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Abstract:

A very simple pzscedure has been developed to fit the first three moments

of an actual phase function with a three parameter analytic phase function. The

exact Legendre Polynomial decomposition of this function is known which makes

it quite suitable for multiple scattering calculations. The use of this function

can be expected to yield excellent flux values at all depths within a medium.

Since it is capable of reproducing the glory it can be used in synthetic spectra

computations from planetary atmospheres. Accurate asymptotic radiance values

can also be achieved as long as the single scattering albedo wo?0.9.
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I' I. Introduction

One of the most widely used analytic phase functions in radiative transfer

theory is that of Henyey and Greenstein. ( i ) Their function is specified in

terms of a single parameter, called the asymmetry parameter, usually denoted by g,

and has a simple Legendre polynomial decomposition. This function is given by

0(u, g) _ (1-'g2)/[47r (1-2gu+
g2 ) 3/2 ]	 (1)

where p is the cosine of the scattering angle (!D and
ayr l

g = <P>	 J 1 p P(N, g) dpd¢	 (2)
D ^^

This function has the following normalization

S

^^r 1

J ^(u, g) dud 's = 1 .	 (3)

Now using the generating function for the Legendre polynomials, namely

(1-2 gu + g2 ) -35 _	 gaPn (u), ( g l <1	 (4)
n=0

and differentiating with respect to u, it is easy to show that

^
m

0(P, g ) = 1 ?! gn (2n+1) Pn (U).	 (5)
4a n=0

Defining	 -I: 1

<pn(P) > = S S Pn(u)4(u, g) du d4 	 (6)

O
and using the fact that 

S;n(u) Pm(u) du -2n+1 6 nm	
(7)

we get

<Pn(u)> = 9
	

1	 (8)

One of the major disadvantages of this single term phase function is

that it cav't produce the familiar glory which is almost always prevelant

in realistic phase functions computed from :lie Theory. This is of major

importance when one is computing synthetic spectra in planetary atmospheres.

This fact was pointed out by Whitehill and Hansen (2) to explain the so called

inverse phase effect on Venus. To produce the glory phenomena requires the

use of a superposition of two Henyey-Greentstein phase functions. This was

done by Irvina (3) who used

uu	 ,
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001, gl , g2 , a)	 a 0(R, gl) + (1-a)0(p , g2)
	

(9)

However, Irvine only fit the first moment of the phase function. It is the

purpose of this paper to show how the parameters g l , g2 , and a can be computed

very simply to fit at least three moments of the phase function thus allowing

more accurate flux and internal radiance calculations. Hereafter the function

defined by equation (1) will be referred to as OTHG (one term Henyey-Greenstein) and

that defined by (9) as TTHG (two term Henyey-Greenstein).
2. Theory

2.1 :moment Fitting

Letryus assume that we are given the first three components of the pro-

jection of a realistic phase function on a basis of Legendre polynomials and

label them g, h, and t respectively. This is equivalent to knowing the first

three moments. From equations (5) and (9) it follows that

0(U, gl , g2 , a) = 4n !^ (ogln + (1-a) g2n)(2n+1) Pn(u) (lO)

n=o
and

<pn(U)> = agln + (1-a)92n	 (11)

We can now set up the following three equations

agl + (1-a) g 2 = 9	 (12)

agl2 + (1-a) 922 = h	 (13)

ag13 + (1-a) g2 3 = t	 (14)

These equations can readily be solved yielding

92	
t-hg-[(hg-t)2-4(h-g2)(tg-h2))1/2/2(h-g 2)
	

(15)

gl = (g9Z h)/(g,-9)	
(16)

a = (g-g2)/(gl-gy)	 (17)

The minus sign was chosen so that 92 could become negative. If one

chooses the plus sign for the square root in equation (15) then one obtains gl.

It should be noted here that there is nothing in these equations to prevent

Ig2I >1. Although this case is the exception rather than the rule we will show

how to deal with it later.
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2.2 Internal Radiance from Eigenvalue Expansion

Van de Hulst (4) derived an expression for the asymptotic internal radiance

in a homogeneous medium in terms of a perturbation expansion involving an eigen-

value along with g and h. We will extend the perturbation expansion to also

include t and thus show that a better fit can be obtained. We will adopt the

notation of van de Hulst to avoid any confusion to the reader. The basic

assumption is that the intensity deep inside a medium and far away from a lower

boundary can be expressed as

I (Tp) a e kTP (N), - 1 5 N 5 1	 (18)

where T is the optical depth measured from the top of the medium and k is the

smallest eigenvalue of the equation

l

	

(1-kp) P(p) = 2o S h(N, N ^ ) P(p' ) dN^	 (19)

where	
2A

h(N, N om ) = S O [ pp' + (1-p2 ) 2 (1-p ^ 2 ) 2 cos(4-4^)J d¢	 (20)

0

and wo is the single scattering albedo.

This assumption hap been checked numerically by Plass et al. 
(5) 

znd was

shown to be quite valid for wo ti 1. The exponential behavior has also been

demonstrated exactly by a solution to the one dimensional problem (Kattawar

and Plass(6)).

Van de Hulst obtains the following series expansion for w o and P(N);

_ 1	 2 - 4-99 	gh 4	 6
w o - 1 3(1-S) k	45(1-S) (l—h)k + 0(k )

P (N) = 1 + 1 g P l ( p ) + 3( 1-S2
 -. k2P2(p) + 0(k3)

n

'- U

(21)

(22)

iv

B

I

0

u	 d



b
^

°-5-

Since we have demonstrated a method of fitting a phase function up to the

term for P 3 (p), we must extend the perturbation series for P(p) up to this

term. This can be done in a rather straightforward manner and we obtain

P ( p )	 1 + 1 g P l (u) + 3(1-9)(1-h) k2P2(P) + 5(1-8)(12-h)(1-t)k3P3(p)

+ 0(0)
	

(23)

The coefficient of k 6 in wo will involve <P4 (p)> and we will not include it.

It is thus clear that by using the three parameter pha.,a function that more

I
accurate"internal radiances will be obtained since the OTHG only fits g. It

should b le noted, however, that all higher values of <P n (p)> are given by 9 

for the OTHG. In order to carry out the expansion given by equation (23) we

must be able to determine the eigenvalue k.

2.3 Eigenvalue Computation

The eigenvalues can be computed from `equation (19). The proof that the

eigenvalues are real was given by Kuscer and Vidav (7) . The integral was dis-

cretized by using a twenty eight point Lobatto quadrature. Now equation (19)

can easily be manipulated so that one can solve for k2 rather than k since it is

well known that the eigenvalues occu: in pairs (±k). The program was tested by

using the isotropic phase function (g=o) and computing the eigenvalues for

several values of w o . The results were compared to those given by van de Hulst(8)

for this case and agreement was achieved to every figure given.

3. Numerical Results

The first thir.g to be tested was how well the eigenvalues computed by the

OTHG and the TTHG compared to the eigenvalues of an actual phase function. The

phase function was computed using the Haz_, L distribution of Deirmendjian (9)
	

i

which is a modified gamma distribution of the form
R.

n(r) a r2 a 15.118or''i 	
(24)

3
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The refractive index used was N - 1.55-0.01 typical of atmospheric aerosols for

a wavelength of 0.55 um. The resulting phase function is shown in Figure 1

along with the OTHG and TTHG which were computed from the appropriate values of

<Pn>. The values of <Pn>, (n - 1, 2, 3) were computed in two ways. First a

numerical integration was performed over the phase function computed at very

small angular intervals. Secondly these values can also be obtained directly

from the A coefficients (See Kattawar et al. (10) ) by

<P > - 4n	 (n+1)(n+2)	 1	 6n2 + 6n-4	 1
n	 2n+1 (2n+3)(2n+5) A n+2 + (2n-1)(2n+3) A n

+ —
n(n-1)	 Al	 + 2(n+l) 

A
3	 + 2n A 3 1	 (25)

(2n-3)(2n-1) n-2	 (2n+3)	 n+l	 (n-1)	 n-1

Excellent agreement was obtained between the two methods. It should be noted

from Figure 1 that the TTHG not only provides a better approximation to the

glory (6180°) but also a better approximation to the diffraction peak (0=0°).

Table 1 gives a comparison between the eigenvalues computed from a realistic

phase function and those computed using a TTHG and a OTHG approximation to it.

It should be emphasized, that only the smallest eigenvalue was chosen since this

is the one that dominates the "solution for large r. It should be noted that the

TTHG provides excellent eigenvalue agreement for all values of w o used.

As a further test we wanted to consider the efficacy of the method in de-

termining internal radiance in optically deep homogeneous media. Our first test

employed the well known Rayleigh phase function. Since g = 0 for this function,

the OTHG reduces to isotropic scattering; however, h = 0.1 and the TTHG produces

the curve shown in Figure 2. This is a much more realistic description of Rayleigh

i
scattering than the OTHG. The asymptotic internal radiance for Rayleigh scat-

tering has already been calculated by Plass, et al. 
(5) 

The eigenvalue for the

case where w o = 0.9 was computed both from equation (19) and by fitting the actual
ec

exponential fall off. Both calculations gave the same value for the eigenvalue

r

a
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namely k = 0.5232. The values of k obtained by using the OTHG and the TTHG

were 0.5254 and C.5232, respectively. A comparison of the upward and downward

internal radiance is shown in Figure 3. The radiance values presented for the

OTHG and the TTHG were computed from equation (23) using the appropriate eigen-

values. As can be seen from the figure, the OTHG provides a better fit for o5U50.2

for the upward radiance but the TTHG is better for 0.2<V41.0 For the downward

radiance the TTHG is better everywhere.. It should also be noted that for values of

W
0 
20.9 one can obtain quite excellent asympotic internal radiances without doing very

W
large scale computer calculations by simply using equation (23) with appropriate values

of k, g, h, and t.

We next computed a phase function using the size distribution in equation (24) and a

wavelength of 0.55 pm for a refractive index of N=1.55-0.001i. This curve along with

the OTHG and TTHG are shown in Figure 4. The asymptotic normalized radiances are shown

in Figure 5. The difference between the actual asymptotic radiance and that computed

with the TTHG using the parameters k, g, h, t, in equation (23) is almost imperceptible

on the scale of the figure. The OTHG internal radiances computed with the parameters k,

g, g2, 
g3 is not quite as good. A more dramatic comparison can be seen in the following

ex6mple. The size distribution was held fixed and the refractive index was changed to

N=1.55-0.01271. This gave the following-set of curves shown in Figure 6. In Figure 7 we

show-,a comparison of the asymptotic radiances computed using the matrix operator theory

with the actual phase function compared to that for the TTHG and ONG computed

using equation (23). For the TTHG the parameters k, g, h, and t were used which

agree with the actual phase function and for the OTHG the corresponding parameters

were k, g, g2 , and g 3 . It is easily seen that the TTHG provides a better approxi-

mation to the upward radiance. There is always more disagreement in the upward

radiance as compared to the downward radiance, since the upward is derived from

the downward. Although the curves shown for the TTHG and the OTHG were computed up

to order k3 , the expansion can be extended to higher orders until convergence is



-8-

reached. This would give the true asymptotic limit since all values of <Pn>

are known for these two functions.

To test the TTHG on a phase function in4icative of terrestrial clouds, we

used the size distribution

n(r) a r6e 
1.5r	 (26)

with N - 1.33-0.01 for a = 0.77 Um. The following values were obtained:

g - 0.8479, h = 0.7763, and t = 0.6523. Fitting these three values the TTHG

gives gl = 0.8792, g2- 0.9835, and a = 0.9832. These results are presented in

Figure 8 along with the OTHG. It is easily seen that the TTHG greatly over-

estimates the glory peak(e = 180°) even though this function has the same values

of g, h, and t at the actual phase function. If one, however, wants to tolerate

a small error in t and fit the glory peak this can be done in the following way.

We will still require that the TTHG fit both g and h, however, we will relax the

requirement on fitting t in favor of fitting a particular value for the glory.

Therefore,

agl + ('-a) S2= g	
(27)

agl + (1-a)g2 = h	 (28)

Eliminating g  we get

g2 = G - La(H-G2)/(1-a))2	 (29)

gl = [G-(l-a) g 2 l/a	 (30)

Therefore by adjusting the ratio a/(1-a) we can reproduce the glory peak at the

expense of introducing an error in t. This is shown in Figure 8. The exact

value of t is 0.6523 and for the TTHG which fits the glory peak it is 0.665?

which is a 2 percent error. This should be contrasted to the OTHG which has a 7

percent error in h and a 6 =z percent error in t. The major difference in the two

i TTHG phase functions only occurs for scattering angles greater than 110°. This

t
demonstrates that the third moment of a phase function is quite sensitive to

shape and one must be very careful in using phase functions which appear to
5

}
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"look" similar to real phase functions. The technique just described is what

one would use when a fit to g, h, and t produces a value of l8,1>1. One would

then have to sacrifice a fit to t in favor of a fit to the glory.

In order to study the effects of the approximate phase functions on the

reflected intensity, we chose the following model:

n(r) a r
6e-12r	 (31)

with a refractive index of N = 2.25-0.0061 for a wavelength of 0.565 um. This

phase function along with the OTHG and TTHG are shown in Figure 9. The single

scattering albedo w o = 0.8943. In order that there be no scaling in optical

depth we considered a homogeneous semi-infinite atmosphere. The matrix operator

program was used to calculate the reflected radiances for the three phase functions.

In Figure 10 we see a comparison of the reflected radiance for po = 1.0 as a

function of the cosine of the zenith angle. What is particularly striking is the

degree to which single scattering features are carried over into the multiple

scattering results. For example from Figure 9 we see that the TTHG crosses the

actual phase function curve for angles ? 90° at two points corresponding to p =

0.24 and 0.91. These correspond very closely to the crossover points from Figure

10 for the multiple scattering results. The values in parentheses are the irradi-

ance values and it can be seen that the TTHG gives only a 1 percent error in the

irradiance while the OTHG gives a 7 percent error. Although the TTHG produces

good values for the irradiance, the reflected radiance shows large discrepancies.

Therefore if one needs precise values of the radiance then use of the analytic

phase function can give errors which are quite large. Figure 11 is the same case

as Figure 10 except p o = 0.1182. The radiance in the principal plane is shown

(^ = 0° and 180°). Again large discrepancies exist between the actual phase

function results and the two analytic phase functions, however the flux value for

the TTHG is in error by only 1 percent while the OTHG is in error by 5.5 percent.

U
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4. Conclusions

The use of this function can be expected to yield quite good asymptotic

radiances in a medium whose single scattering albedo is > 0.9. We have shown

that this function can yield quite accurate eigenvalues which govern the rate of

decrease of the radiance and irradiance at asymptotic depths. This also implies

its effectiveness in the computation of heating rates. it can also produce the

familiar glory so often seen in realistic phase functions. This should be quite

useful in the computations of synthetic spectra from planetary atmospheres where

a parameterization of the phase function can be judiciously used. Although the

values of the reflected radiance can be in error by a large percent. the reflected

irradiance values can be quite accurate. Therefore this function can be effect-

ively used whenever radiance values aV'^ averaged over certain intervals. This

is precisely the case when we are computing synthetic spectra from various

portions of a planetary atmosphere where averages are performed over portions

of a planet covered by the spectrograph slit.
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Figure Captions

Fig. 1 Phase function as a function of scattering angle for a

15.1186r^
size distribution n(r) a r

2	
a with refractive

index N - 1.55 - 0.01 at a wavelength of 1.0.55um.	 TTHG

is the two term vkm}ey-Greenstein analytic phase function

obtained by fitting the first three moments of the actual

phase function and OTHG is the one term Henyey Greenstein

phase function obtained by fitting only the first moment.

Fig. 2 Same as Fig. 1, except the actual phase function is that

for Rayleigh scattering.

Fig. 3 Upward and downward normalized asymptotic internal radi-

ances.	 The values of the single scattering albedo w were
0

computed from equation (21) using the eigenvalues k com-

putedfrom equation (19).	 These results are for the phase

function used in Fig. 2.

Fig.	 4 Same as Fig. 1 except N = 1.55 - 0.0011

Fig. 5 Same as Fig. 3 except phase function used was that of

Fig.	 4.

Fig. 6 Sames as Fig. 1 except N - 1.55 - 0.01271

Fig. 7 Same as Fig. 3 except phase function was that of Fig. 6.

Fig. 8 Same as Fig. 1 except n(r) a 
r6e 1.5r with N	 1.33 - 0.01

for a = 0.70um.

Fig.	 9 Same as Fig 7 except n(r) a r6 a-12r with N = 2.25 - 0.0061

for X - 0.565um.

Fig.	 10 Reflected radiances as a function of the cosine of the zenith

angle for a homogeneous semi-infinite atmosphere scattering

according to the phase function for Fig. 9. 	 Cosine of

incident angle uo - 1.0.

Fig. 11 Same as Fig. 10 except u o = 0.1882 and the results are for the

the principal plane 4 = 0 0 and 1800.



TABLE 1

Comparison of eigenvalues for a real phase function
and those computed from the OTHG and the TTIIG.

Wo E kTTHG
% Error
for TTHG

kOTHG
% Error
for OTHG

0.9999 0.01015 0,01015 0 0.01015 0

0.999 0.03209 0.03209 0 0.03209 0

0.99 0.1016 0.1016 0 0.1017 0.1

0.95 0.2284 0,2284 0 0.2296 0.23

0.90 0.3251 0.3251 0 0.3281 0.92

0.85 0.4006 0.4006 0 0.4054 1.20

0.80 0.4652 0.4652 0 0.4718 1.42

0.75 0.5227 0.5227 0 0.5310 1.59

0.65 0.6237 0,6238 0.02 0.6347 1.76

0.55 0.7115 0.7116 0.01 0.7241 1.77

0.45 0.7890 0.7892 0.02 0.8022 1.67

0.35 0.8575 0.8578 0.03 0.8701 1.47

0,25 0.9166 0.9173 0.08 0.9275 1.19

0.15 0.9648 0.9657 0,09 0.9724 0.79

0.05 0.9958 0.9965 0.07 0.9978 0.2

a

V	 r	 _	 1	 _	 4
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