The v_{2} Band of CHD_{3}; Ground State Paraneters
for CHD_{3} from Combination Differences* \dagger
D. E. Jemings and H. E. Blass

Molecular Spectroscopy Laboratory
Department of Physics and Astronomy
The University of Tennessee
Knoxville, Tennessee 37916

(NASA-CR-140861) THE nu sub 2 BAND			N75-12088
CHD ; GROUND State parameters for chd			
FROM COMBINATION DIFFERENCES (Tennessee			
Univ.) 22 p HC \$3.25	CSCL 07D		Unclas
		63/25	03562

*Supported by NASA Grant NGL 43-001-006 and NDEA Title IV.
Fron a thesis by Donald E. Jennings, submitted in partial fulfillment of the requirements for the Ph.D. degree at The University of Tennessee, 1974.

Pages: 20, 12
Figures: 2
Tables: 6

Proposed ruming head:
v_{2} of CHD_{3}

- please address all correspondence to:

Donald E. Jennings
Molecular Spectroscopy Laboratory
Department of Physics \& Astronomy:
The University of Tennessce
Knoxville, Temnessce 37916

Abstract

The v_{2} fundamental band of CHD_{3}, centered noar $2143 \mathrm{~cm}^{-1}$, has been recorded at a resolution of $0.015-0.025 \mathrm{~cm}^{-1}$. Analysis of ground state combination differences has yielded well-determined values for the ground state molecular parameters $B_{o}, D_{o}{ }^{J}, D_{o}^{J K}$, $\mathrm{H}_{\mathrm{o}}{ }^{\mathrm{J}}, \mathrm{H}_{\mathrm{o}}{ }^{\mathrm{JK}}$, and $\mathrm{H}_{\mathrm{o}}^{\mathrm{KJ}}$ for CHD_{3}. These parameters have been used in the detexmination of the molecular parameters $\alpha_{2}^{B},\left(\alpha_{2}^{A},-\alpha_{2}^{B}\right)$, $\beta_{2}^{K}, \beta_{2}^{J K}$ and β_{2}^{J} for v_{2}.

Triply denterated mothane is an oblate ($I_{z}>y_{x}=I_{y}$) symatric top belonging to the $C_{3 v}$ Group. Therefore, C_{0} is smaller than B_{o} and both are laxge. Wilmhurst and Bernstein (1) have studied CHD in the $900-3500 \mathrm{~cm}^{-1}$ region mader low resolution. Rea and Thompson (2) have analyzed v_{2} and identifjed up to $Q_{P_{K}}$ (12), $Q_{Q_{K}}(18)$, and $Q_{R_{K}}$ (11), but were mable to resolve the K structure. Blass and Edwards (3) have used data from $v_{1}+v_{2}$ obtained at $0.05 \mathrm{~cm}^{-1}$ resolution (with resolved K structure) to determine the ground state constants from ground state combination djeferences. From 54° combination differences they obtained the values: $B_{0}=3.2795 \mathrm{~cm}^{-1}$, $D_{0}^{J K}=-4.0 \times 10^{-5} \mathrm{~cm}^{-1}$, and $\mathrm{D}_{\mathrm{O}}^{\mathrm{J}}=5.2 \times 10^{-5} \mathrm{~cm}^{-1}$.

The fundamental v_{2} is a parallel type band corresponding to the CD_{3} symmetric stretching mode. Centered near $21.43 \mathrm{~cm}^{-1}$, it is bordered on the high-frequency side by the perpendicular band v_{4}.

Experimental

The spectra were taken with 4 Torr pressure of Clm_{3} in a 12 m path at ambient temperature. The CliD_{3} was obtained from Merck, Sharp, and Dohme and used without further purification. The spectra were recorded using the five meter Littrow instrument and a Bausch and Lonb $20 \times 40 \mathrm{~cm}, 31.6 / \mathrm{mm}$ chelle in clevently and twelfth orders. The slit width was varied during the scans to keep the recorded signol level high. The data were recorded digitally at a rate of appoximately $2.8 \mathrm{~cm}^{-1}$ /he and measured from the machine readable
records. Resolution in the recorded spectra was between $0.015 \mathrm{~m}^{-1}$ and $0.025 \mathrm{~cm}^{-1}$.

Calibration

Calibration was accomplished using the $1-0$ casbon monoxide band occurring in efeventh and twelfth orders, in the same regjon as ν_{2}. Some CO lines were present in the spectra due to a small impurity in the sample. The high and Jow wavemumer regions of the band were calibrated with additional $C 0$ added to the sample, and certain calibration lines were inserted by changing grating orders.

Twenty-two calibxation lines were used in the region 1978 $2103 \mathrm{~cm}^{-1}$ in eleventh order and thiriy-five lines were used in the region 2082-2271 cm^{-1} in twelfth order. The standard deviations of the calibration fits were $0.0031 \mathrm{~cm}^{-1}$ for eleventlo order and $0.0032 \mathrm{~cm}^{-1}$ for twelfth order.

Assignment and Weighting

For J>18 the P side was too low in intensity to be observed. This was also true in the Q region for $J>22$. The R side overlaps with v_{4}, which dimited the identifjable lines to $\mathrm{J}<13$.

The transition assignment of lines up to $Q^{p_{K}}(11), Q^{Q} Q_{K}(10)$, and ${ }^{R_{K}}{ }_{K}(9)$ were nade from dimect inspection of the spectra, since the structures of the K series were casily recognizable. Above these J values there are obvious intensity and frequency perturbations.

The ${ }^{Q_{Q}}(J)$ lines for hish J could stidu be identified,
however, since these are the stronger bines in the Q region The band was fittod to the tuansition frequency oxpression with a least squares regrossion program $(\underline{1}, 5)$, and anknown transition frequencies weme calculated. On the basis of these calculations and the relative line intensitics, additional high J lines in the Q region wexe illentified.

The high J assigmments in the P and R regions wore made using ground state combination differences. The conbination differences were calculated using values for the rotational constants B_{o}, D_{0}^{J} and $D_{0}^{J K}$ given by Blass and Edwaxds (3). By adding the combination differences to the frequencies of identified transitions in the Q region, the frequencies of transitions in the p and R regions with the same upper state were found (the transitions $Q_{P_{K}}(J+1), Q_{Q_{K}}(J)$, and $Q_{J_{K}}(J-1)$ have a common upper state). These calculated frequencies were then used to identify P and R lines.

Each line was assigned a relative weight between 0.1 and 1.0 by inspection, on the basis of the linc width Δv. The relation

$$
\begin{equation*}
\text { weight } \propto \frac{1}{(\Delta v)^{2}} \tag{1}
\end{equation*}
$$

was applicd approximately.
The Q region is slown in ligure 1 , with assigned lines indicated. The pertubations of intensity and frequency in the
high d lines can be clearly sem, and the most striking fature is the complete abscnce of the low $\mathrm{K}, \mathrm{J}=11$ lines, for $\mathrm{J}>10$ the perturbations seem to be most pronounced at the lower k values, and the $J=k$ lines are prominent and close to their expected positions. In most cases, if a $Q_{K}(J)$ transition was perturbed the apparent intensity of the $Q_{P_{K}}(J+1)$ and ${ }_{R_{R}}(J-1)$ transitions (with the same upper state) were perturbed in a similax manner.

As an example of the structure of the k serics ffor a given J) in the p and R regions of the band, Figure 2 shows the set of Jines $Q_{P_{K}}(10)$. The K^{2} dependence of the line positions is evident.

Tables I, II, and III list the observed transitions in the P, Q, and R regions, respoctively, the give the frequency and . relative weight of each transition.

Ground State Parameters from Measured Combination Differences

The ground state combination differences (G.S.C.D.) were found from the differences between transition frequencios represented by

$$
\begin{equation*}
\text { G.S.C.D. }\left(\Delta \mathrm{J}_{1} \Delta J_{2} \mathrm{~K}, \mathrm{~J}\right)=Q_{\Delta J_{2 K}}\left(J-\Delta J_{2}\right)-Q_{\Delta J_{2 K}}\left(J-\Delta J_{2}\right) \tag{2}
\end{equation*}
$$

where J corresponds to the upper state. A weiglit for each G.S.C.D. was calculated from the weights of the two transitions using the relation

$$
\begin{equation*}
W_{\text {G.s.c.D }}=\left[\frac{1}{\sqrt{W_{3}}}+\frac{1}{\sqrt{W_{2}}}\right]^{-2} \tag{3}
\end{equation*}
$$

The weighted G.S.C.D.'s were used to find the ground state parametcrs $B_{o}, D_{o}^{J}, H_{o}^{J K}, H_{o}^{J}, H_{o}^{J K}$, and $H_{o}^{K J}$ as described bj Buasis (G) and Blass and Edwards (7). A least-squares regression analysjs program was used to fijt the G.S.C.D.'s to the expression given in (7): The program was allowed to delete G.S.C.D.'s with weighted residuals greater than $0.020 \mathrm{~cm}^{-1}$ and was allowed to omit insignificant terms from the regression model. The final regression fitted 238 observed combination differences with a standard deviation of $0.0073 \mathrm{~cm}^{-1}$ The resulting ground state parameters are given in Table IV.

Table V provides a comparison with results of previous work on this moleculc. To the knowledge of this author, no determination of $\mathrm{H}_{\mathrm{O}}^{\mathrm{J}} \mathrm{H}_{\mathrm{O}}^{\mathrm{JK}}$, or $\mathrm{H}_{\mathrm{o}}^{\mathrm{KJ}}$ had been made for CH_{3} before this work. The confidence intervals for the coefficients obtained here are much narrower than those previously obtained.

Molecular Parametcrs for v_{2}

A least-squares regression analysis was performed on the observed transitions in v_{2}, using the transition frequency expression through fourth order $(6, \underline{12}, \underline{3})$ as the regression model. the regression procedure is described by Kurlat (1) and llaford (5). The regrossion program uses the stepwise algoritim of efroymson (14) and parameters not found to be statistically significant are effectively constrajned to zero. Since the model equation.used is a minjmm
correlation model. (15) there is no question of constraiming, say, upper state distortion constants to be equal to the ground state values since upjer state parameters do mot explicitly occur in the model. For example, the minjmum cornclation model detemines J_{o}^{J} and β_{2}^{J} xather than the more highly correlated paxametors D_{o}^{J} and D_{2}^{J}. The rotational coefficients determined from G.S.C.D.'s (previous section) were fixed. Transitions with weighted residuals greater than $0.015 \mathrm{~cm}^{-1}$ were deleted at each regression. The final regression fitted 251 transitions. : with a standard deviation of $0.0082 \mathrm{~cm}^{-1}$. Table VI lists the determined molecular parameters for ν_{2}.

Conclusion

- Highry precise ground state parancters have been detemined for ClH_{3} including $\mathrm{H}_{\mathrm{O}}^{\mathrm{J}}, \mathrm{H}_{\mathrm{o}}^{\mathrm{JK}}$ and $\mathrm{H}_{\mathrm{O}}^{\mathrm{KJ}}$. Using a minjmun correlation transition frequency model and a stepuise rogression algorithm, all statistically sigujficant remaining parameters through fourth ordcr have been determined. Parametcrs not shown in Tables IV and VI were not found to significantly reduce the standard deviation of the regression (4-6, 8). The character of a perturbation occuring for high \ddot{j} levels is bricfly describod and sufficient information is contained in Tables $I-T V$, VI for the interested reader to further sudiy this resonance. Additional work is in progress on the resonance and any further comant would be premature.

Acknowledgements

The authors wish to thank the University of Temessee Computing Conter for use of its facilitios used extensively in amalysis of the data. Thanks are also due the staff of the Molecular Spectroscopy Laboratory, especially ifr. Thomas Moore for development of the measurement softwave and Mr. Gerald Mellyea for technical support services.

References

1. J. K. Wimmurst and II. J. Bemstein, Canadian J. Chem. 35, 226 (1957).
2. D. G. Rea and H. W. Thompson, Trans. Farada' Soc. 52, 1304 (1956).
-3. W. E. Blass and T. H. Edwards, J. Mol. Spectrose. 24, 116 (1967).
3. M: Kurlat, Dissertation, University of Tennessee (1970).
4. J. A. Hafford, Thesis, University of Tomessce (1973).
5. W. B. Blass, Thesis, Michigan State Universjev (1963).
6. W. E. Blass and T. H. Edwards, J. Mol. Spectrosc. 24, 111 (1967).
7. J. W. Boyd, Thesis, Michigan State University (1963).
8. H. C. Allen, Jx., and E. K. Plyler, J. Res. Nat'l. Bur. Std. (U.S.) 63A, 145 (1.959).
9. T. A. Wiggins, E. R. Shull, J. M. Bemett, and D. Il. Rank, J. Chem. Phys. 21; 1940 (1953).

11: L. Bover. J. Chem. Phys. 21. 830. (1953).
12. T. L. Barnett and T. H. Edwards, J. Mol. Spectrosc. 20, 347 (1966).
13. W. E. Blass and A. H. Nic1sen, Chapter 2. 2: Infrared Spectroscopy, Methods of Experjmental Physics, Vol. 3λ, ed. Williams, Academje press, New York (1974).
14. M. A. Efroymson, Mathematical Methods for Digjital Computer, ed. Ralston and Wilf, Jom biley and Sons, New York (1960).
15. W. E. Blass and M. Kurlat, to be published.

Figure 1. $Q_{Q_{K}}(J)$ transitions in v_{2} of CIDD_{3}.

Figure 2. $Q_{P_{K}}(10)$ transitions in v_{2} of CHD_{3}.

TABLE I

TABLE II

Observed $Q^{Q} Q_{K}(J)$ Transitions in ν_{2} of ClHD_{3}

J	K	Fr	Wt	J	K	Freq	Wt	J	K	Freq	Wt.
22	22	2131.0914	0.2	16	10	2136.9907	0.7	9	5	2140.8645	0.7
21	21	2132.6157	0.7	15	15	2137.3469	0.3	9	4	2140.9033	0.3
21	20	2132.6462	0.1	15	8	2137.9580	0.5	9	3	2140.9390	0.3
21.	19	2132.7031	0.2	$1 \cdot 4$	1.4	2138,0034	0.7	9	2	2140.9675	0. 1
21	18	2132.7700	1.0	$1 / 4$	13	2138.0896	0.5	8	8	2141.0183	0.5
21	17	2132.8345	0.5	14	12	2138.1945	1.0	8	7	2141.0757	0.7
21	16	2132.8733	0.7	14	11	2138.2800	1.0	8	6	2141.1323	0.7
21	15	2132.9346	1.0	1.4	10	21380.3647	0.7	8	5	2141.1.797	-
20	20	2133.4444	0.3	1.4	9	2138.4512	0.7	8		2141.2253	0.7
20	19	2133.5176	0.3	14	8	2138.5469	0.7	8	3	2141.2576	. 3
20	18	2133.5574	0.7	13	13	213806130	1.0	8	2	2141.2820	0.1
20	17	2133.6152	0.7	1.3	1.2	2138.6929	0.3	8	1	2141.2820	0.1
20	16	2133.6841	0.5	13	1.1	2138.7786	0.7	7	7	2141.3667	0.7
20	15	2133.7246	0.3	13	10	2138.8591	0.7	7	6	21.41 .4189	0.7
20	14	2133.8164	1.0	13	9	2138.9397	1.0	7	5	21.41 .4707	0.7
19	19	2134.3430	0.5	13	8	2139.0171	1.0	7		21.41 .5105	5
19	18	2124.3762	0.5	13	7	21.39 .1045	0.5	7	3	$2: 41.5442$	0.3
19	17	$\underline{213444260 ~}$	0.7	13	6	2139.1802	0.5	7.	2	2141.5662	0.1
19	16	213404832	0.7	12	12	2139.1802	0.5	7	1	2141.5662	0.1
19	15	2134.5420	0.3	12	11	2139.2558	1.0	6	6	2141.6636	5
19	14	2134.6018	0.2	12	10	2139.3323	1.0		5	2141.7185	0.7
18	1.8	2135.1484	1.0	12	9	2139.4124	0.5	6	4	2141.7610	0.5
18	17	2135.1919	0.5	12	8	2139.4822	1.0	6		2141.7939	0.3
18	16	2135.2192	0.3	12	7	2139.5486	1.0	6	2	2141.8186	0.1
18	15	2135.2423	0.3	12	6	2139.6160	1.0	6	1	2141.8186	0.1
18	13	2135.3098	0.2	11	11	2139.6951	0.2	5	5	2141.9363	0.7
17	17	2135.9119	0.7	11	10	2139.7734	1.0	5	4	2141.9768	0.4
17	16	2135.9602	0.5	11	9	2139.8450	1.0	5	3	2142.0083	0.2
17	15	2136.0217	1.0	11.	3	2139.9158	0.2	5	2	21.42.0337	0.1
17	14	213600859	0.5	11	7	2139.9695	0.5	5	1	2142.0598	0.1
17	13	2136.1660	0.5	11.	6	2140.0142	007	4	4	2142.1558	
17	12	2136.2595	0.1	10	10	2140.1836	0.7	4	3	2142.1887	0.1
17	11	213603455	0.1	10	9	2140.2637	0.1	4	2	2142.2107	0.1
17	10	2136.3921	0.1	10	8	2140.3395	1.0	4	1	2142.2107	0.
17	9	2136.4622	0.5	10	7	2140.4055	1.0	3	3	2142.3286	O.
17	8	2136.5181	0.2	10	6	2140.4629	2.0	3	2	2142.3447	
16	16	213606216	1.0	10	5	2140.5142	1.0	3	1	21.42.3447	
16	1.5	2136.6851	1. 0	10	4	2140.5598	0.5	2	2	2142.4609	
16	14	2136.7444	1.0	,	9	2140.6182	0.2	2	1.	2142.4609	
16	13	2136.8079	1.0	9	8	2140.6380	1.0	1	1	2142.5415	1.0
1.6	12	2136.8655	0.7	9	7	2140.7505	1.0				
1.6	11	2136.9290	0.2	9	6	2140.8113	1.0				

$a_{\text {Frequencies are in }} \mathrm{cm}^{-1}$.

TABLE III

Observed $Q_{R_{K}}(J)$ Transitions in v_{2} of CHD_{3}

J	K	Freq. ${ }^{\text {a }}$	Wt	J	K	Freq.	Wr.	J	K	Freg.	Wt.
0	0	2149.1094	1.0	7	5	2193.5576	0.5	10	5	2211.9905	2
1	1	2155.5896	1.0	7	4	2193.5959	0.4	10	4	2212.0764	0.2
1	0	2155.5896	1.0	7	3	2193.6313	0.2	10	3	2212.1 .104	0.2
2	2	2162.0374	1.0	7	2	2193.6497	0.1	10	2	2212.1584	0.1
2	1	2162.0374	1.0	7	1	2193.6497	0.1	10	1	2212.1584	0.1
2	0	2162.0374	1.0	7	0	2193.6497	0.1	10	0	2212.1584	0.1
3	3	21.68 .421 .4	0.5	8	8	2199.6033	0.2	1.1	11	221.7.7275	0.7
3	2	2163.4468	0.5	8	7	2199.6597	0.7	11	10	2217.7942	0.7
3	1	2163.4468	0.5	8	6	2199.7112	0.7	11	9	2217.8447	0.7
3	0	2168.4.468	0.5	8	5	2199.7553	0.5	11	8	2217.8994	0.2
4	4	2174.7561.	0.3	8	4	2199.7939	0.3	11	7	2217.9539	1.0
4	3	2174.7947	0.2	8	3	2199.8455	0.1	11	6	2218.0076	1.0
4	2	2174.7547	0.2	8	2	2199.8455	0.1	11	5	2218.0613	0.7
4	1	2174.7947	0.2	8	1	2199.8455	0.1	11	4	2218.1006	0.7
4	0	2174.7947	0.2	8	0	2199.8455	0.1	12	12	2223.6614	0.5
5	5	21.81.0471	0.3	9	9	2205.7061	1.0	12	11	2223.7207	0.5
5	4	2181.0835	0.2	9	8	2205.7732	0.7	12	10	2223.7729	1. 0
5	3	2181.1135	0.1	9	7	2205.8234	0.7	12	,	2223.3396	1.0
5	2	2181.1331	0.1	9	6	2205.3767	0.7	12	8	2223.9050	1.0
5	1.	2181.1331	0.1	9	5	2205. 7202	0.5	12		2223.9736	1.0
5	0	2181.1331	0.1	9	4	2205.9604	0.2	12	6	2224.028.	0.3
6	6	2187.2803	0.7	9	3	2205.9961	0.1	12	5	2224.0576	0.3
6	5	2137. 2230	0.7	9	2	2205.9961	0.1	13	13	2229.5479	0.7
6.	4	2187.3674	0.2	9	1	2205.9961	0.1	13	12	2229.6235	0.5
6	3	2187.3960	0.1	9	0	2205.9961	0.1	13	11	2229.6721	0.5
6	2	2187.4128	0.1	1.0	10	2211.7310	0.2	1.3	10	2229.7593	0.5
6	1	2187.4128	0.1	10	9	2211.7917	0.5	13	9	2229.8069	0.3
6	0	2187.4128	0.1	1.0	8	2211.8379	0.5	13	8	2229.8682	0.2
7	7	2193.4692	0.7	10	7	2211.8906	0.3	13	7	2229.8931	0.2
7	6	2193.5154	0.5	10	6	2211.9236	0.3	13	5	2229.9915	0.5

${ }^{\text {a }}$ Frequencies are in cm^{-1}.

$$
\begin{aligned}
& \text { GROUND STATE PARAMETERS } \mathrm{FOR} \mathrm{CHD}_{3}^{a} \\
& \mathrm{~B}_{\mathrm{O}}=3.279053 \pm 0.000061 \mathrm{~cm}^{-1} \\
& \mathrm{D}_{\mathrm{O}}^{\mathrm{J}}=5.010 \times 10^{-5} \pm 0.019 \times 10^{-5} \mathrm{~cm}^{-1} \\
& D_{\mathrm{O}}^{\mathrm{JK}}=-4.039 \times 10^{-5} \pm 0.069 \times 10^{-5} \mathrm{~cm}^{-1} \\
& \mathrm{H}_{\mathrm{O}}^{\mathrm{J}}=1.020 \times 10^{-8} \pm 0.059 \times 10^{-8} \mathrm{~cm}^{-1} \\
& \mathrm{H}_{\mathrm{O}}^{\mathrm{JK}}=-3.80 \times 10^{-8} \pm 0.15 \times 10^{-8} \mathrm{~cm}^{-1} \\
& \mathrm{H}_{\mathrm{O}}^{\mathrm{KJ}}=5.15 \times 10^{-8} \pm 0.40 \times 10^{-8} \mathrm{~cm}^{-1}
\end{aligned}
$$

Error limits given correspond to a 95 percent confidence interval (8).

TABLE V
resulfs of previous stubies

Band	$B_{o}\left(\mathrm{~cm}^{-1}\right)$	$\mathrm{D}_{0}^{\mathrm{JK}}\left(\mathrm{cm}^{-1}\right)$	$\mathrm{D}_{\mathrm{o}}^{\mathrm{J}}\left(\mathrm{cm}^{-1}\right)$
$v_{1}+v_{2}$	3.2795 ± 0.0005	$(-4.0 \pm 1.2) \times 10^{-5}$	$(5.2 \pm 0.5) \times 10^{-5}$
$2 \nu_{5}{ }^{\text {b }}$	3.278 ± 0.001	4×10^{-5}	
$\nu_{1}{ }^{c}$	3.2792		4.6×10^{-5}
$2 \nu_{1} d$	3.2777	-4×10^{-5}	3.9×10^{-5}
$4 v_{\mathrm{l}} \mathrm{e}$	3.2787 ± 0.001	-3.5×10^{-5}	4.6×10^{-5}
$3 v_{1} \mathrm{e}$	3.2784		$\cdot 5 \times 10^{-5}$
```a Blass and Edwards (3). b}\mathrm{ Allen and Plyler (g). c dWiggins, Shull, Bennett, and Rank (10). e}\mp@subsup{}{\mathrm{ Bovey (11).}}{```			

TABLE VI
MOLECULAR PARAMETERS FOR $\nu_{2}{ }^{a}$

$$
\begin{aligned}
\nu_{0} & =2142.5776 \\
\alpha_{2}^{B} & =1.7549 \times 10^{-2} \pm 0.0019 \times 10^{-2} \\
\alpha_{2}^{A}-\alpha_{2}^{B} & =4.700 \times 10^{-3} \pm 0.022 \times 10^{-3} \\
\beta_{2}^{\mathrm{K}} & =1.0045 \times 10^{-5} \pm 0.0064 \times 10^{-5} \\
\beta_{2}^{J K} & =-7.576 \times 10^{-6} \pm 0.054 \times 10^{-6} \\
\beta_{2}^{J} & =-9.03 \times 10^{-7} \pm 0.43 \times 10^{-7}
\end{aligned}
$$

${ }^{\text {a }}$ Error limits given correspond to a 95 percent confidence interval (8).

List of Symbols
$\nu \quad$ low case Greek letter 'nu'
$\alpha \quad$ lower case Greek letter 'alpha'
B lower case Greek Letter 'beta'
> 'greatex than' sign
$<$. 'less than' sign
$\Delta \quad$ upper case Greek lettex 'delta'
a 'proportional to' sign
$\sqrt{ }$ square root symbol

