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INTRODUCTION

The oxidation behavior of TD-NiCr and TD-NiCrAlY alloys have been studied

at 2000 0 and 2200OF in static and high speed flowing air environments. The

TD-NiCrAlY alloy preoxidized to produce an Al 2 0 3 scale on the surface showed

good oxidation resistance in both types of environments. The TD-NiCr alloy

which had a Cr 2 0 3 oxide scale after preoxidation was found to oxidize more

than an order of magnitude faster under the dynamic test conditions than at

comparable sta u c test conditions. Although Cr 20 3 normally provides good

oxidation protection, it was rapidly lost due to formation of volatile CrO3

when exposed to the high speed air stream. The preferred oxide arrangement

for the dynamic test consisted of an externai layer of NiO with a porous

"mushroom" type morphology, an intermediate duplex layer of NiO and Cr203,

and a continuous inner layer of Cr 2 0 3 in contact with the alloy substrate. An

oxidation model has been developed to explain the observed microstructure and

overall oxidation behavior of the alloys.

To fully document the results of this research effort, three journal

articles have been written. Copies of these articles have been included to

give a summary of the important experimental findings of the work performed

under this grant. The titles of these articles are as follows:

1. "Oxidation Behavior of TD-NiCr in a Dynamic High Temperature

Environmc nt", Met. Trans., 5, 1001-11 (1974), by D. R. Tenney,

C. T. Young, and 11. W. Herring.

2. "Interdiffusion in the Ni/TD-NiCr and Cr/TD-'.'!Cr Systems," Met.

Trans., 5, (1974), by A. V. Pawar and D. R. Tenney.

3. "Dynamic Oxidation Behavior of TD-Ni.Cr Alloy e.ith Different

Surface Pretreatments", Met. Trans, 5, (197;), by C. T. Young,

1). R. Tenney, itoo II. W. Herring.
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A fourth paper 19 currently under preparation and will be submitted for

publication in the near future. A draft of that paper will be forwarded to

the technical monitor of this grant at the same time it is submitted for

journal publication.

In addition to the papers written on the stork performed under this grant,

a number of technical talks have been presented at national meetings. The

titles of these talks along with the location and data presented are given

below:

1. "High Temperature Oxidation of TD-NiCr and TD-NiCrA1Y in a Plowing

Air Environment", 77th National Meeting, American Institute of Chemical

Engineers, Pittsburg, Pa., June 25, 1974.

2. "The Dynamic Oxidation Behavior of TD-NiCr", (with C. T. Young and

H. W. Herring), Annual Pall Meeting of Metallurgical Society of

ATME, Chicago, Ill., Oct. 1-4, 1973.

3. 'Oxidation Behavior of TD-NiCr in a Dynamic High Temperature Environment",

(with C. T. Young and H. W. Herring), Annual Spring Meeting of

Metallurgical Society of AIMS, Philadelphia, F la., May 29-June 1, 1973.

4. "Effect of Surface Pretreatment on the Static and Dynamic Oxidation

Behavior of TD-Ni.Cr", (with C. T. Young), Annual Meeting of the

Virginia Academy of Science, Williamsburg, Va., May 5, 1973.
	 's

5. "An Analytical Model for the High Temperature Oxidation of Thoria

"	 Dispersed Nickel Chromium Alloy", (with A. V. Pawar), Annual Meeting

of the Virginia Academy of Science, Williamsburg, Va., May 5, 1973.

6. 'Oxidation Behavior of TD-NiCr in a Dynamic High Temperature

Environment", (with C. T. Young), Annual Meeting of the Virginia

Academy of Science in Lexington, Va., May 5, 1972.



7. "Mathematical Model of the High Temperature Oxidation of TD-NiCr",

U

	

	 (with A. V. Pawar), Annual Meeting of the Virginia Academy of Science

in Lexington, Va., May 5, 1972.

NASA support of this research effort has been greatly acknowledged in

all talks presented and papers published.
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ABSTRACT

Oxidation tests of TD-NiCr alloy with different surface pretreatments

were conducted in a Nach-5 arc-jet at 12.00°C and 0.002 lb/sec, flowing

air environment. Extensive scanning electron microscopy and X-ray analyses

were carried out to determine the mechanisms responsible for the observed

oxidation behavior. The presence of atomic oxygen in the air stream plays

a significant role in determining the oxidation behavior of the alloy. The

rate of Cr 
203

vaporization by formation of volatile Cr03 is greatly enhanced

by the flowing conditions. The typical microstructure of oxides formed in

the dynamic tests consists of an external layer of NiO with a porous "mushroom"

type morphology, an intermediate layer of NiO and Cr 203 oxide mixture, and

a continuous inner layer of Cr203 in contact with the Cr-depleted alloy

substrate. The formation of mushroom type NiO is attributed to three basic

processes: (1) vaporization of Ni0 by dissociation into its elements,

(2) reoxidation of Ni vapor predominantly with atomic oxygen, and (3) con-

densation of NiO at elevated sites on specimen surface. The rate of ox-

idation is controlled by an interplay between the rate of loss of NiO in

i
the vaporization-condensation process and the rate of growth of the inner

i	 y
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Cr203 layer. Surface preparation has a significant influence on the

morphology, order and relative amount of NiO and Cr 203 formed during the

initial stages of oxidation, but becomes less important as exposure time

increased. The observed oxidation behaviors can be explained in terms of

a general modal encompassing the basic oxidation and vaporization-condensation

processes.



INTRODUCTION

Ni-20%,Cr-2%Th0 2 alloy supplied under the trade name of TO-NiCr has

been considered for use in advanced jet engines and as a part of thermal

protection system for space shuttle because of its xeported high strength

and good static oxidation resistance at high temperature (1-10) . The

addition of submicron Th0 2 particles to the Ni-Cr alloy inhibits grain

growth and stabilizes the substructure of the alloy thereby retaining high

strength at elevated temperature / -
-4)

. The addition of thoria particles

also improves static oxidation resistance by promoting the selective

oxidation of Cr to form protective Cr20 3 , and by decreasing the growth

rate of Cr 20 3 (6-9) . Surface preparation has a significant influence on

the oxidation behaviur of the alloy. Surface grinding enhances the for-

mation of Cr203 whereas electropolishing promotes the formation of external

NiO and inner Cr 20 3 subscale(8-12).

Under high temperature high speed flowing gas conditions a substantial

increase in the oxidation rate has been observed as compared with the

results of static testing. Gilbreath( 
13,14) 

has emphasized the importance

of atomic oxygen which existed in the re-entry environment, and has demon-

strated the accelerated degradation of the alloy in dissociated oxygen.

The result of Lowell at a1
(15) 

indicated that the loss rate of material in

a 1-atmosphere, Mach-1 turb'e gas stream at 12000C was about100 times

greater than that of static tests. Enhanced oxidation in Mach-1 burner

gas stream at 20000F was also observed by Johnston et a1 (16) . Centolenzi

et a1 (17 ' 18) have reported the increased oxidation in a Mach-5 arc-jet gas

stream, but no detailed mechanism has been given.
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In a preceeding paper (19) the oxidation behavior of TD-NiCr (belt-

sanded surface finishing) in a Mach-5 arc-jet at 1200 0C wav reported. It

was demonstrated that the external Cr 203 formed during a static preoxidation

was not stable in the high speed gas flow and was rapidly replaced by a

layer of NiO with a porous "mushroom" type murphology. In that work metal

recession was measured. It was found that the substrate thickness decreased

rapidly at the early stages of oxidation, and decreased linearly with time

at a much slower rate in the later stages of oxidation. A model was proposed

to explain the observed oxidation behavior. To further confirm the proposed

model, a comprehensive metallographic analysis of the oxidation behavior

of upecimens having four different surface pretreatments was investigated

in the present study. Oxidation tests were conducted with emphasis being

placed on short time tests where the effect of the original surface condition

should be most important. The chronology of oxidation for each surface

preparation and Lest time was fully documented. The data thus collected

was combined with that reported earlier to provide a better characterization

of the oxidation behavior of TD-NiCr under simulated shuttle re-entry

conditions.

Cxnerimental Procedures

The TD-NiCr specimens used in this study were prepared from the same

0.02 inch thick sheet stock as those reported in the previous paper 1)).

The sheet stock was received in a recrystallized conditaon with a belt-

sanded surface finish. Specimen configuration and alloy microstructure

have been described in the same previous paper. To reveal the effect of

surface pretreatment on the oxidation behavior, specimens were given four

9

Y-'



3

different surface treatments prior to dynamic oxidation tests. 'ilia four

surface preparations added to the as-received specimens were: (1) electro-

polishing, (2) mechanical polishing, (3) eloeLropolishing followed by

static preoxidation, and (4) mechanical polishing followed by static pre-

oxidation. In this paper they will be abbreviate! as (1) EP, (2) MP,

(3) EP + P0, and (4) MP+ P0, respectively. Mechanical polishing was

finished through 600 grit SiC abrasive paper. Electropolishing was carried

out in a solution of 87 ml methanol, 8 ml H 250
4
, 3 ml TIN andand 7. m1 HP at

room temperature and 17 volts for 2 minutes. The static preoxidation was

conducted in air at 1100 0C for one hour. The purpose of this preoxidation

was to produce different surface oxides as starting conditions of dynamic

tests.

The dynamic oxidation tests were conducted in a Mach-5 arc-jet operated

with a mass flow of 0.002 lbs/sec. air. Details on the arc-heater equipment

have been described in the previous paper (T9) . The power to the arc-heater

was adjusted to yield a gas temperature sufficient to maintain a specimen

test temperature of 1200 0C under lamellar flow conditions. In general

it was found necessary to use lower initial power for the un-preoxidized

specimens, especially those electropolished, than for those which had been

preoxidized. During the initial few minutes of testing it was necessary to

continually increase the power to maintain a constant test temperature. Once

the metallic surfaces were covered with stable oxide scales with essentially

the same surface reflectance and emittance the power approached to a value

common to all the tests. Specimens were oxidized in the arc-heater for times

ranging from 12 seconds to 10 hours. All tests for times longer than 30

minutes were cyclic tests of 30 minutes duration followed by cooling before

J
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the next run. This procedure was repeated until the desired cumulative

exposure time was obtained.

The oxide phases present on the oxidized specimens were identified,

in situ, using standard X-ray diffraction techniques. Oxide morphology was

examined in a scanning electron microscope. Specimens were then sectioned,

epoxy mounted, metallographically polished,, and vapor deposited with a thin

layer of carbon. The microstructure of the oxide cross-sections was analyzed

using a scanning electron microscope equipped with an energy dispersive X-ray

analyzer (GDAX). Electron probe microanalysis was carried out using an ARL

electron microprobe operated at 15 KV and 0.05 }i amp, beam current. The

carbon layer deposited on the specimen surface was found to help eliminate

shifting of the electron beam at the metal/oxide interface. MAGIC computer

program developed by Colby 
(20) 

was used to correct the raw data.

i

y
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Experimental Results

The oxides produced on the tested specimens were identified in sil'u

by X-ray diffraction. The reflections from the alloy and oxide phases

detected after each exposure time for the four diffeeenL types of specimens

are listed in Table I. It should be pointed out that the us-recieved alloy

sheet had a very strong preferred orientation with (100) planes parallel

to the specimen surface. No (111) reflection was observed from the as-

received specimens, The (111) alloy reflection was, however, always found

from the mechanically polished specimens after testing or after static

preoxidatior.	 The presence aid this (111) reflection can be Laken as direct

confirmation of surface recrystallization. For static oxidation it is well

known that the effect of this recrystallization is to promote the selective

oxidation of Cr203
(12) . 

its effect on the dynamic oxidation behavior of

this alloy will be discussed later in this paper.

In the following sections each type of surface pretreatment will be

treated separately. Scanning electron micrographs showing the surface mor-

phology and oxide cross -section, energy dispersive X-ray analysis (EDAX)

patterns indicating oxide chemistry, and electron microprobe scans showing

composition profiles are presented sequentially according to the surface

pretreatment.

Electropolished and Preoxidized Surface Finish (EP + PO)

The oxides formed on the electropolished specimen during one hour static

oxidation in air at 1100 0C consists of an external layer of Nio, a continuous

inner layer of Cr 203 , and an intermediate layer which is a mixture of NiO

and Cr 203 . This can be seen in Figure 1, where the oxidized specimen

surface, oxide cross-section, and three EDAX patterns taken from different

J	 ^
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oxide layers are given, Multiple oxide layers are clearly visible in

Figure 1(b). The faceted and granular external oxide, shown in Figure 1(a),

is identified to be NiO frown the EDAX pattern of spot-3. The absence of a

thorium peak in the EDAX pattern indicates that thr. Ni0 grew externally °+v

outward diffusion of Ni I+ ions which reacted with oxr;en at the gas/oxide

interface. The oxide grains grew predominantly along certain crystallographic

directions, thus resulting in a faceted appearance with sharp grain ridges

u	 and valleys. The intermediate layer which appears to be porous and grainy

is composed of Cr 203 and Nio. The fact that a thorium peak is detected in

the corresponding EDAX pattern (sput-2 pattern) suggests that this oxide

layer is produced by internal oxidation. Solid state reaction between NiO

and Cr203 might occur to form NiCr 204' Iiowever, no spinel peaks were ever

detected in the X-ray diffraction analysis. Partial dissociation of NiO

must have taken place in this duplex oxide layer to provide for Nib and

0 ions required for the observed external growth of NiO and the internal

oxidation of the alluy. Counter to the flow of Nib ions there was inward

diffusion of vacancies. Formation of voids at this duplex oxide layer as

a result of vacancy condensation weakened the oxide aMierence, and is believed

to be responsible for the occational spalling of the external NiO layer. The

continuous inner oxide laver adjacent to the alloy is Cr 203 (spot-1 EDAX

pattern). Although multiple oxide layers were present on the specimen, only

NiO was detected in X-ray diffraction studies (Table I). Absorption of the

incident and diffracted X-ray beams by the external NiO reduced the intensity

diffracted by the inner Cr203 below the minimum detectable level. Low

magnification micrographs taken of specimen surfaces clearly showed the

alloy grain structure. Selective oxidation of Cr along alloy grain boundaries

greatly reduced the local external growth rate of NiO causing valleys to appear

on the surface along the original alloy grain boundaries.
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In the previous studies (19) , the stable external oxide observed on specim=q

after dynamic testing was a layer of porous NiO. As noted above, the external

oxide on the EP + PO specimens was a layer of solid Nio. Por this reason, tho

dynamic oxidation behavior of EF + PO specimens was studied in detail with

emphasis placed on short Lime tests. The objective was to characterize the

development of a stable oxide under the high temperature flowing air conditions.

The surface oxide morphologies formed on specimens after 12 and 15 seconds of

exposure are illustrated in Figure 2. It should be pointed out here that the

time required to heat a specimen in the are heater to the test temperature

was approximately 10 to 12 seconds, according to measurements made using an

optical pyrometer and using a thermocouple attached to the back of the specimen.

The micrographs in Figure 2 disclose that the faceted NiO which is stable in

static or°4a'^';on degrades rapidly upon exposure to the dynamic enviornment.

At 12 seconds of exposure, Figure 2(a), voids and cracks are seen on the surface

mostly along oxide grain boundaries. After 15 seconds of exposure, Figure 2(b)

and 2(c), large voids are observed at lower areas of the surface mostly at

oxide grain valleys. Some porous mass which is identified as NiO is seen to

condense at higher locations on the surface predominantly at oxide grain

ridges. Obviously, mass transport from oxide boundary regions to oxide grain

ridges has taken place at the specimen surface immediately upon exposure to 	 ;a

the high temperature flowing air. Grimley et al. 
(21) 

have reported that the	
_3

vaporization of NiO at high temperature is predominantly by dissociation of

Nio into its elements. Equilibrium partial pressures of Ni(v) and 0 measured

on NiO(s) under neutral conditions were reported to be two orders of magnitude

greater than that of NiO(v). It will be shown later (Figure 5) that the oxide
	 3

morphologies illustrated in Figure 2 may be observed only if specimens are

tested in a gas stream containing oxygen. It• is therefore proposed that the

if

{
I	 y
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observed mass transport phenomenon develops following three processes.

They are: (1) vaporization of NiO at grain boundary areas mainly by dis-

sociation of NiO into Ni(v) and 0, (2) reoxidation of Ni vapor, presumably

with atomic oxygen in gas stream, and (3) condensation oL NiO at raised

points on the surface. The stagnation layer under the present test con-

ditions was reported to be of the order of360 pm (24) . There are gradients

in oxygen concentration and in total pressure across the thickness of the

stagnation layer. Vaporization of NiO appears to proceed at a faster rate

at areas lower than the average specimen ,urface level where the -otal

pressure is somewhat lower under the flowing conditions. Consequently,

voids and cracks are observed mostly along oxide grain valleys, Reoxidation

of Ni vapor tends to take place at a greater rate at locations above the

average surface level where the oxygen partial pressure is higher. Therefore,

condensation of N 4 0 occurs mostly at higher locations on the specimen

surface where the rate of reoxidation of Ni vapor is greater than the rate

of loss to the flowing air stream.

During subsequent oxidation the vaporization-condensation process brings

about some drastic changes in the oxide morphology. The micrographs shown

in Figure 3 were taken of EP + PO specimens which had been oxidized in the

arc heater for 1 and 10 minutes, respectively. After one minute of oxidation,

the specimen surface is covered with a layer of very porous oxide, see

Figure 3(a). High magnification photographs and EDAX patterns reveal that

the porous oxide consists of numerous fine NiO crystals, with an appearance

similar to that sometimes observed for crystals growing under condensation

processes. The oxide cross-section shown in Figure 3(b) strongly suggests

that the surface oxide clusters develop by mass transport through the proposed

vaporization, oxidation, and condensation processes. The top portion of

4
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the original Ni0 which formed during static preoxidaLion degrades as a

result of prevailed vaporization. There are fine particles of NiO growing

on top of the corroded NiO layer as a consequence of condensation of re-

o;cidized NiO. The oxides underneath the degraded layer remain essentially

uneffected.

After 10 minutes of oxidation, most of the specimen surface is covered

with a layer of NiO, the top of which has a "mushroom" type morphology,

Figure 3(c). At some other areas, predominantly the areas near alloy grain

boundaries, NiO "mushroom" clusters smaller than those shown in the figure

were observed. This can be attributed to the fact that the original NiO

surface layer was thin at the alloy grain boundary regions because of the

preferential formation of Cr 203 during the preoxidation treatment. The

microstructure of the oxide cross-section at areas where large "mushrooms"

developed is given in Figure 3(d). The NiO clusters consisting of fine

NiO particles are supported by oxide stems which are the remains of the

original NiO. The mushroom oxide grows at the expense of the original Ni0

layer. Although part of the NiO condenses on growing mushrooms, a significant

fraction of it is carried away by the flowing gas. Most of the original

NiO disappears after about 30 minutes of oxidation. From this stage on the

e.xistance of mushroom oxide depends on the NiO in the duplex oxide layer.

As the NiO content in the duplex oxide layer is low (see spot-2 pattern in

Figure 1), the mushroom clusters start to reduce in size because the rate

of supply of Ni becomes less than the rate of loss to the gas stream by

vaporization.

Micrographs illustrating the topography and structure of oxide formed

on an EP + PO specimen after 2 hours of exposure are presented in Figure A.

These micrographs are also typical for specimens after 10 hours of oxidation.
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At this later stage of oxidation, most of the specimen surface is covered

with small mushroom type oxide clusters. 	 These small clusters exhibit a
3

relatively smooth surface as compared with that of the large mushrooms a

found in the earlier stages of oxidation. 	 A typical micrograph showing

the small mushroom type oxide is given in Figure 4(a). 	 A micrograph re- w

vealing the corresponding oxide cross-section is presented in Figure 4(b).
-z

Islands of large mushrooms were also observed on the specimen surface.

Local oxidation penetration was normally found underneath the areas where

the large oxide clusters formed. 	 An example is given in Figure 4(c) in which

three oxide layers are distinguishable. 	 At regions, such as the area shown
A

in Figure 4(b), where the oxide mushrooms and oxide mixture-have totally

evaporated, the inner Cr 20 3 i	 subject to rapid vaporization thus exposing the

Cr-depleted alloy directly to the atmosphere.	 Microprobe scans made at such

regions always show extensive Cr depletion in the underlying alloy. 	 In most

cases the Cr content is reduced to approximately 10-12% at the alloy/oxide
i

interface.	 When the alloy is exposed directly to the flowing air, rapid

internal oxidation takes place with both MO and Cr203 forming simultaneously.

A large fraction of the Cr-depleted zone is consumed until a continuous Cr203

inner layer is finally developed at the oxidation front• .	 This inner layer

effectively stops the inward growth of the oxide. 	 Figure 4(c) illustrates

a typical oxide structure after the formation of the Cr 203 layer.	 Microprobe

scans made at the penetrated regions suggest that there is a critical Cr

concentration below which the continuous Cr 203 layer does not form.	 This

critical value appears to be approximately 15%. 	 Results of a probe scan made

along the marked line in Figure 4(c) are shown in Figure 4(d). 	 The Cr content

at alloy/oxide interface is approximately 15%. 	 The Ni content in the inter-

mediate oxide layer is about twice that of Cr. 	 This, together with the fact

^--mod
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that no NiCr 204 reflections could be identified in X-ray analysis, indicates

that the intermediate layer is a mixture of Cr 203 and NiO. At the newly

oxidized areas, the NiO supply in the oxide mixture is replenished, and the

overlaid mushroom clusters will increase in size until this supply runs low.

From the above observations, it is postulated that for the later stages

the oxidation behavior of T p MCr alloy can be characterized by local ox-

idation which proceeds through the cyclic processes of (1) rapid oxidation

of unprotected Cr-depleted alloy until a Cr 2 03 inner layer forms, (2) external

growth of NiO mushrooms by vaporization-condensation process at the expense

of NiO in the duplex oxide layer, and concurrent vaporization of Cr 203 in

the oxide mixture, and (3) rapid vaporization of inner Cr 203 layer when

overlaid duplex oxide or NiO is totally consumed. The kinetics of Cr203

vaporization are greatly enhanced in the dynamic conditions. The Cr203

layer can stay intact with the alloy substrate only when protected by NiO

or oxide mixture. The depth of inner penetration appears to depend on the

extent of Cr depletion in the alloy substrate. It is therefore concluded

that in the later stages of oxidation the dynamic oxidation rate is controlled

by an interplay between the rate of loss of NiO during the vaporization

reoxidation-condensation peacess and the rate of formation of the inner

Cr203 scale which halts internal oxidation.

The effect of ThO 2 particles on the observed oxidation behavior is

not clear. The dispersive particles may promote the formation of inner

Cr203 layer. The Th02 particles which accumulated at the outer edge of oxide

mixture (see Figure 4(d)) may temporarily reduce the rate of vaporization

of NiO and Cr 203 . Additional work, however, is required before any conclusive

statement can be made about the effect of ThO 2 on the dynamic oxidation

behavior of TD-NiCr. The significance of the formation of porosity (see
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Figure 4(b)) in the Cr-depleted substrate is not clear either. The dis-

tribution of pore formation is nonuniform, and its effect on the oxidation

behavior can not be concluded.

To further enlighten the mechanism proposed for the formation of

mushroom type oxide, tests on EP + PO specimens were conducted in Mach-5

flowing N2 at 22000F for times ranging from 15 seconds to l hour. The

objective was to determine the changes in surface oxide morphology resulting

from high speed gas flow over the specimen where little or no oxygen was

present. X-ray diffraction patterns taken of the exposed specimens showed

only NiO and Or 203 reflections. No nickel or chromium nitride phases were

detected. Thermodynamic calculations also indicated the unfavorable formation

of nitride phases under the test conditions. Typical micrographs of the

exposed specimens are shown in Figure 5. After 15 seconds of exposure,

Figure 5(a), there is a rounding of the sharp NiO grain ridges and a

development of cavities at the oxide grain boundary regions. These cavities

are very similar to those developed during the initial stages of testing

in air (see Figure 2) and are presumed to have developed from similar

vaporization of NiO. After 10 minutes of exposure there is an increase in

the NiO grain size and a further opening up of the cavities in the NiO

layer, see Figure 5(b). The NiO layer disappeared first at the original

alloy grain boundaries where the NiO layer was thinnest. The exposed boundary

regions which are still covered with Or 203 are clearly visible in Figure 5(c).

The Or 203 oxide phase is stable in the N 2 environment because the formation

of volatile CrO3 is prevented due to the absence of oxygen. The surface

NiO disappears totally from the specimen surface at about 1 hour of exposure.

The above observations clearly demonstrate that the presence of oxygen is
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necessary for the redeposit-ion of NiO on the surface and the subsequent

growth of mushroom type oxide.

Mechanical Polished and Preoxidized Surface Finish QIP + PO -

The static oxidation behavior of specimens which were mechanically

polished through 600 grit abrasive paper was also studied. After: 1 hour of

oxidation in air at 1100 0C the specimen surface was covered with a 'layer

of globular Cr 203 approximately 1 to 2 pm in thickness (Figure 6). On

an etched specimen (not shown in the figure) a thin layer (0.3 fim or

less) of fine-grain recrystallized alloy was observed adjacent to the

external oxide. The existence of this recrystallized layer was also con-

firmed by X-ray diffraction analysis, The (111) reflection which was not

detectable from the specimen before preoxidation was measurable after ox-

idation (see Table I).

When PIP + PO specimens were exposed to the dynamic environment, the

external Cr 203 was further oxidized to form volatile CrO3 , Scanning micro-

graphs and X-ray diffraction patterns taken of short time exposure specimens

indicated that the Cr 203 layer was nearly totally vaporized after approxi-

mately 15 seconds. The rate of evaporization was greatly enhanced by the

flowing conditions, particularly with the presence of atomic oxygen in

the air stream. As Cr 203 disappeared from the surface, a thin layer of

NiO started to form at the Ni-rich alloy surface. The formation of a NiO

layer essentially sealed off rapid Cr loss through vaporization. During

subsequent oxidation rapid external growth of this NiO layer was observed.

Photographs shown in Figure 7 were taken of MP + PO specimens after

1 and 10 minutes of oxidation. After 1 minute of exposure, the specimen

P

1.
i
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surface was covered with a porous mushroom type MO oxide (Figure 7(a)

and (b)). The cross-sectional micrograph shows that the mushroom oxide

grows on top of a relatively solid Ni0 layer which is formed by external

growth. Under the Ni0 layer a duplex oxide layer resulting from internal

oxidation is observed. The fine-grain recrystallized surface layer provides

for numerous quick paths for internal oxidation, and hence delays the

formation of a continuous inner Cr203 layer. At this stage of oxidation,

no inner Cr 203 layer has yet formed at the oxide/alloy interface. As oxidation

proceeds, however, a continuous Cr 203 layer is eventually developed, and

internal oxidation effectively stops. Mushroom oxide clusters continue

to grow at the expense of the underlaid NiO. Experimental evidence of this

is provided by the micrographs shown in Figure 7(c) and (d), which were taken

from a 10 minute exposure specimen. Oxidation then proceeds in the same

sequence as that previously presented for the EP + PO specimens. It should

also be noted that the oxidation behavior here described is similar to that

reported in the preceeding paper 
(19) 

for specimens with belt--sanded surface

finishing. There is, however, a difference in the depth of internal ox-

idation at the early stages of oxidation (1-3 minutes). The belt-sanded

finishing resulted in deeper penetration presumably because of a thicker

recrystallized surface layer in the alloy substrate.

The MP + PO specimens were also tested in a flowing N Z environment.

At 15 seconds of exposure no changes in Cr 203 morphology were detected.

At 10 minutes of exposure, however, changes in the Cr 203 topology were

observed. A typical micrograph is given in Figure 8(a). X-ray diffraction

analysis indicated that the surface layer shown in the picture is Cr203,

apparently the remains of the original Cr 203 oxide formed during static

preoxidation. Grimley at al. 
(22) 

reported that the vaporization of Cr203
i

!'a
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under neutral conditions proceeds with the formation of Cr, CrO, CrO2,

0, and O2 as the principal gaseous species. Under, oxidizing conditions

Cr03 was observed. During the flowing N2 tests, oxidation of Cr 203 to form

volatile Cr03 should not have occurred. The Cr 203 oxide appears in the

shape of mushroom type morphology with small solid pillars sticking up

from the alloy substrate. Careful comparison of photographs Laken before

and after exposure suggests that the small pillars observed in Figure 8(a)

are the remains of the original Cr 203 globules which grew relatively large

during preoxidation. It is apparent that the high speed flowing conditions

results in accelerated vaporization of Cr 203 at the regions which are generally

below the general level of the surface,

The DIP + PO specimen after 10-minute N 2 exposure was again oxidized

in flowing air conditions. Immediately upon exposure a sudden glow at the

shock wave was detected, presumably the result of rapid vaporization of

the Cr203 pillars. A typical micrograph taken from the 10-minute N 2 exposure

specimen after an additional 5 minutes of air exposure is shown in Figure 8(b)

The surface is uniformly covered with NiO clusters typical of the type of

morphology found for short time air tests. This is precisely what was

expected to happen, and can be readily explained by the oxidation events

previously discussed.

Electrouolished Surface Finishing; (EP)

When EP specimens were exposed to the dynamic environment, both NiO

and Cr 203 formed initially at the specimen surface. However, because of

a high vaporization rate of Cr 203 and rapid growth rate of NiO, the for-

mation of NiO prevailed during subsequent oxidation. The NiO was immediately

converted into mushroom type morphology. The external growth of NiO leads

^	
y
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to the development cf a thin Cr-rich alloy substrate which promoted the

formation of a uniform Or 203 layer under the outer porous NiO. This is

illustrated in Figure 9(a) and (b), which show the micrographs taken of

a 1 minute exposure specimen. The entire surface, except the alloy grain

boundary regions, is covered with mushroom type oxide clusters. Although

the NiO mushrooms are porous, they do serve to protect the underlying Or 203

from rapid vaporization. At this stage of oxidation, the Cr-depleted zone

in the substrate is small and no recrystallization is expected to occur at

the specimen surface. Consequently, the NiO and Or 203 duplex oxide layer

is not detected. As the oxidation process proceeds, both the number and

size of NiO mushroom clusters decrease, and the Or 203 layer becomes thinner.

The surface and cross-section of a 10-minute exposure specimen is shown

in Figure 9(c) and (d). Apparently, the porous NiO is still protecting

the underlying Or 203' A steep Cr-depleted zone, which extended 5-10 µm

into the alloy substrate, was detected. At some localized regions, especially

at the edges of specimens, islands of large NiO mushrooms were observed.

Local oxidation penetration was always found under the NiO islands. After

2 hours of oxidation the specimen surface was covered with a layer of large

clusters. The oxide morphology and oxide cross-section were very similar

to those observed on NP + PO or MP + PO specimens which had been oxidized

for 10 minutes. It is apparent that the oxidation rate of NP specimens is

slower than that of specimens with EP + PO or with NP + PO pretreatments.

Mechanical Polished Surface Finish (W)

The micrographs shown in Figure 10(a) and (b) were taken of MP specimens

after 1 minute of oxidation. Scattered islands of mushroom NiO are observed

r
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on the surface. Away from the islands small NiO clusters are observed to

grow on ridges of scratches left on the surface front the mechanical polishing.

In Figure 10(b), internal oxidation typical of that observed on 1•11' 1-110

specimen at 1 minute of exposure is detected under the mushroom islands.

Small NiO clusters growing atop of a Cr,.O 3 layer typical. of NP specimens after

1 minute of oxidation are observed at regions away from the mushroom. islands.

It is believed that this non-homogeneous oxidation results from concurrent

oxidation and recrystallization at the surface. The detection of a medium

intensity (111) reflection from the specimen after 15 seconds of exposure,

see Table I, indicates that recrystallization takes place at the very early

stage of oxidation. Since recrystallization is a thermally-activated process,

it should occur non-uniformly at the deformed surface layer. tie fine

grained recrystallized layer provides for numerous nucleation sites for

selective oxidation of Cr 203 . At areas where recrystallization takes

place rapidly; an external Cr203 layer forms at the surface upon exposure.

Consequently, the early stage oxidation is similar to that of MP +F PO

specimens. At regions cohere recrystallization proceeds at a slow rate, an

external NiO and an inner Cr 203 layer form at the surface immediately upon

exposure. The oxidation is therefore following a process similar to that

described for the BP specimens. After 10 minutes of oxidation, large NiO

mushrooms are fully developed, see Figure 10(c) and (d). At some localized

regions, however, small mushrooms growing atop the Cr 203 layer are still

visible.
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Dhscussion

ILLgh temperature technology has now advanced to the point where

significant atomic gas concentration is frequently ancountered, particularly

in subatmospheric pressure conditions, During a cruc:ia:l part of space

shuttle re-entry the thermal protection shield materials will experience

a temperature maximum (10000 -12000C for TD-NiCr), and a large fraction

of the boundary layer oxygen will be dissociated by the shockwave. The

fraction of dissociated oxygen ranges from 0 to 100% ) depending on altitude:

and angl;s of entry attack 
(13,14). 

In high-energy propulsion, the combustion

exhaust product can also contain appreciable amounts of highly reactive

species 
(23). 

Under the arc-jet conditions employed in the present study

the concentration of atomic oxygen at the specimen surface was reported to be

approximately 0.5%, according to simple stream enthalpy calculation (24),

Electrical arcing in the arc chamber may produce additional oxygen atoms.

Although arc-jets produce an environment- high in ionized gases and low in

atomic oxygen relative to those encountered in re-entry, they do provide

a better re-entry simulation than any other facility available. The dis-

sociated oxygen, although low in concentration, may impose significant

variation in oxidation kinetics of metals. Results of Dickens et al. (25)

indicated that the introduction of :1.02% atomic oxygen in the oxidizing

environment at 7100C increases the oxidation rate of pure Ni by a factor

of 14 over that observed in molecular oxygen. Results of Gilbreath (13,14)

also demonstrated the accelerated oxidation of space shuttle TPS metals in

flowing air (12 in/sec) which contained a significant amount of atomic oxygen.

Metal degradation measured in terms of metal recession was about two orders

of magnitude greater in atomic oxygen than in static oxygen, and about one

orier greater than caused by flowing molecular oxygen. In static and
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flowing; 02, dark-grey and adhesive surface scale rich in Cr was detected.

In flowing 0, yellow -Gruen, brown and friable scale rich in Ni was observed.

'the external mushroom type NiO oxide formed during the present dynamic

testing is invariably yellowish to greenish white. The mushroom oxide. was

very friable and a sharp tap or slight bending of the specimen caused much

of the oxide to spall. Based on the similarity of visual appearance and

oxide identity observed in atomic oxygen and in arc- ,jet, it in suggested

that the dissociated oxygen in the arc-,jet air stream playa the most important

role in the develo pment of mushroom type oxide morphology.

It has been well established that the vaporization of Cr 203 under high

temperature dry oxidation conditions occurs with the formation of Cr0 3 vapor

(22,26-30) .
 speciesIn static conditions, the o:t j.ss.ttion rate of TO-NiCr,

as well as other metals forming Cr 203 as an external protective scale, is

initially controlled by an interplay between Cr diffusion through Cr203

and the formation of gaseous Cr0 3' However, after the Cr 203 scale reaches its

steady-state thickness, the oxidation rate becomes linear and equal to that

of vaporization process (8 ' 27) . The rate of vaporization in turns depends

on mass transpoVc of reaction products through the stagnant boundary layer,

temperature, oxygen partial pressure, and total pressure 
(27-31). 

Under

flowing environments, the reaction product is continuously swept away by

flowing; gas. In hypervelocity flow, the vaporization rate may therefore

approach the theoretical maximum given by hertz-Langmuir equaLion (
29,30)

aiPi	 it 

G1	
2.256 x 10-2 ` T

where Gi is the weight loss of ith species in gm /cm 
2_ 

sec.,  Pi is vapor

pressure in atmospheres, M  is molecular weight in grams, T is temperature

9
^	 i
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in 0K, and of is vaporization coefficient defined is the ratio of

observed vaporization rate Linder the given conditions to that of the maximum

possible rate. Taking 11
CrO 

to be 3 x 10 -7 from duty of Kohl et al ( ),
3

and assuming a,,() 	 be unity which is reasonable for the present Ma,'h-5
3

air flow condition where no redeposition of Or 203 is likely to occur, the

vaporization rate of CrO3 was calculated to be 3.8 x 10
-G

 gin/cm 2-see,

corresponding to a thickness reducLion of Or 203 at 7.3 x 10 -3 wn/sec. This

is about 2 orders of magnitude less than that observed in the present study

where the external Or203 , 2 W in thickness, on MY + PO specimen, is totally

evaporized at 15 seconds of exposure (it should also be recalled that it

takes about 10-12 seconds to heat the specimen to test temperature). These

observations suggest that under the arc-jet conditions the surface reaction

rate determines the vaporization kinetics of the Or 203 layer. The dissociated

oxygen in the air stream greatly enhances the oxidation of Or 203 to form Cr03,

thereby producing an increased vaporization rate.

A calculation of maximum vaporization rate of Ni0 was also attempted.

Since the major vapor species over NiO(s) under neutral conditions are Ni(v)

and 0, the partial pressure of Ni(v) or 0, which is 2 x 10
-5
 atm at 12000C(21),

was used. Assuming no redeposition occurs, the maximum rate w+as found to be

2 x 10-7 gm/cm 2see, corresponding to 3 x 10 -3
 
PP/see thickness recession of

NiO. This roughly agrees with the present observation that a layer of external

NiO approximately 3 Wn in thickness was essentially totally evaporized after

about 1 hour of exposure to the flowing N 2 environment. Reduced vaporization

is expected in oxidizing environments as a result of increasing Ni0 redeposition.

With the much greater vaporization rate of Or  3 over that of NiO in the arc-jet,

it is anticipated that NiO would be the external oxide. The rate of Ni0 loss

through the vaporization-deposition process is therefore one of the rate

i
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controlling factors. This is also supported by the results of Gilbreath (13)

which indicates that greater weight loss occurs in dilute atomic oxygen than

at higher atomic oxygen concentrations (-0%). Apparently, a maximum

oxidation rate oceut3 at a low concentration of dissociated oxygen, below

which enhanced vaporization of Cr 203 predominates and above which redepositiorr

of NO predominates.

5ueface pretreatment has a significant effect on the early stage oxidation

behavior of TD-NiCr alloy. Mechanical polishing leads to surface recrystalliv.,1i

at the very early stages of oxidation. Under the dynamic environment, the

recrystallized layer provides numerous quick paths for internal oxidation

which delays the formation of an inner Cr 203 layer, thereby increasing the

initial rate of metal recession. Removal of the surface deformation layer

by electropolishing slows down the initial rate of oxidation for the same

test conditions. However, clectropolishing produces a surface condition

with reduced emissivity, a condition which would result in an increased

heat shield temperature under the same re-entry conditions. Static pre-

oxidation of DIP specimen generates an external Cr 203 layer which has a

relatively high emissivity; but the Cr 203 layer is quickly evaporized when

exposed to the flowing air. Preoxidation of NP specimen produces a faceted

Ni0 which is quickly converted into mushroom type morphology. The influence

of surface pretreatment becomes insignificant after about 2 hours of oxidation.

At this later stage, local oxidation following a cyclic process is the

predominant mechanism. The oxidation model proposed in the previous study(19)

can be used to explain the details involved during the oxidation process.
C

These results agree with those reported by Lowell et al ( 1J) who found

that Ni0 was the equilibrium external oxide formed on TD-NiCr t'ehVcd in a

i'
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Mach-1 burner rig at 1200 00. They also reported „ that surface pretreatment

becomes insignificant after about 1 hour of oxidation. They have proposed

an oxidation model and concluded that diffusion of Cr through Pli0 is the

limiting step. Goldstein 
(31) 

has developed an analytical model that described

the ablation of TD-NiCr in hypersonic flow. The model accounted for diffusion

controlled and sublimation rate controlled reaction of Cr2 3 to gaseous pro-

ducts. Vaporization of NO was not considered in the devFlol:ment of the model.

Based on the results of this investigation and those reported by Lowell

et al. 
(15) 

it appears that a more detailed analysis which takes into account

,NiO vaporization and internal oxidation is required to more accurately

describe the oxidation kinetics.

6
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Conclusions

Based on the observations described herein, together with the results

reported in the previous study 
(19) 

and in the literature, the following,

conclusions can be made.

(1) The atomic oxygen which is generated through dissociation of

molecular oxygen by the shock wave plays the most important role in

oxidation of TD-NiCr alloy under the arc-jet environment.

(2) The rate of Cr 203 vaporization by formation of ,gaseous CrO3 is

greatly accelerated by the dynamic conditions. Cr 20 3 oxide provides good

oxidation protection only when protected by NiO,

(3) NiO is the stable external oxide found under the flowing air

conditions. The typical microstructure consists of an external layer of

NiO with a porous mushroom type morphology, an intermediate layer of Ni0

and Cr 203 oxide mixture, and a continuous inner Cr 203 layer in contact

with Cr-depleted alloy substructure. The development of NiO mushroom type

oxide follows three steps: (a) vaporization of NiO predominantly by

dissociation into Ni vapor and 0 atoms, (b) reoxidation of Ni vapor primarily

with dissociated oxygen in air stream, and (c) condensation of NiO at

elevated sites on specimen surface. The mushroom oxide clusters grow at

the expense of underlying NiO, and fade when the supply of Ni is limited.

(G) Surface pretreatment has a significant influence on the topography,

order and relative amount of NiO and Cr 203 formed during the early stages of

oxidation, but becomes less important as exposure time increases. Mechanical

polishing induces surface recrystallization, and therefore enhances initial

substrate recession at the very early stages of oxidation. Removal of the
a

surface deformation layer by electropolish:ing slows down the initial oxidation jl 1

ate. y	 a,

S j
i
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(5) Desptte various surface preparations, the oxidation behavior of

the alloy at later stages o': oxidation can be characterized by local

oxidation following a cyclic process which consists of (a) rapid internal

oxidation of unprotected Cr-depletRd alloy substrate until an inner Cr203

layer forms, (b) growth and vaporization of NO mushroom oxide with con-

current vaporization of any Cr 20 3 in the outer oxide mixture, and (c) rapid

vaporization of inner Cr 203 when overlaid oxide mixture is totally consumed.

The rate of oxidation is controlled by the rate of loss of NiO during the

vaporization-condensation process, and by the rate of formation of inner

Cr203 layer. The critical value of Cr concentration for the formation

of continuous inner Cr203 appears to be approximately 15% for TD-NiCr

oxidized at 120000.
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List of Figure Captions

Figure 1. (a) Oxide morphology and (b) oxide cross section of electropolished

and preoxidized (one hour in static air at 20000F) specimen. Energy

dispersive X-ray analyses were made of the different oxide layers

shown in (b) indicating variation of Cr, Ni and Th contents.

Figure 2. Topography of external NiO formed on electropolished and preoxidized

specimens after (a) 12 seconds, and (b) 15 seconds of exposure to

a 22000F, Mach-5 and 0.002 lb/sec. flowing air environment. (c)

Higher magnification micrograph of central area in (b).

Figure 3. Surface morphology and oxide cross sections of electropolished

and preoxidized specimens after (a), (b) 1 minute, and (c), (d)

10 minutes of dynamic oxidation.

Figure 4. Typical oxide topography and oxide cross sections observed on

electropolished and preoxidized specimen after two hours of exposure

to the dynamic environment. Probe scan was made along the line

marked with an arrow in (c).

Figure 5. Surface topography of electropolished and preoxidized specimen

after (a) 1.5 seconds, and (b) 10 minutes of exposure to a Mach-5,

22000F and 0.002 lb/sec, flowing N 2 gas. (c) a lower magnification

micrograph of 10 minutes exposure specimen.

Figure 6. Morphology of external Cr 203 and oxide cross section of mechanically

polished and preoxidized (one hour in static air at 2000
0F) specimen.

Agure 7. Oxide topography and cross sections of mechanically polished and

preoxidized specimens after (a), (b) l minute, and (c), (d) 10

minutes of dynamic oxidation.

27
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Figure 8. Surface morphology of mechanically polished and preoxidized specimen

after (a) 10 minutes of exposure to flowing N 2 gas, and (b) subsequent

S minutes exposure to flowing air environment.

Figure 9. Oxide topography and cross sections of clectropolished specimens

after (a), (b) 1 minute, and (c) (d) 10 minutes of dynamic oxidation,

Figure 10. Oxide morphology and cross sections of mechanically polished

specimens after (a), (b) l minute, and (c), (d) 10 minutes of

dynamic oxidation.
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'FABLE I

OXIDES DETERMINED BY X-RAY DIFFRACTION ON 'TD-NiCr EXPOSED AT 22000E
IN HIGH GAS VELOCITY OXIDATION APPARATUS FOR VARIOUS 'TIMES

Alloy
Substrate

(111)	 (200)

Adhering Surface Oxides

ThO2

(111)	 (200)	 (220)	 (311)

Cr203

(012)	 (]Art)	 (110)

N3^0

(11.1.)	 (200) (220)

EP 1 min VS W VW VW VW VW M VW W S W

EP- 10 min VS W VW VW VW VW W W M W

EP 2 hrs S M W W W VW VW S S S

EP+PO VS S VS S

EP+PO 30 Sec VS S VS S

EP+PO 1 min VS I S VS S

EP+PO 3 min VS S VS S

EP+PO 10 min VS M W W W W W W M W

EP+PO 30 min VS W Vw VW W W M VS M

EP+PO 2 hrs VS M M TI- VW VW W W M S W

EP+PO 10 hrs VS S h[ l TI VW W W Tf M W

Mp 15 sec M VS W VW VW VW VW

Mp 1 min M VS I	 W VW Vw vw VW VW

MP 10 min M VS W VW VW VW VW W W M S M

MP 2 hrs VW S M W W W VW W VW M M W

L1P+P0 S VS M W W W W NI

11P+P0 1 min W VS W VW W S S S

MP+PO 2 hrs VS M W W W W W VW M M W

MP+PO 10 hrs VS S M M M W W VW M M PI

EP = Electropolished; EP+PO = Electropolished and Preoxidized; M? = Mechanical Polished
MP+PO = Mechanical Polished and Preoxidized

VS = Very Strong; S = Strong; M =Medium; W = Weak; VW = Very Weak; Blank = Not Detected
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 o

^ o

^ ^ C
E L cadr

O p C
T d O

p O C
^	 Cu

C1 ^ L
O ^ ^
E C
V E ^
.^ O O
L ,^
n tp O

00

L
J

I



ni^ C
Q ^ _
Z V Q

I

rr	 ^

I
J

1.
li
J

,n

O

n ^

^ x^ O
v

y E
c

- c
c

n ^

O ^

^ Z

az
fp !

d ^

O

X

ti

I

M
Q C

^ ^ r

ML
U

;r5i	 1

AL

4A. 19

s

r



M
r000

M M

O_ O_ O

l^'ZU U Q

f	 1	 \ /

i

1

i

1

.^6rA

.7jr ! ^^

S I
0J

z1,J

is , R
'44

I^'" u

a^

v
cv
E
Y

Lon

a

L o

o
C3- x
y^ O
= V_

u E
ro c
VyE o

^ J
c ^_

E
J

L.nDo.
^ Vv
a ^
c c

T
T ^j

Ô C
d ^i
c
y a
x
O -ra

LA-

0
J

r


	GeneralDisclaimer.pdf
	0002A01.pdf
	0002A02.pdf
	0002A02_.pdf
	0002A03.pdf
	0002A04.pdf
	0002A05.pdf
	0002A06.pdf
	0002A07.pdf
	0002A08.pdf
	0002A09.pdf
	0002A10.pdf
	0002A11.pdf
	0002A12.pdf
	0002A13.pdf
	0002B01.pdf
	0002B02.pdf
	0002B03.pdf
	0002B04.pdf
	0002B05.pdf
	0002B06.pdf
	0002B07.pdf
	0002B08.pdf
	0002B09.pdf
	0002B10.pdf
	0002B11.pdf
	0002B12.pdf
	0002B13.pdf
	0002B14.pdf
	0002C01.pdf
	0002C02.pdf
	0002C03.pdf
	0002C03_.pdf
	0002C04.pdf
	0002C05.pdf
	0002C06.pdf
	0002C07.pdf
	0002C08.pdf
	0002C09.pdf
	0002C10.pdf
	0002C11.pdf
	0002C12.pdf
	0002C13.pdf
	0002C14.pdf
	0002D01.pdf
	0002D02.pdf
	0002D03.pdf
	0002D04.pdf



