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l PREFACE

This report presents investigations carried out by

Rao and Associates for the National Aeronautics and Space

Administration, Ames Research Center, Moffett Field, Cali-

_- fornia under Contract NAS 2-6401. Toget_Ler with earlier

_: repoz_s NASA CR-I14576 and NASA CR-2354, this report de-

_o scribes the results of analytical studies on fan noise

_* conducted under the contract. The helpful suggestions by

_ Mr. B. K. Hodder and Mr. D. H. Hickey, the technical

_* , managers on this contract, are greatly appreciated, i

-_
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• _ JPU_ARY

The method of computing radiated noise from a ducted rotor

due to inflow distortion and turbulence are examined. _malytical

investigations include an appropriate description of sources, the

cut-off conditions imposed on the modal propagation Of the pressure

waves in the annular duct, and reflections at the upstream end of

the duct. Far field sound pressure levels at blade passing fre-

quency due to acoustic radiation from a small scale low speed fan

are computed. Theoretical predictions are in reasonable agreement

ft
with experimental measurements.
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LIST OF SYMBOLS

_ B number of blades

V mean relative velocity met by rotor blades

N rotor revolutions per second
2,

P far field pressure

U mean axial inflow velocity

R distance of field point from center of duct inlet

D dipole distribution in the rotor region I

S monopole distribution in the rotor region ,

r radial coordinate

• % angle measured from a reference meridional plane, positive
in the direction o_ rotor rotation

2

i z axial coordinate along the rotor axis measured positive ._
from the mid-chord plane in downstream direction

_' b blade thickness

t time
,,t u axial acoustic particle velocity

p acoustic pressure

Uc,_ _ velocity fluctuations along and normal to blade chord

k wave number of the radiated sound

£ duct length upstream of rotor

c blade-chord length

a0 ambient speed of sound

V I'
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!I
_ _/ _ lift distribution along the chord per unit span per

unit chord length

' 8 monopole distribution along blade chord
_ spectral density function

£ rotor circular frequency

X specific modal impedence

T azimuthal angle
z

p

blade stagger angle

_ Y vorticity distribution along the blade chord

I ambient air density
Po

u circular frequency of the radiated sound

_J u circular frequency of convected sinusoidal gust met by
the rotor blade

__ _, uR reduced frequehcy of the convected sinusoidal gust
_ distance along the blade chord from mid chord, positive

toward trailing edge

n distance perpendicular to the blade chord

_mu_ radiation impedence of the open end of the duct
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Superscripts

-- temporal mean
A

^ amplitude

+ propagation towards the rotor

- propagation towards the open end of the duct

complex conjugate

_ _ equivalent incompressible plane

_ s due to monopole radiation

_', d due to dipole radiation
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i. 0 INTRODUCTION
1

Fan noise sources and acoustic _:adiztion from them have been

the subject of analytical studie_ at Rao and Associates, Inc.,

under Contract No. NAS2-6401 with Ames Research Center of the

National Aeronautics and Space Adminiztrat_on. The results of

previous studies reported in Ref. (I) and experimental data reported

in Ref. (2) have we_l established that disturbances in the %_flow to

the rotor play a prima_y role in noise generation. The theoretical

predictions on fan rotor noise presented in Ref. (i) were base¢

on radiation to far fiold from the acoustic sources in the rotor

region ignoring any duct effects. The present report £xlcludes

the effect of the annular duct enclosing the rotor.
I

In the experiments carried out in the anechoic chamber at

Ames Research Center on the small scale fan shown in Figure 1 and

reported in Ref. (2), the annular duct entrance is 14 in. (35.56 cm)

upstream of the rotor, whereas on the downstream side, the duc_ is

extended straight through the chamber wall to the exterior of the

chamber. To take into account the influence of the duct config-

uration, we extended our analysis to include modal propagation of

acoustic waves in a duct extending to infinity downstream of the

rotor but terminated upstream _t a finite distanoe from the rotor,

as sketohed in FAg. I.

t

I , i

I
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In our analysis, first we describe the typical featu:_e_ of

the nature o£ the inflow to the ducted rotor in Section 2 The

_ steady state non-uniformity as well as the turbulent velocity

i fluctuations in the inflow give rise to acoustic sources in the

I rotor region as discussed in Section 3_ Dipole sources due to

fluctuating lift forces on the blades and monopole sources due

to finite thickness of the bla_es are determined in this chapter.

Acoustic propagation from these sources is described in Section 4,

considering the effect of the annular duct on the circumferential

and ra_ial modes of tLe propagating pressure waves. The influence
_r of the upstream end of the duct on each mode is examined by

assuming that the duct is t_rminated by a flange extending trans-

i _ J versely to infinity. Since acoustic energy is transmitted through
_ the duct only by the axial component o_ acoustic particle velocity,

i we considered only the axial component of particle velocity in the

pressure waves. Taking into account the reflections of _he duct

modes f_om the duct entrance, farfield sound radiation is de _

rived in this Section. Theoretic_l relations developed in ,

Sections 2 to 4 are used in predicting acoustic radiation from

the small scale fan rotor and the computational results are dis-

cussed in Section 5,. Comparison with experimental measurements on

the small scale fan in the anechoic chamber at NASA-Ames Research

Center indicates some improvements that can be made in the analytic

2
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predictions. Conclusions drawn from general features of no'._

propagation from ducted fan rotors are given in Section 6.

Recommendations for future effort in theoretical prediction

of fan noise are also described in this section.

-!
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_, _J: 2.0 , DESCRIPTION OF TURBULENT FLOW FIELD IN THE DUCT

The flow in the duct upstream of rotor contains random as well

as deterministic fluCtuations as discussed in Ref. (i). Our present

interest being in the interaction of inflow turbulence with rotor ..

blades, we postulate a suitable description of turbulent velocity

fluctuetions along and perpendicular to the blade chord. Let uc and

_ u_ denote these velocity components which can be described in terms

of their mean square values and spectral densities.

i.
_' Since at any instant of time, the instantantaneous velocity

fluctuations Uc(r,B,z..t) and u. (r,8,z,t) must have a uniqu_ value

when the azimuthal angle 0 is increased by any multiple of 2_, _le

r T
._ .,. expand u and u_ in a Fourier series in 0 as

Ii_(r'e zstti _ tl (r'z_'

,t)_ . ^c,9

_!_ (r,0,z, _li,:j (r'z't_ "e'1_'e-i*g (2.1)

I , , #
•..here Uc,g and ux,g are complex and random functions with respect to

.if_, time t. Now, under the assumption of homogeneous frozen convected

tuT_,_l_nce, u c and u_' can be written in terms of their Fourier,g ,g

transforms

: ' e-i_o'(t-z/U) .d_ (2.2)

0 ,g(r,.,,:_ . L,.,.,g(_.,,,,
4

, i
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It is important to note here that Eq. (2.2) is only a slanbolic

representation of the random quantities u c and u_. The only physically

meaningful results are the mean square values u 2 and u_.c
4"

The space tim_. co_relation function R(_,n,_,T) of velocity

components ul and uc for frozen convected homogeneous turbulence

is assumed to be of the separable form as

:, R(_,,,_,_) - f_,T " fn . f_ (2.3)

g

where _,q,_ denote the separation distances along the axial,

circumferential, and radial directions respectively and T denotes the

"" separation time. We further assume that the correlation function

in the axial and circumferential directions is of exponential form

t

: while in the radial direction i: is unity within the correlation length

} and zero outside, that is the "eddy" is perfectly -orrelated in

the radial direction. Since the turbulence is frozeD convected with

velocity U in the axial direction,

f_ - exp{l_ - U TI/£ z} (2.4),T

where _z ks _he oorrelation length in th_ axial dire¢Sion. Since

i
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the correlation function must be perxodic in the circumferential

Qirection, we write

f q = _, exp{- [rl + q 2_rll'_ O}

- p

I where _0 is the correlation length in the circumferential direction.Using Poisson Summation formula (Ref. 3 ), the summation over g

i is transformed into a complex Fourier series to yield

E

- - .... exp (-igq/r) (2.5)

. _n "1 +-(_01_:)_! g

. ('l, In order to be consistent with the assumption that the correlation

),

_: function is separable, the ratio (£0/r_ has to be considered constant

with radius. Noting that n = rO, Eq. (2.5) can
be written aS

! _ (_°/_r)f_ - " exp (-ig0) (2.6_
1 + (g£Jr) 2

_, g - o-

The correlation function f_ in the radial direction is assumed as

t

i

I ,i
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Since the correlation function must be unity when _,n,_ an_ T

all are zero, the Eq° (2o3) is normalizedby dividing it by a

factor

on

(_O/Irr)

i + (gee�r)"., = coth(_r/_ o)

and we obtain

a(_,n,_,T) = exp{l_ - uT[ /_z )

(_e/_r)
, X tan h (_r/gs} • '..... • exp(-igS)

g 1 �(g_O/r)#

(2.8)

Measurements at inlet of the small scale fa_ indicated iongi-
e

a

tudinal correlation length£ z to be same _or both componek_ts

u_ and u 6. In the absence of _pecific measurements to the
(

contrary we can consider that _6 _s also the same, leading us to

to a reasonable assumption that above _q. (2.8) gives the corre-

lation function for both the velocity components u_ and uc.

i Now the power spectral density functions _Uc(_ ) and _u (_)

can be evaluated by taking the Fourier transform of the correlation

function, and we obtain



: i 4 : _ l

iJ

: i,
t

1 '

_z/_u- -- !

1 (-

i X _ - £O/_rtanh {_r/£ 0}. (2.9)
1 + (g£0 /r)2

i 2
u_ respectively are mean squa;e values of the fluctuationsi where u c ,

along and normal to the blade chord.

The spectral density of uc given above differs from that

i ; : employed in our earlier work reported in Ref. (I), since in our

present approach, we have assumed the same correlation function

for u c and u& components. We also note that, due to the exponential

i form of fn assumed here, the gth component of above equation is

[ different from that employed in Ref. i.

%

r_

8

t,
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3.0 ACOUSTICSOURCESIN THE ROTORREGION

The interaction of velocity fluctuations described by

Eq. (2.2) with rotor blades gives rise to mass fluctuations

(due to blade thickness) and fluctuating lift forces in the

rotor region. These mass fluctuations and force fluctuations

give rise to the so-calle_ "_erodynamically generated noise"

and can be replaced by corresponding monopole and dipole

distributions respectively in the same manner as described in

• Ref. (I).

The velocity field described by Eq. (2.2) is in the duct

coordinate system, and the velocity fluctuations as met by the

rotating blade are described in the following section. In

section 3.2, the influence of these velocities on the blades

and the resulting distribution of acoustic sources in the rotor

region are evaluated. The analyses reported here differs from that

reported in Ref. 1 in that we have included the effect of compress-

ibility and also considered chord-wise distribution of lift loading o

on the rotor blades.

3 1 Flow fluctuations met by the rotor blades:
t

i For the sake of convenience, it assumed that the mid-chords

of the rotor blades lie in the plane z = 0. Let us denote the blade,

whose mid-chord occupies _he position 8 = 0 at time t = 0, as the

first blade. Measuring B positive in the direction of rotor rotation

9

1975006692-017



! i ;

and counting the blades in the same sense, the mld-chord of the

jth blade occupies the position

• = 2_ at time t = 0ej

Thus the coordinates of a point on the chord of the jth blade

at a distance E rearward from its mid-chord at time t can be

written as

(rE; 8_, E _t + 2_ _-i E sin A = (3.1)= B r ; z_ _ cos A)

where

= circuler frequency of the rotor, and

= blade stagger angle

The leading and trailing edges of the blade section are given

by _ = -c/2 and c/2 respectively. The coordinates r E and z_

in Eq. (3.1) are not subscripted by _ since they do not depend

upon the specific blade.

Since the circumferential velocity _r of _.e blade element

is independent of time, the fluctuations met by the element

at _ on the _th blade can be written as

i0
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u (rE,0J,_,z_,t) I

u_ (r ,8 ,z ,t)

?

furI""J "e-i#g •exp{-i_ (t- _ cosl/U )}
u (r,_)

g _,g

X exp{-ig (flt+2_J-I - g sin_____A)}d_ (3.27
: B r :

"I In terms of the relative velocity V met by the blade, we can

write

} _ sinX = __r V

I _ cosX
! U = g (3.3)

Substituting relations (3.3) in (3.27, we obtain the gth

component of velocity fluctuations as

A

-' ,, . e'i_'g, exp{-ig2'rr " }'
u ,g .= uA,_(r,_ )

11

| i

' I
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3.2 Evaluation of source distributions:

In determining the effect of fluctuating flow on the rotor

blades and the resulting monopole and dipole distributions,

we make the following assumptions:

(i) Each blade section is considered as an element of an

isolated airfoil immersed in a "two-dimensional flow" correspond-

ing to the conditions occuring at the blade section.

(2) Only the velocity fluctuations parallel to the chord

are significant in evaluating monopole distribution due to mass

flow fluctuations. Similarly, the velocity fluctuations per-

pendicular to the chord are important in evaluating the dipole

distribution due to blade lift.

(3) The flowfield is considered irrotational and inviscid,

in spite of the fact that the Velocity fluctuations uc a_d u 1

described by Eq. (3.4) do not satisfy the irrotationality

ccndition. It is assumed that the small vorticity in the flow

does not affect the source distribution for a thin airfoil. (Ref. 4 ).
t

12
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With the above assumptions, the governing equation

for th_ perturbation velocity potential due to relative
r

•velocity V past the blade is

1 2M M2
-2%t + -- + _ _ '+ _ (3.5) •
ao ao _t _ _ nq

i

! where a o is the speed of sound; M = V/ao; _ and q are the

coordinates in direction parallel and "perpendicular to the
{

i blade-chord respectively.

i Applying Lorentz transformation
|

_ = 8_ ; n = _, t ={[ - M_/ao]/8 ; 82 = 1-M 2 , ,

above equation can be ,transformed into the wave equation

<

1
-- " _ = _ • + ¢ (3.6)
a 2 _" _'[ _'_"o

where _ = 8_

In order to obtain simple closed form expressions fort

i the source distributions (monopole and dipole) we follow

_ ! Osborne' s approach (Ref.5 )which converts the compressible

I flow problem into an equivalent incompressible plane in theregion close to the airfoil (inner region) using the method i

of matched asymptotic expansions under the assumption

{c/B2} 2 <<i (3.7) ;

4'lln()
I'|
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This is accomplished by defining a new set of variables in

the incompressible plane (in the inner region) as follows:

c/2S 2_'8 {vc2/STr8a}

the equation (&_ then becomes

i{ i n.in ¢ tlt i

which is approximated as

• _;i £ + i = o
_i_ nlni (3,8)

J

• under the assumption Eq. ( 3J;).

! It should be noted here that the boundary conditions

applicable for the solution of Eq.(3.8) are those in the

inner region only. Thus, Eq.(3.8) is required to be solved

with boundary conditions on the airfoil only. '

Tl'e expressions given in Eq. (3.4) for the gth component of

• chordwise and vertical velocity fluctuations, using the above

transfQrmations, become

(ga+_) ^i- e'i_g .exp{-ig2_ }

,g u,g(_ )

_.) X exp{-i_i( ti - _i/V£)} dw (3. 9)

1975006692-022
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P

where

i
v = 2_; Vi = 4_2V/vc

i

U _ U L, g,eg

^i

^i =,(4=B'/vc) ^ uc
u u_,g}
A,g

and v - g_+_

I

(a) Mass Flow fluctuations and resulting Monopole Sources:

A rotor blade subjected to chord-wise velocity fluctuations

can bu represented by a fluctuating distribution of volume

sources along the blade chord. _he volume sources on each blade,

, representing the blade pzofile, are obtained by solving the

equivalent incompressible Zlow problem and then transforming

_ the result to the compressible case. we therefore first solve

Eq. (3.8) subject_:to the following c_ntinuity equation.

• blV + Uc,g + _/_)" _0/_n at n = 0
i'

on. -c_/2 < _i .<cg/2 (3.111
J
r

whoro b(r.) is the thicknoss distribution along th, chord . Th_ no[;.lh,,_

impliet_ that tho bound_Jry condition is to bo trnnnform_d

_'_ into tho incoml,rOr_sJblo i)].al1_.

| t!
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Since we are interested in the noise generated due to

unsteady fluctuations only, we omit the contribution due to

steady state velocity V. Also assuming that

_ the continuity equation (3.11) can be simplified

tO

t I d .(b,uc / _cl/2 < _ <_ci/2-' n-0 --

or _,__i = 1__ (b.u c g) on -cg/2 < [_ < cl/2
_n* i 292 ' - -

_ 0 (3.12)

From thin airfoil theory for incompressible flow, making

quasi-steady assumption, we can readily describe the volume

source distribution along the blade, chord as

_n* ni = 0 8_

i I.).i3)

? I Since

"_ ! at: " 4_B' o'1_;1

i %)C

t,h_ corrn.pondLng .¢)ure(_ dintribution in tho comproaelblo

; plano can now bn w_':i.tt_n_L_n

%

t
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0

s(_) = _ (b'Uc,g) (3.14)

and we note that the source distribution .under the assumption

< < is the same as that for an incompressible flow.'ICeg aO e

SSbstituting from Eq. (3.4) for u , we obtain the source distribution
c,g

at _ on the jth blade as
o g, j, _;

ao

" g, $, _ g "e-i_g

X exp{'i(d_+_)(t - _._).{dbV" _ + ibg_/V} d_

Fez a blade clement of s;)an dr, we can consldor the source

ag,$,_ * d_dr concentrated at _ 0$,_and represent i_ _y a

complex Fourier series in 8 . From the source distribution over

an elemental volume r° deo*.dro "d_ ° located at (ro,6o._o), we

obtain the source strength at r 0 due to thickness of the _th

blade element as

,' mt

X exp{-i(g_ _o/V)}

X {db/d_ b + ibg[_/V} .d_odrod8 o d_ (3.15)

In s%muning the right hand side of Eq,(3,15)oveE _ fEom

1975006692-025



exp{&i (g-m ')2_ °'-1%= B
B

_= i

for (g-_ _) = nB with n = _ .. _, 0,i ..... and zero otherwise.

Consequently, the effect o__ thickness of the rotor blades on

noise generation can be c:xamine_ by considering the influence

of the monopoles

¢O e

(tO) = c,g (_)'e-_'_ eim'S°
m P

X exp { -i (nn S_4_,,)_t-r,o/V)}

X {db/dr, o + ibg_q/V} d_odrod0 o d_ (3.16)

O
e-

l8 :
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(b) Fluctuatin _ Bllade Loadin_ and Resultir,_ Dipole Sources:

Due to the fluctuations of the velocity component normal to

the chord, there is fluctuating lift distribution along the

blade chord. As in the preceding subsection, we first solve

the problem in the equivalent incompressible plane and then

obtain the result in the compressible case, following the analysis

given by Osborne (Ref. +5). We introduce a convenient variable

-i
6 = cos (2_7c)

tO obtain the following expression for the vorticity distribution

as a function 6 on the Jth blade due to its interaction with the

velocity component U l,g.

00

2 [ ul (m') a-i_g exp{-ig2_]Yg, j(_).sin_ = _. j ,g

I b,_" X exp (-i_t) • exp (-ivR cos_ M2/B z)

X o (v_TM) + iJ (VR/_a)• 1

r , 1 , 0

) ,_%_ K (-ivR/Sa) + K (-ivR/Ba)

At__ - " im-I (cos m6+ i_
1 i_ _ sin_ ,inm_)III , ]

i

m t.J ch+, (3.17 )
• _

{, who ro %) ,, (fl_+t_); and Vll " _c/2V

19

I
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The right hand side of the above equation can also be represented as

#

= ;uj_,g(_ ) e-i_g'exp{-ig2._B1}'y(6,_ )

X exp {-i (g_+_lt}dm (3.181

where y(_,_ ) is a complex function dependent only upon the

reduced frequency add Mach number..

The" lift fluctuation d_g,j at (r,0j,_,_} acting on an elemen°

tal area de.dr of the jth blade can be expressed as

d Zg,j - PoV,rg.j I¢)'dcdr 13.19)

The force exerted by the blade on the fluid is equal and

op_Dosite to that given above, that is

d_g,j = -dZg, j --PoVyg, j (_L) .d_dr 13.20)

Using complex Fourier series in 0 , the concentrated force

of Eq. (3.20) can be expressed as

dfg,_ - -_-_- PoV_exp{-im'-(8-Sj, _) }'Tg, j 1_) .dv.dr 13.21)
m f

To include the effect of all the blades, the expression 13,,21)

is summed over d froml to B and we obtain the force a-.ring on the

m_dium due to an elemental volume rode0drod_olocated at

O)as i

° i
' 20 I
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:L -B _ ^ (_).e-iCg y(_o,m )1 a_g(,o) =-__ %vu_,g

X exp{-i (nI_+_)t}

_1 X _ .;_{-im _,oa/V}'e-'tm'8o°d_;odrodSo d(a , (3.22)
! m'

.]

DO( and the force ofThe resulting acoustic dipole ro) at ?o

dlg(r o) are ;-elated by

0

+ -z (3.23)
which gives D)g= iPo kaO d fg(ro )

I The components of the dipole in the axial and oircumfezent%al
direction are given by

f i sinX.d_g(ro,_) .exp [-ika0t}. d'_ (3.24a)Dg,_ (Z'O_ =-
.® Pokao

,IW

f_ Dg, 8 (_o) = - i.cos_d _ (r ,_ ),e xp { -ikaot}.d_ (._.24b)
Poka 0 g o

| "= i

21
!

l
|
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4.0 SOUND ,PRQPAGATION IN. THE DUCT AND RADIATION TO FARFIELD.

In our earlier work reported in Ref. i, we considered acoustic

radiation from the . .-ces in the rotor region to farfield, with-

out any rest_iction_ _.._osed by the surrounding duct. The analysis

presented here is h_ed on modal propagation of pressure waves in

an annula_ duct with axial subsonic flow and radiation to farfield

from the conditions occurring at the upstream end of the duct.

Tyler and Sofrin (Ref. 6 ) suggest that the modes propagating in an

infinitely long duct can be considered to yield the conditions

occuring at the duct entrance. In the analysis presented here,

we include the effect of finite d_stance between the rotor and

} the duct inlet and examine the influence of the impedence of the

duct opening. In evaluating the latter, we assume that the duct

_erminates in an infinite flange and avoid the complicated

_ omputations employed by Lansing in Ref. (7) for the case of
unflanged duct.

_ The modal propagation of acoustic waves due to an isolated

__ source in an infinitely long duct is described in section 4.1,which is followed by a discussion of the integrated effect of the

rotor-generated source distribution in 4.2. The effect of

duct termination at a finite distance upstream of the rotor

and acoustic particle velocities occuring at the duct-end are

discussed in section 4.3. The method of calculating radiation

to farfield and spectral density of farfield sound pressure level ,

i are described in section 4.4.
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4.1 Pressure waves in an infinitely long annular duct due to

source distribution in the rotor region..

• |

• Let us consider :sure waves propagating in an infinite).y
t

long annular duct due to monopole and dipole distributions g.Lven

by Eq. 13,16 ) and '3.27) respectively. Following the analysis

: given in the Appendix, the pressure at _ due to a_ eleme_tal

,, monopole S g (rO) is given by

OO

: ApgS {,) . (BkaoPo/2_B_ / Uc^ ,g (_)e-i¢g _ e-ira,Co exp(ikao_o/V )
m t

t

4_Amp_ Emp (r) EmU (ro)
m= -_ g=0 o

±
X explik z (Z-Zo;} " exp[-ikaot}

db de d_ (4.1)
X _o d_° dr° o

#
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and that due to dipole Dg (?o) is given by
t

d  %v.f . -im'OApg (r) = - -_-- u_,g(_ )e-_'$g 7(_o,_ ) e o
__ m t

X exp (-im'_o£/V)

(m cosx "_

X_ _ i "_ + kz sinX}eim( -80o)Em p(r)E (_)

m_--® _=0 4_ Ainu
O

X exp{ik_. (z-z o) }'exp(-ikaot)

X d_ o dr 0 d0 o d_ (4.2)

where k-+ - k__ (-+a- M ), ka = (nB£+_)

z 8_ o o

and _ = { I -- (_okm_/k) 2}%

! In equations (4.1) and (4.2) , upper sign is chosen for down-
!

i stream propagation and the lower sign is chosen for upstream

propagation.
(
i
} The effect of all the sources in the rotor region is accountedL
{ for by integrating the right-hand side of Eq. (4.1_ and (4.2)

between the limits

'i rh <- ro <-'rt

0 <0 < 2_
O

_ < c/2-0/2< _o-

where _o = z0/c°sA

i
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In carrying out the integration over 8o, we note that

21r 2_ if m=-m '

exp{-i (m+m') So}d% °
0 0 otherwise

Thus the mpth mode of the duct pressure at (r,e,z} due to

monopoles in the rotor region can be written as

oo

s BDoa o f;t û (_)e'iCg (ro) ih
Pg,m_ (r) " ____ rh c,g "Emp

+

X Emp(r) " exp{imO + ikzZ - ikaot} drod _

where (4.3)

C/2i

_h -- f exp{i_o (kao/V " k: _°s_)} X { d_o +ih_/V}, d_o

-c/2 14.4)
and that due to dipoles as

I d (r) - (_)Ve-iCg

_o uj.,gPg, mp 4 ,Am_ _
#

X {m cosA+ k: sinA}Em_(r o) I_
8.oro

X Em_(r) • exp{im8 + ikzz - ikaot} drod_

where c/2 (4.5)

- IV .mQ ±
I_ J (_o,_ )'exp{i_o l_- - k z ¢osl) }d_ 0_- (4.6)-c/2
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The Equations (4. 3) and (4.5) can be written as

Pm_ " f Am_(_ ) exp{i(mS-kaot + kzZ)}Em_ (r)d_ (4.7)

where rt

f^ •Am_(m ) B0oao Uc,g Emp= .e-1_g (ro)Ibdr ° (4.7a)

4_Amp
rh

for acoustic propagation due to monopole distribution in the

rotor region, and

rt

BOO _ Ve-i_g,m cos_ + k± sinA) (4.7b)
Am_(_ ) = - j U_g ' 8or0 z

4_ _ Amp %o

X Em_ (r0)X£dr o

i_ for acoustic propagation due to dipole distribution in the
i rotor region. The superscripts + and - respectively indicate
I

i_I wave propagation in the downstream and upstream regions of the
t_

i! sources.

ii
!i The speed with which a mode propagates in the axial direction

If! is given by aok/kz. Since k depends upon _ and M as given in_,, Z 0
Eq. (4.2) , let us consider the various conditions governing

wave propagation or decay.

a) mode wave number km_ < k/So:

,.- The value of _ for this case is real and positive, leading

i _o real values for k ±. Consequently, Eq. (4.7) indicatesz
A

26
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that the modes propagate upstream without decay

for all real and positive values of u. However,

the propagation in the downstream direction takes

place only when _ > M o.

b) mode wave number km_ = k/8o:
The value of s for this case is zero, and we find that

the mode propagates only in the upstream direction with

a speed of (a/Mo)(l-M_).

C) mode wave number km_ _ k/6o:
For this case we can write

, k

kz _ -- (_i(_ - M )

So2 o

with u = ll-(8okm_/k)2 1%

We find that the moae propagates only in the upstream

direction. However, the amplitudes of pressure and
q

axial perturbation velocity in the mode would decay as

exp { kuz/8 2} , where z is the distance from the rotor

and is negative in the upstream region. Since

increases with the mode order, we note that higher

order modes decay at a faster rate.

27
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J 4. 2 Effect of duct termination upstream of rotor.

Let us now consider the situation that the duct has infinite

length on the downstream side but is terminated at a location

z = -£, upstream. The m_th mode of pressure wave in the upstream

direction due to sources in the rotor region 18 given by

t
t

i PmB = Arab (m).exp{i(m8 - kaot + kzZ)).Em_(r)dm

f - .= Pmu (_ 1_ 14.81

Where Am_ (_) corresponds to superscript (-) in Eqs. 14.7a) and
(4.7b). Depending upon the impedence of the open end, the pressure

waves will be reflected and travel back giving rise to right-

running waves in this region upstream of the rotor. The pressure

in each m_th mode of such reflected waves can be described by
P

Pm_+ " / A+m_(_) "exp{imS"ikaot + ik; (z+_) }.Em_ (r)d_ .

" PmU _ law 14.91

i

I
- i

wllere A+ is a complex constant which depends upon A , £, and the

impedence of the open end, The superscript (+) denotes that the

above equation applies to the reflected right-running waves. We

note that z is measured from the rotor, whereas the origin of these

<_ right-running waves is at the open end given by z - -_.

28
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r

The axial acoustic perturbation velocity u- due to pressure

waves given by (4.8) or (4.9) is evaluated from the linearized

momentum equation in z direction

_tu± +U _zu± 1 _ +-
- _o_Z p (4.10)

where U is the mean axial velocity of the stream. Using Eqs.
+

(4.8) and (4.9) for p-we obtain

k_+ +
+ Z

o Z Do 'lo

k-.M k
i l;,,i,(,,_) _ ,, _.

- _ , with X .... ,.......... (4.11)
X Po ao k

._.
, Tilq [',_LCt_()I; X ._.fl |.lr, l'lllOl| _|:1 tllQ °°llp(,_;'i r. LC lll()d,l_ tln})(!(]ol_Ce rLltJo. °'

f'

i! The perturbation velocities in tl_e circumferential and

i} radial directions are not considered since they do not carry ;

ii acoustic energy across a transverse section of the duct.

: j

To determine the pressure and velocity at the duct termination

at z = -_, resulting from an mpth mode of left running pressure .,

wave, we follow the mehhod suggested by Morse in Ref 8 and elabor-

ated by Kaji in Ref. 9. We assume that the duct is terminated i

at z - -_ by an infinite transverse flange, but extends to infinite i

length in the positive z direction as shown in Fig. 2. Considering

• a single m_th mode of fluctuating distribution of axial velocity

,of the type i

29 i
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' ka0tum" = Um .Emp(r).exp{.-i( - m0)}!

1
over the annulus rh < r <_ rt,

it is shown in Ref. 9 that the resulting pressure di:,tribution

over the annulus can contain other ra_ial modes th_:_ Em_(r).
:

1 In terms of modal representation, we obtain

• pm = -_oaoUm .exp{-i(ka0 t - mot}

_ (r) (4.127× _m_ Emv
_=0

!
The subscript v indicates all the radial modes resulting from

the radial mode _ describing um_. The open-end radiation impedence

' ratio _w_ is discussed in detail in Ref. 9, and is given by

ik #: Im_(T)(Tz.k_)_ImV(T)

rt

where Amu = / {Em_(r)}2"rdr

rh rt

and Imp(T) _ f Jm(Tr).Em_(r) .rdr (4.13)
rh_ _ ,

Based on coupling impedences _computed for a plane wave by Morse

in Ref. 8, we assume

<<

to simplify Eq. (4.12) to

= _ (4.14)
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) Noting that the pressures and velocities at z = -£ _n the above

equation are obtained by summing the left-running and right-running

waves, we obtain

- + 1_ )
Pm_ (_) + "p m_ = _ (4.15)

- + (_) - Ooao_mv
umij(_' ) + ump

-+ (_') from Eq. (4.11) into the ab(_ve, we getSubstituting for Pm_

u+ 1_ ) X" + _m_
rap_c " = " '+ 14.16)

u,,v 1_) X + z;_m_

Using Eq. 14.11) we can also obtain

P+u1_o) X'+ +umu1_o)
= . 14.z7)

±
_, We note that X and _m_ are functions of _ .

At high frequency i.e., when k �m_

• ± k
$pz �--(.+-I-MO)

i! 80'
,_ P �1

X± "_"±i and _mlJ

then we note from Eq. 14.16) and 14.17) that both

31
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P

Um_ and �0

u:lJ (_) Pm_ ((o)

which means that the m_th mode passes through the open end

without reflection. However, &t frequencies near cut-off i.e.

when k _ Bokm_ from above:

l

i k ± kMo +- 1i _ _ 0, _--- and X � �--

z 8o2 Mo

then we note from Eq. (4.16) and (4.17) that both

+ + °

um_ (_) (_)and Pm_ 1

um_(_ ) Pm_(_)

which moans that tho t, llth modun n,,,tr cuL-off do not Irmli throu,.ih

tho opon ond and arc ct)l,t)]ot_.,ly rt,_f..].t,cl.od hack into tilt: duct.

t. Im
AI. illit_ll.,-|i,_l,, ri*-lli,,l.'|,_vl Ill- v.i|i,1 lJ_ .lli |lJay/1 t11i

#'

ill||)_i'|i|l|( J_t1]l_ I11 ¢l,.l'lltlll,l lli,, c(m,lil, i_i_ ,II'. tlic_ t]ut:t ,;li_:l';Irit;¢. _ hll/i,,t| ,.

oll wh[i,h w¢_ t_i1|l r_ll| JllIll_,_ |.|I, _ t1,°,_Illll Jc r_.ll_,t-ltm Cc) r.rri,.]d.

_"Ot _ t_{itlitJ_.O t tJtO V,I].t)¢2[|_ |_|AJC_'Utlt1.1,[(;li IIL _, "" --_, J._i th¢_ /?/jith

mode given by

+ t_)Um__(_._)- u.,,_(_) + uml,

REPRODUCIBILITYOF THE
reduces to ORIGINAL PAGE IS _O0gq
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TI l

x - x 9m"(¢o)
_(=) " + _"

X + _mIJ Poao X

using Eqs. (4.11) and (4_16).

•ubstituting for pro, (_) fror. Eq. (4. 8 ), we obtain
0%

2 x+-
%" (=) x* ' _

_ Poao X- + _m.

X exp{i(me - kaot - k;_)}.Emp(r) od_ (4.18)

m

We note that velocity u in the mpth mode travelling upstream

to the duct entrance together with reflection due to impedence

i _m.", gives rise to the resultant velocity um. given in the

above equation.

33
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4. 3 Far Field Radiation from the Duct Opening,

in the preceeding subsection,we calculated the mpth mode

of axial acoustic velocity at the duct opering due to sources in

the rotor region taking into account the impedence of the duct

opening. To calculate the far-field pressure at a point (R,

as shown in Fig. 2, we follow the method suggested by Tyler and
i

Sofrin in Ref. 6. The radiation at (R, _ is considered to be

that from distributed monopoles of strength 2um_r d0 dr, the

factor of 2 being due to the fact that radiation only to the outside

of the flanged duct is considered. Tyler and Sofrin ignored

reflections at the duct opening and used the velocity in the

upstream travelling waves given by Eq. (4.11) to estimate these

monopoles. In the following analysis, we included the duct open-end

impedence and the resultant velocity given by Eq. (_.18_.

The farfield pressure at a point (R, ¥) due to a so,'rce of

_trength 2Um_r d6 dr and curcular frequency ka o located at °

(-_,0,r) is given by

eikh
APm_ (R, _ ) - -ikao0 0 {2um_ (_)r d0dr}--4-_ d_ (4.19)

m_

From Fig. 2, we note that th_ distance h from the source is

given by

- h = {R2+ r2 - 2rRsin_ cos6} %
i

! __ R -r cosO sin¥, for small values o_ r/R. _

"34 , .
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t

The pressure at (R, ¥) due to all the distributed monoples

at the duct op_ning is given by integrating (4.19) over the area

of the duct and we obtain

PmulR'_ = _h -ika°0°'--4_h 2umulw) r dO dr d_
(4.20)

Substituting the value of h in the above equation, and ignoring

higher order terms we get

" i

2tt R

-_ rh o

: X exp{ikR - ikr sin_cose}-r dO dr d_ (4.21)

Substituting Eq. (4.18) for u into the above Equation andmp

noting that

2g .

exp(_(m0 - kr sin¥ cos0)} de = (-i)m 2_Jm(kr sin_

the Equation (4.21) becomes

OD

Pm_(R'_0 = L_ (-i)m+l k___ X+ - X'p A-rap(_).Im_(k sin'_RX" X+ + _ml_

X ex_i (kS - kact - k; t)} dm '(4.22)

where Imp (k sin¥) = Jmlkr sin _ .Emp (r) r dr,
h

I a notation previously employed in evalua_.ing _ .

,!
:t
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The total pressure at (R,_ due to all the (m,_) modes propagating

in the annulus is given by

, (R,_ - _ _ Pm_ ("4.23)
m_-.-c_ i_-n

We note that the m_ ._quare value of pressure given above is

equal to the integral of its spectral density. Hence, 3'

./_,p(_) d_ = _ ,= p-_ (4.24)

where v = ka O - nB_+_

and P - .o...-1,0,1 .....

The right-hand side of above equation, defined by Eqs. (4.22)

' and (4.23) is a function of (nB£+_), and leads us to the

computation of spectral density of farfield pressure at circular

frequency v , and we obtain

!
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s (_) (4.25)

due to monopole distributk-n in the rotor region and

due to dipole distribution in the rotor region.

Where

m

f = (-i) m+l k _+ - X I (k sin_9,

RX- X+ + _p m_ (4.27)mo

Fs= BPoao Em _(r o) Ib dr o4_A (4.28)

m_ rh

and rt

B f v_m cos _ k-+

i" Fd" _n , "8_ 0 +" z sinA}. E p(r o) I£ dr o _
4_-_ AmlJ

f(4.291

! :
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5.0 RESULTS OF COMPUTATIONS AND COMPARISON WIT H ,
I "

EXPERIMENTAL MEASUREMENTS

Based on modal propagation within the duct and reflection_

at uhe open end, radiation to far field from the small scale

fan is computed _sing the equations derived in the preceding

sections. Thu small scale fan configuration is sketched in

Fig. l' and its detail description is given in Ref. i. The

results of such computations are discussea in this section, and

are compared with measurements.

In our acoustic computations, the fan data and other physical

quantities used are as follows:

B - 15, rh - 0.249 ft., Et - 0.598 ft., N -125.3 rpm
(?.59 cm) (18.23 cm)

i hub pitch tip
t

Blade chord (c) 0.125 ft. 0.117 ft. 0.115 ft.
(3.81 om) (3.57 om) (3.51 cm)

•tagger angle (A) 48 ° 63 ° 69.8 °

__ U - 83.5 ft/_ec, Po = 0.002378 slug/c.ft, a0 - ]128.6 fl/,oc
(25.45 m/,oc) (0._n]RR_ _rnm/c. cm) (344 m/,._c)

__ ' The support spider located at 7 in. (17.78 am) downstream o_

the rotor has 8 vanes of 1.625 in. (4.13 am) ohord and 0.25 in.

__ (6.35 mm) thickness.l(L_utrlctIIL_juUr attuJltloJ_ to i_ol.u luVolu a_ bladu pauulJ_U

frequency, we have

4 i k - B__ = 2.TJ__N. 10. 6 per ft. (34.33 per corer)
a0 a0
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1 From upstream mode cut-off condition

k > B0km_,

we find that only the following m_ modes need be consideredl

m - -4,....-1,0,1, ..... 4

_-0

From the relation g+m - B, we note that each gth component g_.ves

rise to the corresponding mth mode. Consequently, the values of g

need to be considered are between ii and 19. For each of the

of the
(m_) modes listed we computed the radiation impedence _m_

open end of the annular duct, using the method described in the

thus
preceding section. The real and imaginary parts of _m_

computed are shown in Fig.3 '.

Zn the experiments carried out on Rao Fan-2 in the anechoic

chamber at NASA-Ames Research Center, there are no discernable

upstream distDTbances except for turbulent fluctuations in the

inflow. Consequently, we consider the random moncpole and dipole

distr%butions due to blade thickness and blade loading resulting

from the interaction of the random veloc_.ty fluctuations with the

rotor.

The turbulence measurements taken at the fan inlet(private

communication from Mr. B. K. Hodder) indicated that the mean square

I value of velocity fluctuations in thQ axial direction was 0.75%

of the axial velocity of 83.5 ft/seCo (25.45 m/see) Nearly the
q
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}
same intensity was measured for the velocity fluctuations along

the circumferential direction. Consequently, for our acoustic

computations we used
!

{ }¼-(u }_ - 0.6263 ft/sec. 10.1908 m/seal

Based on measured auto-correlation function for axial velocity

fluctuations and a "frozen-convected" assvmption with a convection

. - 25 in.velocity of 83.5 ft/sec (25.45 m/sec), we obtained _z

10.635 m) for us in our computations of the turbulence spectrum.

A value of 68 - 3 in. (7.6 2 cm) is assumed to conform with our

earlier computations presented in RoE. i. The spectra of the

turbulent fluctuations, _u and _u are then computed from
_,g c,g

Eq. 1209), for substitution in Eqs. (4°25) and 4°26)° The mean
I

square value of blade lift distribution computed from Eqs. 13.17)

and 13.19) for _-0, is shown in Fig. 4.

4

7n the preceding sectLnn, we _scusn,_d the le_t and right

running sound waves resultin U from the acoustic sources in the

} rotor region, which in turn depend upon the random velocity

fluctuations met by the blades. To examine the effect of the

particle velocities in the pressure waves on the generation of
.i

the acoustic sources, we carried out the following calculations.

Based only on u ,g (i.e., inflow turbulence) we obtained um_
+

from Eqs. (4.8) and (4.11), and then um_ from Eq. (4.16) for

each value of g and corresponding mode (m_). since the_e velocity

components are random, one can compare only their spectral
' i

densities, which depend on radius due to _he function Em_(r) in

4O
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in Eq. (4.7.). From the behavior of E (r) for each of the m_thm_

modes considered as shown in Fig. 5, we note that the velocities

±

Um_ are largest at tip radius. The spectral density of _U=,g
also is a function of radius as can be seen from Eq. (2.9).

Consequently, we calculated _U-m_' _u+m_ and _Ul,g at _ = 0,

and r - rt and listed them in Table I. We observe that _U_,g

dominates and similar situation can be expected, when we consider

' the outcome of monopole sources due to the velocity fluctuations

Uc,g. Consequently, wQ can ignore the interaction of propagating

sound waves wi_h the blade row, and justify the use of Eqs. (4.25)

: and (4.26) with the corresponding values of _Uc,g and _U_,g"

From the blade loading based on the random fluctuations of

u_ , we computed sound pressure spectrum according to Eq. (4.26)

at distance R . 7 ft (2.12 m) and angle _ ranging from 0 to _/2.

To reduce the amount of compuuational work, we restricted our

attention to the spectral density at the blade passing frequency

by setting _ = 0 and _ = 2_BN in Eq. (4.26). The sound pressure

} levels thus computed are shown in Fig.6

In computing noise from blade thickness effect according to

Eq. (4.25), we used a blade profile described by its thickness

distribution b(_) given as

+ log 2};b(_) - constan_ .(I + ) (-log(l �co

with -c/s

| 4l
; :

t
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} By choosing 0.27182 for the constant in the above equation, we

obtain a profile with a rounded leading edge and a maximum thick-

ness of 10% of chord occurring at 37% from leading edge. The

source-sink distribution s(_) is obtained by substituting .

b(_) from the above equation and u from Eq. (3.4) into : .
c,g

Eq. (3.14). The results of our computations for farfield noise

due to blade thickness effect are also shown in Fig. 6.

The SPL dB levels shown in Fig. 6 for noise from the blade

loading and blade thickness are from the spectral density per

• Hz of the acoustic pressure at blade passing frequency. Since

the fluctuations of u and uc are considered random, one can

add the mean square values of sound pressures from these two

contributions to obtain the combined effect. However, we observe

that the noise contributed from bla_e thickness effect is neg-

ligible in comparison to that from blade loading,

42
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The experimental data given in Ref. 2 show the spectral analysis

obtained using 25 Hz band-width. From our previous computations

of sharp peaks in sound pressure around the blade _assing

frequency, as re_ _d in Ref. (I), we can assume that integration

over a 25 Hz band-_th ie&ds to a spectral density 12.1 dB higher

than those computed from Eq. (4.25) or Eq. (4.26) at the blade

passing frequency. The sound pressure levels thus estimated are

shown in Fig.6 along with the measured data. Apart from the

noise level, which is proportional to turbulence intensity,

the theoretical estimates do not show. the strong directivity

found iu the measured data.

We alsc computed the acoustic radiation to farfield from the

sources in the rotor region, completely ignoring the effect of

the duct, for the sake of comparison. The sound pressure levels

thus estimated are shown in Fig. 7 and we note that they do shcw

the type of directivity observed in the experimental data.

The inability of our theory in predicting the directivity

of noise from a ducted fan can be due to any or all of the

following reasons;

(a) The effect of the confining duct and its finite length

are examined in this report by considering the radiation impedence

of an annular duct terminated by an infinite flange, as sketched
Ii :'

in Fig. 2. The duct ¢onfiquration used in the tests, shown in

Fig. i, is a cylil_drical section upstream of the rotor, and is

REPRODUCIBILITYOF THI

0B_AL PAGE _ P00a._ 43

1975006692-051



annular downstream. The propagating modes, and the open-end

impedence for each of these modes in such a duct uonfiguration

may be different from those considered in this report. Modelling

the bell-mouth configuration of the fan inlet by an infinite

flange can be yet a suitable method. Even though the computations

fGr a plane wave (i.e., m = _ = 0 mode) presented on page 472 of

Ref. i0 show that the absence of the flange does not appr ciably !

alter the radiation impedence of the duct opening, there is no

indication that similar behavior exists for higher order modes.
8

(b) An ( m_)th mode incident on the ope.i end of the duct can

give rise to various other radial modes. These (m,9)th modes

irrespective of duct cut off conditions can affect radiation to

far field. In our analysis we ignored all _uch cross-coupling

of modes. Computations for a _lane wave presented on page 336 in

Ref. 8 show that there is negligible cross-coupling at high

frequencies. However, there is no indication that cross-coupling

can be assumed negligible for higher order modes.

(c) The stzong directivity occuring in radiation from blade

loading directly to farfield (as shovm in Fig.6 ) appears to be

due to the dipole nature of the sources. In evaluating the farfield

radiation from conditions occuring at the duct entrance, we con-

sidered only the axial component of the acoustic particle velocity

at the duct termination and the corresponding monopole sources.

We have ignored the gradients of velocity, and thus lost the dipole

. character of the scurces. In particular, we have not included

the tangential components of the particle velocity and its gradient

it, t]._ ¢olld|,tiol_ occurin.'! _iI.I-hr, (lu,'t (_l._.|nq.

,
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], 6.0 CONCLUSIONS AND RECOHMENDATIONS

From the analyses and computational results presented in

this report, the following conclusions can be madez

i. Consideration of chord-wise distribution of the blade

lift loading is important in evaluating sound at w_ve lengths

comparable to the blade chord.

2. The farfiold noise, predicted under the assumption of an

annular duct terminated by an infinite flange, does not show

considerable directivity. On the contrary, experimental

measurements indicate about i0 dB drop on the sideline from

that on the axis.

3. Sound pressure levels computed for an axis point including

the effect :)f finite duct length upstream of the rotor is

comparable to those computed for a free rotor in the absez_ce

of a duct.

4. The acoustic particle velocities in pressure waves reflected

at the duct opening are negligible compared to th_ inflow '_

turbulent velocity fluctuations based upon which pressure waves

propagating upstream towards the duct openin_ are calculated.

consequently, the second order effect on sourc, _ in the rotor

region due to interaction of the propagating pressure waves

wi_h rotor blades ¢_n be ignored.
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l' Comparison of theoretical estimates with experimental measurementsF

i
and a critical examination of the assumptions employed in our

analysis lead us to the following recommendations for future
I

I effort in fan noise evaluation and reduction of far field noise.

I. Space-time c_rrel_tion measurements of flow in the duct

are of prime importance in making theoretical predictions of

noise from the ducted rotor. The _pectral density distribution

of fluctuations of u c and u depend upon the measurements of

£e and the autocorrel_tion function. Even _ _all steady-state

velocity deficit of 0.5 ft/sec (0.152 m/sec) when occurring over

a small r_gion of the fan inlet, can give rise to on axis-noise

comparable to that presently estimated from the inflow turbulence.

Detailed measurements at fan inlet, as suggested here, c_n deteot

such velocity distortions.

2. The assumption of an infinite flange at the opening of an

annular duct is employed in our eLalysis to avoid complexity

and excessive computational, effort. Also, the "cross-coupling"

of radial modes at the duct opening is ass_ed negligible. The

discrepancy between the predicted and experimentally determined

directivity patterns may be due to the above simplifying

assumptions, and also partly due to some other noise sources

overlooked in our analysis. Even though our primary interest

is in Eeduation at its sources, modal transmission of acoustiu
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waves in ducts with cross-sectional discontinuity _imilar to

that occurring in practice, and reflection of higher order

modes an the duct opening requires further examination to

formulate reliable fan noise predlction methods.
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APPENDIX
t

Pressure waves in an infinitely long annular duct due to

an isolated source.

..

Let" us consider a monopole source

i

s(t)= (AI)

inside an annular duct rh & r ! rt with an axial inflow velocity Ua.

The governing equation for prossuro is the acoustic
!

equation which has undergone a Galilean transformation since

i we have a moving fluid of subsonic Mach number M O = U ,/aO-

- V2p + --o + = OO -- 6(r-r 0) 6(8-0 o} 6(z-z )2 Bta a BzBt o Bz 2 @t o
ao_

i o

" I " (A2)
; _ 1 B 1 B2 _2
: where _ - -----+ + + ----

_r z r _r r 2 _r 2 _z 2

The right hand side of Equation (A2) represents the

Liqhthill source term. The boundary conditions on pressure are

" 0 at r - rh and rt
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0

I Using the Lorentz transformation

r = R; e =8, z m 8Z, t - (T -MoZ/ao)/8 0

where 8oZ- l-Mo, the Eqi4.2) can be written as

i_.. ___E-{_-_q'2 ___+I _2 +?_._...2Ip 'a2 _T _ ,_R R 2 ;)8 _ _Z 2

k ^

= -i_aoP O S'_ (R-R O) 6 (@_9 0 ) 6 (Z-ZO) ° exp{-ika O (T-MoZ/ao)/_ •

(A3)

and the boundary conditions become

- 0 at R - rh and rt._r

i

Wo sock tho solution of Eq. (A3) in the foum

s k ^ T/8 } (A4)
p - -i_a opo S g(_/R o) "exD{-ika o o

D o

where the Green's function g(R/R o) is defined in the transformed
coordinates.

Substituting Eq. (A4) into E_. (A3),we find that g(R/R O)

satisfies the differential equation

-- + .. + -- + .g:a/ao__R z R ;R R _ _ 82 _ Zz

-_(R-R o) 6(e_9 o) 6(Z-Zo)'exp{ikMoZ/8 o} (A5)

and the boundary conditions

" 0 at R - rh and rt.
(A6 }

, i !

i
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solving Eq. (A5) subject to the boundary conditions (A6)

by the mcthod of sepanation of variables, we obtain

X _p (R)]']mp (Ro)" exp (ikM OZo/80 )

X exp{±i_ (z-z }} (.A7)
"O O"

where

a = {l-(8okm_ _2}% ,

In Eq. (A7) we take + sign for the region downstream (on

right) of source location while for the region upstream of source

location (on left),, the negativesign is chosen.

Rewriting in original variables, the Eq. ( A7 ) becomes

O0 CO

m--CO p=0 4_ Amu ]0 .

X Era1j {'r)EmlJ(rO) 'exp(ikM 0 Zo/B_)'exp{±ik_(z"Zo)/B O} iI

' (Ae) i
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and the acoustic pressure at (r,8,z) due to a monopole is given by

S A

p (r,e,z) = -ik-a_p 8̂"_(rlro)
_r_ U %)

X exl ¢-ikaot) • exp (-ikMoZ/B _) (A9)

Let us now consider the acoustic pressure at (r,e,z) due to
A

a dipole _ (t) = _e-ikaot at (r,e,z), _ being the strength of

the vector dipole and ka o = (nB£+_').

The acoustic pressure due to dipole is easily determined by

differentiating Eq. (4.4) in the direction of dipole axis and re- o

placing the monopole strength by dipole strength. Thus we obtain

A

pal(R) = :i oPo D " Vo g(R/Ro)eX p (-ika0T/B o) (AI0)

where

vo =1 _R �%%���_o

Writing in original variables, El. (4.10) becomes

Dr ro_eo Dz _Z_oPd(r)'"i 09000 { " _ + De " + "BO" }o

X exp(-ika0t) X exp(-ikMoZ/S=) (All)
A _ A A

where (Dr_ De, Dz) are the components of _ in r,e and z

: directions respectively.

.
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Table I. Spectral intensities of inflow turbulent velocities
and the particle acoustic velocities in the
propagating duct-modes.

%- _u+
Mode _u&,g mpm_ ' mp

(turbulence) (incident on (zeflected from
duct opening} duct opening)

,(-4,0) .430 (10-5) 1.121 (10-8) .068 (10-8)

(-3,0) .480 (10-5 ) 1.464 (10-8 ) .227 (i0"8)

(-2,0) .584 (i0"5) 1.638 (i0-8) ,066 (I0-8)

(-i,0) .605 (10-5 ) 1.623 (10-8 ) '.067 (10-8 )

(0,0) .687 (10.5 ) 1.929 (i0-8) .130 (i0-8)

(i,0) " .786 (10-5 ) 1.796 (i0-8) .074 (10-8 )

(2,0) .909 (10 -5) 1.276 (10 -8 ) .049 (10 -8 )

(3,0) 1.063 (10-5 ) 2.280 (10-8 ) .349 (10-8 )

(4,0) 1.250 (zo"s) 0.z52 (10"8) .009 .(10"8)
! u .

J

Notez _u above has units of (ft/sec) z

one foot/se_ - 0.3048 m/see

i
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Fig, 6, Sound Pressure Levels at _F at 7 ft.(2.13 m)
from ducted Rotor, due. to Inflow Turbulen_e.
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