 11.- Effect of nacelle thrust coefficient on model characteristics.
M=0.73; 8 =0 B=0° in=4% h=o.
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(a) Concluded.
Figure 11.- Continued.
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Figure 11.- Concluded.
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(a) CT =0.030.

Figure 12.- Effect of elevator deflection on model characteristics.
M=0.225; 6 =0°% B=0° inp=4% h=w.



(a) Concluded.

Figure 12.- Continued. _
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-4 -2 0] 2 4 6 8 10 1.2 14 16

(b) Ct =0.600.
Figure 12.- Continued.
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a,deg

(a) CT = 0.008.

Figure 13.- Effect of elevator deflection on model characteristics.
M=0.45; 6 =0° =02 i,=4% h=c.
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Figure 13.- Continued.
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(c) CT =0.080.
Figure 13.- Continued.
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(d) CT = 0.170.,

Figure 13.- Continued.
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(a) Cr = 0.005,

Figure 14.- Effect of elevator deflection on model characteristics.
M =0.60; & =0°% B=09 in=4% h=.
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(b) C = 0.100.

Figure 14.- Continued,
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(a) Cr =0.002.

Figure 15.- Effect of elevator deflection on
model characteristics. M = 0.70; &¢ = 0°;
B=00 i, =49 h=.
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(b) CT = 0.080,

Figure 15.- Continued.
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Co

(a) Cr =0.001.

Figure 16.- Effect of elevator deflection on
model characteristics. M = 0.73; & = 0°;
B=0% i,=4% h=c.
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(b) Cr = 0.080.

Figure 16.- Continued.
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(b) Concluded.

Figure 16.- Concluded.
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(a) 6e = 00.

Figure 17.- Effect of nacelle thrust coefficient on model characteristics.
M =0.225; & =30% B=0° i,=4% h/b=c.
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(a) Concluded.

Figure 17.- Continued.
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(b)- 6g-= -10°.

Figure 17.- Continued.
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(b) Concluded.

Figure 17.- Continued.
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(c) 6¢=-15".

Figure 17. - Continued.
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(c) Concluded.
Figure 17.- Continued.
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(d) 6e = —250.

Figure 17.- Continued.
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(d) Concluded.

Figure 17.- Concluded.
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(a) 6 =-15°.

Figure 18.- Effect of nacelle thrust coefficient on model characteristics.
M =0.225; & =30% B=0% ip=2° h=o.



(a) Concluded.

Figure 18.- Continued.
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(b) 6 = -25°,

Figure 18.- Continued.
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(b) Concluded.
Figure 18.- Concluded.
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(a) h/b=0.353.
Figure 19.- Effect of nacelle thrust coefficient on model characteristics

with ground plane in place. M = 0,225; & = 300; g =0°; i, =4°.
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(o) h/b=0.253.

Figure 19.- Continued.
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(c) h/b = 0.153.

Figure 19. - Continued.
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(d h/b=0.053.
Figure 19.- Continued.

88



‘panunuo) -"g1 dandrg

*papniouo) (p)

It

BT ST Crese STy SreEs 1oy

TY

Tt fydasadst
11t i n
> =
giiss fuged Seyeases
By SagEeyes
L THHL
SEer Tyl I
ThEHE
31 fpias eevee
s
PEEg2L0282 INasatedy
R 1
580, c4nde peded
SEIR] FRSTE SR
ik
=23t 122 HEgEs Rty FssR Epsea 1 T] s
e SET el fw 1)
333 Sk HEHEL
Sgesiss: 1
s ties _
T t1:

ESes 3 HiH
ppet T eyn
i
il 3EDHIH
T
i i
e =
1
11
1
: i 4 i
" o213 1

it as:
B 3
= Tt

140)

or

0¢

as

89

|
~




90

(e) h/b=0.,004,

Figure 19.- Continued,
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Figure 20.- Effect of nacelle thrust coefficient and model height
on the characteristics with ground plane in place. M = 0.225;
8¢ = 30%;, B =00 i, =4% a =00
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(a) or = 10°.

Figure 21.- Effect of nacelle thrust coefficient on model characteristics.
M=0.225; 8 =0° B=9% i;,=4% h=c.
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(b) or = -10°,

Figure 21.- Continued.
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a,deg

(b) Concluded.
Figure 21,- Concluded.
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(a) 51' = 100.

Figure 22.- Effect of nacelle thrust coefficient on model characteristics,
M =0.225; 8 =00 B=-99% ip=4% h=c.
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(b) &y =00,

Figure 22.- Continued.
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a,deg

(b) Concluded.
Figure 22.- Continued.



(¢) &, =-10°,

Figure 22.- Continued.,
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Figure 22.- Continued.
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a deg

(c) Concluded.
Figure 22.- Concluded.
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a,deg

(a) M=0.225.

\, Figure 23.- Effect of nacelle thrust coefficient and elevator
) deflection on the elevator and rudder hinge-moment coeffi-
cients., 6f=00; 8=00; i =49 h = .

b
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a,deg
(b) M = 0.45.

Figure 23.- Continued,.
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(c) M.= 0.60.

Figure 23.- Continued.
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(d) M = 0.70.

Figure 23.- Continued.
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(e) M =0.73.

Figure 23.- Concluded.
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a,deg

(a) C as a function of «.
h,e

Figure 24.- Effect of nacelle thrust coefficient and elevator
deflection on the elevator and rudder hinge-moment coeffi-
cients. M= 0.225; & =30° B=0° in=4% h=w.
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a,deg

(b) Ch,r as afunctionof a.

Figure 24.- Concluded.



a,deg
Figure 25.- Effect of nacelle thrust coefficient and elevator
deflection on the elevator and rudder hinge-moment coeffi-
cients, ' M =0.225; & =30° B=0° ip=2% h=w.
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Figure 26.- Effect of nacelle thrust coefficient and model height on th
elevator and rudder hinge-moment coefficients with ground plane in
place. M =0.225; & =30% B=0° i,=4% a=0°,
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a,deg

(a) B =90,

Figure 28.- Effect of nacelle thrust coefficient and rudder deflection
on the elevator and rudder hinge-moment coefficients. M = 0.225;
be = 09; &¢ =09 ip= 49, h‘= 0,
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a,deg

(b) B=-9°.
Figure 28.- Concluded.
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Figure 29.- Effect of Mach number and flap deflection on the
longitudinal control parameter. Cp, = 0.5,
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Figure 30.- Increr‘hents in lift, drag, and pitching~-moment coefficients
due to nacelle blowing.
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Figure 30.- Concluded.
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Figure 32.- Effect of thrust coefficient on the pitching-moment coefficients
with the ground plane in place. M = 0.225; 6f = 300; « = 00,
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Figure 33.- Effect of nacelle thrust coefficient on the trim lift coefficient with
the ground plane in place. 6¢ = -25°, ‘
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Figure 34.- Effect of nacelle thrust coefficient and model height on the varia-

tion of pitching-moment coefficient with elevator hinge -moment coefficient.
M = 0.225; 6f=300; B=00; ip=49; o =00,
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Figure 34.- Continued.
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Figure 34.- Continued.
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Figure 34.- Continued,
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Figure 34.- Concluded.
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