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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

AERODYNAMIC DAMPING AND OSCILLATORY STABILITY OF A MODEL

OF A PROPOSED HL-10 VEHICLE IN PITCH AT MACH NUMBERS FROM

0.20 to 2.86 AND IN YAW AT MACH NUMBERS FROM 0.20 to 1.20

By Robert A. Kilgore and Edwin E. Davenport

ABSTRACT

Wind-tunnel tests were made at angles-of-attack from -20 to 210 at Mach

numbers from 0.20 to 1.20 and at angles-of-attack from near 00 to about 280 at

Mach numbers of 1.80, 2.16, and 2.86. The tests were made at 00 angle-of-

sideslip by using a small-amplitude forced-oscillation technique.

The results of the investigation indicate that at subsonic and transonic

speeds, the configuration has slightly positive damping in pitch except at the

higher angles of attack at Mach numbers of 0.80, 0.90, and 1.00. At supersonic

speeds the configuration has positive damping in pitch for all test conditions..

The configuration has positive static longitudinal stability for all test

conditions except at M = 1.80 at an angle of attack of 260 where it becomes

very unstable but exhibits a high degree of positive damping. At subsonic

and transonic speeds, the configuration has positive damping in yaw and positive

stability in yaw for all test conditions.
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SUMMARY

Wind-tunnel measurements of the aerodynamic damping and oscillatory sta-

bility in pitch and yaw of a sub-scale model of a proposed HL-10 configuration

have been made at 00 angle of sideslip by using a small-amplitude forced-

oscillation technique. The damping and oscillatory stability parameters in

both pitch and yaw were measured at Mach numbers from 0.20 to 1.20 at angles-

of-attack from -20 to about 210. The parameters in pitch also were obtained

at Mach numbers of 1.80, 2.16, and 2.86 at angles-of-attack from near 00 to

about 280. Reynolds number was about 3.4 x 10 at Mach numbers from 0.20 to

1.20 and about 2.9 x 106 at Mach numbers of 1.80, 2.16, and 2.86. The reduced-

frequency parameter varied from 0.0102 to 0.0784 for the tests in ,pitch and from

0.0084 to 0.0438 for the tests in yaw.

The results of the investigation indicate that at subsonic and transonic

speeds, the configuration has slightly positive damping in pitch except at the

higher angles of attack at Mach numbers of 0.80, 0.90, and 1.00. The configu-

ration also has positive stability in pitch except for limited regions of

instability at Mach numbers of 0.60, 0.80, and 0.90. At supersonic speeds, the

configuration has positive damping in pitch for all test conditions. The

configuration has positive static longitudinal stability for all test conditions

except at M = 1.80 at an angle of attack of 260 where it becomes very unstable



but exhibits a high degree of positive damping. At subsonic and transonic

speeds, the configuration has positive damping in yaw and positive stability

in yaw for all test conditions.

INTRODUCTION

The National Aeronautics and Space Administration is involved in investiga-

tions of the flight and landing characteristics of several configurations of

manned lifting vehicles capable of entering the earth's atmosphere. Early stud-

ies indicated that vehicles with maximum hypersonic lift-drag ratios of about 1

and subsonic lift-drag ratios sufficient to allow a conventional glide landing

appear to be capable of meeting requirements. As part of this reasearch program,

studies were made of the aerodynamic characteristics associated with this class

of vehicle in atmospheric flight over the anticipated speed and angle-of-attack

ranges. One configuration which was proposed, studied, and developed in the

program has negative camber and is designated HL-10 (Horizontal Lander 10).

The HL-10 configuration of reference 1 had vertical tip fins which pro-

vided adequate directional stability at a Mach number of 6.8. However, as

reported in reference 2, at subsonic speeds the tip fins were subject to local

flow separation and were ineffective in providing the vehicle with adequate

directional stability. As reported in reference 2, it was found that addition

of a center vertical fin provided increased directional stability at subsonic

speeds. In addition, the tip fins were canted outboard to provide increased

directional stability at hypersonic speeds. The static aerodynamic character-

istics of a model of this revised HL-10O configuration at low speeds are

presented in references 3 and 4. The results of wind-tunnel tests to determine
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the longitudinal and directional damping and oscillatory stability of a

model of an HL-10 configuration at Mach numbers from 0.20 to 1.00 are presented

in reference 5.

This paper presents the results of wind tunnel tests which were made to

determine the damping and stability parameters for a sub-scale model of the HL-10

configuration at Mach numbers from 0.20 to 2.86. The damping and stability

parameters in both pitch and yaw were obtained at Mach numbers from 0.20 to

1.20 at angles-of-attack from about -20 to 210. The parameters in pitch also

were obtained at Mach numbers of 1.80, 2.16, and 2.86 at angles-of-attack from

near 00 to about 280. The tests were made at 00 angle-of-sideslip at an oscil-

lation amplitude of about 10 by using a forced-oscillation technique. The

results of these tests were obtained in the Langley 8-foot transonic pressure

tunnel and the Langley Unitary Plan wind tunnel.

SYMBOLS

Measurements and calculations for the investigation were made and are

given in the International System of Units (SI). Details concerning the use

of SI, together with physical constants and conversion factors, are given in

reference 6.

The aerodynamic parameters are referred to the body system of axes, as

shown in figure 1, in which the coefficients, angles, and angular velocities

are shown in the positive sense. These axes originate at the center of moments

of the model as shown in figure 2. The equations used to reduce the data are

presented in the section on "Procedure and Reduction of Data."

A reference area, 0.1114 m2
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C pitching-moment coefficient, Pitching moment. (see fig. 1)

3C

m qAd

C m per radianm a!
q 32V

3C

m

C per radian

C per radianm =

DC
m

C - . per radian

C + C damping-in-pitch parameter, per radianm m.

C - k2C oscillatory-longitudinal-stability parameter, per radian
m m"

a q

C yawing-moment coefficient, Yawing moment (see fig. 1)
n q Ad

3C

C n per radian
r per radian

aC
n

C = per radian

C = --) per radian
Cn = per radian

n2



C - Cn. cos a damping-in-yaw parameter, per radian
r 6

C cos a + k2C oscillatory-directional-stability parameter, per
r radian

d reference length, 0.5587m for pitch tests, 0.3606m for yaw tests

f frequency of oscillation, hertz

wd
k reduced-frequency parameter, 2- , radians

M free-stream Mach number

q angular velocity of model about Y-axis, radians/se,cond (see fig. 1)

q. free-stream dynamic pressure, N/m2

R Reynolds number based on reference length for pitch tests, 0.55 87m

r angular velocity of model about Z-axis, radians/second (see fig. 1)

V free-stream velocity, m/s

X,Y,Z body system of axis (see fig. 1)

a angle-of-attack, degrees or radians or mean angle-of-attack, degrees
(see fig. 1)

S angle-of-sideslip, radians (see fig. 1)

w angular velocity, 27f, radians/second

A dot over a quantity denotes the first derivative with respect to time.

The expression cos a appears in the damping-in-yaw and oscillatory-directional-

stability parameters because these parameters are expressed in the body system

of axes.
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APPARATUS

Model

Design dimensions of the model of the proposed HL-10 configuration tested

are presented in figure 2. The model was geometrically similar to the proposed

HL-10 configuration except for the aft portion which was modified to provide

clearance for the model-support sting. Photographs of the model are presented

in figure 3. The model was made of magnesium and all surfaces exposed to the

airstream were aerodynamically smooth.

Oscillation - Balance Mechanism

A view of the forward portion of the oscillation-balance mechanism which

was used for these tests is presented in figure 4. The location of the torque

bridge between the model-attachment surface and the pivot axis eliminates the

effects of pivot friction and the necessity to correct the data for the changing

pivot friction associated with changing aerodynamic loads. A mechanical spring,

which is an integral part of the fixed balance support, is connected to the

oscillation balance at the point of model attachment by means of a flexure

plate. A strain-gage bridge, fastened to the mechanical spring, provides a

signal proportional to the model angular displacement with respect to the sting.

Wind Tunnels

Two wind tunnels were used to obtain the data presented herein. Both

tunnels are equipped for control of relative humidity of the air in order to

minimize the effects of condensation shocks. Also, total temperature and total

pressure can be varied to obtain the desired test Reynolds number.
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Langley 8-foot transonic pressure tunnel.- The data for Mach numbers from

0.20 to 1.20 were obtained in the Langley 8-foot transonic pressure tunnel.

The test section of this single-return wind tunnel is about 2.2 meters square

with slotted upper and lower walls to permit continuous operation through the

transonic speed range. Test-section Mach numbers from about 0.20 to 1.30 can

be obtained and kept constant by controlling the speed of the tunnel-fan drive

motor.

The sting-support strut is designed to keep the model near the center line

of the tunnel through the range of angle-of-attack. A more detailed descrip-

tion of the Langley 8-foot transonic pressure tunnel is given in reference 7.

Langley Unitary Plan wind tunnel.- The data for Mach numbers of 1.80, 2.16,

and 2.86 were obtained in test section number 1 of the Langley Unitary Plan wind

tunnel. This single return tunnel has a test section about 1.2 meters square

and about 2.1 meters long. An asymmetric sliding block, which varies the area

ratio, is used to change the Mach number from about 1.47 to 2.86. A more

detailed description of the Langley Unitary Plan wind tunnel is given in refer-

ence 7.

PROCEDURE AND REDUCTION OF DATA

For the pitching tests, measurements are made of the amplitude of the

torque required to oscillate the model in pitch Ty, the amplitude of the angu-

lar displacement in pitch of the model with respect to the sting e , the phase

angle n between Ty and 0 , and the angular velocity of the forced oscilla-

tion w. Some details of the electronic instrumentation used to make these

measurements are given in reference 8. The viscous-damping coefficient in
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pitch Cy for this single-degree-of-freedom system is computed as

Ty sinn

Y we

and the spring-inertia parameter in pitch is computed as

2 Ty cos

where Ky is the torsional-spring coefficient of the system and Iy is the

moment of inertia of the system about the body Y-axis.

The damping-in-pitch parameter was computed as

2V I (C) o
q a ~Ad wind on CY)wind off

and the oscillatory-longitudinal-stability parameter was computed as

C - k2 C = - 1 - 2) 2
m Ad wind on )wind off]

Since the wind-off value of Cy is not a function of oscillation frequency,

it is determined at the frequency of wind-off velocity resonance because Cy

can be determined most accurately at this frequency. The wind-off value of

Ky - Iy 2  is determined at the same frequency as the wind-on value of

K - I Y 2  since this parameter is a function of frequency.

For the yawing tests, measurements are made of the amplitude of the torque

required to oscillate the model in yau TZ, the amplitude of the angular
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displacement in yaw of the model with respect to the sting T, the phase angle

X between TZ  and T, and the angular velocity of the forced oscillation w.

The viscous-damping coefficient in yaw CZ  for this single-degree-of-freedom

system is computed as

TZ sin 
A

Z =~Y

and the spring-inertia parameter in yaw is computed as

TZ cos A
KZ - I =

where KZ  is the torsional-spring coefficient of the system and IZ  is the

moment of inertia of inertia of the system about the body Z-axis.

For these tests, the damping-in-yaw parameter was computed as

C - C cos a =- 2V i - of]
r q- Ad2 LZwind on wind of

and the oscillatory-directional-stability parameter was computed as

C cos a + k2C 1  2)-Z - (KZ - wind of
n qAd Z wind on wind of

The wind-off value of CZ is determined at the frequency of wind-off

velocity resonance, and the wind-off and wind-on values of KZ - IZ2 are

determined at the same frequency.
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TEST CONDITIONS

The damping and oscillatory stability parameters in both pitch and yaw

were obtained at Mach numbers from 0.20 to 1.20 at angles-of-attack from -20

to about 210 at 00 angle-of-sideslip. The parameters in pitch also were ob-

tained at Mach numbers of 1.80, 2.16, and 2.86 at angles-of-attack from near

00 to about 280. Reynolds number, based on a reference length of 0.5587 meters,

stagnation pressure, and stagnation temperature for the various Mach numbers

were as follows:

Mach number, Stagnation pressure, Stagnation temperature, Reynolds number,
M kN/m K R

2.86 77.1 x 10 339 2.86 x 106

2.16 53.7 339 2.87

1.80 46.4 339 2.91

1.20 45.3 324 3.42

1.00 46.1 322 3.42

.90 48.4 321 3.50

.80 50.5 321 3.45

.60 60.4 320 3.48

.40 80.0 318 3.38

.20 149.7 317 3.35

The data were obtained at an oscillation amplitude of about 10 (one half of

peak to peak) with the model-balance system oscillating at or near the frequency

of velocity resonance. The frequency of oscillation varied from 3.02 to 8.80
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wd
hertz. The reduced-frequency paraemter, 2 , varied from 0.0102 to 0.0784 for

the tests in pitch and from 0.0084 to 0.0438 for the tests in yaw. The tests

were made with an aerodynamically smooth model.

DATA CORRECTIONS AND PRECISION

Tunnel-wall and model-support interference effects were assumed to be

negligible and no corrections for these effects were made to the data. The

values of angle-of-attack, a, have been corrected for flow angularity in the

test section as follows:

Mach number, Flow angularity correction,
M deg.

2.86 0

2.16 1.38

1.80 0.60

0.20 to 1.20 0.20

These corrections apply strictly only for a model at the vertical center of the

test section, however, the corrections were applied to all of the data as a

first-order correction to a. For the data presented herein, values of the

probable error of the various quantities are as follows:
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Quantitybb for-Quntity _M = 0,20 to 1.20 M = 1.80 to 2.86

Mach number, M ±0.002 ±0.002

Mean angle-of-attack or angle-of-1 ±0.
attack, a, deg.

Reynolds number, R ±0.01 x 10 ±0.002 x 106

Damping-in-pitch parameter,
C + C , per radian ±0.2 ±0.2m m.

Oscillatory-longitudinal-stabilit3
parameter, C - k 2 C , per ±0.01 ±0.01m. m.
radian q

Damping-in-yaw parameter,
C - C cos a, per radian ±0.4
n n

Oscillatory-directional-stability
parameter, C cos a + k2C , ±0.02

nB nr
per radian

Reduced-frequency parameter, ±0.0003 ±0.0003
k, radians
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TEST RESULTS

The results of these tests are presented graphically as follows:

Mach number Longitudinal Lateral
M rel_ I ts results

0.20 Fig. 5(a) Fig. 7(a)

.40 5(b) 7(b)

.60 5(c) 7(c)

.80 5(d) 7(d)

.90 5(e) 7(e)

1.00 5(f) 7(f)

1.20 5(g) 7(g)

1.80 6(a) ----

2.16 6(b)

2.86 6(c)

Positive damping-in-pitch and positive oscillatory stability-in-pitch are indi-

cated by negative values of C + C and C - k 2 C respectively. Posi-m m. m m.q a a q
tive damping in yaw is indicated by negative values of C - C cos a while

r a
positive oscillatory stability in yaw is indicated by positive values of

C cos a + k Cn8  n.

Typical schlieren photographs obtained at Mach numbers of 1.80, 2.16, and

2.86 are presented as figure 8.
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Longitudinal Results

The data presented in figure 5 indicates that the HL-10 configuration has

slightly positive damping in pitch except at the higher values of a at M = 0.80,

0.90, and 1.00. The configuration also has positive oscillatory stability in

pitch except for limited regions of instability at M = 0.60, 0.80, and 0.90.

These results are in general agreement with the results presented in reference

5 which were obtained on a geometrically similar model approximately 1.4 times

the scale of the model used for these tests. (In comparing the results pre-

sented herein with the results of reference 5, due account must be taken of the

definition of angle-of-attack. a = 00 of reference 5 corresponds to a = 6.50

for the results of this report.)

The data presented in figure 6 indicates that the HL-10 configuration has

positive damping in pitch for all test conditions at supersonic speeds. The

large amount of positive damping present at M = 1.80 at a 260 is in good

agreement with unpublished results obtained for a similar configuration at these

test conditions. The configuration has positive oscillatory stability for all

test conditions except at M = 1.80 at a 260 where the model is very

unstable. This trend is also in agreement with the unpublished results pre-

viously mentioned. The two schlieren photographs presented at M = 1.80 in

figure 8 (a) indicate that two grossly different flow conditions were present as

the model was being oscillated ±10 about the mean angle-of-attack position of

260. This unstable flow condition appears to cause the large increases in

positive damping and directional instability.
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Directional Results

The subsonic and transonic results presented in figure 7 show that the

HL-10 configuration has positive damping in yaw and positive oscillatory sta-

bility in yaw for all test conditions.

CONCLUDING REMARKS

Wind-tunnel measurements have been made of the aerodynamic damping and

oscillatory stability in pitch and yaw for a sub-scale model of a proposed

HL-10 configuration by using a 1
0-amplitude forced-oscillation mechanism. The

parameters in both pitch and yaw were measured at Mach numbers from 0.20 to

1.20 at angles-of-attack, a, from -20 to about 210. The parameters in pitch

also were measured at Mach numbers of 1.80, 2.16, and 2.86 at a's from near

00 to about 280.

At subsonic and transonic speeds, the configuration has slightly positive

damping in pitch except at the higher o's at M = 0.80, 0.90, and 1.00. The

configuration also has positive stability in pitch except for limited regions

of instability at M = 0.60, 0.80, and 0.90.

The configuration has positive static longitudinal stability for all test

conditions except at M = 1.80 at an angle of attack of 260 where it becomes

very unstable but exhibits a high degree of positive damping.

At subsonic and transonic speeds the configuration has positive damping

in yaw and positive stability in yaw for all test conditions.
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Figure 5.- Variation of damping-in-pitch and oscillatory-longitudinal-stability parameters
with mean angle of attack for a model of a proposed HL-10 configuration
at Mach numbers from 0.20 to 1.20.
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Figure 7.- Variation of damping-in-yaw and oscillatory-directional-stability parameters
with angle of attack for a model of a proposed HL-10 configuration at
Mach numbers from 0.20 to 1.20.
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FIGURE 8. - SCHLIEREN PHOTOGRAPHS OF HL-10 CONFIGURATIONS
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