brought to you by 🗓 CORE

-30

#107

N75-12088

Unclas 03562

The v_2 Band of CHD₃; Ground State Parameters for CHD₃ from Combination Differences*+

D. E. Jennings and W. E. Blass

Molecular Spectroscopy Laboratory Department of Physics and Astronomy The University of Tennessee Knoxville, Tennessee 37916

(NASA-CR-140861) THE nu sub 2 BAND CHD3; GROUND STATE PARAMETERS FOR CHD3 FROM COMBINATION DIFFERENCES (Tennessee Univ.) 22 p HC \$3.25 CSCL 07D G3/25

*Supported by NASA Grant NGL 43-001-006 and NDEA Title IV. †From a thesis by Donald E. Jennings, submitted in partial fulfillment of the requirements for the Ph.D. degree at The University of Tennessee, 1974.

Pages: 2040712 Figures: 2 Tables: 6

Proposed running head:

 v_2 of CHD₃

Please address all correspondence to:

Donald E. Jennings Molecular Spectroscopy Laboratory Department of Physics & Astronomy The University of Tennessce Knoxville, Tennessce 37916

ABSTRACT

The v₂ fundamental band of CHD₃, centered near 2143 cm⁻¹, has been recorded at a resolution of 0.015-0.025 cm⁻¹. Analysis of ground state combination differences has yielded well-determined values for the ground state molecular parameters B_0 , $D_0^{\ J}$, $D_0^{\ JK}$, $H_0^{\ J}$, $H_0^{\ JK}$, and $H_0^{\ KJ}$ for CHD₃. These parameters have been used in the determination of the molecular parameters α_2^B , $(\alpha_2^A, -\alpha_2^B)$, β_2^K , $\beta_2^{\ JK}$ and β_2^J for v₂.

Background

Triply deuterated methane is an oblate $(I_z>I_z=I_y)$ symmetric top belonging to the C₃v Group. Therefore, C_o is smaller than B_o and both are large. Wilmhurst and Bernstein (1) have studied CHD in the 900 - 3500 cm⁻¹ region under low resolution. Rea and Thompson (2) have analyzed v₂ and identified up to Q_{p_K} (12), Q_{Q_K} (18), and Q_{R_K} (11), but were unable to resolve the K structure. Blass and Edwards (3) have used data from v₁+v₂ obtained at 0.05 cm⁻¹ resolution (with resolved K structure) to determine the ground state constants from ground state combination differences. From 54 combination differences they obtained the values: B_o = 3.2795 cm⁻¹, $D_o^{JK} = -4.0 \times 10^{-5} \text{ cm}^{-1}$, and $D_o^J = 5.2 \times 10^{-5} \text{ cm}^{-1}$.

The fundamental v_2 is a parallel type band corresponding to the CD₃ symmetric stretching mode. Centered near 2143 cm⁻¹, it is bordered on the high-frequency side by the perpendicular band v_4 .

Experimental

PRECEDING PAGE BLANK NOT FILMED

The spectra were taken with 4 Torr pressure of CHD_3 in a 12m path at ambient temperature. The CHD_3 was obtained from Merck, Sharp, and Dohme and used without further purification. The spectra were recorded using the five meter Littrow instrument and a Bausch and Lomb 20 x 40cm, 31.6/mm cchelle in eleventh and twelfth orders. The slit width was varied during the scans to keep the recorded signal level high. The data were recorded digitally at a rate of approximately 2.8 cm⁻¹/hr and measured from the machine readable

records. Resolution in the recorded spectra was between 0.015 cm^{-1} and 0.025 cm^{-1} .

Calibration

1

Calibration was accomplished using the 1-0 carbon monoxide band occurring in eleventh and twelfth orders, in the same region as v_2 . Some CO lines were present in the spectra due to a small impurity in the sample. The high and low wavenumber regions of the band were calibrated with additional CO added to the sample, and certain calibration lines were inserted by changing grating orders.

Twenty-two calibration lines were used in the region 1978-2103 cm⁻¹ in eleventh order and thirty-five lines were used in the region 2082-2271 cm⁻¹ in twelfth order. The standard deviations of the calibration fits were 0.0031 cm⁻¹ for eleventh order and 0.0032 cm⁻¹ for twelfth order.

Assignment and Weighting

For J>18 the P side was too low in intensity to be observed. This was also true in the Q region for J>22. The R side overlaps with v_4 , which limited the identifiable lines to J<13.

The transition assignment of lines up to ${}^{Q}P_{K}(11)$, ${}^{Q}Q_{K}(10)$, and ${}^{Q}R_{K}(9)$ were made from direct inspection of the spectra, since the structures of the K series were easily recognizable. Above these J values there are obvious intensity and frequency perturbations.

The $Q_1(J)$ lines for high J could still be identified,

5

however, since these are the stronger lines in the Q region. The band was fitted to the transition frequency expression with a least squares regression program $(\underline{4}, \underline{5})$, and unknown transition frequencies were calculated. On the basis of these calculations and the relative line intensities, additional high J lines in the Q region were identified.

The high J assignments in the P and R regions were made using ground state combination differences. The combination differences were calculated using values for the rotational constants B_o , D_o^J and D_o^{JK} given by Blass and Edwards (3). By adding the combination differences to the frequencies of identified transitions in the Q region, the frequencies of transitions in the P and R regions with the same upper state were found (the transitions ${}^{\rm QP}_{\rm K}(J+1)$, ${}^{\rm QQ}_{\rm K}(J)$, and ${}^{\rm QR}_{\rm K}(J-1)$ have a common upper state). These calculated frequencies were then used to identify P and R lines.

Each line was assigned a relative weight between 0.1 and 1.0 by inspection, on the basis of the line width Δv . The relation

weight $\propto \frac{1}{(\Delta v)^2}$

(1)

was applied approximately.

The Q region is shown in Figure 1, with assigned lines indicated. The perturbations of intensity and frequency in the

6

high J lines can be clearly seen, and the most striking feature is the complete absence of the low K, J = 11 lines. For J>10 the perturbations seem to be most pronounced at the lower K values, and the J=K lines are prominent and close to their expected positions. In most cases, if a ${}^{Q}_{K}(J)$ transition was perturbed the apparent intensity of the ${}^{Q}P_{K}(J+1)$ and ${}^{Q}R_{K}(J-1)$ transitions (with the same upper state) were perturbed in a similar manner.

As an example of the structure of the K series (for a given J) in the P and R regions of the band, Figure 2 shows the set of lines $Q_{P_{K}}(10)$. The K² dependence of the line positions is evident.

Tables I,II, and III list the observed transitions in the P, Q, and R regions, respectively, the give the frequency and relative weight of each transition.

Ground State Parameters from Measured Combination Differences

The ground state combination differences (G.S.C.D.) were found from the differences between transition frequencies represented by

$$G.S.C.D. (\Delta J_1 \Delta J_2 K, J) = {}^{Q} \Delta J_{1K} (J - \Delta J_1) - {}^{Q} \Delta J_{2K} (J - \Delta J_2)$$
(2)

where J corresponds to the upper state. A weight for each G.S.C.D. was calculated from the weights of the two transitions using the relation Γ -7-2

7

$$W_{G.S.C.D.} = \left[\frac{1}{\sqrt{W_1}} + \frac{1}{\sqrt{W_2}}\right]^{-2}$$

(3)

The weighted G.S.C.D.'s were used to find the ground state parameters B_0 , D_0^J , P_0^{JK} , H_0^J , H_0^{JK} , and H_0^{KJ} as described by Blass (6) and Blass and Edwards (7). A least-squares regression analysis program was used to fit the G.S.C.D.'s to the expression given in (7). The program was allowed to delete G.S.C.D.'s with weighted residuals greater than 0.020 cm⁻¹ and was allowed to omit insignificant terms from the regression model. The final regression fitted 238 observed combination differences with a standard deviation of 0.0073 cm⁻¹ The resulting ground state parameters are given in Table IV. Table V provides a comparison with results of previous work on this molecule. To the knowledge of this author, no determination of H_0^J , H_0^{JK} , or H_0^{KJ} had been made for CHD₃ before this work. The confidence intervals for the coefficients obtained here are much narrower than those previously obtained.

Molecular Parameters for V2

A least-squares regression analysis was performed on the observed transitions in v_2 , using the transition frequency expression through fourth order (6,12, 13) as the regression model. The regression procedure is described by Kurlat (4) and Hafford (5). The regression program uses the stepwise algorithm of Efroymson (14) and parameters not found to be statistically significant are effectively constrained to zero. Since the model equation used is a minimum

. 8

correlation model (15) there is no question of constraining, say, upper state distortion constants to be equal to the ground state values since upper state parameters do not explicitly occur in the model. For example, the minimum correlation model determines D_0^J and β_2^J rather than the more highly correlated parameters D_0^J and D_2^J . The rotational coefficients determined from G.S.C.D.'s (previous section) were fixed. Transitions with weighted residuals greater than 0.015 cm⁻¹ were deleted at each regression. The final regression fitted 251 transitions with a standard deviation of 0.0082 cm⁻¹. Table VI lists the determined molecular parameters for v_2 .

9

Conclusion

.5

Highly precise ground state parameters have been determined for CHD_3 including H_0^J , H_0^{JK} and H_0^{KJ} . Using a minimum correlation transition frequency model and a stepwise regression algorithm, all statistically significant remaining parameters through fourth order have been determined. Parameters not shown in Tables IV and VI were not found to significantly reduce the standard deviation of the regression (4-6, 8).

The character of a perturbation occurring for high J levels is briefly described and sufficient information is contained in Tables I-IV, VI for the interested reader to further study this resonance. Additional work is in progress on the resonance and any further comment would be premature.

Acknowledgements

1

The authors wish to thank the University of Tennessee Computing Center for use of its facilities used extensively in analysis of the data. Thanks are also due the staff of the Molecular Spectroscopy Laboratory, especially Mr. Thomas Moore for development of the measurement softwave and Mr. Gerald McElyea for technical support services.

References

- J. K. Wilmhurst and H. J. Bernstein, Canadian J. Chem. <u>35</u>, 226 (1957).
- D. G. Rea and H. W. Thompson, Trans. Faraday Soc. <u>52</u>, 1304 (1956).
- '3. W. E. Blass and T. H. Edwards, J. Mol. Spectrosc. 24, 116 (1967).
- 4. M. Kurlat, Dissertation, University of Tennessee (1970).
- 5. J. A. Hafford, Thesis, University of Tennessee (1973).
- 6. W. E. Blass, Thesis, Michigan State University (1963).
- 7. W. E. Blass and T. H. Edwards, J. Mol. Spectrosc. 24, 111 (1967).
- 8. J. W. Boyd, Thesis, Michigan State University (1963).
- H. C. Allen, Jr., and E. K. Plyler, J. Res. Nat'l. Bur. Std. (U.S.) 63A, 145 (1959).
- T. A. Wiggins, E. R. Shull, J. M. Bennett, and D. H. Rank, J. Chem. Phys. 21, 1940 (1953).
- 11: L. Bovey, J. Chem. Phys. 21, 830 (1953).
 - 12. T. L. Barnett and T. H. Edwards, J. Mol. Spectrosc. 20, 347 (1966).
 - W. E. Blass and A. H. Nielsen, Chapter 2.2: Infrared Spectroscopy, Methods of Experimental Physics, Vol. 3A, ed. Williams, Academic Press, New York (1974).
 - M. A. Efroymson, Mathematical Methods for Digital Computer, ed. Ralston and Wilf, John Wiley and Sons, New York (1960).
 - 15. W: E. Blass and M. Kurlat, to be published.

Figure 1. $Q_{\chi}(J)$ transitions in v_2 of CUD₃. Figure 2. $Q_{P_{K}}(10)$ transitions in v_2 of CHD₃.

.

.

.

TABLE I

Observed ${}^{Q}P_{\kappa}(J)$ Transitions in v_2 of CHD_3

	********	=====	K :====	===			====	===	**********	****
Jł	K Freq. ^a	Wť.	J	K	Freq.	Wt.	J	K	Freq.	Wt.
···· -·· -··										
18 1	7 2018.5962	1.0	13	10	2054.4077	0.7	9	6	2082.2263	1.0
18 1	6 2018.7180	0.2	13	9	2054.5032	1.0	9	5	2082-2830	1.0
18 1	5 2018.8105	0.3	13	8	2054.5938	1.0	9	4	2082.3335	0.5
18 1	4 2018.9084	0.2	13	7	2054.6716	0.7	9	3	2082.3782	02
$18 \bar{1}$	2 2019.1643	0.3	13	6	2054.7505	0.7	9	2	2082.4094	0.2
18 1	1 2019-2766	0.5	13	5	2054.8218	0.7	9	1	2082.4094	0.2
17 1	6 2025.7751	0.1	13	4	2054.8801	0.7	9	0	2082.4094	0.2
17 1	5 2025.8665	0.1	13	1	2054.9700	0.1	8	7	2088.9702	1.0
17 1	4 2025.9595	5 0.2	13	0	2054.9700	0.1	8	6	2089.0342	1.0
17 1	3 2026.0618	0.1	12	11	2061.2297	0.7	8	5	2089.0879	1.0
17 1	2 2026.1465	5 0.5	12	10	2061.3225	1.0	8	4	2089.1335	1.0
17 1	1 2026.2561	0.4	12	9	2061.4146	0.7	8	3	2089.1736	0.3
17 1	0 2026.3694	+.0 . 1	12	8	2061.5005	0.5	8	2	2089.2092	0.2
16	9 2033.6572	0.1	12	7	2061.5569	0.5	8	L	2089.2092	0.2
16	8 2033.7271	0.1	12	6	2061.6191	0.5	8	0	2089,2092	0.2
16	7 2033.8320	0.5	12	5	2061.6726	0.1	7	6	2095.8152	1.0
16	6 2033.8923	0.2	12	4	2061.7251	0.1	7	5	2095.8691	1.0
16	5 2033 9797	7 0.3	12	3	2061.8110	0.2	7	4	2095.9138	0.5
16	4 2034.0029	9 0.2	12	2	2061.8586	0.4	7	3	2095.9509	0.3
16	3 2034.0784	0.5	12	1	2061.9070	0.1	7	2	2095.9834	0.2
15 1	4 2040.0715	5 0.1	12	0	2061.9290	0.1	7	1	2095.9834	0.2
151	3 2040-1885	5 0.3	11	LO	2068.2283	0.3	7	0	2095.9834	0.2
15 1	2 2040.3110	0.3	11	9	2068.3215	1.0	6	5	2102.6216	1.0
151	1 2040.4167	7 0.1	11	8	2068.4119	1.0	6	-4	2102.6648	0.7
15 1	0 2040 5374	4 0.5	11	7	2068.4902	0.7	6	3	2102.6997	0.3
15	9 2040 6404	4 1 . 0	11	6	2068.5603	0.5	6	2	2102.7336	0.2
15	8 2040.7280	0.0.3	11	5	2068.6187	0.4	6	L	2102.7336	0.2
15	7 2040.7953	2 0 5	ĩĩ	4	2068.6738	0.1	. 6	0	2102.7336	0.2
15	6 2040-855	5 1 0	11	3	2068.7141	0.1	5	. 4	2109.3857	0.7
15	5 2040-939	7 0.1	11	2	2068.7583	0.1	- 5	3	2109.4236	0.3
141	3 2047.150	9 0.5	11	ī	2068.7583	0.1	5	2	2109.4514	0.1
14	2 2047-261	0 0 2	11	ō	2068.7583	0.1	5	1	2109.4514	0.1
14 1	1 2047.368	4 0.1	10	9	2075.1833	0.4	<u>\</u> 5	0	2109.4514	0.1
16 1	10 2047.470	0 0 1	10	8	2075.2588	0.7	4	3	2116+1121	. 0.2
14	9 2047.573	5 0.5	10	7	2075.3342	1.0	4	2	2116.1396	0.1
14	8 2047.662	6 0.7	10	6	2075.3999	0.7	4	1	2116.1396	0.1
14	7 2047 765	4 0.7	10	5	2075.4622	1.0	4	-0	2116.1396	0.1
14	6 2047.807	4 0.1	10	4	2075-5127	0.5	3	2	2122.7961	0.7
14	5 2047.872	8 0 .7	10	3	2075.5549	0.3	3	1	2122.7961	0.7
14	3 2048-017	6 0.7	10	2	2075.5901	0.2	3	0	2122.7961	0.7
14	1 2048-064	7 0.1	10	1	2075.5901	0.2	2	1	2129.4216	5 0.7
14	0 2048.064	7 0.1	10	ō	2075.5901	0.2	2	0	2129.4210	5 0.7
121	12 2054 208	3 0.7		8	2082.0901	0.5	1	0	2136.021	7 1.0
121	11 2054.309	6 0.7	9	7	2082-1624	1.0				
			===:	===	*********		****	===		====

^aFrequencies are in cm⁻¹.

TABLE II

Observed ${}^{\mbox{Q}}_{\mbox{K}}(\mbox{J})$ Transitions in ν_2 of \mbox{CHD}_3

222	===	. = = = = = = = = = = = = = = = = = = =	*****	===	===		:====	=====	= = =	:================	====
J	K	Freq.a	Wt.	Ĵ	K	Freq.	Wt.	J	К	Freq.	Wt.
22	22	2121.6014	0.2	16	10	2136.9907	0.7	9	5	2140,8645	0.7
21	24	213180711	$0, \frac{1}{7}$	15	15	2137.3469	0.3	· Q	4	2140,9033	0.3
23	20	21329 6762	0,1	15	້. ດ	2137,9580	0.5	ģ	٦	2140,9390	0.3
21	20	212200402		14	14	2138 0034	0.7	· 0	2	2140.9675	0.1
21	13	2100 7700	1 A	1.4	1.17	2130,0004	0.5	Ŕ	<u>с</u> Я-	2141.0183	0.5
21	10	2152.7700	T P O	1.18	10	2120000000	1 0	0	7	2141.0757	0.7
21	11	213200340	0.00	14	17	223001990	1.0	O D	6	214100121	0.7
51	16	2132.8733	0.07	14	77	213802800	1.0	0	о Б	2141 1707	0.6
21	15	2132,9346	1.00	1.4	10	213803047	001	0	2	ム ボザム かんりつ につ	
20	20	2133.4944	0.3	14	9	2138,4512	0.7	0	4	214102270	0.7
20	19	2133,5176	0.3	14	- 8	2138.5469	0.1	8	3	2141.2270	0.3
20	18	2133.5574	0.7	13	13	2138.6130	1.0	8	2	2141.2820	Ual
20	17	2133,6152	0 a 7	13	12	2138.6929	0.3	8	1	2141.2820	0.1
20	16	2133.6841	0,5	13	11	2138 .7 786	0,7	7	7	2141,3667	0.7
20	15	2133,7246	0,3	13	10	2138.8591	0.7	7	6	2141.4189	0.7
20	14	2133.8164	1.0	13	9	2138.9397	1.0	7	5	2141.4707	0。7
19	19	2134.3430	0,5	13	8	2139.0171	1.0	7	4	2141.5105	0,5
19	18	2134.3762	0.5	13	7	2139.1045	0.5	7	3	2141.5442	0.3
19	17	2134.4260	0.7	13	6	2139.1802	0.5	· 7 ·	2	2141.5662	0.1
19	16	2134.4832	0.7	12	12	2139.1802	0.5	7	1	2141,5662	0.1
19	15	2134,5420	0.3	12	1.1	2139.2559	1.0	6	6	2141.6636	0.5
19	14	2134.6018	0.2	12	10	2139.3323	1.0	6	5	2141.7185	0.07
18	18	2135,1484	1.0	12	9	2139.4124	0.5	6	4	2141.7610	0.5
า้ผ	17	2135,1919	0.5	12	8	2139.4822	1.0	.6	3	2141.7939	0.3
18	16	2125 2192	0.3	12	7	2139.5486	1.0	6	2	2141.8186	0.1
19	15	2135.2423	0.3	12	6	21:39,6160	1.0	6	1	2141.8186	0.1
10	12	2135.3098	0.2	11	11	2139.6951	0.2	· - 5	5	2141.9363	0.7
17	17	2135 0110	0.7	11	10	2139.7734	1.0	5	4	2141.9768	0.4
17	16	21326 0602	0.5	3 7	÷0	2139:8450	1.0	5	à	2142,0083	0.2
1. ľ. 1. 17	10	213387002	1 0	11	0	212780420	N 2	5	2	2142.0337	0.1
17	12	213000211	1.ºU 0.5	11	7	21370 2405	0 5	5	1	2142-0598	0.1
11	17	21300 0039		11	6	21370 0142	0.7	, ,	4	2142 1558	0.5
11	10	213001000		10	10	214000142	0,7	-+ 	רי כ	214201220	
11	12	213602395		10	10	214001000		-+ /	う う	21/2 2107	
11	11	2136.3455	Un L	10	9	2140.2031	U a L	4	~	214202101	
17	10	2136.3921	0.1	10	8	2140.3395	1.0	4	1	2142.2101	
17	9	2136.4622	0.5	10		2140.4055	1.0	3	3	2142.3286	0.2
17	_ 8	2136.5181	0.2	10	6	2140.4629	1.0		2	214203447	0.1
16	16	2136.6216	1.0	10	5	2140.5142	1.0	3	1	2142.3441	0.1
16	15	2136.6851	1.0	10	4	2140.5598	0.5	2	2	2142.4609	0.5
·16	14	2136.7444	1.0	9	9	2140.6182	0.2	2	1	23.42.4609	0.5
16	13	2136.8079	1.0	9	8	2140.6880	1.0	1	1	2142.5415	Ι.Ο
16	12	2136.8655	0.,7	9	7	2140,7505	1.0				
16	11	2136.9290	0+2	9	6	2140.8113	1.0				
===	===:	-======================================	****	====	= = = :=	**********	====	====	= = :	-======================================	

 $a_{\rm Frequencies}$ are in cm⁻¹.

TABLE III

Observed ${}^Q\!R_{K}^{}(J)$ Transitions in v_2 of CHD₃

===	==:			= = = =	===	===========	=====	===	====	=============	. = = =
J	ĸ	Freq. ^a	Nt.	J	к	Freq.	Wt.	J	К	Freq.	Wt.
0	0	2149,1094	1.0	7	5	2193.5576	0.5	10	5	2211.9905	0.2
ĩ	ĩ	2155,5896	1.0	7	.4	2193.5959	0.4	10	4	2212.0764	0.2
ĩ	ō	2155,5896	1.0	7	3	2193.6313	0.2	10	3	2212.1104	0.2
2	2	2162.0374	1.0	7	2	2193.6497	0.1	10	2	2212.1584	0.1
2	1	2162.0374	1.0	7	1	2193.6497	0.1	10	1	2212.1584	0.1
2	ō	2162.0374	1.0	7	ō	2193.6497	0.1	10	0	2212.1584	0.1
3	3	2168.4214	0.5	8	8	2199,6033	0.2	11	11	2217.7275.	0,7
3	2	2168.4468	0.5	8	7	2199.6597	0.7	11	10	2217.7942	0.7
3	1	2168,4468	0.5	8	6	2199.7112	0.7	11	9	2217.8447	Ó.7
3	0	2168,4468	0.5	8	5	2199.7559	0.5	11	8	2217.8994	0.2
4	4	2174,7561	0.3	8	4	2199.7939	0.3	11	7	2217.9539	1.0
4	3	2174,7947	0.2	8	3	2199.8455	0.1	11	6	2218.0076	1.0
4	2	2174.7947	0.2	8	2	2199.8455	0.1	11	5	2218.0613	0.7
4	1	2174.7947	0.02	8	1	2199+8455	0.1	11	4	2218.1006	0.7
4	0	2174.7947	0.2	8	0	2199.8455	0.1	12	12	2223.6614	0.5
5.	5	2181.0471	0.3	9	9	2205.7061	1.0	12	11	2223.7207	0.5
5	4	2181.0835	0.2	9	8	2205.7732	0.7	12	10	2223.7729	1.0
ັ 5	3	2181.1135	0.1	9	7	2205.8284	0.7	12	9	2223.8396	1.0
5	2	2181.1331	0.1	9	6	2205.8767	0.7	12	8	2223,9050	1.0
5	1	2181.1331	0.1	9	5	2205.9202	0.5	12	- 7	2223,9736	1.0
5	0	2181.1331	0.1	9	4	2205.9604	0.2	12	6	2224.0281	0.3
6	6	2187.2803	0.7	9	3	2205.9961	0.1	12	5	2224.0576	0.3
6	5	2187.3230	0.7	9	2	2205.9961	0.1	13	13	2229.5479	0.7
6	4	2187.3674	0.2	9	1	2205.9961	0.1	13	12	2229.6235	0.5
6	3	2187.3960	0.1	9	0	2205.9961	0.1	13	11	2229.6721	0.5
6	2	2187.4128	0.1	1.0	10	2211.7310	0.2	13	10	2229.7593	0.5
6	1	2187.4128	0.1	10	9	2211.7917	0.5	13	9	2229.8069	0.3
6	0	2187.4128	0.1	10	8	2211.8379	0.5	13	8	2229,8682	0.2
7	. 7	2193.4692	0.7	10	7	2211.8906	0.3	13	7	2229.8931	0.2
7	6	2193.5154	0•5	10	6	2211.9236	0.3	13	5	2229,9915	0.5

Ζ,

 $a_{\rm Frequencies}$ are in cm⁻¹.

GROUND STATE PARAMETERS FOR CHD3

 $B_{o} = 3.279053 \pm 0.000061 \text{ cm}^{-1}$ $D_{o}^{J} = 5.010 \times 10^{-5} \pm 0.019 \times 10^{-5} \text{ cm}^{-1}$ $D_{o}^{JK} = -4.030 \times 10^{-5} \pm 0.069 \times 10^{-5} \text{ cm}^{-1}$ $H_{o}^{J} = 1.020 \times 10^{-8} \pm 0.059 \times 10^{-8} \text{ cm}^{-1}$ $H_{o}^{JK} = -3.80 \times 10^{-8} \pm 0.15 \times 10^{-8} \text{ cm}^{-1}$ $H_{o}^{KJ} = 5.15 \times 10^{-8} \pm 0.40 \times 10^{-8} \text{ cm}^{-1}$

^aError limits given correspond to a 95 percent confidence interval ($\underline{8}$).

RESULTS	OF	PREVIOUS	STUDIES
---------	----	----------	---------

Band	$B_{o}(cm^{-1})$	$D_0^{JK}(cm^{-1})$	$\mathbb{D}_{0}^{\mathbf{J}}(\mathbb{cm}^{-1})$
$v_1 + v_2^{a}$	3.2795 ± 0.0005	$(-4.0 \pm 1.2) \times 10^{-5}$	$(5.2 \pm 0.5) \times 10^{-5}$
$2\nu_5^{-b}$	3.278 ± 0.001	4×10^{-5}	
$v_1 \stackrel{c}{\rightarrow} $	3.2792	· · · · · · · · · · · · · · · · · · ·	4.6 x 10^{-5}
$2v_1 d$	3.2777	-4×10^{-5}	3.9×10^{-5}
4v1 c	3.2787 ± 0.001	-3.5×10^{-5}	4.6×10^{-5}
$_{3v_1}^{e}$	3.2784	· · · ·	`5 x 10 ⁻⁵

^aBlass and Edwards (<u>3</u>).

^bAllen and Plyler (<u>9</u>).

^cRea and Thompson $(\underline{2})$.

d_{Wiggins}, Shull, Bennett, and Rank (10).

e_{Bovey} (11).

25

TABLE	٧I
-------	----

MOLECULAR PARAMETERS FOR ν_2^a

•		$v_{0} = 2142.5776$
		$\alpha_2^{\text{B}} = 1.7549 \times 10^{-2} \pm 0.0019 \times 10^{-2}$
	α_2^A -	$\alpha_2^{\rm B} = 4.700 \times 10^{-3} \pm 0.022 \times 10^{-3}$
		$\beta_2^K = 1.0045 \text{ x } 10^{-5} \pm 0.0064 \text{ x } 10^{-5}$
	ł	$B_2^{\rm JK} = -7.576 \ \text{x} \ 10^{-6} \ \pm \ 0.054 \ \text{x} \ 10^{-6}$
		$\beta_2^{\rm J} = -9.03 \times 10^{-7} \pm 0.43 \times 10^{-7}$

^aError limits given correspond to a 95 percent confidence interval (8).

List of Symbols

ν	low case Greek letter 'nu'
α	lower case Greek letter 'alpha'
β	lower case Greek Letter 'beta'
>	'greater than' sign
< .	'less than' sign
-Δ	upper case Greek letter 'delta'
α	'proportional to' sign
<u></u>	square root symbol

· · ·