e, R AS A T

[S TV

(NASA-CR-14(389) S
(Intermetrics, Inc.) 240 p HC $7.50

! '@ https://ntrs.nasa.gov/search.jsp?R=19750006407 2020-03-23T00:28:46+00:00Z

i 1

PSS
NASA CR-
gt 23 S
4
HAL/S EROGRAMMER'S GUIDE N75-14479
CSCL 09B
Unclas
G3/61 06027
e) ? /; AN
s Nl (VSN
/‘:Jl ' IIN
/Kf z =t \
f\\\ 7>-,,‘r 7]
rv‘ = "4“ P .
o
) ot
\“i \;:
Nl

- HAL/S
| PROGRAMMER'S
GUIDE
IR-63-4

15 August 1974

Prepared by:

P.M. Newbold
R.L. Hotz

Typescript:

V.L. Cripps Approved:

Daniel J. Lickly
HAL Language/Compiler Dept.
Head

Approvead:

. \ A
» —Nioa N\ ‘t\\\\(\ Al

oo Dr. F. H. Martin
Shuttle Program Manager

_INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

« -

.~ -

-

;-

FOREWORD

This document was prepared for the Johnson Space
Center, Houston, Texas, under contract NAS 9-13864.

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

Doe

5 v
TS

CONTENTS OF PART 1

Page
1, STRUCTURE OF HAL/S 1-1
1.1 StrucTurRING AND HIGHER ORDER LANGUAGES 1-1
1.2 THe BLock StrucTure ofF HAL/S 1-2
1.3 STATEMENT GrRoOuPING IN HAL/S 1-9
1.4 SumMARry 1-12
2, HAL/S SYMBOLOGY 2-1
2,1 THe CHARACTER SET 2-1
2.2 ReserveD WorDS, IDENTIFIERS, AND LITERALS 2-2
2,3 ForMAT OF SOURCE TEXT 2-8
2.4 STATEMENT DELIMITING 2-10
2.5 Comments 1n HAL/S 2-10
2.6 SumMMARY 2-11
3, A HAL/S COMPILATION - THE PROGRAM BLOCK 3-1
3.1 Openine AND CLOSING THE BLock 3-1
3,2 Position oF DATA DECLARATIONS 3-2
3.3 Frow oF EXECUTION IN THE PROGRAM 3-3
3.4 SUuMMARY 3-4
4, DATA DECLARATION 4-1
4.1 HAL/S Data Types 4-1
4,2 SiMPLE DECLARATION STATEMENTS 4-2
4,3 INITIALIZATION OF DATA 4-10
.- 4.4 SuMmMARY 4-13

-

.. INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (6171 661-1840

o
1]
0

5. REPLACE STATEMENTS 5-1
5.1 THE REPLACE STATEMENT 5-1

5.2 UsiNe REPLACE STATEMENTS 5-2

5.3 SuMMARY 5-5
6. DATA REFERENCING AND SUBSCRIPTING 6-1
6.1 SuBscriPTS OF UNARRAYED DATA TYPES 6-1

6.2 SuBscrRIPTS OF ARRAYED DATA TypEsS 6-8

6.3 SuMMARY 6-12

7. EXPRESSITONS 7-1
7.1 Ari1THMETIC OPERATIONS a1

7.2 CHARACTER OPERATIONS 7-18

7.3 BooLEAN OPERATIONS 7-20

7.4 CoMBINING OPERATIONS & PRECEDENCE 7-23

7.5 SoMe ExpLICIT CONVERSIONS 7-26

7.6 BuiLt-IN FuncTIONS 7-32

7.7 SUMMARY 7-35
8. ASSIGNMENTS 8-1
8.1 GENERAL FORM OF ASSIGNMENT 8-1
8.2 ARITHMETIC ASSIGNMENTS 8-2
8.3 CHARACTER ASSIGNMENTS 8-~7

8.4 BOOLEAN ASSIGNMENTS 8~10

8.5 MuLTIPLE ASSIGNMENTS 8-11

8.6 SuMMARY 8~13

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-18.9 *

g. CONDITIONAL STATEMENTS AND BRANCHES 0-1
9.1 THe CoNDITIONAL STATEMENT 9-1

9.2 RELATIONAL EXPRESSICNS 9-7
9.3 LABELS AND BRANCHES 9-15
9.4 SumMARY 9-19

10, STATEMENT GROUPS 10-1
10,1 DeLiMiTING STATEMENT GROUPS 10-1

10,2 RepeTiTIVE EXECUTION OF STATEMENT GrROUPS 10-5
10.3 SeLecTive ExecuTioN oF STATEMENT GRoOuPS 10-13

10.4 BRANCHING IN STATEMENT GROUPS 10-15
10.5 SummarY 10-21
11, PROCEDURES AND FUNCTIONS 11-1
11.1 INTRODUCTION 11-1
11.2 Brock DEFINITIONS 11-2
11,3 DecLARATION OF PARAMETERS AND LocaL DATA 11-6
11.4 FuncTion INvOCATIONS 11-7
11.5 PROCEDURE INVOCATIONS 11-13
11.6 ReturNs FRoM PROCEDURES AND FuNcTIONS 11-18
11.7 SuMMARY 11~20

. INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

Page

12. INPUT/OUTPUT STATEMENTS 12-1
12,1 HAL/S InpuT/OutPut CONCEPTS 12-1
12.2 THe WRITE STATEMENT 12~4
12.3 THe READ STATEMENT 12-8
12.4 Input/OuTPuT FORMATTING 12-11
12,5 Device ATTRIBUTES 12-18
12,6 SumMARrY 12-19

13, REAL TIME FEATURES OF HAL/S 13-1
13,1 HAL/S ReaL TiMe CoNCEPTS 13-1
13,2 Task BLock DEFINITIONS 13-7

13.3 FLow oF ExcscuTioN IN PrRoGrRAM & TAsSK BLocks 13-12

13.4 THe SCHEDULE STATEMENT 13-13
13,5 OTHER ReAL Time FEATUREs oF HAL/S 13-18
13,6 A SiMpLE ReAL TIME PROGRAM 13-23
13.7 SuMMARY 13-27
14, SUMMARY OF PART 1 14-1

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

INTRODUCTION

HAL/S is a programming language developed by Intermetrics, Inc.
for the flight software of the NASA Space Shuttle program,
HAL/S is intended to satisfy virtually all of the flight
software requirements of the Space Shuttle. To achieve this,
HAL/S incorporates a wide range of features, including appli-
cations-oriented data types and organizations, real time
control mechanisms, and constructs for systems prcaramming
tasks.

As the name indicates, HAL/S is a dialect of the original
HAL language previously developed by Intermetrics [1].
Changes have been incorporated to simplify syntax, curb
excessive generality, or facilitate flight code emission.

REVIEW OF THE LANGUAGE

HAL/S is a higher order language designed to allow programmers,
analysts, and engineers to communicate with the computer in a
form approximating natural) mathematical expression. Parts of
the English language are combined with standard notation to
provide a tool that readily encourages programming without
demanding computer hardware expertise.

HAL/S compilers accept two formats of the source text, the
usual single line format, and also a multi-line format corres-
ponding to the natural notation of ordinary algebra.

DATA TYPES AND COMPUTATIONS

HAL/S provides facilities for manipulating a number of different
data types. Its integer, scalar, vector, and matrix types,
together with the appropriate operators and built-in functions
provide an extremely powerful tool for the implementation of
guidance and control algorithms. Bit and character types are
also incorporated.

HAL/S permits the formation of multi-dimensional arrays of
hor.ogeneous data types, and of tree-like structures which
are organizations of non-homogeneous data types.

. INTERMETRICS INCORFORATED 701 CONCORD AVENUE + CAMBRIDGE MASSACHUSE TTS 07138 + (617) 661-1840

REAL, TIME CONTROL

HAL/S is a real time control language. Defined blocks of

code called programs and tasks can be scheduled for execu-
tion in a variety of different ways. A wide range of commands
for controlling their execution is also provided including
mechanisms for interfacing with external interrupts and other
environmental conditions.

ERROR RECOVERY

HAL/S contains an elaborate run time error recovery facility
which allows the programmer freedom (within the constraints
of safety) to define his own error processing procedures, or
to leave control with the operating system.

SYSTEM LANGUAGE

HAL/S contains a number of features especially designed to
facilitate its application to systems programming. Thus,
it substantially eliminates the necessity of using an
assembler language.

PROGRAM RELIABILITY

Program reliability is enhanced when software can, by its
design, create effective isolation between various sections

of code, while maintaining ease of access to commonly used

data. HAL/S is a block criented language in that blocks

of code may be established with locally defined variables that
are not visible from outside the block. Separately compiled
program blocks can be executed together and communicate through
one or more centrally managed and highly visible data pools.

In a real time environment, HAL/S couples these precautions with
locking mechanisms preventing the uncontrolled usage of sensitive
data or areas of code.

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE MASSACHUSETTS 02138 « (517) 6,1 182

e et W

e

ABOUT THE PROGRAMMER’S GUIDE

The Programmer's Guide presents an informal description

of the HAL/S Language to the potential HAL/S programmer.

It is in no way meant to be an exhaustive catalog of all

the various rules of the language. That is the function

of the HAL/S Language Specification Document. However,

after the HAL/S programmer has absorbed the material
presented here, he should have been able to gain enough
insight into the workings of the language to enable him

to use the Language Specification to clarify any ambiguities.

In order to execute a HAL/S program on any given machine, the
programmer will need information contained in the HAL/S User's
Manual appropriate for that machine.

The Programmer's Guide is divided into three parts:

® PART I is aimed at the new HAL/S user and contains
enough information on the compiler language constructs
to enable him to begin programming.

e PART IIX describes other, more complex, HAL/S constructs
which will be used regularly in applications programming.

e PART III presents programming examplec designed to
illustrate and clarify important complex HAL/S Language
constructs. Some of the examples are constructs too
advanced to be described in PARTS I and II, but which
are formally defined in the HAL/S Language Specification.

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE A5 SACHUSE TTS 02148 - (617 661 1840

-

P—

[V

PART I

Part I of the Programmer's Guide is oriented toward new users
of HAL/S. It covers all the simpler constructs of the language
and contains sufficient information for suprisingly complex
programs to be written. Sections of text delimited by hori-
zontal bars are comments referring to the existence of more
complex HAL/S constructs to be explained in Part II.

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

e

1. STRUCTURE OF HAL/S

This section sives an overview on an abstract level of the
overall properties of HAL/S compilations, and tries to velate
these properties to the need for good prograrming practice.
Later sections of the Guide interpret these properties in terms
of actual HAL/S Language constructs.

1.1 STRUCTURING AND AIGHER ORDER LANGUAGES

A common method of problem solving is the so-called "top down"
approach. The algorithm for solving the problem is first out-
lined broadly, and then, step by step, delineated in successively
deeper levels of greater detail. The success of the algorithm

in arriving at the solution lies as much in its ability to break
down the problem into its simplest component parts, as in its
ability to resolve the problem as a whole.

If a problem is to be solved by procramming it ir a higher order
language, then the "top down" approach is of especial interest
because it lends insight into how the program can be organized.
Specifically, the organization takes the form of an outer program
block encloring numerous nested "subroutines"*. On the cutermost
level, the program is only concerned with the broad outlines of
the solution, and rciegates the first level of detail to the outer
set of subroutines. These in turn relegate the next level of
detail to an inner set of subroutines, and so one until each
level of the problem has been relegated to the appropriatc set

of subroutines,

* Here the term "subroutine"” is 'oosely used in its
generally recognized sense, conveying the idea of
a subordinate block of code executed by calling it,
and returning to the caller on completion. HAL/S
uses different terminology, to be introducted later.

) 'S

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE MASSACHUSETTS 00138 + 16170 661 1840

B R RO ——

This particular programming technigqgue is partly what is meant
by "structured programming”. This term also implies an ability to
form nested groups of executable statemernts inside a program
or subroutine. On each 'evel of nestinc, a statement group
has the ability to behave as if it were a single executable

statement.

The overail effect of structured programming techniques is tc
introduce an orderliness into the writing of programs that

not only makes them easier to read but also far less prone t92
error. Most modern higher order languages possess constructs
out of which structured programs can be created: the constructs
of the HAL/S language have been defined delikerately with
structured programming in mind.

1.2 THE BLOCK STRUCTURE OF HAL/S

The structure of a HAL/S compilation, as indicated below,
generally consists of a program block with so-called
procedure and function blocks nested within it.

program

tic~'s at "
level 3 =

~~—

blocks at level 1

blocks at
level 2 g

[\

A
n a/ /

1-2

INTERMETRICS INCORPORATED « 70t CONCORD AVENUF « CAMERI[i MASSACHUSETIS 0130 » 161 % 661 1840

th s

. INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

Function and procedure blocks constitute the HAL/S
interpretation of the "subroutines" of Section 1.1.
The more deeply such a block is nested, the greater
the depth of detail of the problem solution it is
supposed to handle. The blocks at each level con.ain
executable code implementing the appropriate part of
the problem solution.

Both kinds of block are similar in that they contain
code which is executed by a call or "invocation",

and which returns execution to the caller on comple-
tion. However, procedure and function blocks differ

in the way they are invoked. A procedure is invoked

by a CALL statement, while a function (like its mathe-
matical counterpart) is invoked by its appearance in an
expressior, and returns a result¥*,

Generally, the code in any block may invoke a procedure

or function block defined at the same level, or in a
surrounding outer level. The rules defining the

region where a block may be invoked are discussed later in
this Section.

The forms of procedure . and function blocks and the
constructs for invokina them are described in Section 11
of the Guide. The form of the outer proaram bleock is
described in Section 3.

* A procedure is therefore like a Fortran SUBROUTINE,
and a function is like a Fortran FUNCTION. Note,
however, that Fortran SUBROUTINES and FUNCTIONS
are always exterior to the program calling thenm,
whilst this is not true for HAL/S.

1-3

- .

vt e s men p ten

1N

SCOPING OF DATA

In HAL/S, all data must be defined in so-called "data declara-
tions". An important consequence of the structural properties

of HAL/S is its ability to place data declarations so as to bound
the regions in a program which may reference the declared data.
This feature is called "scoping".

Data declared at the program level may generally be used through-
out the entire compilation:

R

region where program
data declarations are
known; i.e. the "scope"
of program data
declarations.

program

X inner blocks

1-4

¢ RPORATED » 701 CONTNORD AVENUE » CAMBRIDGE MASSACHUSETTS 02138 « (617) 661-1840

T e

+
id

o -

L2

In addition, any procedure or function block nested within a
program block may declare local data - data known only in that

particular blcck and in blocks nested within it - as indicated

. - below:

k]

SCOPING OF BLOCK NAMES

g 2
region where
data declared
local to X are

known

region where
data declared
local to Y are
known

The program block, and every procedure or function within it
are named: block names have scoping rules identical with

the data scoping rules already described.

The name of any

procedure or function block is deemad to have been "declared"

Thus,

However,
such a procedure

st B

in the surrounding block in which the procedure or functio»n
is nested. This bounds the region where its name is known,
and therefore determines where it may be invoked.
.- the name of any procedure or function nested at the
P program level is known anywhere in the program.
i since in HAL/S recursion is not allowed,
or function may be invoked from anywhere in the program
except inside itself, as indicated:

G i el e o bt TS T ¢

. 2 INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE. MASSACHUSETTS 02138 « (617) 661-1840 g

&
%
% region where
O 0o block A may
A invoked
“ "7 o e :":'-

L5

&
2senessets

o2

oS

ol
bode!
ore;

1-6
INTERME TRICS INCORPORATED + 701 CONCORD AVENUE = CAMBRIDGE RIS e TS a0 P e

bt 18a0

he

[

———

Similarly, inner procedures and functions may be invoked from
anywhere in the block enclosing them except within themselves.

; In the following example, inner block B and C can only be
L invoked from inside regions X and Y respectively:

- - b, region where
block B may be

o invoked

o Be—

feglon Qhere
block C may be
invoked

e 7o

i

| TR

é

3

& wmg

1-7

.
? %WTERMETWCS|NCORPORATED'7OICONCORDAVENUE + CAMBRIDGE MASLSACHUSETTS 02148 « 16171 661-1840

vone awo RSN .
B R, W

It should be noted that all forms of recursion in HAL/S
are illegal. The form of recursion not prevented by
the rules given above is that in which procedures P and
Q are not contained in each other, but P calls Q and Q
calls P.

It is also possible for a program
(or any block within it) to in-
voke entities outside the compila-
tion unit; i.e. other compilation
units. Procedures and functions
may be compiled independently for
this purpose.

See: (tbd)

—
W’&Wﬁm A AR A RS B e

1-8

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840 :‘]

1.3 STATEMENT GROUPING IN HAL/S

In HAL/S, the actual step by step solution of a problem is
performed by executable statements contained in the blocks
comprising the program. Sequences of executable statements
may be grouped together and treated as a single compound
statement. Such statement groups are said to be "well-
bracketed" - they begin with a special statement (a "DO"
statement), and end with another special statement (an "END"
statement). Execution of the sequence of statements in the
group can be controlled in various ways depending on the form
of the opening "DO" statement:

e the sequence may be executed once only;

e the sequence may be executed repetitively until specified
conditions are met;

e one statement in the sequence may be selected as the
only one to be executed.

Sequences of compound statements may also be grouped together
in the same way and, in turr, be treated as a more complex com-
pound statement, and so on to an arbitrary degree of nesting.

Use of this grouping property in conjunction with other HAL/S
constructs can substantially eliminate the need for a "GO TO"
statement (in the Fortran sense, for example), which from the
structured programming viewpoint is recognized to be "dangerous"
because it destroys the readability of a program, and makes it
more error-prone.

STATEMENT GROUPS AND GO TO STATEMENTS

The design of HAL/S minimizes the dargers of "GO TO" statements

by limiting the regions which can be branched to by them, in a way
analogous to the limits imposed on data by the scoping rules
described in Section 1l.2.

1-9

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE MASSACHUSETTS 02138 + (617) 661-1840

ey
g

TS

Consider a program containing nested groups of c¢xecutable

statements as shown below:

outermost

group X

innermost
group Y

The region of legal destinations

of "GO

in group X are as indicated below:

TO" statements contained

F

1-10
INTERME TRICS INCORPORATED « 701 CONCORD AVENUE

s CANSSEHT

N

N

Yoo @ 1) L O Y QMM

utermost
‘roup X

region of
.egal des-
‘inations
+f GO TO's

4.y . . 1
R P [

® ety

The region of legal destinations of "GO TO" statements contained
in group Y are as indicated below:

program

region of
legal des-
tinations
of GO TO's
in Y

innermost
group Y

It is evident from the exampies that wnile groups can be branched
out of, or branched within, they may not be branched into.

INTERACTION WITH BLOCK STRUCTURE

Since procedure and function blocks may appear anywhere in a program,
including inside statement groups, the problem arises of branches
by means of "CO TO" statements in and out of such blocks.

In HAL/S, the destinations of "GO TO" statements are labels attached
to executable statements. Because the scope rules for statement
labels are the same as for declared data, it follows that it is
impossible to branch into a procedure or function block. Additionally,
a rule is made that branches may not be made out of a block (even

though by scope rules the label of the destination is visible).

This leaves the reciprocal processes of call and return-to-caller
the only ways of entering and leaving procedures and functions,
which is in accordance with structured programming principles.

1-11

INTERMETRICS INCORPORATED » 701 CONCORD AVENUE « CAMBRIDGE PAALGACHUGE TTSH U148 « ih1/75 6u1 1840

a
:
4
i
1
i

k
g

1.4 SUMMARY

This section has been concerned with the structural properties

of HAL/S compilations on an abstract level. It remains to be
demonstrated in the ensuing sections of PART I how the properties
are translated into sequences of actual HAL/S constructs. Section
2 begins this on the most basic level by describing the
characteristics of HAL/S source text.

P

1-12

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE. MASSACHUSETTS 02138 + (61/) 661-1840

o A

1 e e Yo e 1

P-4 ed

o b

2, HAL/S SYMBOLOGY

HAL/S source text has its own particular characteristics;

a specific character set, special combinations of characters
set aside as reserved words, and certain rules dictating

the form of statements. This section is an introduction

to these characteristics of the HAL/S Language.

2.1 THE CHARACTER SET

The HAL/S language uses the following character set:

ABCDEFGHIJKLMNOPQRSTUVWXYZ2
abcdefghijklmnopgrstuvwxyz

0123450789
+-u, /| ~e=<>4@8,;:'") (_%¢
(blank)

This character set is a subset of the standard character sets
ASCII and EBCDIC.

Although the user really needs only the above character set
when writing a HAL/S program, there are additional special
characters which can be used in comments and in character
string literals (described later in this secticn).

()Y ()2

The output listings produced by a HAL/S compiler may use these
extra special characters for annotation.

N

[P

2-1
— INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE. MASSACHUSETTS 02138 + (617) 661-1840

‘-
H

H
§
1
K

e d

R, 212

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE MASSACHUSETTS 021738 + (617) 861-1840

———— ey

2,2 RESERVED WORDS, IDENTIFIERS, AND LITERALS

The HAL/S language uses four kinds of primitive elements as
basic constructs: :

e RESERVED WORDS are a fixed part of the language and consist
‘of combinations of upper case alphabetic characters;

® IDENTIFIERS are user-defined names used for data or labels,
and consist of combinations of the alphanumeric characters;

® LITERALS express actual values, and can consist of any of the
symbols in the character set;

® SPECIAL CHARACTERS serve as delimiters, separators or
operators, and consist of the non-alphanumeric
characters of the HAL/S set.

RESERVED WORDS

Reserved words are words having a standard meaning in the HAL/S
language. As their name svggests, the user cannot use reserved
words as identifier names. There are two majcr categories of
reserved words:

o KEYWORDS are used to express parts of HAL/S statements, for
example:GO TO, DECLARE, CALL, and so o2n. A complete
list can be found in Appendix .

® BUILT-IN FUNCTION NAMES are used to identify a library of
common mathemat.cal and other routines, for example:
SINE, SQRT, TRANSPOSE, and so on. A complete list can
be found in Appendix .

2-2

[y

- O VTRV S g TR 0 o

=

.

Bt s
B wnowe §

Sommy
[R]

-
i

IDENTIFIERS

An identifier name is a user-as:ijned name identifying an
item of data, a statement or !:lock label, or other entity.
The following rules must be ob:served in the creation of
any identifier name*,

1. The total number of characters in the name
must not exceed 32;

2. The first character must be alphabetic;

3. The remaining characters may be either
alphabetic or numeric;

4. Any character except the first or last
may be an underscore (_).

Examples:

ELEPHANT AND_CASTLE
Al { legal

} illegal

. * Some implementations of HAL/S may place extra restrictions

upon the names of identifiers.

2-3

! é INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE. MASSACHUSFTTS 02138 * (617) 661-1840

dng W‘W pTee—

e

LITERALS

The turee basic kinds of literals described here are arithmetic,
characcer string, and Boolean. The utility of arithmetic
literals is obvious. In simple programming problems, character
string literals find most use in the generation of output.
Boolean literals are used to state logical truth or falsehood.

® ARITHMETIC LITERALS express numerical values in de..mal
notation. The generic form of an arithmetic literal
is:

mantissa .__l_‘ r_exponent:
P ——
tddd.dddrtddd

1. ddd represents an arbitrary
number of decimal digits.

2. The exponent is optional.
3. The + siygns are optional.

4. The decimal point is optional.
If absent, it is considered to be
to the right of the least signi-
ficant digit of the mantissa.
If the decimal point is present,
it may appear anywhere in tic¢ mantissa.

5. The minimum number of digits in the
mantissa, and in the exponent, if
present, is one. The maximum
number is implementation dependent.
(See Appendix).

2-4
'NTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE MASSACHUSETTS 02138 « 16.7) 661 1840

[

o - W

P e

ety

[t }

[s |

At tecl]
5
| R i

Examples:

0.123E16
45.9
-4

It is important to note that HAL/S makes no distinction

of type between a integral-valued literal and a fractional-
valued literal. Either integer (with possible rounding of
value) or scalar (i.e. floating-point) type is assumed
according to the context in which the literal is used.

The use of multiple exponents,
and of binary, hexadecimal or
octal exponents, is also allowed.
See: (tbd).

2-5
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

%.‘,\& PRI

® CHARACTER STRING LITERALS consist of strings of characters
chosen from the entire HAL/S character set. The
generic form is:

'‘cceeccec!

1. The quote marks delimit the
beginning and end of the
literal.

2. cccc represents an arbitrary
number of characters in any
combination.

3. Quote marks within the literal
must be represented by a pair
of quote marks to avoid con-
fusion with the delimiting
quotes.

4. The minimum number of characters
is zero (a 'null' string), the
maximum is 255*,

* This value is implementation dependent. See Appendix
for exceptions.

2-6
INTERMETRICS INCORPORATED ¢+ 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 861-1840

o SCR R a © e s

Fappr—t

e

g o

Examples:

'ONE two THREE'
'DOG' lsl

If a literal consists of a single
character, or character sequence
repeated may times. a condensed
form of literal using a repeti-
tion factor may be used.

See: (tbd).

® BOOLEAN LITERALS express logical truth or falsehood,
and are generally used to set up the values of
Boolean data items (see later). Their forms are:

TRUE } expressing truth, or
ON binary "1"

FALSE } expressing falsehood
OFF or binary "0"

Literal strings of binary values
also exist.
See (tbd).

PR

¢ evad

2-7

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE. MASSACHUSETTS 02138 » (617) 661-1840

N e St et WA
i 20 TR e

e e wags T MR ve

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSAGHUSETTS 02138 + (617) 661-1840

2.3 FORMAT OF SOURCE TEXT

HAL/S is a "stream-oriented" language, that is, statements
may begin anywhere on a line (or card), and may overflow
without special indication onto succeeding lines or cards.
Several statements may be written on one line (or card) as
required.

HAL/S is among the very few languages which permit subscripts
and exporents to be represented as they are mathematically,

using lines below and above the main line respectively as needed.
This multi-line format is an optional alternative to the HAL/S
single~-line format.

Even when .wlti-line format is not used, the first character
position of each line (or card) is reserved for a symbol

denoting the kind of line format, subscript, main, or
exponent.

SINGLE-LINE FORMAT

In single-line format, the first character position of each line
is left blank, denoting a main line. An M can alternatively
be used but is generally not preferrcd by users.

e EXPONENTS are denoted by the operator ==

Example:
xt+2 is coded as:
‘M X*x (T+2)
e SUBSCRIPTS are denoted by parenthesizing the subscript and
preceding it with the symbol §.
Example:
a4 s coded as:

M AS (I+1)

2-8

[

- v e v e

S

£ AT R R,

MULTI-LINE FORMAT

In multi-line format, the first character of a main line

is either left blank or M i5 inserted as before. The first
character of an exponent line is E. and that of a subscripc
line is S.

® LXPONENTS are written on an exponent line (E-iine) immediately
above the main line.

Example:

xt+2 is coded as:
:E T+2
‘M X

® SUBSCRIPTS are written on a subscript line (S-line) immediately
below the main line.

Example:

ai+1 is coded as:
‘M A
;s I+l

When using multi-line format, care must be taken to ensure that
nothing on the E- and S-lines overlaps anything on the M-line.

Expouents of exponents and sub-
scripts of subscripts use extra
subscript and exponent lines,
Special rules apply if exponents
are subscripted, or if subscripts
possess exponents.

See: (tbd).

2-9

_ INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE. MASSACHUSETTS 02138 + (617) 661-1840

% %x e« i et n T e

%

2,4 STATEMENT DELIMITING

As Section 2.3 indicated, HAL/S statements may be written in

free form without regard for line (or card) boundaries. Be-
cause of this there is the need to explicitly indicate the

enG of each statement with a special symbol. HAL/S uses a
semicolon for this purpose. The following statements arbitrarily
selected irom the language show the placement of the semicolon.

Examples:
DECLARE I INTEGER;

. I=1+1;
, CALL P(I,J);

2.5 COMMENTS IN HAL/S

The use of comments is a sine qua non of good programming practice.
HAL/S possesses two mechanisms for the inclusion of comments in a
compilation.

e IMBEDDED COMMENTS may be placed anywhere on main, exponent
or subscript lines of HAL/S text,

e COMMENT LINES may appear between main, exponent and subscript
lines of HAL/S text.

IMBEDDED COMMENTS

An imbedded comment takes the form:

/* ... any text (except */) ... %/

et

2-10 ,
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE MASSACHUSETTS 02138 + (617) 66, 1840 }

Such comments may appear between HAL/S stat:ments or imbedded

in a sctatement. They may not appear in the middle of a literal,
reserved word, or identifier. As far as the sense of the source
text is concerned, an imbedded comment is treated as if it were

a string of blank characters.

Example:

b
:M X =X+ 1; /» ADD ONE TO X */
!

COMMENT LINES

Comment lines are input lines specially reserved solely for comments
by placing the character C in the first character position of the
line. The rest of the line may contain any desired text.

Examples:

:M X=X+ 1;
C ADD ONE TO X
'C THEN CARRY ON

2.6 SUMMARY

In Section 2, the most basic elements of the HAL/S Language have
been outlined: reserved words, identifiers, literals, the
formatting of the source text, and alternate forms of comment
insertion.

In Section 3, the overall form of a HAL/S program will be explained,

with special references to how declarations of data and executable
statements may be arranged within it.

2-11

INTERMETRICS INCORPQORATED + 701 CONCORD AVENUE + CAMBRIDGE. MASSACHUSETTS 02138 « (617) 661-1840

%ot

e -

T N, 0

. INTERMETRICS INCORPORATED -+ 701 CONCORL AVENUE + CAMBRIDGE MASSACHUSETTS 02138 » (6171 661 1840

5. A HAL/S COMPILATION - THE PROGRAM BLOCK

The structuring of HAL/S programs was dealt with on the conceptual
level in Section 1. Section 3 begins to interpret this infor-
mation in terms of actual HAL/S language constructs.

For the purposes of Part I,an entire HAL/S unit of compilation
is known as the "program block". The te.m "block" has a special
connotation in this Guide. 1c is taken to mean a coherent

body of data declarations and executable statements enclosed in
statements delimiting its opening and closing, and identified
with a name.

3.1 OPENING AND CLOSING THE PROGRAM BLOCK

The first statement of a HAL/S program is a statement defining

the name of the program and opening the program block. The last
statement of a HAL/S program is a statement closing the program
block. Between the two are all the statements comprising the body

of the program.

PROGRAM OPENING

The statement opening a program block takes the form:

Label : PROGRAM;

1. fabef is any legal identifier
name, and constitutes the name
of the program.

3-1

R A

PROGRAM CLOSING

The program block is closed with the statement:

» CLOSE ({abet ;

1. The identifier (tabel is
optional.

2. If [labet is supplied, it
must be the program name,
i.e. the tabel on the
opening statement of the
program block.

Example:

TEST: PROGRAM;

CLOSE TEST:;

3.2 POSITION OF DATA DECLARATIONS

Normal HAL/S programs reguire the use of data. The names used
to identify this data must be declared before use by the means
of data declaration statements. Data declarations (and,
additionally, certain other kinds of statements) must be
placed after the program opening statement and before the
first executable statement.

3-2
INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE MAS A0 HEETTS O o int ') o611 1840

INTERMETRICS INCORPORATED » 701 CONCORD AVENUE + CAMBRIDGE MASSACHUSETTS 62174y »

Example:

' TEST: PROGRAM;

L_‘data declaration statements

{—‘executable statements

' CLOSE TEST

e

3.3 FLOW OF EXECUTION IN THE PROGRAM

The program begins execution at the first executable state-

ment after the data declarations, and thereafter follows a

path determined by the kinds of executable statements encountered.
Unless statement groups, or branching or conditional statements
intervene, execution is sequential*., Finally, the path either
reaches a statement terminating execution of the program, or
reaches the closing statement of the program block, which has

the same effect.

As described in Section 1, procedure and function definition
blocks may be interspersed between the statements in a program
block. The only way of executing such blocks is by explicit
invocation: if they are encountered in the path of execution
they are passed over as if non-existent.

¥ This order is called the "natural order" of execution.

3-3

(17 o6t 1840

Example:

' TEST: PRCARAM;

data
declaration
statements
\
) executable
statements
'
: procedure
; definition
) block
path of ' NN
execution Qf%;\
! \\\\
)
! OO 1o
| .
[} *..
: CLOSE; block invoked
' and returned
from
3.4 SUMMARY

Section 3 has described the opening and closing of a program
block, has shown where data declarations are placed in it, and
has explained the path of execution followed through a program
block. The following chapters of Part I will begin to fill

in the details of the possible contents of the block. Section 4
describes how data is declared and referenced. It begins to
build on the fundamental information given in Section 2.

3-4

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE MASSACHUSETTS 02138 + (" 71 6611840

Rt e S -G Rat

4, DATA DECLARATION

Programming largely consists of the manipulation of numerical

data. The diversity of the data types in a language determines

its utility for any required task. HAL/S contains an exceptionally
diverse set of data types.

Identifiers of the kind described in Section 2 are ised to name
items of data. Identifier names used to represent data items
must* be defined in data declarations appearing in the appropriate
program, prodcedur<e or functior block. The effect of placing
data in different blocks is described in Section 1. The position
of data declarations within a program block is described in
Section 3.

This Section now proceeds to describe the detailed construction
of data declarations.

4.1 HAL/S DATA TYPES

In the HAL/S language, arithmetic data of the following types
can be declared:

e INTEGER for the representation of integer-valued quantities;
e SCALAR for the represgentation of "floating-point" quantities;

e VECTOR for the representation of algebraic row or column
vectors (without distinction), and each element of which is
a scalar quantity:

e MATRIX for the representation of algebraic matrices, and each
element of which is a scalar quantity.

* The HAL/S language prohikits the use of implicitly declared
data items considering it to be an undesirable programming
practice.

4-1

. INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE. MASSACHUSETTS 02138 « (617) 661-1840

These arithmetic data types may be specified in either single
or double precision. In the case of integer, the precision
determines the maximum absolute value the identifier may take
on. In all other cases, it determines the number of signifi-
cant digits in the mantissa of the value.

In addition, HAL/S also possesses the following data types:
@ CHARACTER for the representation of strings of text;

e BOOLEAN for the representation of binary-valued (logical)
guantities.

It is possible to declare arrays (or tables) of any of the six
above types.

HAL/S in fact allows more
data types than just those
described here. It also
allows hierarchical organ-
izations of data-types
called "structures”.

See: (tbd)

4,2 SIMPLE DECLARATION STATEMENTS

Data declaration statements define identifiers used to name data.
The simplest forms of declaration statement for each data type
listed above are examined on the following pages.

4-2
INTERMETRICS INCORPORATED « 701 CONCORD AVENUE < CAMBRIDGE. MASSACHUSETTS 02138 « (617) 661-1840

INTEGER

DECLARE name INTEGER;
DECLARE name INTEGER SINGLE;
DECLARE name INTEGER DOUELE;

1. In each of the forms name is any legal
HAL/S identifier.

2. Presence of the keyword SINGLE specifies
single precision.

3. Presence of the keyword DOUBLE specifies
double precision.

4. Absence of either keyword implies default
of single precis on.

Fer the integer data type, single precision usual'; implies
halfword and double precision fullword, depending on the
implementation®*,

Examples:

)
1 DECLARE Il INTEGER;
| DECLARE BIG_I INTEGER DOUBLE;

* See Appendix .

4-3
INTERMETRICS INCORPORATED + 701 COMCORD AVENUE + CAMBRIDGE. MASSACHUSETTS 02138 + (617) 661-1840

o sk N

SCALAR

DECLARE
DECLARE
DECLARE

In each of the forms, name is any
legal identifier.

Presence of the keyword SINGLE specifies
single precision.

Presence of the keyword DOUBLE specifies
double precision.

Absence of either keyword implies a de-
fault of single precision.

The keyword SCALAR may be omitted.

name
name
name

SCALAR;
SCALAR SINGLE;
SCALAR DOUBLE;

Double precision usually implies increased range of exponent
and increased number of digits in the mantissa, but it is
implementation dependent*.

Examples:

[
'
1)
)
!

DECLARE S1;
DECLARE S2 SCALAR;
DECLARE S3 SCALAR DOUBLE;

* See Appendix

4-4

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

f

T K S W o P

MATRIX

‘' DECLARE name MATRIX (m,n);
 DECLARE name MATRIX (m,n) SINGLE;
' DECLARE name MATRIX (m,n) DOUBLE;

1. In each form name 1is any legal identifier.

2. Keywords SINGLE and DOUBLE have the same
significance as for scalar and vector types.

3. m and n denote respectively the number of
rows and columns in the matrix. They must
lie in the range 1 < m, n £ 64%*,

4, If the size specification (m,n) is absent,
a 3x3 matrix is assumed.

Examples:
. DECLARE M1 MATRIX(2,4);
| DECLARE M2 MATRIX(4,5) DOUBLE;
' DECLARE M3 MATRIX;
‘

‘\'a 3x3 matrix

* This value may be implementation dependent. See Appendix
for exceptions.

4-5

INTERMETRICS INCORPORATED « 701 CONCCRD AVENUE « CAMBRIDGE. MASSACHUSETTS 02138 » (61/) 661-1840

O . |

VECTOR

DECLARE name VECTOR(n);
DECLARE name VECTOR(n) SINGLE;
DECLARE name VECTOR(n) DOUBLE;

1. In each form name 1is any legal
identifier.

2. Keywords SINGLE and DOUBLE have the
same significance as for scalar type.

3. n specifies the length of the vector
and must lie in the range 1 < n £ 64*%*,

4. If the length specification (n) is
omitted a length of 3 is assumed.

Examples:

' DECLARE V1 VECTOR (10);
. DECLARE V2 VECTOR(3) DOUBLE;
' DECLARE V3 VECTOR;

'
\‘a 3-vector

* This value may be implementation dependent. See Appendix
for exceptions.

4-6
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840 I

T g

-
[S

CHARACTER

DECLARE name CHARACTER(n) ;

1. name 1is any legal identifier.

2. n specifies the maximum length of the text
string that the data type may carry. (i.e.
the maximum number of characters). It must
lie in the range of 1 < n < 255%,

3. The actual length of the string of text
carried may vary during execution between
zero (a "null" string) and the maximum n,

Example:

» DECLARE C1 CHARACTER(80);

BOOLEAN

| DECLARE name BOOLEAN;

1. name is any legal identifier.

Example:

! DECLARE Bl BOOLEAN;

* This value may be implementation dependent. See Appendix

4-7

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETT, 02138 « (617) 661-1840

p——

ARRAYS

In any of the above declarations, regardless of data type,
the part of the declaration between the name and the
terminating semicolon which establishes the type (and
possibly precision and size) constitutes the "attributes"
of the declaration.

To declare an array of any data type an ARRAY specification
is inserted between the name and the attributes:

’

'DECLARE name ARRAY (n) attributes ;

1. attributes stands for any legal form of
attributes for any data type described.

2. n denotes the number of elements in the array
(i.e. entries in the table) and must lie in
the range 1 < n £ 32768%*,

Examples:

' DECLARE AS1 ARRAY (500) SCALAR;
! DECLARE AM1 ARRAY (20) MATRIX (4,4):;

* This value may be machine dependent. See Appendix
for exceptions.

4-8
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840 J

Rt g BRI B e w e

P

COMPOUND DECLARA.I0i'S

If a program contains declarations of many data items it is
tedious to repeat the keyword DECLARE in every declaration.
Many separate declarations may be condensed into one compound
declaration as shown below.

Example:

DECLARE S;

DECLARE I INTEGER DOUBLE;

DECLARE M3 MATRIX;

DECLARE M6 MATRIX(6,6); separate declarations
DECLARE B BOOLEAN;

DECLARE C ARRAY (5) CHARACTER(20):;

DECLARE V ARRAY (3) VECTOR;

DECLARE S,
T INTEGER DOUBLE,
M3 MATRIX,
B BOOLEAN, declaration

C ARRAY (5) CHARACTER(20),

|
|
|
| M6 MATRIX (6,6), equivalent ~ompound
I
! V ARRAY(3) VECTOR;

Note the commas separating the declaration of each data item.

If the identifiers in a compound
declaration have some attributes
in common, a third, even more
compact, form of declaration
called a factored declaration
can be used.

See: (tbd)

4-9

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 » (617) 661-1840

4.5 INITIALIZATION OF DATA

A HAL/S data item of any type may be initialized by incorporating
an INITIAL specification into its declaration statement. The
form of such a specification differs depending on whether the
data item is "uni-valued" or "multi-valued".

e UNI-VALUED data items are those having only one element:
unarrayed scalars, booleans, and characters.

® MULTI-VALUED data items are those having more than one
element: unarrayed vectors and matrices, and arrayed
data items of any type.

In either case, the INITIAL specification is placed after the typeg,

precision, and size attributes of a declaration. This positioning
will become apparent in the examples to follow.

UNI-VALUED DATA ITEMS

The two variations of the form of INITIAL specification for
uni-valued data items are:

INITIAL (value)
CONSTANT (value)

1. The two forms have the same effect in
that the data item is initialized to
the literal indicated by value .

2. The form using the keyword CONSTANT is
required-only if the user wishes not
to change the initial vaiue during
execution¥*,

3. The type of the literal Value must
be compatible with the type of the data
item as determined from the following

tabkle:
data type literal value
CHARACTER character string
BOOLEAN boolean
SeATSER } arithmetic

* In many respects a data item initialized this way is akin to
a literal. .

4-10

INTERMETRICS INCORPORATED +» 701 CONCORD AVENUE - CAMBRIDGE MASSACHUSETTS 02138 + (617) 661-1840 I

[S

P =

data type literal wvalue
CHARACTER character string
.- BOOLEAN boolean
INTEGER '
SCALAR . .
VECTOR ‘ arithmetic
MATRIX

Examples:
|
DECLARE A SCALAR INITIAL(3),
B SCALAR CONSTANT (4.5E-3),

|

' C CHARACTER(80) INITIAL('YES'),
: D BOOLEAN INITIAL (TRUE);
I

Note: initial working length of C becomes 3.

MULTI-VALUED DATA ITEMS

There are two corresponding variations of the INITIAL specification
for multi-valued data items:

INITIAL(vaﬁuel ’ va&uezz t esees)
CONSTANT (value™ , value® ,)

1. The meaning of the keyword CONSTANT is
the same as for uni-valued data items.

2, The type of each literal value must be
compatible with the type of the data item,
as determined from the followi.ag table.

3. The number of literals in the list must
equal the total number of elements implied
by the data declaration.

Note that if all the elements of a multi-valued data item are to
be initialized to the same value then the form used for uni-valued
data items may be used.

.- 4-11

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE. MASSACHUSETTS 02138 « (617) 661-1840

L

s AN

Examples:

:DECLARE V VECTOR INITIAL(1,2,3.5)
" S ARRAY (2) CONSTANT(1,0),
I T ARRAY(2) VECTOR(2) INITIAL(4.7,-5.3,0,0);

t
yDECLARE V VECTOR INITIAL(O),
| S ARRAY (100) INTEGER INITIAL(256);

all elements of these data
items are identically
initialized.

ORDER OF INITIALIZATION

To complete the specification of initialization the order of
initialization of the elements of multi-valued data items
needs to be defined.

The following ordering rules, though applied here to the
initialization of multi-valued data items, holds true when-
ever the ordering of elements is called into question.

e VECTOR data items are initialized in order of increasing
index.

® MATRIX data items are initialized row by row in order of
increasing index.

® ARRAY data items are initialized array element by array element
in order of increasing index. Where the array element are
themselves multi-valued, each array element in turn is
initialized completely according to the previous rules before
going on to the next.
Example:
DECLARE M ARRAY(2) MATRIX(2,2) INITIAL(1,2,3,4,5,6,7,8);

if Ml is the first array element, and M2 is the second, then:

o2 _Issl
M, |3 4 ' My = |78

4-12

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

Additional more compact initialization
e forms are -available if only partial
initialization is required, or if
subsets of the initial values are
identical. See: (tbd)

4.4 SUMMARY

Section 4 has dealt with how data is declared in HAL/S
compilations, and how it initialized. The next logical
step is to begin to discover how it may be used. However,
this is put off until Section 6. Section 5 deals with a
useful HAL/S construct which allows the user to replace

frequently-repeated HAL/S expressions by defining and
substituting a symbolic name.

Study of Section 5 can be omitted without detriment to the
understanding of the remainder of Part I of the Guide.

-
HEE |
-

o koo 0 et aE o

4-13

TT
¥

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE., MASSACHUSETTS 02138 * (617) 661-1840

m%w e s

a et e——

- -

-

=]
4
M
3
g

:
]
:

INTERMETR

5. REPLACE STATEMENTS

When it is necessary to repeat a particular HAL/S construct
exactly many times during a program, the user can avoid the
tedious process of laboriously writing it at length each time
by defining a symbolic name to represent the construct, and
then replacing the construct with the symbolic name.

This kind of substitution can be of advantage in several

ways. For instance, the value of a literal recurring many times
can be easily changed between successive compilations. The user
need only define a symbolic name to represent the literal, then
replace the one with the other. Only one line of the program
needs to be recoded as opposed to the many lines that would

need recoding if the user had to find and change the literal
each time it occurred.

The definition and substituticn of the symbolic name is
accorplished by a REPLACE statewent.

5.1 THE REPLACE STATEMENT

The REPLACE statement is placed together with the data
declarations of the program, procedure, or function block in
which it is to be used. It takes the form:

|
t REPLACE name BY "XXXXXXXXXXX";
)

1. XXXXXXX represents the HAL/S source text which
it is desired to substitute. The text is de-
limited by double quote marks, and must be
written in single line format.

2, name¢ is the symbolic name chosen to repre-
sent the text. It may be any legal identifier
name.

3. XXXXXXX may be %%E legal source text of arbi-
trary length. edded double quote marks
must be represented as a pair of double guote
marks to avoid confusion with the delimiters.

4. The text musi not begin or end in the middle
of a reserved word, identifier, literal, or
imbedded comment.

5-1
ICS INCORPORATED + 701 CONCOFRD AVENUE + CAMBRIDGE. MASSACHUSETTS 02138 » (617, 661-1840

Examples:

" REPLACE OUTPUT BY "WRITE(6)";
' REPLACE INCREMENT BY "X=X+1;";
[}

5.2 USING REPLACE STATEMENTS

The following examples show the way in which the symbol
substitution defined by the REPLACE statement is used.

Examples:

: REPLACE DV BY "VECTOR DOUBLE INITIAL(O)";

+ DECLARE VEC1 DV,

' VEC2 DV,

' VEC3 DV;

b by expansion of DV it is evident that
VEC1l, VEC2, VEC3 are all double precision
vectors initialized to zero.

REPLACE N BY "4";
DECLARE V1 VECTOR(N),
M1 MATRIX(N,N),
M2 MAL.-LX(2,N);°

- this shows the utility of the REPLACE
statement in making it easy to change the
sizes o’ several vectors and matrices
simultaneously.

REPLACE X BY "VECTOR(2)";
REPLACE Y BY "ARRAY(5) X":

- this is an example of nested sub-
stitutions. The expansion of Y is
ARRAY (5) VECTOR(2).

REPLACE X BY "REPLACE Y BY""2z%""",
X;
DECLARE Y SCALAR;

- although this is a legal use of REPLACE statements, it
does not lend itself to clarity. The sequence of state-
ments culminates in Z being declared as a scalar data
item,

5-2
I
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE. MASSACt SETTS 02138 « (617 661-1840 l j

A REPLACE statement takes effect only after it appears.
It does not modify the entire block, only that section that
follows its appearance.

Example:
)
| DECLARE V1 VECTOR(N);
i REPLACE N BY "4";
| DECLARE V2 VECTOR(N);

| .

-~ the REPLACE statement will only be
effective starting with the second
declaration statement. N is un-
known in the first declaration and
compilation would detect the error.

Care must be taken in using REPLACE statements because

the ways in which they are affected by the block structure
of the HAL/S program in which they appear are not always
obvious.

Example:

REPLACE X BY "Y*"; -~ Program

g

”,oProcedure block
DECLARE X SCALAR; 4/

- the user must remember
that the X of the local
declaration inside the
procedure block is still
subject to the REPLACE
statement at the program
level.

5-3

" INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE. MASSACHUSETTS 02138 + (617) 661-1840

P—

The onlx case in which a REPLACE statement in an outer block
becomes ineffective in an inner block is when the inner block
has a REPLACE statement in it with the same namr

Example:

B
E REPLACE X BY "yu;?yg"’/,gprogram

o o
‘ . L™ * oAt

- So rocedure block
- s
i
N RN Y R \\;\\ SN \‘

region where X is
replaced by 2

&§’ T region where X is
. T S replaced by Y

Ripla~e statements may also
possess parameters, turning
them into a sophisticated
macro expansion facility.
See: (tbd).

5-4

INTERMETRICS INCORFORATED - 701 CONCORD AVENUE - CAMBRIDGE. MASSACHUSETTS 02138 - (617) 661-1840

e e e

[———

§ e oy

5.3 SUMMARY

Section 5 has dealt with a mechanism for symbolic replacement
of HAL/S source text. Section 6 begins to examine the way in

which executable statements are constructed by describing how
data is referenced.

5-5

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 » (617) 661-

EEN

naw

1840

kmaﬁam« -

6. DATA REFERENCING AND SUBSCRIPTING

Any appearance of the name of a previously-declared data item
in an executable statement constitutes a reference to its value
(and possibly causes a change in its value)*. Sometimes it is
necessary to be able to reference elements of vectors, mnatrices,
and arrays, and also to reference parts of character strings.
HAL/S has a wide range of subscript forms designed for this
purpose.

Two kinds of subscripting are relevant to the data types
described in Section 4.

® COMPONENT SUBSCRIPTING allows the user to select elements
or subsets of elements from vectors and matrices, and to
select substrings from character data items.

® ARRAY SUBSCRIPTING allows the user to select elements or
subsets of elements from arrays of any data type.

Depending on the nature of a particular data item, either or
both kinds of subscripting may be affixed to it.

6.1 SUBSCRIPTS OF UNARRAYED DATA TYPES

Unarrayed data types, i.e. those whose declarations contain no
array specification, may at most possess only component subscript-
ing. Unarrayed data items of integer, scalar, and Boolean

types may not possess any subscripting. Allowable subscripts

for the remaining types, - character, vector, and matrix - are

now each described in turn.

* This Section, for convenience, includes appearance causing
change in value under the term "reference", even though
this is not the most usual meaning of the term.

6-1
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

CHARACTER

In a character data item, character positions are indexed left
to right starting from 1. 1In the subscript forms given below,
STRING represents an unarrayed data item of character type with
current working length L.*

® To select the ath character from STRING:

STRING
o

1. o is an integer expression in
the range 1 < a ¢ L.

° Tghselect o characters from STRING, starting from the
B

STRINGa AT B

1. a and B are integer expressions.
2. B is in the range 1 < B ¢ L.

3. o is in the range 0 ¢ a & L - B + 1.

* In the case where reference of a subscripted character data
type causes a change in its value (e.g. on the left hand side
of an assignment), somewhat different interpretations of the
subscript forms hold true. An account of these is given in .
Section 8.3. |

|
.
6-2
INTERMETRICS INCORPORATED * 701 CONCORD AVENUE » CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840 i

® To select a substring starting with the ath character
of STRING, and ending with the gth:

STRINGG TO 8

1. o and B are integer expressions in
the range 1 < o, B £ L.

2. B > a.

Examples:
if the value of C is 'ABCDEF' then:
4 [] 1
C5 is 'E
: 1 L
C2 AT 2 is 'BC
S] L
C4 TO 6 is 'DEF
VECTOR

Elements of a vector are indexed starting from 1. 1In
the following subscript forms, VEC represents an unarrayed
vector data item of length L.

® To select the ath element from VEC:

VEC
a

l. o is an integer expression in the
range 1 < o < L.

2. The resulting data type is scalar,

6-3

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE. MASSACHUSETTS 02138 « (6171 661-1840

® To select an a-vector partition starting from the gth
element of VEC:

VECa AT B

l. o is an integer literal value in
the range 2 < §f < L.

2. B is an integer expression in the
range 1 < B8 < L - a + 1.

® To select a partition starting from the oth element of
VEC and ending with the gth,

VECa TO B

l. o and B are integer literal values
in the range 1 < a, B8 < L.

2. B > a.
Examples:
if v = [a.5] then:
9.3
7.1
@.Z
Vl = 4.5 (scalar)
V3 ™ 4 = 7.1 (2-vector)
2.7
V2 AT 1 = g.g (2-vector)

6-4
INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE. MASSACHUSETTS 02138 « (617) 661-1840

.
e~

[P —

MATRIX

Rows and columns of a matrix are indexed starting from 1.

Any matrix subscript must consist of a row subscript followed
by a column subscript. In the following subscript forms, MAT
represents an unarrayed M x N matrix data item.

e To select the element of MAT common to the otP row and
gth column:

MAT
a,B

1. a, B are integer expressions.

2, o is in the range 1 ¢ a ¢ M,
and B is in the range 1 < B N,

A

3. The resultant data type is SCALAR.

® To select the ath row of MAT:

MATa,*

l. a is an integer expression in the
range 1 € o < M.

2. The resultant data is N-vector.

3. If the asterisk is replaced by a
TO~ or AT~ subscript under the
rules given for vector data t{ges,
a vector partition from the a
row may be selected.

6-5

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE MASSACHUSETTS (02138 + (6171 661-1840

PRSI

® 7o select the Bth column of MAT:

MAT
*x, R

1. B is an integer expression in the
range 1 < B < N,

2. The resultant data type is M-VECTOR.

3. If the asterisk is replaced by a
TO- or AT- partition under the
rules given for vector data types,
a vector partition from the gth
column may be selected.

@ To select a oo x Yy matrix rartition starting from the
Bth row and §th column of MAT:

MAT . AT g, y AT &

1. a, Yy are integer literal values in
ranges 2 < a ¢ M, 2 ¢y &N
respectively.

2. £,y are integer expression in
ranges 1 ¢ B M~-a+1,
l] ¢ 8§ £ N- Yy + 1 respectively.

3. Either or both the AT- subscripts
may be replaced by TO- subscripts
under rules already given by vector
and matrix types.

4, Either of the AT- subscripts may in
addition be replaced by an asterisk
if all M rows or all N columns are
to be included in the partition,

6-6
INTERMETRIC , INCORPORATED « 701 CONCORD AVENUE « CAMBRIDGE MASSACHUSETTS 02138 « 6171 661 1840

if M=]1l.1 1.2 1.3
2.1 2.2 2.3
3.1 3.2 3.3
M2'3- 2.3 (scalar)
M, ;= 1.1 (3-vector)
' 2.1
3.1
Mz’ 2 70 3 = [3.3} (2-vector)
M = 11.1 1.2
*» 2AT 1 |57 2.2
3.1 3.2

1.2
2.2

N
-

Mr02, 1mT02° [.

6-7

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE MAGSACH!'"

then:

(32 matrix)

] (2x2 matrix)

TS N2i38 ¢ (6170 661 1840

2

6.2 SUBSCRIPTS OF ARRAYED DATA TYPES

Arrayed data types, i.e. those whose declarations contain
an array specification, inay possess array subscripting.
If the data types are vector, matrix, or character, then
they may, in addition, possess component subscripting.

ARRAY SUBSCRIPTING ONLY

Arrays are indexed starting from 1. In the array subscript
forms given below, TABLE represents an array of length L
of any data type.

e To select the ath array element from TABLE:

TABLE
[0 3H
1. o is an integer expression in the
range 1 < a £ L.

2. The colon is optional if the data
type of TABLE 1s integer or scalar.

® To select a sub-array of length a starting from the gth
array element of TABLE:

TABLE, ar g:

l. u« is an integer literal value in the
range 1 < o € L.

2. B 1is an integer expression in the
range 1 < B L - a + 1.

3. The colon is optional if the data
type of TABLE 1s i1nteger or scalar.

6-8
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE « CAMBRIDGE MASSAGHUSETTS 02148 « 1171 61 1840

® To select a sub-array starting from the oth array
element of TABLE and ending with the ¢ th,

TABLE, TO B:

1. o, B are integer literal values
in the range 1 < o, B < L.

2, B & a.

3. The colon is optional if tne data
type of TABLE 1s integer or scalar.

Examples:

if T is a 4-array of booleans with values
(TRUE,FALSE, TRUE,TRUE) then:

Tz. is FALSE (unarrayed)
T3 TO 4: is (TRUE, TRUE) (still arrayed)

if T is a 4-array of integers with values
(1'2,3,4) then:

T. is 2 . .
2 (unarrayed) ' optional colon
T, po 4 1S (3:4) (still arrayed) | omitted
if C is a 3~-array of characters, with values
("YES','NO','MAYBE') then:
Cl: is 'YES' (selects first array element)
1 L}] L] L] : 1

C2 1o 3: 1S ("NO', "MAYBE') (still arrayed)

6-9

INTERMETRICS INCORPORATED « 701 CONCORD AVFNUF + CAMBRIDGE MASSACHUSETTS 02138 « (617) 661 1840

ARRAY AND COMPONENT SUBSCRIPTING

If TABLE represents an array of vector, matrix, or character
data type, then the following rule shows how array and
component subscripting are juxtaposed.

TABLE
arnray: component

1. away represents array sub-
scripting of any of the forms
previously described.

2. component represents ary form
of component subscripting legal
for the data type of TABLE, as
described in Section 6.1.

The purpose of the colon now becomes clear: it is required
to distinquish and separate array and component subscripting.

Examples:

if C is a 3-array of characters, with values
('YES','NO','MAYBE') then:

is 'Y (selects 3¥d character from third

C
3:3 array element)

if M is a 2-array of 2x2 matrices with values

(B3 - Fa) e

M2,2 2 = 8 (element in 2nd row, 2" column
T of second array element)
6-10

INTERMETRICS INCORPORATED +» 701 CONCORD AVENUE + CAMBRINGE MASSACHUSETTS 0717538 « it ' HR1 1840

Apparently, the colon should be
opticnal on Boolean data types
also. It is not because the
Boolean data type is a degener-
ate case of a bit string data
type which may possess com-
ponent subscripting.

See: (tbhd).

COMPONENT SUBSCRIPTING ONLY

When an arrayed data item of vector, matrix or character
type is required to be given only component subscripting,
array subscripting cannot be totally omitted. Rather, it
must be replaced by an asterisk. Let TABLE represent such
a data item; the subscripting form is then required to be:

TABLE
* : component

1. component represents any form
of component subscripting legal for
the data type of TABLE, as described
in Section 6.1.

Examples:

if C is a 3-array of characters with values
('YES','NO','MAYBE') then:

CW1 is ('yY','N','M') (makes 3-array from first character
: of each item)

if M is a 2-array of 2x2 matrices with values

1 2 5 6
(|3 4| » |17 g) then:
o Mt:l,l = (1,5) (2-array of scalars)
M.:*,z = ('il , lg) (2-array of 2-vectors)
.- 6~11

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE +« CAMBRIDGE MASSACHUSETTS 001138 - (617) 6611840

pR———

HAL/S allows more general forms of
subscript expressions than just
those stated in Section 6. 1In
addition, a symbolic form of
reference to the last array or
other element of a data type is
allowed. Even more complex

forms of subscripts apply to parts
of tree organizations of data
('structures').

See: (tbd)

6.3 SUMMARY

This section has comprehensively described the forms of
subscripting available in HAL/S. At this point in the Guide,
sufficient information has been given to allow the user to be
able to reference different kinds of data. Section 7 shows
how operations may be performed on the data so referenced.

6-12

INTERMETRICS INCCRPORATED - 701 CONCORM AVENUE + CAMBRIDGE MASSACHUSETTS 02138 + (617, 661 1840

7. EXPRESSIONS

Section 6 dezlt with the referencing of declared data items.
At. this point it is appropriate to describe how tne values of
these data items can be manipulated. In HAL/S the construct
which specifies operations on data items is called an
"expression"*, In many cases it is very close in form to

the generally accepted notion of a mathematical expression.

Generally, expressions consist of sequences of operations,
possibly parenthesized in places to override the precedence
rules of HAL/S. Each operation is comprised of one or two
operands and an operator. The very simplest form of expres-
sion is one in which there are no operations and j:3t one
operand. An operand may be a data item, possibly subscripted,
or a built-in function, or an explicit conversion function.
This section begins by describing the legai HAL/S operations,
and then continues to show how they are combined into
expressions.

Previous sections of the Guide have divided data items and
literals into tliree broad classes: arithmetic, character,
and Boolean. It is convenient to divide the operations to
be described into the same three classes. The type of an
expression is the type of the value resulting from its
execution, and may, in general, be different from the types
of some of its operands.

7.1 ARITHMETIC OPERATIONS

Arithmetic operations are the most numerous of all operations
in the HAL/S langcage. They comprise operations on vector,
matrix, integer, and scalar data types. HAIL/S recognizes

the following operations:

¥ The storing of the result of a HAL/S expression into a
data item is performed by an ASSIGNMENT statement, of
which the expression forms a part.

7-1
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE MASSACHUSFETTS 02138 « (617) 661-1840

Symbol Purpose

* % exponentiation, inversion,
transposition
(blank) multiplication
* vector cross product

. vector dot product
/ division
+ addition

- subtraction, negation

NEGATION
Negation is a binary operation applicable to any arithmetic
data type:
Symbolic form: - p
l. The legal data types for R are given
by the following table:
R-type
MATRIX
VECTOR
SCALAR
INTEGER
2. Negation of vector and matrix types
implies element-by-element negation.
Examples:

2]
v

if I is an integer and 1
then -I = =5

-1.5

if V is a 3=-vector and Vv = [4.2]
.1 1.5

and - V _[_4.2

-5.1

7-2
INTERMETRICS INCORPQORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

ADDITION AND SUBTRACTION

Addition and subtraction can only take place between compatible
arithmetic data types:

Symbolic form: L[% R

1. The legal combinations of data types
are indicated by the following table:

L -type] R -type
MATRIX MATRIX
VECTOR VECTOR
SCALAR | { SCALAR
INTEGER f INTEGER

2. Operations on matrix and vector operands
imply element-by-element addition and
subtraction.

3. The operands in a matrix addition or
subtraction must have the same row and
column dimensions.

4, The operands in a vector addition or
subtraction must have the same lengths.

5. In a mixed iateger-scalar operation, the
result is scalar. The integer operand is
first converted to single precision
scalar.

7-3
INTERMETRICS INCORPORATED -+ 701 CONCORD AVENUE - CAMBRIDGE. MASSACHUSETTS 02138 « (617) 661-1840

Examples:

If I is integer with I = 5
S is scalar with s = -4.2
then
I +1 = 6 (integer result)

I + 0.5 = 5,5 (scalar result)

S +1 = =3.2 (scalar result)
I -5 9.2 (scalar result)
if V1 is a 3~vector with V1= -1.0
-2.5
3.2
V2 is a 4-vector with v2 = [0.5]
0
-2.2
Ll.SJ

then the operation V1 + V2 is illegal because the lengths of
V1l, V2 do not match;

but
vl - V21 0 3 ° -1.5 is legal because subscripting
-2.5 of the R operand has produced
1.0 a 3-vector.

Using S, V1 above,
S + Vvl is illegal because the types are incompatible;

but § + Vl, - -1.0 is legal and has a scalar result because
subscripting has changed the R operand to

scalar type.

3

7-4

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE -+ CAMBRIDGE, MASSACHUSETTS 02138 -« (617) 661-1840

if Ml is a 3 x 2 matrix with M1l = 1.0 0
-0.5 =1.0

0 0
M2 is a 2 x 2 matrix with M2 : [0.5 -0.5
1.0 1.0

then M1l - M2 is illegal because the row dimensions of the
operands do not match;

but, Ml2 AT 1. M2 | C.5 0.5 is legal because the
' -1.5 -2.0 number of rows in the
L operand have been
reduced to 2 by sub-
scri-~ting.

DIVISION

In division, the dividend may be any data type, but the divisor
must either be integer or scalar.

Symbolic form: L /R

1. The legal combinations of data types are
given by the following table:

L -type AL R -type

MATRIX '

VECTOR { SCALAR
SCALAR ‘ INTEGER
INTEGER

2. If the dividend is of matrix or vector
type, element-by-element division by the
Roperand is implied.

3. If either or both operands are of integer
type, they are first converted to scalar
type.

7-5
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

Examples:

1/2 = 0.5 {({both integer operands converted to scalar)

4.0

if V is a 3-vector with V - [2.01
6.0}

then v/2 = |1.0
2.0
3.0

if M is a 2 x 2 matrix with M - [1.0 -0.5
0.2 0.6

S is a scalar with s = 0.5

then S/M is illegal since the R operand may not be of matrix
type,

but M/S = [2.0 =1.0
0.4 1.2

DCT PRODUCT

The HAL/S dot product operation corresponds to the mathematical
dot or inner product of two vectors. In mathematical notation:

s = <u, v or s = uly

where u, v are column vectors and T denotes the trarspose.

Note that HAL/S does not require the user to distinguish between
row and column vectors because the position of the operand in the
operation is sufficient in itself to allow it to be interpreted
as one or the other.

Symbolic form: L ., R

1. The operands of the dot product must le

as shown:
L-type | R-type
VECTOR | VECTOR
2. The lengths of each operand must be
the same.

3. The result is of scaiar type.

7-6

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGF MASSACHUSFETTS 02138 « (617) 661-1840

Example:

If V is a 3-vector with Vv =

1l
1
o +-O
« o .
oo,
\—

then V.V = 1.5

CROSS PRODUCT

The HAL/S cross product operation corresponds to the mathematical
vector cross product in 3-dimensional Euclidean space:

if w is perpendicular to u, v

W v as shown,
N and |w| = |u||vlsin 6
D then w = u x v

Symbolic form: L *R

1. The type of the operands must be vector:

L -type [R -type
VECTOR l VECTOR

. 2. Both operands must be of length 3.

3. The result is a 3-vector.

Example:
if V1 is a 3-vector with V1 = [0.5
0
| 0
V2 is a 3-vector with v2 = [0]
0.5
0
.. then V1 * V2 = 0
0
0.25
- 7-7

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

MULTIPLICATION

The HAL/S language has no explicit symbol for multiplication:
the adjacency of two operands signifies this operation. Multi-
plication can take place with arithmetic operands of any type:

@ If operand types are either integer or scalar, multiplication
in the regular arithmetic sense is implied; ...CASE <:>

® if one operand is integer or scalar, and the other vector or
matrix, then element-by-element multiplication is implied;

...CASE @

® if both operands are vectors then the outer product is implied,
the result being a matrix; ...CASE (:)

e if both operandas are matrices, the matrix product is implied;
...CASE (4

® if one operand is a matrix, and the otaer a vector. then

a vector-matrix product is implied, the result being a
vector. ...CASE (:)

The symbolic form for multiplication is as shown:

Symbolic form: L R

1. At least one blank character must
separate the [and R operands.

The additional rules applicable to each of the cases described above
are now liisted in turn.

7-8
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE. MASSACHUSETTS 02138 + (617) 661-1840

2. The operand types are:

1-type | R -type

INTEGER}{ INTEGER
SCALAR SCALAR

3. 1If both operands are integer, the
result is integer, otherwise it is
scalar.

4. If one operand is integer, then it
it first converted to single precision
scalar.

Example:
If I is integer with I = 10

then 1.5E-2 I = 0.15 (scalar result)

case (2)

2. The operand types are:

L ~type _J R -type
INTEGER} {VECTOR

SCALAR MATRIX
VECTOR } {INTEGER
MATRIX SCALAR

3. Element-by-element multiplication
of the vector or matrix is implied.

4. If an operand is of integer type, it
it first converted to single precision
scalar.

7-9

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « 1617 661-184C

Examples:

if S is scalar with S = 1.5

M is a 2 x 2 matrix with M =] 0 0.3
-0.1 0.4
then s M =] 0 0.45]
-0.15 0.6 .
and M S =[0 0.45]
-0.15 9.6

CASE @

2. The operand types are:

L-type | R-type
VECTOR l VECTOR

3. If the l-operand is of length m,
and the R operand is of length .,
the result is an m x n matrix.

1.0
-1.0
1.0

Examples:

it

If V1 is a 3-vector with V1

V2 is a 2-vector with V2 = [0.5]
0.6
then V1 V2 = 0.5 0.6 (3 x 2 matrix)
-0.5 -0.6
0.5 0.6
and V2 V1 3 [0.5 -0.5 0.5)(2 x 3 matrix)
0.6 -0.6 0.6

7--10
INTERMETR.CS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

L dabs. 1 S Y

any ey

- ——

The operand types are:

L~type

| R-type

MATRIX

The number of coulumns in the

{ operand

rows in the R operand.

If the | operand is an m x n matrix

and the R

the result is an m x p matrix.

MATRIX

must equal the number of

cperand is an n x p matrix,

Examples:

If Ml is a 2 x 3 matrix with Ml

M2 is a 3 x 2 matrix with M2

then M1 M2

and M2 M1l : [0.25

[O 3.5
0 0.7

0.5
0.5

[1.0 1.0 2.o]
0.5 =-0.5 1.0

0 0.5
0 1.0
0 1.0

(2 x 2 matrix)

il

5

-0.5 1.0

-0.25 0.5] (3 x 3 matrix)
-0.5 1.0

Note that by using partitioning subscripts that

Ml

but M2 M1

«,2 TO 3 M2 1S

*x,2 TO 3 ~

illegal because of dimension mismatch;

-0.25 0.5 is still legal
-0.5 1

-0.5 1

7-11

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE. MASSACHUSETTS 02138 - (617) 661-1840

2. The operand types are:

I-type | Rr-type

VECTOR MATRIX
MATRIX VECTOR

3. If the [operand is an m x n matrix,
the R operand must be an n-vector,
and the result is an m-vector.

4. If thel cperand is an m X n matrix,
the R operand must be an m-vector, and
the result is an n-vector.

Note that the position of the vector operand again determines
its intecspretation as either a row or column vector.

Examples:

0 1.0

If M is a 3 x 2 matrix with M = [0.5 1.0]
0.2 0.4

V is a 3-vector with V = 1.0
-1.0
1.0

then V M = [0.7 (2-vector)
0.4

and MV is lllegal because of dimension mismatch;

however, M V1 O 2 - :g.g is legal.
-0.2

7-12

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE. MASSACHUSETTS 02138 + (617} 661-1840

EXPONENTIATION, INVERSICN AND TRANSPOSE

In HAL/S, a single ogperator serves for exponentiation, matrix
inversion, and matrix transpose, the operand types serving to
distringuish between them.

e If both operands are integer or scalar, then exponentiation
is implied; ...cast ()

e if the left operand is a square matrix, snd the right is
an integer-valued literal, a repeated matrix product or repeated

product of inverse is implied; ...CASE <:)

e if the left operand is a matrix, and the right operand is
the character 'T', then the transpose is implied. ...CASE (:)

These operations take the general symbolic form:

Symbolic form: L ** R

1. This is the one-line format version.
In multi-line format the operator symbol
is omitted and R is placed on an exponent
line. See Section 2.3.

The rules for each of the cases listed above are now described in
turn.

7-13
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

2. The operand types are:

L -type | R ~type

INTEGER | { INTEGER
SCALAR SCALAR

3. If the L operand is integer and
the R operand is a non-negative
integral-valued literal, then the
result is integer, otherwise it is
scalar.

4. Consistent with Rule 3, if the result
is scalar, then any integer operands
are first converted to single-precision
scalar.

Examples:

If I is an integer with I = 5

then I #+ 2 3 25 (integer result)

and I#»*-] - 0.2 (scalar result)

also 2+%0.,5 : V2 (scalar result)
7-14

INTERMETRICS INCORPORATEDN - 70t CONCORD AVENUE + CAMBRIDGE MASSACHUSETTS 02138 - 1617, 661-1840

2. The operand types are:

L-type | R~-type
MATRIX [INTEGER

3. The L operand is a square matria.

4. The K operand is an intecral-valued
literal. The following table shows
the effect of differeat ranges of
values of the R operand:

value resultc
< -2 repeated product of inverse
-1 inverse
0 unit matrix
1 no- .peration
> 2 repeated product

Examples:

If Mis a 2 x 2 matrix with M : l 0.5 ll
~0.5

0

then M¥ : [-0.25 0.5
1-0.25 -0.5

Ml Io -2

1 1

0

and M° = [1.0 0 |
0 1.0,

7-15

INTERMETRICS INCORPORATED ¢« 701 CONCORD AVENUE - CAMBRIDGF MASSACHUSETTS 02138 + (617) 661-1840

2. The operand types are:

L -cype I R -type

MATRIX T

3. If the [operand is an m x n matrix,
then the result is an n X m matrix.

4. If R is symbolically T, then transpose
is i1ndicated even if T is a declared
data item.

Examples:

If M is a 2 x 3 matrix with M = [1.0 0 3.0

0 0

then M~ : [1.0 2.0]
3.0 4.0

if V is a 3-vector with V: 1.0
2.0
3.0

then vt is illegal because the L operand is not matrix type.

The transpose of a vector is not needed in the HAL/S language.

7-16

INTERMETRICS INCORPORATED « 701 COMCORD AVENUE + _AMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

NOTE ON PRECISION CONVERSION

It is possible that the precisions of the two operands may differ
in any of tha operations described. In these cases, precision
conversion usually takes place before the operatior is executed.
The rules under which it takes place are as follows:

1. No precision conversion is possible in
unary operations: transposition is
considered a unary operation.

2. Where an operation specifies type con-
version from integer to single precision
scalar, this conversion is carried out
first.

3. 1If only one operand is integer and no
. . . . au—,
type conversion is implied, no precilsion
conversion takes place.

4, 1If both operands have the same precision,
the result is of the same precision (even
if not of the same type).

5. If the operands have mixed precision, the
single precision operand is converted to
double precision. <Then rule 4 is applied.

7-17

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 » (617) 661 1840

7.2 CHARACTER OPERATIONS

There is only one character operation in HAL/S: the catenation
of character strings.

Symbol | Purpose

vl } catenation

CATENATION

The utility of catenating character strings is obvious in
the generation of output listings. The rules related to
the catenation operation are as follows:

Symbolic form: L || R
CAT

1. The L and R operands are not just
restricted to character type: some
degree of implicit type conversion
is allowed. The following types are

legal.

L-type } R-type
INTEGER ‘INTEGER
SCALAR)SCALAR
CHARACTER) | {CHARACTER

2. The rules for converting integer and
scalar types to character type are to
be found in Appendix .

7-18
INTERMETRICS INCORPORATED « 701 CONCORD AVENUE. + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

Ve e s s e b

Examples:

If C is a character item with C =' UNITS!

I is integer with I :- 10

then 'TEN' || C = 'TEN UNITS'
I |[|]Cc = '10 UNITS'
and 1|l 1 = rio010°
7-19

INTERMETPICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSE TS 02138 + (617) 661- 1840

I

7.3 BOOLEAN OPERATIONS

Boolean operations are logical (binary) transformations on Boolean
operands. HAL/S recognizes the following operations:

Symbol Purpose
& 1| logical int ti
D S gic ntersection
OR } logical conjunction
NOT } logical complement

COMPLEMENT

The complement operation complements the logical value of a
Boolean operand. It takes the following form:

Symbolic form: -~ R
NOT

1. The R operand is of Boolean type.

Example:
If B is Boolean with B Z TRUE

then -~B = FALSE

7- 20

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE. MASSACHUSETTS 02138 + (617) 661-1840

CONJUNCTION

The conjunction operation causes the logical values of two
Boolean operands to be CR'ed together.

p——e

- oL R
Symbolic form: OR

1. The L and R operands are of Boolean type.

2. The truth table for the resulting Boolean
is as follows:

T=TRUE L '
F=FALSE T F

T T T
R

F T F

Examples:
I{ B is Boolean with B = FALSE

then B!B = FALSE

2

B|TRUE = TRUE

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE » CAMBRIDGE MASSACHUSETTS 02138 - (6171 66171840

INTERSECTION

The i tersection operation causes tiae logical values of twec
Bool .an operands to be AND'ed together.

; . L & R
Symbolic form: AND
1. The L and R operands are of Boolean type.

2. The truth table for the resulting Boolean
is as follows:

T=TRUE L
F=FALSE T F

R T T F

F F F

Examples:
If B is Boolean with B - FALSE

FALSE

H

then B&TRUW

FALSE

).

B&B

7-~22

INTERMETRICS {NCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE. MASSACHUSETTS 02138 « (617) 661-1840

7. COMBINING OPERATIONS & PRECEDENCE

It is obviously desirable to be able to combine operations so
as to create expressions of any required complexity. In combining
operations, the following information is necessary:

e The order in which operations are executed (tb order
of "precedence");

e the way in which the precedence order can be overriden.

ARITHMETIC AND CHARACTER PRECEDENCE

The precedence of HAL/S operations on arithmetic and character
data types are shown in the following table:

Symbol Precedence Purpose
FIRST
*x 1 exponentiation, etc.
(blank) 2 multiplication
* 3 cross product
4 det product
/ 5 division
+ 6 addition
~ 6 subtraction, negation
||, caT 7 catenation
LAST

Two rules clarify and modify this informaticn:

® Sequences of Jperations of the same precedence are evaluated
left to right, except for ** and /, which are evaluated right
to left,

® Sequences of multiplications are sometimes reordered to minimize
the number of elemental products required.

7-23

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE MASSACHUSETTS 02138 - 1617. 661 1840

Examples:

In the following expression, the numbered pointers show
the crder of execution of operations:

'RESULT OF STEP '[|N|[' 15 ' 1551+522 - V1.v2/2/2

db dbddb

The precedence rules for Boolean operations are stated separately
because there are no implicit conversions causing interaction
with arithmetic and character operations.

BOCLEAN PRECEDENCE

Symbol Precedence Purpose
FIRST
-, NOT 1 complement
&, AND 2 intersection
|, OR 3 conjunction
J LAST

Sequences of operations of the same precedence are evaluated
left to right.

Examples:

In the following expression, the numbered pointers show the
order of execution of operations:

-B1|{B2 & -~ B3

4 bbb

7-24

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGLE MASSACHUSETTS 02138 « 1617 661 1840

OVERRIDING PRECEDENCE ORDER

In HAL/S, the order of precedence can be overriden at will by
the use of parentheses, nested to any arbitrary depth.

Examples=:
In the following Boolean expression,
31152@; B3|B4 & BS
parentheses may change the precedence order as shown:

(B1]B2) & ((B3|B4) & BS5)

d b b

In the following arithmetic expression,
2
sl + S:E>+ SBZS)
parentheses may change the precedence order as shown:

((S1 + 52)2 + §3)/2

bbb

HAL/S allows the operands
in an expression to be
arrayel, causing parallel
evaluation on an element-
by-element basis.

See: (tbd).

7-25

INTERMETRICS INCORPORATED - 701 CONCORD AVEN'JE + CAMBRIDGE MASSACHUSETTS 02138 «» (617, 66

440

7.5 SOME EXPLICIT CONVERSIONS

As evidenced in Section 7, there are few implicit type conversions
in the HAL/S language. However, there is a comprehensive range of
explicit conversions, some of which ar now described.

PRECISION CONVERSION

Any arithmetic expression may have its precision explicitly
changed as follows:

(cxp1a55&un)@ NOUBLE

(expnesbiun)@ SINGLE

1. In the first form, if expression is
a single precision arithmetic precision,
it is converted to double precicion.
If it is already double precision, the
conversion has no effect.

2. In the second form, if cxpresseen is
a double precision arithmetic expression
it is rounded to single precisioa. If
it is already single precision, the
conversion has no effect.

Example:
If A and B are single precision, then the result of

+
(a B)@ DOUBLE

is double precisioa. -he type remaining unchanged.

1-26

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE MASSATHUSETTS 021148 « (6171 661 1840

VECTOR CONVERSION

A vector can be synthesized from a list of scalar or integer
expressions using the construct shown in the following table:

VECTORn (Q)(pl, (’)(])2)

1. The subscript nvmber n specifies the
length of the vector to be created, and
lies in the range 1 < n < 64*,

2, If n is omitted the resulting vector is
assumed to be of length 3.

3. Each exp 1is a scalar or integer
expression.

4. The number of expressions in the list
must match the implicit or explicit
result length.

5. The result of the above conversion is in
single precision.

6. The matrix is assembled row by rc« *r-.
the list.

Examples:
VECTOR (1, 2, 3)

2

creates a 3-vector with value 1l
3

* This value may be implementation dependent. See Appendix
for exceptions.

7-21
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGF MASSACHUSFTTS 02138 « 61 66"

340

p—

if S 1s a scalar with S = 0,5 then
VECTOR, (S, %, $+1, 0)

creates a 4-vector with value

Note that even if the arguments 1are double precision the result
is in single precision. To specify double precision in a vector
conversion, the fo!lowing modified form is used:

B

VECTOR Cexpl, exp?)

@ DOUBLE, n

1. The meanings of &Xp and n are as before.

2. If n is not specified, the preceding comma
is u.iso omitted.

Examples:

VECTOR (L, 2, 3)

@ DOUBLE

creates a double precision 3-vector with value [l]

3

VECTOR 1, 2, 3, 4)

@ DOUBLE, 4°¢

creates a double precision 4-vector with value

oW N -

~d
i

[28]

=2]

INTERMETRICS INCORPORATED « 701 COMCORD AVENUE + CAMBRIGGE MASSACHUSETTS 07138 » (617, 661-1840

MATRIX CONVERSION

There exists a methcd of synth-~cizing a matrix from a list of
integer or scalar expressions analogous to the vector conversion
described:

i

MATRIX ety ep?, i)

1. The subscript numbers m, n specify the
row ard column dimensions of the matrix
to ke cr=ac2d, and must lie in the range
1 <m, n < 64*,

2. The subscript may be omitted, in wnich
cace the resculting matr x is assumed to
be 3 by 3.

3. Each «exp is a scalar or integer
expression.

4, The number of expressions must match the
total number of elements in the resulting
matrix.

5. The result of the above conversion is in
single precision.

* This value may pe implementation d:pendent. See Appendix
for exceptions.

7-29

‘ERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBR'DGE MASSACHUSFTTS 02130 + 6 ° 66 1R40

Exarn hes:
MATRIX(1, 2, 3, 4, 5, 6, 7, 8, 9)

4 5 6

creates a 3 x 3 matrix with value [l 2 3]
7 8 9

MATRIX (1.5, 0, 0, 0, 0.5, 0)
2, 3

creates a 2 x 3 matrix with value 1.5 0 Ol
0 0.5 0

Note the order of assembly in each case.

As in the case of vector conversion, a modified form is required
if the result is to be in double precision:

1 2
MATRIX, oupLE, m, alexp” o exp” L..l)

1. The meanings of m, n and ¢exp are as
before.

2. If the dimension subscript is omitted, the
preceding comma is also omitted.

Examples:

MATRIX@ DOUBLE(l, 2, 3, 4, 5, 6, 7, 8, 9)

creates a double precision 3 x 3 matrix with value [1 2 3]
4 5 6
7 8 9

MATRIX 3(1.5, o, 0, 0, 0.5, 0)

A DOUBLE, 2,

creates a double precision 2 x 3 matrix with value [1.5 0 0
0

AW TR GEeANT A e r

TR I o i

i

7-30

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE. MASSACHUSETTS 02138 + (617) 661-1840

on i i P W n

Sreeme wemeom -

R T - e

~ pn

The explicit conversions described

are those most commonly required for
numerical analysis. However, HAL/S
contains many other explicit con-
version function forms corresponding
to conversions between most data types.
See: tbd.

7-31

. INTERMETRICS INCORPORATED + 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

7.6 BUILT-IN FUNCTIONS

HAL/S possesses a comprehensive range of library or
"built-in" functions that can be used as operands in
expressions. Built-in functions have zero, one, or
two arguments, and are written in a form akin to
standard mathematical notation.

Built-in functions are divided into five different classes,
roughly according to purpose:

@ arithmetic

® algzbraic

® vector-matrix

® character

® miscellaneous

A full description of all built-in functions is given in

Appendix . A brief explanation of some of the more
important functions in each class is given below.

ARITHMETIC FUNCTIONS

Arithmetic functions perform simple arithmetic operations
on scalar or integer arguments. Some arithmetic functions
are:

Function Comments

ABS (a) returns |a| (the absolute value of
a). o may be integer or scalar.

DIV (a,B) returns the result of integer divi-
sion of a by 8. o and B may be
scalar or integer: scalar values
are rounded to integer before use.

ROUND (a) rounds a scalar a to an integer.
ODD (a) returns a Boolean result, which is
TRUE if a is odd, and FALSE if a
is even.
SIGN(a) returns +1 if o« 20 and -1 if a < 0.
7-32

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE +« CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

ALGEBRAIC FUNCTIONS

Algebraic functions perform trigonometric and other
transformations on scalar arguments. Some common
algebraic functions are:

Function Comments
Ccos(a) returns cos a
EXP () returns e”
LOG (&) returns logea
SIN (a) returns sin «
SQRT (o) returns \a
TAN (o) returns tan o

VECTOR-MATRIX FUNCTIONS

Vector-matrix functions perform operations on vectors or
matrices. Common vector-matrix functions are:

-

Function Comments

ABVAL(a) returns length of
vector o

INVERSE (a) returns inverse of

square matrix a

UNIT(a) returns unit vector
in same direction
as vector a

7-33

- INTERMETRICS INCORPGRATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

CHARACTER FUNCTIONS

Character functions perform operations on character data.
Some common character functions are:

Function Comments

LENGTH (a) returns current length
of character string a

TRIM(a) strips leading and
trailing blanks from
string «

MISCELLANEOUS FUNCTIONS

Some of the more important miscellaneous functions are:

Function Comments

DATE returns date at time of
execution

MAX (a) returns the maximum

value in the integer
or scalar array a

MIN(a) returns the minimum
value in the integer
or scalar array a

RANDOMG returns random number
from Gaussian distri-
bution with mean zero,
variance 1.

7-34
INTERMETRICS INCORPORATED » 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

'
;

!

Examples of use:

SINE = SIN(X/2) + SIN(Y/2);
X = ABVAL(V1#V2);
I

|
I
; F ODD(X) THEN RETURN;

7.7 SUMMARY

Section 7 has described how HAL/S expressions are synthesized
from operands and operators, and in what order such expressions
are executed. Expressions, particularly of integer and scalar
type, form parts of many HAL/S language constructs. Section 6
referred many times to the use of integer expressions in sub-
scripting.

Section 8 describes the assignment statement, which causes the
result of an expression to be stored in some data item or
items.

7-35

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 ¢ (617) 661-1840

8, ASSIGNMENTS

Section 7 described, in detail, the creation of HAL/S
expressions used in numerous places in the language.
The assignment statement is one such instance in which
the value of an expression is assigned to a data item.

For convenience, an assignment is classified according
to the type of the receiving data item; that is, the
data item being assigned into. Because HAL/S allows
implicit type conversion, this type is not necessarily
the same as the expression whose value is used in the
operation.

® Arithmetic assignments are assignments to matrix,
vector, integer or scalar data items.

® Character assignments are assignmente to character
data items.

® Boolean assignments are assignments to Boolean
data items.

8.1 GENMERAL FORM OF ASSIGNMENT

The assignment statement is an instance of a HAL/S executable
statement. It has a general form applicable to all types
of assignment:

Symbolic Form: L = R;

1. | is the receiving data item. It
may be subscripted or unsubscripted.

2. Usually, R is an expression whose
resultant value is to be used in the
assignment. It may, of course, consist
merely of a single operand.

8-1

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

Additional assignment rules are applicable which differ
according to assignment type.

8.2 ARITHMETIC ASSIGNMENTS

Arithmetic assignments are those in which the receiving
data type is matrix, vector, integer or scalar.

MATRIX

The receiving data item is a matrix.

1. The operand types are:

L-type | R-type

MATRIX {MATRIX
INTEGER (rule 3)

2. The number of rows and columns
of the R-expression must be the
same as those of the receiving
data item.

3. The only condition under which
the R-type is integer is if it is
the literal value zero. The
assignment then creates a null
matrix.

Examples:

If Ml is a 2x3 matrix with M1 = [1.0 1.0 2.0]

M2 is a 2x2 matrix,
M3 is a 2x3 matrix;

8-2

INTERMETRICS INCORPORAT.D + .01 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

then
|
:M3 = =Ml;

results in M3
-0.5 0.5 -1.0

m
|
[
o

-1.0 -2.0'

:MZ = M1l; is illegal (column mismatch)
but
Emz =ML 5 oap 2
results in M2 = l 1.0 2.0|,
-0.5 1.0
:M3 = 0; results in M3 = IO 0 OI
' 0 0 0
but
EM3 =1; is illeqgal
VECTOR

The receiving data item is a vector.

l. The operand types are:

L-type | R-type

VECTOR { VECTOR
INTEGER (rule 3)

2. The length of the R-expression
must be the same as that of the
receiving data item.

3. The only condition under which
the K-type is integer is if
it is the literal value zero.
The assignment then creates a
null vector.

8-3

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

Examples:

2.0

If V1 is a 3-vector with V1 = }1.0
0

M2 is a 3x3 matrix,
V2 is a 3-vector;

then
|
V2 = =V1;
t

-1.0
-2.0
0

results in V2

IM2 = V1; is illegal (type mismatch),
|
but

|
|M2l . V1l; is legal since subscripting reduces
(! the L-type to 3-vector.

1 2 0
? ? ?
? ? ?

(? indicates values unchanged by assignment).

and results in M2

Note

1Vv2 = 0; creates a null vector.

8-4

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

[L.

INTEGER/SCALAR

Integer and scalar assignments can be treated together
because their rules are nearly identical.

1. The operand types are:

L-type | R-type

INTEGER }[INTEGER
SCALAR ! SCALAR

2. If the L- and R~types
do not match, type
conversion of the result
of the R-expression takes
place before assignment.

3. Scalar-to-integer conversion
implies rounding of the value
of the R-expression.

Examples:

I is an integer,
S is a scalar, and
M a 2x2 matrix, then

: I =5; results in I = §
| I =7.7; results in I = 8
: S =7.7; results in S = 7.7

Given the last values above for S, I
i

:”2,2

=1 - S;

results in M = [? ?]
? 0.3

(? indicates va.'.es unchanged by assignment)

|
My , = L; is illegal (type mismatch)
' ’

8-5

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

NOTE ON PRECISION CONVERSION

In an arithmetic assignment, the precisions of the receiving
data item ard of the R-expression may differ. 1In these
cases, precision conversion of the latter t-kes place before
assignment, under the following rules:

1. The P-expression is converted to the
precision of the receiving data item
as necessary before assignment.

2, If type conversion from integer to
single precision scalar is implied,
it takes place before precision
conversion.

8-6
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

- &

8.3 CHARACTER ASSIGNMENTS

The receiving data item is character tyne.

1. The operand types are:

L-type |R-type

‘CHARACTER
CHARACTER INTEGER
'SCALAR

2., R-expressions of integer or
scalar type are converted
before assignment to character
type. Conversion rules are to
be found in Appendix .

Examples:
If C is a character with C = 'ABCDE' and
C2 is a character,

then

!
1C2 = Cq; results in C2 = 'C'

'
:CZ = 1573; results in C2 = '1573°

These apparently straigatforward rules can become more complex
in some situations.

Generally, when the receiving data item is unsubscripted, its
working length becomes the same as the length of the R-
expression. However, if this would cause the derlared
maximum length of the receiving data item to be exceeded,
then truncation of tie excess from the right :akes place.

8~7
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE. MASSACHUSETTS 22138 - (317) 661 1840

Examples:

If Cl is character of maximum length 10
C2 is character of maximum length 1,

then

;Cl = 'ABCDL';
results in Cl1 = 'ABCDE' of working length 5
but

ECZ = 'ABCDE';

results in C2 = 'A' of working length 1

If the receiving data item is subscripted, then this causes
an additional complication. The rules applicable in such
a case are as follows:

Let
STRING
a

denote. a receiving data item of
character type:

N is declared maximum length
n is working length before assignment

1. The range of the subscript expression a
is presumed to be in the range 1 - N;
otherwise an error results.

2. The length of the R-expression is adjusted
to the length implied by a, either by
truncation of the excess from the right,
or by padding on the right with blanks.

3. If the range of a lies inside the range
l-n, then simple substitution of the char-
acter positions implied takes place.

4, 1If the range of a lies partly beyond the
range 1 - n, then the working length of
STRING is increased appropriately.

5. If the range of o lies totally beyond the
range 1 - n, the working length of STRING
is increased agpropriately, and the gap
between the nth character and the first
position implied by a (if any) is filled
with blanks.

8-8
INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

Examples:

Let Cl be character of declared maximum length 10
with value Cl1 = 'ABCD'

Then by Rules 2 and 3:
|
= ! [I
: Cly, 10 3 Qo'
results in Cl = 'AQQD’
|

= 1.
results in Cl1 = 'Al2D'
' — tyr,
| €1y po 3 = X'
results in Cl1 = 'AX D'
By Rules 2 and 4:
|
- 1t [
1 Cly o 5 = TQQY
results in Cl = 'ABCQQ'

(working length increased by 1)
|

1 = 1Y,
{ Cl4 TO 5 X

results in C1l

'ABCX !
(working length increased by 1)

By Rules 2 and 5:

, Cls q0 6 = 'O

results in Cl = 'ABCDQQ'
| (working length increased by 2)

! = '
IC17 TO 9 FGH';
results in Cl1 = 'ABCD FGH'
|
|Cl, = 'FGH';
f
results in C1 = 'ABCD F'!
8-9

'CORPORATED + 701 CINCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

8.4 BOOLEAN ASSIGNMENTS

The receiving data item is of a Boolean type.

l. The operand types are:

L-type I R-type
BOOLEAN , BOOLEAN

2. The logical value of the
R-expression is transferred
to the receiving data item.

Example:

If B is Boolean, then

|
B = FALSE;
1
results in B = FALSE

8-10
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

8.5 MULTIPLE ASSIGNMENTS

Several data items may be assigned to the same R-expression
in the same statement. The general form of such a multiple
assignment is as follows:

Symbolic form:
11, 12, ... LR g;

1. The value of the R-expression
is assigned to all L1 .,, (R
in turn.

2. Any lL-type must be compatible with
the R-type according to the rules
stated in Sections 8.2 through 8.4.

3. No particular order of assignment is
guaranteed.

Examples:

If Ml is a 2x2 matrix,
V1l is a 3-vector
|
:Ml, vVl = 0;
results in M1l = [0 0], vl = |o
0 0 0
0

If C is a character,
I is an integer,
|
:c, I =127.2;

results in C = '1,2720000E+02', I = 127

.. | 8-11
-~ WTERMETRICS INCORPORATED - 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

With the above data items,
|
IMl, C = 5;
]

is illegal because of data type mismatch between Ml
and the R-expression.

The following example illustrates the importance of Rule 3:

If further L = 2, then
I

:VlI,I=I+1;
has an ambiguous result, dependiig on the order
of assignment.

If I is assigned before V1,

then V1. = H , otherwise V1_ = [?]
I |2 L kY
3

?

(? indicates values unchanged bv assignments)

In HAL/S, the receiving data item

or items may be arrayed. This can
produce varying effects depending on
whether or not the R-expression aiso
is arrayed (i.e. has arrayed operands).
See: tbd.

8-12

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

|

8.6 SUMMARY

Section 8 has described assignment statements by

which the results of expressions can be assigned to

one or more data items. Assignments often form the core
of a program but are generally limited in effectiveness
unless their execution can be controlled with a degree
of flexibility.

Section 9 begins to Jescribe how erxecution can be
controlled by introducing the HAL/S conditional, or IF,
statement.

8-13

- .

- - INTERMETRICG INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

9. CONDITIONAL STATEMENTS AND BRANCHES

Section 9 is primarily concerned with the HAL/S conditional
statement, by which other executable statements may be
conditionally executed (or by which their execution may be
conditionally avoided). Together with statement groups,
which will be described in Section 10, they form a crucially
important part of the HAL/S language.

The HAL/S language encourages programmers to avoid using

GO TO statements to cause branches in execution. Their

total elimination, however, is not desirable. This

Section therefore also describes the HAL/S GO TO state-

ment, and statement labels, which are their destinations.
Statement lz2bcls are, in addition, needed for other constructs

to be describea in Section 10.

9.1 THE CONDITIONAL STATEMENT

In HAL/S, the simple version of the conditional statement is
an "IF clause" containing an expression evaluable as either
TRUE or FALSE, followed by a "true part" which is executed
only if the IF clause is TRUE. The simple version may be
augmented by a "false part" which is executed only if the

IF clause 1s FALSE.

9-1

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

SIMPLE IF STATEMENT

The form of the simple version is:

v IF exp THEN statement

1. exp is an expression which is
evaluable as either TRUE or
FALSE. It may be either a
BOOLEAN expression or a rela-
tional expression (these are
described in Section 9.2).

2. statement constitutes the true
part of the conditional statement.
Except as noted in Rule 3 it may
be any executable statement,
either simple or compound.

3. statement may not possess a
label, and may not be another
conditional statement.

4, If exp 1is FALSE, execution proceeds
to the next statement. 1If TRUE,
s tatement is executed first.

9-2

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

Examples:

|
I IF B|C THEN X = 0;
'Y=1;

X is set to 0 if either B or C or both is true:
the flow diagram for these events is:

{

evaluate
B|C

Yes
No
Set
X=0
‘ -
y
|
, IF B|C THEN DO;
| X=X-1;

| Y=Y+ 1;
| END;

The true part is a compound statement containing
two assignments.

] e e e - e ———

\ IF B THEN,IF C THEN D = O!;

Illegal because true part is a conditional statement,
in violation of Rule 3.

9-3

INTERMETRICE INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

EEN

AUGMENTED IF STATEMENT

When arqumented with a false part, the IF statement takes
the form:

IF exp THEN statement ;
{ ELSE else staterent ;

1. The form of the IF clause and
true part are the same as in
the simple conditional state-
ment.

2. else statement constitutes the
false part of the conditional
statement. It may be any
unlabelled executable state-
ment either simple or compound.

3. If exp is FALSE, execution
proceeds to the next statement
via else statement . If TRUE, it
proceeds to the next statement
via Atatement .

9-4
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

Examples:
IF B|C THEN X = 0;
 ELSE X = 1;
! X is set to 0 if B or C or both is true,
otherwise X is set to 1. The flow diagram
for these events is:

}
evaluate
B|C

is
No result Yes
[TRUE
\\\\3/////

X =1 X =0

I1f B|C THEN DO;
X 1;
Y 2;
END;
ELSE
X
Y
END;

o

nHo

2
1

e wo

Here, both true and false parts are compound
statements each containing two assignments each.

9-5
_ INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE. MASSACHUSETTS 02138 + (617) 661-1840

|
| IF B THEN X = 0;

ELSE IF C THEN X = 1;
I Y = 2;
]
This is legal: the false part of a conditional
statement may itself be another conditional
statement: the flow diagram for these events
is:

No Yes
18
C
TRUE Yes [Set

N
—
>
"
o

No
Set
) X =1 \
Set
Y = 2

9-6

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE MASSACHUSETTS 02138 ¢ (617} 66%-1840

"

9.2 RELATICNAL EXPRESSIONS

As was stated in Section 9.1, ! :v¢ are two valid forms

of expression in an IF clause, 4 OLEAN, and relational.
BOOLEAN expressions were descriued in Section 7; relational
expressions only appear in a iimited number of HAL/S
constructs, among them conditicnal statements, and are now
to be desc-ibed.

The simplest form of a relational expressinsn is merely a
comparison between two like quantities. The result is
either TRUE or FALSE. More complex forms of relational
expressions result from combining comnarisons with the
BOOLEAN operators &, |, and -.

COMPARATIVE OPERATIONS

HAL/S recognizes the following comparative operators:

Symbol Purpose Class
> greater than

< less than

<= less than or equals

EOE > } not greater than b ¢
> = greater than or equals

§°E < } not less than

= equals

IX

SO: = } not equals

9-7

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSE" 'S 02138 « (617) 661-1840

The operands of comparative operations may, in general,

be expressions of any of the types described in Sectiorn 7.
Depending on the type of operand, the operators may be
restricted to Class II only, or may be either Class I or
Class II.

e CLASS I1 ONLY

Symbolic form: L[NOT =R

"=

1. Legal cormbinations of data types
are indicated by the following
table:

L-type | R-type

VECTO™ VECTOR
MATRIX MATRIX
BOCLEAN BOOLEAN

CHARACTER CHARACTER

2. Comparison of vector and matrix
operands implies element-by-element

comparison.

3. The operands in a vector comparison
must be the same length.

4. The operands in a matrix comparison
must have the same row and column
dimensions.

9-8

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE. MASSACHUSETTS 02138 + ‘417) 661-1840

Examples:

If STRING is character type with
STRING = 'ABC '

STRING = 'PQR'
is FALSE,
STRING = 'ABC'

is FALSE - character strings must be of the same
length.

If V, V1 are 3-vectors with

F L

then V = V1 is FALSE,
V1 -V =2 vV is TRUE.

v

If further V2 is a 2-vector with V2 [1]
1
then V1 = V2 is illegal because of length mismatch,

but Vl1 T 2 = V2 is TRUE,

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

- -

e CLASS I AND CLASS II

2
(o}
=3
v

Symbolic form: L -> R

1. Legal combinations of data types are
indicated by the following table:

L-type | R-type

INTEGER} { INTEGER
SCALAR SCALAR

2, In amixed integer-scalar operation,
the integer operand is converted to
scalar before the comparison takes
place.

Examples:
If I is an integer with I = 5

then I =5 is TRUE
I < 4 is FALSE
I>=5 is TRUE

9-10

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

NOTE ON PRECISION CONVERSION

It is possible that the precisions of the two operands
may differ in any of the operations described. In these
cases, precision conversion takes place before the opera-
tion is executed. The rules under which it takes place
are as follows:

1. Where an operation specifies type
conversion from intecer to single
precision scalar, this conversion
is carried out first.

2. If only one operand is integer and
no type conversion is implied, no
precision converslo.. takes place.

3. If both operands have the same
Frecision, the result i.8 of the
same precision (even if not of
the same type).

4. If the operands have mixed precision,
the single precision operand is
converted to double precision. Then
rule 3 is applied.

9-11

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

COMBINING COMPARATIVE OPERATIONS

Comparative operations may be combined as if they were
BOOLEAN operands, using the rules for Boolean operations
described in Section 7. It is important to note however,
that comparative operations are not BOOLEAN operands in
the sense that they can be mixed with actual BOOLEAN data
items.

® Boolean expressions may contain no comparative operations.

® Relational expressions may contain no Boolean operands.

Examples:
If V1, V2 are 3-vectors with
V1l = 1 , V2 3
2 2
3 1

wm

and C is character with C = 'ABC'
then

V1l = v2|cl = 'A' is TRUE

V1l = V2 & Cl = 'A' is FALSE
If B is Boolean tnen

B|V1l = V2 is illegal

9-12

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

4
i
»

PRECEDENCE

The following table shows the precedence of operations
involved in a relational expression:

Symbol Precedence Purpose
FIRST
1 { operations involving
operands of comparisons
,)
<
<=
NOT >, => > 2 comparative
e operations
NOT =, =)
&, AND 3 logical operations
on comparisons
|, OR 4
=, NOT *
* Any operand of this operator must always be parenthesized,
and is evaluated immediately after evaluation of the
operator itself.

9-113

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

Example:

In the following expression, the numbered pointers show
the order of execution of operations:

IF S1 + S2 = 0]~ (S3 > 0) & — (S4 < 0]S5 > 0) THEN

46 bbbdd b

Section 9.2 ends with some more examples designed to
clarify the foregoing.

Examples:

Let V be a 3-vector with v =] 1
2
3

|

j IFV =1&V =2THENV = 0;

S 1 2 3

| IFV >0]|V < 0 THEN V = 0;

]S 3 2

The first statement will cause V, to be set to
zero since both comparisons are TRUE. Then

vV = 1

2
0

In the second statement, neither comparison in the

relational expression is true. Hence, the "true
part" is not executed and finally

vV = 1
2
0 as before.

9-14

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE +« CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

9.3 LABELS AND BRANCHES

In HAL/S, there are two entities involved in the
branching operation: a GO TO statement, which, when
executed causes the branch; and a "statement label”
which is the destination of such a branch. HAL/S
also uses statement labels for other purposes, which
will become clear in Section 10.

LABELS

Labels are names chosen by the programmer and attached to
statements. More than one label may be attached to a
statement. The way of attaching a single label to a
statement is as follows:

Label ¢ statement

1. 5 tatement is any executable
statement or statement group
(see Section 10), with two
exceptions.

2, statement may not be the
"true part" or "false part" of
a conditional statement.

3. Label is a user-defined
identifier name (see Section
2.2).

9-15

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

Examples:
|

JONE: X =X + 1;

| TWO: Y = 0;

|
The following are illegal since they viclate
Rule 2:

|

| IF X 0 THEN ONE: Y = 0;

|IF X = 0 THEN X = 1;
| ELSE TWO: X = 3;

However, the conditional statement itself may
be labelled:

|
| THREE: IF X = 0 THEN Y = 1;
|

If more than one label is required, then they follow each
other in sequence,

Example:
|
IONE: TWO: THREE: X = X + 1;

9-16

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840 |

GO TO STATEMENT

The GO TO statement specifies the label to which
execution branches: it takes the form:

! GO TO tabel ;

]
1. Labef 1is a label attached to
some statement to which execution

is to branch.

Examples:

|
| GO TO ONE;

The GO TO statement itself may be labelled:

|
: TWO: GO TO THREE;

It is important to note that HAL/S places relatively
severe restrictions on the placement of GO TO

statements and where they may cause execution to
branch to. Section 1.3 described this on the abstract

level, and Section 10 further discusses it in connection
with statement groups.

9-17

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

ELIMINATING GO TO STATEMENTS

The Guide has stressed throughout that, according to structured
; cogramming principles, GO TO statements are inherently un-
desirable because they tend to disguise the program's flow

of execution.

It will be found that HAL/S contains a sufficient number of
other constructs to allow GO TO statements to be substantially
eliminated from a program. Following is an example showing
the elimination of GO TO statements.

Examples:

| IF .5 THEN GO TO ALPHA;
| IF 5 THEN TO TO BETA;
| Y

| ALPHA: X = X - 0.05;

| GO TO GAMMA;

BETA: X = X + 0.05;
| GAMMA :

This example is programmed in HAL/S in the simplest way
(possibly having been translated from Fortran or an assembly
language). The profusion of GO TO statements disguises the
simple flow of execution, which is interpreted by the following
flow diagram: 1

X with
1.5

4

increment Set Y decrement
X by to X by
0.05 Y +1 0.05
- <
9-18

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

Tl.e same algorithm is more clearly programmed
as follows:

IF X > 1.5 THEN
X
ELSE
IF X <
x —
ELSE
Y

"
>
'
o
o
J

i
ol

]
<
+

e

9.4 SUMMARY

Section S has described conditional statements, labels,

GO TO statements, and the ways in which they affect the

flow of execution in a HAL/S program. Some attempt has

been made to point out both the good and the bad ways

of using these statements. Section 10 goes on to describe
statement groups and how the usage of the constructs described
in Sections 9 and 10 are very often interrelated in well-
designed HAL/S programs.

9-19

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

10. STATEMENT GROUPS

Section 1.3 of the Guide introduced, on an abstract level,
the idea of "statement groups", wrich could be treated as
if they were simple executable statements, and could be
nested one inside the other. The power of such a facility
can be seen, for example, when it is used in conjunction
with the conditional statement: (this is demonstrated later
in Section 10.1).

There is, in fact, a second, equally important reason for
grouping statements in HAL/S: the execution of such groups
can be controlled in a variety of ways. If no explicit
specification is made, the sequence of statements is executed
once only. By explicit specification:

® the sequence may be repetitively executed until some
condition is satisfied;

® a single executable statement (or nest statement group)
of the group, selectable at execution time, may be
executed.

Section 10 explains in detail how statements are grouped,
and how execution control of the groups is specified.

10.1 "CLIMITING STATEMENT GROUPS

In HAL/S, groups of statements are said to be "well-bracketed":
they are delimited explicitly by opening and closing statements
which are themselves considered executable.

10-1
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE. MASSACHUSETTS 02138 + (617) 661-1840

THE DO STATEMENT

Every statement group is opened with a "DO" statement which
is also used to specify control of execution within the group.
It takes the generic form:

: DO conthol ;

]

1. controf is a construct to be
described. It specifies *he manner
in which the sequence of statements
is to be executed.

2. control is optional. 1If it is
absent, the sequence of statements
is executed in its natural order*
once oniy.

3. The DO statement is executable in
that it may be labelled according
to the Rules of Section 9.

The particular instances of DO statements will be explained
in Section 10.2.

The "natural order" of execution was explained in
Section 3.3.

10-2
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE. MASSACHUSETTS 02138 + (617) 661-1840

THE END STATEMENT

Every statement group is closed with an END statement:

2. Cubel

END

is optional:
the opening DO statement of the group
must be labelled with {abe!

fabet

1. The END statement is executable
in that it may be labelled according
to the Rules of Section 9.

if present,

The label specification in an END statement is never

functicnally necessary ia HAL/S.

However,

it should be

regarded as ¢yod programming practice because it
facilitates cross-checking by the compiler.

Examples:

Two instances of statement groups are shown below.
Even though details of execution control have not
yet been explained, the form of the construct should

be clear.
|
! DO WHILE I > 0; }
. I=1-1; |
. A = 0;
. S I ‘
: END- ;
. FIX: DO FOR I = 1,25,16,2;
' A = -=A
. 8 I 1
X END FIX;
10-3

opening DO statement
group of statements

closing END statement

one statement in group

label specification in
END matches label of DC

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE. MASSACI{USETTS 02138 + (617, 661-1840

The following ex mples show the importance of being able
to group statements together for use in conjunction with a
conditional statement.

IF S =0 THEN I = 2;

C = 'RESET VALUE OF I TO '|[|I;

)
:

It is required to conditionally
execute both assignments: one
solution 1s -

]

'

H IF S == 0 THEN GO TO NOSET;

} I =2;

| C = 'RESET VALUE OF I TO '||I;

I NOSET:

: L
This solution is error prone and
not in accordance with structured
programming concepts: a better
solution is -

]

]

' IF S = 0 THEN DO;

) I=2;

] ’

n C = 'RESET VALUE OF I TO '||I;

' END;

I The whole of the group enclosed
by DO ... END is subject to
conditional execution.

10-4

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

JE U

10.2 REPETITIVE EXECUTION OF STATEMENT GROUPS

The sequence of statements in a group can be executed
repetitively until some condition is satisfied. 1In
this section, two basic forms of DO statement causing
repetitive execution are described:

® The DO WHILE statement, in which execution is
repeated while a relational or boolean expression
remains true in value;

® The DO FOR statement, in which the sequence is

executed once for each of a set of assigned values
of a "control variable”.

THE DO WHILE STATEMENT

The form of the DO WHILE statement is:

+ CO WHILE conditicn ;

1. conditionis any relational or
BOOLEAN expression. It is
evaluated prior to each cycle
of execution of the statement
sequence in the group.

2. The next cycle of execution of
the group proceeds if the value
of condition is TRUE,

3. If the value of condition 1is FALSE,
the stopping condition is satis-
fied. Execution proceeds to the
statement following the END state-
ment of the group.

10-5

INTERMETRICS INCORPORATED - 701 CONCNRD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

Examples:

|I=97

: DO WHILE I > 0;
: I=1- 2;

; END;

Here the group is executed 5 times, after which
the value of I is ~-1. 1In flow diagram forn,
the sequence of events is:

is
Yes I>0

)

It is possible for a group never to be executed:

DO WHILE FALSE;
I=1I-2;
END;

10-6
INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

It is also possible for a group to be executed

forever:
|
v I = 0;
: DO WHILE TRUE;
' I=I-27
. END;
'
|

Normally in this case, the programmer would insert
statements in the group removing this possibility:

L]

; I =09;

X DO WHILE TRUE;

) I=I"2;

] IF I < 0 THEN GO TO ALL DONE;

| END;

There exists a variant of

the DO WHILE statement

called the DO UNTIL state-
ment. Here execution of

the group is assured at least
once, whatever the value of
the controlling expression.
See: (tbd).

10-7

INTERMETRICS iINCORPORATED - 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

THE DO FOR STATEMENT

The most widely used form of the DO FOR statement is:

DO FOR var = initial TO §inal BY increment ;

1, var is an unarrayed INTEGER or SCALAR
data item (it may be subscripted if
required). It is called the "control
variable" of the DO FOR statement.

2. initial, final and Jincrement are integer
or scalar expressions:

® (nitial 1is the initial value
assigned to wvanr.

® (ncrement is the amount by which
VAo is incremented on each
cycle of execution of the sequence
of statements in the group.

® {final is the value against which
var is tested at the start of
every cycle to determine if the
stopping condition is satsified.

All three expressions are evaluated
once prior to the first cycle of
execution.

3. The stopping condition i3 met when
the value of var lies outside the
range bounded by {mtial and fdnal .

4. ncrement may be either positive or
negative The phrase

BY «{ncrement

is optional. If omitted, the implied
increment is +1.

10-8
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

Examples:

DO FOR I =1 TO 10;

1]
—

Here the group is executed 10 times. I is
initially 1, and increments each time until
10 is reached. At the end of execution of
the group, the value of I is 11l. In flow
diagram form, the sequence of events is:

=}
Set
I=1
is
increment I >10
I by >
1 ? Yes |
] '
|
|
No
A
Set
XI =1
10-9

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

EI = 7;
‘{DOFORI =1+ 5 TO I - 3 BY -2;
] X=X+ I;

i+ END;

This example demonstrates some of the subtleties
of the DO FOR statement. The initial and final
values are precomputed as 12 and 4 respectively.
Then I is reused as the control variable: the
group is executed 5 times, and after the last
cycle of execution, I retains the value 2.

Care must be taken if the
control variable is integer
and the range expressions are
scalar: rounding occurs
during assignment of values
in such cases.

This DO FOR statement may
possess a WHILE or UNTIL
clause which furnishes a
supplementary stopping con-
dition.

See (tbd).

10-10
INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661

-1840

The DO FOR statement has a second form which is used if
the values of the control variable do not form a regular

progression:
LD
i DO FOR vaxr = expl, exp?, ... exph;
'
1. var 1is the controcl variable as before.

2. Each ¢xp 1is an integer or scalar
expression. Values of the ¢Xp ‘s are
assigned to var in turn prior to the
execution of each cycle, on a left-to-
right basis.

3. Each ¢xp 1is evaluated immediately prior
to the cycle of execution in which it
will be used.

Examples:

X = I
S I
, END;

’
' DO FOR I = 17,5,12,4;

Here, I takes the successive values 17, 5, 12, and 4.
After the end of the last cycle, the value of I remains
at 4.

I =7
DO FO +5, I+3, I1+1,1-1,1 - 3;

W~

I
I;

+ H

F I
X X
END;

Superficially, this example looks like a ditfferent
way of expressing the second example for the first
form of DO FOR statement:

I +5T01 -3 BY -2;
I

10-11

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE. MASSACHUSETTS 02138 « (617) 661-1840

Howvever, the successive values of I in the new
form (by Rule 3) are:

12, 15, 16, 15, 12
as opposed to
12, 10, 8, 6, 4

in the old form.

Rounding also occurs if the
control variable is integer
and any of the control expres-
sions are scalar.

As before, the DO FOR statement
may possess a WHILE or UNTIL
clau:e which furnishes a
supplementary stopping condi-
tion.

See: (thbd).

10-12

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE. MASSACHUSETTS 02138 « (617) 661-1840

10,3 SELECTIVE EXECUTION OF STATEMENT GROUPS

One statement of a group may be selected for execution
by means of the DO CASE statement. The form of the
DO CASE statement is:

DO CASE exp ;

1. exp 1is an integer or scalar
expression.

2, If its value is k (after rounding
if necessary), then the kth state-
ment of the group is selected for
execution.

3. A run time error results if k < 0
or k is greater than the number of
statements in the group.

The flexibility of a DO CASE statement is understood when
it is realized that the selected statement may be a
compound statement (i.e. it may itself be a statement
group) .

Example:
I = 3;
DO CASE I;
X = §; case 1
X =3; case 2
DO; I
X =17;
Y = 3; ‘ case 3
END;
X =1; case 4
X = 0; case 5
END;
10-13

: INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

Execution results in the third statement being
scheduled for execution, and the following
values being set:

X=7,Y:3

An ELSE clause may be added

to the DO CASE statement which
is executed instead of an

error being signalled, if the
value of the case variable is
outside the legal range for the
statement group.

See: (tbd).

10-14

INTERMETRICS INCORPORATED « 701 CONCO'RD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661 1840

10.4 BRANCHING IN STATEMENT GROUPS

Execution may branch out of any statement group via

a GO TO statement. 1In those cases where the group is
being respectively executed, execution obviously ceases
before the stopping criterion is satisfied. Because GO TO
statements are viewed unfavorably from the standpoint of
structured programming, HAL/S possesses two statements
expressly for executing controlled branches in statement
groups.

® The EXIT statement is, in effect, a controlled branch
out of a statement group.

® The REPEAT statement only applies to statement groups
executed repetitively, and is a controlled branch back

to the beginning of the group.

THE EXIT STATEMENT

The simplest form of the EXIT statement is:

EXIT;

i
[

1. 1Its execution caunses an immediate
branch out of the innermost state-
ment group in which 1t is enclosed.

2. Execution is directed to the first
statement following the END of the
group branched out of.

10-15

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE MALSACHUSETTS 02138 + (617) 661-1840

Examples:

DO:
X 1;
Y 2;
IF Z = 3 THEN EXIT;
Z = 4;
END;
X=X+ 1;

Arrow shows branch in execution if 2 = 3

DO WHILE X > 0;
X=X -1;
IF X > 2 THEN DO;
IF Y = 3 THEN EXIT;
Y=Y + 1;
END;
END;

.
'
L}
]
|
1
!
'
t
!
L]
!

Arrow shows branch in execuv ion if Y = 3: execution
branches to the end, but not out of DO WHILE ,roup.

There exists a second form of the EXIT statement to allow branches
out of other than the innermost statement group:

10-16

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE. MASSACHUSETTS 02138 « (617) 661-1840

| EXIT vtabet
L

1. 1Its execution causes a ! .ainct out
of the enclosing stateme¢ . group
whose DO statement possesses the
label ({abet

2. Execution is directed tc the first
statement after the END of the group
brenched out of.

Example:

ONE: DO WHILE X > 0:
X =X-1;
DO FOR I =1 TO 10;
A =A + X;

S I 1
X = I THEN EXIT ONE;
IF X = 0 THEN EXIT:

END;
END:

X = O;Ill

v -
The first EXIT statement causes a branch out of the
outer group rather than the inner, by virtue of its
label.

i
:
i
|
X IF
i
]
1
1
)

10-17

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE MASSACHUSEYTS 02138 - (617) 661-1840

THE REPEAT STATEMENT

The simplest form of the REPEAT statement is:

§ REPEAT;

1. It must be enclosed in a DO FOR
or DO WHILE group.

2. Its execution causes an immediate
branch to the beginning of the
innermost enclosing DO FOR or
DO WHILE group.

3. The next cycle of execution of
the group then starts (unless
of course the stopping condition
is satisified).

Zxamples:

:DO WHILE X > 0;
. i X =X-1;

: IF X = 4 THEN DO;
' Y=Y+ X;
) IF Y = 1 THEN REPEAT;
: END;
| END;

If Y = 1 then a branch back to the beginning of the
DO WHILE is made. Note that although the DO WHILE
is not the innermost group, it is the innermost

repetitive group.

10-18

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

: X = 4;

, DO WHILE X > 1;

! X =X~ 1:

i IF X = 1 THEN REPEAT;
; Y = X;

S X

: END;

When X = 2 the REPEAT branch is executed:

a new cycle of execution does not begin
however because the initial test shows that
the stopping condition is satisfied.

As with the EXIT statement, there exists a second form of
the REPEAT statement allowing branches back to the beginning
of other than the innermost DO WHILE or DO FOR group:

! REPEAT [labed

1. 1Its execution causes an immediate
branch to the beginning of the
enclosing DO FOR or DO WHILE
group whose DO statement possesses
the label fabelf .

2. The next cycle of execution of
the group then starts (unless the
stopping condition is satisfied).

10-19

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE. MASSACHUSETTS 02138 + (617) 661-1840

N *
T R I ¢ 3 4 T N . "
¥ > ———nyp, e iy ey " T bt .

Example:

ONE: DO FOR I =1 TO 10;

!

!

| J = I;

f DO WHILE J > 0;

| J=J - 1;

! X =X + J;

1S J J

| IF X = 25 THEN REPEAT;
is J

| IF X = 0 THEN REPEAT ONE;
1S J

] END;

: END;

i 2 =0;

The second REPEAT statem2nt restarts the outer DO FOR
group rather than the inner DO WHILE by virtue of its label.

10-20

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840 !

10,5 SUMMARY

Section 10 has explained how statements may be grouped
together into compound statements, and how such groups
may be executed repetitively or selectively.

At this point in the Guide, programs can be constructed
using assignment statements, and controlling execution
through conditional statements and statement groups.

The jud.cious use of procedures and user functions is
essential to the well-ordered structure program .
Section 11 thus goes on to describe how procedures
and functions are defined and invoked.

10-21

. INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 » (617) 661-1840

11, PROCEDURES AND FUNCTIONS

Section 1.2 of the Guide introduced the block structure
of HAL/S programs on the abstract level. To summarize
any program can contain nested procedure and function
blocks, which are two levels of "subroutines"”
characterized by the sequence:

Lnvocation + execution + retww to callon

The invocation of procedures and functions is governed
by well-defined name scoping rules.

This section explains how, in practice, procedure and
function blocks are defined in HAL/S, and describes
how they are invoked and returned from.

11.1 INTROJUCTION

A procedure is a subroutine block invoked by a CALL
statement., It may have two kinds of parameters:

® INPUT PARAMETERS - by which values may be
passed into a procedure only.

® ASSIGN PARAMETERS - by which values may be
passed into and out of a procedure.

A function is a subroutine block invoked by the
appearance of its name in an expression. It returns

a value and therefore has a defined HAL/S data type.
It may possess input parameters only.

11-1

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

]
- T R T R T T T e

RELATIVE POSITION OF BLOCK DEFINITIONS

Section 1.2 described the scoping rules which determine
the regions of a program where any given procedure or
function block may be invoked.

An important consequence of these rules is that a

procedure invocation may either follow or precede

its block definition. However, for other reasons,
the invocation of a function block should normally
always follow its block definition.

A number of rules restrict
the kind of function which
may be invoked preceding
its block definition.

See: (TBD)

11,2 BLOCK DEFINITIONS

Proced:-re and function block definitions have forms very
similar to the form of a program block, which was described
in Section 3. The first statement is one defining the

name and type of block, and listing its parameters. The
last statement is a statement closing the block.

11-2

INTERMETRICS INCORPORATED - 7G1 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 061-1840

PROCEDURE OPENING

The statement opening a procedure block takes the form:

Eﬂabu:: PROCEDURE (i, %

gees) ASSIGN(al,aZ,...);

1. Label is any legal identifier
name, and constitutes the name
of the procedure.

2. i;, 42,... are legal identifier
names defining input para-
meters. If the entire paren-
thesized list is omitted, then
the procedure has no input
parameters.

3. al,az... are legal identifier
names defining assign parameters.
If the entire parenthesized list
and the keyword ASSIGN are omitted,
then the procedure has no assign
parameters.

11-3

INTER® .ETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

FUNCTION OPENING

The statement opening a function block takes the
form:

fabelf: FUNCTION (<1,%,...) attrnibutes;

1. Label is any legal identifier name,
and constitutes the name of the

function.
2. in?,... are legal identifier names

defining input parameters. If the
entire parentliesized list is omitted,
then the functicn has no input para-
meters.

3. attrnibutes defines the type of the func-
tion, and, where applicable,its preci-
sion. The form of attrnibutes is the
same as used in data declarations
(see Section 4.2). If no atiibutes are
supplied, the function is assumed to
be single precision scalar.

BLOCK CLOSING

Both procedure and function blocks are closed with
the statement:

i CLOSE fabel;

1. The identifier (abel is optional.
2. If supplied, it must be the name

of the procedure or function
block.

11-4

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE. MASSA * SETTS 02138 + (617) 661-1840

3

Examples:

CNE: PROCEDURE;

7 |
-~ procedure body

7!

CLOSE ONE;

TWO: PROCEDURE ASSIGN (ARG1);

\\“single assign parameter -

may be used to return values
from procedure

CLOSE;

THREE: FUNCTION MATRIX(4,4) DOUBLE;

CLOSE THREE;

- - — - —— - -—

FOUR: FUNCTION (ARG1,ARG2) BOOLEAN;

/ tho input parameters -
14’5 for passing values into
// function only

CLOSE;

11-5
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE « CAMBRIDGE. MASSACHUSETTS 02138 « (617) 661-1840

11,3 DECLARATION OF PARAMETERS AND LOCAL DATA

Procedures and functions commonly require the use of
locally-defined data. As with program-level data, all
data names must be declared before use by means of
declaration statements. 1In addition, all input and
assign parameters must appear in local declaration
statements.

Data and parameter declarations must be placed after
the procedure or function opening statement, and
befure the first executable statement. It is good
practice, and mandatory in some implementations*, to
place parameter declarations before local data
declarations. The forms of local data and parameter
declarations are identical, and are as described in Section 4.

Examples:

General positioning -

ONE: PROCEDURE (ARGl) ASSIGN(ARG2);

“”’gﬂ parameter declarations
7%

local data declarations

» I executazble statements

———— . D T S . S —— —— Y ———— — o —

CLOSE ONE;

* See the User's Manual for any given implementation.

11-6
INTERMETRICS INCORPORATED + 70t COMNCORD AVENUE - CAMBRIDGE MASSACHUSETTS 02138 » (617) 661-1840

Particular instance =~

ONE: PROCEDURE (ARGl) ASSIGN (ARG2);

]

| DECLARE ARGl MATRIX(4,4); }_,.parameters
! DECLARE ARG2 ARRAY (100) SCALAR DOUBLE:

| DECLARE TEMP MATRIX (4,4); |——local data
'l .

, .

' .

|

|

! .

| CLOSE ONE;

|

11.4 FUNCTION INVOCATIONS

A function is invoked by the appearance of its name

as an operand in an expression. If the function is
defined with input parameters, a list of arguments to
be passed must follow the appearance of the name. The
precise form of invocation is:

eabee (L, 2, ...)

1. {abelf is the defined name of the
function.

.1 .2 . .

2. 4 ,{,... is a list of arguments,
which must correspond in number
with the parameters of the function
invoked. Each argument is a HAL/S
expression,

3. If the function has no parameters,
then the entire parenthesized argu-
ment list must be absent.

11-7
INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE MASSACHUSETTS 02138 « (617) 661-1840

The transmission of the arqument list during function
invocaticn may be viewed as the assignment of the value
of each expression in turn to its corresponding input
parameter (although in any given implementation this

may not actually be the mechanism of transmittal).

A set of rules governing type and precision conver-
sion, and dimension matching similar to the assignment
rules of Section 8 are applicable. These are classified
below according to parameter type.

MATRIX PARAMETER

1. The corresponding argument must be
of matrix type.

2. The number of rows and columns of
the argument must be the same as
those of the parameter.

3. Precision conversion is allowed.

VECTOR PARAMETER

l. The corresponding argument must be
of vector type.

2. The length of the vector nrgument
must be the same as that of the
parameter.

3. Precision conversion is allowed.

11-8

INTERMETR!CS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

INTEGER/SCALAR PARAMETER

1. The follewing table gives the
legal argument. types:
parameter | argument

INTEGER } { INTEGER
SCALAR SCALAR

2. Conversion of the argument takes
place where necessary. Scalar-
to-integer conversion implies
rounding of the value of the
expression.

3, Precision conversion takes place
when necessary and is applied
after possible type conversion.

CHARACTER PARAMETER

l. The allowable argument types are
given by the following table:

parameter | argument
‘ CHARACTER
CHARACTER l INTECER
SCALAR

2. Rules for the conversion of integer
or scalar values to character type
are given in Appendix .

11-9
INTERMETRICS INCORPORATED - 701 CG! *VENUE - CAMBRIDGE MASTACHUSE' TS 02138 « (617) 661-1840

Generally, the working leng.n of the parameter becomes
equal to the length of the expression (after conversion,
where applicable). However, if this would cause the
declarzd maximum length of the parameter to be exceeded,
truncation of the excess from the right takes place.

BOOLEAN PARAMETER

l. The corresponding argument must
be of Boolean type.

The following examples show a selection of both legal
and illegal function inwocations.

Examples:

Suppose the following functions are defined:

ONE: FUNCTION INTEGER;

—— - —— - —— - — -

TWO: FUNCTION(A,B) MATRIX(4,4) DOUBLE;
DECLARE A MATRIX (4,4);
DECLARE B SCALAR;

T — . — - ——

11-10

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE. MASSACHUSETTS 02138 - (617) 661-1840

Let also the following data be declared:

! DECLARE M1 MATRIX (4,4),

! M2 MATRIX (4,4) DOUBLE,
f M3 MATRIX(3,3),

' S SCALAR,

: I INTEGER;

I

Invocations of the above functions are illustrated
in the following constructs:

n
1

S + ONE;

. S =85+ Ml ONE’ Note: subscripts may be

" ’ N "nteger expressions of
«ny kind.

¢ M2 = WO (M2,S) + M2; M2 is converted to

) N single precision

' during transmission.

1

i M2 = TWO(M2,I); I is converted to

' scalar type during
transmission.

11-11

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

The following are illegal invocations:

'
1 M2 = TWO(M3,1.5); - row and column
i dimensions of M3 do
' not match those of
parameter A.
M2 = TWO(M1,'ARGUMENT'||I);

transmission of character
type argument to scalar
parameter B incurs an
illegal type conversion.

- — = -

Argumerts may possess array-
ness. The effects of this
depend on whether or not

the corresponding parameter
is declared to be an array.
See: (TBD).

11-12

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE « CAMBRIDGE, MAGSACHUSETTS 02138 - (617) 661-1840

11.5 PROCEDURE INVOCATIONS

A procedure is invoked by the use of a CALL statement,
which may, in the case of a procedure with parameters,
also specify the arguments to be passed. The precise
form of invocation is:

]
| caLn tabel «b,¢%,...) assioN(al,d?,...);
1

1. {tabel is the defined name of the
procedure.

2. i;,iz,... is a list of input arguments
which must correspond in number with
the input parameters of the procedure
invoked. Each input argument is a
HAL/S expression.

3. If the procedure has no input parameters,
then the entire parenthesized argument
list must be absent.

4, alng,... is a list of assign arguments
which must correspond in number with
the assign parameters of the procedure
invoked, Each argument must be a HAL/S
data item.

5. If the procedure has rno assign parameters,
then the entire parenthesized list of
assign arguments, and the ASSIGN

keyword, must be absent.

11-13

INTERMETRICS {INCORPORATED « 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

The tran-mission of the input argument list during
procedure invocation is identical in nature to func-
tion argument list transmission. The related rules
are given in Section 11.4.

The transmission cf the assign argument list follows

stricter rules since values are passed both into and
out of a procedure by this mechanism.

ASSIGN ARGUMENTS

1. An assign argument must be a
declared HAL/S data item.

2. An assign argument must match
the corresponding assign para-
meter in type and precision.

3. A matrix or vector argument
must match the corresponding
parameter in dimension,

4. Only matrix and vector arguments
may be subscripted. Such sub-
scripting must reduce the argu- '
ment to scalar type by specifying
one element only.

The following examples show a selection of both
legal and illegal procedure invocations.

11-14

INTERMETRICS INCORPORATED » 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

Examples:

Suppose the following procedures are defined:

ONE: PROCEDURE;

CLOSE;

TWO: PROCEDURE (A,B) ASSIGN(C);
DECLARE A MATRIX(3,3);
DECLARE B INTEGER;

DECLARE C INTEGER;

__

CLOSE:;

—— . ————— ——— ——

Let also the following data be declared:

DECLARE M1 MATRIX(3,3),
M2 MATRIX(3,3) DOUBLE,
M3 MATRIX(4,4),
S SCALAR,
I INTEGER,
ID INTEGER DOUBLE;

Invocations of the above procedure are illustrated in
the following constructs:

11-15
INTERMETRICS INCORPORATED » 701 CONCORD AVENUE + CAMBRIDGE. MASSACHUSETTS 02138 « (617) 661-1840

CALL ONE;
CALL ONE(I) ; - illegal: ONE possesses no
parameters.

- ———— -

! CALL TWO(M2T,S+1) ASSIGN(I);
| t values may be passed in
| and out of TWO through I.

\\\ type conversion required here.
\

precision conversion required
here.

CALL TWO(M3, ID) ASSIGN(S);
A

type conversion illegal for
assign arguments.

precision conversion required.

dimension mismatch: parameter is
a 3 x 3 matrix.

CALL TWO(M1,I) ASSIGN(I);

appearance in both places
is legal.

11-16

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE « CAMBRIDGE. MASSACHUSETTS 02138 + (617) 661-1840

The last example introduces an interesting side effect
which occurs when the same data item appears both as an
input argument and as an assign argument. In the
example, changing the value of assign parameter C
during execution of the procedure may, depending on
the inplementation and the data type of I, result in

a simultaneous change of input parameter B. The
effect does not occur if type or precision conversion
is required for transmission of the input argument.
The side effect arises as a result of the actual
mechanism used in argument transmission in particular
implementations.

Both input and assign
arguments may possess
arrayness, in which
case the corresponding
parameters must have
an array declaration.
See: (TBD).

11-17

INTERMETRICS INCORPORATED - 701 CONCORI) AVENUE + CAMBRIDGE. MASSACHUSE TS 02138 » (617) 661-1840

11.6 RETURNS FROM PROCEDURES AND FUNCTIONS

When execution reaches the CLOSE statement of a procedure
block, an automatic return to caller takes place. How-
ever, if execution reaches the CLOSE statement of a
function block, a run time error results since the
function has no value to return to the caller. Hence

a function block needs an explicit RETURN statement

to cause the return to take place. In addition, if
returns are required from parts of the code in a
procedure block other than at the CLOSE, an explicit
RETURN statement is required.

PROCEDURE RETURN

The RETURN statement of a procedure takes the form:

RETURN;

Example:

! CHOICE: PROCEDURE (FLAG) ASSIGN(DIR);
! DECLARE FLAG BOOLEAN;

| DECLARE DIR VECTOR(3);

\ IF FLAG THEN RETURN;

! DIR = UNIT(DIR);

| CLOSE;

1

If FLAG = TRUE then procedure merely returns execution
at RETURN, If FLAG = FALSE then 3-vector DIR is
normalized, and procedure returns execution at CLOSE.

11-18

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE. MASSACHUSETTS 02138 - (617) 661-1840

RGN S ——

FUNCTION RETURN

The RETURN statement of a function takes the forr:

| RETURN exp ;

t

1. The resultant value of the
expression e¢exp is returned when
the function returns to its
caller.

The return of an expression by a function is similar
in nature to the transmission of an input argument of
a function to the corresponding parameter, the
function itself playing the role of parameter. During
return, type and precision conversions are possible,
and dimension matching must be ensured. The relevant
rules are the same as those described for argument
transmission in Section 11.4.

Examples:

FUNC1l: FUNCTION(A) SCALAR;

DECLARE A MATRIX(3,3) DOUBLE;
DECLARE I INTEGER;

RETURN I+5; < type conversion to scalar
required.
RETURN A, i = conversion to single
r’

precision required.

RETURN 'I='||I; «—————illegal type conversion
: required.

|
|
1
1
!
1
l
I
|
|
|
!
!
[
|
|
|
[
1
1
1
!
]
!
|
[
!
1
}
[
1
! :
| CLOSE;

11-19

iINTERMETRICS INCORPORATED -« 701 CONCORD AVENUF + CAMBRIDGE MASSACHUSETTS 02138 - (617) 661

-1840

e ———

11.7 SUMMARY

This section has explained the role of HAL/S procedures
and functions:; how they are defined; how tney are invoked;
and how execution is returned from them +o the caller.

The mechanism of argument passage has been described in
detail.

The next section introduces the concepts of sequential
I/0 in HAL/S, and describes statements for performing
input/output operations.

11-20

INTERMETRICS INCORPORATED ¢+ 701 CONCORD AVENUE + CAMBRIDGE. MASSACHUSETTS 02138 + (617) 661-1840

12, INPUT/QUTPUT STATEMENTS

Higher order languages possess I1/0 statements to provide
programs with a means of communicating with their environ-
ment. In HAL/S, simple forms of I/O statement provide

for the sequential input or output of data, including the
generation of printed listings.

This section first introduces the HAL/S concept of
sequential I/0 and then goes on to describe the construc-~
tion of I/0 statements.

12.1 HAL/S INPUT/OUTPUT CONCEPTS

The form of sequential I/0 statements in HAL/S is based

on a specific conceptualization of the input-output process.
In this ccnceptualization, I/0 takes place through a number
of "channels", each identified by an integer code. Each
channel is connected to an "1/0 device", of which there

ar~ two kinds, "unpaged", and "paged".

UNPAGED DEVICES

An "unpaged 1/0 device" can be used for both input and
cutput. It can be visualized as consisting of a "device
mechanism" which performs I/0 on a continuous strip, across
which data is written. The data is organized in "cclumns"”
across the strip, and in "lines" down it:

12~1
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE MASSACHUSFTTS 02138 » (617) 661-1840

firs+

column columns of data

- e s - -

lines of data

- - - e -

first
line = = | =~=c-c—eammmeaa

——————————————

——————————————

——————————————
———————————————
——————————————
——————————————
——————————————

______ T __device mechanism
%/‘/

The device mechanism moves from column to column along
each line, and from line to line as it performs I/O.
Normally, the performance of I/0 is accompanied by move-
ment from left to right across each line, and downwards
from one line to the next. However, special positioning
commands can modify this beh-vior.

12-2

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE MASSACHUSETTS 02138 - (617) 661-1840

On output, the strip continually lengtnens as new lilnes
are written on the device. On input, the strip is of
fixed length, and a run time ecror occurs if the device
mechanism is requested to read off the lower end.

Data output to an unpaged device is physically written
so that it may, on some future occasion, be read in again
via an unpaged device,

PAGED DEVICES

A "paged I/0 device" can only be used for output. It can
be visualized in much the same way as an unpaged device,
except that the lines of data are organized into “pages":

first columns of
column-___\\\ data
first g [W
line j lines of data
first page l """"""""
first
line —mmm | -===e--=so=-=
second page } ""'ééj """ - device mechanism
first __ ol e eem
line]
third page l _____________

12-3
INTERMETRICS INCORPORAF[) - 701 CONCORD AVENUE + CAMBRIDGE MASSACHUSETTS 02138 + (6'7) 661-1840

The paged device is designed to generate printed lis%ings.
The form in which data is ohysically written on the device
ic different from that on an unpaged device. Such data
cannot normally be read back again via an unpaged device.

DATA STORAGE

Data is conceived as being "stored” on a device, even
*hough in physical reality the device may be a line printer,
the data becoming inaccessible to tre computer.

In HAL/S,data is written on the I/0 device in "fields" which
can be separated by blank columns, or by a separator character.
The I/0 process is stream-oriented: within the confines of

a single I/0 statement, the column and line alignment of data
fields need be of nc conseyuence. Data fields may even be
broken over line or page boundaries.

12,2 THE YRITC STATEMENT

The WRITE .:i. .»rmont is an executable statement for the
output of data o a paged or unpaged 1/0 device. The form
of the WRITE statement is as follows:

]
: WRITE (n) cxpl, cxpz, . cxpn:

l. n is the channel code number, and
lies in the range 0 < n < 9*,

2. Each exp is a HAL/S expression whose
value or values are to be written on the
device. The list of expressinns may be
arkitrarily long. Alternatively, none
need he supplied.

3. Each expression in turn from left to
right is evaluated, and its value (or
values) written on the specified device.

This value may be implementation dependent. See Appendix
_ for exceptions.

12-4
INTERMETRICS INCORPGRATED « 701 CONCORD AVENUE - CAMBRINDGFE MASSACHUSETTS 02138 * (617) 661-1840

In execution, the sequence of events is as follows:

@ If the WRITE statement is the first to be executed
for the specified device, the device mechanism
positions itself at column 1 of line 1 (on page 1
if the device is paged). Otherwise, the device
mechanisr moves down one line from its current
position, and repositions itself at column 1.

® Data fields are written from left to right along the
line, each field being separated from the next by
5 blanks*.

@ When the end of a line is reached, the device
mechanismn moves to column 1 of the next line and
centinues writing data fields. Unless the data
field is of character type, the device does not
attempt to break it over a line boundary if there
is not room for it at the end of a line. Instead,
it begins writing it on the next lir=.

e After finishing execution, the device mechanism is
left positioned one column to the right of the end of
th 1last data field written. Alternatively, if the
dar~ field abuts the end of a line, it is positioned
at .olumn 1 of the next line.

® If no expressions are supplied in the WRITE statement,
the device merely performs its initial positioning.

* This value may be implementetion dependent. Some
implementations may allow the user to vary the value by
a run-time option.
12-5
INTERMETRICS INCORFORATED - 7061 CONCURD AVE JLE - CAMBRIDGF, MASSACHUSETTS 02138 + (617) 661-1840

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138

DATA FORMATS

The format of a data field depends on the type of
expression whose resultant value is being written on
the device, and on whether or not the device is paged.
The formats are, in general, implementation dependent.
Typical formats are shown in Appendix _.

Uni~valued expressions each give rise to a single data
field. Multi-valued expressions each give rise to a
series of data fields, which are written on the device
sequentially in the following way:

A a [-~vector expression yields { scalar data fields,
one for each element. The data fields are laid out
along a line, separated from each other by the standard
number of blanks, and overflowing onto succeeding lines

as required.

® an m x n matrix expression yields mn scalar data fields,
one for each element. The matrix is laid out row by row.
Each row is written as if it were an n-vector. The first
element of the second and subsequent rows begin a new
line, vertically aligned under the first eloment of the
first row.

® arrays are written arreay element by array element,
completing the requirements for one element before
going on to the next. The last data field of one
array element is separated from the first data field
<~ the next element by the standard number of blanks,
,x starting a new line if required,

Examples:
et: M be a 3x3 matrix with M = [0.5 1.5 0.0
2.5 1.0 1.0
0.5 0.1 0.1

I be a 3-array of integers
with I = (4 6 -2)

C be a character with C = 'VALUE'

TRUE

B be a Boolean with B

then

t

) WRITE(6) C,M,I;
I WRITE(6) B;
|

would result in output of the following form:

1:.-6

* (617) 661-1840

paged output: [132 columns/line]

INITIAL POSITION

CF DEVICE MECHANISM

e

SALUE 5.000G000E-01 1.5000000E+00 0.0

2.5000000€00 1.0000000E+00 1.0000000£+00

$.0000000z-01 9.9999964E-02 1.0000000€+01 L) 6 -2
13 ' ¥

FINAL PGSITION

OF DEVICE MECHANISM

unpaged output: [80 columns/line]
INITIAL POSITION
OF DEVICE MECHANISM

*VALUE? 5.0000000E-01 1,5000000E+00 0.0
2.5000000€E+00 1.0000000€E+00 1.0000000E+00
5.0000000€E-01 9.9999954E-~02 1.0000000E+01 [}
6 -2)
"1'&x) L “\.\\

TCINAL POSITION

OF DEVICE MECHANISM

NOTES:

single precision scalar data fields are a fixed 14 colunns
wide.

single precision integer data fields are a fixed 11 columns
Wide. 12»7

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE MASSACHUSETTS 02138 « (617) 661 1840

12,3 THE READ STATEMENT

The READ statement is an executable statement for the
input of data from an unpaged I1/0 device. The form of
the READ statement is as follows:

I . LR
READ(n) vav , var™, .. var;

|

(

|

1. n is the channel code number, and
lies in the range 0 € n £ 9%,

2. Each vatr 1is any type of data item,
eliicher subscripted or unsubscraipted.
The list of items may be arbitrarily
long. Alternatively, none need be
supplied.

3. The specified device reads values
into each data item in turn from
left to right.

In execution, the sequence of events is as follows:

® If the READ statement is the first to be executed
for the specified device, the device mechanism positions
itself at column 1 of line 1. Otherwise, the device
mechanism moves down one line from its current position
and repositions itself at column 1.

® Data fields are read from left to right along the line.
The device expects each data field to be separated from
the next by a comma and/or at least one blank.

® When the end of a line is reached, the device mechanism
moves to column 1 of the next line and continues reading.
Data fields may be broken over the line boundary.

* This value may be implementation dependent. See
Appendix _ for exceptions.

12-8
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

® After finishing execution, the device mechanism
is left positioned one column to the right of the
end of the last data field read in. Alternatively,
if the data field abuts the end of a line, it is
positioned at column 1 of the next line.

® If no list of data items is supplied in the READ
statement, the device merely performs its initial
positioning.

® 1If the device reads two consecutive separating
commas, then the value of the data item which would
have been changed by reading a data f. eld between
the commas, is instead left untouched.

DATA FORMATS

The formats of data fields expected by a device on input
depend on the type of data item being read into. The
formats are, in general, implementation dependent. Typical
formats are shown in Appendix _.

Uni-valued data items cause single data fields to be read.
Multi-valued data items cause a series of data fields to be
read sequentially.

® A vector data item causes one data field per vector
element to be read.

® A matrix data items causes one data field per matrix
element to be read. Values are read into the matrix
row by row,

® Arrayed data items are read into array element by

array element, completing the read requirements for
each element before going on to the next.

12-9

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) €51-1840

Examples:

Let M be a 3x3 matrix with initial values given

by M = [0.5 1.5 0.0
2.5 1.0 1.0
0.5 0.1 10.0

Let T *~ a 3-array of integers,
C be a character data item of maximum length 10,

B be a Boolean.

Then
|
: READ(5) M,I,C;
\ READ (5) B:;
using the following data: INITIAL POSITION
OF DEVICE MECHANISM
e EREE LS — 3
|
f}—- ¢+ 0.1, 0 .
0 0.1 O
0 0 0.1
F—s -4 -5 -7 ' GOODBYE'
'l' - — FINAL POSITION

OF DEVICE

MECHANISM
/\—4\/\’/\//\’/\/\/\/\/\/\/

would result in:

M=z (0,1 0.0 0.0 this value not changed
0.0 0.1 0.0 by READ statement.
0.0 0.0 0.1

I = (-4 -51)

C = 'GOODBYE'

B = TRUE

12-10

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE., MASSACHUSETTS 02138 « (617) 661-1840

12.4 INPUT/0UTPUT FORMATTING

The formatting of I/0O embraces two separate concepts:
® the shape of data fields;
® the position of data fields.

In terms of input, formatting implies that a device can
be made to recognize different shapes of data fields in
a variety of positions. In terms of output, formatting
implies that a device can generate different shapes of
data fields in a variety of positions.

Data field positioning is effected by direct movement

of the device mechanism. Commands in the form of pseudo-
functions can be inserted into READ and WRITE statements
to cause repositioning of the mechanism.

There is no direct capability in a READ or WRITE statement
for defining different data field shapes. It should be
noted however, that for outuput, the equivalent of arbitrary
data field shaping can be achieved by using HAL/S's
character string handling features.

There exists a second type
of input statement called
the READALL statement,
which can be used to input
arbitrary strings of
characters. This can form
the basis for arbitrary
data field shape recogni-
tion on input.

See: (tbd)

12-11
INTERMETRICS INCORPORATED » 701 CONCORD AVENUE » CAMBRIDGE MASSACHUSETTS 02138 » (617) 661-1840

DEVICE MECHANISM POSITIONING

HAL/S possesser five pseudo-functions which can reposition
a device mechanism during execution cf a READ or WRITE
statement. The pseudo-functions are placed in the READ

or WRITE statement as if they were normal data items or
expressions.,

Three basic rules underlie the operation of the pseudo-
functions in positioiiing device mechanisms:

® Horizontal and vertical positioning are separately and
independently controlled.

® The operations of the pseudo-functions are independent
of whether a device is being used for input or output.

® An explicit repositioning command taking effect at a
particular point in execution overrides the default
movement in the same direction (horizontal or vertical)
which would otherwise be made by the device mechanism.

Particular instances of these rules are noted as the
device positioning pseudo-functions are described below.

HORIZONTAL POSITIONING

The two pseudo-functions TAB and COLUMN serve to position
a device mechanism horizontally on a line. Their form is
as follows:

12-12
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE MASSACHUSETTS 02138 » (617) 661-184

TAB (o)
COLUMN (B)

1. o and 8 are integer expressions.

2. TAB(a) moves the device mechanism
left or right by the number of
columns specified by a. Negative
values of 4 denote movement to the
left; positive values, movement to
the right.

3. COLUMN(R) moves the device mechanism
left or right to the column indicated
by 8.

4., Values of o or B must not be sucn as to
try to move the device mechanism left
past column 1, or right past the right-
most column*,

If a TAB or COLUMN pseudo-functio:. appears at the
beginning of a READ or WRITE statement, it overrides the
default positioning at column 1.

It does not of itself inhibit movement onto the next
line.

If a TAB or COLUMN appears between two expressions in
a WRITE statement, it overrides the standard data field
separation,

Successiva2 TABs are cumulative in action.

* The number of columns on any device (i.e. the logical
record length) is assumed constant but implementation
dependent. 1Its possible values may be found in the
User's Manual for the implementation.

12-13
INTERMETRICS INCORPORATED « 731 CONCORD AVENUE - CAMBRIDGE MASSACHUSETTS 02138 « (617) 661-1840

Example:

If C1, C2, C3 are character data items

with Cl = 'FIRST'
C2 = 'SECOND'
C3 = 'THIRD'

and 1f channel 6 is a paged device

then
)

| WRITE(6) TAB(~50),Cl,COLUMN(S),C2,C3,TAB(2);
]

prcduces output of the following form:

—B)

INITIAL

|~ poSITION OF
-

DEVICE MECHANISM

TAB LEFT 50
\ COLOUMNS, MOVE
DOWN 1 LINE
BY DEFAULT

DEFAULT
5 BLANKS

MOVE TO
COLUMN 5

FINAL POSITION
TAB RIGHT OF DEVICE MECHANISM
2 COLUMNS

12-14

INTERMETR'CS INCORPORATED « 701 CONCORD AVEN JE « CAMBRIDGE MASSACHUSETTS 07138 + (617) 661-1840

VERTICAL POSITIONING

The three pscudo-functions SKIP, PAGE, and LINE serve to
position a device mechanism vertically. PAGE can only be
used in I/0 via a paged device; the behaviour of LINE is
different dependi.ig on whether a deice is paged cr unpaged.

The form of the three pseudo-functions is as follows:

SKIP (o)
PAGE (B)
LINE (y)

1. o, B, and y are integer expressions.

2. SKIP(a) moves the device mechanism
downward by the number of lines speci-
fied by o, The value of a may be zero,
in which case SKIP can suppress a de-
fault line advancement. However, o
may not be negative (indicating up-
wards movement). SKIPs over page
boundaries are allowed.

3. PAGE(8) moves the device mechanism
downward by the number of pages
specified by 8. As in SKIP, £ may not
be negative in value. The relative
line number remains unchanged.

4. For unpaged devices, LINE(v) positions
the device mechanism at line y. The
value of y must not be such as to cause
upwards movement of the device mechanism.

5. For paged devices, LINE(y) has a different
behaviour. Let the device mechanism be on
1in2 £ prior tc execution of LINE(y). 1If
Y { then the device me~hanism moves to
line { 1 the next page. 1< vy > £ then the
device ~chanism moves to line y on the cur-
r2nt p. The value of y must lie in the
range 1 Y ¢ L, where L is the nuiwbher of
lines per page*.

* The number cf lines pr. paje 1s implementation dependent.
Its value may be founa in the User's Manual for a given
implementation. 12-15

INTERMETRICS INCORFORATED - 701 CONCORD AVENUE - TAMBRIDGE MASSACHUSETTS 02138 « (617) 661 1840

If a SKIP, LINE, or PAGE pseudo-function appears at the
beginning of a READ or WRITE statement, it overrides the
default downward movement of one line.

SKIP, LINE and PAGE pseudo-functions <o not of themselves
inhibit the default horizontal movement to column 1. Neither
does their appearance between two expressions in a WRITE state-
ment affect the standard data field <eparatiion.

Successive SKIPs and PAGEs are cumulative in effect.

Examples:

If Cl, C2, C3 are character data items

with C1 = 'FIRST'
C2 = 'SECOND'
C3 = 'THIRD'

and if channel 6 is a paged device

tqen
\ WRITE(6) SKIP(0),Cl,LINE(1l),C2,C3;
]

produces output of the following form:

INITIAL POSITION
OF DEVICE MECHANISM

ADVANCE TO [x| <—'.
LINE 1 OF | @
NEXT PAGE [T {
! -4 START IN COLUMN 1

\ l—-—-l----—---——v-—-—
SKIF(OY TNHIBITS
T3~ DEFAI"" © '3 MECHANISM

M DEFAULT 5 BLAN ‘.

SECOND THIRD [{)\
b FINAL POSITIONING

OF DEVICE MECHANISM

N

DEFAULT 5 BLANKS

12-1¢6
INTERMETRICS INCORPORATED « 701 CONCCRD AVENUE « CAMBRIDGE MASSACHUSETTS (2138 - (617) 661-1840

L e i o

~
b e Y S T AR T e

Note: If channel 6 were unpaged, the WRITE statement
would be illegal since it would be calling
for an upwards movement from line 40 to line 1.

Further,
|
{ WRITE(6) Cl,PAGE(1l),C2;
|

produces the output of the form:

INITIAL POSITION OF

DEFAULT =" DEVICE MECHAN1SM
MOVEMENT TO

COLUMN 1 __\\\EB

LINE 41 @_

DEFAULT __,—”'

5 BLANKS -

|
MOVE T9 \\\v”‘~"~'v‘,,f\\\\\v”_ﬁ
LINE 41

OF NEXT PAGE

11 | prmmeem PAGE 6
\j
SECONDE
li‘ -
TINAL POSITION Ol UEVICE
MECHAMISM
1217

INTERMETRICS INCORPORATED - 701 CONNCORD AVENUE « CAMBRIDGE MASSACHUSETTS 02138 » (617) 661-1840

12,5 DEVICE ATTRIBUTES

In HAL/S, devices have been charauterized as either paged
or unpaged. 1In *“ne absence of any specific direction on
the part of a user, the following rules determine whether
a device being used is paged or unpaged.

® If only WRITE statements apgear in a compilation
for a given channel, t.uer the device on that channel
will be paged.

® If only READ statements appeuar, or if both REAC .nd
WRITE statements appea. tur a giver channel, then
the device on that channel will be unpaged.

The use. may specifically direct certain channels to be
npaged or unpaged, overriding these rules®.

* See the User's Manual for a given implementation.

12-18

INTE “TRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE MASSA_HUSETTS 02138 + (617) 661-1840

12,6 SUMMARY

S c¢tion 12 .f the Guide has described in detail the
H2L/S constructs concerning sequential I/0, and has
dizcussed the results of using different kinds of READ
anu WRITE statements. Section 13 introduces the user

to the basic concepts involved in real time programming
using HAL/S.

HAL/S contains a FILE
statement by which random-
access I1/0 may be effected.
See: (tbd)

=
£

- 12-19
-« INTERMETRICS INCORPORATED + 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 ¢ (617) 661-1840

-

e pe ety

N *
Ay -1

13, REAL TIME FEATURES OF HAL/S

So far the Guide has made no reference to the dynamic
properties of HAL/S programs. Clearly, any program will
take a finite time to execute but none of the constructs
hitherto described depend on any sense of time for their
operation.

However, the HAL/S language does contain constructs which
depend on a sense of time for their operation. This is
what is meant by the statement that HAL/S is a "real time
programming language". In other words, HAL/S programs
can be written which, when executed, cause operations to
be carried out at desired points or during desired inter-
vals in "real time".

In some implementations of HAL/S, "real time" may be just
what the phrase implies, real clock time. In others, the
"real time" may be simulated in some way by the operating
environment of a HAL/S program: in this case, it can be
rz2ferred to as "pseudo-real time".

This section of the Guide explains the basic HAL/S concepts
of real time programming, and describes some of the more
elementary real time programming language forms.

13,1 HAL/S REAL TIME COWCEPTS

The true HAL/S concept of a program at run time is an
entity executing over some interval in "real time",
directed and cuntrolled by a Real Time Executive (RTE).
At the outset, the RTE begins execution of the program.
When program execution is completed, control is returned
to the RTE. In HAL/S terminology, the dynamic counter-
part of the static program block, which is executing
under RTE control, is called a "real time process".

13-1

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

MULTI-PROCESSING IN HAL/S

Multi-processing is the simultaneous handling of more
than one "real time process". With most present-day
machines, "simultaneous" really means interleaved,
because most machines can at one time only support the
execution of a single machine instruction sequence.
However, this distinction has no significance at the
higher level of the HAL/S language.

The KTE of HAL/S can simultaneously handle an arbitrary¥*
number of processes created by the user. A number is
attached by the user to each process, called its “priority".
The RTE maintains processes in a "process queue" ordered

by priority, and always endeavors to execute the processes
in order of priority, highest first.

The HAL/S program itself, beginning execution under the
RTE, constitutes the first or "primal process". All other
processes are brought into existence by the execution

of SCHEDULE statements coded into the program. Just as
the primal process has a static counterpart, which is

the program block coded by the user, so must the other
processes have their static counterparts. These are
so-called task blocks, which are coded inside the program
block in a very similar way to procedure blocks. Each
time a task block is invokel by execution of a SCHEDULE
statement, a new process is created and queued by the
RTE.

* See the User's Manual for the maximum number supported
in any given implementation.

13-2
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

L

B

.

B e T O

A number of programs, indepen-
dently compiled, can be brought
together at run time. One

of them is chosen by the user

to start execution as the
primal process. Processes

can be generated from the

others by invoking them with

the same form of SCHEDULE state-
ment. Any of the programs are
allowed to contain task blocks
for which more processes in turn
can be created.

See: (TBD).

13-3

INTERMETRICS INCORPORATED + 701 CONCORN AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617, 661-1840

STATES OF A PROCESS

It is now possible to represent the behavior of the
RTE by a more formal description of the possible
states* in which a process can exist. This in turn
will intrwduce other HAL/S constructs for controlling
the activ.ties of the RTE.

A process can be in either of the following two major
states at a given time:

® ACTIVE STATE: a process is in an active state
when it exists in the RTE's process queue.
The state actually comprises three substates
or minor states in any one of which an active
process may be at a given time.

® INACTIVE STATE: a process is defined for
completeness as being in the inactive state
if it does not exist in the process queue.

The minor states of an active process are as follows:

® EXECUTING: an active process is "executing"
when it has actually been put into execution
by the RTE, operating on the priority principle
already described. The number of processes which
can be in this state simultaneously is implementa-
tion dependent**,

* The states to be defined do not correspond one-to-one
with the RTE states described in the Lanquage Specification
document. The latter are defined for the convenience of
the formal description of language constructs. The former
are defined with user convenience in mind.

** In most implementations it is likely to be 1, but see
the User's Manual for a given implementation.

13-4
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

.

s Y

® READY: an active process is "ready" if it
is available for execution, but higher priority
processes in execution are currently barring it.
The occurrence of a process first entering the
ready state will be called its "initiation".

® WAITING: an active prccess is "waiting" if it
is neither ready nor executing. Some condition
set up by the user prevents it being available
for execution by the RTE.

When a process is created by invoking a task block by a
SCHEDULE statement, it makes a transition from the inactive
state to an active state. It is entered into the process
queue in either the ready or the waiting state, depending
on the form of the SCHEDULE statement. If it is entered in
the ready state, then depending on its priority, it may
immediately be elevated to the executing state.

A process is caused to make a transition from an active
state to the inactive state (or removed from the process
queue) by a TERMINATE statement. The process is said

to have been "terminated".

The priority of an active process may be changed by an
UPDATE PRIORITY statement.

A process may be forced into the waiting state by execution
of a WAIT statement.

The statements outlined above are among the real time
programming language forms to be described later in this
section.

PROCESS SWAPPING & BREAKPOINTS

A process swap is a pair of state transitions in which

one process leaves the executing state, and a second enters
it from the ready state. The process swap may occur because
the first process has been forced into the inactive state

or the waiting state, or because the second process has a
higher priority than the first.

13-5
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE. MASSACHUSETTS 02138 + (617) 661-1840

The HAL/S language itself makes no assumptions on where
process swapping can occur. However, most implementations,
depending on the object machine characteristics, limit
process swapping to given places in the HAL/S code
sequences under execution by the RTE. These places are
called "breakpoints". The determination of breakpoints

is a function of the HAL/S compiler for a given implemen-
tation, and no language construct exists to modify their
existence*,

The effect of breakpoints is to superimpose a kind of time
granularity on the operation of the RTE.

PRIORITY SCALES

The number specifying the priority P of a process is
an integer in the range:

0 £ P & 255*%*

The primal process is assigned a priority of 50** by
the RTE on beginning execution.

* As an example, in the HAL/S-360 implementation, break-
points occur at the end of every executable statement.

** These values are, however, implementation dependent.
See Appendix for exceptions.

13-6

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840 . |

L X

A < PPN

PROCESS DEPENDENCY

Suppose that there are two processes, A aad B, and

that A creates process B during the course of its
execution. At the time of creation, B may be specified
to be either "dependent" on or "independent" of A.

If B is dependent, it means that it depends for its
existence on the existence of A. If B is independent,

then A may cease to exist without affecting B's existence.

However, an overriding rule is that all other processes
are always dependent on the primal process for their
existence.

The consequences of dependency will be seen when the
flow of execution through program and task blocks is
described in Section 13.3, and again when the TERMINATE
statement in introduced in Section 13.5.

13,2 TASK BLOCK DEFINITICNS

A task block is a static block of code interior to a
program, from whence processes can be created by means
of the SCHEDULE statement. Task blocks may only be
defined at the program level, and not nested inside
procedure or function blocks defined in a program. This
is illustrated as follows:

13-7

INTERMETRICS INCORPORATEL + 701 CONCORD AVENUE - CAMBRIDGE. MASSACHUSETTS 02138 ¢ (617) 661-1840

rrrrrrrrrrrrrr

INTERMETRICS INCORPORATED » 701 CONCORD AVENUE + CANMBRIDGE MASSACHUSETTS 02138 + (617) 661-1840 .

Task block definitions are similar to progrem block
definitions as described in Section 3, and have similar
opening and closing statements.

RELATIVE POSITION OF TASK DEFINITIONS

Statements invoking a task block should normally follow
its block definition.

This rule is not absolute -
it can be circumvented by
the use of a task declara-
tion statement.

See: (TBD) .

13-9

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRICGE. MASSACHUSETTS 02138 - (617) 661-1840

TASK OPENING

The statement opening a task block takes the form:

| fabel : TASK;

1. Zlabel is any legal identifier
name, and constitutes the name
of the task block.

TASK CLOSING

The statement closing a task block takes the form:

| CLOSE Zabel;
|

1. The identif{ier Afabel is optional.

2. If supplied, it must be the name
of the task block.

Example:

DISPLAY: TASK;

CLOSE DISPLAY;

13-10

INTERMETRICS INCCRPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840 :

LOCAL DATA DECLARATIONS

Local data can be declared in a task block in exactly
the same way as it is declared in a procedure or
function block. The declarations appear .iter the

task opening statement, and before the first executable
statement of the block. The forms of the declarations
have been described in Section 4.

Examples:
general positioning -

DISPLAY: TASK;

! local data declavaitions

pag- ==~ T executable statements

]

CLOSE DISPLAY;

13-11

INTERMETRICS tINCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE. MASSACHUSETTS 02138 - (617) 661-1840

particular instance -

DISPLAY: TASK;
DECLARE S (HARACTFR(IO),}
1 INTEGER;

local data

CLOSE DISPLAY;

-—— e e - ———

15,3 FLOW OF EXECUTION IN PROGRAM & TASK BLOCKS

The flow of execution through program and task blocks
is subject to a new interpretation, based on the
concepts of real time programming introduced in this
section. Programs and tasks are treated together since
their representations at run time are in both cases
real time processes.

Execution of a process begins with the first executable
statement in the corresponding static program or task
block. It continues, and if not terminated by saome
other process, ends in one of the following ways:

® by execution of a TERMINATE statement
terminating itself;

® by reaching the CLOSE statement of the
block;

® by execution of a RETURN statement in
the block.

If execution ends by self-terminatior, the pror«:sg goes
into the inactive state and is removed fron the .-r>cess
queue, All dependents of the process are tre.i. . |:.<ewise.

If execution ends on a CLOSE or RETURN statemc:t. the
process goes inio the inactive state directly only if
it has no dependents. Otherwise, it goes into a waiting
state until the dependents have in their turn terminated.

13-12
INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02135 » (617) 661-1840 -

S NS -

FORM OF RETURN STATEMENT

The form of RETURN statement for programs and tasks
is the same as for procedures:

RETURN;

13.4 THE SCHEDULE STATEMENT

The SCHEDULE statement is an executable statement causing
a new process to be placed in the process queue. The
SCHEDULE statement specifies a task block from which

the process is to be created, and the priority which

it is to be given. A condition for the initiation of

the process can be supplied.

Only one process derived from a given task block may
be active at any given time.

The form of the SCHEDULE statement varies, depending on
whether it specifies immediate, or delayed initiation
(transition to the ready state).

IMMEDIATE INITIATION

The following variant of the SCHEDULE statement is the
simplest. It causes the creation of a process which

is placed in the process queue in the ready state. The
process is thus available for execution immediately.

13-13
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 » (617) 661-1840

SCHEDULE £abel PRIORITY (a) DEPENDENT;
1

. A process is created from the task
block fabel and placed in the process
queue in the ready state. The
process created is also known by
the name £abel.

2. a is an integer expression specifying
the priority of the newly~-created
process. It must lie in the legal
range for a given implementation.

3. The keyword DEPENDENT is optional.
Its presence denotes the dependency
of the process created on the
process executing the SCHEDULE
statement. In its absence, the
processes are independent.

Examples:

SCHEDULE DISPLAY PRIORITY(100) DEPENDENT;
SCHEDULE RECOVER PRIORITY(255);

13-14

Nt PRt "RPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

P

ey s

- p -

DELAYED INITIATION

The following form of the SCHEDULE statement causes

a process to be placed in the process queue in the
waiting state. The process is transferred to the ready
state on a specified time criterion being met. There
are two variants, each with a different time criterion.

® INITIATION after some duration.

r
;SCHEDULE Labed IN 4nterval PRIORITY (a) DEPENDENT;

1. A process called lfabel is created from the
corresponding task block and placed in the
process queue in the waiting state.

2. PRIORITY(a) and DEPENDENT have the same
meanings as described in the previous
form of SCHEDULE statement.

3. The phrase IN .nterval indicates that the
process is to be put in the ready state
after a specified intarval in the waiting
state. Jnterwal is a scalar expression whose
value specifies the duration in seconds.

4., If the value is negative or zero, the
process is put in the ready state immediately.

13-15

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

® INITIATION at a given time.

"SCHEDULE Labe< PT 4time PRIORITY (a) DEPENDENT;

)

. A process called fabel is created from
the corresponding task block, and placed
in the process queue in the waiting state.

2. PRIORITY(a) and DEPENDENT have the same
meanings as described in the previous
forms of SCHEDULE statement.

3. The phrase AT time indicates that the
process is to be put in the ready state
at a specified real time. tLime is a
scalar expression whose value specifies
the time in seconds.*

4, If the indicated time is in the past,
the process is placed in the ready state
immediately.

* The real time origin is not specified by the language.
The origin is normally coincident with the initiation
of the primal process. Some implementations allow
its value to be preset at run time. See the User's
Manual for a given implementation.

13-16
INTERMETRICS INCORPOQRATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

|

Examples:

SCHEDULE ALPHA AT 1.25E4 PRIORITY (I+5);
SCHEDULE BETA IN S+15.5 PRIORITY (20);

SCHEDULE statements can also
specify the cyclic execution
of a process until a stopping
criterion is met. An explicit
specification of the interval
between cycles can also be
given.

See: (TBD).

13-17

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

13,5 OTHER REAL TIME FEATURES OF HAL/S

Three other real time programming statements which

have already been mentioned are now described. These
are the TERMINATE, WAIT, and UPDATE PRIORITY statements.
Certain other useful constructs are also introduced.

TERMINATE STATEMENT

A process is forced to the inactive state (removed from
the process queue) by means of the TERMINATE statement.
Its form is shown below:

‘ .

: TERMINATE Zabel ;

1. The appearance of {fabel is optional.
If present, the statement terminates
an active process called {fabel .

<. If tabel is absent, then the process
executing the TERMINATE statement is
terminating itself.

In order to make independent processes truly independent,
HAL/S places an added restriction on the operation of

the TERMINATE statement. A process is only allowed to
use it to terminate itself or its dependents.

Note that when a process is terminated by execution of
a TERMINATE statemen*, all its dependents are automatically
terminated at the same time.

13-18

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

Examples:

TERMINATE; self termination
TERMINATE BETA; termination of dependent

If a number of processes are to be terminated
simultaneously, the TERMINATE statement can
specify a list of process names:

TERMINATE ALPHA, BETA, GAMMA;

——

WAIT STATEMENT

The WAIT statement is used to force the process executing
it into a waiting state until some condition is met, where-
upon it returns to the ready state. Three forms, each
with a different condition, are described below.

® WAIT for a duration.

| WAIT intewal ;
1. The statement indicates that the
process is to be placed in the

waiting state for a specified
duration.

2. 4nterwval is & scalar expression
specifying the duration in seconds.

3. A negative or zero value results in
the process not leaving the ready
state.

13-19

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE., MASSACHUSETTS 02138 + (617) 661-1840

® WAIT until some time.

[WAIT UNTIL <time ;

l. The statement indicates that
the process is to be placed
in the waiting state until
some given time.

2. 4time 1is a scalar expression
specifying the time of return
to the ready state, in seconds*.

3. Specification of a time in the
past results in the process not
leaving the ready state.

® WAIT for dependents,

| WAIT FOR DEPENDENT;

i
1. The statement indicates that the
process is to be placed in the
waiting state until all its
dependent processes have termin-
ated.

2. If there are no depandents, the
statement has no effect.

Examples:

WAIT UNTIL DELTA T+15E2;
WAIT S/2;
WAIT FOR DEPENDENT;

* See the discussion on the SCHEDULE statement in
Section 13.4 for a footnote remarking on the real
time origin,

P,

13-20

P

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840 !

Faon

UPDATE PRIORITY STATEMENT

The UPDATE PRIORITY statement is used to change the
priority of an active process. 1Its form is:

|
| UPDATE PRIORITY fabel TO a;

1. The process whose priority is to
be changed is specified by fabel.

2. The name {fabel is optional. 1If
omitted, the process executing
the statement is indicated.

3. a is an integer expression whose
value indicates the new priority
value to be assigned.

Examples:

UPDATE PRIORITY TO 16;
UPDATE PRIORITY ALPHA TO I+20;

Since the RTE operates on a basis of priority, apparently

a user could control the execution of a desired set of
processes by manipulating their relative priorities.
Although this is entirely possible, it is not recommended
since the behavior of such a priority-driven scheme would
depend on how many processes an RTE could bring into the
executing state simultaneously, which is an implementation-
dependent figure.

13-21

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE. MASSACHUSETTS 02138 « (617) 661-1840

[——

REAL TIME BUILT-IN FUNCTIONS

Two built-in or library functions are of utility
in constructing real time programs:

Function Comments

RUNTIME returns the current
value of real time as
a scalar, in seconds.

PRIO returns the priority
of the process in-
voking the function
as an integer.

MAJOR STATE INDICATION

There exists a way of finding out whether the current
ctate of any process is either active or inactive (i.e.
whether or not it exists).

The name of the process can be used as if it were a
Boolean variable. The following tables shows the
correspondence between state and truth value.

State Value
ACTIVE TRUE
INACTIVE FALSE

Example:
to write a message if a process ALPHA exists -

|
: IF ALPHA THEN WRITE(6) 'ALPHA IS ACTIVE';
|
|

13-22
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE « CAMBRIDGE MASSACHUSETTS 02138 + (617) 661-1840

13.6 A SIMPLE REAL TIME PROGRAM

The utility and importance of the constructs defined
in this section can only be properly understood by
presenting an actual example of a real time program.

The following example is given in the form of a problem
and its solution.

PROBLEM

The problem is to write a program which,when run on a
computer facility with remote interactive terminals,
will aid users in electronic circuit design (to take

an arbitrary example). A user begins each design
session by logging onto the facility at a terminal, and
invoking execution of the circuit design program.

The program is to be set up so that, at the outset, the
user may specify the desired duration of his session.

The program is then to interrupt the user's calculations
every 10 minutes and remind him how much time he has

used. At the expiratior of the specified session duration,
the program is to allow the user 10 minutes more and then
terminate the session.

SOLUTICN

Only the overall features of the program from the real
time programming standpoint are illustrated here. The
actual circuit design algorithms are of no consequence.

Execution of the circuit design program implies the
existence of three real time processes.

® a SUPERVISOR process controlling the two
others, whicn determines the session dura-
tion, and makes arrangements to terminate
the session at its expiration. Most of the
time this process will be in the wait.ng state.

13-23

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

® a TIMER process which informs the user how
much time he has used every 10 minutes. This
process is also mostly in the waiting state,
temporarily being in execution every 10 minutes.

® a CALCULATOR process which actually interacts
with the user in his design session. This
process is executing most or all of the time.

The following diagram summarizes the activities of the
three processes.

START

|

SUPERVISOR

l. determine

session length ‘—“—__z’—_,,—fai TIMER

2. schedule TIMER 1 ’t 10
and CALCULATOR ' :}’;utes
processes

2. signal
time
used

3. wait till end
of session

4. signal 10
minutes more

5. wait 10 minutes

6. signal end of
session and CALCULATOR
terminate
interactive
| execution of
) design algor-
i ithms

13-24
INTERMETRICS INCORPORATED « 701 CONCORD AVENUE +« CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Clearly, in order for TIMER t< interrunt CALCULATOR reliably
every 10 minutes, it must hazve a higher priority than
CALCULATOR. Likewise, SUPERVISOR should be of higher
priority than CALCULATOR. The relative priorities of
SUPERVISOR and TIMER do not matter since TiME is mostly

in the waiting state anyway. The table below shows

suitable priorities for each of the three processes.

process priority

SUPERVISOR 50

TIMER 50

CALCULATOR 25
13-25

~ INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE. MASSACHUSETTS 02138 « (617) 661-1840

The HAL/S program corresponding to these processes
is as shown below:

/SUPER\IISOR will be the
SUPERVISOR: PROGRAM; primal process, initiated

. by the RTE at time 0.0
PECLARE S SCALAR; with priority 50.

.

TIMEP: TASK; = -9 TIMER task b.ock
DO WHILE TRUE;
WAIT 600; .
WRITE(6) 'YOU HAVE USED '||RUNTIME/60||' MINS.';
END; <— P .
CLOSE TIMER; —=@infinite 1oopf wait §OO
. seconds and signal time
. used
CALCULATOR: TASK; = -@ CALCULATOR task block

‘ design algorithms

C.:LOSE CALCULATOR; first executable state-

- D - .- - - —— - — - ——— - W — - —— — - - ——— - - — - —— —— G — —— — - -

. ment of program
WRITE(6) 'TYPE SESSION DURATION IN MINS.'; . .
READ(5) S; <= deten’nme session
SCHEDULE TIMER PRIORITY (50); duration
SCHEDULE CALCULATOR PRIORITY (25); Schedule TIMER &
WAIT S 60; - CALCULATOR processes
WRITE(6) 'TIME UP-10 MINS. MORE ALLOHED':\. . .

L Wait for session
WAIT 600; - d ti
WRITE (6) 'END OF SESSION'; \ uration
TERMINATE; allow 10 minutes

CLOSE SUPERVISOR; more
- signal end of
session & terminate
13-26

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE. MASSACHUSETTS 02138 « (67, 6b1-1840

13,7 SUMMARY

Section 13 has introduced the HAL/S concepts of real
time and described constructs for the creation of real
time programs. A concluding example shows how the
constructs can be combined to perform useful functions
in real time.

Section 13 completes Part I of the Programmer's Guide.

The constructs described
above enable real time
processes to be manipu-
lated according to time
criteria. Other constructs
enable their manipulation
according tc "event" cri-
teria. HAL/S "events" are
Boolean~like data types
whose values are accessible
to the RTE. Their values
can be set by the user,
thus indirectly controlling
the real time process
states,

See: (TBD).

The problem of controlling
the sharing of data by two
or mora processes is also
important.
Se~: (TBD).

13-27
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE. MASSACHUSETTS 02138 ¢ (617) 661-1840

o % o g

14, SUMMARY OF PART I

Part I of the Programmer's Guide has presented a wide
variety of the simpler constructs of the HAL/S language.
It has laid sufficient ground work for the understanding
of more complex language forms which are to be presented
in Part II.

. low is summarized the material which has been presented
i. Part I.

SECTION 1 described, on a conceptual level, the nested
block structure typical of HAL/S programs, and
explained how globally and locally visible data
could be declared. It also introduced the concept
of nested groups of statements. The desirability
of these hierarchical forms was expressed from the
structured programming viewpoint.

SECTION 2 began describing the HAL/S language on the
most fundamental level by specifying its character
set; by explaining the forms of reserved words,
identifiers and literals; and by introducing the
format in which HAL/S source text is written.

SECTION 3 dealt with the HAL/S program as the basic
unit of compilation. The delimiting statements
of a program were defined and the positions within
it of data declarations and executable statements
described. The flow of execution within a program
was pointed out.

SECTION 4 began defining the contents of HAL/S programs
in more detail by presenting the various forms of

declaration statements by which data could i. defined.
Ways of initializing this data were also described.

14-1

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 » (617) 661-1840

SECTION 5 turned aside from the discussion cf HAL/S
data by defining the form of REPLACE statements,
by which symbolic HAL/S text substitutions could
be made.

SECTION 6 returned to the discussion of HAL/S data
by describing in detail how each of the HAL/S
data types could be referenced, using subscripting
to reference their specific component parts.

SECTION 7 began building a body of information towards
the introduction of executable statements by describing
how expressions of various types could be built up
by combining operators with data items, literals and
functions as operands. The topics of precedence
and type conversion were addressed in the course of
the section.

SECTION 8 introduced the assignment sta.:meant, the first
executable statement to be described in Part I.
Each type of assignment was individually treated.

SECTION 9 expanded the repertoire of executable statements
by presenting the IF statement, by whose means condi-
tional execution of HAL/S statements could be effected.
Its use in conjunction with statement labels and
branches was discussed.

SECTION 10 formalized the idea of a statement group and
stressed the importance of the idea from the structured
programming standpoint. Various forms of statement
group were introduced, including versions which caused
repetitive or selective execution of the delimited
statements.

SECTION 11 developed the concept of procedure and function
blocks as callable entities. The forms of procedure
and function block definitions were introduced,
an1 the use of input and assign parameters explained.
The manner of inveking procedures and functions was
presented, and rules for matching argument and para-
meter lists defined. Lastly, the form and purpose
of the RETURN statement was pointed out.

14-2

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

SECTION 12 concluded the presentation of the HAL/S
program as a static entity by describing in
detail how input/output statements are constructed.

SECTION 13 introduced the new idea of HAL/S as a real
time programming language. The concept of real time
processes executing at run time under the control
of a Real Time Executive was presented. The form
of the task block, the static counterpart of a real
time process was described, and the SCHEDULE state-
ment for the creation of real time processes defined.
Other constructs for the handling of processes, among
them the TERMINATE, WAIT, and UPDATE PRIORITY state-
ments, were explained. Finally, a complete exaumple
showing the assembly of the constructs into a viable
real time program was described.

14-3

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE. MASSACHUSETTS 02138 + (617) 661-1840

o 95

Yﬁp@ INDEX
ABS 7-32
ABVAL 7-33
active (state) 13-22
addition and subtraction 7~3, 7-4, 7-5
algebraic functions 7-33
argument list (function) 11-7, 11-8
argument passage (function) 11-7
arithmetic functions 7-32
arithmetic operations 7-1, 7-2
arithmetic precedence 7-23
array 4-2, 4-8, 12-6
array subscripting 6-1, 6-8
arrayed data types 6-8
array and component subscripting 6-10
ARRAY 4-8, 4-12
assign arguments 11-14
assignment statement 7-1
asterisk 6-6, 6~-11
asterisk, in subscripts 6-5
attributes 4-8
AT 6-5, 6-6
AT time 13-16
attributes (function type) 11-4
augmented IF statement 9-4

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE. MASSACHUSETTS 02138 + (617) 661-1840

PO

binary literal strings 2~-7

block closing 11-4
block definitions 11-2
block definitions (relative position) 11-2
blocks 1-2
block structure 1-2
Boolean 2-4, 2-17, 9-2,
4-10, 4-11, 09-7,
9-12, 10-5
Boolean
data type 4-2
operations 7-20
precedence 71-24
subscripting of 6-1
boolean parameter 11-10
boolean parameter (argument type) 11-10
branches 9-15
branching 10-15
break points 13-6
built~in functions 7-32
built~in function names 2-2
catenation 7-18
character 4-7, 4-10, 4-11
data type 4-2
functions 7-34
operations 7-18
precedence 7-23

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE - CAMBRIDGE. MASSACHUSETTS 02138 + (617) 661-1840

character parameter 11-9

character parameter (legal argument types) 11-9
character parameter (working lengtn) 11-10
character string literals 2-4, 2-6
character set 2-1
character subscripts 6-1, 6-2, 6-3
channels 12-1, 12-4
class I operators 9-7, 9-10
class II operators 9-7
class 11 9-8, 9-10
CLOSE 11-4, 13-12
colon
use ot 6-10
use in array subscripting 6-8, 6-9, 6-11
columns 12-1, 12-13
combining operations and precedence 7-23
combining comparative operations 9-12
comma
in declarations 4-9

use in double precision VECTOR conversions 7-28
use in double precision MATRIX conversions 7-30

use of 12-9
comments, HAL/S 2-10
comment lines 2-11
comparative operations 9-7
complement 7-20
compound statements 1-8, 10-13

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

compound declarations
component subscripting
component subscript
conditional statement
cond

conjunction

control variables
contnol

CONSTANT

Ccos

crossproduct

data declarations
position of

data fields

data formats

data referencing

data storage

data subscripting
data types

DATE

decimal notation

DECLARE

declaration of local data (procedures &

functions)

declaration of local data (position)

declaration of local data (task block)

example

7-21
10-5, 10-10
10-2

4-10, 4-11
7-33

7-7

1-3’ 4_1' s-l
3-2

12-4, 12-5, 12-6,
12-8, 12-11

12-6, 12-9
6-1
12-4
6-1
4-1
7-34
2-4
4-9

11-6
11-6

13-11
13-11, 13-12

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE « CAMBRIDGE. MASSACHUSETTS 02138 « (617) 661-1840

sl

- SR SR e

declaration of parameters (position) 11-6

declaration of parameters (procedures &

functions) 11-6
declaration statements 4-3, 4-10
delimiters 2-2
delimiting statement groups 10-1
device attributes 12-18
device mechainism 12-1, 12-2, 12-5,
12-8
device mechanism positioning 12-12
division 7-5
DIV 7-32
DO statement 10-2
DO CASE statemert® 10-13
DO CASE...ELSE 10-14
DO...END 10-4
DO FOR statement 10~-5, 10-8
DO FOR 10-10, 10-18, 10-20
DO UNTIL statement 10-7
DO WHILE statement 10-5
DO WHILE 10-16, 10-18, 10-20
Dot Product 7-6
DOUBLE 4-3, 4-4, 4-5,
4-7, 7-26, 7-28,
7-30
double precision 4-2, 4-4

INTERMETRICS INCORPORATED + 701 CCNCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (€17) 661-1840

ELSE 9-1, 9-15

else statement 9-4
END statement 10-3
error recovery 1-2
executing (process) 13-4
execution, path of 3-4
EXIT 10-17, 10-16
EXIT stmt 10-15
exponents 2-8, 2~9
exponentiation 7-13
expressions 7-1
EXPRESSION 7-1
expressdion 7-26
exp 7-27, 7-28, 17-29,
12-4
EXP 7-33
factored declaration 4-9
FALSE 9-1, 9-2, 9+4,
9-7

§inat 10-8
floating point 4-1
flow of execution 3-3
flow of execution (program block) 13-12
flow of execution (task block) 13-12
format 2-8

single line 2-8

multi line 2-9

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02:38 + (617) 661-1840

fractional-valued literal 2-5

full word 4-3
function block 1-2, 1-3, 5-1
function (input parameters) 11-1, 11-4
function, invocation of 11-2
function invocations 11-7
illegal function invocation (example) 11-12
legal function invocation (example) 1i-10, 11-~11
function opening 11-4
function return 11-19
function name 1-4
functions 11-1
GO TO statement 1-8, 9-17
GO TO 9-1, 10-15
GO TO statements

eliminatiorn of 9-18

and statement groups 1-8

legal destinations 1-9, 1-10

block structure 1-10
halfword 4-3
horizontal positioning 12-12
identifiers 2-2, 2-3, 4-1,

4-2, 5~-1

IF clause -1
IF statement 9-2
imbedded comment 5-1
implicitly-declared data items 4-1

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

inactive (state) 13-22

INC 10-8
INITIAL 4-10, 4-11
it 10-8
initiation (delayed) 13-15
examples 13-15, 13-16
initiation (process) 13-13
example 13-14
initialization of data 4-10
1/0 device 12-1
input/output formatting 12-11
input/output statements 12-1
integer 4-10, 4-11, 6-1, 7-1
data type 4-1, 4-3
integral-valued literals 2=5
intersection 7-22
integer/scalar parameter 11-9
integer/scalar parameter (legal argument
type 11-9
inversion 7-13
INVERSE 7-33
keywords 2-2, 4-3
Label 3-1, 3-2, 9-15,
9-17, 10-3
label (statement) 9-2
labels 9-15
LENCTH 7-34
line 12-1
LINE 12-15, 12-16

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE. MASSACHUSETTS 02138 + (617) 661-1840

literals

local data
LOG

matrix

matrix arguments

matrix argument (subscripting)
matrix conversion

matrix, data type

matrix parameter (function)
matrix subscripting

MAX

MIN

miscellaneous functions
multi-line format

multiple exponents

multiplication

multi~processing
multi-valued data items
multi-valued data
multi-valued expressions

NAME

negation

nesting

2-1, 2-2, 2-4,

1-4
7-33

4-5, 4-11, 4-12
5-2, 6-1, 7-1

11-14
11-14
7-29
4-1
11-8
6-5, 6-6, 6-7
7-34
7-34
7-34
2-9
2=5

7-8' 7-9' 7-101
7-11

13-2
4-10, 12-9
4-11, 4-12
12-6

4-3' ‘-" ‘-5,
4-6, -7, 4-8,
5-1
7-2

1-2, 1-8

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

nested substitution
oDD
operators
order of initialization
overriding precedence order
output listings
PAGE
paged I/0 device
parenthesis

use of in expressions

Boolean
partial initialization
precerf¢nce (relational)
precision conversion
primal process
PRIO (built-in function)
priority
priority scales
procedure (assign parameters)
procedure (input parameters)

procedure invocation

procedure
procedure
procedure

procedure
lists)

procedure

invocation
invocation
invocation

invocation

invocation

(assign parameters)
(CAT.L statement)
(input arguments)

(pessing of argument

(position)

legal procedure invocation (example)

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBHIDGE. MASSACHUSETTS (2138 - (617) 661-1840

4-12

7-25

2-1

12-15, 12-16

12-18

12-3, 12-4,

9-13

7-17, 17-20, 9-11
13=2

13-22
13=2

13-6

111, 11-3
11-1, 1l1-3
11-13

11-13

1ll-13

11-13

11-14
11-2

11015, 11-16

procedure openi:
procedure block
procedure name
procedure return
procedures
procedures and functions
process dependency
process states
process swap
program block
program block name
program closing
program opening
pseudo-functions
pseudo-real time
quotacion marks
RANDOMG

READ statement

ready (process)

REPEAT statement

real time built-in functions
real time concepts

real time control

real time features

11-3
1-2,
1-4

11-18

11-1

11-18

13-7

13-4

13-5
1-2,

3-2
3-1
12-12
13-1
5-1
7-34
12-8,

12-11, 12-12,
12-16,

13-5

13-22

13-1
9-2

13-1

1-3 ’

3-1,

12-9,
12-18

5-1

12-10,
12-13,

10-19

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

e

real time process

sample real time program

recursion

relational expressions
repetition (literal)
replace statements

REPLACE
and block structure

replace parameters
reserved words
RETURN

RETURN statement
round

rounding

RTE

RUNTIME

SCALA™%

scalar, data type
scalar

scalar subscripts
SCHEDULE

SCHEDULE statement
scoping

scuping of block names

sequence (Boolean)

13-1

13-23, 13-24, 13-25,
13-26

1-4, 1-7

9-7, 9-12, 10-15
2-7

5-1, 5-2

5-1, 5"2, 5'3
5-3

5-4

2-1, 2-2, 5-1
11-18, 13-12
13-13

7-32

7-26, 10-i0, 10-12
13-2
13-22

4-10, 4-11, 6-3
4-1

4-4, 7-1

6-1
13-5
13-2, 13-13

1-3

1-4

7-24

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 » (617) 661-1840

sequence (precedence) 7-23

sequential I/0 12-1

semicolon, use of 2-10, 4-8

separators 2-2 (see special

characters)

SIGN 7-32

SIN 7-33

SINGLE 4-3, 4-4, 4-5,
-6, 7-26

single line format

single precision 4-2

SKIP 12-15, 12-16
source text 2-1, 2-8, 5-1
special characters 2-1, 2-2
SQRT 7-33

active state 13-4
inactive state 13-4

major state indication 13-22

minor process states 13-4
statement 9~-2, 9-15
statement delimiting 2-10
statement grouping 1-8
statement groups 10-1
statement labels 1-10
stream-oriented I/0 12-4
structures 4-2, ' 6~12
structured programming 1-2

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE ¢« CAMBRIDGE, MASSACHUSETTS 02138 ¢+ (617) 661-1840

structuring 1-1

subroutines 1-1

subscripts 2-8, 2-9

subscripts of unarrayed data items 6-1

symbolic name 5-1

TAB 12-13

Task block definition 13-7

task definitions (relative position) 13-9

TAN 7-33

task closing 13-10

task closing (example) 13-10

Task opening 13-10

TERMINATE 13-5, 13-12

TERMINATE statement 13-18

TO- 6-5

transpose 7-6, 7-13, 7-16

TRUE 9-1, 9-2, 9-4,

9-7

UNIT 7-37

unpaged I/0 device 12-1, 12-2, 12-3,
12-8, 12-18

uni-valued data 4-10

uni-valued data items 12-9

uni-valued expressions 12-6

UPDATE PRICRITY 13-5

UPDATE PRIORITY statement 13=-21

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

value 4-10, 4-11

var 10-8

vector 4-6, 5-2, 6-1,
7-1

VECTOR 4-11. 4-12

vector arguments 11-14

vector argument (subscripting) 11-14

vector conversion 7-27

vector, data type

vector - matrix functions 7-33

vector parameter (function) 11-8

vector subscripts 6-3, 6-4

vertical positioning 12-15

WAIT 13-5

WAIT statement 13-19, 13-20

Waiting (process) 13-5

well-bracketed 1-8, 10-1

WRITE statement 12-4, 12-5, 12-11,
12-12, 12-13, 12-1e6,
12~-18

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

