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POWER REQUIREMENT OF ROTATING RODS IN AIRFLOW

by

P. S. Barnal

and

Gary R. Crossman2

ABSTRACT

Experiments were performed to determine the power required for rotating-

a rotor disc fitted with a number of radially arranged rods placed into a

ducted airflow. An array of stationary rods, also radially arranged, were

placed upstream close to the rotor with a small gap between the rods to cause

wake interference.

The results show that power increased with increasing airflow and the

rate of increase varied considerably. At lower values of airflow the rate of

increase was larger than at higher airflow and definite power peaks occurred

at certain airflow rates, where the power attained a maximum within the test

airflow range. During the test a maximum blade passage frequency of 2037 Hz

was attained.
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SUMMARY

Experiments were performed to determine the power required for rotating

a rotor disc fitted with a number of radially arranged rods placed into a

ducted airflow. An array of stationary rods, also radially arranged, were

placed upstream close to the rotor with a small gap between the rods to cause

wake interference.

The results show that power increased with increasing airflow and the

rate of increase varied considerably. At lower values of airflow the rate of

increase was larger than at higher airflow and definite power peaks occurred

at certain airflow rates, where the power attained a maximum within the test

airflow range. During the test a maximum blade passage frequency of 2037 1Iz

was attained.
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SYMBOLS

A area, m2

CD drag coefficient

C power coefficient
p

D tip diameter of rotor (2R )

F force, Newton

m number of rods

N rotational speed, revolutions per minute (rpm)

P power required to drive rotor, watts

r radius, m

R. hub radius, m

R tip radius, m

t rod diameter, mm (millimeter)

T torque, Newton-meter

U tangential velocity, m/s

Va  axial velocity in empty annulus, m/s

w angular speed, radians per second

p air density, kg/m3

v kinematic viscosity, m2/s
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APPARATUS

The test equipment consisted of a duct system in which a set of rods were

rotated downstream in the wake of a set of stationary rods.

The cylindrical duct housing the rods was made of heavy-gage steel through

which the air flow was induced by a centrifugal blower driven by a 15 hp

variable speed motor. The air entered the duct through a well-rounded inlet,

then passed over the stationary rods, subsequently passed over the rotating

rods and, after expanding through a diffuser, entered the intake of the blower.

From the discharge side of the blower, the air passed over a damper and upon

turning a corner it entered a calming chamber and was finally exhausted at the

top of the chamber through a suitable orifice plate. The general layout of

the apparatus is shown in Fig. 1, while photographic views are shown in Figs. 2

and 3.

A wide range of flow conditions could be obtained by changing the rota-

tional speed of the blower, or by varying the size of the orifice openings and

also by adjusting the setting of the damper.

There were 30 stationary and 26 rotating rods radially arranged in the duct.

All the rods were made of 3/16 in. (4.76 mm)-diameter high tensile aluminum.

The rotating rods were turned from 1/2 in. hexagon stock and were provided with

a 1/4 in. screw thread at their ends which fitted into a' circular rotor disc

keyed to the shaft of the drive motor. Details of a rotating rod are given in

Fig. 4a. The rotating rods were positionea immediately behind the stationary

rods with a small gap left between the two sets of rods. After fitting the rods

into the rotor disc a portion of the disc and of the rods at their root was cut

away in a lathe to allow the gap to be further reduced to the desired 2 mm

distance (see Fig. 4b.)
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The stationary rods were cut from 3/16 in. round stock and extended between

the central hub and the external casing. Six of these rods were employed to

suspend the center hub by a spider web arrangement, while twenty-four rods

remained non-structural.

The drive motor to the rotor disc was cradle mounted coaxially with the

ducting and was provided with an infinite speed control between the range of 500

to 5000 rpm. For the measurement of torque, an arm of 0.4 m length was mounted

to the drive-motor housing which extended through the duct wall. Suitable

weights were placed on the arm to provide the necessary torque balance. The arm

with the sliding weight in zero position was balanced in a horizontal position

by a spring of which the tension could be adjusted. A scale, mounted parallel

with the torque arm, facilitated the reading of the weight displacement.

In order to estimate in advance the approximate size of the motor needed

for the experiments it was necessary to determine the torque for rotating the

rods. Since the torque from the motor was required to overcome the drag pro-

duced by the rods, it was assumed that they were moving in stationary air. It

was further-assumed that tip and hub effects were negligible and that no inter-

ference between stationary and rotating rods existed. Details of this approxi-

mate calculation are given in Appendix A.

The centrifugal blower was equipped with a four-speed control permitting

1760, 1175, 875, and 575 rpm to be maintained. The orifice plate sizes ranged

from 0.1 m to 0.4 m in diameter.

For the measurement of air flow, a standard pitot-static tube was

installed near the plane of the duct inlet with a single tube inclined manometer

used to measure the pressure differential. A standard strobotorch was employed

to measure the rotational speed of the rotor.
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TEST PROCEDURE

The tests consisted of measuring both the power required for rotating

the rods and the noise emitted by them.*

Since both the rotational speed and the air flow rate in the duct could

be varied, it was decided to divide the experiments into test runs where each

run consisted of keeping the rotational speed of the rotor constant while

gradually varying the flow rate from zero to maximum. Accordingly, test runs

were made at selected speeds, namely at 2, 3, 4, and 4.7 thousand rpm.

Prior to testing the rotor under operational conditions, a simple method

for air flow rate measurement was established to eliminate the laborious

recording of a multitude of velocity profiles. A number of velocity profiles

were taken over a wide range of flow conditions and these were integrated to

furnish the mean air velocity [1]. It was found that the pitot tube could be

placed into the air stream at. a certain radial location where the mean air

velocity intersected the velocity profile, and this location remained almost

constant over the entire air flow range. (A small variation of only 1.5 mm

was found, which was considered negligible). Ultimately, the point of the

pitot tube for measuring the mean air velocity was located at 80-mm distance

from the center line.

The size of the counterweight to be used on the balance arm for measuring

torque was also established prior to testing. The maximum weight was determined

so as to just reach the rated (max) power of the motor (0.75 hp) at maximum speed

(5000 rpm) when the weight was placed at the far end of thebalance arm. This

weight was eventually divided into three parts and one or two parts only were

employed for the lower torque readings. This procedure allowed for higher

* Noise measurements were performed by NASA personnel.



accuracy of readings. To facilitate the rotational speed determination with

the strobotorch, all but one of the rotating rods were painted with a purple dye.

The variable frequency strobe light source was set up about 1 m from the duct

inlet in alignment with its centerline and was intermittently operated.

Before each test run, the weights on the torque arm were "zeroed" with the

spring tension adjusted to bring the torque arm to a horizontal position. This

was repeated whenever.a weight was added or removed. A test run generally

consisted of the following steps:

(1) The pitot tube manometer was zeroed, the blower was started, and the

airflow was adjusted using the damper and/or orifices to obtain the

desired airspeed.

(2) The rotor was then started and by use of the rheostat the speed was

brought to 2000 rpm, this being the minimum speed.

(3) The air speed and rotor speed were adjusted alternately, since one

affected the other, until desired values were obtained.

(4) The weights were moved along the arm until it assumed horizontal

position and balanced the torque.

(5) The weight displacement, rotor speed, and manometer reading were

recorded and the ambient air conditions were noted.

Steps (1) through (5) were then repeated over the range .of airspeeds for

2000 rpm, and subsequently repeated for the entire range of selected rotational

speeds.

RESULTS AND DISCUSSIONS

Results of the tests are presented in Figs. 5 and 6. In Fig. 5 the power

required to drive the rotor is plotted against air velocity for four constant

rotor speeds, while in Fig. 6 the same results are "normalized" in a
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nondimensional representation. Accordingly, in Fig. 5 the four power curves are

plotted against the air velocity in the "empty" annular duct 
section just up-

stream from the rods. Thus the passage restriction due to the presence of the

rods was not considered.

The normalized power coefficient (C p) in Fig. 6 is plotted against advance

ratio (J) in exactly the same way as propeller coefficients are usually pre-

sented [2], namely

C P
Cp = -N3

Va
J =

With numerical values p = 1.227 kg/m3, D = 0.254 m the power coefficient becomes

P (Watts)
Cp = 0.1677 (N/1000)3

and the advanced ratio

V
a

J = 0.2362 (N/O00)

All dimensional power curves plotted in Fig. 5 show first a sharp 
increase

with air speed, which is followed by a decrease in gradient before the markedly

steep rise leading to a "hump" occurs. After the hump, a sudden decrease in

power is experienced with a subsequent levelling 
off, resulting in a "hollow"

or "trough" in the curve. With further increasing air velocity, power again

appears to gradually and continuously rise. Both the magnitude of the peaks

and their location depends on air velocity and on rotational 
speed, and a shift

to the right is experienced in the peaks with increasing speed.

The normalized or non-dimensional plotting of the results in Fig. 
6 shows

all observations collapsed on a single curve with highly satisfactory consistency.

This remarkable but not altogether unexpected result proves that the rotor may
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indeed be considered a special type of propeller which follows the rules of

rotodynamic machinery.

The normalized plot more or less follows the general characteristics of

the dimensional curves, that is,'a steep gradient ahead of the hump, followed

by a gradual rise of the power coefficient with further increasing 
advance

ratio. There is, however, the added appearance of two humps and two hollows

after the first peak, located at J = 1.56 approximately. The second hump

peaks at about J 3= .15, while the third, less distinct from the first two

humps, peaks at J = 4.6 approximately. Thus the peaks are located at equal

intervals and at a multiple of the advance ratio of the first peak.

The first peak is the most critical as it produces the largest power coef-

ficient, Cp = 1.32 approximately. This peak also displays the steepest

gradients on either side of the maxima, and at this point, under actual opera-

tional conditions the power increased to an estimated 817 watts at 4700 rpm and

thus markedly exceeded the available motor capacity. This power peak prevented

fully attaining the 5000 rpm design speed and the 2500 Hz design passage 
fre-

quency which was based on the number of rotor rods.

The probable source of the peaks may be attributed to wake interference

between the rotating and stationary rods where vibration of the rotating rods

is probably set up by the vortex shedding of the stationary 
rods. The possi-

bility of critical Reynolds number as a cause of this effect must be discounted.

The maximum rod Reynolds number, based on.rod diameter t and absolute velocity*

as well as its largest peak value, occurs at an estimated 1/10th of the critical

Reynolds number of a cylinder which is known to be about 2 x 10$ [3].

* Absolute velocity = !U2 + V2 .
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Since the natural frequency [4] of the rotor rods was estimated to be 1469 cps,

resonant vibration due to wake effects is unlikely to be the cause of the power

peaks.

It is curious that the power peaks become less pronounced at high air

velocities. On the assumption that no further peaks occur at velocities in-

excess of 50 m/s, the power coefficient may attain a value of 1.8 to 2.0 when

Va = 200 m/s (J = 10.1). Thus at this air velocity, discounting compressibility

effects, the power required to drive the rotor would be roughly 2 hp.

CONCLUSION

The objectives of the tests were nearly realized and air flow velocities up

to 50 m/s were attained for four rotational speeds of the rotor producing noise

frequencies near the desired range. The measured power plotted against air

speed produced curves that show three power peaks of which the first and by far

the largest did not occur at the maximum air speed as anticipated but at a much

lower value. This peak occurred at a Reynolds number of one order of magnitude

less than the established critical Reynolds number for flow over cylinders.

Further studies are required to explore the nature of these peaks and to find a

plausible explanation.
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Appendix A

Consider a cylindrical element of a single rod with a projected area,

dA = tdr. The torque required to.overcome the drag of that element is given

by dT = r dFD. The drag force may be represented by dFD = 1/2 pCDU 2dA.

Since the tangential velocity of the element U = rw, dT = rdFd =

r * 1/2 pCD (rw)2tdr = 1/2 pCD w2tr3dr. For incompressible flow p can be

considered constant, however CD may vary with the Reynolds number based on

tangential speed and rod diameter NR = Ut/v = rwt/v. A range of Reynolds

number can be calculated using the lowest and highest angular velocity anti-

cipated during'testing at the hub and the tip radius respectively.

With the Reynolds numbers calculated CD varies from 0.95 to 1.05 (see

Ref. 3), thus a constant mean value of 1.0 seemed a reasonable assumption.

Assuming CD C D, upon integration, torque for a single rod becomes

R

T 1/2 p CD 2t r3dr = 1/8 PCDw2 t(R - R)

For m number of rods T must be multiplied by m. With the numerical values

p = 1.227 kg/m 3, CD = 1.0, m = 26, t = 4.76 mm, Ro = .127 m, Ri = .07 m one

obtains torque

T = .049 (000
Since power P = Tw,

P 5.13 N \3

Thus the anticipated maximum speed of 5000 rpm yields

T .049(5) 2 a 1.225 Nm

and

P = (5.13)(5) 3  641.25 watts or 0.86 hp,

which is slightly above the rated power of the motor used.
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ORIFICE PLATE

SCREENS
15 HP MOTOR

CALMING TANK7-

BLOWER

DIFFUSER

DRIVE MOTOR

TORQUE ARM

COUNTER n-

WEIGHT

ROTATING RODS

ST'ATIONARY RODS

PITOT-STATIC --. 254

REPRODUCIBILITY OF THE TUBE
ORIGINAL PAGE IS POOR

AIR INTAKE

MICROPHONE .

Figure 1. General lay-out of test equipment. All dimensions in meters.
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Figure 3. Frontal view of duct intake showing stator and rotor.
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Rotor
rod

(cutaway)
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Figure 4. Sectional view of rotor and stator.
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Figure S. Variation of drive motor power with airspeed.
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