
(NASA-CR-14C389) HAL/S _50GRAN,_ER'S GUIDE N75-14479
(Inte[metrics, Inc.) 240 _ HC $7.50

CSCL 09B
Unclas

G3/61 06027

/%4 J

! !I I

i: [11 1
:: II'ITERmETRI

1975006407

https://ntrs.nasa.gov/search.jsp?R=19750006407 2020-03-23T00:28:46+00:00Z

!

I
i

i!

_" HALLS

PROGRAMMER'S

GUIDE

IR-63-4

15 August 1974

Prepared by:

P.M. Newbold
R.L. Hotz

Typescript:

V.L. Cripps Approved:

' '
Daniel J. Liekly
HAL Language/Compiler Dept.

- Head

- - Approved:

I

- Dr. F. H. Martin

Shuttle Program Manager

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

1975006407-002

i
T

I
T

,- FOREWORD

This document was prepared for the Johnson Space
Center, Houston, Texas, under contract NAS 9-13864.

. INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 !i

I

1975006407-003

CONTENTSOFPARTI

STRUCTUREOF HAL/S 1-z

1,1 STRUCTURINGAND HIGHER ORDER LANGUAGES 1-1

1,2 THEBLOCKSTRUCTUREOFHAL/S i-2

1,3 STATEMENTGROUPINGINHAL/S I-9

1,4 SUMMARY 1-12

HAL/SSYMBOLOGY 2-i

2,1 THE CHARACTER SET 2-1

2,2 RESERVED WORDS, IDENTIFIERS,AND LITERALS 2-2

2,3 FORMAT OF SOURCE TEXT 2-8

2,4 STATEMENT DELIMITING 2-10

2,5 COMMENTS IN HAL/S 2-1o

2,6 SUMMARY 2-11

A HAL/SCOMPILATION- THEPROGRAMBLOCK 3-1

3,1 OPENING AND CLOSING THE BLOCK 3-i

3,2 POSITION OF DATA DECLARATIONS 3-2 ,

3,3 FLOW OF EXECUTION IN THE PROGRAM 3-3

3,4 SUMMARY 3-4

DATADECLARATION 4-1

4,1 HAL/SDATA TYPES 4-i

4,2 SIMPLE DECLARATION STATEMENTS 4-2

4,3 INITIALIZATIONOF DATA 4-10

4,4 SUMMARY 4-13

INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS O_138. (61) 661 1840

1975006407-004

1 I |

REPLACESTATEMENTS s-z

5,1 THE REPLACE STATEMENT 5-i "

5,2 USING REPLACE STATEMENTS 5-2

5,3 SUMMARY 5-5

DATAREFERENCINGANDSUBSCRIPTING 6-I

6,1 SUBSCRIPTS OF UNARRAYED DATA TYPES 6-1

6,2 SUBSCRIPTS OF ARRAYED DATA TYPES 6-8

6,3 SUMMARY 6-12

EXPRESSIONS 7-1

7,1 ARITHMETIC OPERATIONS 7-1

7,2 CHARACTER OPERATIONS 7-18

7,3 BOOLEAN OPERATIONS 7-20

7,4 COMBINING OPERATIONS & PRECEDENCE 7-23

7,5 SOME EXPLICIT CONVERSIONS 7-26

7,B BUILT-IN FUNCTIONS 7-32

7,7 SUMMARY 7-35 '

ASSIGNMENTS 8-_

8,1 GENERAL FORM OF ASSIGNMENT 8-1

8,2 ARITHMETIC ASSIGNMENTS 8-2

8,3 CHARACTER ASSIGNMENTS 8-7

8,4 BOOLEAN ASSIGNMENTS 8-10

8,5 MULTIPLE ASSIGNMENTS B-If

8,6 SUMMARY 8-13

INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 66t-18;0 _.

1975006407-005

Page

9, CONDITIONALSTATEMENTSANDBRANCHES _-1

9,1 THE CONDITIONAL STATEMENT 9-1

9.2 RELATIONAL EXPRESSIONS 9-7

9,3 LABELS AND BRANCHES 9-15

9.4 SUMMARY 9-19

i0, STATEMENTGROUPS zo-1

10,1 DELIMITING STATEMENT GROUPS 10-1

10,2 REPETITIVE EXECUTION OF STATEMENT GROUPS 1o-5

10,3 SELECTIVE EXECUTION OF STATEMENT GRouPs lO-13

10,4 BRANCHING IN STATEMENT GROUPS lO-IS

105 SUMMARY i0-21

ii. PROCEDURESANDFUNCTIONS 11-1

11,1 INTRODUCTION 11-1

11,2 BLOCK DEFINITIONS 11-2

11,3 DECLARATION OF PARAMETERS AND LOCAL DATA 11-6

11,4 FUNCTION INVOCATIONS ii-7 #

11,5 PROCEDURE INVOCATIONS i1-13

11,6 RETURNS FROM PROCEDURES AND FUNCTIONS ii-18

11,7 SUMMARY 11-20

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

1975006407-006

I I

i

12, INPUT/OUTmlTSTATEMENTS 12-1

12,1 HALLSINPUT/OUTPUT CONCEPTS 12-i

12,2 THE WRITE STATEMENT 12-4

12,3 THEREADSTATEMENT 12-8

12,4 INPUT/OUTPUT FORMATTING 12-11

12,5 DEVICE ATTRIBUTES 12-18

12,6 SUMMARY 12-19

13, REALTIMEFEATURESOF HAL/S 13-1

13,1 HAL/SREAL TIME CONCEPTS 13-1

13,2 TASK BLOCK DEFINITIONS 13-7

13,3 FLOWOF EXECUTIONINPROGRAM& TASKBLOCKS13-12

13,4 THESCHEDULESTATEMENT 13-13

13,5 OTHER REAL TIME FEATURES OF HAL/S 13-18

13,6 A SIMPLE REAL TIME PROGRAM 13-23

13,7 SUMMARY 13-27

14, SUMMARYOF PARTI 14-1

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

I

1975006407-007

] T

INTRODUCTION

HAL/S is a programming language developed by Intermetrics, Inc.

for the flight software of the NASA Space Shuttle program.

HAL/S is intended to satisfy virtually all of the flight

software requirements of the Space Shuttle. To achieve this,

HAL/S incorporates a wide range of features, including appli-
cations-oriented data types and organizations, real time

control mechanisms, and constructs for systems programming
tasks.

As the name indicates, HAL/S is a dialect of the original

HAL language previously developed by Intermetrics [i].

Changes have been incorporated to simplify syntax, curb
excessive generality, or facilitate flight code emission.

REVIEWOFTHEL GUAGE

HAL/S is a higher order language designed to allow programmers,

analysts, and engineers to communicate with the computer in a

form approximating natural mathematical expression. Parts of
the English language are combined with standard notation to

provide a tool that readily encourages programming without

demanding computer hardware expertise.

HAL/S compilers accept two formats of the source text, the
usual single line format, and also a multi-line format corres-

ponding to the natural notation of ordinary algebra.

DATA TYPES AND COMPUTATIONS

HAL/S provides facilities for manipulating a number of different

data types. Its integer, scalar, vector, and matrix types,
together with the appropriate operators and built-in functions

provide an extremely powerful tool for the implementation of

guidance and control algorithms. Bit and character types are
also incorporated.

HAL/S permits the formation of multi-dimensional arrays of
honAogeneous data types, and of tree-like structures which

are organizations of non-homogeneous data types.

I INTERMETRICS INCORPORATED -'01 CONCORD AVENUE . CAMBRIDGE MASSACHUS{- TIS 021:38, r617) 661-1840

1975006407-008

I 1 ! i

REAL TIME CONTROL

HAL/S is a real time control language. Defined blocks of

code called programs and tasks can be scheduled for execu-
tion in a variety of different ways. A wide range of commands

for controlling their execution is also provided including

mechanisms for interfacing with external interrupts and other
environmental conditions.

ERROR RECOVERY

HAL/S contains an elaborate run time error recovery facility
which allows the programmer freedom (within the constraints

of safety) to define his own error processing procedures, or

to leave control with the operating system.

SYSTEM LANGUAGE

HAL/S contains a number of features especially designed to

facilitate its application to systems programming. Thus,

it substantially eliminates the necessity of using an

assembler language.

PROGRAM RELIABILITY

Program reliability is enhanced when software can, by its

design, create effective isolation between various sections

of code, while maintaining ease of access to commonly used
data. HAL/S is a block eriented language in that blocks

of code may be established with locally defined variables that

are not visible from outside the block. Separately compiled

program blocks can be executed together and comn_unicate through

one or more centrally managed and highly visible data pools.
In a real time environment, HAL/S couples these precautions with

locking mechanisms preventing the uncontrolled usage of sensitive
data or areas of code.

INTERMETRICS INCORPORATED • 701 CONCORD _VENUE . CAMBRIDQ_ I'J,",,S,'4A('f_Lt_,F'rlr_; (_2t',18. _617__--.,_1_,:

1975006407-009

v

ABOUTTHEPROGRAMMER'SGUIDE

The Programmer's Guide presents an informal description

of the HAL/S Language to the potential HAL/S programmer.
It is in no way meant to be an exhaustive catalog of all

the various rules of the language. That is the function
of the HAL/S Language Specification Document. However,

after the HAL/S programmer has absorbed the material

presented here, he should have been able to gain enough

insight into the workings of the language to enable him

to use the Language Specification to clarify any ambiguities.

In order to execute a HAL/S program on any given machine, the

programmer will need information contained in the HAL/S User's

Manual appropriate for that machine.

The Programmer's Guide is divided into three parts:

• PART I is aimed at the new HAL/S user and contains

enough information on the compiler language constructs

to enable him to begin programming.

• PART II describes other, more complex, HAL/S constructs

which will be used regularly in applications programming.

• PART III presents programming examples designed to

illustrate and clarify important complex HAL/S Language
constructs. Some of the examples are constructs too

advanced to be described in PARTS I and II, but which

are formally defined in the HAL/S Language Specification.

INTERMETRICS INCORPORATED.701 CONCORD AVENUE . CAMBRIDC,_E ',,_A'_-_AC,_tU,C,_- TT'3 0;,1,_,8. _61;j 661 1840

1975006407-010

!

PARTI

I

,I
1

Part I of the Programmer's Guide is oriented toward new users

of HAL/S. It covers all the simpler constructs of the language
and contains sufficient information for suprisingly complex

programs to be written. Sections of text delimited by hori-

zontal bars are comments referring to the existence of more

complex HAL/S constructs to be explained in Pazt If.

!
I

_D

ims

_,,, INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

1975006407-011

1, STRUCTUREOF HAL/S

This section _ives an overview on an abstract level of the

overall properties of HAL/S compilations, and tries to relate

these properties to the need for good progrm._in9 practice.
Later sections of the Guide interpret these properties in terms

of actual HAL/S Language constructs.

I.i STRUCTURINGAND HIGHERORDERLANGUAGES

A con_non method of problem solving is the so-called "top down"

approach. The algorithm for solving the problem is first out-

lined broadly, and then, step by step, delineated in successively

deeper levels of greater detail. The success of the algorithm
in arriving at the solution lies as much in its ability to break

down the problem into its simplest component parts, as in its

ability to resolve the problem as a whole.

If a problem is to be solved by programming it in a higher order

i language, then the "top down" approach is of especial interest

because it lends insight into how the program can be organized.

Specifically, the organization takes the form of an outer program
block enclosing numerous nested "subroutines"*. On the outermost

I : level, the program is only concerned with the broad outlines ofthe solution, and relegates the first level of detail to the outer

i set of subroutines. These in turn relegate the next level ofdetail to an inner set of subroutines, and so one until each

I level of the problem has been relegated to the appropriate set

of subroutines.

I

* Here the term "subroutine" is loosely used in its

generally recognized sense, conveying the idea of
, a subordinate block of code executed by calling it,

.. and returning to the call_r on completion. HAL/S
uses different terminoloqy, to be introducted later.

INTERMETRICS INCORPORATFD • 701 CONCORD ,W_NLJE • CAMBRI[)(;E MA_;_A(_i_l_ ITS; (},'_ _a • _ ;, 66_ 1840

I

1975006407-012

This particular programming technique is partly what is meant

by "structured programming". This tu_ also implies an ability to

form nested groups of executable statements inside a progr_

or subroutine. On each level of nestinc, a statement group
has the ability to behave as if _t were a sin%le executable
statement.

The overa_l effect of structured progra_ing techniques is to

introduce an orderliness into the writing of progr_s that

not only makes them easier to read but also far less prone to

error. Most m_ern higher order languages possess constructs
out of which structured programs can be created: the constructs

of the HAL/S language have been defined deliberately with

structured programming in mind.

i 1,2 THEBLOCKSTRUCTUREOF HAL/S
!
{

i The structure of a HAL/S :ompilation, as indicated below,
generally consists of a program block with so-called

! procedure and function blocks nested within it.
i p_gram

t

tlc_s t_level 3a

J

at level i

blocks at

)

i /,
1-2

INTERMETRICS INCORPORATED.TC1 CONCORD AVENUE • CAMFr_[,[MA_:,SAC:HL/:;_TIg (';.'I_H . ,6_ ", 66_ _84U

1975006407-013

!

! ' 1

t #'

Function and procedure, blocks constitute the HAL/S

interpretation of the "subroutines" of Section i.I.
The more deeply such a block is nested, the greater

the depth of detail of the problem solution it is

supposed to handle. The blocks at each level conLain

executable code implementing the appropriate part of
the problem solution.

Both kinds of block are similar in that they contain

code which is executed by a call or "invocation",
and which returns execution to the caller on comple-

tion. However, procedure and function blocks differ

in the way they are invoked. A procedure is invoked

by a CALL statement, while a function (like its mathe-
matical counterpart) is invoked by its appearance in an

expressioN, and returns a result*.

Generally, the code in any block may invoke a procedure
or function block defined at the same level, or in a

surrounding outer level. The rules defining the
region where a block may be invoked are discussed later in
this Section.

The forms of procedure and function blocks and the
constructs for invokina them are described in Section Ii

of the Guide. The form of the outer program block is
described in Section 3.

* A procedure is therefore like a Fortran SUBROUTINE,

and a function is like a Fortran FUNCTION. Note,
however, that Fortran SUBROUTINES and FUNCTIONS

are always exterior to the program calling them,
whilst this is not true for HAL/S.

° .

" 1-3

_INTERMETRICS INCORPORATED . 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

1975006407-014

j
i

I SCOPINGOFDATA

In HAL/S, all data must be defined in so-called "data declara-

tions". An important consequence of the structural properties

of HAL/S is its ability to place data declarations so as to bound
the regions in a program which may reference the declared data.

This feature is called "scoping".

Data declared at the program level may generally be used through-
out the entire compilation:

W
region where program
data declarations are

known; i.e. the "scope"

of program data
declarations.

program

inner blocks

1-4

It,I L,R,,'..,'_ .'.RPORATED. 701 CON'ORDAVENUE • CAMBR'[)GE MASSACHUSETTS 02138, (617) 661-1840 l

1975006407-015

1
|

I

"_ In addition, any procedure or function block nested within a

_. program block may declare local data - data known only in that

particular block and in blocks nested within it - as indicated
,- below:

:: M
region where
data declared

. . local to X are

known

X =

m
region where

Y= data declared
local to Y are

known

SCOPINGOFBLOCKNAMES

The program block, and every procedure or function within it

are named: block names have scoping rules identical with

the data scoping rules already described. The name of any
procedure or function block is deemed to have been "declared"

" " in the surrounding block in which the procedure or function
is nested. This bounds the region where its name is known,.b

and therefore determines where it may be invoked. Thus,

: - the name of any procedure or function nested at the

_ ; program level is known anywhere in the program. However,

i "" since in HAL/S recursion is not allowed, such a procedure
. or function may be invoked from anywhere in the program
i_ except inside itself, as indicated:

• i!'? i-5

• _ INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138. (617) 661-1840

1975006407-016

m
region where

block A may be

invoke_

1-6 _ ,

INIFRMETRICS INCORPORATED ' 701 C(.)NCORD AVFI'4[J[' ('.:Aklt:_t!(_(,{" L1,',', ..',, ._1, ',! I', ,J. _ ,tz • ,,t r,h' l_.It) }

tL

1975006407-017

I

Similarly, inner procedures and functions may be invoked from

I anywhere in the block enclosing them except within themselves.

.. In the following example, inner block B and C can only be
-, invoked from inside regions X and Y respectively:

_ m
im

"- i region where

block B may be
"" invoked

_o

J

Y: -_-._ :. :-_ region where

I l block C may be
C - invoked

FI

I

i._
#

{ i7 1-7

i _ 1 .INTERMETRICS INCORPORATED. 101 CONCORD AVENUE • CAMBRIDGE M_.,SA,,tttlSFIT5 tl?l t8 • _6l;/i 661-1841/

I

1975006407-018

+ I ! i
i

It should be noted that all forms of recursion in HAL/S

are illegal. The form of recursion not prevented by

the rules given above is that in which procedures P and

Q are not contained in each other, but P calls Q and Q

calls P.

It is also possible for a program

(or any block within it) to in-

voke entities outside the compila-

tion unit; i.e. other compilation
units. Procedures and functions

may be compiled independently for

this purpose.

See: (tbd)

|

]

-] 1,3 STATEMENTGROUPINGINHALLS

In HAL/S, the actual step by step solution of a problem is

._ performed by executable statements contained in the blocks

comprising the program. Sequences of executable statements

-" may be grouped together and treated as a single compound

statement. Such statement groups are said to be "well-
bracketed" - they begin with a special statement (a "DO"

- statement), and end with another special statement (an "END"

statement). Execution of the sequence of statements in the

"" group can be controlled in various ways de_ending on the form
of the opening "DO" statement:

o _ • the sequence may be executed once only;

_- • the sequence may be executed repetitively until specified
conditions are met;

.. • one statement in the sequence may be setected as the

only one to be executed.

Sequences of compound statements may also be grouped together

"" in the same way and, in turn, be treated as a more complex com-

.. pound statement, and so on to an arbitrary degree of nesting.

-- Use of this grouping property in conjunction with other HAL/S
constructs can substantially eliminate the need for a "GO TO"

' _ statement (in the Fortran sense, for example), which from the

structured programming viewpoint is recognized to be "dangerous"

_ r_ because it destroys the readability of a program, and makes it
.. more error-prone.

.. STATEMENTGROUPSANDGOTOSTATEMENTS

"" The design of HAL/S minimizes the dangers of "GO TO" statements

. by limiting the regions which can be branched to by them, in a way
analogous to the limits imposed on data by the scoping rules

.- described in Section 1.2.

q _

: e,m

.. INTERMETRICS INCORPORATED. 701 CONCORD AVENUE .CAMBRIDGE MASSACHUSETTS 02138. (617) 661-1840 ._

1975006407-020

Consider a program containing nested groups of executable
statements as shown below:

program

outermost

(oo) x
innermost

group Y

0

The region of legal destinations of "GO TO" statements contained

in group X are as indicated below:

1

, _ram

,utermost

_lii _ 0}' :roupXregion of
. ; .egal des-

tinations

,.. " " .:_, . :}f GO TO's
...... •_ '" :n X

0
• • ,p

1 "
I-i0

INTERMF[RtCS I_I_()R_r)RATt:I) • //]1 (;()N(;OR[)AV[NU[•(,,\t',_i_':, _ 'I. ",_ ,', ,, : ' _ ,:_,

Ll
I

1975006407-021

I

- - The region of legal destinations of "GO TO" statements contained

in group Y are as indicated below:

gram

region of

legal des-
tinations
of GO TO's

O in Y

innermost

group

It is evident from the examples that while groups can be branched
out of, or branched within, they may not be branched into.

INTERACTIONWITHBLOCKSTRUCTURE

Since procedure and function blocks may appear anywhere in a program,

including inside statement groups, the problem arises of branches

by means of "CO ,TO" statements in and out of such blocks.

In HAL/S, the destinations of "GO TO" statements are labels attached

to executable statements. Because the scope rules for statement
labels are the same as for declared data, it follows that it is

impossible to branch into a procedure or function block. Additionally,
a rule is made that br-_hes may not be made out of a block (even

though by scope rules the label of the destination is visible).

This leaves the reciprocal processes of call and return-to-caller

the only ways of entering and leaving procedures and functions,

" " which is in accordance with structured programming principles, i

• " 1-11

i '_ INTERMETRICS INCORPORATED • 701 CONCORD AVENUE •CAr, AE_IIIIF,[- L_,,'_,,:,,_,tt[I:_,I. I]'_ (L,t t_ . _hl ,', 6_)1 1,_t40 _

tl

1975006407-022

1.4 SUMMARY

This section has been concerned with the structural properties
of HAL/S compilations on an abstract level. It remains to be
demonstrated in the ensuing sections of PART I how the properties
are translated into sequences of actual HAL/S constructs. Section
2 begins this on the most basic level by describing the
characteristics of HAL/S source text.

I

1-12 -I

INTERMETRICSINCORPORATED• 701 CONCORDAVENUE• CAMBRIDGE.MASSACHUSETTS 02t38 . (61/) 661-1840

1975006407-023

!

2, HAL/SSYMBOLOGY

wm

HAL/S source text has its own particular characteristics;

-- a specific character set, special combinations of characters
set aside as reserved words, and certain rules dictating

" " the form of statements. This section is _n introduction

. . to these characteristics of the _L/S Language.

2,1 THECHARACTERSET

The HAL/S language uses the following character set:

ABCDEFGhIJKLMNOPQRSTUVWXYZ

abcdefghijklmnopqrstuvwxyz

0123456789

+-*.ll'i=<>il$,;:'")(_i¢

(blank)

This character set is a subset of the standard character sets

ASCII and EBCDIC.

Although the user really needs only the above character set
when writing a HAL/S program, there are additional special
characters which can be used in comments and in character

string literals (described later in this secticn).

[1{}'?]
q,

The output listings produced by a HAL/S compiler may use these

extra special characters for annotation. •

2-1

i_ ii_| INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02;38 . (617) 661-1840
4t I

1975006407-024

|

2,2 RESERVEDWORDS,IDENTIFIERS,ANDLITERALS

The HAL/S language uses four kinds of primitive elements as

basic constructs:

• RESERVED WORDS are a fixed part of the language and consist
'of combinations of upper case alphabetic characters;

• IDENTIFIERS are user-defined names used for data or labels,

and consist of combinations of the alphanumeric characters;

• LITERALS express actual values, and can consist of any of the

symbols An the character set;

• SPECIAL CHARACTERS serve as delimiters, separators or

operators, and consist of the non-alphanumeric
characters of the HAL/S set.

RESERVEDWORDS

Reserved words are words having a standard meaning in the HAL/S

language. As their name suggests, the user cannot use reserved

words as identifier names. There are two major categories of
reserved words:

• KEYWORDS are used to express parts of HAL/S statements, for

example:GO TO, DECLARE, CALL, and so on. A complete

list can be found in Appendix .
0

• BUILT-IN FUNCTION NAMES are used to identify a library of

common 1_mthemat.cal and other routines, for example :

SZNE, SQRT, TRANSPOSE, and so on. A complete list can
be found in Appendix .

2-2

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE MASSACHI.JSETTS02_'_8 • t617_ 661-t840 t

1975006407-025

IDENTIFIERS4 *

An identifier name is a user-a,_ilned name identifying an
• - item of data, a statement or block label, or other entity.

The following rules must be observed in the creation of
any identifier name*.

Him ,, ii

I. The total number of characters in the name
must not exceed 32|

2. The first character must be alphabetic;

3. The remaining characters may be either
alphabetic or numeric;

4. Any character except the first or last
may be an underscore (_).

Examp le s:

ELEPHANT AND CASTLE i

AI - - _ legal
P

T_I

IB } illegalXX
e

a
i

* Some implementations of HAL/S may place extra restrictions

i _ _ upon the names of identifiers.

! .-_ 2-3

; i J, INTERMETRICSINCORPORATED.701CONCORDAVENUE• CAMBRIDGE,MASSACHUSPTTS02|38• 1617)661-1840

1975006407-026

LITERALS

The three basic kinds of literals described here are arithmetic,

character string, and Boolean. The utility of arithmetic
literals is obvious. In simple programming problems, character

string literals find most use in the generation of output.
Boolean llterals are used to state logical truth or falsehood.

• ARITHMETIC LITERALS express numerical values in de..mal

notation. The generic form of an arithmetic literal
is:

mantissa _ _-exponent
2ddd .ddd=Zddd

1. ddd represents an arbitrary
number of decimal digits.

2. The exponent is optional.

3. The + signs are optional.

4. The decimal point is optional.
If absent, it is considered to be

to the right of the least signi-

ficant digit of the mantissa.

If the decimal point is present,
it may appear anywhere in tz_ mantissa.

5. The minimum number of digits in the

mantissa, and in the exponent, if

present, is one. The maximum

number is implementation dependent.

(See Appendix).

i

2-4

'NTERMETR,CS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE MASSACt"ILJSEITS02138 • J6.7_661 1840 j

I

1975006407-027

OI

,, Examples:

• - 0. 123E16
45.9

" " -4

It is important to note that HAL/S makes no distinction
of type between a integral-valued literal and a fractional-
valued literal. Either integer (with possible rounding of
value) or scalar (i.e. floating-point) type is assumed
according to the context in which the literal is used.

The use of multiple exponents,

and of binary, hexadecimal or

octal exponents, is also allowed.

; See: (tbd).

°
o .

i- 2-5

} i _ INTERMETRICSINCORPORATED. 701CONCORDAVENUE .CAMBRIDGE MASSACHUSETTS02138. (617) 6611840

| o
I

1975006407-028

! I i

• CHARACTER STRING LITERALS consist of strings of characters
chosen from the entire HAL/S character set. The

generic form is:

'CCCCCCC'

i. The quote marks delimit the

beginning and end of the
literal.

2. cccc represents an arbitrary
number of characters in any
combination.

3. Quote marks within the literal

must be represented by a pair

of quote marks to avoid con-
fusion with the delimiting

quotes.

4. The minimum number of characters

is zero (a 'null' string), the
maximum is 255*.

* This value is implementation dependent. See Appendix
for exceptions.

2-6 _] 1
,NTERMETRICS INCORPORATED * 701 CONCORD AVENUE *CAMBRIDGE MASSACHUSETTS 02138. (617)661-1840 ,,j

i

1975006407-029

i

m

• m

- Examples :

• . , |

'ONE two THREE'
'DOG' 'S'

m

If a literal consists of a single

character, or character sequence

repeated may times: a condensed
form of literal using a repeti-

tion factor may be used.

See: (tbd).

• BOOLEAN LITERALS express logical truth or falsehood,
and are generally used to set up the values of
Boolean data items (see later). Their forms are:

• | ,

TRUE } expressing truth, orON binary "l"

4

FALSE } expressing falsehoodOFF or binary "0"

,n

Literal strings of binary values
also exist.

See (tbd).

i

_ w

2-'7 /

i._._NTERMETR_CS,NCORPORATED•?01CONCORDAVENUE• CAMBR,DGE.MASSACHUSETTS02_._a• <6_7_66_-_840 _

1975006407-030

I !

T I r
!

i

2,3 FORMATOF SOURCETEXT

HAL/S is a "stream-oriented"language, that is, statements

may begin anywhere on a line (or card), and may overflow
without special indication onto succeeding lines or cards.

Several statements may be written on one line (or card) as

required.

HAL/S is among the very few languages which permit subscripts

and exporents to be represented as they are mathematically,
using lines below and above the main line respectively as needed.

This multi-line format is an optional alternative to the HAL/S
single-line format.

Even when tu!ti-line format is not used, the first character

position of each line (or card) is reserved for a symbol

denoting the kind of line format, subscript, main, or
exponent.

SINGLE-LINEFORMAT

In single-line format, the first character position of each line

is left blank, denoti**g a main line. An M can alternatively

be used but is generally not preferred by users.

I EXPONENTS are denoted by the operator **
i

Example:

x t+2 is coded as:

:M X**(T+2)

I SUBSCRIPTS are denoted by parenthesizing the subscript and

preceding it with the symbol $.

Example :

i ai+ 1 __s coded as: ,
t I ; •

.M A$ (I+l)

I

2-B

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE • CAMBRIDGE. MASSACHUSETTS 02138 • (617) 661-1840
• _

I

1975006407-031

I
w_

i "- MULTI-LINEFORMAT

In multi-line format, the first character of a main line
is either left blank or M is inserted as before. The first

character of an exponent line is E, and that of a subscript
line is S.

• EXPONENTS are written on an exponent line (E-ilne) immediately
above the main line.

Example:

xt+2 is coded as:

.E T+2
M X

• SUBSCRIPTS are written on a subscript line (S-line) immediately
below the main line.

Example:

ai+ 1 is coded as:

'M A

"S I+l
e

When using multi-line format, care must be taken to ensure that

_-' nothing on the E- and S-lines overlaps anything on the M-line.

• | tl

Expo:sents of exponents and sub-

scripts of subscripts use extra

subscript and exponent lines.
Special rules apply if exponents

are subscripted, or if subscripts

possess exponents.
See • (tbd).

t

- o I I

l t

! -- j
2-9

!2 ' INTERMETRICS INCORPORATED ,701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138 . (6171 66t-1840 r-

"
I

1975006407-032

I
J

' t
l

2,4 STATEMENTDELIMITING

As Section 2.3 indicated, HAL/S statements may be written in
free form without regard for line (or card) boundaries. Be-

cause of this there is the need to explicitly indicate the

end of each statement with a special symbol. HAL/S uses a

semicolon for this purpose. The following statements arbitrarily
selected from the language show the placement of the semicolon.

Examples:

DECLARE I INTEGER;

. I = I + i;
i

CALL P(I,J);i

!

2,5 COMMENTSINHALLS

The use of comments is a sine qua non of good programming practice.

HAL/S possesses two mechanisms for the inclusion of comments in a
compilation.

• IMBEDDED COMMENTS may be placed anywhere on main, exponent

or subscript lines of HAL/S text.

• COMMENT LINES may appear between main, exponent and subscript
lines of HAL/S text.

IMBEDDEDCOMMENTS

An imbedded comment takes the form:

,i i |

I /* ... any text (except */) ... */l ,n , i

2-10

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE . CAMBRIDGE MASSACH[JSETTS (I,")138. (617) 66, 1640 "}

I

1975006407-033

I

Such comments may appear between HAL/S statements or imbedded
in a statement. They may not appear in the middle of a literal,
reserved word, or identifie--_. As far as the sense of the source

text is concerned, an imbedded comment is treated as if it were

a string of blank characters.

Example:
I

'M X = X + i; /, ADD ONE TO X */
!

!

COMMENTL.INES

Comment lines are input lines specially reserved solely for comments

by placing the character C in the first character position of the
line. The rest of the line may contain any desired text.

Examples:

_M X = X + i;
:C ADD ONE TO X
'C THEN CARRY ON
J

2,6 SUMMARY

" In Section 2, the most basic elements of the HAL/S Language have
been outlined: reserved words, identifiers, literals, the

formatting of the source text, and alternate forms of comment
insertion.

In Section 3, the overall form of a HAL/S program will be explained,
with special references to how declarations of data and execs:table

statements may be arranged within it.

2-11

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE .CAMBRIDGE MASSACHUSETTS 02138. (611}661-1840

i

1975006407-0:34

I !

I I ,

r

t

S

•• 3, A HALLSCOMP!LATION- THEPROGRAMBLOCK

"" The structuring of HAL/S programs was dealt with on the conceptual

. level in Section i. Section 3 begins to interpret this infor-
mation in terms of actual HAL/S language constructs.

For the purposes of Part I, an entire HAi,/S unit of compilation
is known as the "program block". The te._a "block" has a special
connotation in this Guide. Zc is taken to mean a coherent

body of data declarations and executable statements enclosed in

statements delimiting its openin_ and closing, and i_entified
wlth a name.

3.1 OPENINGANDCLOSINGTHEPROGRAMBLOCK

The first statement of a HAL/S program is a statement defininq
the name of the program and opening the program block. The last

statement of a HAL/S program is a statement closing the program
block. Between the two are all the statements comprising the body
of the program.

, .. PROGRAMOP[NING

, _-, The statement opening a program block takes the form:

t t ! m t t

J

. , £abzl : PROGRAM;0

!

i. £abZ_ is any legal identifier
-- name, and constitutes the name

of the program.

t J t t

T " :

i ° "

!

. - 3-1 _

. . INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSE.:JTS 02138 • (617) 66I 1840

I

1975006407-035

PROGRAMCLOSING

The program block is closed with the statement:

i

I

' CLOSE L_6zZ ;P
i

I

i. The identifier £abzZ is

optional.

2. If ZabeZ is supplied, it

must be the program name,
i.e. the £abcZ on the

opening statement of the
program block.

i i i

Example :

, TEST: PROGRAM;

: I body of program goes in here

. CLOSE TEST;
!

3,2 POSITIONOFDATADECLARATIONS

),
Normal HAL/S programs require the use of data. The names used

to identify this data must be declared before use by the means
of data declaration statements. Data declarations (and,
additionally, certain other kinds of statements) must be

placed after the program opening statement and before the
first executable statement.

3-2

("" 'J ' vl _ml _ ,)61IL_4()INTERMETRICS INCORPORATED' 701 CONCORD AVENUE • CAMBRI[)(IE I'._A...... *H;_i 11'_ •

4
I

1975006407-036

Example :

' TEST: PROGRAM;
I

i "-I l---edata declaration statementsII

!

i l--eexecutable statements!

: CLOSE TEST;

3,3 FLOWOFEXECUTIONINTHEPROGRAM

The program begins execution at the first executable state-
ment after the data declarations, and thereafter follows a

path determined by the kinds of executable statements encountered.

Unless statement groups, or branching or conditional statements
intervene, execution is sequential*. Finally, the path either

reaches a statement terminating execution of the program, or
reaches the closing statement of the program block, which has
the same effect.

As described in Section i, procedure and function definition

, . blocks may be interspersed between the statements in a program

block. The only way of executing such blocks is by explicit
invocation: if they are encountered in the path of execution

they are passed ovec as if non-existent.

* This order is called the "natural order" of execution.

• °

.. 3-3

INTERMETRICSINCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE MA,(_SAt'.IitJSFTfS cC1',_ff. (el/, _61 1840

1975006407-037

: Example:

' TEST:])ROCRAM;

: ' data

_ declaration

o :statements
!

I

!

' 1
_table

• statements
ooQoo

I •

: • inition

path of _OOOO0 J block

execution _ .._y

",and returned
from

3,4 SUGARY

Section 3 has described the opening and closing of a program

block, has shown where data declarations are placed in it, and

has explained the path of execution f_llowed through a program
block. The following chapters of Part I will begin to fill

in the details of the possible contents of the block. Section 4
describes how data is declared and referenced. It begins to

build on the fundamental information given in Section 2.

3-4

INTERMETRICSINCORPORATED" 701 CONCORD AVENUE •CAMBRrDGE MASSACHLISETTS 02138. _ ?_ 661-1840

1975006407-038

' 1 ' I

-- 4, DATADECLARATION

Programming largely consists of the manipulation of numerical
data. The diversity of the data typeJ in a language determines
its utility for any required task. HAL/S contains an exceptionally
diverse set of data types.

Identifiers of the kind described in Section 2 are lsed to name

items of data. Identifier names used to represent data items
must* be defined in data declarations appearing in the appropriate
program, prodcedure or function block. The effect of placing
data in different blocks is described in Section 1. The position
of data declarations within a program block is described in
Section 3.

This Section now proceeds to describe the detailed construction
of data declarations.

4.1 HAL/SDATATYPES

In the HAL/S language, arithmetic data of the following types
can be declared:

• INTEGER for the representation of integer-valued quantities;

• SCALAR for the repreEentation of "floating-point" quantities;r •

• VECTOR for the representation of algebraic row or column 0
vectors (without distinction), and each element of which is
a scalar quantity_

• MATRIX for the reprebentation of algebraic matrices, and each
element of which is a scalar quantity.

, i • i •

J The HAL/S language prohibits the use of implicitly declared
-- data items considering it to be an undesirable programming

practice.

.. 4-1

INTERMETRICSINCORPORAT[:.:D• 701CONCORDAVENUE • CAME_RIDGE,MASSACHUSETTS02',38 • (617) 661-1840

1975006407-039

I

These arithmetic data types may De specified in either single

or double precision. In the case of integer, the precision

determines the maximum absolute value the identifier may take
on. In all other cases, it determines the number of signifi-

cant digits in the mantissa of the value.

In addition, HAL/S also possesses the following data types:

• CHARACTER for the representation of strings of text;

• BOOLEAN for the representation of binary-valued (logical)

quantities.

It is possible to declare arrays (or tables) of any of the six

above types.

HAL/S in fact allows more

data types than just those
described here. It also

allows hierarchical organ-

izations of data-types
called "structures".

See: (tbd)

4.2 SIMPLEDECLARATIONSTATEMENTS

Data declaration statements define identifiers used to name data.

The simplest forms of declaration statement for each data type
listed above are examined on the following pages.

!

4-2

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02.138 • t617) 661-1840 . i

I

1975006407-040

I T T

INTEGER

I
, DECLARE nomz INTEGER;
, DECLARE n_me INTEGER SINGLE;
i DECLARE num£ INTECER DOUBLE;
i

I. In each of the forms name is any legal
HAL/S identifier.

2. Presence of the keyword SINGLE specifies
single precision.

3. Presence of the keyword DOUBLE specifies
double precision.

4. Absence of eithrr keyword implies default
of single precis on.

F, r the integer data type, single precision usual'j implies
halfword and double precision fullword, depending on the
implementation*.

Examples:
I
i DECLARE II INTEGER:
I DECLARE BIG I INTEGER DOUBLE:

i I

• . , | • | = ii i

* See Appendix .

4-3

INTERMETRICS iNCORPORATED • 70, CO,".'CORD AVENUE • CAMBRIDGE MASSACHUSF_ITS 02138 • 1617_ 661-1840

1975006407-041

I

I

SCALAR

DECLARE name SCALAR;

DECLARE name SCALAR SINGLE;
I

; DECLARE name SCA.T_R DOUBLE;
I

I. In each of the forms, name is any

legal identifier.

2. Presence of the keyword SINGLE specifies

single precision.

3. Presence of the keyword DOUBLE specifies

double precision.

4. Absence of either keyword implies a de-
fault of single precision.

5. The keyword SCALAR may be omitted.

Double precision usually implies increased range of exponent

and increased number of digits in the mantissa, but it is
implementation dependent*.

Examples:
I

: DECLARE Sl;

DECLARE $2 SCALAR;
: DECLARE $3 SCALAR DOUBLE;

I

i ! ° •

* See Appendix .

i
4-4

,NTERMETR,CS_NCORPORATED.70_CONCORDAVENUE•CAMBRIDGE,MASSACHUSETTS0_3a. (6_7166_-_S40_] _./

I

1975006407-042

:i MATRIX
[

'DECLARE ham{ MATRIX (re,n);

•DECLARE name MATRIX (re,n) SINGLE;

DECLARE name MATRIX (m, n) DOUBLE;

i. In each form name is any legal identifier.

2. Keywords SINGLE and DOUBLE have the same

significance as for scalar and vector types.

3. m and n denote respectively the number of

rows and columns in the matrix. They must

lie in the range 1 < m, n ,< 64*.

4. If the size specification (m,n) is absent,
a 3x3 matrix is assumed.

Examples:

. DECLARE M1 MATRIX(2,4);!

DECLARE M2 MATRIX (4,5) DOUBLE ;
' DECLARE M3 MATRIX;

/

a 3x3 matrix

I

4 .

m

" " * This value may be implementation dependent. See Appendix

for exceptions.

"" 4-5

. INTERMETRICS INCORPORATED • 701 CONCCRD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (61/) 661-1840 :i

1975006407-043

VECTOR

:,DECLARE nam£ VECTOR (n) ;

' DECLARE numz VECTOR (n) SINGLE;|

, DECU_E _o. VECTOR(n) DOUBLE;
i

i. In each form nm_z is any legal
identifier.

2. Keywords SINGLE and DOUBLE have the

same significance as for scalar type.

3. n specifies the length of the vector

and must lie in the range 1 < n Z 64*.

4. If the length specification (n) is

omitted a length of 3 is assumed.

\

Examples :

DECLARE V1 VECTOR(10) ;I

,DECLARE V2 VECTOR(3) DOUBLE;

'DECLARE V3 VECTOR;

a 3-vector

* This value may be implementation dependent. See Appendix
for exceptions.

!

4-6

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE . CAMBRIDGE MASSACHUSETTS 02138 • (617) 661-1840 ji \

1975006407-044

CHARACTER
I

,DECLARE name CHARACTER (n) ;
e
e

I

i. name is any legal identifier.

2. n specifies the maximum length of the text

string that the data type may carry. (i.e.
the maximum number of characters). It must

lie in the range of 1 $ n _ 255*.

3. The actual length of the string of text

carried may vary during execution between
zero (a "null" string) and the maximum n.

Example :
i

,DECLARE Cl CHARACTER(80) ;
I

I

BOOLEAN

DECLARE name BOOLEAN;
• I
I

1. name is any legal identifier.

Example:

!DECLARE B1 BOOLEAN;

* This value may be implementation dependent. See Appendix

• " 4-7

,! INTERMETRICS INCORPORATED • 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTL_02138 • (617) 661-1840 _,

1975006407-045

* I

ARRAYS

In any of the above declarations, regardless of data type,

the part of the declaration between the name and the

terminating semicolon which establishes the type (and
possibly precision and size) constitutes the "attributes"
of the declaration.

To declare an array of any data type an ARRAY specification
is inserted between the name and the attributes:

DECLARE aame ARRAY(n) atZ, uibu,t_ ;

i. _5_t_ stands for any legal form of
attributes for any data type described.

2. n denotes the number of elements in the array
(i.e. entries in the table) and must lie in

the range 1 < n _ 32768*.

Example s:
t

: D_.CIuKRE AS1 ARRAY(500) SCALAR;

: DECLARE AM1 ARRAY(20) MATRIX(4,4) ;

i
I

* This value may be machine dependent. See Appendix _
for exceptions.) !

4-8

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

1975006407-046

COMPOUNDDECLARA,lOt's

If a program contains declarations of many data items it is
tedious to repeat the keyword DECLARE in every declaration.

Many separate declarations may be condensed into one compound
declaration as shown below.

Example :

i

j DECLARE S;
DECLARE I INTEGER DOUBLE;
DECLARE M3 MATRIX;

I DECLARE M6 MATRIX (6,6) ; separate declarations
i DECLARE B BOOLEAN;

i DECLARE C ARRAY (5) CHARACTER(20) ;

I DECLARE V ARRAY (3) VECTOR;
i

I

j DECLARE S,
INTEGER DOUBLE,

I

I M3 MATRIX,

I M6 MATRIX(6,6), equivalent compound

B BOOLEAN, declaration

I C ARRAY(5) CHARACTER(20),V ARRAY(3) VECTOR;
I

Note the commas separating the declaration of each data item.

If the identifiers in a compound
declaration have some attributes

in commo_ a third,even more

compact, form of declaration
called a factored declaration
can be used.

See: (tbd)

4-9

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138. (617) 661-1840

J

I

1975006407-047

4,3 INITIALIZATIONOFDATA

A HAL/S data item of any type may be initialized by incorporating
an INITIAL specification into its declaration statement. The

form of such a specification differs depending on whether the
data item is "uni-valued" or "multi-valued".

• UNI-VALUED data items are those having only one element:

unarrayed scalars, booleans, and characters.

• MULTI-VALUED data items are those having more than one

element: unarrayed vectors and matrices, and arrayed

data items of any type.

In either case, the INITIAL specification is placed after the typo,

precision, and size attributes of a declaration. This positioning
will become apparent in the examples to follo..

UNI-VALUEDDATAITEMS

The two variations of the form of INITIAL specification for
uni-valued data items are:

INITIAL (v_e)

CONSTANT (u_ue)

i. The two forms have the same effect in

that the data item is initialized to

the literal indicated by v_ue .

2. The form using the keyword CONSTANT is

required.only if the user wishes not
to change the initial value during--
execution*.

#

3. The type of the literal _e must
be compatible with the type of the data

item as determined from the following
table:

data tvDe literal value

CHARACTER character string
BOOLEAN boolean

INTEGZR tSCALAR arithmetic

* In many respects a data item initialized this way is akin to
a literal.

4-i0

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE . CAMBRIDGE MASSACHUSETTS 02138. (617) 661-1840 " _ •

1975006407-048

' Examples:

I
IDECLARE A SCALAR INITIAL (3),

B SCALAR CONSTANT (4.5E-3) ,
I C CHARACTER(80) INITIAL('YES'),

D BOOLEAN INITIAL(TRUE);

i Note: initial working length of C becomes 3.

MULTI-VALUEDDATAITEMS

There are two corresponding variations of the INITIAL specification
for multi-valued data items:

INITIAL(u0/ael,, u_e 2)

CONSTANT(u_Zae _ , ua2/_e2'I ..eo.)

i. The meaning of the keyword CONSTANT is
the same as for uni-valued data items.

2. The type of each literal ua2/_e must be

compatible with the type of the data item,

as determined from the following table.

data t_pe literal value

CHARACTER character string
-- BOOLEAN boolean

INTEGER I 'SCALAR

VECTOR 1 arithmetic.MATRIX

3. The number of literals in the list must

equal the total number of elements implied
by the data declaration.

Note that if all the elements of a multi-valued data item are to
be initialize_--to the same value then the form used for uni-valued

data items may be used.

• w

" " 4-II

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (6171 661-1840,,imim

1975006407-049

Examples :

IDECLARE V VECTOR INITIAL(I,2,3.5)#

, S ARRAY(2) CONSTANT(I,0),
t T ARRAY(2) VECTOR(2) INITIAL(4.7,-5.3,0,0) ;
!

iDECLARE V VECTOR INITIAL(0),
! S ARRAY(100) INTEGER INITIAL(256) ;

a ll_elements of these data

items are identically
initialized.

ORDEROF INITIALIZATION

To complete the specification of initialization the order of
initialization of the elements of multi-valued data items

needs to be defined.

The following ordering rules, though applied here to the

initialization of multi-valued data items, holds true when-

ever the ordering of elements is called into question.

• VECTOR data items are initialized in order of increasing
index.

• MATRIX data items are initialized row by row in order of
increasing index.

• ARRAY data items are iz,itialized array element by array element

in order of increasing index. Where the array element are
themselves multi-valued, each array element in turn is

initialized completely according to the previous rules before
going on to the next.

Example :

DECLARE M ARRAY(2) MATRIX(2,2) INITIAL(I,2,3,4,5,6,7,8);

if M 1 is the first array element, and M 2 is the second, then:

4-12

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • /617) 661-1840

t

1975006407-050

!

I

_R

Additional more compact initialization

,. forms are ,available if only partial

initialization is required, or if
*- subsets of the initial values are

identical. See : (tbd)
w

"" 4.4 SUMMARY

Section 4 has dealt with how data is declared in HAL/S

compilations, and how it initialized. The next logical

step is to begin to discover how it may be used. However,
this is put off until Section 6. Section 5 deals with a

useful HAL/S construct which allows the user to replace

frequently-repeated HAL/S expressions by defining and

substituting a symbolic name.

Study of Section 5 can be omitted without detriment to the

understanding of the remainder of Part I of the Guide.

_ 4-13

TT

! i INTERMETRICS INCORPORATED .701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138 . (6171 661-1840 "_

1975006407-051

T

5, REPLACESTATEMENTS

When it is necessary to repeat a particular HAL/S construct

exactly many times during a program, the user can avoid the

tedious process of laboriously writing it at longth each time
by defining a symbolic name to represent the construct, and

then replacing the construct with the symbolic name.

This kind of substitution can be of advantage in several

ways. For instance, the value of a literal recurring many times
can be easily changed between successive compilations. The user

need only define a symbolic name to represent the literal, then

replace the one with the other. Only one line of the program
needs to be recoded as opposed to the many lines that would

need recoding if the user had to find and change the literal
each tlme it occurred.

The definition and substituti,.n of the symbolic name is
accomplished by a REPLACE statement.

5,1 THEREPLACESTATEMENT

The REPLACE statement is placed together with the data

declarations of the program, procedure, or func£ion block in
which it is to be used. It takes the form:

I
" i REPLACE nam¢ BY "XXXXXXXXXXX" ;

I. XXXXXXX represents the HAL/S source text which
it is desired to substitute. The text is de-

limited by double quote marks, and must be

written in single lane format.
2. num¢ is the symbolic name chosen to repre-

sent the text. It may be any legal identifier
name.

_ 3. XXXXXXX may be any legal source text of arbi-
_a tEary length. Imbedded double quote marks

_ must be represented as a _ of double quote
. . _ marks to avoid confusion wlrn the delimiters.

4. The text mus_ not begin or end in the middle
L _

of a reserved word, identifier, literal, or

.. imbedded comment.
i i| i _ i

5-1
o .

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE •CAMBRIDGE MASSACHUSETTS 02138. (617_661-1840

1975006407-052

Examples :

. REPLACE OUTPUT B'£ "WRITE (6)";
' REPLACE INCREMENT BY "X=X+I;";
i

#

5,2 USINGREPLACESTATEMENTS

The following examples show the way in which the symbol
substitution defined by the REPLACE statement is used.

Examples:
#

' REPLACE DV BY "VECTOR DOUBLE INITIAL(0)";
#

, DECLARE VECI DV,

I VEC2 DV,
, VEC3 DV_
i

!

- by expansion of DV it is evident that

VECI, VEC2, VEC3 are all double precision
vectors initialized to zero.

|

, REPLACE N BY "4";

' DECI2_RE V1 VECTOR(N),

M1 MATRIX (N,N) ,
!

, M2 MA'_ IX(2,N);

- this shows the utility of the REPLACE

statement in making it easy to change the
sizes o_ several vectors and matrices

simultaneously.

I

REPLACE X BY "VECTOR (2) ";
, REPLACE Y BY "ARRAY (5) X" ;

' - this is an example of nested sub-

stitutions. The expansion of Y is
ASRAY (5) VECTOR (2).

' REPLACE X BY "REPLACE Y BY""Z"""_!

, X|

, DECLARE Y SCALAR;
%

- although this is a legal use of REPLACE statements, it

does not lend itself to clarity. The sequence of state-

men,s culminates in Z being declared as a scalar data
item.

5-2

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSAC_- SETTS 02138 • (6t7_ 661-1840 j

I

1975006407-053

I ! !

A REPLACE statement takes effect only after it appears°
It does not modify the entire block, only that section that

follows its appearance.

Example:
I

I DECLARE V1 VECTOR(N)
i REPLACE N BY "4 ";

I DECLARE V2 VECTOR(N);

o:
Q

- the REPLACE statement will only be

effective starting with the second
declaration statement. N is un-

known in the first declaration and

compilation would detect the error.

Care must be taken in usinq REPLACE statements because

the ways in which they are affected by the block structure

of the HAL/S program in which they appear are not always
obvious.

Example :

i Sl

REPLACE X BY "Y"_ ,_e Program

,_eProcedure block
DECLARE X SCALAR_ _"

- the user must remember

that the X of the local
declaration inside the

procedure block is still

• " subject to the REPLACE

statement at the program
• " level.
• i

I " °

I -- 5-3

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

i,i

1975006407-054

The only case in which a REPLACE statement in an outer block
becomes ineffectzve in an inner block is when the inner block

has a REPLACE statement in it with the same name

Example:

|
il i

..................................,_ Program,_P_cExBY"Y";_'__/"

]'-'_CE' X BY "z" ,- _._'/._eProcedure block

" •_-.hProcedure block

/
J

_% ° "" 0
. : .,, region where X is

.... "._ ._ ,_ " .._ replaced by Y

region where X is

replaced by Z

J,

P_.pla_ statements may also
possess parameters, turning

then into a sophisticated
macro expansion facility.
See = (tbd).

mm i

5-4

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 0?t3d . (617) 66t-1840 t
i

t

r-

1975006407-055

i

5,3 SUMMARY

Section 5 has dealt with a mechanism for symbolic replacement
of HAL/S source text. Section 6 begins to examine the way in
which executable statements are constructed by describing how
data is referenced.

i i 5-5

! i _ INTERMETRICSINCORPORATED.701CONCORDAVENUE• CAMBRIDGE,MASSACHUSETTS02138 • (617) 661-1840

1975006407-056

6, DATAREFERENCINGANDSUBSCRIPTING

Any appearance of the name of a previously-declared data item
in an executable statement constitutes a reference to its value

(and possibly causes a change in its value)*. Sometimes it is

necessary to be able to reference elements of vectors, :matrices,
and arrays, and also to reference parts of character strings.

HAL/S has a wide range of subscript forms designed for this
purpose.

Two kinds of subscripting are relevant to the data types
described in Section 4.

• COMPONENT SUBSCRIPTING allows the user to select elements

or subsets of elements from vectors and matrices, and to

select substrings from character data items.

• ARRAY SUBSCRIPTING allows the user to select elements or

subsets of elements from arrays of any data type.

Depending on the nature of a particular data item, either or

both kinds of subscripting may be affixed to it.

6,1 SUBSCRIPTSOFUNARRAYEDDATATYPES

, Unarrayed data types, i.e. those whose declarations contain no

array specification, may at most possess only component subscript-

ing. Unarrayed data items of integer, scalar, and Boolean

types may not possess any subscripting. Allowable subscripts
for the remaining types, - character, vector, and matrix - are
now each described in turn.

* This Section, for convenience, includes appearance causing

change in value under the term "reference", even though

this is not the most usual meaning of the term.

6-1

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

1975006407-057

CHARACTER

In a character data item, character positions are indexed left

to right starting from I. In the subscript forms given below,

STRING represents an unarrayed data item of character type with
current working length L.*

• To select the uth character from STRING:

STRING

i. u is an integer expression in

the range 1 _ _ _ L.

• To select e characters from STRING, starting from the
8th:

STRING
AT 8

i. _ and 8 are integer expressions.

2. 8 is in the range i < 8 _ L.

3. _ is in the range 0 _ a $ L - 8 + i.

* In the case where reference of a subscripted character data

type causes a change in its value (e.g. on the left hand side
of an assignment), somewhat different interpretations of the

subscript forms hold true. An account of these is given in !
Section 8.3. !

|

6-2

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 - i

• i

1975006407-058

• To select a substring starting with the eth character
of STRING, and ending with the Bth:

STRING
TO 6

I. _ and 8 are integer expressions in

the range 1 .< e, 8 _< L.

2. _ _>e.

%

Examples:

if the value of C is 'ABCDEF' then:

C5 is 'E'

C2 AT 2 is 'BC'

C4 TO 6 is 'DEF'

VECTOR

Elements of a vector are indexed starting from i. In

the following subscript forms, VEC represents an unarrayed
vector data item of length L.

• To select the eth element from VEC:

VEC

i. e is an integer expression in the

range 1 _ _ _ L.

2. The resulting data type is scalar.

6-3

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138. _6171661 1840

1975006407-059

• TO select an _-vector partition starting from the 6th
element of VEC:

VEC
_ AT 6

I. _ is an integer literal value in

the range 2 _ 6 _ L.

2. 6 is an integer expression in the
range 1 _ B 6 L - e + I.

• To select a partition starting from the eth element of

VEC and ending with the 8th.

VEC
_ TO 6

i. e and 6 are integer literal values
in the range 1 _ _, 6 { L.

2. 8 > _.

Examples :

if V = [. _] then:

9.3]31

[2.7]

V 1 = 4.5 (scalar)

V 3 TO 4 = I_.ll (2-vector)

6-4

INTERMETRICS INCORPORATED. 101 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138. (617) 661 1840

1975006407-060

MATRIX

Rows and columns of a matrix are indexed starting from i.

Any matrix subscript must consist of a row subscript followed

by a column subscript. In the following subscript forms, MAT

represents an unarrayed M x N matrix data item.

• To select the element of MAT common to the eth row and

6th column:

i. a, 6 are integer expressions.

2. a is in the range 1 _ a _ M,

and 8 is in the range 1 $ 6 _ N.

3. The resultant data type is SCALAR.

• To select the ath row of MAT:

MAT

i. a is an integer expression in the

range 1 _< _ _< M.

2. The resultant data is N-vector.

3. If the asterisk is replaced by a

TO- or AT- subscript under the

rules given for vector data types l

a vector partition from the et"

row may be selected.

6-5

,, INTERMETRICS INCORPORATED. 701 CONCORD AVENUE . CAMBRIDGE MASS,,X(,F,LJSFTIS(_,o138. _61,', 661-1840

1975006407-061

• To select the 6th column of MAT:

i. _ is an integer expression in the

range 1 _< B -< N.

2. The resultant data type is M-VECTOR.

3. If the asterisk is replaced by a

TO- or AT- partition under the

rules given for vector data types,

a vector partition from the _th
column may be selected.

• To select a e x y matrix Eartition starting from the
8th row and 6th column of MAT:

MAT
r_AT 8, _ AT 6

i. e, y are integer literal values in

ranges 2 < _ % M, 2 _ 7 4 N

respectively.

2. 8,y are integer expression in

ranges 1 _ _ < M - _ + i,
1% 6 4 N - 7 + 1 respectively.

3. Either or both the AT- subscripts

may be replaced by TO- subscripts

under rules already given by vector

and matrix types.

4. Either of the AT- subscripts may in

addition be replaced by an asterisk
if all M rows or all N columns are

to be included in the partition.

6-6

INTERMETRIr" • INCORPORATED.701 CONCORD AVENUE • CAMBRIDGE MAqSA(;HtISEIT5 (k'1'_8 • ,617, 661 1840

1975006407-062

Examples :

if S =_.l 1.2 l.il then:.i 2.2 2..i 3.2 3

M 2, 3= 2.3 (scalar)

M2, 2 TO 3 = [_.2J (2-vector)

M., 2 AT 1 = [!i lll 2.21"213.2 (3x2 matrix)

M1 TO 2, 1 TO 2 = [i.ii 1._]2. (2x2 matrix)

- 6-7

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE MASSACHL" "S c)2138 • _6_7, 661 1840
o6

I

1975006407-063

6,2 SUBSCRIPTSOF ARRAYEDDATATYPES

Arrayed data types, i.e. those whose declarations contain

an array specification, ,nay possess array subscripting.
If the data types are vector, matrix, or character, then

they may, in addition, possess component subscripting.

ARRAYSUBSCRIPTINGONLY

Arrays are indexed starting from i. In the array subscript
forms given below, TABLE represents an array of length L

of any data type.

• To select the eth array element from TABLE:

TABLE

i. _ is an integer expression in the
range 1 _ _ _ L.

2. The colon is optional if the data
type of TABLE is integer or scalar.

• To select a sub-array of length _ starting from the _th
array element of TABLE:

TABLE
AT 6:

i. _ is an integer literal value in the
range 1 _ s _ L.

2. 8 is an integer expression in the

range 1 $ B Z L - _ + i.

3. The colon is optional if the data
type of TABLE is integer or scalar.

6-8

INTERMETRICStNCORPORATED. 701 CONCORD AVENUE . C._MBRIDGF f'.'_ASS/,,(>tUSETTSr)21"_8. ,_,_'_ 661 1R40

I

1975006407-064

• TO select a sub-array starting from the _th array

element of TABLE and ending with the Z th.

TABLE
TO 8:

i. _, 6 are integer literal values

in the range 1 _ _, 6 _ L.

2. _ _ _.

3. The colon is o_tional if the data
type of TABLE is integer or scalar.

Examples:

if T is a 4-array of booleans with values
(TRUE,FALSE,TRUE,TRUE) then:

T2: is FALSE (unarrayed)

T3 TO 4: is (TRUE,TRUE) (still arrayed)

if T is a 4-array of integers with values
(1,2,3,4) then:

T2 is 2 (unarrayed) i optional colon :

T3 TO 4 is (3,4) (still arrayed) _ omitted

if C is a 3-array of characters, with values
('YES','NO' 'MAYBE') then:

CI: is 'YES' (selects first array element)

is ('NO' 'MAYBE') (still arrayed)C2 TO 3:

6-9

INTERMETRICS INCORPORATED. 701 CONCORDAVFNUE • CAMBRIDGE MASSACHUSETTS 02138. t617) 661 1840

t

1975006407-065

ARRAYANDCOMPONENTSUBSCRIPTING

If TABLE represents an array of vector, matrix, or character

data type, then the following rule shows how array and
component subscripting are juxtaposed.

TABLE

a_ay:compunen_

i. a2_ray represents array sub-

scripting of any of the forms
previously described.

2. component represents any form
of component subscripting legal

for the data type of TABLE, as
described in Section 6.1.

The purpose of the colon now becomes clear: it is required
to distinguish and separate array and component subscripting.

Examples:

if C is a 3-array of characters, with values
'NO' 'MAYBE') then:('YES',

C3:3 is 'Y' (selects 3rd character from third '
array element)

if M is a 2-array of 2x2 matrices with values

(I _ _[, I_ _[) then:

= 8 (element in 2nd row, 2nd column
M2:2,2

of second array element)

6-I0

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • fiAMRRIDGE MA.SSA(.f_USFITS :)'1_8. ,,_ ' h61 '840

1975006407-066

AppareDtly, the colon should be

opticnal on Boolean data types
also. It is not because the

Boolean data type is a degener-
ate case of a bit strlng data

type which may possess com-
ponent subscripting.
See: (tbd).

COMPONENTSUBSCRIPTINGONLY

When an arrayed data item of vector, matrix or character

type is required to be given only component subscripting,

array subscripting cannot be totally omitted. Rather, it
must be replaced by an aster'{sk. Let TABLE represent such

a data item; the subscripting form is then required to be:

TABLE
*:compo_z,_

1. componenl represents any form
of component subscripting legal for

the data type of TABLE, as described
in Section 6.1.

Examples :

if C is a 3-array of characters with values
('YES' ,'NO','MAYBE') then:

C,: I is ('Y','N','M') (makes 3-array from first character
of each item)

if M is a 2-array of 2x2 matrices with values

(I_ _I ' 15 61) then:

M = (1,5) (2-array of scalars). .- *:I,I

. . 6-1I

INTERMETRICS INCORPORATED" 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSE[TS 02138 • (617j 661 1840

I

1975006407-067

HAL/S allows more general forms of

subscript expressions than just
those stated in Sectlon 6. In

addition, a symbollc form of

reference to the last array or

other element of a data type is

allowed. Even more complex

forms of subscripts apply to parts

of tree organlzatlons of data

('structures').

See: (tbd)

6,3 SUMMARY

This section has comprehensively described the forms of

subscripting available in HAL/S. At this point In the Guide,

sufficient information has been given to allow the user to be

able to reference different kinds of data. Section 7 shows

how operations may be performed on the data so referenced.

6-12

INTERMETRICS INCCRPORATED- 7ui CONCOPP AVENUE * CAMBRIDGE MASSA(gH_JSETTS 021 _8. _61,', 661:840

1975006407-068

7, EXPRESSIONS

Section 6 dealt with the referencing of declared data items.

At this point it is appropriate t_ describe how the values of
these data items can be manipulated. In HAL/S the construct

which specifies operations on data items is called an

'iexpression"*. In many cases it is very close in form to

the generally accepted notion of a mathematical expression.

Generally, expressions consist of sequences of operations,

possibly parenthesized in places to override the precedence
rules of HAL/S. Each operation is comprised of one or two

operands and an operator. The very simplest form of expres-

sion is one in which theze are no operations and j :_t one

operand. An operand may be a data item, possibly subscripted,
or a built-in function, or an explicit conversion function.

This section begins by describing the legal HAL/S operations,

and then continues to show how they are combiDed into
expressions.

Previous sections of the Guide have divided data items and

literals into tllree broad classes: arithmetic, character,

and Boolean. It is convenient to divide the operations to

be described into the same three classes. The type o_f an
expression is the type of the value resulting from _ts
execution, and may, in general, be different from the types
of some of its operands.

7,1 ARITHMETICOPERATIONS

Arithmetic operations are the most numerous of all operations

in the HAL/S langcage. They comprise operations on vector,

matrix, integer, and scalar data types. HAI/S recognizes

the following operations:

* ?he storing of the result of a HAL/S expression into a

" - data item is performed by an ASSIGNMENT statement, of
which the expression forms a part.

7-1

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE MAbSACHUSFTTS (32138. (617) 661-1840

1975006407-069

Symbol Purpose

** exponentiation, inversion,

transposition

(blank) multiplication

* vector cross product

. vector dot product

/ division

+ addition

- subtraction, negation

NEGATION
Negation is a binary operation applicable to any arithmetic
data type :

Symbolic form: - R

i. The legal data types for R are given
by the following table:

MATRIX
VECTOR

SCALAR

INTEGER

2. Negation of vector and matrix types

implies element-by-element negation.

Examples :

if I is an integer and I _ 5

then -I -_ -5

l-l.sl
if V is a 3-vector and V -- | 4.21

t 5.1]

[!i!]
"/-2

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138. (617) 661 1840

i

1975006407-070

ADDITIONANDSUBTRACTION

Addition and subtraction can only take place between compatible
arithmetic data types:

Symbolic form: L ± R

I. The legal combinations of data types
are indicated by the following table:

-type _ R -type

' MATRIX _ MATRIX

VECTOR I VECTOR

SCALAR _ | SCALAR
INTEGER _ _ INTEGER

2. Operations on matrix and vector operands
imply element-by-element addition and
subtraction.

3. The operands in a matrix addition or
subtraction must have the same row and
column dimens_-6-ns.

4. The operands in a vector addition or

subtraction must have the same lengths.

5. In a mixed _nteger-scalar operation, the

result is scalar. The integer operand is
first converted to single precision °
scalar.

i

7-3

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

1975006407-071

Example s :

If I is integer with I _= 5

S is scalar with S _---4.2

then

I + 1 = 6 (integer result)

I + 0.5 _ 5.5 (scalar result)

S + 1 _ -3.2 (scalar result)

I - S - 9.2 (scalar result)

if Vl is a 3-vector with Vl -- [-!. !]_

V2 is a 4-vector with V2 _ I-0"i]20L1

then the operation Vl + V2 is illegal because the lengths of
Vl, V2 do not match;

but

V1- V2 1 TO 3 _ [-l.i] is legal because subscripting
-2. of the R operand has produced
i. a 3-vector.

Using S, V1 above,

S + V1 is illegal because the types are incompatible;

but S + V1 3 _ -1.0 is legal and has a scalar result because
subscripting has changed the R operand to

scalar type.

7-4

INTERMETRICS INCORPORATED ' 701 CONCORD AVENUE .CAMBRIDGE MASSACHUSETTS 02138. (617/ 661-1840

1975006407-072

if M1 is a 3 x 2 matrix with M1 { Ii'0-5 -i.0001

M2 is a 2 x 2 matrix with M2 |0.5 -0.5_
li0 i0 I

then M1 - M2 is illegal because the row dimensions of the

operands do not match;

but, M12 AT i,, - M2 _I _i 50"51 is legal because the- 5 -20 number of rows in the

i operand have been

reduced to 2 by sub-
scri-ting.

DIVISION

In division, the dividend may be any data type, but the divisor
must either be integer or scalar.

Symbolic form: L /R

i. The legal combinations of data types are

given by the following table:

L -type R -type

MATRIX t

VECTOR { SCALAIISCALAR _ INTEGER
INTEGER !

2. If the dividend is of matrix or vector

type, element-by-element division by the
Roperand is implied.

3. If either or both operands are of integer
type, they are first converted to scalar

type.

7-5

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138. (617) 661-1840

1975006407-073

Examp ie s:

1/2 _ 0.5 (both integer operands converted to scalar)

if V is a 3-vector with V [!iil

then V/2 5 [!ii]

if M is a 2 x 2 matrix with M _ Ii.0 -0.51
102 0.6 J

S is a scalar with S _ 0.5

then S/M is illegal since the R operand may not be of matrix

type,

but M/S _ 12"0-i'0104 1 2

DOTPRODUCT

The HAL/S dot product operation corresponds to the mathematical

dot or inner product of two vectors. In mathematical notation:

s = <u, v> or s = uTv

where u, v are column vectors and T denotes the transpose.

Note that HAL/S does not require the user to distinguish between
row and column vectors because the position of the operand in the

operation is sufficient in itself to allow it to be interpreted
as one or the other.

Symbolic form: L . R

i. The operands of the dot product must _e
as shown:

k-type _ R-type

VECTOR I VECTOR

2. The lengths of each operand must be
the same.

3. The result is of scalar type.

7-6

INTERMETRICS INCORPOR#TED. 701 CONCORD AVENUE • CAMBRIDGF MASSACHUSFTrS 02138. (617/ 661-1840

1975006407-074

Example :

If W is a 3-vector with V = [_'!]0

then V.V = 1.5

CROSSPRODUCT

The HAL/S cross pro4uct operation corresponds to the mathematical

vector cross product in 3-dimensional Euclidean space:

if w is perpendicular to u, v

8_ as shown,

"_ and lwl = lul Ivlsin 0
then w = u × v

Symbolic form: [, R

i. The type of the operands must be vector:

t -type .] R -type

VECTOR I VECTOR

" _ 2. Both operands must be of length 3.
a

3. The result is a 3-vector.

Example :

if V1 is a 3-vector with Ul _ I!.51
Lu J

V2 is a 3-vector with V2 - [!].5

-- "/-7

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138. 1617) 661 1840

i

1975006407-075

MULTIPLICATION

The HAL/S language has no explicit s_mbol for multiplication:
the adjacency of two operands signifies this operation. Multi-

plication can take place with arithmetic operands of any type:

• If operand types are either integer or scalar, multiplication

in the regular arithmetic sense is implied; ...CASE Q

Q if one operand is integer or scalar, and the other vector or

matrix, then element-by-element multiplication is implied;

...CASZ Q

• if both operands are vectors then the outer product is implied,

the result being a matrix; ...CASE

• if both operanas are matrices, the matrix product is implied;

...CASE _

• if one operand is a matrix, and the oBner a vector, then

a vector-matrix product is implied, the result being a
vector CASE [5)

The symbolic form for multiplication is as shown:

Symbolic form: L R

i. At least one blank character must

separate the i and R operands.
a

The additional rules applicable to each of the cases described above
are now listed in turn.

7-8

INTERMETRICS INCORPORATED.701 CONCORD AVENUE . CAMBRIDGE MASSACHUSETTS 02138 . (617) 661-1840

1975006407-076

CASE Q

2. The operand types are:

_-type J _ -type

INTEGER_I I INTEGER
SCALAR y11 SCALAR

3. If both operands are integer, the

result is integer, otherwise it is
scalar.

4. If one operand is integer, then it

it first converted to single precision
scalar.

Example:

If I is integer with I _ 10

then 1.5E-2 I _ 0.15 (scalar result)

CASE Q

2. The operand types are:

i -type R -type
t

INTEGER_ {VECTORSCALAR ! MATRIX

VECTOR I IINTEGERMATR IX SCALAR

3. Element-by-element multiplication

of the vector or matrix is implied.

4. If an operand is of integer type, it

it first converted to single precision
scalar.

7-9

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE ' CAMBRIDGE MASSACHUSETTS 02_38. (617, 661 1840t

i

1975006407-077

Examples :

if S is scalar with S __ 1.5

M is a 2 x 2 matrix with M -_I_- .i 014031

then S M -[0 0.4__!- .15 0.6

and M S _[0 0._5]-0.15 0.

CASE Q

2. The operand types are:

[-type j F-type

VECTOR I VECTOR

3. If the [-operand is of length m,

and the R operand is of length n,
the result is an m x n matrix.

Example s :
g

If V1 is a 3-vector with Wl _ [I.00] m

0

V2 is a 2-vector with V2 - [0"510

7-10

INTERMETPCSINCORPORATED.701 CONCORD AVENUE .CAMBRIDGE MASSACHUSETTS 02138. (617) 6611840

1975006407-078

L

!

I

CASE Q

2. The operand types are:

L-type i R-tYP e

MATRIX I MATRIX

3. The number of culumns in the

L operand must equal the number of

rows in the R operand.

4. If the L operand is an m x n matrix

and the R operand is an n x p matrix,
the result is an m x p matrix.

Examples :

If M1 is a 2 x 3 matrix with M1- (i.05 -0.51"0 2.0II.0

M2 is a 3 x 2 matrix with M2- [i ll'0"i]

then M1 M2 ---I_ 0135]5 (2 x 2 matrix)

and M2 M1 _ [!_25.55 -0.5-0"5-0"251.01"00"5](3 x 3 matrix)

Note that by using partitioning subscripts that

MI*,2 TO 3 M2 is illegal because of dimension mismatch;

[!!.250.5] is still legal

but M2 MI,,2 TO 3 .5 1

5 1

7-11

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138. (617) 661-1840

1975006407-079

CASE Q

2. The operand types are:

[-t_pe _ type

VECTOR MATRIX
MATRIX VECTOR

3. If the L operand is an m x n matrix,
the Roperand must be an n-vector,
and the result is an m-vector.

4. If the L operand is an m x n matrix,
the R operand must be an m-vector, and
the r_sult is an n-vector.

Note that the position of the vector operand again determines

its interpretation as either a row or column vector.

Examples:

If M is a 3 x 2 matrix with M _ [_.510.20.1"l'il

v,,°voo o I
[1.OJ

_.e°v. _!_:_! _-_eo_or,
and M V is illegal because of dimension mismatch_

7-12

INTERMFTRICS INCORPORATED. 701 CONCORD AVENUE •CAMBRIDGE MASSACHUSETTS 02138. _617i661-1840

1975006407-080

EXPONENTIATION,INVERSIONANDTRANSPOSE

In HAL/S, a single operator serves for exponentiation, matrix

inversion, and matrix transpose, the operand types serving to

distringuish between them.

• If both operands are integer or scalar, then exponentiation

is implied; ...CASE Q

• if the left operand is a square matrix, _,nd the right is

an integer-valued literal, a repeated matrix product or repeated

product of inverse is implied; ...CASE
v

• if the heft operand is a matrix, and the right operand is

the character 'T', then the transpose is implied. ...CASE Q

These operations take the general symbolic form:

' Symbolic form: L '' R

i. This is the one-line format version.

In multi-line format the operator symbol

is omitted and R is placed on an exponent
line. See Section 2.3.

The rules for each of the cases listed above are now described in
turn.

7-13

INTERMETRICS INCORPORATED • 101 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 ' (617,_661-1840

1975006407-081

CASE 0

2. The operand types are:

t -type R -type

INTEGER} IINTEGERSCALAR SCALAR

3. If the [operand is integer and

the R operand is a non-negative
integral-valued literal, then the

result is integer, otherwise it is
scalar.

4. Consistent with Rule 3, if the result

is scalar, then any integer operands

are first converted to single-precision
scalar.

Examples:

If I is an integer with I E 5

then I ** 2 _ 25 (integer result)

and I**-i - 0.2 (scalar result)
D

also 2**0.5 - _ (scalar result)

7-14

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138 • 1617, 661-1840

1975006407-082

CASE Q

2. The operand types are:

L-type i R -type
I

MATRIX I INTEGER

3. The L operand is a square matri^.

4. The R operand is an integral-valued

literal. The following table shows

the effect of different ranges of

values of the R operand:

value result

< - 2 repeated product of inverse

-i inverse

0 unit matrix

1 no- _eration

• 2 repeated product

Examples:

If M is a 2 x 2 matrix with M _ [0"5-0.5 _l

then M 2 I-0.25 0.51-0.25 -0 5

o ,1

7-15

INT£RMETRICS INCORPORATED. 701 CONCORD AVENUE •CAMBRIDGF MASSACHUSETTS 02138. _617j6611840

1975006407-083

CASE Q

2. The operand types are:

L-type I R-type

.MATRIX _ T

3. If the L operand is an m x n matrix,
then the result is an n x m matrix.

4. If H is symbolically T, then transpose
is indicated even if T is a declared

data item.

Examples :

If M is a 2 x 3 matrix with M _ I_ "00 00 43"010

,i

then M" -_ [!.00 402"2]

a -vec,orw t,
then VT is illegal because the L operand .is not matrix type.

e

_he transpose of a vector is not needed in the HAL/S language.

7-16

INTERMETRICSINCORPORATED.701 CONCORDt-_VENUE . ";AMBRIDGE MASSACHLISETTS 02138" (617) 661 1840

1975006407-084

NOTEONPRECISIONCONVERSION

It is possible that the precisions of the two operands may differ

in any of the operations described. In these cases, precision
conversion usually takes place before the operation is executed.

The rules under which it takes place are as follows:

i. No precision conversion is possible in

unary operations: transposition is
considered a unary operation.

2. Where an operation specifies type con-

version from integer to single precision
scalar, this conversion is carried out
first.

3. If only one operand is integer and no

type conversion is implied, no precz_-{ion
conversion takes place.

4. If both operands have the same precision,
the result is of the same precision (even

if not of the same type).

5. If the operands have mixed precision, the

single precision operand is converted to
double precision. £hen rule 4 is applied.

-17

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138. (617) 661 1840

1975006407-085

i
I

! 7,2 CHARACTEROPERATIONS

i There is only one character operation in HAL/S: the catenation

of character strings.

Symbol Purpose

II 1 catenationCAT

CATENATION

The utility of catenating character strings is obvious in

the generation of output listings. The rules related to

the catenation operation are as follows:

Symbolic form: [II
CAT

i. The L and R operands are not just
restricted to character type: some

degree of implicit type conversion

Js allowed. The following type_ are 0
legal.

L-type _ T-type__

INTEGER INTEGER
SCALAR SCALAR

CHARACTER _CHARACTER

2. The rules for converting integer and
scalar types to character type are to

be :ound in Appendix .

7-18

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE •CAMBRIDGE, MASSACHUSETTS 07138. (617_ 66,-1840

1975006407-086

Examples:

If C is a character item with C _ ' UNITS'

I is integer with I _ 10

then 'TEN' II C _ 'TEN UNITS'

i tlc _ 'ioUNITS'

and III I _ 'i010'

7-19

._ INTERMETPICS INCORPORATED . 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSE[TS 02138 . i617) 661-1840

1975006407-087

7,3 BOOLEANOPERATIONS

Boolean operations are logical (binary) transformations on Boolean

operands. HAL/S recognizes the following operations:

S_nabol Purpose

AND _ logical intersection

I
1 logical conjunctionOR

NOT logical complement

COMPLEMENT

The complement operation complements the logical value of a
Boolean operand. It takes the following form:

Symbolic form: _ R
NOT

i. The R operand is of Boolean type.

e

Example:

If B is Boolean with B _ TRUE

then _B H FALSE

7"20

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138. (617) 661-1_40

1975006407-088

CONJUNCTION

The conjunction operation causes the logical values of two
Boolean operands to be OR'ed together.

IL R
Symbolic form: OR

i. The L and R operands are of Boolean type.

2. The truth table for the resulting Boolean
is as follows:

T=TRUE i

F=FALSE T F

T T T
R

F T F

Examples:

If B is Boolean with B _ FALSE

, then B B] FALSE

B TRUE _ TRUE

7-21

INTERMETRICS INCORPORATED •701 CONCORD AVENUE •CAMBRIDGE MASSACHUS_TT_ 021q8 •(_I7_661 1840

1975006407-089

INTERSECTION

The _ ,tersection operation causes the logical values of two

Bool ,an operands to be AND'ed together.

Symbolic form: L & RAND

i. The L and R operands are of Boolean type.

2. The truth table for the resulting Boolean
is as follows:

T=TRUE L
F=FALSE T F

R T T F

F F F

Examples:

If B is Bo31ean with B z FALSE

then B&TRUE { FALSE

B&B - FALSE

7-22

INTEFIMETRICS ,NCORPORATED. 701 CO",,CORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138. (617_ 661-1840
Q

1975006407-090

7,4 COMBININGOPERATIONS& PRECEDENCE

It is obviously desirable to be able to combine operations so

as to create expressions of any required complexity. In combining

operations, the following information is necessary:

• The order in which operations are executed (t_ order
of "precedence");

• the way in which the precedence order can be overriden.

ARITHMETICANDCHARACTERPRECEDENCE

The precedence of HAL/S operations on arithmetic and character

data types are shown in the following table:

Symbol Precedence Purpose

FIRST

** 1 exponentiation, etc.

(blank) 2 multiplication

* 3 cross product
. 4 dot product
/ 5 division

+ 6 addition
R

- 6 subtraction, negation

If, CAT 7 catenatioD
LAST

Two rules clarify and modify this informatirn:

• Sequences of %perations of the same precedence are evaluated

].eft to right, except for ** and /, which are evaluated right
to left.

• Sequences of multiplications are sometimes reordered to minimize

the number of e]emental products required.

|
I

: 7-23

tNTERMETRICS INCORPORATED • 701 CO,qCORD AVENUE • CAMBRIDGF MASSACHUSETTS 02138 • _617 661 1840

1975006407-091

Examples:

In the following expression, the numbered pointers show

the erder of execution of operations:

'_SULZOF SZEP'I[Ni['iS 'I[Sl+S22 - Vl.,_'_"_,'_..

BOOLEANPRECEDENCE

The precedence rules for Boolean operations are stated separately

because there are no implicit conversions causing interaction
with arithmetic and character operations.

Symbol Precedence Purpose

FIRST

_, NOT 1 complement
&, AND 2 intersection

I, OR 3 coltjunction
LAST

Sequences of operations of the same precedence are evaluated

left to right.

Examples:

In the following expression, the numbered pointers show the

order of execution of operations:

_BIIB2 & _ B3

7-24

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE . CAMBRIDGE MASSACHUSETTS 02138. _617_661 IR40

1975006407-092

OVERRIDINGPRECEDENCEORDER

In HAL/S, the order of precedence can be overriden at will by

the use of parentheses, nested to any arbitrary depth.

Example_:

In the following Boolean expression,

BIIB2 & B31B4 & B5

parentheses may change the precedence order as shown:

(BIIB2) & ((B31B4) & B5)

In the following arithmetic expression,

Sl + S22 + S3/2

parentheses may change the precedence order as shown:

HAL/S allows the operands

in an expression to be

arrayel, causing parallel
evaluation on an element-

by-element basis.

See: (tbd).

7-25

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETT£,")2138. ,617_ 661 -4,:(q

1975006407-093

7,5 SOMEEXPLICITCONVERSIONS

As evidenced in Section 7, there are few implicit type conversions

in the HAL/S languag£. However, there is a comprehensive range of

explicit conversions, some of which ar now described.

PRECISIONCONVERSION

Any arithmetic expression may have its precision explicitly
changed as follows:

DOUBLE

(_xpr£_sic,_)@ SINGLE

i. In the first form, if _xto_e-_ion is

a single precision arithmetic precision,
it is converted to double precision.

If it is already double precision, the
conversion has no effect.

2. In the second form, if oxp_e_cc_ is

a double precision arithmetic ex[ression

it is rounded to single precision. If

it is already single precision, the
conversion has no effect.

Example:

If A and B are single precision, then the result of

(A + B)
@ DOUBLE

is double precision -he type remaining unchanged.

1-26

INrERMETRICS INCORPORATED. 701 CONCORD AVENUE . CAMBRIDGE MASSA_,HUS[TT£ 021_8 • ,617_ 661 _840

1975006407-094

VECTORCONVERSION

A vector can be synthesized from a list of scalar or integer

expressions using the construct shown in the following table:

VECTOR n (expI, @.xp2)

i. The subscript nt,mber n specifies the

length of the vector to be created, and

lies in the range 1 < n < 64*.m

2. If n is omitted the resulting vector is

assumed to be of length 3.

3. Each exp is a scalar or integer

expression.

4. The number of expressions in the list
must match the implicit or explicit

result length.

5. The result of the above conversion is in

single precision.

6. The matrix is assembled row by rc_< "_
the list.

e

Examples:

VECTOR(l, 2, 3)

creates a 3-vector with value [!]
I

* This value may be implementation dependent. See Appendix
for exceptions.

7-27

INTERMETRICSINCORPORATED. 701 CONCORD AVENUE • CAMBRIDGF M:.SSACHUSFTT£ 0?138. _6_" 66 _4C)

1975006407-095

if S is a scalar with S _ 0.5 then

S2 '
VECTOR 4 (S, , S+I, 0)

creates a 4-vector with value [i'55].25

Note that even if the arguments %re double precision the result

is in single precision. To specify double precision in a vector
conversion, the fo_lowing modified form is used:

(e_pl 2, cxp)
VECTOR@ DOUBLE, n

i. The meanings of £xp and n are as before.

2. If _ is not specified, the preceding comma
is _Iso omitted.

Examples:

VECTOR@ DOUBLE(I, 2, 3)

creates a double precision 3-vector with value [i]

0

VECTOR@ DOUBLE, 4 (I' 2, 3,4)

7-28

INTERMETRICStNCORPORATED. 701 CONCORD AVENUE , CAMBRIDGE MASSACHUSET'IS 02138. _617j 661-1840
ii

1975006407-096

MATRIXCOI VERSION

There exists a method of synthczizing a matrix from a list of

integer or scalar expressions analogous to the vector conversion
described:

MATRIX ('_'_P1 £xp 2)
m q

i. The _ubscript numbers m, n specify the
row and column dimensions of the mztrix

to be cr_aL_d, and must lie in the range

1 < m, n < 64*

2. The subscript may be omitted, in which

case the resulting matrix is assumed tu

be 3 by 3.

3. Each £_p is a scalar or integer

expression.

4. The number of expressions must m_tch the

total number of el_nents in the resulting
matrix.

5. The result of the above conversion is in

single precision.

: _ This value may De implementation dependent. See Appendix

_or exceptions.

7-29

ERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBFt,DGt: tbI,_qSAC;k{U%F*t£ 021"I_3. ,fl* 66 1E40

1975006407-097

I I I

I
I

Exai_ _ te s :

MATRIX(l, 2, 3, 4, 5, 6, 7, 8, 9)

creates a 3 x 3 matrix with value [! 852 963]

MATRIX2, 3(1"5' 0, 0, 0, 0.5, 0)

creates a 2 x 3 matrix with value ilo5 0 0 !0 0.5 0

Note the order of assembly in each case.

As in the case of vector conversion, a modified form is required

if the result is to be in double precision:

MATRIX@ DOUBLE, m, n (£xpl 2, exp)

I. The meanings of m, n and exp are as
before.

2. If the dimension subscript is omitted, the

preceding comma is also omitted.
P

Example s:

MATRIX@ DOUBLE(l, 2, 3, 4, 5, 6, 7, 8, 9)

creates a double precision 3 x 3 matrix with value [1 2 3]

_4 6_58

MATRIXA DOUBLE, 2, 3 (1"5' 0, 0, 0, 0.5, 0)

creates a double precision 2 x 3 matrix with value Ii.5 0 01 !
| 0 0.50 !

7-30

INTERMETRICS INCORPORATED •701 CONCORD AVENUE •CAMBRIDGE MASSACHUSETTS 02138. (617)661-1840 .

1975006407-098

L

4,

The explicit conversions described

are those most commonly required for

numerical analysis. However, HAL/S

contains many other explicit con-

version function forms corresponding

to conversions between most data types.
See: tbd.

• m

7-31

INTERMETRICSINCORPORATED.70, CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138. (617)_61-1840

I

1975006407-099

7,6 BUILT-INFUNCTIONS

HAL/S possesses a comprehensive range of library or
"built-in" functions that can be used as operands in

expressions. Built-in functions have zero, one, or
two arguments, and are written in a form akin to
standard mathematical notation.

Built-in functions are divided into five different classes,

roughly according to purpose:

• arithmetic

• algebraic

• vector-matrix

• character

• miscellaneous

A full description of all built-in functions is given in

Appendix . A brief explanation of some of the more

important functions in each class is given below.

i ARITHMETICFUNCTIONS

Arithmetic functlons perform simple arithmetic operations
on scalar or integer arguments. Some arithmetic functions
are:

Function Comments 0

ABS(e) returns lel (the absolute value of
e). e may be integer or scalar.

DIV(e,8) returns the result of integer divi-

sion of _ by 8. e and 8 may be
scalar or integer: scalar values

are rounded to integer before use.

ROUND(e) rounds a scalar e to an integer.

ODD(e) returns a Boolean result, which is

TRUE if e is odd, and FALSE if e
is even.

SIGN(e) returns +i if e) 0 and -i if e < 0.

7-32
f

INTERMETRICS INCORPORATED "701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840 J,

1975006407-100

ALGEBRAICFUNCTIONS

Algebraic functions perform trigonometric and other
transformations on scalar arguments. Some common

algebraic functions are:

Function Comments
,_ , , , u • --.

COS(s) returns cos e

e
EXP (e) returns e

LOG(e) returns loges

SIN(e) returns sin e

_QRT (e) returns _-

TAN (u) returns tan e

VECTOR-MATRIXFUNCTIONS

Vector-matrix functions perform operations on vectors or
matrices. Common vector-matrix functions are:

Function Comments

ABVAL (e) returns length of
vector e

INVERSE(_) returns inverse of

square matrix e

UNIT(s) returns unit vecto]
in same direction

as vector

7-33

INTERMETRICS INCORPGRATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (6;7) 661-1840

I

1975006407-101

T

1 I 1i

I
I

CHARACTERFUNCTIONS

Character functions perform operations on character data.
Some common character functions are:

Function Comments

LENGTH(_) returns current length
of character string

TRIM(_) strips leading and
trailing blanks frem

string

MISCELLANEOUSFUNCTIONS

Some of the more important miscellaneous fu_,ctions are:

Func£ion Comme'nts ""

DATE returns date at time of
execution

MAX(_) returns the maximum

value in the integer
or scalar array

MIN(_) returns the minimum

value in the integer

or scalar azray

RANDOMG returns random number

fromGaussian distri-

bution with mean zero,
variance i.

7-34

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE. MASSACHUSETTS 02138 . (617) 661-1840 i

i

1975006407-102

Examples of use:

I
SINE = SIN(X/2) + SIN(Y/2) ;
X = ABVAL(VI*V2);I
IF ODD(X) THEN RETURN;

I

7,7 SUMMARY

Section 7 has described how HAL/S expressions are synthesized
from operands and operators, and in what order such expressions

are executed. Expressions, particularly of integer and scalar

type, form parts of many HAL/S language constructs. Section 6
referred many times to the use of integer expressions in sub-

scripting.

Section 8 describes the assignment statement, which causes the

result of an expression to be stored in some data item or
items.

7-35

. INTERMETRICSINCORPORATED.701 CONCORD AVENUE .CAMBRIDGE MASSACHUSETTS 02138. (617) 661-1840

1975006407-1(33

8, ASS!BNMENTS

Section 7 described, in detail, the creation of HAL/S

expressions used in numerous places in the language.
The assignment statement is one such instance in which

the value of an expression is assigned to a data item.

For convenience, an assignment is classified according

to the type of the receiving data item; that is, the
data item being assigned into. Because HAL/S allows

implicit type conversion, this type is not necessarily
the same as the expression whose value is used in the

operation.

g Arithmetic assignments are assignments to matrix,

vector, integer or scalar data items.

• Character assignments are assignments to character
data items.

• Boolean assignments are assignments to Boolean
data items.

8,1 GENERALFORMOFASSIGNMENT

The assignment statement is an instance of a HAL/S executable

statement. It has a general form applicable to all types

of assignment:

Symbolic Form: i = Rt

i. i is the receiving data item. It

may be subscripted or unsubscripted.

2. Usually, R is an expression whose
resultant value is to be used in the

assignment. It may, of course, consist
merely of a single operand.

8-1

INTERMETRICS INCORPORATED. 701 CONCORD AMENUE .CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840
t

1975006407-104

Additional assignment rules are applicable which differ

according to assignment type.

8,2 ARITHMETICASSIGNMENTS

Arithmetic assignments are those in which the receiving
data type is matrix, vector, integer or scalar.

MATRIX

The receiving data item is a matrix.

i. The operand types are:

/-type I R-type

INTEGER (rule 3)

2. The number of rows and columns

of the R-expression must be the

same as those of the receiving
data item.

3. The _ condition under which
the R-type is integer is if it is
the literal value zero. The

assignment th-_ creates a null
matrix.

Examples :

If M1 is a 2x3 matrix with M1 - [i.0 1.0 2.0]
L0 .5 -0.5 1.OJ

M2 is a 2x2 matrix,
M3 is a 2x3 matrix;

8-2

INTERMETRICS INCORPORATED . , 01 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

I

1975006407-105

f !
I I ,

then

I

tM3 = -MI;
i

results in M3 _ I -1°0-0.5 -1.00.5 -1_-201
I

IM2 = MI: is illegal (column mismatch)
I

but

I

IM2 = M1 2;I ,, 2 AT

results in M2 =- ! 1.O 2001-0.5 ii '

I° itM3 = 0; results in M3 = 0 0
I 0 0

but
I

IM3 = I; is illegal
I

VECTOR

The receiving data item is a vector.

i. The operand types are:

L-type , I R-type

A

INTEGER (rule 3)

2. The length of the R-expression
must be the same as that of the

receiving data item.

3. The _ condition under which
the K-type is integer is if
it is the literal value zero.

The assignment then--_ates a
null vector.

8-3

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

I

1975006407-106

Examples:

L"]

M2 is a 3x3 matrix,

V2 is a 3-vector;

then

I

I V2 = -VI;
!

results in V2 _ I-i_l_
I

IM2 _ Vl; is illegal (type mismatch),
I

but

I

IM21 - Vl; is legal since subscripting reduces
I '*- the L-type to 3-vector.

and results in M2 _ [i 2_??

(? indicates values unchanged by assignment).

Note

l
IV2 = 0; creates a null vector. ,

i

6-4

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (817) 881-4,840 _.

1975006407-107

INTEGER/SCALAR
L

Integer and scalar assignments can be treated together
because their rules are nearly identical.

i. The operand types are:

L-type li R-typeINTEGER}INTEGERSCALAR SCALAR

2. If the L- and R-types
do not match, type
conversion of the result

of the R-expression takes
place before assignment.

3. Scalar-to-integer conversion
implies rounding of the value
of the R-expression.

Examples :

If I is an integer,
S is a scalar, and
M a 2x2 matrix, then

0

{ I = 5_ results in I - 5
I
I I = 7.7; results in I - 8

i
I S = 7.7; results in S - 7.7

Given the last values above for S, I
i

IM2, 2 = I - S;
t

17 indicates va:,,es unchanged by assignment)
i

IM2, * = I; is illegal (type mismatch)
i

-- 8-5

INTERMETRICSINCORPORATED.701CONCORDAVENUE "CAMBRIDGE,MASSACHUSETTS0211q" (617) 661-1840

1975006407-108

NOTEONPRECISIONCONVERSION

In an arithmetic assignment, the precisions of the receiving
data item and of the R-expression may differ. In these
cases, precision conversion of the latter t-kes place before
assignment, under the following rules:

, _ • • •

1. The ?,-expression is converted to the
precision of the receiving data item
as necessary before assignment.

2. If type conversion from integer to
single precision scalar is implied,
it takes place before precislon
conversion.

8-6

INTERMETRICSINCORPORATED• 701CONCORDAVENUE• CAMBRIDGE,MAS,_I_CHUSETTS02138 • (617) _1-1840 !

I

1975006407-109

I I

8,3 CHARACTERASSIGNMENTS

The receiving data item is character ty_e.

I. The operand types are:

L-type R-type

CHARACTER

CHARACTER INTEGER

SCALAR

2. R-expressions of integer or

scalar type are converted

before assignment to character
type. Conversion rules are to

be found in Appendix .

Examples:

If C is a character with C _ 'ABCDE' and

C2 is a character,

then

I

IC2 = C3; results in C2 _ 'C'
, i

I C2 = 1573; results in C2 z '1573'
I

These apparently straightforward rules can become more complex
in some situations.

Generally, when the receiving data item is unsubscripted, its
working length becomes the same as the length of the R-
expression. However, if this would cause the declared

maximum length of the receiving data item to be exceeded,
then truncation of the excess from the right takes place.

8-7

. INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE. MASSACHUSETTS 02138 • (({17) 661 1840

I

1975006407-110

1 I !I

i

Examples:

If Cl is character of maximum length i0

C2 is character of maximum length i,

then

I
ICl = 'ABCDi';
i

results in Cl 5 'ABCDE' of working length 5

but

i

!C2 = 'ABCDE';
l

results in C2 E 'A' of working length 1

If the receiving data item is subscripted, then this zauses
an additional complication. The rules applicable in such
a case are as follows:

Let

STRING

denote a receiving data item of

character type:

N is declared maximum length

n is working length before assignment

i. The range of the subscript expression
is presumed to be in the range 1 - N;
otherwise an error results.

2. The length of the R-expression is adjusted

I to the length implied by u, either by

truncation of the excess from the right,
or by padding on the right with blanks.

3. If the range of _ lies inside the range
l-n, then simple substituhion of the char-

acter positions implied takes place.

4. If the range of s lies partly beyond the
range 1 - n, then the working length of

STRING is increased appropriately.

5. If the range of _ lies totally beyond the
range i - n, the working length of STRING

is increased appropriately, and the gap "_
between the n th character and the first

position implied by _ (if any) is filled '
with blanks. -.

8-8

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

1975006407-111

Examples:

Let Cl be character of declared maximum length 10
with value C1 E 'ABCD'

Then by Rules 2 and 3:

i

CI 2 'QQ';i TO 3 =
I

results in Cl E 'AQQD'

I

C12 '1234';I TO 3 =
I

results in C1 £ 'AI2D'

I

C12 'X';I TO 3 =
i

results in C1 E 'AX D'

By Rules 2 and 4:

I
i Cl = 'QQ';
I 4 TO 5

results in Cl _ 'ABCQQ'

(working length increased by i)
I

'CI = 'X'
i 4 TO 5

results in Cl _ 'ABCX '

(working length increased by i)

By Rules 2 and 5:

'C15 = 'QQ', TO 6 ;

results in C1 E 'ABCDQQ'

I (working length increased by 2)

lC171 TO 9 = 'FGH';

results in C1 E 'ABCD FGH'

I

I C16 = 'FGH';
I

results in Cl _ 'ABCD F'

-- 8-9

4 ?i _CORPORATED • 701 CQNCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138 • (617) 661-1840

1975006407-112

1 1
J

8,4 BOOLEANASSIGNMEI TS

The receiving data item is of a Boolean type.

u ,.

I. The operand types are:

L-type I R-type

BOOLEAN I BOOLEAN

2. The logical value of the

R-expression is transferred

to the receiving data item.

Example:

If B is Boolean, then

I

I B = FALSE;
I

results in B _ FALSE

8-10

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTB 02138 . (617) 661-1840 !

1975006407-113

i

8,5 MULTIPLEASSIGNMENTS

Several data items may be assigned to the same R-expression

in the same statement. The general form of such a multiple
assignment is as follows:

Symbolic form:

L1 L2 Ln= R;

I. The value of the R-expression
is assigned to all iI ... Ln
in turn.

2. Any [-type must be compatible with
the R-type according to the rules

stated in Sections 8.2 through 8.4.

3. No particular order of assignment is

guaranteed.

Examples:

If M1 is a 2x2 matrix,
Vl is a 3-vector
I

IMI, V1 = 0;
I

results in M1 _ [_ _], Vl _ I_

If C is a character,

I is an integer,
i

IC, I = 127.2;
I

results in C E '1.2720000E+02' I _ 127

. o

. . 8-11

• . ,I tTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

1975006407-114

With the above data items,
I
IMI, C = 5;
i

is illegal because of data type mismatch between M1
and the R-expression.

The following example illustrates the importance of Rule 3:

If further i _ 2, then
I

i Vii, I = I + i;I
has an ambiguous result, dependizg on the order
of assignment.

If I is assigned before VI I ,

then VII _ lil' °therwise Vll _li}

(? indicates values unchanged b_ assignments)

In HAL/S, the receiving data item

or items may be arrayed. This can
produce varying effects depending on
whether or not the R-expression also
is arrayed (i.e. has arrayed operands).
See: tbd.

8-12

INTERMETRICSINCORPORATED• 701CONCORDAVENUE• CAMBRIDGE,MASSACHUSETTS02138 ' 1617)661-1840

1975006407-115

!
!
i
I

' l

8,6 SUMMARY

Section 8 has described assignment statements by
which the results of expressions can be assigned to
one or more data items. Assignments often form the core
of a program but are generally limited in effectiveness
unless their execution can be controlled with a degree
of flexibility.

Section 9 begins to describe how execution can be
controlled by introducing the HAL/S conditional, or IF,
statement.

8-13

. INTERMETRICSINCORPORATED• 701 CONCORDAVENUE • CAMBRIDGE,MASSACHUSETTS02138• (617) 661-1840

1975006407-116

I I]

9, CONDITIONALSTATEMENTSANDBRANCHES

Section 9 is primarily concerned with the HAL/S conditional

statement, by which other executable statements may be

conditionally executed (or by which their execution may be
conditi0nally avoided). Together with statement groups,
which will be described in Section I0, they form a crucially

important part of the HAL/S language.

The HAL/S language encourages programmers to avoid using
GO TO statements to cause branches in execution. Their

total elimination, however, is not desirable. This

Section therefore also describes the HAL/S GO TO state-
ment, and statement labels, which are their destinations.

Statement labels are, in addition, needed for other constructs
to be described in Section 10.

9,1 THECONDITIONALSTATEMENT

In HAL/S, the simple version of the conditional statement is

an "IF clause" containing an expression evaluable as either
TRUE oz FALSE, followed by a "true part" which is executed

only if the IF clause is TRUE. The simple version may be
augmented by a "false part" which is executed only if the
IF clause is FALSE.

9-1

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

1975006407-117

l

SIMPLEIF STATEMENT

The form of the simple version is:

I

, IF Cxp THEN _Z_t£me_t ;
I

i. £xp is an expression which is
evaluable as either TRUE or

FALSE. It may be either a

BOOLEAN expression or a rela-
tional expression (these are
described in Section 9.2).

2. _t_me_t constitutes the true

part of the conditional statement.
Except as noted in Rule 3 it may

be any executable statement,

either simple or compound.

3. statement may no___tpossess a
label, and may not be another
conditional statem---ent.

4. If %xp is FALSE, execution proceeds
to the next statement. If TRUE,
statement is executed first.

9-2

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1640

1975006407-118

Examples:

i
I IF BIC THEN X = 0;

I y = i;

X is set to 0 if either B or C or both is true:

the flow diagram for these events is:

evaluateBiC I

Yes

9 E

set
X=0

I

i IF BIC THEN DO;
i X = X- i;

i Y= Y + I;

iEND;

The true part is a compound statement containing
two assignments.

! -- -- m_um--|

| IF B THEN_IF C THEN D = 0';
J

i Illegal because true part is a conditional statement,
in violation of Rule 3.

9-3
° °

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE "CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

I

I

1975006407-119

I
i

(

AUGMENTEDIFSTATEMENT

When argumented with a false part, the IF statement takes
the form:

I
I IF £xp THEN _/_temCn_ ;
I ELSE e_ £ st_tem,emt ;

i. The form of the IF clause and

true part are the same as in

the simple conditional state-
ment.

2. £2_ st_tem£_ constitutes the

false part of the conditional

statement. It may be any
unlabelled executable state-

ment either simple or compound.

3. If _p is FALSE, execution

proceeds to the next statement
via 6Z_£ statemEnt. If TRUE, it

proceeds to the next statement
via 6tat_men_t .

C

9-4

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 J

1975006407-120

Examples :

I
I IF BIC THEN X = 0;
I ELSE X = l;

I
X is set to 0 if B or C or both is true,

otherwise X is set to 1. The flow diagram
for these events is:

No _ Yes

LsetI ISetI,X=I ,,X=O

I - i i
t

I

i If BIC THEN DO;
X = i;

I Y = 2,
I END;

I ELSE DO;
X = 2;

I Y = i;
I END_

Here, both true and false parts are compound

statements each containing two assignments each.

9-5o .

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE .CAMBRIDGE MASSACHUSETTS 02138 . (617) 661-1840

I

1975006407-121

I
IF B THEN X = 0;
ELSE IF C THEN X = l;

IY = 2;
I

This iS legal: the false part of a conditional

statement ma_ itself be another conditional
statement: the flow diagram for these event_
is:

No _ Yes

Yes Iset lX = 0

, X=l
i

Y = 2

i

9-6

INTERMETRIC$ t_CORPORATED • 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138 • (617) 66; 1_40

1975006407-122

9.2 RELAT!ONALEXPRESSIONS

As was stated in Section 9.1, !::::_-are two valid forms

of expression in an IF clause _;_OLEAN, and relational.

BOOLEAN expressions were descrlued in Section 7; relational

expressions only appear in a limited number of HAL/S
constructs, among them conditional statements, and are now
to be described.

The simplest form of a relational expression is merely a

comparison between two like quantities. The result is

either TRUE or FALSE. More complex forms of relational

expressions result from combining comparisons with the
BOOLEAN operators &, I, and ".

COMPARATIVEOPERATIONS

HAL/S recognizes the following comparative operators:

S)_bol Purpose Class

> greater than

< less than

<- less than or equals

NOT • 1. > not greater than I

> = greater than or equals

NOT < }. < not less than

= equal s
II

NOT = }= not equals

9-7

i

INTERMETRIC¢_rNCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSE', fS 02138 • (617) 661-1840
i

1975006407-123

The operands of comparative operations may, in general,

be expressions of any of the types described in Section 7.

Depending on the type of operand, the operators may be
restricted to Class !I only, or may be either Class I or
Class II.

• CUSS II ONLY

Symbolic form: L NOT = R

I. Legal combinations of data types

are indicated by the following
table:

L-t_pe , R-type

VECTOH VECTOR
MATRIX MATRIX

BOOLEAN BOOLEAN

CHARACTER CHARACTER

2. Comparison of vector and matrix

operands implies element-by-e!ement

comparison.

3. The operands in a vector comparison

must be the same length.

4. The operands in a matrix comparison
must have the same row and column

1_l'm-6nsions.

9-8

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138 • "_17) 661-1840

1975006407-124

!

Examples:

If STRING is character type with

S_RING E 'ABC '

STRING = 'PQR'

is FALSE.

STRING = 'ABC'

is FALSE - character strings must be of the same

length.

If V, Vl are 3-vectors with

then V = Vl is FALSE,

Vl - V = 2 V is TRUE.

_,_u**_orv_.a_voo.o,w,_.v_I_I
_ J

then Vl = V2 is illegal because of length mismatch,

" " but Vl I TO 2 = V2 is TRUE. I

° o

.. 9-9

. INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

1975006407-125

• CLASSIANDCLASSII

>

<

>=

<=

NOT >
T

Symbolic form: L -> R

NOT <
<

NOT =

1. Legal combinations of data types are
indicated by the following table:

L-type lli-type

INTEGER INTEGER
SCALAR SCALAR

2. In a mixed integer-scalar operation,
the integer operand is converted to
scalar before the comparison takes
place.

Example s:

If I is an integer with I - 5

then I = 5 is TRUE

I < 4 is FALSE

I >= 5 is TRUE

9-10

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138 • (617) 661-1840

" I

1975006407-126

NOTE ON PRECISION CONVERSION

It is possible that the precisions of the two operands

may differ in any of the operations described. In these
cases, precision conversion takes place before the opera-

tion is executed. The rules under which it takes place
are as follows:

i. Where an operation specifies type
conversion from integer to single

precision scalar, this conversion
is carried out first.

2. If only one operand is integer and

no type conversion is implied, no
precision conv6rsio._ takes place.

3. If both operands have the same
precision, the result _s of the

same precision (even if not of

the same type).

4. If the operands have mixed precision,

the single precision operand is
converted to double precision. Then

. rule 3 is applied.

9-11

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138. (617) 661 1840

1975006407-127

1

I ' !
i

COMBININGCOMPARATIVEOPERATIONS

Comparative operations may be combined as if they were

BOOLEAN operands, using the rules for Boolean operations

described in Section 7. It is important to note however,

that comparative operations are not BOOLEAN operands in
the sense that they can be mlxed wlth actual BOOLEAN data
items.

• Boolean expressions may contain no comparative operations.

• Relational expressions may contain no Boolean operands.

Examples:

If Vl, V2 are 3-vectors with

and C is character with C _ 'ABC'

then

Vl = V21C 1 = 'A' is TRUE

V1 = V2 & C 1 = 'A' is FALSE

If B is Boolean then

BIvl = V2 is illegal

9-12

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 i

1975006407-128

! _ I I I
!

i

PRECEDENCE

The following table shows the precedence of operations

involved in a relational expression:

Symbol Precedence Purpose

FIRST

operations involving1
operands of comparisons

>

<=

comparativeNOT >, _> 2 operations>=

NOT <, 4<

NOT =, _=
;

&, AND 3 logical operations

on comparisons
I, OR 4

_, NOT *

• Any operand of'this operator must _'be parenthesized,
and is evaluated immediately a-_r evaluation of the
operator itself.

9-13

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 . 1617) 661.1840

I

1975006407-129

! ! ,

Example:

In the following expression, the numbered pointers show
the order of execution of operations:

IF Sl + $2 = 01_ (S3 > 0) & _ ($4 < 01S5 > 0) THEN

(!) 0

Section 9.2 ends with some more examples designed to
clarify the foregoing.

Example s :

Let V be a 3-vector with V - _]

3JI
I IF V = 1 & V = 2 THEN V = 0;
S 1 2 3
I

I IF V > 0 I V < 0 THEN V = 0;

iS 3 2

The first statement will cause V3 to be set to
zero since both comparisons are TRUE. Then

In the second statement, neither comparison in the
relational expression is true. Hence, the "true
part" is not executed and finally

9-14

INTERMETRICSINCORPORATED• 701CONCORDAVENUE• CAMBRIDGEMASSACHUSETTS02138 • (617) 661-1840 i

1975006407-130

9,3 LABELSANDBRANCHES

In HAL/S, there are two entities involved in the

branching operation: a GO TO statement, which, when
executed causes the branch; and a "statement label"

which is the destination of such a branch. HAL/S

also uses statement labels for other purposes, which
will become clear in Section i0.

LABELS

Labels are names chosen by the programmer and attached to

statements. More than one label may be attached to a
statement. The way of attaching a single label to a
statement is as follows:

!

, labe2 : _tatemenZ ;
!

I. _t_temewt is any executable
statement or statement group
(see Section 10), with two

exceptions.

2. Statement may not be the

"true part" or "false part" o._
a conditional statement.

3. lab_ is a user-defined

identifier name (see Section
2.2).

9-15

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE "CAMBRIDGE MASSACHUSETTS 02138. (617) 661-1840
!

1975006407-131

i
i

Examples :

I
IONE: X = X + i;
ITWO: Y = 0;
I

The following are illegal since they violate
Rule 2 :

I
} IF X = 0 THEN ONE: Y = 0;

I IF X = 0 THEN X = I;

IELSE TWO: X = 3;

However, the conditional statement itself may
be labelled:

I
ITHREE: IF X = 0 THEN Y = i;
I

If more than one label is required, then they follow each
other in sequence.

Example:
L
IONE : TWO : THREE : X = X + 1;

I

9-16

INTERMETRICS INCORPORATED •701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840 j

1975006407-132

GOTOSTATEMENT

The GO TO statement specifies the label to which
execution branches: it takes the form:

I GO TO labzl ;
i

I. labz/ is a label attached to

some statement to which execution

is to branch.

Examples:

0
i GO TO ONE;
i

The GO TO statement itself may be labelled:
0

I TWO: GO TO THREE;
i

It is important to note that HAL/S places relatively
severe restrictions on the placement of GO TO

statements and where they may cause execution to
' branch to. Section 1.3 described this on the abstract

level, and Section i0 further discusses it in connection

with statement groups.

9-17

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

1975006407-133

1 1

I ! i

ELIMINATINGGOTOSTATEMENTS

The Guide has stressed throughout that, according to structured

_;ogramming principles, GO TO statements are inherently un-
desirable because they tend to disguise the program's flow
of execution.

It will be found that HAL/S contains a sufficient number of

other constructs to allow GO TO statements to be substantially

eliminated from a program. Following is an example showing
the elimination of GO TO statements.

Examples:

I IF X > 1.5 THEN GO TO ALPHA;

IF X < 1.5 THEN TO TO BETA;

I Y= Y + l;GO TO GAMMA;

IALPHA: X = X - 0.05;

I GO TO GAMMA;
BETA: X = X + 0.05;

JGAMMA: .

I
J

This example is programmed in HAL/S in the simplest way

(possibly having been translated from Fortran or an assembly
language)• The profusion of GO TO statements disguises the

s_ple flow of execution, which is interpreted by the following
flow diagram: 1

\x with/

I , I " I
9-18

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138 • (617) 661-1840

I

1975006407-134

I 1

Tl.e same algorithm is more clearly programmed
as follows:

I IF X > 1.5 THEN

0 X = X - 0.05;
I ELSE

i IF X < 1.5 THEN

I X = X + 0.05;

I ELSE

I Y = Y + i;

l

9.4 SUMMARY

Section 9 has described conditional statements, labels,

GO TO statements, and the ways in which they affect the

flow of execution in a HAL/S program. Some attempt has

been made to point out both the good and the bad ways
of using these statements• Section i0 goes on to describe

statement groups and how the usage of the constructs described

in Sections 9 and i0 are very often interrelated in well-
designed HAL/S programs.

9-19

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE ' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

I

1975006407-135

T

1 1 ,

10, STATEMENTGROUPS

Section 1.3 of the Guide introduced, on an abstract level,

the idea of "statement groups", w_ich could be treated as

if they were simple executable statements, and could be

nested one inside the other. The power of such a facility

can be seen, for example, when it is used in conjunction
with the conditional statement: (this is demonstrated later

in Section i0.i).

There is, in fact, a second, equally important reaso** for

grouping statements in HAL/S: the execution of such groups

can be controlled in a variety of ways. If no explicit
specification i's made, the sequence of statements is executed

once only. By explicit specification:

I the sequence may be repetitively executed until some
condition is satisfied;

• a single executable statement (or nest statement group)
of the group, selectable at execution time, may be
executed.

Section i0 explains in detail how statements are grouped,

and how execution control of the groups is spezified.

i0,1 ' SLIMITINGSTATEMENTGROUPS

In HAL/S, groups of statements are said to be "well-bracketed_:

they are dellmited explicitly by opening and closing statements
which are themselves considered executable.

10-1

tNTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138 • (617) 661-1840

1975006407-136

THEDOSTATEMENT

Every statement group is opened with a "DO" statement which
is also used to specify control of execution within the group.

It takes the generic form:

| DO con _o_ ;!
!

i. cuv_O_ is a construct to be

described. It specifies the manner

in which the sequence of statements
is to be executed.

2. ¢on_o_ is optional. If it is
absent, the sequence of statements
is executed in its natural order*

once only.

3. The DO statement is executable in

that it may be labelled according
to the Rules of Section 9.

The particular instances of DO statements will be explained
in Section 10.2.

* The "natural order" of execution was explained in
Section 3.3.

10-2

INTERMETRICS INCORPORATED .701 CONCORD AVENUE .CAMBRIDGE. MASSACHUSETTS 02138 • (617) 661-1840 _,

1975006407-137

' I

THEENDSTATEMENT

Every statement group is closed with an END statement:

I
I END _abe_ ;
I

i. The END statement is executable

in that it may be labelled according
to the Rules of Section 9.

2. @_(b£f is optional: if present,

the opening DO statement of the group
must be labelled with _ab_f .

The label specification in an END statement is never

functionally necessary in HAL/S. However, it should be
regarded as %_od programming practice because it
facilitates cross-checking by the compiler.

Examples :

Two instances of statement groups are shown below.

Even though details of execution control have not
yet been explained, the form of the construct should
be clear.

I

I DO WHILE I > 0; 1 opening DO statement

: A -- 0; group of statement_

'. END ' closing END statement, !

0

i FIX: DO F'OR I = 1,25,16,2_
' A = -A ;

'S. I I) one statement in group

'. END FIX; 1 label specification in
' END matches label of DO

10-J

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSAC;4USETTS 02138 • (6171 661-1840

1975006407-138

I

The following e_ nples show the importance of being able
to group statements together for use in conjunction with a
conditional statement.

: IFs = 0 THENI = 2;
C = '_SETV_UEOrITO 'IIf;

: •
,
I

It is required to conditionally
execute both assignments: one
solution--_-

!
!

' IF S _= 0 THEN GO TO NOSET;i

' I = 2;

' C = 'RESET VALUE OF I TO 'llI;i
I NOSET:

, :
I
I

This solution is error prone and
not in accordance with structured

programming concepts: a better
solution is -

!
I

, IF S = 0 THEN DO;I

, I = 2;

' C = 'RESET VALUE OF I TO 'llI;
* END;!

• w

!

!

, The whole of the group enclosed
by DO ... END is subject to
conditional execution.

10-4

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138 • (617) 661-1840
J

1975006407-139

10,2 REPETITIVEEXECUTIONOF STATEMENTGROUPS

The sequence of statements in a group can be executed

repetitively until some condition is satisfied. In

this section, two basic forms of DO statement causing
repetitive execution are described:

• The DO WHILE statement, in which execution is

repeated while a relational or boolean expression
=emains true in value;

• The DO FOR statement, in which the sequence is
executed once for each of a set of assigned values
of a "control variable".

THEDO WHILESTATEMENT

The form of the DO WHILE statement is:

I

, DO WHILE conCuitZon ;
i

i. con_i£on is any relational or

BOOLEAN expression. It is

evaluated prior to each cycle
of execution of the statement

sequence in the group.

2. The next cycle of execution of

the group proceeds if the value
of conciit_on is TRUE.

3. If the value of condi2_on is FALSE,

the stopping condition is satis-

fied. Execution proceeds to the
statement following the END state-

ment of the group.

10-5

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

1975006407-140

T

i

Examples :
.,

tI = 9;
: DO WHILE I > 0;

I = I - 2;

; END ;

Here the group is executed 5 times, after which

the value of I is -i. In flow diagram foznn,
the sequence of events is:

½

I II = 9

I

LII = I - 2

,i

Yes

I

i

I

It is possible for a group never to be executed:
i
0

, DO WttILE FALSE;I

, I = I - 2;
' END;!
I

i0-6

INTERMETRICS INCORPOI::IATED• 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138 . (617) 661-1840 . _,

1975006407-141

It is also possible for a group to be executed
forever :

I

I = 0;i

' DO WHILE TRUE;
I

, I = I - 2;
!

, END ;
!
! •

I

Normally in this case, the programmer would insert

statements in the group removing this possibility:
!

'1=9;
t

• DO WHILE TRUE;
i

, I = I - 2;
, IF I < 0 THEN GO TO ALL DONE;

' END;
I

i •
o

There exists a variant of

the DO WHILE statement

called the DO UNTIL state-

ment. Here execution of

the group is assured at least

once, whatever the value of

the controlling expression

See : (tbd) .

10-7

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

J

1975006407-142

1
! v 1

i

THEDOFORSTATEMENT

The most widely used form of the DO FOR statement is:

,:DO FOR va_ = in/txa/TO f/no/ BY /ncrement;
8

i. var is an unarrayed INTEGER or SCALAR

data item (it may be subscripted if

required). It is called the "control
variable" of the DO FOR statement.

2. initial, final and incr£ment are integer
or scalar expressions:

• initial is the imitial value

assigned to uoA.

• in_emc_t is the amount by which
vat is incremented on each

cycle of execution of the sequence

of statements in the group.

• final is the value against which
var is tested at the start of

every cycle to determine if the

stopping condition is satsified.

All three expressions are evaluated

once prior to the first cycle of
e--_ution. '

3. The stopping condition is met when
the value of vc% lies outside the

range bounded by in/t/a/ and fina£.

4. /ncrem£_ may be either positive or

negative The phrase

BY incremcnt

is optional. If omitted, the implied
increment is +i.

10-8

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE ' CAMBRIDGE MASSACHUSETTS 02138. (617) 661-1840

1975006407-143

! ! I 1 •

Examples :

: DO FOR I = 1 TO 10;

i X = I;i
i
,S I

i END ;
i
!

Here the group is executed i0 times. I is

initially i, and increments each time until
10 is reached. At the end of execution of

the group, the value of I is ii. In flow

diagram form, the sequence of events is:

[Se=iI
[

lincrement I

I by
1 Yes

i
I

I

! IXI = I

J

10-9

INTERM£TRICS INCORPORATED '701 CONCORD AVENUE •CAMBRIDGE. MASSACHUSETTS 02138 •(617)661-1840

1975006407-144

! 1 I _ I

;I = 7;

: DO FOR I = I + 5 TO I - 3 BY -2;

', X = X + I;

i END;

This example demonstrates some of the subtleties
of the DO FOR statement. The initial and final

values are precomputed as 12 and 4 respectively.

Then I is reused as the control variable: the

group is executed 5 times, and after the last

cycle of execution, I retains the value 2.

Care must be taken if the

control variable is integer

and the range expressions are

scalar: rounding occurs

during assignment of values
in such cases.

This DO FOR statement may

possess a WHILE or UNTI_
clause which furnishes a

supplementary stopping con-
dition.

See (tbd) .

i0-I0 ..

INTERMETRICSINCORPORATED.701 CONCORD AVENUE "CAMBRIDGE, MASSACHUSETTS 02138.(617) 661-1840

I

1975006407-145

The DO FOR statement has a second form which is used if

the values of the control variable do not form a regular

progression:

!

i DO FOR v_ e×p i, exp 2= , •.. expn ;
i

I. v_ is the control variable as before.

2. Each cxp is an integer or scalar

expression. Values of the exp's are

assigned to vaA in turn prior to the

execution of each cycle, on a left-to-

right basis.

3. Each _xp is evaluated immediately prior

to the cycle of execution in which it
will be used.

Examples :
i
i

: DO FOR I = 17,5,12,4;
: X = I;

:S I

END;

, _ Here, I takes the successive values 17, 5, 12, and 4.

After the end of the last cycle, the value of I remains
at 4.

: I = 7;
DO FOR I = I + 5, I + 3, I + i, I - i, I - 3;

" X-- X + I;

: END;

Superficially, this example looks like a different

way of expressing the second example for the first
form of DO FOR statement:

I = 7;
!

, DO FOR I = I + 5 TO I - 3 BY -2;

'. X = X + I;
, END;
i

i0-ii

INTERMETRICSINCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138. (617) 661-1840

t

1975006407-146

i

However, the successive values of I in the new

form (by Rule 3) are:

12, 15, 16, 15, 12

as opposed to

12, i0, 8, 6, 4

in the old form.

Rounding also occurs if the

control variable is integer

and any of the control expres-
sions are scalar.

As before, the DO FOR statement

may possess a WHILE or UNTIL
clau;e which furl_ishes a

supplementary stopping condi-
tion.

See: (tbd).

10-12

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE . CAMBRIDGE MASSACHUSETTS 02138. (617) 661-1840

I

1975006407-147

i

10,3 SELECTIVEEXECUTIONOF STATEMENTGROUPS

One statement of a group may be selected for execution

by means of the DO CASE statement. The form of the
DO CASE statement is:

DO CASE ezp ;

i. _xp is an integer or scalar
expression.

2. If its value is k (after rounding

if necessary), then the k th state-

ment of the group is selected for
execution.

3. A run time error results if k < 0

or k is greater than the number of

statements in the group.

The flexibility of a DO CASE statement is understood when

it is realized that the selected statement may be a

compound statement (i.e. it may itself be a statement
group).

Example:

I = 3;

DO CASE I;

X = 4; case 1
X = 3; case 2

DO; IX = 7;

Y = 3; _ case 3
END; I

X = I; case 4

X = 0; case 5
END;

10-13

I

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138 • (617) 661-1840

1975006407-148

I I l

Execution results in the third statement being

scheduled for execution, and the following

values being set:

X - 7, Y -- 3

_n ELSE clause may be added
to the DO CASE statement which

is executed instead of an

error being signalled, if the
value of the case variable is

outside the legal range for the

statement group.

See: (tbd).

10-14

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138 • (617) 661 1840

1975006407-149

1 I

10,4 BRANCHINGINSTATEMENTGROUPS

Execution may branch out of any statement group via

a GO TO statement. In those cases where the group is
being respectively executed, execution obviously ceases

before the stopping criterion is satisfied. Because GO TO

statements are viewed unfavorably from the standpoint of
structured programming, HAL/S possesses two statements

expressly for executing controlled branches in statement

groups.

• The EXIT statement is, in effect, a controlled branch

out of a statement group.

• The REPEAT statement only applies to statement groups
executed repetitively, and is a controlled branch back

to the be_innin 9 of the group.

THEEXITSTATEMENT

The simplest form of the EXIT statement is:

EXIT;
i

i. Its execution causes an immediate

branch out of the innermost state-

, ment group in which it Is' enclosed.

2. Execution is directed to the first °

statement following the END of the

group branched out of.

I0-15

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE MA,.,SACHUSETTS 02138 • (617) 6611840

J

1975006407-150

Examples:

I
!

, DO:
' X= I;
I

' Y = 2;

' IF Z = 3 THEN EXIT;!

, Z = 4;

' END;i

, X = X + l;q
i

Arrow shows branch in execution if Z [3

e

' DO WHILE X > 0_

i, X = X- I;

i IF X > 2 THEN DO;
I

IF Y = 3 THEN EXIT;
I y -_ •

'I END ;
, END ;
I

Arrow shows branch in execu ion if Y -- 3: e_ecution

branches to the end, but not out of DO WHILE =roup.

There exists a second form of the EXIT statement to allow branches

out of other than the inmermost statement group:

10-16

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138 • (617) 661-1840

1975006407-151

T

: EXIT _'_t_c_' ;
!

!

I. Its execution causes a _. e;,_:,out

of the enclosing stateme _ group

whose DO statement possesses the
label _c _' .

2. Execution is directed to the first

statement after the END of the groL_p
brenched out of.

Example :

: ONE: DO WHILE X > O;

' X = X- i;I

a DO FOR I = 1 TO i0;
I

A = A + X;i

'5 I I

I IF X = I THEN EXIT ONE;
t

, IF X = 0 THEN EXIT:
I

END;!

l END;

' X = 0;q!

The first EXIT statement causes a branch out of the

outer group rather than the inner, by virtue of its
label.

D

10-17

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSE1TS 02138. (617) 661-1840

1975006407-152

I I
I

THEREPEATSTATEMENT

The simplest form of the REPEAT statement is:

I REPEAT;

i. It must be enclosed in a DO FOR

or DO WHILE group.

2. Its execution causes an immediate

branch to the beginning of the

innermost enclosing DO FOR or

DO WHILE group.

3. The next cycle of execution of

the group then starts (unless

of course the stopping condition
is satisified).

_xamples :

I

tDO WHILE X > 0;
i
, X=X- i;

', IF X = 4 THEN

, Y = Y + X;!

IF Y = 1 THEN REPEAT; °
i END ;
IEND ;

If Y _ 1 then a branch back to the beginning of the
DO WHILE is made. Note that although the DO WHILE

is not the innermost group, it is the innermostI

repetitive group.

10-18

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

1975006407-153

, X = 4;
i

, DO WHILE X > l;d
' X = X- i:
I

, IF X = 1 THEN REPEAT;

' Y = X;
Is x
o END;i

When X _ 2 the REPEAT branch is executed:

a new cycle of execution does not begin
however because the initial test shows that

the stopping condition is satisfied.

As with the EXIT statement, there exists a second form of

the REPEAT statement allowing branches back to the beginning

of other than the innermost DO WHILE or DO FOR group:

: REPEAT fabcf ;
B

i. Its execution causes an immediate

branch to the beginning of the
enclosing DO FOR or DO WHILE

group whose DO statement possesses
the label £ab_£ .

2. The next cycle of execution of

the group then starts (unless the

stopping condition is satisfied).

10-19

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE "CAMBRIDGE MASSACHUSETTS 02138. (617) 661-1840

• |

......_ " '--_T "-.-.-mmmmm_--_............................w_-_.._smm__T............._w..,._,._-.-.m_-..-_-...,_..wT............................---W'

1975006407-154

Example :

t ONE: DO FOR I = 1 TO 10;q

i J = I;
V DO WHILE J > 0;

I J= J- i;
I X =X + J;

IS J J

I IF X = 25 THEN REPEAT;
IS J

i IF X = 0 THEN REPEAT ONE;

IS J

I END;

! END ;I
I Z = 0;

The second REPEAT statement restarts the outer DO FOR

group rather than the inner DO WHILE by virtue of its label.

I0-20

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE "CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840 . !

|

1975006407-155

10,5 SUMMARY

Section i0 has explained how statements may be grouped

together into compound statements, and how such groups
may be executed repetitively or selectively.

At this point in the Guide, programs can be construe, ted

using assignment statements, and controlling execution

through conditional statements and statement groups.

The judicious use of procedures and user functions is

essential to the well-ordered structure program .

Section II thus goes on to describe how procedures
and functions are defined and invoked.

10-21

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

I I

1975006407-156

11, PROCEDURESANDFUNCTIONS

Section 1.2 of the Guide introduced the block structure

of HAL/S programs on the abstract level. To summarize

any program can centain nested procedure and function
blocks, which are two levels of "subroutines"

characterized by the sequence:

invocation + exe_ion + retu/_ to call_A

The invocatio_ of procedures and functions is _overned

by well-defined name scoping rules.

This section explains how, in practice, procedure and
function blocks are defined in HAL/S, and describes

how they are invoked and returned from.

ii,i INTROL)UCTION

A procedure is a subroutine block invoked by a CALL
statement. It may have two kinds of parameters:

• INPUT PARAMETERS - by which values may be
passed into a procedure only.

• ASSIGN PARAMETERS - by which values may be
passed into and out of a procedure.

A function is a subroutine block invoked by the
appearance of its name in an expression. It returns

a value and therefore has a defined HAL/S data type.
It may possess input parameters only.

ii-i

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

1975006407-157

RELATIVEPOSITIONOF BLOCKDEFINITIONS

Section 1.2 described the scoping rules which determine

the regions of a program where any given procedure or

function block may be invoked.

An important consequence of these rules is that a

procedure invocation may either follow or _recede
its block definition. However, for other reasons,

the invocation of a function block should normally
always follow its block definition.

A ntunberof rules restrict

the kind of function which

may be invoked preceding
its block definition.

See: (TBD)

ii,2 BLOCKDEFINITIONS

Procedure and function block definitions have forms very
similar to the form of a program block, which was described

in Section 3. The first statement is one defining the

name and type of block, and listing its parameters. The

last statement is a statement closing the block.

11-2

INTERMETRICS INCORPORATED" 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) o61-1840
i

I

1975006407-158

PROCEDUREOPENING

The statement opening a procedure block takes the form:

im

label: PROCEDURE_I,i2,...) ASSIGN(al,a 2,...);

I. /abe_/ is any legal identifier
name, and constitutes the name

of the procedure.

2. ii, i2,.., are legal identifier

names defining input para-

meters. If the entire paren-
thesized list is omitted, then

the procedure has no input

parameters.

3. aI, a2... are legal identifier
names defining assign parameters.

If the entire parenthesized list

and the keyword ASSIGN are omitted,
then the procedure has no assign

parameters.

11-3

INTEP' ,ETRICG INCORPORATED " 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138. (617) 661-1840

' I

1975006407-159

FUNCTIONOPENING

The statement opening a function block takes the
form:

I (ii, ,2I fab_: FUNCTION i,) _tt%_u_t_;I ,ii

I. _/be£ is any legal identifier name,
and constitutes the name of the

function.

.1 .2
2. • ,_ ,... are legal identifier names

defining input parameters. If the
entire parenthesized list is omitted,

then the function has no input para-
meters.

3. _tt_/bu_ defines the type of the func-

tion, and, where applicable, its preci-
sion. The form of _tt_b_t_ is the

same as used in data declarations

(see Section 4.2). If no _tt_bul_ are

supplied, the function is assumed to

be single precision scalar.

BLOCKCLOSING

Both procedure and function blocks are closed with
the statement:

!
I CLOSE _bzl ;
I

i. The identifier label is optional.

2. If supplied, it must be the name

ef the procedure or function
block.

11-4

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE • CAMBRIDGE, MASSt, ". SETTS 02138 • 1617) 661-1840 ,

I

1975006407-160

Examples:

ONE: PROCEDURE;

I procedure body

CLOSE ONE ;

I TWO: PROCEDURE ASSIGN(ARGI);

,I I-I single assign parameter -

I may be used to return values

I from procedure
i CLOSE;

THREE: FUNCTION MATRIX (4,4) DOUBLE;

l
CLOSE THREE;

FOUR: FUNCTION (ARGI,ARG2) BOOLEAN;

__ttwo input parameters -_oro_ao_n.:n_,_uo,_o_o
CLOSE;

. . 11-5

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138. (617) 661-1840

' I

1975006407-161

T

!

11,3 DECLARATIONOFPARAMETERSANDLOCALDATA

Procedures and functions commonly require the use of

locally-defined data. As with program-level data, all

data names must be declared before use by means of
declaration statements. In addition, all input and

assign parameters must appear in local declaration
statements.

Data and parameter declarations must be placed after

the procedure or function opening statement, and

befure the first executable statement. It is good

practice, and mandatory in some implementations*, to

place parameter declarations before local data
declarations. The forms of local data and parameter
declarations are identical, and are as described in Section 4.

Examples:

General positioning -

ONE: PROCEDURE (ARGI) ASSIGN (ARG2) ;

f parameter declarations

"_/"'_"":'_'/_"" local data declarations

•.j.;.;.2.;2.2.2.;.2.2.2.

%

" _ executable statements

CLOSE ONE ;

* See the User's Manual for any given implementation.

11-6 - .

INTERMETRICSINCORPORATED.701 COHCORDAVENUE • CAMBRIDGE MASSACHUSETTS 02138. (617) 661-1840
1

I

1975006407-162

Particular instance -

ONE: PROCEDURE (ARGI) ASSIGN (ARG2) ;

DECLARE ARGI MATRIX (4,4) ; [_..-parameters
DECLARE ARG2 ARRAY(100) SCALAR DOUBLE;

DECLARE TEMP MATRIX (4,4) ; _------local data

C,.OSE ONE;

11,4 FUNCTIONINVOCATIONS

A function is invoked by the appearance of its name

as an operand in an expression• If the function is
defined with input parameters, a list of arguments to

be passed must follow the appearance of the name. The

precise form of invocation is:

£abef(il,L 2,...)

L

i. £abcf is the defined name of the
function. ,

.2
2. il,i ,... is a list of arguments,

which must correspond in number

with the parameters of the function

invoked. Each argument is a HAL/S
expression.

3. If the function has no parameters,

then the entire parenthesized argu-
ment list must be absent•

- - 11-7

INTERMETRICSINCORPORATED" 701 CONCORD AVENUE: • CAMBRIDGE MASSACHUSETTS 02138. (617) 661-1840

1975006407-163

The transmission of the argument list during function

invocation may be viewed as the assignment of the value

of each expression in turn to its corresponding input
parameter (although in any given implementation this

may not actually be the mechanism of transmittal).
A set of rules governing type and precision conver-

sion, and dimension matching similar to the assignment
rules of Section 8 are applicable. These are classified

below according to parameter type.

MATRIXPARAMETER

1. The corresponding argument must be
of matrix type.

2. The number of rows and columns of

the argument must be the same as
those of the parameter.

3. Precision conversion is allowed.

VECTORPARAMETER

1. The corresponding argument must be

of vector type.

2. The length of the vector _trgument
must be the same as that of the

parametec.

3. Precision conversion is allowed.

m

11-8

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE "CAMBRIDGE, MASSACHUSETTS 02138. (61_') 661-1840

1975006407-164

INTEGER/SCALARPARAMETER

i. The following table gives the

legal argument types:

pa£ameter| argument

SCALAR SCALAR

2. Conversion of the argument takes

place where necessary. Scalar-
to-inteqer conversion implies

roundin_ of the value of the
expresslon.

3. Precision conversion takes place

when necessary and is applied

after possible type conversion.

CHARACTERPARAMETER

i. The allowable argument types are
given by the following table:

parameter ar@ument

I CHARACTER
CHARACTER INTECER

SCALAR

2. Rules for the conversion of integer

or scalar values to character type
are given in Appendix .

11-9

INTERMETRICS INCORPORATED . 701 CQ, ^.VENUE • CAMBRIDGE MAS.('ACHUSE.TS 02138 . (617) 661-1840

I

1975006407-165

Generally, the working len9_n of the parameter becomes

equal to the length of the expression (after conversion,
where applicable). However, if this would cause the

declared maximum length of the parameter to be exceeded,
truncation of the excess from the right takes place.

BOOLEANPARAMETER

i. The corresponding argument must

be of Boolean type.

The following examples show a selection of both legal

and illegal function invocations.

Examples:

Suppose the following functions are defined:

ONE: FUNCTION INTEGER;

W .
CLOSE;

TWO: FUNCTION (A, B) MATRIX(4,4) DOUBLE;
i DECLA_RE A MATRIX(4,4) _
I DECLARE B SCALAR;

'NN1
I

I
I

I CLOSE;

II-I0

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, I'4ASSACHUSE'I'TS02138 • (617) 661-1840

1975006407-166

Let also the following data be declared:

DECLARE M1 MATRIX (4,4) ,
M2 MATRIX(4,4) DOUBLE,

M3 MATRIX (3,3),

S SCALAR,
I INTEGER;

Invocations of the above functions ar@ illustrated

in the following constructs:

!
i

. S = S + ONE;
!

* S = S + M 1 ; Note: subscripts may be
I , ONE\ "nteger expressions of

ny kind.

I

, M2 = "WO(M2,S) + M2; M2 is converted to
', _, single precision

, during transmission.
i

M2 = TWO(M2,I); I is converted to

' _ scalar type during
transmission.

ii-ii

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

L

1975006407-167

The following are illegal invocations:

I

! M2 = TWO(M3,1.5) ; row and column
I k _ dimensions of M3 do

' \ not match those of

parameter A.
i

, M2 = TWO(MI,'ARGUMENT' iJI);
i _ transmission of character

' _ type argument to scalar
parameter B incurs an
illegal type conversion.

Argumerts may possess array-
ness. The effects of this

depend on whether or not

the corresponding parameter

is declared to be an array.
See: (TBD).

11-12

INTERMETRICS !NCORPORATED " 701 CONCORD AVENUE •CAMBRIDGE, MASSACI-tUSETTS 02138 . (617) 661-1840

I

1975006407-168

11,5 PROCEDUREINVOCATIONS

A procedure is invoked by the use of a CALL statement,

which may, in the case of a procedure with parameters,
also specify the arguments to be passed. The precise
form of invocation is:

I 2 1 2
I CALL _b_ _l,i ,...) ASSIGN(a ,a ,...) ;
l

i. lab_ is the defined name of the

procedure.

1 2
2. i ,i ,... is a list of input arguments

which must correspond in number with
the input parameters of the procedure

invoked. Each input argument is a

HAL/S expression.

3. If the procedure has no input parameters,

then the entire parenthesized argument
list must be absent.

4. al,a2,... is a list of assign arguments

which must correspond in number with
the assign parameters of the procedure

invoked. Each argument must be a HAL/S 0
data item.

5. If the procedure has no assign parameters,

th_n the entire parenthesized list of
assign arguments, and the ASSIGN

keyword, must be absent.

11-13

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

1975006407-169

The tran-mission of the input argument list during

procedure invocation is identical in nature to func-

tion argument list transmission. The related rules

are given in Section 11.4.

The transmission ef the assign argument list follows
stricter rules since values are passed both into and

out of a procedure by this mechanism.

ASSIGNARGUMENTS

I. An assign argument must be a

declared HAL/S data item.

2. An assign argument must match

the corresponding assign para-

meter in type and precision.

3. A matrix or vector argument

must match the corresponding

parameter in dimension.

4. Only matrix and vector arguments

may be subscripted. Such sub-

scripting must reduce the argu- '

ment to scalar type by specifying
one element only. ,

The following examples show a selection of both

legal and illegal procedure invocations.

11-14

INTERMETRICS INCORPORATED " 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138. (617) 661-1840

1975006407-170

Examples:

Suppose the following procedures are defined:

ONE: PROCEDURE;

l
CLOSE;

TWO: PROCEDURE(A,B) ASSIGN(C) ;

DECLARE A MATRIX(3,3) ;
DECLARE B INTEGER;

DECLARE C INTEGER;

CLOSE;

Let also the following data be declared:

DECLARE M1 MATRIX(3,3),

M2 MATRIX(3,3) DOUBLE,
M3 MATRIX(4,4),

S SCALAR,

I INTEGER,
ID INTEGER DOUBLE;

Invocations of the above procedure are illustrated in

the following constructs:

11-15

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138. (617) 661-1840

l

I

1975006407-171

I
!
I CALL ONE ;
I
! CALL ONE(I); _ illegal: ONE possesses no

' parameters.

!

l CALL TWO(M2T,s+I)- ASSIGN(I);

;' __ _ values may be passed in

i __ and out of TWO through I.
type conversion required here.

\ precision conversion required
here.

I
i

CALL TWO(M3, ID) ASSIGN(S);

t, t__i type conversion illegal for
assign arguments.

-- precision conversion required.

dimension mismatch: parameter is
a 3 x 3 matrix.

CALL TWO(MI,I) ASSIGN(I) ;

--appearance in both places
is legal.

11-16

INTERMETRICSINCORPORATED'701 CONCORD AVENUE • CAMBRIDGE MASSACHUSFTTS 02138. (617) 661-1840

1975006407-172

The last example introduces an interesting side effect

which occurs when the same data item appears both as an

input argument and as an assign argument. In the

example, changing the value of assign parameter C

during execution of the procedure may, depending on

the inplementation and the data type of I, result in

a simultaneous change of input parameter B. The

effect does not occur if type or precision conversion

is required for transmission of the input argument.
The side effect arises as a result of the actual

mechanism used in argument transmission in particular

implementations.

Both input and assign

arguments may possess

arrayness, in which

case the corresponding

parameters must have

an array declaration.

See: (TBD).

11-17

INTERMETRICS INCORPORATED . 7t31 CONCOR[) AVENUE . CAMBRIDGE. MASSACHUSE rTS 02138 • (617) 661-1840

i

1975006407-173

11,6 RETURNSFROMPROCEDURESANDFUNCTIONS

When execution reaches the CLOSE statement of a procedure

block, an automatic return _o caller takes place. How-
ever, if execution reaches the CLOSE statement of a
function block, a run time error results since the
function has no value to return to the caller. Hence

a function block needs an explicit RETURN statement
to cause the return to take place. In addition, if

returns are required from parts of the code in a

procedure block other than at the CLOSE, an explicit
RETURN statement is required.

PROCEDURERETURN

The RETURN statement of a procedure takes the form:

!
i
n RETURN;
i

Example:

CHOICE: PROCEDURE(FLAG) ASSIGN(DIR);

DECLARE FLAG BOOLEAN;
DECLARE DIR VECTOR(3);

IF FLAG THEN RETURN;

DIR = UNIT(DIR);
CLOSE;

If FLAG _ TRUE then procedure merely returns execution
at RETURN. If FLAG _ FALSE then 3-vector DIR is

normalized, and procedure returns execution at CLOSE.

11-18

INTERMETRICSINCORPORATED'701 CONCORD AVENUE .CAMBRIDGE MASSACHUSETTS 02138.(617) 661-1840 "
• m

1975006407-174

FUNCTIONRETURN

The RETURN statement of a function takes the for_:

!
I RETURN £xp ;
I

i. The resultant value of the

expresszon exp is returned when
the function returns to its
caller.

The return of an expression by a function is similar

in nature to the transmission of an input argument of

a function to the corresponding parameter, the

function itself playing the role of parameter• During

return, type and precision conversions are possible,
and dimension matching must be ensured. The relevant

rules are the same as those described for argument
transmission in Section 11.4.

Examples:

FUNCI: FUNCTION(A) SCALAR;

DECLARE A MATRIX(3,3) DOUBLE;
DECLARE I INTEGER;

RETURN I+5;" type conversion to scalar
required.

RETURN AI,I; _ conversion to single
. precision required.

RETURN 'I=' llI; _ illegal type conversion

• required.

CLOSE;
11-19

,NTERMETRICSINCORPORATFD.701 CONCORD AVFNUF .CAMBRIDGE MASSACHUSETTS 02138. (617) 661-1840

1975006407-175

Ii,7 SUMMARY

This section has explained the role of HAL/S procedures
and functions: how they are defined; how they are invoked;
and how execution is returned from them to the caller.

The mechanism of argument passage has been described in
detail.

The next section introduces the concepts of sequential

I/O in HAL/S, and describes statements for performing
input/output operations.

11-20

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

4

1975006407-176

12, INPUT/OUTPUTSTATEMENTS

Higher order languages possess I/O statements to provide

programs with a means of communicating with their environ-

ment. In HAL/S, simple forms of I/O statement provide

for the sequential input or output of data, including the
generation of printed listings.

This section first introduces the HAL/S concept of

sequential I/O and then goes on to describe the construc-
tion of I/O statements.

i2,1 HAL/SINPUT/OUTPUTCONCEPTS

The form of sequential I/O statements in HAL/S is based

on a specific conceptualization of the input-output process.
In this conceptualization, I/O takes place through a number

of "channels", each identified by an integer code. Each
channel is connected to an "I/O device", of which there

ar m two kinds, "unpaged", and "paged".

U; PAGEDDEVICES

An "unpaged I/O device" can be used for both input and

output. It can be visualized as consisting of a "device
mechanism" which performs I/O on a continuous strip, across

which data is written. The data is organized in "columns"
across the strip, and in "lines" down it:

12--1

INTERME]'qlCS INCORPORATED" 7f}1 CONCORD AVENUE • CAMBRIDGE MASSACHUSFTTS 02138. t617) 661-1840

' I

1975006407-177

first columns of data

CO lumn------_ % P

first F lines of data
line

I

_,j____device mechanism

The device mechanism moves from column to column along

each line, and from line to line as it performs I/O.

Normally, the performance of I/O is accompanied by move-

ment from left to right across each line, and downwards
from one line to the next. However, special positioning

commands can modify this beh-vior.

r

|

12-2

INTERMETRICSINCORPORATED'701 CONCORD AVENUE . CAMBRIDGE MASSACHUSETTS 02138. (617} 661.1840 .
J

1975006407-178

On output, the strip continually lengthens as new lil,es

are written on the device. On input, the strip is of

fixed length, and a run time ecror occurs if the device
mechanism is requested to read off the lower end.

Data output to an unpaged device is physically written

so that it may, on some future occasion, be read in again
via an unpaged device.

PAGEDDEVICES

A "paged I/O device" can only be used for output. _t can
be visualized in much the same way as an unpaged device,

except that the lines of data are organized into "pages":

first columns of

column-- data

first _ "

line _ lines of data
m_

first page

first

line _ -

i 'I_Dm

device mechanism

second page I _/_"

first

line i _

third page _

12-3

INTERMETRICS INCORPORA: FD • 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138 • (617) 661-1840

J

1975006407-179

The paged device is designed to generate printed l_stings.

The form in which data is ohysically written on the device
is different from that on an unpaged device. Such data

cannot normally be r_ad back again via an unpaged device.

DAT STORAGE
I

Data is conceived as being "stored" on a device, even

though in physical reality the device _tay be a line printer,

the data becoming inaccessible to t_e computer.

In HAL/S, data is written on the I/O device in "fields" which

can be separated by blank columns, or by a separator character.

The I/O process is stream-oriented: within the confines of

a single I/O statement, the column and line alignment of data
fields need be of n¢ consequence. Deta fields may even be

broken over line or page boundaries.

12,2 THE , PITSTATEMENT

: the WRITE .t, ._n_nt is an executable statement for the

output of data _o a paged or unpaged I/O device. The form
of the WRITE statement is as follows:

I WRITE(n) cxp I, c_p 2 , ... cxp n ;
I

i. n is the channel code number, and

lies in the range 0 _ n _ 9*.

2. Each e_p is a HAL/S expression whose
value or values are to be written on the

device. The list of expressions may be
arbitrarily long. Alternatively, none

need be supplied.

3. Each expression in turn from left to

right is evaluated, and its value (or

values) written on the specified device.

This value may be implementation dependent. See AppendixI
! for except-_ ons.

12-4

INTERMETRICS INCORPO:'tATED. 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138 • (617) 661-1840

1975006407-180

In execution, the sequence of events is as follows:

• If the WRITE statement is the first to be executed

for the specified device, the device mechanism

positions itself at column 1 of line 1 (on page 1

if the device is paged). Otherwise, the device
mechanism moves down one line from its current

position, and repositions itself at column i.

• Data fields are written from left to right along the

line, each field being separated from the next by
5 blanks*.

• When the end of a line is reached, the device
mechanism moves to column 1 of the next line and

c6ntinues writing data f±elds. Unless the data

field is of character type, the device does not

attempt to break it oger a line boundary if there
is not room for it at the end of a line. Instead,

it begins writing it on the next li,._.

• After finishing execution, the device mechanism is

left positioned one column to the right of the end of
th last data field written. Alternatively, if the
dar - field abuts the end of a line, it is positioned
at .olumn 1 of the next line.

• If no expressions are supplied in the WR£TE statement,
the device merely performs its initial positioning.

* This value may be implementation dependent. Some

implementations ma} allow the user to vary the value by
a run-time option.

12-5

INTERMETRICS INCORPORATED. 701 CONCORD 4VE ,ILE • CAMBRIDGE, MASSACHUSETTS 02138 • (6171 661-!840

1975006407-181

DATAFORMATS

The format of a data field depends on the type of
expression whose resultant value is being written on

the device, and on whether or not the d_%ice is paged.

The formats are, in general, implementation dependent.

Typical formats are shown in Appendix _.

Uni-valued expressions each give rise to a single data

field. Multi-valued expressions each give rise to a
series of data fields, which are written on the device

sequentially in the following way:

a Z-vector expression yields I scalar data fields,
one for each element. The data fields are laid out

along a line, separated from each other by the standard

number of blanks, and overflowing onto succeeding lines
as required.

• an m x n matrix expression yields mn scalar data fields,

one for each element. The matrix is laid out row by row.
Each row is written as if it were an n-vector. The first

element of the second and subsequent rows begin a new
line, vertically aligned under the first element of the
first row.

• arrays are written array element by array element,

completing the requirements for one element before
going on to the next. The last data field of one

array element is separated from the first data field

the next element by the standard number of blanks,

,r starting a new line if required,

Examples :

at: M be a 3x3 matrix with M- lii5 1.5 0.01

5 1.0 1.0 °
5 0.i i0.i

I be a 3-array of integers

with I - (4 6-2)

C be a character with C -- 'VALUE'

B be a Boolean with B - TRUE

then

i

i WRITE(6) C,M,I;
i VRITE(6) B;
J

would result in output of the following form:

1;-6

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840
4

1975006407-182

paged output: [132 columns/line]

c M INLTIAL POSITION

OF DEVICE MECHANISM

___ !
ALUE 5.0000000E-01 1.$000000E*00 0.0

2.5000000£_00 1.0000000E*00 1.0000000E*00
$.O000000E-01 9.999996kE-02 1.0000000E'01 6 -2

I

FINAL POSITION
B

OF DEVICE MECHanISM

: unpaged output: [80 columns/line]

INITIAL POSITION

C M OF DEVICE MECHANISM

r

'VALUE' 5.0000000E-01 1.5000000E*00 0.0
2.5000000£*00 1.0000000E"00 1.0000000E',00
5.0000000E-01 9. 9999961_Eo02 1.0000000E','01 k

B % "I
FINAL POSITION

OF DEVICE MECHANISM

NOTES:

single precision scalar data fields are a fixed 14 columms
wide.

single precision integer data fields are a fixed Ii columns

wide. 12-7

INTERMETRICS INCORPORaTeD" 701 CONCORD AVENUE • CAMBRIDGE MASSACHUS_1TS 02138" !617) 661 1840

1

I

1975006407-183

12.3 THEREADSTATEMENT

The READ statement is an executable statement for the

input of data from an unpaged I/O device. The form of
the READ statement is as follows:

I READ(n) _._I , u0_2 , ... va_n ,"
i

i. n is the channel code number, and

lies in the range 0 4 n _ 9*.

2. Each u_z is any type of data item,

either subscripted or unsubscripted.

The list of items may be arbitrarily

long. Alternatively, none need be

supplied.

3. The specified device reads values
into each data item in turn from

left to right.

In execution, the sequence of events is as follows:

I If the READ statement is the first to be executed

for the specified device, the device mechanism positions
itself at column 1 of line i. Otherwise, the device

mechanism moves down one line from its current position

and repositions itself at column i. °

• Data fields are read from left to right along the line.

The device expects each data field to be separated from

the next by a comma and/or at least one blank.

• When the end of a line is reached, the device mechanism

moves to column 1 of the next line and continues reading.

Data fields may be broken over the line boundary.

This value may be implementation dependent. See
Appendix for exceptions.

12-8

INTERMETRICSINCORPORATED'701 CONCORD AVENUE .CAMBRIDGE MASSACHUSETTS 02138.(617) 661-1840

1975006407-184

• After finishing execution, the device mechanism

is left positioned one column to the right of the

end of the last data field read in. Alternatively,
if the data field abuts the end of a line, it is

positioned at column 1 of the next line.

• If no list of data items is supplied in the READ

statement, the device merely performs its initial

positioning.

• If the device reads two consecutive separating
commas, then the value of the data item which would

have been changed by reading a data f'eld between
the commas, is instead left untouched.

DATAFORMATS

The formats of data fields expected by a device on input

depend on the type of data item being read into. The

formats are, in general, implementation dependent. Typical
formats are shown in Appendix

Uni-valued data items cause single data fields to be read.
Multi-valued data items cause a series of data fields to be

read sequentially.

• A vector data item causes one data field per vector
element to be read.

• A matrix data items causes one data field per matrix
element to be read. Values are read into the matrix

row by row. '

• Arrayed data items are read into ar_ay element by

array element, completing the read requirements for
each element before going on to the next.

12-9

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) £31-1840

A

1975006407-185

Examples :

Let M be a 3x3 matrix with initial values given

Let I _ - a 3-array of integers,

C be a character data item of maximum length i0,

B be a Boolean.

Then
i

i READ(5) M,I,C;
I
READ (5) B;i

using the following data: I_'41TIALPOSITION

_ OF DEVICE MECHANISM
i

i 0.i , 0 ,,

0 0.I 0

0 0 0.i

-4 -5 -7 'GOODBYE'

_] _ FINAL POSITION
1

OF DEVICE
#

would result in:

M- ,0.i 0.0 0.01- this value not changed

10.0 0.1 0[_I by READ statement.0.0 0.0 0

I -: (-4 -5 i)

C - 'GOODBYE'

B - TRUE

12-10

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138 . (617) 661 1840

i

1975006407-186

12,4 INPUT/OUTPUTFORMATTING

The formatting of I/O embraces two separate concepts:

• the shape of data fields;

• the position of data fields.

In terms of input, formatting implies that a device can

be made to recognize different shapes of data fields in

a variety of positions. In terms of output, formatting

implies that a device can generate different shapes of

data fields in a variety of positions.

Data field positioning is effected by direct movement

of the device mechanism. Commands in the form of pseudo-
functions can be inserted into READ and WRITE statements

to cause repositioning of the mechanism.

There is no direct capability in a READ or WRITE statement

for defining different data field shapes. It should be

noted however, that for outuput, the equivalent of arbitrary

data field shaping can be achieved by using HAL/S's

character string handling features.

There exists a second type

of input statement called

the READALL statement,

which can be used to input

arbitrary strings of
characters. This can form

the basis for arbitrary

data field shape recogni-

tion on input.
See: (tbd)

12-11

IN fERMFTRICS INCORPORAf_D. 7(:,1 C;QNCORD AVFNtJE • C",MBRIDGE MASSACHUSETTS 02138. 1617) 661-1840

I

1975006407-187

DEVICEMECHAN!SM POSITIONING

HAL/S possesse_ five pseudo-functions which can reposition

a device mechanism during execution cf a READ or WRITE

statement. The pseudo-functions are placed in the READ
or WRITE statement as if they were normal data items or

expressions.

Three basic rules underlie the operation of the pseudo-
functions in positioning device mechanisms:

• Horizontal and vertical positioning are separately and

independentl[controlled.

• The operations of the pseudo-functions are independent

of whether a device is being used for input or output.

• An explicit repositioning command taking effect at a

particular point in execution overrides the default

movement in the same direction (horizontal or vertical)

which would otherwise be made by the device mechanism.

Particular instances of these rules are noted as the

device positioning pseudo-functions are described below.

HORIZONTALPOSITIONING

The two Dseudo-functions TAB and COLUMN serve to position
a device mechanism horizontally on a line. Their form is
as follows:

R

12-12

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE . CAMBRIDGE MASSACHUSETTS 02138 • (617) 661184'

1975006407-188

TAB (e)

COLUMN (8)

i. _ and 8 are integer expressions.

2. TAB(a) moves the device mechanism

left or right by the number of
columns specified by 6. Negative
values of _ denote movement to the

left; positive values, movement to

the right.

3. COLUMN(8) moves the device mechanism

left or right to the column indicated

by B.

4. Values of e or 8 must not be SUCh as to

try to move the device mechanism left

past column i, or right past the right-
most column*.

I

If a TAB or COLUMN pseudo-functio:, appears at the

beginning of a READ or WRITE statement, it overrides the

default positioning at column i.

It does not of itself inhibit movement onto the next

line.

If a TAB or COLUMN appears between two expressions in
a WRITE statement, it overrides the standard data field

separation.

Successive TABs are cumulative in action.

* The numb@r of columns on any device (i.e. the logical

record length) is assumed constant but implementation

dependent. Its possible values may be found in the

User's Manual for the implementation.

12-13

INTERMETRICS INCORPORATED" 7(11CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138 • (617) 661-1840

' I

1975006407-189

I I

Example:

If CI, C2, C3 are character data items

with C1 _ 'FIRST'
C2 _ 'SECOND'

C3 _ 'THIRD'

and ±f channel 6 is a paged device

then
I
f
WRITE(6) TAB(-50),CI,COLUMN(5),C2,C3,TAB(2) ;

i

produces output of the following form:

C
V

INITIAL

POSITION OF

SECOND THIRD _ FIRST

: .77_ !..................... .

TAB LEFT 50

COLOUMNS, MO%"£
DOWN 1 LINE

BY DEFAULT

5 BLANKS I COLUMN 5

! FINAL POSiT{ON

TAB RIGHT OF DEVICE MECHA_.'ISM

2 COLUMNS

12-14

INTERMETR'CSINCORPO_ATED.701 CONCORD AVENJE. CAMBRIDGE MASSACHUSETTS 0f138.(61716611840

1975006407-190

VERTICALPOSITIONING

The three pseudo-functions SKIP, PAGE, and LINE serve to
position a device mechanism vertically. PAGE can only be

used in I/O via a paged device; the behaviour of LINE is

different dependi,Lg on whether a de"ice is paged or unpaged.

The form of the three pseudo-functions is as follows:

SKIP(e)

PAGE(6)

LINE (y)

i. a, 6, and 7 are integer expressions.

2. SKIP(_) moves the device mechanism

downward by the number of lines speci-

fied by _. The value of _ may be zero,
in which case SKIP can suppress a de-

fault line advancement. However,

may not be negative _indicating up-

wards movement). SKIPs over page
boundaries are allowed.

3. PAGE(D) moves the device mechanism

downward by the number of pages

specified by 6. As in SKIP, _ may not
be negative in value. The relative

line number remains unchan@ed.

4. For unpaged devices, LINE(w) positions °
the device mechanism at line y. The
value of f must not be such as to cause

upwards movement of the device mechanism.

5. For paged devices, LINE(y) has a different
behaviour_ Let the device mechanism be on

line _ prior to execution of LINE(y). If
T _ then the device mechanism moves to

line (' _ the next page. If y 5 f then the

devic£ echanism moves to line 7 on the cur-
rent p The value of 7 must]ie in the

range 1 y _ L, where L is the nuz&her of

llnes per page*.

* The number cf lines p_ page is implementation dependent.

Its value may be foun_ in thu User's Manual for a given
implementation.

12-15

INTERMETRICSINCORPORArF[). 7_ (ONCOq[_ AVF_UF "AMBRIDGE MASSACHUSETTS 02_38. (617)661 1840

1975006407-191

If a SKIP, LINE, or PAGE pseudo-function appears at the

beginning of a READ or WRITE statement, it overrides the
default downward movement of one line.

SKIP, LINE and PAGE pseudo-functions do not of themselves
inhibit the default horizontal movement to column i. Neither

does their appearance between two expressions in a WRITE state-
ment affect the standard data field Heparat_on.

Successive SKIPs and PAGEs are cumulative in effect.

Examples:

If Cl, C2, C3 are character data items

with C] 5 'FIRST'

C2 £ 'SECOND'

C3 _ 'THIRD'

and if channel 6 is a paged device

then
l
!
! WRITE(6) SKIP(0),CI,LINE(1) ,C2,C3;
!

produces output of the following form:

INITIAL POSITION

OF DEVICE MECHANISM

ADVANCE TO =

LINE 1 OF

NEXT PAGE t........ -- _ START IN COLUMN i

SKIP(0_ TNHIBITS

" DEFAf'"[_[<_ MECHANYSM

"'DEFAULT 5 BLAN"

I
!
I

SECOND THIRD_]_ -[]

T _FINAL POSITIONINGOF DEVICE MECHANISM

DEFAULT 5 BLANKS

12-16

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138 • _617) 661-1840

1975006407-192

I f

Note: If channel 6 were unpaged, the WRITE statement

would be illegal since it would be calling
for an upwards movement from line 40 co line i.

Further,
I

I WRITE(6) CI,PAGE(1),C2;
I

produces the output of the form:

J'----_ ,N,,,_os,T,oNo_
COLU_i __IR_T I

LINE41 _i

I

LINE 41
OF NEXT PAGE

I

_PAGE 6

__J _
':'INKLPOSITION O! OEVICE

fNTERMET81CS INCORPORAT6-D" 70! COf_CORD AVENUE •CAMSglDGE MASSACHUSETTS 02138" (617)661-1840

1975006407-193

1 I

12,5 DEVICEATTRIBUTES

In HAL/S, devices have been characterized as either paged

or unpaged. In the absence of any specific direction on

the part of a user, the following rules determine whether
a device being used is paged or unpaged.

• If only WRITE statements appear in a compilation
for a given channel, t,._n the deviue on that channel

will be paged.

• If only READ statements appear, or if both READ ,nd
WRITE statements appea- z.Jr a givep channel, then

the device on that channel will be unpaged.

The use_" may specifically direct certain channels to be

paged or unpaged, overriding these rules'.

* See t_e User's Manual for a given implementation.

12-18

:I

INTE -TBICS iNCORPORATED •701 CONCORD AVENUE •CAMBRIDGE MASSACHUSETTS 02138 . (617) 6611840
= •

1975006407-194

i

12,6 SUMMARY

S ction 12 f the Guide has described in detail the

H_/S constructs concerning sequential I/O, and has
di_cassed the results of using different kinds of READ
anu WRITE statements. Section 13 introduces the user

to the basic concepts involved in real time programming
using HAL/S.

HAL/S contains a FILE

statement by which random-

access I/O may be effected.
See: (tbd)

w w

.. 12-19

. . INTERMETRICS INCORPORATED . 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

1975006407-195

13, REALTIMEFEATURESOFHAL/.

So far the Guide has made no reference to the dynamic

properties of HAL/S programs. Clearly, any program will
take a finite time to execute but none of the constructs

hitherto described depend on any sense of time for their

operation.

However, the HAL/S language does contain constructs which

' depend on a sense of time for their operation. This is

what is meant by the statement that HAL/S is a "real time

programming language". In other words, HAL/S programs

can be written which, when executed, cause operations to
be carried out at desired points or during desired inter-
vals in "real time".

In some implementations of HAL/S, "real time" may be just
what the phrase implies, real clock time. In others, the

"real time" may be simulated in some way by the operating

environment of a HAL/S program: in this case, it can be
referred to as "pseudo-real time".

T_,is section of the Guide explains the basic HAL/S concepts
of real time programming, and describes some of the more

elementary real time programming language forms.

13,1 HAL/SREALTIMECOi CEPTS

The true H_L/S concept of a program at run time is an
entity executing over some interval in "real time",

diructed and c_ntrolled by a Real Time Executive (RTE).

At the outset, the RTE begins execution of the program.
When program execution is completed, control is returned

to the RTE. In HAL/S terminology, the dynamic counter-

part of the static program block, which is executing

under RTE control, is called a "real time process".

: 13-i
.

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE , CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

I

1975006407-196

i
z

MULTI-PROCESSINGINHAL/S

Multi-processing is the simultaneous handling of more
than one "real time process". With most present-day

machines, "simultaneous" really means interleaved,

because most machines can at one time only support the

execution of a single machine instruction sequence.
However, this distinction has no significance at the

higher level of the HAL/S language.

The RTE of HAL/S can simultaneously handle an arbitrary*

number of processes created by the user. A number is
attached by the user to each process, called its "priority".

The RTE maintains processes in a "process queue" ordered

by priority, and always endeavors to execute the processes

in order of priority, highest first.

The HAL/S program itself, beginning execution under the

RTE, constitutes the first or "primal process". All other

processes are brought into existence by the execution
of SCHEDULE statements coded into the program. Just as

the primal process has a static counterpart, which is

the program block coded by the user, so must the other
processes have their static counterparts. These are

so-called task blocks, which are coded inside the program

block in a very similar way to procedure blocks. Each
time a task block is invoke_ by execution of a SCHEDULE

statement, a new process is created and queued by the
RTE.

* See the User's Manual for the maximum number supported
in any given implementation.

13-2

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138 . (617) 661-1840 i

I

1975006407-197

A number of programs, indepen-

dently compiled, can be brought

together at run time. One

of them is chosen by the user
to start execution as the

primal process. Processes

can be generated from the

others by invoking them with
the same form of SCHEDULE state-

ment. Any of the programs are
allowed to contain task blocks

for which more processes in turn

can be created.

See: (TBD).

! 13-3

I --

INTERMETRICS INCORPORATED. 701 CONCORIDAVENUE • CAMBRIDGE MASSACHUSETTS 02138. (617j 661-1840

1975006407-198

i

STATESOFA PROCESS

It is now possible to represent the behavior of the
RTE by a more formal description of the possible

states* in which a process can exist. This in turn
will intzoduce other HAL/S constructs for controlling
the activities of the RTE.

A process can be in either of the following two major
states at a given time:

• ACTIVE STATE: a process is in an actxve state
when it exists in the RTE's process queue.

The state actually comprises three substates

or minor states in any one of which an active

process may be at a given time.

• INACTIVE STATE: a process is defined for

completeness as being in the inactive state

if it does not exist in the process queue.

The minor states of an active process are as follows:

• EXECUTING: an active process is "executing"
when it has actually been put into execution

by the RTE, operating on the priority principle

already described. The number of processes which

can be in this state simultaneously is implementa-
tion dependent**.

* The states to be defined do not correspond one-to-one

with the RTE states described in the Language Specification
document. The latter are defined for the convenience of

the formal description of language constructs. The former
are defined with user convenience in mind.

** In most implementations it is likely to be i, but see
the User's Manual for a given implementation.

13-4
INTERMETRICSINCORPORATED.701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138.(617) 661-1840

1975006407-199

• READY: an active process is "ready" if it
is available for execution, but higher priority

processes in execution are currently barring it.

The occurrence of a process first entering the

ready state will be called its "initiation".

• WAITING: an active process is"waiting" if it

is neither ready nor executing. Some condition
set up by the user prevents it being available

for execution by the RTE.

When a process is created by invoking a task block by a

SCHEDULE statement, it makes a transition from the inactive
state to an active state. It is entered into the process

queue in either the ready or the waiting state, depending
on the form of the SCHEDULE statement. If it is entered in

the ready state, then depending on its priority, it may

immediately be elevated to the executing state.

A process is caused to make a transition from an active
state to the inactive state (or removed from the process

queue) by a TERMINATE statement. The process is said
to have been "terminated".

The priority of an active process may be changed by an
UPDATE PRIORITY statement.

A process may be forced into the waiting state by execution
of a WAIT statement.

The statements outlined above are among the real time

programming language forms to be described later in this
section.

PROCESSSWAPPING& BREAKPOINTS

A process swap is a pair of state transitions in which

one process leaves the executing state, and a second enters
it from the ready state. The process swap may occur because

the first process has been forced into the inactive state
or the waiting state, or because the second process has a

higher priority than the first.

13-5

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

1975006407-200

The HAL/S language itself makes no assumptions on where

process swapping can occur. However, most implementations,

depending on the object machine characteristics, limit

process swapping to given places in the HAL/S code
sequences under execution by the RTE. These places are

called "breakpoints". The determination of breakpoints

is a function of the HAL/S compiler for a giv&n implemen-

tation, and no language construct exists to modify their
existence*.

The effect of breakpoints is to superimpose a kind of time
granularity on the operation of the RTE.

PRIORITYSCALES

The number specifying the priority P of a process is
an integer in the range:

0 4 P _ 255**

The primal process is assigned a priority of 50** by

the RTE on beginning execution.

* As an example, in the HAL/S-360 implementation, break-

points occur at the end of every executable statement.

** These values are, however, implementation dependent.

See Appendix for exceptions.

J

i

13-6

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 . t

1975006407-201

PROCESSDEPENDENCY

Suppose that there are two processes, A and 8, and
that A creates process B during the course of its

execution. At the time of creation, B may be specified

to be either "dependent" on or "independent" of A.

If B is dependent, it means that it depends for its
existence on the existence of A. If B is independent,

then A may cease to exist without affecting B's existence.

However, an overriding rule is that all other processes

are always dependent on the primal process for their
existence.

The consequences of dependency will be seen when the

flow of execution through program and task blocks is
described in Section 13.3, and again when the TERMINATE
statement in introduced in Section 13.5.

13,2 TASKBLOCKDEFINITIONS

A task block is a static block of code interior to a

program, from whence processes can be created by means

of the SCHEDULE statement. Task blocks may only be

defined at the program level, and not nested inside

procedure or function blocks define--_in a program. This
is illustrated as follows:

13-7

INTERMETRICS INCORPORA FFb • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

I

1975006407-202

I 1 I I 1

Program

= Task Block

Procedure Block

Nested FunctionA
v

Block

Region where Task
Blocks are legal

and may be nested.

13-8

INT[RMETRiCS INCORPORAIF[). 701 CONCORD AVFNU[= • CAMBRI[)GE MASSACHUSETTS 02138. (617) 661-1840

1975006407-203

Task block definitions are similar to program block
definitions as described in Section 3, and have similar

opening and closing statements.

RELATIVEPOSITIONOFTASKDEFINITIONS

Statements invoking a task block should normally follow
its block definition.

This rule is not absolute -

it can be circumvented by
the use of a task declara-
tion statement.

See: (TBD).

I

13-9

INTERMETRICS INCORPORATED •701 CONCORD AVENUE •CAMBRIDGE, MASSACHUSETTS 02138 •(617)f_I-1840

1975006407-204

|

i
TASKOPENING

The statement opening a task block takes the form:

I
6
o label :TASK;

i. Zab6_ is any legal identifier
name, and constitutes the name
of the task block.

TASKCLOSING

The statement closing a task block takes the form:

!
i CLOSE £ab_/;
!

i. The identifier ZabzZ is optional.

2. If supplied, it must be the name
of the task block.

Example:

DISPLAY: TASK;

CLOSE DISPLAY _

13-10

!

INTERMETRICS INCCRPOrtATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

1975006407-205

LOCALDATADECLARATIONS

Local data can be declared in a task block in exactly
the same way as it is declared in a procedure or

function block. The declarations appear ,u£ter the

task opening statement, and before the first executable
statement of the block. The forms of the declarations
have been described in Section 4.

Examples:

general positioning -

DISPLAY: TASK;

I ! local data declaY_tions

.-im

_ executable statements

CLOSE DISPLAY t

13--II

INTERMETRICS INCORPORAT6D . 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

I

1975006407-206

particular instance -

DISPLAY: TASK;

DECLARE S CHARACTer(10), ___ local data
I INTEGER; J

CLOSE DISPLAY;

13,3 FLOWOF EXECUTIONINPROGRAM& TASKBLOCKS

The flow of execution through program and task blocks

is subject to a new interpretation, based on the

concepts of real time programming introduced in this
section• Programs and tasks are treated together since

their representations at run time are in both cases

real time processes.

Execution of a process begins with the first executable

statement in the corresponding static program or task
block. It continues, and if not terminated by some

other process, ends in one of the following ways:

• by execution of a TERMINATE statement
terminating itself;

• by reaching the CLOSE statement of the
block;

• by execution of a RETURN statement in
the block.

If execution ends by self-termination, the pror<_sz goes

into the inactive state and is removed fr_,. tb_ :,ncess
queue. All dependents of the process are tre_t. _I. ;:xewise.

If execution ends on a CLOSE or RETURN stat_,_i_t_ the

process goes inLo the inactive state directly only i£
it has no dependents. Othezwise, it goes into a waiting
state until the dependents have in their turn terminated.

13-12

INTERMETRICS INCORPORATFD • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02135 • (617) t_61-1840 .

1975006407-207

I ! !

i

FORMOFRETURNSTATEMENT

The form of RETURN statement for programs and tasks

is the same as for procedures:

!
i

' RETURN ;
I

I

13,4 THESCHEDULESTATEMENT

The SCHEDULE statement is an executable statement causing

a new process to be placed in the process queue. The

SCHEDULE statement specifies a task block from which

the process is to be created, and the priority which
it is to be given. A condition for the initiation of

the process can be supplied.

Only one process derived from a given task block may

be act-_e at any given time.
X

The form of the SCHEDULE statement varies, depending on
whether it specifies immediate, or delayed initiation

(transition to the ready state).

IMMEDIATEINITIATION

The following variant of the SCHEDULE statement is the

simplest. It causes the creation of a process which
is placed in the process queue in the ready state. The

process is thus available for execution immediately.

13-13

INTERMETRICSINCORPORATED.701 CONCORD AVENUE .CAMBRIDGE MASSACHUSETTS 02t38.(617) 661-1840

I

1975006407-208

!

:SCHEDULE _bzZ PRIORITY(u) DEPENDENT;

i. A process is created from the task

block labeZ and placed in the process

queue in the ready state. The

process created is also known by
the name £abel.

2. u is an integer expression specifying

the priority of the newly-created

process. It must lie in the legal
range for a given implementation.

3. The keyword DEPENDENT is optional.

Its presence denotes the dependency
of the process created on the
process executing the SCHEDULE

statement. In its absence, the

processes are independent.

Examples:

SCHEDULE DISPLAY PRIORITY(100) DEPENDENT;

SCHEDULE RECOVER PRIORITY(255);

13-14

" T

I",J ; ,_/,r_i, _ _',,t _RPORATED •701 CONCORD AVENUE •CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 i

i

1975006407-209

I I

I 1 1 ,

t

i

DELAYEDINITIATION

The following form of the SCHEDULE statement causes

a process to be placed in the process queue in the
waiting state. The process is transferred to the ready

state on a specified time criterion being met. There
are two variants, each with a different time criterion.

Q INITIATION after some duration.

I

' .SCHEDULE Zab6£ IN i_6_vaf PRIORITY (e) DEPENDENT;
!

i. A process called Zab6fis created from the

corresponding task block and placed in the

process queue in the waiting state.

2. PRIORITY(s) and DEPENDENT have the same

meanings as described in the previous
form of SCHEDULE statement.

3. The phrase I'_ int_v_ indicates that the

process is to be put in the ready state
after a specified interval in the waiting

state, interval is a scalar expression whose
value specifies the duration in seconds.

4. If the value is negative or zero, the

process is put in the ready state immediately. 0

13-15

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

1975006407-210

]

i

• INITIATION at a given time.
l

!

_SCHEDULE _b6_ AT Z/m¢ PRIORITY(e) DEPENDENT;

i. A process called £abe£is created from
the corresponding task block, and placed

in the process queue in the waiting state.

2. PRIORITY(e) and DEPENDENT have the same

meanings as described in the previous
forms of SCHEDULE statement.

3. The phrase AT //me indicates that the

process is to be put in the ready state

at a specified real time. /ime is a

scalar expression whose value specifies
the time in seconds.*

4. If the indicated time is in the past,

the process is placed in the ready state
immediately.

* The real time origin is not specified by the language.

The origin is normally coincident with the initiation

of the primal process. Some implementations allow
its value to be preset at run time. See the User's

Manual for a given implementation.

13-16

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 . .

I

1975006407-211

1 I I 1
I

Examples:

SCHEDULE ALPHA AT 1.25E4 PRIORITY(I+5);

SCHEDULE BETA IN S+15.5 PRIORITY(20);

SCHEDULE statements can also

specify the cyclic execution

of a process until a stopping

criterion is met. An explicit

specification of the interval

between uycles can also be

given.

See: (TBD) .
w

13-17

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138. (617) 661-1840

1975006407-212

1 T 1

13,5 OTHERREALTIMEFEATURESOF HALLS

Three other real time programming statements which
have already been mentioned are now described. These

are the TERMINATE, WAIT, and UPDATE PRIORITY statements.
Certain other useful constructs are also introduced.

TERMINATESTATEMENT

A process is forced to the inactive state (removed from

the process queue) by means of the TERMINATE statement.
Its form is shown below:

I
I TERMINATE _bef ;i

I+. The appearance of label is optional.

If present, the statement terminates
an active process called lab_ .

_. If _bel is absent, then the process
executing the TERMINATE statement is

terminating itself.

In order to make independent processes truly independent,

HAL/S places an added restriction on the operation of

the TERMINATE statement. A process is only allowed to

use it to terminate itself or its dependents.

Note that when a process is terminated by execution of

a TERMINATE statement, all its dependents are automatically
terminated at the same time.

13-18

INTERMETRICSINCORPORATED.701 CONCORD AVENUE "CAMBRIDGE MASSACHUSETTS 02138. (617) 661-1840

1975006407-213

Examples:

I
s TERMINATE; self termination

l TERMINATE BETA; termination of dependent!
I

If a number of processes are to be terminated

simultaneously, the TERMINATE statement can
specify a list of process names:

i
i TERMINATE ALPHA, BETA, GAMMA;
I
I

WAITSTATEMENT

The WAIT statement is used to force the process executing

it into a waiting state until some condition is met, where-

upon it returns to the ready state. Three forms, each
with a different condition, are described below

• WAIT for a duration.

!
i WAIT i_lzrval ;
I

i. The statement indicates that the

process is to be placed in the
waiting state for a specified
duration.

J

2. interv_ is _ scalar expression

specifying the duration in seconds.

3. A negative or zero value results in

the process not leaving the ready
state.

13-19

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138. (617) 661-1840

1975006407-214

r f _

1
i

• WAIT until some time.

!
! WAIT UNTIL Z/me ;I

i. The statement indicates that

the process is to be placed

in the waiting state until
some given time.

2. /ime is a scalar expression

specifying the time of return

to the ready state, in seconds*.

3. Specification of a time in the

past results in the process not

leaving the ready state.

• WAIT for dependents.

I
! WAIT FOR DEPENDENT;
I

i. The statement indicates that the

process is to be placed in the

waiting state until all its

dependent processes have termin-
ated.

2. If there are no dependents, the
statement has no effect.

Examples:

WAIf UNTIL DELTA_T+I5E2;
WAIT S/2;
WAIT FOR DEPENDENT;

* See the discussion on the SCHEDULE statement in

Section 13.4 for a footnote remarking on the real

time origin.

!
3

13-20

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840 " i

1975006407-215

!

UPDATEPRIORITYSTATEMENT

The UPDATE PRIORITY statement is used to change the
priority of an active process. Its form is:

I

I UPDATE PRIORITY labzl TO _;

i. The process whose priority is to
be changed is specified by _b6£.

2. The name lab6_is optzonal. If

omitted, the process executing
the statement is indicated.

3. a is an integer expression whose
value indicates the new priority

value to be assigned.

Examples:

UPDATE PRIORITY TO 16;

UPDATE PRIORITY ALPHA TO I+20_

Since the RTE operates on a basis of priority, apparently
a user could control the execution of a desired set of

processes by manipulating their relative priorities.
Although this is entirely possible, it is not recommended

since the behavior of such a priority-driven scheme would

depend on how many processes an RTE could bring into the
executing state simultaneously, which is an implementation-

dependent figure.

13-21

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

|

1975006407-216

i

,t
rl REALTIMEBUILT-INFUNCTIONS
!

Two built-in or library functions are of utility

in constructing real time programs:

Function Comments

RUNTIME returns the current

value of real time as

a scalar, in seconds.

PRIO returns the priority
of the process in-

voking the function

as an integer.

MAJORSTATEINDICATION

There exists a way of finding out whether the current

state of any process is either active or inactive (i.e.
whether or not it exists).

The name of the process can be used as if it were a

Boolean variable. The following tables shows the
correspondence between state and truth value.

J

State Value

ACTIVE TRUE

INACTIVE FALSE

Example:

to write a message if a process ALPHA exists -
I

I IF ALPHA THEN WRITE(6) 'ALPHA IS ACTIVE';I
I
i

13-22

INTEAMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138. (617) 661-1840

k A

1975006407-217

!

1 I I
I

]

i

13,6 A SIMPLEREALTIMEPROGRAM

The utility and importance of the constructs defined

in this section can only be properly understood by
presenting an actual example of a real time program.

The following example is given in the form of a problem
and its solution.

PROBLEM

The problem is to write a program which, when run on a

computer facility with remote interactive terminals,
will aid users in e]ectronic circuit design (to take

an arbitrary example). A user begins each design

session by logging onto the facility at a terminal, and

invoking execution of the circuit design program.

The program is to be set up so that, at the outset, the

user may specify the desired duration of his session.

The program is then to interrupt the user's calculations
every I0 minutes and remind him how much time he has

used. At the expiratio[of the specified session duration,
the program is to allow the user i0 minutes more and then
terminate the session.

" SOLUTIGN

Only the overall features of the program from the real

time prograrm_ing standpoint are illustrated here. The

actual circuit design algorithms are of no consequence.

Execution of the circuit design program implies the
existence of three real time processes.

! • a SUPERVISOR process controlling the two
others, which determines the session dura-

tion, and makes arrangements to terminate

the session at its expiration. Most of the

time this process will be in the waiting state.

13-23

INTERMETRICS INCORPORATED .701 CONCORD AVENUE .CAMBRIDGE. MASSACHUSETTS 02138 . (617) 66'1-1840

A

1975006407-218

!

• a TIMER process which informs the user how

much time he has used every 10 minutes. This
process is also mostly in the waiting state,

temporarily being in execution every I0 minutes.

• a CALCULATOR process which actually interacts

with the user in his design session. This

process is executing most or all of the time.

The following diagram summarizes the activities of the
three processes.

START

SUPERVISOR

i. determine

session length ____ TIMER

2. schedule TIMER
and CALCULATOR i. waIFt-_

processes _ minutes

3. wait till end
2. signal

of session _ time
used

' 4. signal I0 _I___
minutes more

5. wait I0 minutes

6. signal end of
session and CALCULATOR
t_rminate -

interactive

I execution of
I design algor-
* ithms

i

13-24

tNTERMETRICS INCORPORATED .701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840
/,

=

I

1975006407-219

i

Clearly, in order for TIMER to inter_u[,t CALCULATOR reliably

every i0 minutes, it must ha_e a higher priority than

CALCULATOR. Likewise, SUPERVISOR should be of higher

priority than CALCULATOR. The relative priorities of

SUPERVISOR and TIMER do not matter since TIME is mostly
in the waiting state anyway. The table below shows

suitable priorities for each of the three processes.

process priority

SUPERVISOR 50

TIMER 50

CALCULATOR 25

t--

13-25

INTERMETRICSINCORPORATED.701 CONCORD AVENUE ,CAMBRIDGE MASSACHUSETTS 021_ .(617) 661-1_0

A

1975006407-220

The HAL/S program corresponding to these processes
is as shown below:

...4DSUPERVISOR will be the
_/ primal process, initiated

SUPERVISOR: PROGRAM; _-"'--

DECLARE S SCALAR; by the RTE at time 0.0
• with priority 50.

TIMER: TASK; : :TIMER task b_ock

DO WHILE TRUE;
WAIT 600;

WRITE(6) 'YOU HAVE USED 'I IRUNTIME/601i ' MINS.';
END ;

CLOSE TIMER; _infinite loop: wait 600
• seconds and signal time
: used

CALCULATOR: TASK; = _ CALCULATOR task block

I' i design algorithms

CLOSE CALCULATOR; first executable state-

• /: ment of program

WRITE(6) 'TYPE SESSION DURATION IN MINS. ';
RF_AD(5) S; 4 Adetermine session

--duration
SCHEDULE TIMER PRIORITY(50) ;

SCHEDULE CALCULATOR PRIORITY(25); _ Schedule TIMER &
WAIT S 60 ; _ _CALCULATOR processes

WRITE(6) 'TIME UP-10 MINS. MOPE ALLOWED';'_wait for session
WAIT 600; 4

WRITE(6) 'END OF SESSION'; _duration
TERMINATE; _ Wallow i0 minutes

CLOSE SUPERVISOR; _ more_signal end of
session & tezminate

13-26

tNTERMETRICSiNCORPORATED.701 CONCORD AVENUE ,CAMBRIDGE. MASSACHUSETTS021_ ,(6 _, _1-1_0

I

1975006407-221

13,7 SUMMARY

Section A3 has introduced the HAL/S concepts of real
time and described constructs for the creation of real

time programs. A concluding example shows how the

constructs can be combined to perform useful functions
in real time.

, Section 13 completes Part I of the Programmer's Guide.

The constructs described

above enable real time

processes to be manipu-

lated according to time
criteria. Other constructs

enable their manipulation

according to "event" cri-

teria. HAL/S "events" are

Boolean-like data types
whose values are accessible

to the RTE. Their values

can be set Dy the user,

thus indirectly controlling

the real time process
states.

See: (TBD).

The problem of controlling

the sharing of data by two

or more processes is also

important.

Se_: (TBD).

13-27

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE , CAMBRIDGE, MASSACHUSETTS 02138 • _617) 661-1840

J

I

1975006407-222

................. m

f

14, SUMMARYOF PARTI

Part I of the Programmer's Guide has presented a wide

variety of the simpler constructs of the HAL/S language.
It has laid sufficient ground work for the understanding

of more complex language forms which are to be presented
in Part II.

_ low is summarized the material which has been presented
i Part I.

SECTION 1 described, on a conceptual level, the nested

block structure typical of HAL/S programs, and

explained how globally and locally visible data

could be declared. It also introduced the concept

of nested groups of statements. The desirability
of these hierarchical forms was expressed from the

structured programming viewpoint.

SECTION 2 began describing the HAL/S language on the

most fundamental level by specifying its character

set; by explaining the forms of reserved words,

identifiers and literals; and by introducing the
format in which HAL/S source text is written.

SECTION 3 dealt with the HAL/S program as the basic

unit of compilation. The delimiting statements

of a program were defined and the positions within
it of data declarations and executable statements

described. The flow of execution within a program
was pointed out.

SECTION 4 began defining the contents of HAL/S programs

in more detail by presenting the various forms of
declaratiun statements by which data could be defined.

Ways of initializing this data were also described.

14-1

INTERMETPlCS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840
Lj

1975006407-223

SECTION 5 turned aside from the discussion of HAL/S

data by defining the form of REPLACE statements,

by which symbolic HAL/S text substitutions could
be made.

SECTION 6 returned to the discussion of HAL/S data

by describing in detail how each of the H_/S

data types could be referenced, using subscripting
to reference their specific component parts.

SECTION 7 began building a body of information towards
the introduction of executable statements by describing

how expressions of various types could be built up

by combining operators with data items, literals and
functions as operands. The topics of precedence

and type conversion were addressed in the course of
the section.

SECTION 8 introduced the assignment sta. ement, the first
executable statement to be described in Part I.

Each type of assignment was individually treated.

SECTION 9 expanded the repertoire of executable statements

by presenting the IF statement, by whose means condi-

tional execution of HAL/S statements could be effected.
Its use in conjunction with statement labels and
branches was discussed.

SECTION 10 formalized the idea of a statement group and

stressed the importance of the idea from the structured

programming standpoint. Various forms of statement
group were introduced, including versions which caused

repetitive or selective execution of the delimited
statements.

SECTION ii developed the concept of procedure and function
blocks as callable entities. The forms of procedure
and function block definitions were introduced,

an_ the use of input and assign parameters explained.

The manner of invoking procedures and functions was
presented, and rules for matching argument and para-

meter lists defined. Lastly, the form and purpose

of the RETURN statement was pointed out.

14-2

INTERMETRICS INCORPORATED .701 CONCORD AVENUE "CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

|

1975006407-224

i

I

I

SECTION 12 concluded the presentation of the HAL/S

program as a static entity by describing in
detail how input/output statements are constructed.

SECTION 13 introduced the new idea of HAL/S as a real

time programming language. The concept of real time
processes executing at run time under the control

of a Real Time Executive was presented. The form
of the task block, the static counterpart of a real

time process was described, and the SCHEDULE state-

ment for the creation of real time processes defined.

Other constructs for the handling of processes, among
them the TERMINATE, WAIT, and UPDATE PRIORITY state-

ments, were explained. Finally, a complete ex_t_ple

showing the assembly of the constructs into a viable

real time program was described.

14-3

INTERM£TRICS INCORPORATED . 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138. (617) 661-1840
i

1975006407-225

! _ I I 1

b
i

__ INDEX

ABS 7-32

ABVAL 7-33

active (state)]3-22

addition and subtraction 7-3, 7-4, 7-5

algebraic functions 7-33

argument list (function) 11-7, 11-8

argument passage (function) 11-7

arithmetic functions 7-32

arithmetic operations 7-1, 7-2

arithmetic precedence 7-23

array 4-2, 4-8, 12-6

array subscripting 6-1, 6-8

arrayed data types 6-8

array and component subscripting 6-10

ARRAY 4-8, 4-12

#

assign arguments 11-14

assignment statement 7-1

asterisk 6-6, 6-11

asterisk, in subscripts 6-5

attributes 4-8

AT 6-5, 6-6

AT time 13-16

attributes (function type) 11-4

augmented IF statement 9-4

INTERMETRICSINCORPORATED'701 CONCORD AVENUE .CAMBRIDGE MASSACHUSETTS 02138. (617) 661-1840

J

1975006407-226

binary literal strings 2-7

block closing 11-4

block definitions 11-2

block definitions (relative position) 11-2

blocks 1-2

block structure 1-2

Boolean 2-4, 2-7, 9-2,

4-10, 4-11, 9-7,

9-12, 10-5

Boolean

data type 4-2
operations 7-20

precedence 7-24

subscripting of 6-1

boolean parameter 11-10

boolean parameter (argument type) ii-i0

branches 9-15

branching 10-15

break points 13-6

built-in functions 7-32

built-in function names 2-2

catenation 7-18

character 4-7, 4-10, 4-11

data type 4-2
functions 7-34

operations 7-18
precedence 7-23

INTERMETRICS INCORPORATED '701 CONCORD AVENUE "CAMBRIDGE. MASSACHUSETTS 02138 . (617) 66i-1840

f

1975006407-227

I
i

character parameter 11-9

character parameter (legal argument types) 11-9

character parmmeter (working lengtn) ii-i0

character string literals 2-4, 2-6

character set 2-1

character subscripts 6-1, 6-2, 6-3

channels 12-1, 12-4

class I operators 9-7, 9-10

class II operators 9-7

class II 9-8, 9-10

CLOSE 11-4, 13-12

colon
use of 6-10

use in _rray subscripting 6-8, 6-9, 6-11

columns 12-1, 12-13

combining operations and precedence 7-23

combining comparative operations 9-12
a

comma
in declarations 4-9

use in double precision VECTOR conversions 7-28

use in double precision MATRIX conversions 7-30
use of 12-9

comments, HAL/S 2-10

comment lines 2-11

comparative operations 9-7

complement 7-20

compound statements 1-8, 10-13

INTERMETRICS INCORPORATED " 701 CONCORD AVENUE , CAMBRIDGE MASSACHUSETTS 02138. (617) 661-1840

J

I

1975006407-228

compound declarations 4-9

component subscripting 6-I

component subscript 6-11

conditional statement 9-i, i0-i

cond 10-5

conjunction 7-21

control variables 10-5, i0-i0

c0nt_0_ 10-2

CONSTANT 4-10, 4-11

COS 7-33

crossproduct 7-7

data declarations i-3, 4-1, 5-1

position of 3-2

data fields 12-4, 12-5, 12-6,

12-8, 12-11

data formats 12-6, 12-9

data referencing 6-1

data storage 12-4 ,

data subscripting 6-1

data types 4-i

DATE 7-34

decimal notation 2-4

DECLARE 4-9

declaration of local data (procedures &
functions) 11-6

declaration of local data (position) 11-6

declaration of local data (task block) 13-11

example 13-i1, 13-12

INTERMETRICS INCORPORATED" 701 CONCORD AVENUE .CAMBRIDGE MASSACHUSETTS 02138 . (617) 661-1840
A

1975006407-229

I

declaration of parameters (position) 11-6

declaration of parameters (procedures &
functions) 11-6

declaration statements 4-3, 4-10

delimiters 2-2

delimiting statement groups i0-I

device attributes 12-18

device mechanism 12-1, 12-2, 12-5,
12-8

device mechanism positioning 12-12

division 7-5

DIV 7-32

DO statement 10-2

DO CASE statemm.t 10-13

; DO CASE..ELSE 10-14

i DO... END 10-4
! DO FOR statement 10-5, 10-8
!
|

DO FOR i0-i0, 10-18, 10-20

i
DO UNTIL statement 10-7

DO WHILE statement 10-5

DO WHILE 10-16, 10-18, 10-20

Dot Product 7-6

DOUBLE 4-3, 4-4, 4-5,
4-7, 7-26, 7-28,
7-30

i"

double precision 4-2, 4-4

INTERMETRICSINCORPORATED'701 CONCORD AVENUE .CAMBRIDGEMASSACHUSETTS 02138.(_17) 66t-1840

1975006407-230

ELSE 9-i, 9-15

666e 6_a/cme_t 9-4

END statement 10-3

error recovery 1-2

executing (process) 13-4

execution, path of 3-4

EXIT 10-17, 10-16

EXIT stmt 10-15

exponents 2-8, 2-9

exponentiation 7-13

expressions 7-1

EXPRESS ION 7-I

expression 7-2 6

exp 7-27, 7-28, 7-29,
12-4

EXP 7-33

#

factored declaration 4-9

FALSE 9-1, 9-2, 9-4,
9-7

o 1o-8

floating point 4-1

flow of execution 3-3

flow of execution (program block) 13-12

flow of execution (task block) 13-12

format 2-8

single line 2-8
multi line 2-9

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02:38 • (617) 661-1840 i

1975006407-231

fractional-valued literal 2-5

full word 4-3

function block 1-2, 1-3, 5-1

function (input parameters) II-i, 11-4

function, invocation of 11-2

function invocations 11-7

illegal function invocation (example) 11-12

legal function invocation (example) ii-i0, II-ii

function opening 11-4

function return I1-19

function name 1-4

functions II-I

GO TO statement I-8, 9-17

GO TO 9-1, 10-15

GO TO statements

elimination of 9-18

and statement groups 1-8
legal destinations 1-9, I-i0 0
block structure I-i0

halfword 4-3

horizontal positioning 12-12

identifiers 2-2, 2-3, 4-1,

4-2, 5-1

IF clause 9-1

IF statement 9-2

imbedded comment 5-1

implicitly-declared data items 4-1

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE 'CAMBRIDGE, MASSACHUSETTS 02138 . (617) 881-1840
m

1975006407-232

T T

I

inactive (state) 13-22

_NC 10-8

INITIAL 4-i0, 4-11

i./_ 10-8

initiation (delayed) 13-15
examples 13-15, 13-16

initiation (process) 13-13
example 13-14

initialization of data 4-10

I/O device 12-1

input/output formatting 12-11

input/output statements 12-1

integer 4-10, 4-11, 6-1, 7-1
data type 4-1, 4-3

integral-valued literals 2-5

intersection 7-22

integer/scalar parameter 11-9

integer/scalar parameter (legal argument
type 11-9

inversion 7-13

INVERSE 7-33

keywords 2-2, 4-3

fabe/ 3-i, 3-2, 9-15,
9-17, 10-3

label (_$_zm_£) 9-2

labels 9-15

LENGTH 7-34

line 12-1

LINE 12-15, 12-16

INTERMETRICSINCORPORATED'701CONCORDAVENUE.CAMBRIDGE MASSACHUSETTS02138.(617) 661-1_0

1975006407-233

! f

literals 2-I, 2-2, 2-4,
5-1

local data 1-4

LOG 7-33

matrix 4-5, 4-11, 4-12
5-2, 6-1, 7-1

matrix arguments 11-14

matrix argument (subscripting) 11-14

matrix conversion 7-29

matrix, data type 4-1

matrix parameter (function) Ii-8

matrix subscripting 6-5, 6-6, 6-7

MAX 7-34

MIN 7-34

miscellaneous functions 7-34

: , multi-line format 2-9

multiple exponents 2-5

multiplication 7-8, 7-9, 7-10,
7-11

multi-processing 13-2

multi-valued data items 4-10, 12-9

multi-valued data 4-11, 4-12

multi-valued expressions 12-6

_AME 4-3, 4-4, 4-5,
4-6, S-7, 4-8,
5-1

negation 7-2

nesting 1-2, 1-8
z'

INTERMETRICSINCORPORATED• 701 CONCOROAVENUE• CAMBRIDGE,MASSACHUSETTS021_ • (617) 661-1_0
A

1975006407-234

!

I v I

nested substitution 5-2

ODD 7-32

operators 2-2

order of initialization 4-12

overriding precedence order 7-25

output listings 2-1

PAGE 12-15, 12-16

paged I/O device 12-3, 12-4, 12-18

parenthesis

use of in expressions 7-1
Boolean 7-25

partial initialization 4-13

precedence (relational) 9-13

precision conversion 7-17, 7-26, 9-11

primal process 13-2

PRIO (built-in function) 13-_2

priority 13-2

priority scales 13-6

procedur_ (assign parameters) Ii-i, 11-3

procpdure (input parameters) 11-1, 11-3

procedure invocation 11-13

procedure invocation (assign parameters) 11-13

procedure invocation (CAT,L statement) II-I_

procedure invocation (input arguments) 11-13

procedure invocation (pesslng of argument
lists) 11-14

procedure invocation (position) 11-2

legal procedure invocation (example) 11015, 11-16

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBHIDGE MASSACHUSETTS G21_ * (61 l) 661-1_0

J
I

1975006407-235

procedure openi, i1-3

procedure block 1-2, 1-3, 5-1

procedure name 1-4

procedure return 11-18

procedures ii-i

procedures and functions 11-18

process dependency 13-7

process states 13-4

process swap 13-5

program block 1-2, 3-i, 5-1

program block name 1-4

program closing 3-2

program opening 3-i

pseudo-functions 12-12

' pseudo-real time 13-1

quotation marks 5-1 °

RANDOMG 7-34

READ statement 12-8, 12-9, 12-10,

12-11, 12-12, 12-13,

12-16, 12-18

ready (process) 13-5

REPEAT statement 10-15, 10-18, 10-19

real time built-in functions 13-22

real time concepts 13-i

real time control 9-2

: real time f_atures 13-1

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138 • (617) 661-1840
i

1975006407-236

I !

real time process 13-1

sample real time program 13-23, 13-24, 13-25,
13-26

recursion 1-4, 1-7

relational expressions 9-7, 9-12, 10-15

repetition (literal) 2-7

replace statements 5-1, 5-2

REPLACE 5-1, 5-2, 5-3
and block structure 5-3

replace parameters 5-4

reserved words 2-1, 2-2, 5-1

RETURN 11-18, 13-12

RETURN statement 13-13

round 7-32

rounding 7-26, i0-i0, 10-12

RTE 13-2

RUNTIME 13-22

SCALAI 4-10, 4-11, 6-3

scalar, data type 4-I

scalar 4-4, 7-1

scalar subscripts 6-i

SCHEDULE 13-5

SCHEDULE statement 13-2, 13-13

scoping 1-3

._ scuping of block names 1-4

sequence (Boolean) 7-24
W

I INTERMETRICS INCORPORATED. 701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840 .

f

1975006407-237

!

sequence (precedence) 7-23

sequential I/O 12-1

semicolon, use of 2-10, 4-8

separators 2-2 (see special
characters)

SIGN 7-32

SIN 7-33

SINGLE 4-3, 4-4, 4-5,

a-6, 7-26

single line format

single precision 4-2

SKIP 12-15, 12-16

source text 2-i, 2-8, 5-1

special characters 2-1, 2-2

SQRT 7-33

active state 13-4

• inactive state 13-4

major state indication 13-22

minor process states 13-4

6tcutZmZ_ 9-2, 9-15

statement delimiting 2-10

statement grouping i-8

statement groups 10-1

statement labels i-I0

stream-oriented I/O 12-4

structures 4-2, 6-12

structured programming 1-2

INTERMETRICSlNCORPORATED'701 CONCORD AVENUE .CAMBRIDGE MASSACHUSETTS02138.(617) 661-1840

i

1975006407-238

structuring i-i

subroutines i-i

subscripts 2-8, 2-9

subscripts of unarrayed data items 6-1

symbolic name 5-1

TAB 12-13

Task block definition 13-7

task definitions (relative position) 13-9
TAN 7-33

task closing 13-10

task closing (example) 13-10

Task opening 13-10

TERMINATE 13-5, 13-12

TERMINATE statement 13-18

TO- 6-5

transpose 7-6, 7-13, 7-16

TRUE 9-I, 9-2, 9-4,
9-7

UNIT 7-37

unpaged I/O device 12-1, 12-2, 12-3,
12-8, 12-18

uni-valued data 4-10

uni-valued data items 12-9

uni-valued expressions 12-6

UPDATE PRIORITY 13-5

UPDATE PRIORITY statement 13-21

tNTERMETRICS INCORPORATED "701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

i

1975006407-239

vaZue 4-10, 4-11

vaA 10-8

vector 4-6, 5-2, 6-1,
7-1

VECTOR 4-11. 4-12

vector arguments 11-14

vector argument (subscripting) 11-14

vector conversion 7-27

vector, data type

vector - matrix functions 7-33

vector parameter (function) 11-8

vector subscripts 6-3, 6-4

vertical positioning 12-15

WAIT 13-5

WAIT statement 13-19, 13-20

Waiting (process) 13-5

well-bracketed 1-8, 10-1 '

WRITE statement 12-4, 12-5, 12-11,
12-12, 12-13, 12-16,
12-18

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138 • _617) 661-1840

1975006407-240

