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SECTION I

SUMMARY

A statorless, turbotip, lift fan (LF336/E) was tested statically
outdoors to determine its acoustic characteristics. The tests were conducted
at the General Electric Edwards Flight Test Center (EFTC) at Edwards AFB,
California and at the NASA Ames Research Center outdoor test site at Moffett
Field, California.

The LF336/E is a 36 inch (91.4 cm) tip diameter fan with an aerodynamic
design pressure ratio of 1.25 at a design tip speed of 1060 feet per second
(324 meters per second). The statorless fan is designed for operation with-
out a stage inlet guide vane or exit stator row; thus, it is a rotor only
configuration and is driven by a tip turbine using the exhaust gases of the
General Electric J85-GE-5 (dry) turbojet engine.

Directivity comparisons, on an equal tip speed basis indicate that the
statorless lift fan is 1 to 3 PNdB quieter in the forward quadrant and equal
to ZPNdB quieter in the aft quadrant than a conventional two chord spacing
rotor-stator lift fan. A massive fan inlet suppressor was installed which
indicated that fan exhaust radiated noise levels are 5 to 8 PNdB below the
inlet radiated levels in the forward quadrant. Installation of a circular
IGV increased forward PNL's by 3 to 5 PNdB and aft PNL's by 1 to 2 PNdB due
primarily to an increase at the BPF. Treated exit louvers achieved 2 to 4
PNdB suppression from 80 to 100 degrees at 6000 RPM. Near field fan levels
were unchanged from EFTC to NASA Ames and that the asphalt surface at NASA
Ames and the desert sand at EFTC have similar reflectivity characteristics.



SECTION II

INTRODUCTION

The General Electric Company has been conducting extensive research
programs in conjunction with NASA to develop acoustic technology for advanced,
lightweight lift fans for applications to V/STOL aircraft systems. These
research programs have studied the generation of lift fan noise and its
alleviation by judicious selections of fan geometry using the LF336 lift
fan as a test vehicle.

Reference 1 has shown that increased axial spacing between the fan
rotor and outlet guide vanes (OGV) is a significant parameter in reducing
lift fan noise. Increased spacing reduces noise generated by viscous wake
interaction and a logical extension of technology would be to eliminate the
OGV's creating a statorless lift fan and thus eliminating any viscous wake
interaction noise.

In addition to noise reduction potential due to elimination of viscous
wake interaction noise, previous conceptual design studies, Reference 2,
have shown that the remote tip turbine statorless fan is an attractive V/STOL
propulsion system in terms of thrust-to-weight, installed thickness, and
overall rotor disk loading.

A program sponsored by NASA Ames Research Center under NASA Contract
NAS2-5462 was initiated to design, fabricate, and test the LF336/E statorless
fan system. The fan was tested for mechanical and aerodynamic performance
at the General Electric Edwards Flight Test Center (EFTC). In addition,
acoustic testing was conducted at EFTC and a NASA Ames Research Center
outdoor test site. Unsuppressed, baseline noise levels were determined at
both sites and are presented in this report. Further acoustic configurations
were tested to measure exhaust radiated noise levels, to determine the effect
of circular inlet guide vanes, and to measure the suppression achieved with
acoustically treated fan exit louvers. These results are also presented here.
A summary of the configurations tested at both locations is presented in
Table I.



SECTION III

TEST HARDWARE

The basic test propulsion system consisted of the LF336/E statorless fan,
the J85-5 engine, and interconnecting ducting as shown in Figure 1. The
system was installed in a test stand which provided for mounting the fan and
engine system with the fan inlet oriented in a vertical plane. The fan inlet
bellmouth was installed flush with a flat plane surface which simulated a
wing upper surface of a fan-in-wing installation.

A. LF336/E Fan System

The LF336/E fan is a single stage statorless turbotip lift fan which is
designed to operate without either inlet guide vanes or exit stator rows.
The fan has a 36 inch (91.44 cm) diameter and incorporates 42 blades in a
tip turbine driven, single stage rotor. The single stage rotor develops a
fan pressure ratio of 1.25 at a fan design tip speed of 1060 feet per second
(323 m per second). The design pressure ratio of ll25 assumes no recovery of
the exit swirl component. Accordingly, the overall total-to-total pressure
ratio is 1.32 at design operating conditions.

A sketch of the fan is shown in Figure 2 with selected design parameters
presented in Table II. When the fan was tested it was modified by the
installation of tip turbine exit stators.

B. J85-5 Engine .

The fan tip turbine was driven by a J85-5 engine modified to a conventional
turbojet engine configuration. The gas generator is shown in Figure 1 coupled
to the lift fan. Also evident in this photograph is the acoustic suppressor
which was installed on the J85-5 inlet to suppress gas generator inlet
radiated noise. The engine exhaust is direct-coupled to the fan scroll inlet
through a transition duct. Engine serial number 231-233 was used during
these tests.

C. LF336/E Fan Inlet Suppressor

During the testing at EFTC a massive fan inlet suppressor was installed
to suppress fan inlet radiated noise and to allow determination of exhaust
radiated statorless lift fan noise. Details of the design of the massive
fan inlet suppressor are given in Reference 3. The fan inlet suppressor is
shown in Figure 3. In addition to suppressing the inlet radiated fan noise,
the massive inlet suppressor provided a 90 degree directivity shift to
further reduce the levels at the microphone locations. Note that the inlet
duct .was wrapped with lead-vinyl blanket to reduce any structure-born
transmission of noise.



SECTION IV

TEST SITES

A. Edwards Flight Test Center

The test program was conducted at an outdoor test facility designed and
constructed for testing full scale lift fans and engines. The site shown
in Figure 4 is located at the General Electric Edwards Flight Test Center at
Edwards Air Force Base, California and is in an area free of buildings and
obstructions. The area surrounding the acoustic test site consists of desert
sand and brush. Figure 4 is a photograph taken across the top of the control
room which extends only thirty inches (76.2 cm) above the ground. The photo-
graph shows the large bellmouth positioned in front of the LF336/E fan and
the J85 with its inlet suppressor removed.

The test stand is attached to four concrete columns which protruded
above the asphalt apron and the fan was mounted in the stand ten feet
(3.05 m) above the ground with the fan flow parallel to the ground. No
portion of the test stand was forward of the lift fan upper wing simulation
surface which prevented any turbulence being generated by test stand
structures.

A sketch of the microphone locations at EFTC is shown in Figure 5. There
were seventeen microphones located at 10 degree increments from 0 to 160
degrees relative to the fan inlet on a 150 foot (45.7 m) arc. Seven .near
field microphones were located on a 20 foot (6.1m) arc at angles of 90, 110,
130, 150, 210, 230, and 250 degrees relative to the fan inlet. The near field
mikes can be seen in Figure 1. All microphones were in a horizontal plane
through the fan centerline.

B. NASA Ames Outdoor Test Site

Additional LF336/E fan testing was conducted at an outdoor test site
located at NASA Ames Research Center. An aerial view of the test site is
presented in Figure 6. As the photograph shows, the acoustic path to a given
microphone was in some places asphalt and concrete, and in others short grass
and asphalt. The microphone layout is sketched in Figure 7. Far field
microphones were on a 150 foot (45.7 m) arc in ten degree increments from 0
to 160 degrees. Two arrangements of near field microphones were used - both
on a 20 foot (6.1 m) arc. The first, used for Runs 1 and 2, had the micro-
phones located at 20 degree increments from 30 to 150 degrees. The second
arrangement, for Run 3 and all successive runs, had the seven microphones
located at 90, 110, 130, 150, 210, 230, and 250 degrees. This latter •
arrangement duplicated the near field microphone locations used at Edwards
Flight Test Center, and in the NASA Ames 40' by 80' (12.2 m x 24.4 m)
wind tunnel.

Engine and fan centerline height at NASA Ames was 9 feet 8 inches
(2.95 m) and all microphones were located in a horizontal plane through the
fan centerline.



SECTION V

SOUND DATA ACQUISITION AND PROCESSING

A. Data Acquisition

1. Edwards Flight Test Center

All data acquisition for the near and far sound fields was made using
Bruel-Kjaer model 4133 microphone systems in conjunction with an AR200 tape
recorder operating at 60 inches per second (152 cm per second). Figure 8
includes a schematic of the data acquisition system at EFTC, and a photograph
of some of the equipment.

All far field microphones were oriented to point at the test vehicle and
had Bruel-Kjaer UA0237 windscreens installed on the microphone heads. The near
field microphones were oriented to point in the same direction as the J85 inlet
and used Bruel-Kjaer model UA0052 nose cones.

The free field frequency response of each microphone head is derived from
a pressure response curve recorded automatically by the electro-static actuator
method traceable to the Bureau of Standards. The free field characteristics for
various angles of incidence for microphones with protecting grid, nose cones,
and windscreens are given by the microphone manufacturer. Individual micro-
phone head sensitivities are determined by the insertion of a Bruel-Kjaer
pistonphone on the cartridge mounted to a standard microphone system. Both
the pistonphone and standard microphone system are traceable to the Bureau of
Standards.

Prior to initiation of testing, a frequency response of each data channel
(minus microphone head) was made by the insertion of a Hewlett-Packard Pseudo-
Random Pink Noise Generator into each cathode follower and recorded on
magnetic tape.

Prior to and subsequent to each day's testing, an absolute calibration
was made by the insertion of a pistonphone on each microphone and recorded
on tape. Since the test site is '2300 feet (701 m) above sea level, a
barometric correction was made to the pistonphone output as provided by
manufacturer's specifications. Any microphone whose voltage output with the
pistonphone applied was found to deviate more than + 1.5 dB from the
laboratory calibration was replaced.

2. NASA Ames Research Center

Data acquisition at NASA Ames was similar to that at EFTC as the sketch
in Figure 9 shows, except that the tape recorder was a Honeywell Model 7600
operated at 30 inches per second (76 cm per second). The step amplifier,
tape recorder, monitor scope, and monitor voltmeter were all located in the
General Electric Mobile Sound Evaluation Unit (Figure 6).



During test operations at both test sites, sound was recorded continu-
ously for a minimum of two minutes to allow enough sample length for data
processing.

B. Data Processing

1. J./3 Octave Bands

All 1/3 octave band data processing was performed at the General
Electric Edwards Flight Test Center facilities using a General Ratio real
time analyzer in conjunction with a Honeywell 316 and SDS930 computer.
Thirty-two second averaging time was used for data processing with data for
each angle sampled from the same period of time for each data point.

Before data processing could be initiated, the total data acquisition
and reduction system frequency response characteristics had to be determined
and made available in the computer for final data processing. The first
step in this process was to analyze the Pink Noise calibration tapes for
each data channel, and determine the response characteristics for the total
system as referenced to 250 Hz (frequency of the pistonphone) at each 1/3
octave band. Final one-third octave data processing was made by determining
absolute sound pressure levels, for the 150 foot (45.7 m) arc and 200, 500
foot (61 m, 151 m) sidelines, corrected to standard day (59° F (15° C),
70% relative humidity) conditions as per Reference 4 and for ground attenua-
tion effects as per Reference 5.

2. JO Hz Narrowbands

All narrowband analysis was made at the General Electric Evendale
facilities using a Federal Scientific Ubiquitous Spectrum Analyzer and a
139B Digital Averager. All data was processed using a 20 Hz bandwidth
filter and an averaging time of 12.8 seconds. No corrections for humidity
or acquisition/processing responses were included in the narrowband plots.



SECTION VI
o

RESULTS AND COMPARISONS

Extensive testing of the LF336/E statorless lift fan was conducted at the
General Electric Edwards Flight Test Center and at a NASA Ames Research Center
outdoor test site. All succeeding 1/3 octave band SPL and PNL comparisons are
made on a 200 foot (61 m) sideline while all 20 Hz narrowband SPL's are compared
at a 150 foot (45.7 m) arc.

A. Statorless Fan Comparisons to Other LF336 Fans

In this section, acoustic levels of the LF336/E statorless fan from
NASA Ames Research Center testing are compared to LF336/A, LF336/B,
LF336/C-1 and LF336/C-11 fans (Reference 1). Table I-VII lists the design
parameters of these fans of the LF336 family.

Comparison of statorless and conventional rotor-stator fan configura-
tions has shown that equal fan thrust can be achieved through proper
selection of fan pressure ratio. For equal thrust, the statorless fan will
require a larger fan diameter at a lower pressure ratio with minor increases
in overall installation diameter in exchange for the reduced thickness of
the fan relative to the more conventional design. This trade-off of fan
diameter for thickness is one of the merits of the statorless fan concept.

Comparisons will be made at equal tip speeds and equal absolute pressure
ratios. Comparisons of noise generation at equal tip speed is equivalent
to comparing fans having equal thrust but different pressure ratios. Com-
parison at equal absolute pressure ratio implies similar fan loading
characteristics and equal thrust for the same diameter. Pressure ratio has
been used as a correlating parameter of aft radiated fan noise or rotor-
stator noise while equal tip speed comparisons have been associated with
inlet "radiated or rotor alone noise. Comparisons will be made both ways
but in applications, the statorless fan would be designed to operate at a
lower pressure ratio than conventional fans.

1. Equal Tip Speed Comparison

Figure 10 compares statorless fan 1/3 octave band BPF directivity
patterns to the LF336/B and LF336/C-11 fans at three fan speeds (no C-ll data
available at 6000 RPM). Since all three fans are the same diameter, equal
fan speed is equal tip speed. At the forward angles the statorless fan is
lower than the other two fans. In the aft quadrant the statorless fan BPF
levels are consistently lower than the LF336/B and at least as quiet as the
LF336/C-11 at the critical angles of 110° to 130°. These angles are the
most critical for sideline noise measurements with lift fans. Narrowband
BPF directivity patterns for the statorless and LF336/B fans are compared in
Figure 11 at 6000 RPM (950 fps, 290 m/sec tip speed) and show similar trends
as Figure 10. PNL directivity patterns are presented in Figure 12 and show



that the statorless fan forward quadrant PNL's are quieter than the LF336/B
and equal to or slightly lower than the LF336/C-11. In the aft quadrant
(110° to 130°), statorless fan levels are the s'ame or quieter than LF336/B
but 1 to 3 PNdB higher than LF336/C-11. Since the statorless fan is not
significantly lower than the conventional rotor-OGV lift fan this implies that
the maximum effect of spacing has been reached at two chord spacing. This is
shown more clearly in Figure 13 where the effect of spacing is shown on aft
quadrant 110° PNL at several fan speeds (tip speeds) using several LF336
series fans. This figure indicates little change with increased spacing
beyond two rotor chords which means that two chord spacing can be considered
the spacing at which rotor alone noise dominates over that caused by rotor-OGV
interaction effects.

Figure 14 compares the LF336/E, LF336/B, and LF336/C-11 PNL's as a
function of fan speed (and tip speed) at several acoustic angles. At 40 and
60 degrees the statorless fan is lower than the LF336/B at all speeds and
generally the same as LF336/C-11. At 110 and 120 degrees, the statorless fan
is the same as LF336/B at high speeds, but 3 PNdB lower at low fan speeds.
At the same angles it is 2 to 3 PNdB higher than LF336/C-11 at high speeds,
but the same at lower speeds.

2. Equal Absolute Pressure Ratio Comparisons

Figure 15 compares the fan pressure ratio of the LF336/A (which was
assumed for the LF336/B and C) with the absolute pressure ratios developed
by the LF336/E statorless fan. The absolute pressure of the LF336/E fan is
based on the average total pressure at the fan exit measured in the direction
of the swirling flow.

Directivity patterns of the 1/3 octave band which contains the BPF are
compared in Figure 16 at equal absolute pressure ratios. In the forward quad-
rant, the trends are the same as in the previous section with statorless fan
levels generally lower than LF336/B but equal to LF336/C-11. In the critical
aft angles between 110 and 130 degrees, the statorless fan is generally the
same as LF336/C-11 and lower than LF336/B at the,lower two pressure ratios.
At the higher pressure ratio, the statorless fan is 1 to 3 dB above LF336/C-11.
On a PNL directivity comparison, as shown in Figure 17, the statorless fan is
the same as LF336/B at forward angles and 1 to 2 PNdB higher in the aft quad-
rant. Figure 18 compares the three LF336 lift fans as a function of absolute
pressure ratio at four acoustic angles. At 40 and 60 degrees, the LF336/E is
consistently lower than LF336/B at all pressure ratios but about 2 PNdB higher
than the treated LF336/C-11 configuration. At 110 and 120 degrees, the
LF336/B and LF336/E are almost identical at all pressure ratios and both are
2 to 3 PNdB above the LF336/C-11 levels.

On either basis - equal tip speed or equal pressure ratio - the stator-
less fan has noise levels comparable to the quietest conventional fan
modified for minimum noise. Therefore, the statorless fan would seem to be
a viable candidate, from the acoustic point of view, for quiet l if t fan
applications.



B. Fan Exhaust Directivity Patterns

In analyzing lift fan systems, it is sometimes useful to know the split
between inlet radiated noise and exhaust radiated noise levels. To determine
this split a massive fan inlet suppressor was designed (Reference 3) as part
of the LF336 Discharge Noise Suppression Test. In addition to suppressing

. fan inlet radiated noise, the suppressor - shown in Figure 3 - provided a 90
degree directivity shift to any fan inlet radiated noise. When tested, the
massive fan inlet suppressor effectively suppressed fan inlet radiated noise
and permitted measurement of exhaust radiated noise. The same fan inlet
suppressor was installed on the statorless fan during testing at Edwards
Flight Test Center.

Fan PNL directivities are presented in Figure 19 with and without the
fan inlet suppressor at 6000, 5400, and 4800 rpm. The exhaust radiated levels
in the forward quadrant are 5 to 8 PNdB below the unsuppressed levels. In
Figure 20, the 40 and 60 degree microphone PNL's are compared as a function
of fan speed. At 40 degrees the exhaust radiated noise levels are 6 to 10
PNdB lower than the unsuppressed levels at 6000 to 3000 rpm. At 60 degrees,
there is 5 to 6 PNdB difference over the speed range.

Looking at Figure 19, installing the inlet suppressor appeared to
slightly increase the PNL levels in the aft quadrant. Figure 21 shows the
110 and 120 degree PNL's as a function of physical fan speed. At 110 degrees
the inlet suppressor has no effect; however, at 120 degrees there is an
increase of 2 PNdB near 4700 rpm and very little effect at other speeds. These
slight changes are probably due to increased turbulence from the massive fan
inlet suppressor or, as will be discussed later, due to velocity changes in
the fan tip region when the inlet duct was installed.

Figure 22 compares the directivity patterns of the 1/3 octave band
which contains the BPF at three fan speeds with and without the inlet suppres-
sor. At the 40 degree microphone the fan exhaust radiated levels are 6 to 10
dB below the unsuppressed levels. In the aft quadrant at 5400 and 4800 rpm,
the exhaust radiated SPL's are higher than the total or unsuppressed levels.
However, Figure 23 compares the 20 Hz narrowband BPF directivity patterns
with and without the inlet suppressor and indicates that inlet radiated BPF
noise has been eliminated to 120 degrees at 6000 RPM. At lower speeds, Figure
24 indicates that the 90 degree exhaust radiated BPF SPL's are 1 to 2 dB
higher at 5400 and 4800 rpm and these are lower than the unsuppressed levels.
At 110 degrees the exhaust radiated levels are lower at all speeds; however,
at 120 degrees the exhaust radiated BPF levels have increased 4 to 7 dB over
the unsuppressed levels at speeds from 4000 to 5400 rpm.

1/3 octave band spectra are compared in Figure 25 at the 40 degree
microphone. At this microphone, fan inlet radiated noise is evident down to
500 Hz at all speeds. The 20 Hz narrowband spectra in Figure 26 show that
fan broadband suppression is about the same at all frequencies. At the 60
degree microphone in Figure 27, the 1/3 octave band spectra again indicate
fan inlet radiated noise is present down to 500 Hz. 20 Hz narrowbands in
Figure 28 indicate that the fan broadband suppression is not as much as at



the 40 degree microphone. Looking at the 20 Hz BPF directivity as a function
of fan speed, Figure 29 indicates that the fan exhaust radiated BPF SPL is
16 to 9 dB below the unsuppressed fan levels at the 40 degree microphone.
At the 60 degree microphone the exhaust radiated BPF SPL is 12 to 8 dB down
except for 3800 rpm. Why this particular speed does not agree trendwise with
the other speeds is unknown.

The split between exhaust radiated and inlet radiated noise levels can be
easily determined. To calculate inlet radiated levels, one only has to
logarithmically subtract the exhaust radiated levels from the unsuppressed
levels. This provides the capability of evaluating different exhaust and
inlet suppression requirements and determining the effect on the overall
noise levels.

C. Circular IGV Effects

During testing of the statorless fan in the 40' by 80' (12.2 m by 24.4 m)
wind tunnel, a circular inlet guide vane (IGV) was installed and tested to
determine its effect on crosswind performance. The same IGV was installed and.
tested outdoors. While in the wind tunnel the fan major strut was horizontal
and the IGV covered from 12 o'clock to 6 o'clock looking into the fan. Out-
doors, the fan major strut was vertical and covered from 3 o'clock to 9
o'clock. IGV to rotor spacing was approximately 0.25 inches (0.63 cm) or
about 0.06 IGV true chords.

PNL directivity patterns of the fan without (unsuppressed) and with the
circular IGV installed are compared in Figure 30 at 6000 and 5400 rpm.
Forward angles of 60 and 70 degrees show an increase of 3 to 5 PNdB. Aft
angles show a slight increase of 1 to 2 PNdB at both speeds. Figure 31 shows
that the effect of the IGV at 60 degrees decreases from 5 PNdB at 6000 rpm
to zero at 3000 rpm. At the 110 degree microphone, the effect remains
essentially constant with speed. A comparison of 1/3 octave band spectra in
Figure 32 at 60, 70, and 110 degrees shows a big change in the 1/3 octave
band which contains the BPF. Fan broadband levels are unchanged. Narrowbands
of the same spectra used in Figure 32 confirm that the IGV has caused a large
increase in the BPF level with no= change in fan broadband noise. These
narrowbands are shown in Figure 33. A comparison in Figure 34 of the narrow-
band BPF directivity patterns at 6000 rpm clearly shows the BPF increase at
forward and aft angles.

That the aft quadrant PNL's.show only a small (1 to 2 PNdB) change due to
the IGV's may be explained by closer examination of the 110 degree spectra in
Figure 33. When the 20 Hz bandwidth SPL's are converted to 1/3 octave band
levels, the BPF does not control the band. 10 log (0.23 x 4000 Hz/20 Hz) =
16.5 dB is added to the fan broadband levels and since they are unchanged
except for some modulation near the BPF, the 1/3 octave band SPL shows only a
little change. In the forward angles, the signal-to-noise ratio of the BPF
is such that the BPF controls the 1/3 octave band.
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If circular inlet guide vanes are installed to improve crossflow
characteristics of the fan, one can expect sharp increases in the BPF sound
pressure levels. At forward angles, there will be a 3 to 5 PNdB increase,
while aft angles will be increased 1 to 2 PNdB.

D. Treated Exit Louver Suppression

Acoustically treated exit louvers were installed and tested on the
statorless fan at NASA Ames. The louver cascade is shown in Figure 35 and
was previously used in the LF336/C test program (Reference 1). It consisted
of eight airfoils, each 0.58 inch (1.48 cm) thick with a 7.9 inch (20.1 cm)
chord. The airfoils were treated on both sides with two degree-of-freedom
resonators and had acoustic design parameters L/H ^1.3 and H/X ^ 1.4. They
were located about 8 inches (20.3 cm) downstream of the rotor trailing edge.
Reference 1 determined that little appreciable acoustic energy was radiated
from the open ends of the louver cascade.

A comparison of the PNL directivity patterns with and without the treated
exit louvers is shown in Figure 36 at 6000, 5400, and 4800 rpm. Suppression
of 2 to 4 PNdB was achieved at angles of 80 to 110 degrees. Figure 37 presents
the directivity patterns of the 1/3 octave band which contains the BPF.
Again suppression is evident from 80 to 110 degrees at all speeds. 1/3 octave
band spectra at the 110 degree microphone are compared in Figure 38. Fan BPF
and fan broadband suppression is evident for frequencies at and above the BPF;
however, there is an increase in noise in the 630 Hz to 2500 Hz bands and
a decrease at frequencies below 250 Hz. Narrowbands of 110 degree microphone
spectra at 6000 and 5400 rpm are shown in Figure 38 and show broadband humps
of noise near 1200 and 2100 Hz at 6000 rpm. This increase in the midfrequency
range is due to wake scrubbing and interaction noise over the louvers. The
flow out of the statorless fan has swirl in it which would tend to increase
the scrubbing noise.

In Reference 1, it was shown that for the LF336/C fan at 95 percent
fan speed (5750 rpm), there was no suppression from the louvers; however, at
80 percent fan speed (4800 rpm) 1 to 2 PNdB suppression was realized. At
that time it was observed at high power settings, the Mach number of the flow
over the louvers was of the order of 0.7. High Mach numbers are known to
reduce the effectiveness of resonator treatment. At lower fan speeds, the
Mach number was lower; therefore, the treatment was more effective. At the
highest fan speed of the statorless fan (6000 rpm), the Mach number based on
the above calculations is about 0.5 at which the treatment should be more
effective and indeed is as shown in Figure 36.

E. Inlet Radiated Power Level Predictions

A theoretical analysis of the noise generated by inlet turbulence-rotor
interaction was conducted and a mathematical model developed to predict the
inlet radiated sound power levels.
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At the time of testing, no inlet turbulence measurements had been made
for- the LF336/E statorless fan. Thus it was necessary to estimate levels by
scaling turbulence measurements taken during testing of a fan with radius
ratio and axial Mach number that were similar to the LF336/E; however, the
statorless fan is a radial inflow fan while the fan was an axial inflow
design..

SPL levels were calculated at several radial locations from hub to tip
and integrated over the annulus area to obtain sound power level. A compari-
son of the measured and predicted inlet radiated sound power levels is shown
in Figure 40. The measured inlet sound power levels were obtained by inte-
grating the measured far field SPL's from 0 to 90 degrees. In Figure 40, the
measured and predicted level of the 1/3 octave band which contains the blade
passing frequency are in good agreement; but the location of the BPF is not
consistently predicted by the theoretical analysis. In an attempt to better
place the BPF in the 1/3 octave band, the eddy size was systematically varied
at various radial locations. The initial scaled longitudinal eddy sizes were
2.0 inches (5.12 cm) in length. In Figure 41 the assumed eddy sizes were
increased by a factor of ten at all radial locations, at the outer two radial
locations, at the outer radial location. It appears that increasing the eddy
size at the outer one or two radial locations causes the BPF to fall in the
correct 1/3 octave band. The effect of increasing the eddy size by factors
of 5, 10, and 15 at the two outer radial locations is shown in Figure 42.
The best fit is provided with a factor of 15 increase; however, the signal to
broadband ratio obviously does not match the measured levels. In Figure 43,
the outer radial location eddy size was increased by a factor of 5, 10, 15.
Again the best fit of the BPF occurs with the factor of 15 increase and the
broadband levels do not agree.

The theoretical model used in these few comparisons gives encouraging
results and the model does seem sensitive to inlet turbulence eddy sizes when
placing the BPF in the correct 1/3 octave band.

F. Effects of Fan Tip Region Changes on Noise Levels

In the course of testing the statorless fan, several configurations
were tested which indicated that the fan is sensitive to both mechanical and
aerodynamic changes in the fan tip region.

Earlier LF336 tests with conventional rotor-stator life fans were con-
ducted with tip tang cooling dams on the fan flowpath side of the carrier to
alleviate a temperature problem associated with the titanium blades. When
the statorless fan was assembled, the carriers from previous fans were used
and the tip tang cooling dams were left in place even though the statorless
fan blades were made of INCO 718 which would not experience the same tempera-
ture problems. Figure 44 shows the statorless fan and location of the tip
tang cooling dams. During testing at NASA Ames Research Center these tip
tang cooling dams were removed to investigate sensitivitiy of fan tip region
changes on fan noise.
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Removal of the tip tang cooling dams resulted in a 1 to 3 PNdB reduc-
tion from 80 degrees rearward as shown in Figure 45 at 6000, 5400, and 4800
rpm. No changes are evident at forward angles except that the 70 degree
microphone PNL was up 3 PNdB at 6000 rpm when the dams were removed. At
6000 rpm, the 20 Hz narrowband directivity pattern of the BPF in Figure 46
shows a BPF increase at 70 degrees similar to the PNL directivity and a
slight decrease at the aft angles.

A comparison of 1/3 octave band spectra with and without tip tang
cooling dams in Figure 47 shows that fan broadband levels have been reduced.
20 Hz narrowband spectra are shown in Figure 48 at 6000 and 5400 rpm. The
observed reduction is primarily a fan broadband noise reduction, not a BPF
reduction.

Another indication of the sensitivity of the statorless fan to changes
in the tip region occurred during mechanical checkout testing of the fan
while at EFTC. The large bellmouth and inlet duct which connected the massive
fan inlet suppressor to the fan was installed as sketched in Figure 49 to
permit measurement of fan airflow. The SPL's showed a sharp increase in the
forward radiated SPL of the 1/3 octave band which contained the BPF as shown
in Figure 50. A 20 Hz narrowband spectral comparison at 40 and 60 degree
microphones with and without the bellmouth installed indicates that the
change is primarily in the BPF. Figure 51 makes the comparison at 40 degrees
while Figure 52 is at the 60 degree microphone location. The narrowband
BPF directivity pattern is shown in Figure 53.

Aerodynamically, stator pressure taps on the fan bellmouth surface
indicate a 6 to 10 percent decrease in the velocity in the fan tip region.
This would increase the incidence angle slightly and tend to load the blade
more which may account for the observed BPF increase.

The final configuration tested at NASA Ames had the large bellmouth and
inlet duct installed, tip tang cooling dams removed, and treated exit louvers
installed. As at EFTC, the large bellmouth permitted measurement of fan
airflow. Tip tang coooling dams and treated exit louvers were discussed
earlier; however, some results are applicable to the discussion at hand. As
at EFTC, the forward angles of the BPF directivity pattern show a sharp
increase in level as indicated by Figure 54. There also appears to be some
shielding taking place at 70-90 degrees which was also indicated in the EFTC
directivity pattern in Figure 53. As Figure 55 shows, the BPF was increased
at 40 degrees when the large bellmouth was installed, but fan broadband levels
were essentially unchanged.

These results emphasize that mechanical and aerodynamic changes in the
tip region of the radial statorless fan can cause marked increases in the
forward radiated BPF levels.
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SECTION VII

SITE COMPARISONS

A. Near Field Comparisons

The near field microphone sound fields as described in a previous section
were utilized for two reasons. First, they provided a means of comparing fan
source noise at two different test sites without having to account for
possible differences in site reflectivity characteristics. Secondly, the
sites duplicated the sound field used to record noise levels when the fan was
tested in the NASA Ames Research Center 40' by 80' (12.2 m by 24.4 m) wind
tunnel.

In Figure 56, PNL's measured by the 20 foot (6.1 m) near field micro-
phones at Edwards Flight Test Center and NASA Ames are compared at 90, 110,
130, and 150 degrees as a function of fan speed. The PNL's from the two sites
are in excellent agreement. 1/3 octave band spectral comparisons are shown
at five fan speeds in Figures 57 and 58. On a spectral basis, source noise
agreement between the two sites is very good.

Looking more closely at the spectral comparisons in Figure 57 the fan
BPF is clearly visible. At 3400 rpm, the 10K band is influenced by a tip
turbine tone at 10600 Hz (3400 rpm x 180 blades/60 = 10600). All three speeds
show a J85 one-per-rev signal in the 250 Hz band. This one-per-rev signal is
also visible in the EFTC data at 5400 rpm in Figure 58. Similar good agree-
ment is shown in Figures 59 and 60 at 130 degrees and 150 degrees respectively
at the top three speeds.

In the near field microphone arrangement, there were microphones located
at 210, 230, and 250 degrees or on the J85 side of the near field microphone
arc as shown in Figures 5 and 7. Although the J85 was fitted with an inlet
suppressor, it should be determined if any J85 inlet radiated noise was
influencing the near field levels. Accordingly, in Figure 61, PNL's at the
microphones which are symmetrical about the fan exhaust are compared as a
function of fan speed. It appears that at 3400 rpm, J85 inlet radiated noise .
is raising the noise levels of the 250 and 230 degree microphones by 2 PNdB.
At the 250 degree microphone, which is nearest to the J85 inlet, one can see
the J85 influence up to 4.800 rpm. Comparisons of the 110 and 250 degree 1/3
octave band spectra are made for 3400, 4100, and 4800 rpm in Figure 62. 20
Hz narrowbands for the same spectra are compared in Figure 63. At all speeds
the broadband levels of the 250 degree microphone are higher than the 110
degree levels.

The point here is that at low fan speeds, microphones in the near field
on the J85 side may be influenced by J85 inlet radiated noise. At higher
speeds, there is good agreement between microphones located symmetrically
about the fan exhaust, and no indication of J85 inlet noise.



B. Far Field Comparisons

From Figure 7, the acoustic path to the thirty degree microphone at the
NASA Ames test site is mostly over asphalt; however, at EFTC the path was
over desert sand. Figure 64 compares 1/3 octave band far field spectra at the
thirty degree microphone from both test sites at 6000, 5400, and 4800 rpm.
The ground reflection null for EFTC is in the 315 Hz band and appears to be
near the 400 to 500 Hz band at NASA Ames. Calculating the ground null based
upon the source and receiver geometries and assuming a phase factor of 1,
one would predict the ground null to occur at 350 Hz and 450 Hz respectively
at EFTC and NASA Ames. On a 1/3 octave band basis 350 Hz falls in.the 315 Hz
band and 450 Hz falls in the 500 Hz band but close to the lower limit. Figure
64 confirms these results. The magnitude of the null relative to the jet
noise peak at 160 Hz is about the same at both sites at each speed. Similar
results are observed at lower speeds at the thirty degree microphone and at
the other microphones which are located on the asphalt. This implies that
there is very little difference in reflection characteristics between the
desert sand of Edwards Flight Test Center and the asphalt of NASA Ames.

The acoustic path to the 110 degree mike is mostly short grass at NASA
Ames in contrast to the desert sand at EFTC. In Figure 65 EFTC and NASA
Ames 1/3 octave band spectra are compared at the 110 degree microphone location
at three speeds - 6000, 5400, and 4800 rpm. There is good agreement between
SPL's from the two test sites at this microphone location. The predicted
ground null at NASA Ames would occur at 450 Hz and at 315 Hz at EFTC. Figure
65 shows that the NASA Ames 110 degree ground null falls in the 315 Hz
1/3 octave band. This means that the short grass of NASA Ames has a phase
factor of 0.8 or less - 0.8 being the phase factor necessary to shift the-
ground null from 450 Hz to the 315 Hz 1/3 octave band.

Perceived noise level directivity patterns from EFTC and NASA Ames test-
ing of the unsuppressed fan are compared in Figure 66 at 6000 and 5400 rpm.
There is excellent agreement at all angles except at 80 and 100 degrees.
1/3 octave band spectra from these two angles are shown in Figures 67 and
68 At both angles and both speeds the fan broadband SPL's from NASA Ames
testing are 2 to 4 dB higher than the EFTC SPL's. The reason for this is not
known at this time. 20 Hz narrowband BPF directivity patterns in Figure 69
also shows good agreement between the two test sites except at 80 degrees and
100 degrees.

C. Near to Far Field Comparisons

Noise levels from both the near and the far field microphones were extra-
polated to a 200 foot (61 m) sideline to have a common basis for comparison.
NASA Ames data will be used in these comparisons.

On a PNL directivity basis, Figure 70 indicates that PNL's from the
near and far field microphones are in good agreement at 4800, 5400, and 6000
rpm in both the front and the rear quadrants. Next 1/3 octave band spectral
comparisons are made for the forward and rear quadrant angles of 50 and 110
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degrees, respectively. Figure 71, at 50 degrees shows good agreement between
the far and near field extraploated SPL's at frequencies above 315 Hz for
the three speeds considered. Similar results are evident at the 110 degree
microphone in Figure 72. Here there is also good agreement above 315 Hz.

In the above spectral comparisons, the good agreement occurs above 315 Hz
or at frequencies where the number of wavelengths between the source and
receiver is five or greater. At lower frequencies the extrapolated near field
levels fair through the ground null and reflection SPL's. Generally, distances
greater than five wavelengths are considered to be far field and may be extra-
polated according to usual and accepted extrapolation procedures.
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SECTION VIII

CONCLUSIONS

1. When compared on an equal tip speed (or equal size) basis the LF336/E
statorless lift fan is 1 to 3 PNdB lower than the LF336/B lift fan in the
forward quadrant and the same to 2 PNdB quieter in the aft quadrant. The
lack of substantial reduction when comparing the statorless fan to the
two chord LF336 conventional rotor-OGV lift fan indicates that at two
chord spacing the noise is primarily rotor alone noise and not interaction
noise.

2. On an equal absolute pressure ratio basis, the statorless lift fan is 1
to 2 PNdB lower than the LF336/B at forward, angle and the same or slightly
higher in the aft quadrant.

3. Statorless fan exhaust radiated noise levels are 5-8 PNdB below the inlet
radiated levels in the forward quadrant.

4. Installation of a circular IGV on the LF336/E caused an increase of 3 to
5 PNdB at forward angles and 1 to 2 PNdB increase at aft angles. The
change is primarily in the SPL at the fan BPF.

5. Treated exit louvers achieved 2 to 4 PNdB suppression from 80 to 110
degrees. At 6000 rpm, an increase in SPL was observed at mid frequencies
which appears to be due to wake scrubbing noise over the louvers.

6. Fan baseline near field levels measured at EFTC are the same as those
measured at NASA Ames.

7. Reflection characteristics between EFTC desert sand and NASA Ames asphalt
are similar.

8. Extrapolation of near field levels to far field levels gives good agree-
ment at or above 315 Hz where the number of wavelengths between the
source and near field receiver is 5 or greater.

9. Predicted inlet levels based on a theoretical rotor-turbulence interaction
theory give encouraging results.

10. Sensitivity of the fan to changes in the tip region is indicated by the
increase in level observed when the large bellmouth was installed and
the decrease when the tip tang cooling dams were removed.
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Symbol or
Abbreviation

BPF

d

EFTC

f

H

IGV

L

OGV

PNL

SN

SPL

SECTION IX

NOMENCLATURE

Definition

Blade Passing Frequency

Characteristic dimension

Edwards Flight Test Center

Frequency

Duct height

Inlet guide vane

Treatment Length

Outlet guide vane

Perceived Noise Level

Strouhal number

Sound pressure level
re: 0.0002 dynes/cm2

Velocity

Wavelength

Units

Hz

inches (cm)

Hz

feet (m)

feet (m)

PNdB

dB

feet per second
(meters per second)

feet (m)
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Table II. LF336/E Lift Fan Design Parameters.

Fan pressure ratio

Fan flow, Ibm/sec (kg/sec)

Fan tip speed, ft/sec (m/sec)

Fan speed, rpm

Blade number

Fan tip diameter, inches (cm)

Radius ratio (rotor inlet)

Mechanical
Design Point Limit Speed

1.25

172 (78)

1060 (323)

6748

42

36 (91.44)

0.554

1.196

152 (69.4)

950 (290)

6048
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FIGURE 12 LF336/C-11., LF336/B, AND LF336/E PNL DIRECTIVITY PATTERNS
AT CONSTANT TIP SPEED
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• EFTC TEST SITE

1.31

o

I
1.2

I
w

S

1.1

1.0
2000

LF336/ A

LF336/E

I I I

3000 uooo 5000
CORRECTED FAN SPEED, RPM

6000

FIGURE 15 LF336/A AND LF336/E ABSOLUTE TOTAL PRESSURE RATIOS
AS A FUNCTION OF FAN SPEED
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FIGURE 16 1F336/C-11, LF336/B, AND LF336/E 1/3 OCTAVB BAND BPP
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FIGURE 19 EFFECT OF MASSIVE FAN INLET SUPPRESSION ON PNL DIRECTIVITY
PATTERNS AT 4800, 5̂ 00, AND 6000 RPM
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FIGURE 20 EFFECT OF MASSIVE FAN INLET SUPPRESSION ON ̂ 0° AND 60°
PNL AS A FUNCTION OF FAN SPEED
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FIGURE 21 EFFECT OF MASSIVE FAN INLET SUPPRESSION ON 110° AND 120°
PNL AS A FUNCTION OF FAN SPEED
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FIGURE 25 EFFECT OF MASSIVE FAN INLET SUPPRESSION ON ̂ 0° 1/3 OCTAVE
BAND SPECTRA AT 4800, 5400, AND 6000 RPM
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FIGURE 29 EFFECT OF MASSIVE FAH INLET SUPPRESSION ON 40° AND 60°
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FIGURE 31 EFFECT OF CIRCULAR IGV ON 60° AND 110° PNL AS A
FUNCTION OF FAN SPEED
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FIGURE 35 PHOTOGRAPH OP LF336/E TREATED EXIT LOUVERS
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