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This report presents investigations carried out by

Rao and Associates for the National Aeronautics and Space

§ Administration, Ames Research Center, Moffett Field, Cali- §
g fornia under Contract NAS 2-640l1. Together with earlier

§ repo-cs NASA CR-114576 and NASA CR-2354, this report de- :
g scribes the results of analytical studies on fan noise é
g‘ conducted under the contract. The helpful suggestions by E
§ Mr. B. K. Hodder and Mr. D. H. Hickey, the technical 2
%‘ managers on this contract, are greatly appreciated. E
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The method of computing radiated noise from a ducted rotor

due to inflow distortion and turbulence are examined. Analytical
investigations include an appropriate description of sources, the
cut-off conditions imposed on the modal propagation of the pressure
waves in the annular duct, and reflections at the upstream end of
the duct. Far €field sound pressure levels at blade passing fre-
quency due to acoustic radiation from a small scale low speed fan
are computed. Theoretical predictions are in reasonable agreement

with experimental measurements.
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1.0 INTRODUCTION

Fan noise sources and acoustic iradiation from them have been
the subject of analytical studies at Rao and Associates, Inc.,
under Contract No. NAS2-6401 with Ames Research Center of the
National Aeronautics and Space Administration. The results of
previous studies reported in Ref. (1) and experimental data reported
in Ref. (2) have weil established that disturbances in the saflow to
the rotor play a primary role in noise generation. The theoretical
predictions on fan rotor noise presented in Ref. (1) were based
on radiation to far field from the acoustic sources in the rotor
region ignoring any duct effects. The present report includes
the effect of the annular duct enclosing the rotor..

In the experiments carried out in the anechoic cﬁamber at
Ames Research Center on the small scale fan shown in Figure 1l and
reported in Ref. (2), the annular duct entrance is 14 in. (35.56 cm)
upstream of the rotor, whereas on the downstream side, the duci is
extended straight through the chamber wall to the exterior of the
chamber. To take into account the influence of the duct config-
uration, we extended our analysis to include modal propagation of
acoustic waves in a duct extending to infinity downstream of the
rotor but terminated upstream at a finite distance from the rotor,

as sketched in Fig. 1.
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In our analysis, first we describe the typical features of
the nature of the inflow to the ducted rotor in Section 2. The
steady state non-uniformity as well as the turbulent velocity
fluctuations in the inflow give rise to acoustic sources in the
rotor region as discussed in Section 3., Dipole sources due to
fluctuating lift forces on the blades and monopole sources due
to finite thickness of the blades are determined in this. chapter.
Acoustic propacation from these sources is described in Section 4,
considering the eifect of the annular duct on the circumferential
and radial modes of the propagating pressure waves. The influence
of the upsiream end of the duct on each mode is examined by
assuming that the duct is torminated by a flange extending trans-
versely to infinity. Since acoustic energy is transmitted through
the duct only by the axial component o. acnustic particle velocity,
we considered only the axial component of particle velocity in the
pressure waves. Taking into account the reflections of ‘he duct
modes from the duct entrance, farfield sound radiation is de=
rived in this Section. Theoreticsl relations developed in
SBections 2 to 4 are used in predicting acoustic radiation from
the small scale fan rotor and the computational results are dis-
cussed in Section 5. Comparison with experimental measurements on
the small scale fan in the anechoic chamber at NASA-Ames Research

Center indicates some improvements that can be made in the analytic
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predictions. Conclusions drawn from general features of no’:r.

propagation from ducted fan rotors are given in Section 6.
Recommendations for future effort in theoretical prediction

of fan noise are also described in this section.
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2.0 . DESCRIPTION OF TURBULENT FLOW FIELD IN THE DUCT

The flow in the duct upstream of rotor contains random as well
as deterministic fluctuations as discussed in Ref. (l1). Our present
interest being in the interaction of inflow turbulence with rotor
blades, we postulate a suitable description of turbulent velocity
fluctuations along and perpendicular to the blade chord. Let u, and
u, denote these velocity components which can be described in terms

.
of their mean square values and spectral densities.

Since at any instant of time, the instantantancous velocity
fluctuations uc(r,e,z,t) and u, (r,0,z,t) must have a uniqué value
when the azimuthal angle 0 is increased by any multiple of 27, we

expand u, and u, in a Fourier series in 6 as

\ .
uc(r,e,z,tl uc’g(r,z,t) .
121 'e-lge.e-1¢g (2.1)
u (r,0,z,t) 7 Lul'g(r,z,t)
~here u g’and u,g are complex and random functions with respect to
14 14

time t. Now, under the assumption of homogeneous frozen convected

turbulence, u, g and “L'g can be written in terms of their Fourier
’ ’

transforms
u (r,z,t) :1 (r,w )
clg ) c'g ' - / .
- j . edw (&=2/U ) 4 (2.2
‘QL'g(r,z.t) - ui'g(r,w U
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It is important to note here that Eq. (2.2) is only a symbolic
représentation of the random Juantities u, and u, . The only physically

meaningful results are the mean square values ué and uf.

The space time corxelation function R(§,n,Z,T) of velocity
components u, and u, for frozen convected homogeneous turbulence

is assumed to pbe of the separable form as

R(E,n,C,T) = fE,T * fn . fc (2.3)

where £,n,; denote the separaticn distances along the axial,
circumferenticl, and radial directions respectively and T. denotes the
separation time. We further assume that the correlation function

in the axial and circumferential directions is of exponential form
while in the radial direction .: is unity within the correlation length
and zero outside, that is the "eddy" is perfectly -orrelated in

the radial direction. Since the turbulence is frozen convected with

velocity U in the axial direction,

= expl]E - U t|/8,) (2.4)

fEIT

whore zz is the correlation length in the axial direction. Since

[$4]
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the correlation function must be periodic in the circumferential
direction, we write

£ = 5{ exp{- |[n + g Zwrl/ze}

gﬂ-ﬂ

where ke is the correlation length in the circumferential direction.

Using Poisson Summation formula (Ref. 3 ), the summation over g

is transformed into a complex Fourier series to yield

RN ey N YR VN3 S T I EGITEN KRR AN S TIPS LT PRI T LA e Ly
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Lo/nr
f = jz. — * exp(~ign/x) \ (2.5)
n 1+ (gh,/r)?
g
£ In order to be consistent with the assumption that the correlation
~ ¥
function is separable, the ratic (ze/r\ has to be considered constant
with radius. Noting that n = r6, Eqg. (2.5) can be written as
(Ro/7r)
f = j{ .. exp (-ig6) (2.6}
n 1+ (ga/r)?
The correlation function fC in the radial dixection is assumed as
f =
C 1l for 0 < ¢ < zr
w0 for ¢ > 2.
¢ K (2.7)
~r
4!




-

Since the correlation function must be unity when £,n,% and 7

all are zero, the Eq. {2.3) is normalized.by dividing it by a

factor
> (Zo/ur)
E{ T (9‘3/;52 - coth(nr/ze)
a--ﬂ *

and we obtain
R{E/n,E,x) = exp{IE - UT|'/EZ}

E (Ze/wr)
X tanh (wr/Lg} * + exp(-~igf)
2
g 1+ (gze/r)

(2.8)
Measurements at inlet of the small scale fan indicated longi~-
tudinal correlation length £ to be same for both componei:ts
u, and Ug. In the absence of specific measurements to the
contrary we can coneider that ze is also the same, leading us to
to a reasonable assumption that above g. (2.8) gives the corre-
lation function for both the velocity components u and U,

Now the power spectral density functions ¢, (w ) and ¢ (w )
. o N

can be evaluated by taking the Fourier transform of the correlation

function, and we obtain

N

e o Ao B 2 i,
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u, suc
= zz/wU
. —
¢“..L (“i 1 + (lz(o/U)
i le/ﬁr '
X :E: tan h {nr/ze}- ' {2.9)

1+ (gﬂ.e /x)?

g:-oo

R}
— —

where ué, u! respectively are mean squace values of the fluctuations

along and normal to the blade chord.

The spectral density of u, given above differs from that
employed in our earlier work reported in Ref. (1), since in our
present approach, we have assumed the same correlation funct.ion
for u, and u, components. We also note that, due to the exponential

form of fn assumed here, the gth component of above equation is

different from that employed in Ref. 1.
K

v
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3.0 ACOUSTIC SOURCES IN THE ROTOR REGION

The interaction of velocity fluctuations described by
Eq. (2.2) with rotor blades gives rise to mass fluctuations
(due to blade thickness) and fluctuating lift forces in the
rotor region. These mass fluctuations and force fluctuations
give rise to the so-callcl "a2erodynamically generated noise"
and can be replaced by corresponding monopole and dipole
distributions respectively in the same manner as described in
Ref. (1).

The velocity field described by Eq. (2.2) is in the duct
coordinate system, and the velocity fluctuations as met by the
rotating blade are described in the following section. 1In
section 3.2, the influerce of these velocities on the blades
and the resulting distribution of acoustic sources in the rotor
region are evaluated. The analyses reportzd here differs from that
reported in Ref. 1 in that we have included the effect of compress-~
ibility and also considered chord-wise distribution of lift loading

on the rotor blades.

3.1 Flow fluctuations met by the rotor blades:

For the sake of convenience, it assumed that the mid-chords
of the rotor blades lie in the plane z = 0. Let us Genote the blade,
whose mid-chord occupies the position 6 = 0 at time t = 0, as the

first blade. Measuring 0 positive in the direction of rotor rotation
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and counting the- blades in the same sense, the mid-chord of the
Jth blade occupies the position
J-1

0, = 27¢—=—— at time t = 0
J B

Thus the coordinates of a point on the chord of the jth blade

at a distance I rearward from its mid-chord at time t can be

written as

; - g-1 _ gsind, (3.1)
(rc, ej,c Qt + 2m 5 = ; zc Z cos 1)

where

Q@ = circulsr frequency of the rotor, and

A = blade stagger angle

The leading and trailing edges of the blade section are given
by £ = ~c/2 and ¢/2 respectively. The coordinates r. and zZ,
in Eq. (3.1) are not subscripted by j since they do not depend

upon the specific blade.

Since the circumferential velocity Qixr of . .e blade element
is independent of time, the fluctuations met by the element

at ¢ on the jth blade can be written as

10
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g +exp{-iw (t- g cos\/U )}

X exp{-ig (Qt+21r‘7;l - & sin)‘) }dw (3.2)

In terms of the relative velocity V met by the blade, we can

write
z sin) - 9T
r v
L ccsA 14

e (3.3)

Substituting relations (3.3) in (3.2), we obtain the gth

component of velocity fluctuations as

ug, P la, (r,w)
g - é'g Pt {-3 i-1y’
" . g -exp -;92w—§—}
uL'g . u"g(r,u )
X ‘expl=i (y @+ ) (t-) }aw (3.4)

11



3.2 Evaluation of source distributions:

In determnining the effect of fluctuating flow on the rotor
blades and the resulting monopole and dipole distributions,
we make the following assumptions:

(1) Each blade section is considered as an element of an
isolated airfoil immersed in a "two-dimensional flow" correspond=~

ing to the conditions occuring at the blade section.

(2) Only the velocity fluctuations parallel to the chord
are significant in evaluating monopole distribution due to mass
flow fluctuations. Similarly, the velocity fluctuations per~
pendicular to the chord are important in evaluating the dipole
distribution due to blade 1lift.

(3) The flowfield is considered irrotational and inviscid,
in spite of the fact that the velocity fluctuations u, and u,
described by Eq. (3.4) do not satisfy the irrotationality i

cendition. It is assumed that the small vorticity in the flow

does not affect the source distribution for a thin airfoil. (Ref.4 ).

!

12
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wWith the above assmptions, the governing equation
for the perturbation velocity potential due to relative
‘velrncity V past the blade is

1 2

A I S TR (3.5)

a

2
o tt a, ct (4 44 nn

where a, is the speed of sound; M = V/aO; t and n are the
coordinates in direction parallel and perpendicular to the
blade-chord respectively.

Applying Lorentz transformation

=87 ;n=n, t={t-M/a}/B; B*=1-M,

above equation can be, transformed into the wave equation

.J;.._ e &
a

]
)
+
-

2 - - R -— . (306)
o t ¢t T T nn
where ¢ = B¢

In order to obtain simple closed form expressions for
the source distributions (monopole and dipole) we follow
Osborne's approach (Ref.5)which .converts the compressible
flow problem into an equivalent incompressible plane in the
region close to the airfoil (inner region) using the method
of matched asymptotic expansions under the assumption

{e/B%}? <<1 (3.7)

whoro & w Y8 0 Vo gl
4un“

1
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This is accomplished by defining a new set of variables in
the incompressible plane (in the inner region) as follows:

Ci:n.“:’ "5—'"1\? ti=!_£-;¢i=‘____?;____
c/28 278 {vc?/8nBd}

the equation (3.7 then becomes

. » ’ 2 13
@ttt = (e/8%)p"
1, 2.1 t’bt’b

%
(b 3 o+ ¢ . , = 0
ghg? n*n* (38)

under the assumption kg.( 3.7').

It should be noted here that the boundary conditions
applicable for the solution of Eq.(3.8) are those in the
inner region only. Thus, Eq.(3.8) is required to be solved
with boundary conditions on the airfoil only.

The expressions given in Eq. (3.4) for the gth component of

chordwise and vertical velocity fluctuations, using the above

transfqQrmations, become

Ug,g uz @)
4 [ _' -_
) = "-Ji- (gQ+w ) e l¢g -exp{-ighr-"—-B—l- }
1 : ~ 1
u* ' u“g.(w )
-0
x exp{-iv®(t* - */v")}dw (3. 9)

14
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where

»

vk = 21 Vo= 4nB2V/ve

u
{ ,g} = (4n8’/ﬂc)-fu°r9'}
u

u.
’ 11:9

o O o

Q

A
u ~

i
C.6 ;
8 U
{ i } =‘(4n8’/vc){ R °9}

u
u
Leg. 4,9

and v = gQ+w

(a) Mass Flow fluctuations and rasulting Monopole Sources:

A rotor blade subjected tc chord-wise velocity fluctuations
can be represented by a fluctuating distribution of volume
sources along the blade chord. The volume sources on each blade,
representing the blade profile, are obtained by solving the
equivalent incompressible tlow problem and then transforming
the result to the.compressible case. We therefore first solve

Eq. (3.8) subject:'to the following cpntinuity equation.

(2
{ . b+ u, + 3¢/3%)= 8¢/an}
g at n

'EE -0
on. =c*/2 < t* < c*/2 (3.11)
whare b(r) is the thickness distribution along the chord , The notal ion

{ }i implien that the boundory condition is to be tranaformad

into tho incomprosnsible plane,

"

N R ¢ k. M e e . it o g e
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Since we are interested in the noise generated due to
unsteady fluctuations only, we omit the contribution Gue to

steady state velocity V. Also assuming that

o¢ . . . o
5E'<< uc'g.the continuity eguation (3.11) can be simplified

to

a¢ 1 d . . 1: I3 [ ]
35.'7,1'1 - o = a_;.(b uc{g)g on -c*/2 < ;1’. < ct/2

S - S ¢ i i, i
. 2823'52 (b uc,g)i' on -¢c“/2 < ¢° <c“/2
n*= 0 (3.12)

From thin airfoil theory for incompressibkle flow, making
quasi-steady assumption, we can readily describe the volumre

source distribution along the blade chord as

i .08 = LIg g
° 28r1'ln7:=0 p? }az'(buc'g);
(3.12)
Since . .
g = ang a(Z)
veC

tha corranponding mource distribution in tho compressibla

plano can now ba writton an

§ O




N,

g () = gf (beuy ) © (3.14)

and we note that the source distribution under the assumption

uc'g < <ag, is the same as that for an incompressible flow.

Substituting from Eq. (3.4) for u, g’ we obtain the source distribution .
’ .

at ¢ on the Jjth blade as

. - A , ‘ . -i¢ . '-. Jl_l
8 4,i.C JL uc'g(w )ee “Tgeexpl ig2mig~ }

® g.d.¢

X expl=i(ga+o) (& = £} (G2 + ibg/V} du

Foxr a blacda element of span dr, we can consider tho source

« dzdr concentrated at g 0. _and rcpresent it by a

B [
gsd58 J. & .
complex Fourier series in 6 . From the source distribution over

an elemental volume X, deoﬂdro *ag located at (ro,eo.co), we
obtain the source strength at ro'due to thickness of the jth

blade element as

. = a0 ' { . -i¢
sgaj‘(ro? fucog("? ) e

g exp{-ig2wl§£}

o- nc
%F.exp{-im'(60-9§~2ni§£ + ﬁvﬂ )}

m‘v
X exp{-i(gQ +un(t’C°/V)}

X {db/d;b + ibgG/V} 'dcodrodeo dw (3.15)

In summing the xight hand side of Eq.(3.l5) over j from

1l to U to take into acvount ull thue rotor bladuw, we aota thut

o B
of
)“A§:§igoﬁﬁy'
VoS

%,\JY | 17

N T B B8 ke B Tl -



i? exp{*i(g—m')2ﬂ1%£1= B
= 1

.
2

for (g-=') = uB with n = . ..-:.9,l..... and zero otherwise.

Consequently, the effect ol chickness of the rotor blades on
noise generation can be c¢xanined by considering the influence

of the monopoles

g (o) = %f“c.gm')-'e'i‘?q'-z "%
on m'

X exp { =i(nD §+w )(t-nO/V)}

X {db/dﬁo + ing/V} dcodrodoo dw " (3.16)

|
g 18
i
;
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(b) Fluctuating Blade Loading and Resulting Dipole Sources:

Due to the fluctuations of the velocity component normal to
the chord, there is fluctuating lift distribution along the
blade chord. As in the preceding subsection, we first soive
the problem in the eguivalent incompressible plare and then
obtain the result in the compressible case, following the analysis

given by Osborne (Ref. :5). We introduce a convenient variable

§ = cos'l(z t/c)

to obtain the following expression for the vorticity distribution

as a function 6 on the Jjth blade due to its interactlion with the

velocity component u .
4rg

00

(

J Bag®) @ expi-igarigh

Yg,j(ﬁ)'s:mé = 1,9

W[

~-00

éé; X X exp (-ivt) o exp (-iv, cos§ M%/8?)
:’ X |3 (vo/B%) + iz (v_/g?))
. - 2 .
¢§z§9 X Kx( ivp/8%) + K, (=iv /B?)coss

S K, (=ivg/8%) + K_(-iv /8%)

S.v -

Q§ Nl (cos mé+ MR 8ind Ainmé)

o ["m*l ‘\'R/“") : "ml-] (\’l{/“")] }d“‘ ’ (3.17)

where v = (9Q+w) ; and VR ve/2v

R
1y



The right hand side of the above equation can also be represented as

_ - S U SrS  b .
= f u‘"g(w ) e “Tgeexpl 1g21r—-§—} Y(6,0)
-0
x exp { =i (gQ+w)tl}dw (3.18)
where y(¢,w ) is a complex function dependent only upon the
reduced frequency and Mach number..
The - 1lift fluctuation 4; . at (r,ej C,C) acting on an elemen-
’

gsd
tal area dz+dr of the jth blade can be expressed as

| ., = L)
Eg,a povvg’J(c) dgdr (3.19)

The force exerted by the blade on the fluid is equal and

oprosite to that given above, that is

d . - . e v . . .
fg,d = 81,5 ="QVY,, (%) ~dedr (3.20)
Using complex Fourier series in 6 , the concentrated force

of Eq. (3.20) can be expressed as
1 -~
d . T -l (] - . . R od):d 3.21
f 2":é.pov exp{-im’ (6 GJ,C)} Yg’J(C) r ( )
m'
To include the effect of all the blades, the expression (3.21)
is summed over jfroml to B and we obtain the force azting on the

radium due to an elemental volume rodeodrodcolocated at

(5'e°'co) as

LR oW LS aTs W R e

Y ey



dfg (r)) = - %fpowhg(m )-e"wg Y5 0 )
' exp{-i (nBR+w )t}

-} r
xS pleim g @/viee™ " So-az ar ae aw - (3.22)
m'

Where g -m = nB' n= "..-1,0,1.....

The resulting acoustic dipole Dg(ro) at r, and the force of

dfg(ro) are related by

8 —
Po"3E (Dg) = dfg
i ives D = 7L (3.23)
which gives 9= T T%a dr (po) .
Po o g

The components of the dipole in the axial and circumferential

direction are given by

i- Si.n)\'dl (r W ) : 3.24a
Dg 3(2‘0) = - f g 2 ‘exp {-ikaot}'d'» ( )
»
-~ Pokay
-]
: i mSA Y 9
D (r ) == —~—rd1 " - t}.d (2,24b)
g,0 "0 f pokao g(ro’w )re xp { :1.kao }.dw
-l

21



ORIGINAL PAGE IS POOK

REPRODUCIBILITY OF THE

g e e Siaiaaanan o TR

4.0 SOUND PRQPAGATiON IN.fHE DUCT AND RADiATION TO FARFIELD-

In our earlier work reported in Ref. 1, we considered acoustic
radiation from the < '~ces in the rotor region to farfield, with-
out any restrictions i.posed by the surrounding duct. The analysis
presented here is Lkased on modal propagation of pressure waves in
an annular duct with axial subsonic flow and radiation to farfield
from the conditions occurring at the upstream end of the duct.
Tyler and Sofrin (Ref. 6 ) suggest that the modes propagating in an
infinitely long duct.can be considered to yield the conditions
occuring at the duct entrance. In the analysis presented here,
we include the effect of finite distance between the rotor and
the duct inlet and examine the influence of the impedence of the
duct opening. In evaluating the latter, we assume that the duct
cerminates in an infinite flange and avoid the complicated
computations employed by Lansing in Ref. {7 ) for the case of

unflanged duct.

The modal propagation of acoustic waves due to an isolated
source in an infinitely leng duct is described in section 4.1,
which is followed by a discussion of the integrated effect of the
rotor-generated source distribution in 4.2. The effect of
duct termination at ; finite distance upstream of the rotor

and acoustic particle velocities occuring at the duct-end are

discussed in section 4.3. The method of calculating radiation

\ -

to farfield and spectral density of farfield sound pressure level

are described in section 4.4.
22
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4.1 Pressure waves in an infinitely long annular duct due to

source distribution in the rotor region.

Let us consider :sure waves propagéting in an infinitely
long annular duct due to monopole and dipole distributions given
by Eq. (316) and {3.27) respectively. Following the analysis
given in the Appendix, the pressure at r due to an elemental
monopole S g (ro) is given by

o
A.p; ir) = (Bkaopo/znﬁgf Gc'g(w ye it Z e~im’8, exp (ika g /V)
mt

1 im(8-6 )
XZ z m e o Emu(r) Emu(ro)
ns=w u.—.—g mu B

o

.,k - s
X explik " (z-z ;] expl( 1ka°t}

db
X \-i—'c-o ch dro de(; dw (4.1’

REPRODUCIRILITY o)
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and that due to dipole Bg (ro) is given by

Bp V' [ 4 o -im’6
Apg () = = ‘7%"'_l-u1,g(w 167 v 2y ’:E; o
Zo m

X exp(~im'coQ/V)

) T, .

{ j im(9-6)
X Z 2 — e o Emu (r)Emu( ro)
m== u=0 4n Eo Amu

x exp{ikt (z-zo)}°exp(-ikaot)

X dt’,o dro dOo dw (4.2)
where ki = k_ (ta - M_), ka = (nBR+w )
z 2 0 0 .
Bo
and « = {1 - (k. /K)21Y

o mu
In equations (4.1) and (4.2) , upper sign is chosen for down=-

stream propagation and the lower sign is chosen for upstream

propagation.

The effect of all the sources in the rotor region is accounted
for by intcegrating the right-hand side of Eq. (4.1) and (4.2)

between the limits

< <
rh < ro _:rt

0 < ] 27

{A

-c/2_<_ Co < c/2

whgre 8 = zo/cosk

24
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In carrying out the integration over eo, we note that

27 27 if m=-m’'
- 4

f exp{-i (m+m )eo}deo =

0 0 otherwise

Thus the muth mode of the duct pressure at (r,0,z) due to

monopoles in the rotor region can be written as

pg,m”(r) = IﬂuK J(]r (w )e_i¢g‘Emu(ro) I,

. .y .
X Emu(r) * exp{imd + ik z - 1ka°t} dr _du

where (4.3)
c/2
. + .
Ib = .f- exp{lco(kao/v - kz cosA) } X fg%; + ibgQ/v} dco
-c/z (4-4)
and that due to d;poles as
d O t A .
Pg,mu'™) = = a ff g (0 veHyg
m cosA £
X {E_::— + kz sznA}Emu(ro) I,
‘0”0
. + .
X Emu(r) * exp{imé + ik z -~ ika t} dr dw
(4.5)
where c/2
x
Y(Z . w )eex {1C \—- - k_ cos))}d
Ty = o P z %o (4.6)

-c/2
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The Equations (4. 3) and (4.5) can be written as

oo

. +

Ppy = J{ AMu(w ) exp{l(me—kaot + kzz)}Emu(r)dw (4.7)
where e

Bp a A .

- 0 0 -i¢
Amu(m ) = —_— uc'goe g Emu(ro)lbdro (4.7a)
4"aAmu
*h

for acoustic propagation due to monopole distribution in the

rotor region, and

B P
p A 4 '
B (0) = = — 0 u, Ve 19, M COSA 4t Sinn) (4.7b)
41 —= A o
B "mu r
0 h

X Emu(ro)Izdro

for acoustic propagation due to dipole distiibution in the
rotor region. The superscripts+ and ~ respectively indicate
wave propagation in the downstream and upstream regions of the
sources.

The speed with which a wmode propagates in the axial direction
. . + .
is given by aok/kz Since kz depends upon o and Mo as given in
Iq. (4.2) , let us consider the various conditions governing

wave propagation or decay.

a) mode wave number kmu < k/Bo:

The value of o for this case is real and positive, leading
to real values for k;. Consequently, Eq. (4.7 ) indicates

26
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b)

c)

that the modes propagate upstream without decay
for all real and positive values of a. However,
the propagation in the downstream direction takes
place only when a > Mo.

mode wave number kmu = k/Bo:
The value of o for this case is zero, and we find that
the mode propagates only in the upstream direction with

a speed of (a/Mo)(l-M;).

mode wave number kmu > k/Bo:
For this case we can write

i1 k .
kz = ""'2 (-’-l(l - MO) .
SO

with o = |1-(8k, /k)?|”

Wwe find that the mode propagates only in the upstream
direction. However, the amplitudes of pressure and
axial perturbation velocity in the mode would decay as
exp { kaz/B2?} , where z is the distance from the rotor
and is negative in the upstream region. Since a
increases with the mode order, we note that higher

order modes decay at a faster rate.

¢ 8
g¥ D500
e B
e G
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4. 2 Effect of duct termination upstream of rotor.

Let us now consider the situation that the duct has infinite
length on the downstream side but is terminated at a location
z = -2, upstream. The muth mode of pressure wave in the upstream

direction due to sources in the rotor region is given by

T o= Jr A" (0 ).exp{i(mé - ka t + k;z)}vﬁmu(r)dw

-f p’;u (w )dw (4.8)

where A;u (v ) corresponds to superscript (-) in Egs. (4.7a) and

(4. 7b ). Depending upon the impedence of the open end, the pressure
waves will be reflected and travel back giving rise to right-
running waves in this region upstream of the rotor. The pressure

in each muth mode of such reflected waves can be described by
?

+ o . o o .
Py ™ Apy, (@) exp{imé ika t + ik, (z+2)} Emu(r)dm

- ‘J- p;uiw )dw (4.9)

i
where A+ is a complex constant which depends upen A-, 2; and the

impedence of the open end. The superscript (+) denotes that the
above equation applies to the reflected right-running waves. We
note that z is measured from the rotor, whereas the origin of these
right-running waves is at the open end given by z = =%,

: 28
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The axial acoustic perturbation velocity u~ due to pressure

waves given by (4.8 ) or (4.9 ) is evaluated from the linearized

momentum equation in z direction

9 ..t 9 .t 19 %
e tU 3u Tk (4.10)

where U is the mean axial velocity of the stream. Using Eqs.

(4.8 ) and (4.9 ) for p° we obtain

+ *
w (w) = e Py
M k-Moké Po 3o
{ ' ‘
1 po(w) h~M k. ‘
- e M wilh P ' (4,11)
X Po %o kz
Tha factor xi in termed an the "upecific modal impodeonce ratio,"

The perturbation velocities in the circumferential and
radial directions are not considered since they do not carry

acoustic energy across ‘a transverse section of the duct.

To determine the pressure and velocity at the duct termination
at z = -2, resulting from an muth mode of left running pressure
wave, we follow the mekhod suggested by Morse in Ref 8 and elabor-
ated by Kaji in Ref. 9. We assume that the duct is terminated
at z = ~2 by an infinite transverse flange, but extends to infinite
length in the positive z direction as shown in Fig. 2. Considering

a single muth mode of fluctuating distribution of axial velocity

.of the type
29
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: Yy = Y "By (r) sexp{ ~i(ka t - mo) }

over the annulus r, < r < r.,
it is shown in Ref. 9 that the resulting pressure di-«tribution
over the annulus can contain other radial modes thau Emu(r)‘

In terms of modal representation, we obtain

Ppu= ~Po? u °exp{-1(ka t - mo)}

0 0 myu
| X :z: Lmv v () (4.12)
: V=0

The subscript v indicates all the radial modes resulting from
1 - the radial mode u describing umu’ The open-end radiation impedence
ratio g#v is discussed in detail in Ref. 9, and is given by

. a L0 T, (1)
c:v’ %"'(_/ ( tdt

T _kZ)li
where A . = f {E (r)}z-rdr
and Imu('l') =r-/ Jm(Tr)°Emu(r) *rdr (4.13)
h

Based on coupling impedences c:vcomputed for a plane wave by Morse

in Ref. 8, we assume

! Y u
: CPfl\) << cmu
{'-‘.' to simplify Eq. (4.12) to
p.. = =pa ot (4.14)
mu 020 "Ymy’ *mu ¢
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Noting that the pressures and velocities at z = -2 in the above
equation are obtained by summing the left-running and right-running

waves, we obtain

- 4 .

pME(w ) + p i (w )
+
my

" (4.15)

u‘u(m)+ u () 0 o mu

n

. . +
Substituting for pmu(w') from Eq. (4.11) into the above, we get

u () -+ !
mu « - = x‘ + CME ( )
uMu () x * cmu
Using Eq. (4.11) we can also obtain
+ + +
gmﬁw ) X uhum>)

@) X () . 4an

+
We note that x~ and c;u are functions of w .

At high frequency i.e., when k + =
k
B 2

0

a+.1, 'k: > (£1-M )
i’ o
X" > 1 ang gy, > 1

then we note from Eq. (4.16) and (4.17) that both
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+ +
un:u (w ) and p,zu'(w ) - 0
L (w ) Py, (w )

which means that the muth mode passes through the open end
without reflection. However, xt frequencies near cut-off i.e.

when k + B k_ from above:

H
kM
o+ 0, k:-h--—-?- and xi-r-n_]&._
Bo2 )

then we note from Eg. (4.16) and (4.17) that both

+ + '
u (w ) p,. (w )

iy and -ZH > -1

Y (w ) Py (w )

which moans that tho mpth modoen near cut=off do not panag through

the opon ond and arce comnlotely reflected back into the duct.

AL hitement bt e Foorpionelaon the valun of !,m“

plays an

important rolo in detfining the conditionn ot tho duct cntrance bareed
on whiteh we can onlimato the acound fe rddintion Lo farfield,

ror ovamplo, tho volocily fluctuatulon al 2 v =4 in the muth '

mode given by

- +
umu(w) - umu(m) + um“(m)

REPRODUCIBIL
reduces to ITY OF
ORIGINAL PAGE s pongE

32



+ - —
X =X P
u  (w) =

mu
my + m -
x + Cmu poaox

(w)

using Eqs. (4..1) and (4.16).

-ubstituting for p;u (w) fror. Eq. (4.8 ), we obtain

-]

- + -
(w) f P @) X X
u w =

- °F
™ J pax X + r,,‘;u

X exp{i(mé - ka t - kzn)}-Emu(r)-dw (4.18)

We note that velocity u;u in the muth mode travelling upstream

' ) to the duct entrance together with reflection due to impedence

u
mu

above equation.

¢t , gives rise to the resultant velocity umu given in the

i,
.
i

—
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4.3 Far Field Radiation from the Duct Openirg.

In the preceeding subsection,we calculated the muth mode
of axial acoustic velocity at the duct opering due to sources in
the rotor region taking into account the impedence of the duct
opening. To calculate the far-field pressure at a point (R, Y)
as shown in Fig. 2, we follow the method suggested by Tyler and
Sofrin in Ref. 6. The radiation at (R, ¥ is considered to be
that from distributed monopoles of strength 2umur d6 dr, the
factor of 2 being due to the fact that radiation only to the outside
of the flanged duct is considered. Tyler and Sofrin ignored
reflections at the duct opening and used the velocity in the
upstream travelling waves given by Eq. (4.1l) to estimate these
monopoles. 1n the following analysis, we included the duct open-end

impedence and the resultant velocity given by Eq. (4.18).

The farfield pressure at a point (R,Y) due to a sorrce of

strength 2u__r 460 dr and curcular frequency ka° located at

mu
(-2,9,r) is given by

(-]
ikh
. e
APmu(R' V) = /-lkaopo {2umu (w)r dedx"}m dw (4.19)

- 00
From Fig, 2, we note that the distance h from the source is
given by

h = {R*+ r? - 2rR siny cose}l’

~ R ~ r cosd sin¥, for small values oi r/R.
34
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The pressure at (R,Y) due to all the distributed monoples
at the duct opening is given by integrating (4.19) over the area

of tae duct and we obtain

<o r

€ 2n
[ eikh
Pmu(R,?) = ; —1kaopo- p 2umu(w) r 46 dr dw
o “h

A wh .
(4.20)

Sukstituting the value of h in the above equation, and ignoring

higher order terms we get

- ® t LA .umu(w)
Pmu(R,‘l’) f f f(-lkaopo) -;;R—-
s N

X exp{ikR - ikr sin¥ cos8}-r dé dr dw (4.21)

Substituting Eq. (4.18) for umu into the above Equation and

noting that

2u .
.Zrexp{i(me - kr sin¥ cos8)} de = (-i)® 2nJ (kr sin V)
the Equation (4.21) becomes

+ -
- _sym+l K X = X -
Py (Re ¥) }{ (=) - °F A
- QD

(w) 'Imu (k sin¥)

H U
RX X + Cmu
X expli (kR - ka t - k_ 2)} dw ' (4.22)
ry '
where Imu (k sinV) = [ Jm(kr nn‘k’)-Emu (r) r dr,
h

a notation previously employed in evaluating cxu .
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The total pressure at (R, Y¥) due to all the (m,u) modes propagating
in the annulus is given by

P (R, Y = Z z Py ¢4.23)

FIN ] Hw—-n
We note that the me - «:quare value of pressure given above is ;
equal to the integral of its spectral density. Hence, !

fd'p(v) dv = p? = pp* (4.24)

where v = kao = nBRA+w

and u - .ouoo‘l,O,l-.u-o

The right-hand side of above equation, daefined by Eqs. (4.22)
and (4.23) is a function of (nBQ+w), and leads us to the
computation of spectral density of farfield pressure at circular

frequency v , and we obtain

36 .
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¢ (v) - {f rs}* . {f ps} ¢, (0 (4.25)

due to monopole distribut.on in the rotor region and
d = d)* . al
¢3(v) {e ¥ (g% 8, (4.26)

due to dipole distribution in the rotor region.

Where
S + -
- (-1)™* x X - X :
£ Rx- x+ " z;" Imu(k sinV), (4.27)
mu
Bp a rt
8 0 0
mu r,
and b o
d B © m cos A *
Fm e— V{-—-—-— + k~ sink}- E  (r)) Iz dr
] ko R ‘ B r z my' "o o
w 7 Ay n 00 3
'(4.29)
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5.0 RESULTS OF COMPUTATIONS AND COMPARISON WITH

EXPERIMENTAL MEASUREMENTS

Based on modal propagation within the duct and reflectionec
at the open end, radi~tion to far field from the small scaie

fan is computed using the equations derived in the preceding

sections. The small scale fan ccnfiguration is sketched in

Fig.l; and its detail description is given in Ref. 1. The

results of such computations are discussed in this section, and

are compared with measurements.

In our acoustic computations, the fan data and other physical

quantities used are as follows:

B =15, rh = (0.249 ft., r

{(7.59 cm) (18.23 cm)
hub pitch tip
Blade chord (c¢) 0.125 ft. 0.117 £t. 0.115 ft.

(3.81 cm) (3.57 em) (3.51 cm)
Stagger angle (A) 48° 63°  69.8°

U = 83,5 ft/sec, P, = 0.002378 slug/c.ft.

a, = 1128.6 fi/nrec
(25.45 m/noc) (0.001226 aram/c, am)

(344 m/soe)
" The support spider located at 7 in, (17,78 om) downstroom of

the rotor has 8 vanes of 1.625 in. (4.13 cm) chord and 0.25 in.,
(6.35 mm) thickness. '

Rostricting our attontion to nulse luvels at blade passing
frequency, we have

K = D 21BN

&= = 10. 6 por ft. (34.33 per motor)
% %
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From upstream mode cut-off condition

k > Bokmu'

we find that only the following mu modes need be considered:
m = "4,..0."1.0,1,0...-4

u=0

From the relation g+m = B, we note that each gth component g.ves
rise to the corresponding mth mode. Conséquently, the values of g
need to be considered are between 1l and 19. For each of the

(mu) modes listed we computed the radiation impedence c:u of the
open end of the annular duct, using the method described in the
preceding section. The real and imaginary parts of c;u thus

computed are shown in Fig.3 ',

In the experiments carried out on Rao Fan-2 in the anechoic
chamber at NASA-Ames Research Center, there are no discernable
upstream disturbances except for turbulent fluctuations in the
inflow. Consequently, we consider the random moncpole and dipole
distributions due to blade thickness and blade loading resulting
from the interaction of the random velocity fluctuations with the

rotor.

The turbulence measurements taken at the fan inlet (private
communication from Mr. B. K. Hodder) indicated that the mean square
value of velocity fluctuations in the axial direction was 0.75%

of the axial valocity of 83,5 ft/sec. (25.45 m/sec) Nearly the



same intensity was measured for the velocity fluctuations along
the circumferential direction. Consequently, for our acoustic
[~}

computations we used

(uf,}‘:‘-'('u;}lj = 0.6263 ft/sec. (0.1908 m/sec)

Based on measured auto-correlation function for axial velocity
fluctuations and a "frozen-convected" assumption with a convection
velocity of 83.5 ft/sec (25.45 m/sec), we obtained lz = 25 in.
(0.635 m) for us in our computations of the turbulence spectrum.

A value of Lg = 3 in. (7.62 cm) is assumed to conform with our
earlier computations prescnted in Ref. 1. The spectra of the
turbulent fluctuations, ¢uL'g and ¢uc'g are then computed from
Eq. (2,9), for substitution in Egs. (4.25) and 4.26)., The mean

square value of blade lift distribution computed from Eqs. (3.17)

and (3.19) for w=0, is ghown in Fig. 4.

Tn the preceding section, we aiscusacd the left and right
running sound waves resulting from the acoustic aources in the
rotor region, which in turn depend upon the random velocity
fluctuations met by the blades. To examine the effect of the
particle velocities in the pressure waves on the generation of
the acoustic sources, we carried out the following calculations.

Based only on u (i.e., inflow turbulence) we obtained u;

FRPYe ]

+
from Eqs. (4.8 ) and (4.1l1), and then Yy from Eq. (4.16) for

u

each value of g and corresponding mode (mu). Since these velocity
components are random, one can compare only their spectral

densities, which depend on radius due to the function Emu(r) in

40



in Eq. (4.7). From the behavior of Emu(r) for each of the muth

modes considered as shown in Fig. 5, we note that the velocities

u;u are largest at tip radius. The spectral density of P,
&

14
also is a function of radius as can be seen from Eq. (2.9 ).

Consequently, we calculated ¢h- ' '¢u+ and ¢h at w = 0,
mu mu A,9
and r = X and listed them in Table 1, We observe that ¢
4,9

dominates and similar situation can be expected, wheﬁ we consider
the outcome of monopole sources due to the velocity fluctuations
uc,g‘ Consequently, we can ignore the interaction c¢f propagating
sound waves with the blade row, and justify the use of lgs. (4.25)

and (4.26) with the corresponding values of ¢

a and ¢u .

c,q P
From the blade loading based on the random fluctuations of
u, , we computed sound pressure spectrum according to Eq. (4.26)
at distance R = 7 ft (2.12 m) and angle VY ranging from 0 to w/2.
To reduce the amount of computational work, we restricted our
attention to the spectral density at the blade passing frequency
by setting w = 0 and v = 27BN in Eq. (4.26). The sound pressure

levels thus computed are shown in Fig.6.

In computing noise from blade thickness effect according to
Eq. (4.25), we used a blade profile described by its thickness
distribution b(;) given as

% b(g) = cgnstan& (1 + %50 {~log(l + %50 + log 2};

with «¢/2 < ¢ _<_§-
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By choosing 0.27182 for the constant in the above eguation, we
obtain a profile with a rounded leading edge and a maximum thick-
ness of 10% of chord occurring at 37% from leading edge. The
source-sink distribution e(g) is obtained by substituting )
b(z) from the above equation andt:c'g from Eq. (3.4) into .

Eq. (3.14). The results of our computations for farfield noise

due to blade thickness effect are also shown in Fig. 6.

The SPL dB levels shown in Fig. 6 for noise from the blade
loading and blade thickness are from the spectral density per
Hz of the acoustic pressure at blade passing frequency. Since
the fluctuations of u and u, are considered random, one can
add the mean square values of sound pressures from these two
contributions to obtain the combined effect. However, we observe
that the noise contributed from blade thickness effect is neg-

ligible in comparison to that from blade loading.
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The experimental data given in Ref. 2 show the spectral analysis
obtained using 25 Hz band-width. From our previous computatins
of sharp peaks in sound pressure arcund the blade passing
frequency, as re;': ~d in Ref. (1), we can assume that integration
over a 25 Hz band-wiuth leads to a spectral density 12.1 dB higher
than those computed from Eq. (4.25) or Eq. (4.26) at the blade
passing frequency. The sound pressure levels thus estimated are
shown in Fig.6 along with the measured data. Apart from the
noise level, which is proportional to turbulence intensity,
the theoretical estimates do not show. the strong directivity

found in the measured data.

We alsc computed the acoustic radiation to farfield from the
sources in the rotor region, completely ignoring the effect of
the duct, for the sake of comparison. The sound pressure levels
thus estimated are shown in Fig.7 and we note that they do shcw

the type of directivity observed in the experimental data.

The inability of our theory in predic%ing the directivity
of noise from a ducted fan can be due to any or all of the

following reasons:

(a) The effect of the confining duct and its finite length
are exaﬁined in this report by considering the radiation impedende
of an annular duct terminated by an infinite flange, as sketched
in Fig. 2. The duct confiqufation used in the tests, shown in

Fig. 1, is a cylindrical section upstream of the rotor, and is

REPRODUCIBILITY OF THB
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annular downstream. The propagating modes, and the open-end
impedence for each of these mcdes in such a duct configuration

may Be'different from those considered in this report. Modelling )
the bell-mouth configuration of the fan inlet by an infinite

flahgé can be yet a suitable method. Even though the computations
f;r a plane wave (i.e., m = y =0 mode).presented on page 472 of
Ref. 10 show that the absence of the flange does not appr .ciably
alter the radiatipn impedence of the duct opening, there is no
indication that similar behavior exists for highe; osder modes.

(b) An ( mu)th.mode incident on the ope. end of the duct can
give rise to varinus other radial modes. These (m,v)th modes
irrespective of duct cut off conditions can affect radiation to
far field. 1In our analysis we ignored all such cross-coupling
of modes. Computations for a plane wave presented on page 336 in
Ref. 8 show that there is negligible cross-coupling at high
frequencies. However, there is no indication that cross-coupling
can be assumed negligible for higher order modes. -

(c) The strong directivity occuring in radiation from blade
loading directiy to farfield (as shown in Fig.6 ) éppears to be
due to the dipole nature of the sources. In evaluating the farfield
radiation from conditions occuring at the duct entrance, we con-
sidered only the axial component of the acoustic particle velocity
at the duct termination and the corresponding monopole sources.

We have ignored the gradients of velocity, and thus lost the dipole
character of the scurces. In particular, we have -not included
the tangential componoents of the particle velocity and its gradient

in tho conditions ocouring al. the duct oponing,
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CONCLUSIONS AND RECOMMENDATIONS

From the analyses and computational results presented in

this report, the following conclusions can be made:

1. Consideration of chord-wise distribution of the blade
lift loading is important in evaluating sound at wave lengths

comparable tc the blade chord.

2. The farficld noise, predicted under the assumption of an
annular duct terminated by an infinite flange, does not show
considerable directivity. On the contrary, experimental
measurements indicate about 10 dB drop on the sideline from

that on the axis.

3. Sound pressure levels computed for an axis point including
the effect Hf finite duct length upstream of the rotor is
comparable to those computed for a free rotor in the absence

of a duct.

4. The acoustic particle velocities in pressure waves reflected
at the duct opening are negligible compared to the inflow
turbulent velocity fluctuations based upon which pressure waves
propagating upstream towards the duct upening are calculated.
consequently, the second order effect on sourc' 3 in the rotor
region due to intaraction of the propagating pressure waves

with rotor blades can be ignored.
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Comparison of theoretical estimates with experimental measurements
and a critical examination of the assumptions employad in our
analysis lead us to the following recommendations for future

effort in fan noise evaluation and reduction of far field noise.

1. Space-time correlztion measurements of flow in the duct

are of prime importance in making theore£icdl predictions of
noise from the ducted rotor. The epéctral density distribution
of fluctuations of ug and u, depend upon the measuxements of

ze and the autocorrelation function. Even 1 small steady-state

velocity deficit of 0.5 ft/sec (0.152 m/sec) when occurring over
a small region of the fan inlet, can give rise to on axis-noise
comparable to that presently estimated f£rom tlie inflow turbulence.
Detailed measurements at fan inlet, as suggested here, can detect

such velocity discortions.

2., The assumption of an infinite flange at the opening of an
annular duct is employed in our ana;ysis to avoid complexity
and excessive computational effort. Also, the "cross-coupling”
of radial modes at the duct opening is assumed negligible. The
discrepancy between the predicted and experimentally determined
directivity patterns may be due to the above simplifying
assumptions, and also partly due to some other noise sources
overlooked in our analysis. Even though our primary interest

is in reduction at its sources, modal transmission of acoustic
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waves in ducts with cross—-sectional discontinuity similar to
that occurring in practice, and refiection of higher order
modes at the duct opening requires further examination to

formulate relianle fan noise prediction methods.
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APPENDIX

Pressure waves in an infinitely long annular duct due to

~

an isolated source.

Let us consider a.monopole source

5(t) = gee ikagt (A1)

inside an annular duct s r<rx, with an axial inflow velocity Ua'
The governing oquation for prossure is the acoustic

equation which has undergone a Galilean transformation since

we have a moving fluid of subsonic Mach number Mo = U./ao.

1 32 2M 32 2 :
= =2 - vp+ KRB, g2 9—1:- - o, 33 §(r-r,) §(6-6_) & (z~z_)
aos ot ao 9zot °Z ot

1 ! \ \ , " (A2)
where W = & _..L1 3 1 37 3 :
or® r 9r r? ar? g2

> —

The right hand side of Equation (A2 ) represents the

Lichthill source term. The boundary conditions on pressure are

)
35-- 0 atr= r, and r.

49



Uéing the Lorentz transformation

r = R; 6=0, 2 = BZ, t = (T -MOZ/aO)/BO

where Qf- l—Mi, the £q{4.2) can be written as

d 2 2 2
1 3*p_§3%_ . 3a_ .1 293" .3 (p
a? 97 aR? AR R?2 ©* 3522

k ~
- 'iEBa"p" 5°6(R-R )60 ) 8§(2-2) exp{-ika (T-M_2/a ) /8]

(a3)
and the boundary conditions become
P . -
T 0 at 3 r, and Lo
Woe sock tho solution of Eq. (A3) in the form '
Sn 'ka ~ ('.?R) .
P ig 30,5 9 i/R -exp{-lkaoT/gg (Ad)

(o]

where the Green's function g(R/RO) is defined in the transformed
coordinates.

Substituting Eq. (A4) into Eq. (A3),we find that g(R/Qﬁ

satisfies the differential equation

32 1 9 1 32 9% . x?(°
—-z""" — % == % s —> G (R/R_;
3R R 3R R?Z 302 p2z? g2 0

= ~6(R-R)) §(0-0 ) 6(2-20)-exp{ikM°Z/Bo} ' (a5)
and the boundary conditions

]
51 = 0 at R=yr and r,.
R
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Solving Eq. (A5) subject to the boundary condit_:ions (A6)

by the mcthod of sepacation of variables, we obtain

< . .
g(R/Ro) = L z —ﬁT e:|.m(9-60)
m==w =0 B, mu

X E‘»m (R)Emu(Ro)‘ exp (ikMozo/Bo)

ka
—B-' (Z—Zo) }

0

. X exp{#i (A7)

where

= {1-(8gk /R,

In Eq. (A7) we take + sign for the region downstream (on

right) of source location while for the region upstream of source

location (on left), the negative sign is chosen.

Rewriting in original variables, the Eq. ( A7) becomes

glr/r)) =z —i im(e-e,)
mue=o =0 41r]-52- A
B “mu

(o}

X Epy (F)E,, (£)) cexp (ikM 7 /8%) sexp{tika(z~z,)/8])

51 (8)
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and the acoustic pressure at (r,0,z) due to a monopole is given by

ps(rlelz) = "i}-g-;a‘opo S.g(r/ro)

X  expi-ika t) *+ exp(-ikM z/B}) (A9)

Let us now consider the acoustic pressure at (r,0,z) due to

a dipole 3(t) = 5e-1kaot at (r,9,z), D being the strength of

the vector dipole and ka, = (nBQ+w') .

The acoustic pressure due to dipole is easily determined by
differentiating Eq. (4.4) in the direction of dipole axis and re-

placing the monopole strength by dipole strength. Thus we obtain

d ik 5 .
p (R) = -13-;.-aop° DV g(R/R )exp. (-1kaoT/Bo) (A10)
where
- 7 9 %29 T 9
V 2 i =+ 3= +k
o] aR Roaeo 520

Writing in original variables, Ej. (4.10) becomes

~

d k 3 S A )
p(r)= iFo‘f‘opo {D, 5%0 * Dy r?%_o' + D, Bo"Sg:}

X exp(-ika t) X exp(-ikMoz/Bz) (A1ll)

where (D_. De, Dz) are the components of D in r,0 and 2z

directions respectively.
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Table I. Spectral intensities of inflow turbulent velocities
and the particle acoustic velocities in the .
propagating duct-modes.

Mode ¢ " ¢u_ ‘ ‘ ¢u+
my L.g mu ) my
(turbulence) (incident on (reflected from
‘ duct opening) duct opening)
| -5 -8 -8
(=4,0) 430 (1075) 1.121 (10°9) .068 (1078)
(=3,0) L .480 (1079 1.464 (10”9 .227 (1078)
(=2,0) .584 (107°) 1.638 (10°%) .066 (10”8
(-1,0) .605 (10™2) 1.623 (10°%) - ' .o67 (1079
, (0,0) .687 (107°) 1.929 {107%) .130 (107%)
Q.”
(1,00 -~ .786 (1077) 1.796 (10~%) .074 (1079)
(2,0) .909 (107°) 1.276 (107%) .049 (1073)
(3,0) 1,063 (1079) 2.280 (1079 .349 (1078
i (4,0) 1.250 (1077) 0.152 (1079) .009 (1079

; Note: @, above has units of (ft/sec)?

one foot/sec = 0.3C48 m/sec
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