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Abstract:

A very simple prucedure has been developed to fit the first three moments
of an actual phase function with a three parameter analytic phase function. The
exact Legendre Polynomial decomposition of this function is known which makes
it quite suitable for multiple scattering calculations, The use of this function
can be expected to yield excellent flux values at all depths within a medium,
Since it is capable of veproducing the glory it can be used in synthetic spectra
computations from plane&ary at@ospheres. Accurate asymptotic radiance values

can also be achieved as long as the single scattering albedo wg20.9.
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L, Introduﬁtion
One of the most wldely used analytic phase functions in radliative transfer

theory is that of Henyey and Greenstein.(!) Their function is specified in
terms of a single parameter, canlled the asymmetry parameter, usually denoted by g,
and has a simple Legendre polynomial decomposition. This function is given by

2(u, 8) = (1-g2)/[47 (1-2gu+g?)3/2] (1)
where u is the cosine of the sciart;jering angle@and

g = <p> = jjw?(u. g) dud¢ (2)

[7 N

|
This function has the following normalization

%ﬂ.l
SS ¢(n, g) dudp = 1, (3)
-1
Now using the genergling funection for the Legendre polynomials, namely
oG
(1-2gu + g2)7% = T7 g% (W), lel<L (4)
=0
and di{fferentiating with respect to u, it is easy to show that
S(u, g) = 1 Do (2n1) P, (). (5)
4n =0
Defining afr |
<P (1)> = Sg Pn(m)o(u, g) duds (6)
L] O -'
and using the fact that.
.
we get
<Pp(u)> = g" , (8)

One of the majci disadvantages of this single term phase function is
that it car't produce the familiar glory which 1s almost always prevelant
in realistic phase functions computed from ilie Theory. This is of major
importance when one is computing synthetic spectra in planetary atmospheres.
This fact was pointed out by Whitehill and Hansen(2) to explain the so called
inverse phase effect on Venus, To produce the glory phenomena requires the
use of a superposition of two Henyey-Greentstein phase functions, This was

done by IFVina(a) who used
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21, 815 Byr o) = a ¥, 8y) + (L-a)d(y, g,) (9)
However, Irvine only fit the first moment of the phase function. It is the
purpose of this paper to show how the parameters 815 8y» and a can be computed
very simply to fit at least three moments of the phase function thus allowing
nore accurate flux and internal radiance calculations. Hereafter the functiom
defined by equation (1) will be referred to as OTHG (ene term Henyey-Greenstein) and
that defined by (9) as TTHG (two term Henyey-Greenstein).
2, Theory .

2.1 Moment Fitting

Letjus assume that we are given the first three components of the pro-
jection bf a realistic phase function on a basis of Legendre polynomials and

label them g, h, and t respectively, This is equivalent to knowing the first

three moments. From equations (5) and (9) it follows that

l [~r]
¢(]—1! gl’ 82’ G) = ET—Z: (Clgln + (l—u)gzn) (ZTH‘J.) Pn(u) (10)
n=o
and
<Pp(u)> = agy? + (l-a)g,P (11)

We can now set up the following three equations

agy + (1-a)g, = 8 (12)

ag, ¥+ (1ma)g,’

u813 + (l—a)gz3

h (13)

It

I

t (14)

These equations can readily be solved ylelding

g, = t-ha-[(hg-6)*~4 (h-g?) (ea-h®) 112 2(h-g%) (15)
a = (g-8,)/ (g8, (17)

The tinus sig: was chosen so that By could become negative, If one
chooses the plus sign for the square root in equation (15) then one obtains g,.
It should be noted here that there is nothing in these equations to prevent
|gzl>l. Although this case is the exception rather than the rule we will show

how to deal with it laterx,
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2.2 Internal Radiance from Eigenvalue Expansion

Van de Hulst(d) derived an expression for the asymptotic internal radiance
in a homogeneous medium in terms of a perturbation expansion involving an eigen-
value along with g and h, We will extend the perturbation expansion to also
include t and thus show that a better fit can be obtained. We will adopt the
notation of van de Hulst to aveld any confusion to the reader. The basic
assumption is that the intensity deep inside a medium and far zway from a lower
boundary can be expressed as

I () ae P (W,-1lsuscl (18)

where 1t is the optical depth measured from the top of the medium and k is the

smallest eigenvalue of the equation

t
(-kw) P(u) = 52 S h(u, w) B(r") du” (19)
where 21 -
hiu, 1) = Smu‘ + (1-u?)% (1-u"2)% cos(4-67)] do (20)
o
and w, 1s the single scattering albeda,
This assumption has been checked numerically by Plass et al.(S) ind was

shown to be quite valid for wy ~ 1. The exponential behavior has also been
demonstrated exactly by a solution to the one dimensional problem (Kattawar
and Plass(ﬁ)).

Van de Hulst obtains the following series expansions for w, and P(u);

L. 2 49t Sgh
Wy = 3(l-g) 45(1-g) 3 (1-h) "

Y4 0k®) - (21)

1 2 3
P(u) = 1+ I:ngl(”) + WZPZ(M + 0(k3) (22)
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Since we have demonstrated a method of fitting a phase function up to the
term for P3(u), we must extend the perturbation series for P(u) up to this
term. This can be done in a rather straightforward manner and we obtain

2
5(1-g) (1-h) (1~t)

1 2
P(p) = 1 + I:EkPl(u) +'§fI:§Tff:ET

2 1.3

+ 0(k*) (23)

The coefficient of kb in We will involve <P4(p)> and we will not include it,
It is thus clear that by using the three parameter pha.2 function that more
accurate:internal radiances will be obtained since the OTHG only fits g. It
should bL noted, however, that all higher values of <Pn(u)> are glven by gn
for the OTHG, In order tc carry out the expansion given by equation (23) we
must be able to determine the eigenvalue k,
2.3 Eigenvalue Computation

The eigenvalues can be computed from 'equation (19). The proof that the

(7). The integral was dis-

eigenvalues are real was given by Kuscer and Vidav
cretized by using a twenty eight point Lobatto quadrature, WNow equation (19)

can easily be manipulatgd so that one can solve for k% rather than k since it is
well known that the eigenvalues occu: in pairs (¢k). The program was tested by
using the isotropic phase function (g=o) and computing the elgenvalues for
several values of W The results were compared to those given by van de Hulstcs)
for this case and agreement was achieved to every figure given.

3. Numerical Results

The first thirg to be tested was how well the eigenvalues comptited by the

OTHG and the TTHG compared to the eigenvalues of an actual phase function. The

phase function was computed using the Hazz L distribution of Deirmendjian (9
which is a modified gamma distribution of the form
=
a(r) a 2 e—lS.llSorz (24)



The refractive index used was N = 1,55-0,01 typical of atmospheric aercsols for

a wavelength of 0.55 um. The resulting phase function is shown in Figure 1

along with the OTHG and TTHG which were computed from the appropriate values of a
<Pn>. The values of <Pn>, (n =1, 2, 3) were computed in two ways. First a
numerical integration was performed over the phase functicn computed at very
small angular intervals. Secondly these values can also be obtained directly

from the A coefficients (See Kattawar et al.(lo)) by

41 | (ofl) (nd2) 1 6n° + 6n-4 1

{2n-3){2n-1)

Po> = it | T2nrdy (ants) » o2 T oDy (2ot 3) M n
_ n{n-1) 1 2{nt+l) ,3 2n_ 3
+ A n~2 + (2n+3) A n+l {n-1) A n-1 (23)

Excellent agreement was obtained bhetween the two methods. It should be noted
from Figure 1 that the TTHG not only provides a better approximation to the
glory (©=180°) but also a better approximation to the diffraction peak (8=0°).
Table 1 gives a comparison between the eigenvalues computed from a realistic
phase function and those computed using a TTHG and a OTHG approximation to it.
It should be emphasized, that only the smallest eigenvalue was chosen since this
is the one that dominates the solution for large t. It should be noted that the
ITHG provides exceéllent eigenvalue agreement for all values of w, used,

As a further test we wanted to consider the efficacy of the method in de-
termining internal radiance in optically deep homogeneous media. Our first test
employed the well known Rayleigh phase function, Since g = 0 for this function,
wthe OTHG reduces to isotropic scattering; however, h = 0.1 and the TTHG produces
the curve shown in Figure 2, This is a much more realistic description of Rayleigh
scattering than the OTHG., The asymptotic internal radiance for Rayleigh scat-

(5)

tering has already been calculated by Flass, et al, The eigenvalue for the
case where w, = 0.9 was computed both from equation (19) and by fitting the actual

exponential fall off. Both calculations gave the same value for the eigenvalue

de
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namely k = 0,5232, The values of k obtained by using the OTHG and the TTHG

were 0,5254 and (,5232, respectively. A comparison of the upward and downward

internal radiance is shown in Figure 3, The radiance values presented for the

OTHG and the TTHG were computed from equation (23) using the appropriate eigen-

values, As can be seen from the figure, the OTHG provides a better fit for oguc<0.2

for the upward radiance but the TTHG is betcter for 0.2<u<l,0 For the downward

radiance the TTHG is better everywhere. It should also be noted that for values of
m°20.9 %ne can obtain quite excellent asympotic internal radiances without doing very
large séale computer calculations by simply using equation (23) with appropriate values
of k, g,.h, and t.
We next computed a phase function using the size distribution in equation (24) and =z
wavelength of 0,55 um for a refractive index of N=1,55-0.001i, This curve along with
the OTHG and TTHG are shown in Figure 4. The asymptotic normalized radiances.are shown
in Figure 5, The difference between the actual asymptotic radiance and that computed
with the TTHG using the parameters k, g, h, t, in equation (23) is almost imperceptible
on the scale of the figure. The OTHG internal radiances. computed with the parameters k,
£, gz, g3 is not quite as good, A more dramatic comparison can be seen in the following
extmple. The size distribution was held fixed and the refractive index was changed to
N=1,55-0.01274, This gave the following 'set of curves shown in Figure 6. In Tigure 7 we
showna comparison of the asymptotic radiances computed using the matrix operator theory
with the actual phase function compared to that for the TTHG and OTHG computed

using equation (23). For the TTHG the parameters k, g, h, and t were used which

agree with the actual phase function and for the OTHSG the corresponding parameters
were k, g, gz, and g3. It is easily seen that the TTHG provides z better approxi-
mation to the upward radiance., There is always more disagreement in the upward
radiance as compared to the downward radiance, since the upward is derived from

the downward. Although the curves shown for the TTHG and the OTHG were computed up

to order k3, the expansion can be extended to higher orders until ccnvergence is

[ R . "
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reached, This would give the true asymptotic limit since all values of <Pn>
are known for these two functions,

To test the TTHG on a phase function indicative of terrestrial clouds, we
used the size distribution

() a rBe-l.Sr 0 (26)

with N = 1,33-0,01 for A = 0.77 ym., The following values were obtained:
g = 0.8479, h = 0.7763, and t = 0,6523, Fitting these three values the TTHG
gives g = 0.8792, 8y~ 0.9835, and o = 0,9832. These results are presented in
Figure % along with the OTHG. It is easily seen that the TTHG greatly over-
estimates the glory peak (g = 180°) even though this function has the same values
of g, h; and t ag the actual phase function. If one, however, wants to tolerate
a small error in t and fit the glory peak this can be done in the following way.

We will still require that the TTHG fit both g and h, however, we will relax the

requirement on fitting t in favor of fitting a particular value for the glory.

Therefore,
ag; + (l~a)g, = 8 27
agi + (l—a)gg = 4h (28)
Eliminating 8, we get
g, = G - [a(-c")/(1-a) ] (29)
g, = [G-(1-a)g,)/a (30)

Therefore by adjusting the ratio a/(l-a) we can reproduce the glory peak at the
expense of introducing an error in t. This is shown in Figure 8, The exact
value of t is 0.6523 and for the TTHG which fits the glory peak it is 0.6652
which ie a 2 percent error. This should be contrasted to the OTHG which has a 7
percent error in h and a 6% percent error in t. The major difference in the two
TTHG phase functions only occursg for scattering angles greater than 110°. This
demonstrates that the third moment of a phase function is quite sensitive to

shape and one must be very careful in using phase functions which appear to
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"look" similar to real phase functions, The technique just described is what
one would use when a fit to g, h, and t produces a value of |52|>1. One would
then have to sacrifice a fit to t in favor of a fit to the glory.

In order to study the effects of the approximate phase functions on the
reflected intensity, we chose the following wmodel:

n(r) a rSe-—12r (31)
with a refractive index of N = 2,25-0.0061 for a wavelength of 0,565 um., This
phase function along with the OTHG and TTHG are shown in Figure 9, The single
scattering albedo w, = 0.8943. In order that there be no scaling in optical
depth we considered a homogeneous semi-infinite atmosphere, The matrix operator

_-program was used to calculate the reflected radiances for the three phase functions.
In Figure 10 we sec a comparison of the reflected radiance for bo = 1,0 as a
function of the cosine of the zenith angle, What is particularly striking is the
degree to which single scattering features are carried over into the multiple
gcattering results. For example from Figure 9 we see that the TTHG crosses the
actual phase function curve for angles 2 90° at two points corresponding to u =
0.24 and 0,91. These correspond very closely to the crossover points from Figure
10 for the multiple scattering results, The values in parentheses are the irradi-
ance values and it can be seen that the TTHG gives only a 1 percent error in the
irradiance while the OTHG gives a 7 percent error, Although the TTHG produces
goad values for the irradiance, the reflected radiance shows large discrepancies.
Therefore if one needs precise values of the radiance then use of the analytic
phase function can give errors which are quite large, Figure 1l is the same case
as Figure 10 except u, = 0.1182. The radiance in the principal plane is shown
(¢ = 0° and 180°). Again large discrepancies cxist between the actual phase
function results and the twp analytie phase functions, however the flux value for

the TTHG is in error by only 1 percent while the OTHG is in error by 5.5 percent.



- 10 -

4. Conclusions

The use of this function can be expected to yield quite good asymptotic
radiances in a medium whose single scattering albedo is > 0.9. We have shown
that this function can yield quite accurate eigenvalues which govern the rate of
decrease of the radiance and irradiance at asymptotic depths. This also implies
its effectiveness in the computation of heating rates, It cun also produce the
familiar glory so often seen in reallstic phase functions. This should be quite
useful in the computations of synthetic spectra from pianetary atmospheres where
a p&ramgterization of the phase function can be judiciously used, Although the
values $f the reflected radiance can be in error by a large percent, the reflected
irradiance values can be quite accurate, Therefore this function can be effect-
ively used whenever radiance values aps averaged over certain intervals. This
is precisely the case when we are computing synthetic spectra from various
portions of a planetary atmosphere where averages are performed over portions

of a planet cdvered by the spectrograph slit.
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Figure Captions

Fig. 1 Phase function as a function of scattering angle for a

- b
2 e 15.1186r with refractive

gize digtribution n(r) a r
index N = 1,55 - 0,01 at a wavelength of A=0,55um. TTHG
1s the two term HenseyLreenstein analytic phase function
obtained by fitting the first three moments of the actual
phase function and OTHG is the one term Henyey Greenstein
phase function obtained by fitting only the first moment.

Fig. 2 Some as Fig. 1, except the actual phase function is that
for Rayleigh scattering.

Fig. 3 Upward and downward normalized asymptotic internal radi-
ances, The values of the single scattering albedo wowere
computed from equation (21) using the eigenvalues k com-

putedfrom equation (19). These results are for the phase

function used in Fig, 2.

Fig. / Same as Fig. 1 except N = 1,55 - 0,0014

Fig. 5 Same as Fig. 3 except phase function used was that of
Fig. 4,

Fig. 6 Sames as Fig., 1 except N = 1,55 ~ 0,01271

Fig, 7 Same as Flg, 3 except phase function was that of Fig, 6.

Fig. 8 Same as Fig, 1 except nir) a r6e~1.5r with N = 1.33 - 0.04

for A = 0,70um,

Fig, 9 Same as Fig 7 except n(r) o r6 e"l2r with N = 2,25 -~ 0,0061
for A = 0.565um.
Fig. 10 Reflected radiances as a function of the cosine of the zenith

angle for a homogeneous seml-infinite atmosphere scattering
according to the phase function for Fig. 9. Cosine of
incident angle o = 1.0,

Fig., 11 Same as Fig. 10 except p, = 0.1882 and the results are for the

the principal plane ¢ = 0° and 180°,



TABLE 1

Comparison of eigenvalues for a real phase function
and those computed from the OTHG and the TTHG,

“ “ e | ZEm | e | i
0.9999 0.01015 0.01015 0 0.01015 0
0.999 0,03209 0.03209 0 0.03209 0
0.99 0.1016 0.1016 0 0.1017 0.1
0.95 0.2284 0,2284 0 0.2296 0.23
0.90 0.3251 0.3251 0 0.3281 0.92
0.85 0. 4006 0.4006 0 0.4054 1.20
0.80 0.4652 0.4652 0 0.4718 1.42
0.75 0.5227 0.5227 0 0.5310 1.59
0.65 0,6237 0,6238 0.02 0.6347 1.76
0.55 0.7115 0.7116 0,01 0.7241 1,77
0.45 0.7890 0.7892 0.02 0.8022 1.67
0.35 0.8575 0.8578 0.03 0.8701 1.47
0.25 0.9166 0.9173 0.08 0.9275 1.19
0.15 0.9648 0.9657 0,09 0.9724 0.79
0.05 0.9958 0.9965 0.07 0.9978 0.2
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