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SURFACE HEAT-TRANSFER COEFFICIENTS OF PIN-FINNED CYLINDERS
by G. James Van Fossen, Jr.

Lewis Research Center and
U.S. Army Air Mobility R&D Laborafory

SUMMARY

An experimental investigation was conducted to measure heat-transfer coefficients
for a 15. 24 —centimeter -diameter cylinder with pin fins on its surface. Pin diameters of
0. 3175 and 0. 6350 centimeter were tested. Pin spacings of 3 and 4 pin diameters and
pin lengths of 5, 7, and 9 pin diameters were investigated. Flow was normal to the axis
of the cylinder, and local heat-transfer coefficients were measured as a function of angle
around the circumference of the ¢ylinder, Average heat-transfer coefficients were then
computed from the local heat-transfer coefficients. Reynolds numbers based on pin
diameter ranged from 3600 to 27 750,

The pins were found to greatly increase the heat -transfer rate over that of a plain
cylinder. The highest local heat-transfer coefficients were obtained at angles of 45° and
90° from the stagnation point. The lowest local heat-transfer coefficients were chtained
at angles of 135° and 180°. The smallest diameter and closest spacing produced the
highest average effective heat-transfer rate, and the largest pin-length-to-diameter ratio
gave the highest average effective heat-transfer coefficient of those tested. The.com-
bination of pin diameters, spacings, and lengths tested were not sufficient to develop a
general correlation.

INTRODUCTION

Convective heat-transfer coefficients were measured on a 15, 24 -centimeter -
diameter cylinder with pin fins on its surface. Pin fins should maintain a high heat-
transfer rate relative to annular fins when the flow direction is not normal to the axis of
the cylinder. This property of pin fins can be an advantage when the flow direction is
- variable or uncertain. No heat-transfer data for pin fins on the surface of a single



cylinder are available in the open literature. The purpose of this report is to present
measured heat-transfer coefficients for this case,

Heat-transfer coefficients were measured on the surface of a cylinder for five dif-
ferent pin fin geometries. In all five cases, airflow over the cylinder was normal to its
axis. Heat-transfer coefficients were measured at five angular positions around the cir-
cumference of each cylinder. The angles were in 45° steps from 0° (facing directly up-
stream) to 180°. Average heat ~fransfer coefficients for the entire cylinder were com-
puted from local data. The range of Reynolds number based on pin diameter was from
3600 to 27 750. A transient heating and cooling method was used to measure the heat-
transfer coefficients. The maximum temperature of the cylinder was 411 K.

The work was done in the U, S, customary system of units. Conversion to the Inter-
national System of Units (SI) was done for reporting purposes only.

TEST SPECIMENS

Heat-transfer coefficients were measured on five 15, 24 -centimeter -diameter cyl-
inders with different staggered pin fin arrangements on the surface of each. The fin
arrangement is shown in figure 1, Table I lists the relative pin spacings and pin lengths
that were tested.

A segment of each cylinder about 7. 62 centimeters high, 5. 08 centimeters in arc
length, and 1,27 centimeters thick was made of copper. Copper pin fins were silver
soldered into holes drilled in the copper segment. An electric heater was silver sol-
dered to the inside face of the segment, The heater consisted of a Nichrome V heater
wire surrounded with an insulating layer of magnesium oxide which was held in place by
a stainless-steel tube. Four Chromel-Alumel thermocouples were attached to the copper.
The thermocouples were connected in parallel to read the average temperature of the
segment. The copper segment was used as a calorimeter to measure heat-transfer
coefficients,

The remaining portion of the cylinder was made of Miearta, which has a relatively
low thermal conductivity, to minimize heat loss from the sides of the copper segment,
In order to make the pin pattern continuous, steel pins were pressed into drilled holes
around the circumference of the Micarta cylinder. Figure 2 shows the copper segment
with the electric heater and the Micarta cylinder.

APPARATUS

The cylinder to be tested was mounted on a remotely controlled television camera
positioner which allowed the cylinder to be rotated about its axis. The entire assembly
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was attached to the floor of the Lewis Research Center's 9- by 15-Foot V/STOL Wind
Tunnel (ref. 1). Figure 3 shows the assembly mounted in the tunnel, The angle of the
copper calorimeter with respect to the flow direction was set visually by using a tele-
vision monitor and the pointer and graduations shown in figure 3. Angles were accurate
to about +2.5°, ‘

Current was supplied to the electric heater through a variable transformer. This
arrangement allowed the voltage across the heater to be varied from 0 to about 140 volts.

‘The single thermocouple lead wire from the measuring junction at the copper calo-
rimeter was run to a reference oven whose temperature was 339 K. The voltage from
the thermocouple was amplified 1000 times and was recorded as a function of time on an
X -Y recorder during the test. At a later time an electronic digitizer coupled with a
minicomputer was used to digitize the recorded data and to convert voltages to
temperatures. ' ,

V/STOL tunnel eontrol instrumentation was used to read the tunnel dynamic pressure
and total temperature,

TEST PROCEDURE

- Before each new cylinder was tested, the amplifier and X -Y recorder were cal-
ibrated. A known voltage from a precision potentiometer was fed to the amplifier whose
output was connected to the X-Y recorder. The gain on the X-Y recorder was adjusted
so the Y -displacement corresponded to the desired voltage reading.

The procedures for testing each of the five pin fin geometries were identical:

(1) The wind tunnel dynamic pressure was set to give the desired air speed in the
test section. .

(2) The angle of the copper calorimeter was set to the desired value.

(3) The X-Y recorder was ‘started.

(4) The heater was switched on.

(5) When the predetermined maximum temperature was reached, the heater was
switched off.

(6) The copper calorimeter was allowed to cool to a predetermined temperature.

{(7) A new angle was set and steps 4, 5, and 6 were repeated.

{(8) When all five angles (00 to 180° in 45° steps) were run, the air speed was
changed and the procedure repeated. '



THEQORY

The objective of the test was to measure heat-fransfer coefficients as a function of
angle and air velocity for each of the five pin fin geometries. A transient technique,
which involved heating and cooling of the copper calorimeter, was used to measure the
heat-transfer coefficients. In order to calculate the desired heat-transfer coefficient
from the transient temperature data of the copper calorimeter, a mathematical model of
the calorimeter was needed, Several simplifying assumptions were made in order to
develop such a model:

(1) The heat ~transfer coefficient was assumed to be uniform over the entire surface
of the copper calorimeter, that is, over the cylindrical surface, the pins, and the ends
of the pins.

(2) The temperature of the eylindrical part of the calorimeter was assumed to be
uniform; the only temperature gradient was in the pins,

(3} Heat loss from the calorimeter to the Micarta cylinder was negligible. (A finite
difference model of the copper calorimeter and the Micarta cylinder showed the heat lost
by conduction to be about 5 percent of the heat lost by convection for a low effective heat-
transfer coefficient.)

(4) The thermal properties of the copper were assumed to be independent of temper -
ature. With these assumptions, the copper calorimeter was divided into equal segments;
one for each pin. A finite difference model for a single pin and the associated segment of
base material was then taken as representative of the entire calorimeter. The thermal
network used in the finite difference model for the 0.3175-centimeter .diamefer pin with
3.diameter spacing and 9 -diameter length is shown in figure 4.

The method of least squares was used fo calculate the heat-transfer coefficient from
the transient temperature data, The least-square function

N
Fih) =Z [Texp,i - Tc::l,l,i(h)]2 (1)

i=1

was minimized with respect to the heat-transfer coefficient h. The value of h that min-

imized F was assumed to be the true value. (All symbols are defined in the appendix.)
If the temperature of each node in the network at the {ime the heater was switched

off were known, the heat-transfer coefficient could have been calculated from the cooling

of the calorimeter only. However, only the temperature of the thermocouple location

was known at that time. In any transient problem it is necessary to know the initial tem-

perature of each node before a solution can be obtained. The temperature of each node

of the calorimeter was known only before the heater was switched on. At that time the

temperature of the fins was uniform. This made it necessary that the rate of heat
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addition to the calorimeter be known. The rate of heat addition was not measured during
the tests; only the voltage to the heater and its lead wires was measured. Because of
uncertainty in the resistance of various elements in the heater circuit., it was not pos-
sible to accurately calculate the heating rate directly.

In reference 2 it is shown that, by using the method of least squares, it is possible
to calculate both the heat-transfer coefficient and the heating rate simultaneously for a
lumped-parameter calorimeter. A lumped-parameter calorimeter is essentially the
same as the calorimeter used in these tests but with no pin fins. That is, it can be con-
sidered as a lump of material with no temperature gradients. For this case, equation (1)
becomes

N

F(,Q =) [Texp,i - Tear 1P 9] (2)
i=1 :

Reference 2 also defines optimum experimental conditions for the lumped-parameter
calorimeter. The results obtained with this simple model were applied to the calorim-
eter used in these tests by defining an effective heat-transfer coefficient due to the pres-
ence of the pins. This was done by adding the heat convected out of the wall of the cyl-
inder and the heat conducted through the base of the pin and equating this to the total heat
loss based on an effective heat-transfer coefficient and the wall area. That is,

hogphy(Ty - Ty) = hia, - Ap)(Tw -Ty)+ Qpin )

The heat conducted through the base of the pin is given by (ref. 3)

r : -
sinh{mz) + (-—?{—) cosh(mZ)
m
Qi = ‘/PhApkp (T, - Tp) _ hp (4)
cosh{mi) +( )sinh(ml)
mk
. - P J
where
m = [P (5)
kpAp



Substituting equation (4) into (3) and simplifying yields

’-sinh(ml) +( l;{)cosh(ml)
m m
=h|1--T s Sl B P (6)

. ( s )2 4 ( S )2 cosh{mi) + (_h.) sinh(m?)
pn p mk
i D, | D,/ . P X

eff

The dimensionless heating rate parameter from reference 2 then becomes-

8= Q | )
hefwa ‘ﬁTmax

and the dimensionless time is

h_..t ' '
LC

T=

For this experiment a 3 of 1.04 was chosen. A § as close as possible to unity was
shown to be the optimum in reference 2, but the real time for the experiment bebpmes
very large for §# approaching 1. From figure 8 in reference 2 the optimum dimension-
less time Topt is4.75fora 8 of 1,04, For the calorimeters used in this experiment
the characteristic length L was 1.27 centimeters and the heat capacity of copper was
3.4 3/(cm%)CC). A representative value of h was 0,052 W/(cm2)(°C). . Substituting
these values into equation (7) and solving for the real time gave 394 seconds. '
With 8 and o known the mathematical model of reference 2 was used to find the
optimum temperature drop after the heater was switched off. With this information, it
was much easier to tell when to stop taking data because h was unknown and dimension-
less time could not be computed, Fora 2 of 1,04 and a Topt of 4,75 the optimum

dimensionless temperature was 0. 225, or

T, -T
¥ _4-0.225 (9)
AT .o

The value of AT was chosen as 111 K, and the ambient temperature for most of the

max
tests was 300 K. Substituting these temperatures into equation (9) and solving gave 325 K

as the temperature at which the test could be terminated. The optimum procedure then



was to switch the heater on and allow the calorimeter to heat up to 411 K then switch the
heater off and stop taking data when the temperature dropped below:325 K,

CALCULATION PROCEDURE

The heat-transfer coefficient h was calculated by minimizing equation (2) with re-
spect to both h and Q. This was done by using the Gauss-Newton linearization method.
Equation (2) was differentiated with respect to h and then Q to obtain

. .
oF _ o Tear 19
Pl 212[ exp,i " Tcal,i(h’Q)] — (10)
and
N
| (5,0
P 'ZZ;[ exp,1 ” Tcal,i(ha Q)] —(E—Bal—-— (11)
1=

When F is at a minimum, equations (10) and (11) are zero, Let b* and Q* be the
true values of h and @ (the valueg that minimize F) and h0 and Q0 be an initial
guess of h and @ near h* and Q*. Expanding T(h ,Q ) in a Taylor series about
@0, Q0) yields |

32 2

2 T Eas

rh*, Q") =T, Q% + L ah + T AQ+ 2T An? + 2T AnaQ+ 2T aQ%+ . .. (12
ah 2Q an

ahZ ohaQ

Keeping only first-order terms, substifuting equation (12) into equations (10) and (11},
equating to zero, and solving for Ah and AQ gives

2] D e 5 D[RR e )
G ENGIE

Ah=h* -n°

(13)



2
") 0"
e 1,
.Z(ahi - exp,i Tea 1

aT
i3Q
AQ=Q* _Q0= i i ( )

i

@)

) ) S
>

(14)
The true values h* and Q* are usually not reached the first time, and so equa-
tions (13) and (14) are applied iteratively until
k k-1
h-h <s (15)
K

and

____Qk -g+1 <8 (18)
Qf

 where & was taken as 0, 001,
The partial derivatives in equations (13} and (14) were calculated numerically from
the finite difference model. The numerical approximation used was

(E) Tea,ih + 0, Q) - Tea1,i @ (1m
oh/ ch
/i
and
(ﬂ!) N Tcal,i(h’Q + GQ) - Tcal,i(h’ Q) (18)
QY 5Q

where & was again taken as 0. 001.

The Gauss-Newton linearization method was found to be very efficient. Convergence
was usually obtained in two or three iterations,

Reynolds number and Nusselt number were calculated based on the pin diameter,
The viscosity and thermal conductivity of air used in the Reynolds number and Nusselt
number, respectively, were evaluated at 311 K. The viscosity used was 1. 912x10 -5
N-stec/m2 and the conductivity was 2, 665x10~2 W/(cm)(C).



The average Nusselt number for each cylinder was also computed. In order to ac-
complish this calculation a power -law curve of the form

Do

Nuy, = A Reb (19)
~“o
was fitted to the data for each of the five angles, The method of least squares was used
to determine the coefficients A and B. Five Reynolds numbers that were represent-
ative of the points tested were chosen, For each Reynolds number the average Nusselt
number for the five angles was computed from

Nupn =
Do

1=

5
Z Nup (6;) (20)
i=1 0

A power -law curve was fitted to these five points to obtain a correlation for average
Nusselt number as a function of Reynolds number for each cylinder.

The V/STOL tunnel test section density -velocity product was caleulated from the
tunnel dynamic pressure, the tunnel total pressure, and the tunnel static temperature as

ZQ(Pt = Q}
oV =Y ———r (21)
RT

a

The total pressure was nearly identical to the barometric pressure, and the test section
static temperature was approximately equal to the total temperature. The barometric
pressure and the total temperature were used in equation (21).

RESULTS AND DISCUSSION

Figure 5 shows local Nusselt number as a function of Reynolds number with angle 64
as a parameter for all five pin geometries. Average Nusselt number is also shown for
each case. Table II gives Nusselt numbers and Reynolds numbers for individual test
points. The coefficients A and B from equation (19) are also given in table II,

As expected, in all cases, both the 135° and the 180° angles have the lowest heat-
transfer coefficients. The heat-transfer coefficients are lowest at 135° because the flow
around the cylinder has just separated at this angle and the velocity over the pins is prob-
ably near zero. The higher heat transfer coefficients at 180° are probably due to



alternate vortex shedding by the cylinder, which would provide slightly higher alternating
velocities in this region,

For the 0. 635-centimeter ~-diameter pins the 45° and 90° angles have almost the
same heat-transfer coefficients at any given Reynolds number. The 135° and 180° angles
also have nearly the same heat-transfer coefficients. This change in the effect of angles
on heat-transfer coefficient may be due to changes in the flow field caused by the in-
creased ratio of pin diameter to cylinder diameter,

Figure 6 shows the average Nusselt number as a function of Reynolds number for all
five pin geometries. The maximum spread in average Nusselt number is about 25 per-
cent, Table IIl shows the coefficients A and B for each of the five pin geometries,

It is difficult to use figure 6 to compare the relative merits of each heat-transfer
configuration because the Nusselt number uses pin diameter as a characteristic length,
Also, the effect of total surface area has been removed from the heat-transfer coeffi-
cients. The best way to compare the heat-transfer characteristics of different pin geom-
etries is to use equation (6) to compute an effective heat-transfer coefficient. This al-
lows us to treat each configuration as simply a 15. 24-centimeter-diameter cylinder with
an effective heat-transfer coefficient on its surface. Figure 7 shows circumferentially
averaged effective heat-transfer coefficients for the five pin geometries as a function of
Reynolds number based on pin diameter.

' It can be seen from figure 7 that the smallest diameter pins with the closest spacing
gave the highest heat transfer. The best pin length was the one that gave the largest
length-to-diameter ratio. This is to be expected since this configuration bas the largest
surface area of those tested. For a material with a lower thermal conductivity than cop-
per, the increase in heat-transfer surface area obtained by using pins having greater
length-to-diameter ratios than those tested may not increase the effective heat -transfer
coefficient enough to justify the extra material used in the pins. In view of the simplify -
ing assumption of uniform heat-transfer coefficient over the pin surface, care should he
taken in applying these results when using pin materials whose conductivity varies signif-
icantly from that of copper.

The effect of pin diameter on the average effective heat-transfer coefficient can be
seen by comparing the two cases that have 3-diameter spacings and 7-diameter lengths
in figure 7. These two configurations have exactly the same surface area, but the larger
diameter pins exhibit a lower effective heat-transfer coefficient. The lower effective
heat-transfer coefficient for larger pins can be explained if we consider each pin as a
cylinder in crossflow. For a cylinder, the larger the diameter, the smaller the average
heat-transfer coefficient,

Also shown in figure 7 is the average heat-transfer coefficient for a 15,24 -
centimeter -diameter cylinder with no pins, This heat-transfer coefficient was calculated
from (ref, 3, p. 411)
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= 0.0239 Red} 805 (22)

w |B

The Reynolds number for the cylinder based on D was converted to that based on char-
acteristic length Do’ by multiplying by the ratio of D0 to D, where D, was taken as
0.3175 centimeter, This figure shows that pins greatly increase the heat-transfer rate
from the cylinder, '

SUMMARY OF RESULTS

The results of this experimental investigation to measure heat -transfer coefficients
for a 15, 24 -centimeter -diameter cylinder with pin fins on its surface can be summarized
as follows: ' .

1. The highé‘st local heat-transfer rates were obtained at 45% and 90° angles meas-
ured around the circumference of the cylinder.

2. The lowest local heat-transfer rates were obtained at 13 5° and 180° angles,

3. Based on average effective heat-transfer coefficient, the pins with the smallest
diameter and closest spacing resulted in the highest heat-transfer rates. " The longest
pins for a given pin diameter gave the highest average effective heat-transfer coeffi-
coefficients. .

4. Not enough different pin diameters and spacings were tested to obtain a general
correlation. '

Lewis Research Center,
National Aeronautics and Space Administration,
and
U.S. Army Air Mobility R&D Laboratory,
Cleveland, Ohio,
505-04.
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APPENDIX - SYMBOLS

coefficients used in power -law relation, eq. (19)

cross-sectional area of pin, m?

surface area of node, m?

surface area of cylinder associated with one pin, including the area
covered by the pin, m2

heat capacity of calorimeter, J/ (cm3)(° C)
cylinder diameter, m

pin diameter, m

least-square function, defined by eq. (2)

average convective heat-transfer coefficient on surface of cylinder and pin,
W/(em2)(°C)

effective heat-transfer coefficient due to presence of pins, defined by eq. (5)

W/(cmz)(OC)

average effective heat-transfer coefficient, W/ (mz)(OC)

L]

thermal conduetivity of air, W/(em)(°C)

thermal conductivity of pin material, W/{cm)(°C)
characteristic dimension of lumped-parameter calorimeter, m
length of pin fin, m

pin fin parameter, defined by eq. (4)

number of data points

Nusselt number with pin diameter as characteristic length

Nusselt number averaged around entire cylinder
perimeter of pin, m

tunnel total pressure, N/ m?

heating rate, W

heat conducted through base of a pin fin, W
wind tunnel dynamic pressure, N/ m?

gas constant for air, J/(gm)(°C)

Reynolds number with eylinder diameter as characteristic length



'_lib

-.‘

Topt

Reynolds number with pin diameter as characteristic length
pin spacing, m
air temperature, K

temperature of calorimeter calculated from mathematical model
at time t, K

measured temperature of calorimeter at time t, K

surface temperature of cylinder, K

maximum temperature rise above ambient, °c

time, sec

dimensionless heating rate

arbitrary small number

angle of calorimeter with respect to upstream flow direction
dimensionless time, defined by eq. ()

optimum dimensionless time, from ref. 2

13



REFERENCES

1. Yuska, J. A.; Diedrich, J. H.; and Clough, N.: Lewis 9- by 15-Foot V/STOL Wind
Tunnel., NASA TM X-2305, 1971,

2. Van Fossen,' G. James, Jr.: Design of Experiments for Measuring Heat-Transfer
Coefficients with a Lumped-Parameter Calorimeter. NASA TN D-7857, 19'74.

3. Kreith, Frank: Principles of Heat Transfer. International Textbook Co., 1966.

14



TABLE 1. - PIN FIN GEOMETRIES
TESTED
Pin Pin spacing - | Pin length-
diameter, | to-diameter |to-diameter
D, ratio, ratio,
cm S/Do i /DO_
0.3178 3 5
3 7
3 9
4 ki
. 6350 3 7
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TABLE II. - NUSSELT AND REYNOLDS NUMBERS BASED ON

PIN DIAMETER FOR INDIVIDUAL TEST POINTS

(a) Pin diameter, Do’ 0.3175 em; pin spacing-to-diameter ratio, S/DO, 3; pin length-to-
diameter ratio, L/Do, 9

Reynolds number with
pin diameter as char-
acteristic length,

Re
Do

Nusselt number with
pin diameter as char-
acteristic length,

Nu
D o

Reynolds number with
pin diameter as char-
acteristic length,

ReD
o

Nusselt number with
pin diameter as char-
acteristic length,

Nu
D, o]

Angle of calori

meter, 6 00;

Angle of calorimeter, By 900;

A =10,2239; B=0.5173 A =0.3731; B =0.4838
4 7176.2 18.7 11701, 2 35.4
5 960. 1 20.3 8400.9 28.5
5 960. 1 20.9 10 201. 1 32.8
8384.7 25.7 10 184. 8 33.4
11741, 8 28.3 o
4597 8 18.9 Angle of calorimeter, 8y, 1357
84090 23.4 A =0.1010; B = 0,5578
8 376.5 23.3 47769 11.2
Angle of calorimeter, By 450; 8 368.4 15.2
A = 0.1842; B = 0. 5929 11701.2 19.8
8392.8 16. 3
5 960. 1 32.1 10 201. 1 i7.2
8 360.3 38.5 10 184. 8 16.4
11717, 4 49.9 o
8 400. 9 39.1 Angle of calorimeter, 65, 1807;
8 376 5 40.3 A =.0.2786; B = 0,4708
10 184.8 41.7 5 968, 2 17.0
Angle of calorimeter, By 90%; 8368.4 19.3
= 0.3731; B = 0. 4836 11685.0 22.2
8384.7 19.7
4 760.0 22.1 10 192. 9 22.3
5 968.2 25.6 10 192.9 21.4
8 368.4 29.4
11709.3 33.1




TABLE H, - Continued, NUSSELT AND REYNOLDS NUMBERS BASED ON

PIN DIAMETER FOR INDIVIDUAL TEST POINTS

(b) Pin diameter, D,

diameter ratio, 1/D,, 1

0.3175 cm; pin spacing-to-diameter ratio, S/Do, 3; pin length-to-

Reynolds number with
pin diameter as char-
acteristic length,

Rep

Nusselt number with
pin diameter as char-
acteristic length,

NuD

0

o]

Reynolds number with
pin diameter as char -

acteristic Iength,

ReD
o

Nugselt number with
pin diameter as char-
acteristic length,

Nu
Do

Angie of calori

meter, 6, 00;

. o}
Angle of calorimeter, 6,, 907;

A =0, 1748; B =0.5217 A =0.0049; B = 0.6061
8 490. 1 19.1 10 290.3 24,2
8 465.7 20.5 - 10 322.7 2.4
8 449.5 19.5 13 314.9 32.0
10 208.4 22.0 3 995. 3 14.8
10 322.7 21.9 13 306. 8 30.5
11 855.3 22.5
11 831.0 23.8 Anpgle of calorimeter, 8is 1350;
11 8147 29 5 A =0.0914; B = 0,5505
13 160, 8 25.0 44315 o 1
4 558.0 13.8 8 409.0 13.2
4 008.3 13.6 8 546. 8 13.2
Angle of calorimeter, B 450; 10 347.0 16. 8
A =0.0898; B = 0.6501 10 347.0 13.8
_ _ 10 330.8 14,3
4431.5 91,2 13 387.9 17.0
8392.8 32.1 4121.8 9.1
8465.7 30.7
8 449.5 31.8 Angle of calorimeter, 9;, 180°%;
10 290.3 %59 A =0.2169; B = 0.4724
10322.7 38.8 5 643.8 13.2
13 185.2 42.2 44332 L5
4379.8 1.4 8 417.1 15. 1
13 290. 8 | 45.9 6 457 6 5 3
Angle of calorimeter, o, 90°; 10 338.9 .3
A = 0.0949; B = 0.6061 10°322.7 16. 6
. 13 379.8 19.8
44315 16.0
8 392.8 20.4
8 506.3 22.1
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TABLE II. - Continued. NUSSELT AND REYNOLDS NUMBERS BASED ON

PIN DIAMETER FOR INDIVIDUAL TEST POINTS

(¢) Pin diameter, Do, 0.3175 cm; pin spacing-to «liameter ratio, S/Do, 3, pin length-to-

diameter ratio, /D, 5

Reynolds number with
pin diameter ag char-
acteristic length,

Re
Do

Nusselt number with
pin diameter as char-
acteristic length,

Nu
D,

Reynolds number with
pin diameter as char-
acteristic length,

Re
Do

Nusselt number with
pin diameter as char-
acteristic length,

Nu
Do

Angle of calori

meter, 4,, 00;

Angle of calorimeter, 655 900;

A=0.1434; B =0.5418 A =0.1615; B = 0. 5425
3597.9 12.4 4 438.8 15.5
6 001.4 15.2 6 005.5 18.0
8490.1 19.6 8 482.0 21.%
11 822. 8 23.3 11 863.4 26.4
] o 13 728.5 28.3
Angle of calorimeter, g;, 45°;
A =0.1335; B = 0. 6093 Angle of calorimeter, 8 1350;
4 =0.0857; B = 0.5622
4 440.5 22.0
3598.8 20.1 61751.5 12,2
6 005. 5 26. 1 8 473.9 13.8
482.0 33.2 11 806.6 16.7
11 855, 3 39.5
13 752. 8 Angle of calorimeter, ¢, 180°%;

45.7

A =0, 1547; B = 0.5167

6749.1
8473.9
11798.5

14.7
16.7
19.6




TABLE II. - Continued. NUSSELT AND REYNOLDS NUMBERS BASED ON

PIN DIAMETER FOR INDIVIDUAL TEST POINTS

(d) Pin diameter, D, 0.3175 cm; pin spacing-to-diameter ratio, S/DO, 4; pin length-to-
diameter ratio, Z/Do, 7

Reynolds number with
pin diameter as char-
acteristic length,

Re
Dy

Nusselt number with
pin diameter as char-
acteristic length,

Nu
Do

Reynolds numbher with
pin diameter as char-
acteristic length,

Re
DO

Nusselt number with
pin diameter as char-
acteristic length,

Nu
Dn :

Angle of calori

te O
meter, 8;, 07,

Angle of calbrimeter, 81 900';

A =0,1481; B = 0.5322 A =0.1318; B = 0.5910
5 327.6 4.2 13 558. 2 36.4
5 278.9 13.4 13 598.7 36.5
5 935. 8 14.3 13 736. 6 36.3
8384,7 18.4 5 065. 7 20.7
8473.9 18.7 10 176.7 31.0
8457.8 19.0. 10 217. 3 30.5
13 839.3 23.5
13 7771 23.0 Angle of calorimeter, g, 1350;
4736.4 4.2 A =0.1268; B =0.5219
10 184. 8 19.5 5 384, 3 11.4
10 225.4 20. 8 5 943. 9 2.0
Angle of calorimeter, ¢;, 459; 8384.7 - 1.4
A =0,1113; B = 0. 6301 8465.7 u.3
B 457.6 13.9
5 295. 1 24.8 13 582.5 18.7
5 943.9 26.1 13 614.9 17.9
8392.8. 33.0 13 769. 0 20.7
8 465.7 33.3 50819 10.7
8457.6 4.6 10 184. 8 15.5
11733.6 41,1 10 217.3 15.4
13 533. 8 44.1 ,
13 647, 4 46.9 Angle of calorimeter, g,, 180%
5 059, 2 23.2 5 384, 3 12.7
10 176.7 36.4 5 943 9 5.0
10.225.4 37.0 8 376, 5 16.3
4388.9 22.7 8 465.7 15.6
Angle of calorimeter, 8, 900; 13 6\3 1.1 28.7
A=0.1318; B = 0.5010 13 623.0 18.8
13 769.0 20.2
5 351.9 20.9 5084.3 11.9
5943, 9 21.8 83847 15.6
8392.8 28.4 10 192.9 18.5
8 465.7 27.2 10 209. 2 18.8
8 457. 6 28.3
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TABLE II. - Concluded. NUSSELT AND REYNOLDS NUMBERS BASED ON

PIN DIAMETER FOR INDIVIDUAL TEST POINTS

{e) Pin diameter, D, 0.6350 cm; pin spacing-to-diameter ratio, 8/D,, 3; pin length-to-
diameter ratio, 1/D,, 7

Reynolds number with
pin diameter ag char-
acteristic length,

Re
Do

Nusselt number with
pir diameter as char-
acteristic length,

Nu
Do

Reynolds number with
pin diameter as char -
acteristic length,

Re
I)o

Nusselt number with
pin diameter as char-
acteristic length,

Nu
Do

Angie of calorimeter, B 00;
A =0.2468; B = 0.5025

Angle of calorimeter, g, 90°;
A=0.1271; B = 0.6267

9 033.9
12 110, 6
17 117.9
17 085.5
27 870,97
27 654.5

24.3
27.2
4.1
32.5
41.6
42.5

17 1017
27719.3
27 605.8

57.7
9.1
74.9

Angle of calorimeter, 8, 1350;
A =0,1127; B = 0. 5583

Angle of calorimeter, 81s 45°;
A =0.1611; B=10.5978

9 033.9
12 110. 6
17 117.9
17 101.7
27 7083, 1
27 638. 2

38.6
43.7
52.17
54.0
.4
70.9

9 051.7
12 061. 9
17 134. 1
17 085. 8
2775L7
27 524, 8

18.2
22.0
25.8
25.3
33.7
35.0

Angle of caldrimeter, By 1800‘,
A =0.0817; B =0, 5926

Angle of calorimeter, g, 90°;
A =10.1271; B = 0. 6267

9032.3
12 076.5
17 134. 1

38.4
45.2
57.8

9 192. 8
12 016. 8
17 150.3
17 085, 5
27 761.9
27 492.4

18.0
21,1
27.1
25.8
34.4
35.4




TABLE III, - POWER LAW COEFFICIENTS FOR
AVERAGE NUSSELT NUMBER AS FUNCTION

OF REYNOLDS NUMBER

I
O | © O
[ﬁlD =A Reg ] O 4) O
¢ ° Aow O ’ O
Pin Pin spacing-| Pin length- | A B — (ID l O —L
diameter, | to~-diameter |to-diameter =1 | (l) O pre
Do § ratio, ratio, O [ O T
em s/D, 1/D, O O @)
0.3175 3 9 0.21|0.53 . L "‘Dol"_
3 7 .11 .68
3 5 .13 .56 Figure L - Pin fin arrangement,
4 7 .10 .60
. 6350 3 T .13 | .58

C-74-225
Figure 2. - Copper test segment with electric heater and Micarta cylinder.
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Figure 4. - Thermal network used in finite difference

’ T i in VI STOL tunnel
Figure 3. - Pin-finned cylinder installed model of copper calorimeter,
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-spacing-to-diameter rafio, 504, 3
pin length-to-diameter ratio, L?DU. 1.
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Reynolds number with pin diameter as characteristic length, Reoa

{c) Pin diameter, D, 0.3175 cm; pin
_ spacing-to-diameter ratio, 5/D,, 3~

Vpin_length-tmtliametér ratio, YDy, 5.

{d) Pin diameter, D, 0.3175 cm; pin:

spacing-to-diameter ratio, S/D,, &
pin length-to-tiameter ratio, UD,, 7.
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as characteristic length, Reno

{e) Pin diameter, Dy, 0.635) cm; pin spacing-
to-diameter ratlo, 5/D,, 3 pin length-to-

diameter ratio, UD,, 7.

Figure 5. - Local and circumferentially averaged Nusselt number variation with Reynolds
number and the angle of the calerimeter for all five pin geometries.

23



24

nsfer
noc)

2

Average effective heat-tr
coefficient, hagr. Wiem

pin
g B
T

£
= =Q° ] /
[, 6 —
g2 oo i
5 £
=2 & =
i ZZ |
3 Z - - Pin spacing Pln length-
3 5 diameter, todiameter to-diameter
g8 2 By, ratio, ratjo,
a>s = cm SIDO UI:‘0
i 0.3175 3 9
5 | 3 7
£ ———— I 3 5
85 W —— 4 7
E® §l— ——— 06350 3 7
~ -
SN S R ||

34 6 8 10 20 10’

Reynolds number based on pin diamster
as characteristic length, RED0

Figure 6, - Circumferentially averaged Nusselt number variation
with Reynolds number for all five pin geometrles,

Fin-finned cylinders
= = =—— Plaln 15, 24-cm-diam
reference cylinder
Curve  Fin Pin spacing~ Pin length-
diameter, to-diameter to-diameter

Do ratio, ratio,
cm sib, lfDo
A 0.3175 3 9
B 3 7
C 3 5
D 4 7
E 0. 6350 3 7
.01 | |1’ l L
3 4 6 B 10 20 40x10°

Reynolds number with pin diameter
as characteristic length, ReDD

Figure 7. - Average effective heat-transfer coefficient variation with Reynalds number for
each cylinder.
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