## NASA TECHNICAL MEMORANDGM

$$
\text { 63/j4 Jiclas } \begin{aligned}
& \text { j77vo }
\end{aligned}
$$

## LIQUID JET PUMPED BY RISING GAS BUBBLES

by Nihad A. Hussain* and Robert Siegel Lewis Research Center
Cleveland, Ohio 44135

TECHNICAL PAPER to be presented at Fluids Engineering Conference sponsored by the American Society of Mechanical Engineers Minneapolis, Minnescta, May 5-7, 1975

*Summer faculty fellow from
California State University
San Diego, Calıfornia 92115

| ABSTRACT |  |
| :---: | :---: |
| Fron observations of a stream of gas bubblesFising through a liquid, a two-phmer mathomatical |  |
|  |  |
| rising through a liquid, a two-phase mathematical model is proposed for calculating the induced turbu- |  |
| lent vertical liquid flow. The bubbles provide a large bucyancy force and the associated drag on the |  |
|  |  |
| liquid moves the liquid upward. The liquid poiped |  |
| brought into the jet region by turbulent eatrainment. |  |
| The expansion of the gas bubbles as they rise through the liquid is taken into account. The continuity and |  |
|  |  |
| momantu equations are solved numerically for an ax- |  |
| laymetric air jet submerged in water. Nater pupping rates are obtained as a function of air flow rate and depth of submergence. Comparisoas are made with Limited experfantel information in the literature. |  |
|  |  |
|  |  |
| Honemichature |  |
| A | local outer radius of liquid jet region |
| ec | local redius of bubbly core region |
| $\mathrm{E}_{0}$ | turbulent jet entrainment coefficient |
| 6 | acceleration of gravity |
| I | ratio of bubble wake volume to bubble volume |
| $L$ | depth of jet origin below liquid surface |
| M | mass flow rate |
| p | pressure |
| $\mathbf{P a}_{\mathbf{a}}$ | atmospheric pressure |
| Q | valume flow rate |
| r | radial coordinate, origin is at jet axis |
| R | perfect gas constant |
| T | absolute temperature |
| u | velocity in $x$ direction |
| $\mathbf{u}_{\boldsymbol{\omega}}$ | terminai velocity of single bubble rising in infinite liquid region |
| V | velocity in radial direction |
| Sumer facuity Fellow, NASA Lewis Research Center. |  |

rising through a liquid, a two-phase mathomatical model is proposed for calculating the induced turbuleat verticel liquid plow. The bubbles provide a large bucyancy force and the associated dras on the liquid moves the liquid upward. The liquid priped mpard consists of the bubble wates and the liquid beought into the jet region by turbulent eatrainment. The expansion of the cas bubbles as thay rise through the liquid is taken into account. The continuity and montur equations are solved numerically for an axlaymetric air jet submerged in water. Hater pumping rates ane obtatiod as a function of air flow rate and depth of submergence. Comparisoas are made with limited experimatel information in the literature.

## manclature

a local outer radius of liquid jet region
ac local redius of bubbly core region
so turbulent jet entrainment coefficient
6 acceleration of gravity
I ratio of bubble wake valume to bubble valume
Io depth of jet origin below liquid surface
$M$ mass flow rate
p pressure
Pa atmospheric pressure
Q valume flow rate
$r$ radial coordinate. origin is at jet axis
R perfect gas constant
T absolute temperature
$u \quad$ velocity in $x$ direction
$u_{\infty} \quad$ terminai velocity of single bubble rising in velocity in radial direction
*Sumer Facuity Fellow, MASA Lewis Research Center. at gas release orifice

Ruld density

Subseripts:
c jet core region

8 gas phace
4,0 inside and outside of a particular jet region
$l$ liquid phase

## AITHODUCTIOA

Liquid pumping can be obtained by utilizing the bwoyant force of gas bubbles rising throush the liquid as shown in fig. 1. This is a free convection: bype of process using two inmiscible fluids that have - large difference in density (1) (2). Because of tne large density difference maje possible by using a gas and a liquid, large amounts of liquid pumping can be obtained. The lerge local density difference is in contrast to ordinary thermaily driven single phase free convection where the density variations are usually small.


Fryure 1. - Coniquaration of liguid ief inauxed
of insing columin of gos butbles.

An lateresting application of bubble pumping in For ice prevention In laket (3) (4) (3). SInce the maximim density of weter is it $4^{\circ} \mathrm{C}$, the water in the bottom regions of a quiescent lakn can be as much as © C warmer than the surface regioos when the nir teenperature is below Ireezing. Ice formation on the late can be diminished or preveated by pumping the warmar ottiom water coward the surfece by means of rising air bubbles. Dubble pumping is also used in Auidized beds, and for eeration in vater purlfication and waste treatement plants. The now Induced by a curtaln of risine air bubbles the also been considered as a brealmater for oncoming water vaves (1) (5).

The purpose of this paper is to cormulate a two-phase model and analyze the turbulent liqua puap" lng by a ristng discharse of gas bubbles. Ey mans of the dret on the liquid, the buoymey force of the bubbles lmparts an upward monentum to the liquid. There is turbulent sitraitment of liquid into the rising jet ss incicated in fis. 1 , and the result is that substantial vertleal liquid puming can result. The ex-
 sults in refs. ( 4 ) and ( 5 ) which show that for bubbles rising through, 1.68 a ( 5.5 pt) of water, an ar how of $0.000472 \mathrm{~m}^{3} / \mathrm{sec}(1 / 60 \mathrm{ft} / \mathrm{sec})$ produced a pumped Hquai volume 220 vimes that of the gas. in ret. (6) the volume of water pumped per unt volume of air for an orifice at a cepth of 4.5 a (14.7 st) varted from bout 50 to 175 aepending on the air now rate. The analysis given here will provide the liquid pamping rate as a function of bubble sise distance and gas Row rate.

Experimental mensurements of a rising sater jet pumped by air were wade by bobus (6) at several air
 whe given ulilizine the experimentally measured flow to specify the entrainuent term in the continuity equation. In ret. (7) an analysis was made of the bubble pumped jet in a maner anklogous to a turbuLent convective pluee such as in ref. (g). This procedure leads to a sintularity where the huid velocity becones 1 nifinite at the $14 t$ origh, maining it necessary to define an upparent oridin in order to conpare the analytical resulis tith exveriment. The tate of Kobus ( 6 ) was used in ret. (1) to determine the com erriclents sovernins the flou such as the fet spreadIng rate ard the turbulent entranment coerficient. In order to ontain better agreesent between the analyis and the experiment of hobus, it was found necessary to decrease the entralnment coefilicient substanthally as the air now decreaced.

In ref. ( 2 ) analytical expressions are given Eron an approxtmate analystis by L. St. Konovalov of the wher pumped by air released fron a submerged perforated pipe. The present utwation is axisymetric, whereas the perforated pipe provides a jet that is two dimensional in rectanuular coordinates. The empirical constants in the theory vere evaluated irom laboratory observations for depths sf the perforated pipe th to chout 1 n and tor air 12 ry rates up to about 0.00139 $m^{3} /$ sec per teter of pipe leneth. Sane 1 imited full scale tests sere also thade at depths up to 10 a . Sume date for a twodimensional plume are also given in ref. (6). The analysis here is concerned with localized discharges spaced apart along the leagth of a subnerged $\bar{y}$ jpe; hence an aximymetric jet is being consldered rather than the perforated plpe.

The present work is an attempt to nodel the gas driven jet as a two-phase Now. A aimplifled twom phase model is constructed conslinting of a bubbly core cat an outer Llquid Rlow. An entratment model la constructed to sccount for the contributione to the entraiment by the outer Liquid Mow, the bubble
velvew, sha the rising ges bubbles.

## Antwits

## Fpdel Desextiption

A glass that having an opeaing about $1-1 / 2$ za In diameter wem placed at the botton of a tent 0.6 a deep and 0.31 : square in harizontal cross section. Motion phictures were made at severnh rates of air Row from the tube, and typical contigurations of risiag bubhles are shown in IIg. 2. ${ }^{2}$ Eased on these observathons, a model was construeted which was a compromise between mathematical dirficulty and physical realise. In the model, as shown in Ift. 3 , the jet is considered axisymetrical with two regions. There ls a central core surrounding the jet axis consisting of large bubbles rialng in a chain bubble fashion and separated by Liquid wakes that are carried along by the bubbles. Surrounding the core is an outer region of entrained




[^0]
 $3 m \mathrm{~mm}$

Hquid beling carried upward by the arae on the Huuld aristine tron the buoyency force of the bubbles. This model peraits usine different relation" for the entralineat by the gat and by the LMquld regiona.

The Row fielia is assumed to be stendy, fino-
thereni and rwily turbulent. The Iquid denility 10 assumed constant, but the gas density varies with the local pressure in accortance with the perfect gas lew, thus the bubblen expand as they fike through the Liquid. The bubbles are assimed to be ournelently Merge that lbeir dres is fully furbulent and hence they rise at a constent terminal velocity relitive to the Liquid. The local bubble velocity lis ssumed equal to the local Liquid velocity pium the bublle terminal. velocity. It is assumed that the ons lewves the orlfice with neglighle uputa monentum. After the gas is released, there 18 an adjustant region within which the bubbles achieve thelir tersanal velocity. For en instalistion in a lake or river this region would be tasill compared with the total rise tright and hence this region is not taken into secount.

As shown in fig. 1 the rising fet now will turn at the 1 iquid surfece and move radiaily outward. At the surface the vertical velocity component hes to go to zero. However, to, incorporate thit condition requiret coupling the solutions for the jet and the turning zone which is a difficult anilysis. The twrning zone is not cecounted for here; it in asmumed that the jet continues to the surfice at shown by the dotted extrapoletion lines in fig. 1 . Iecause of their etrong vertical buoyancy force, the bubble: do not turn very much with the Now: bence they exert thelr priping erfect all the wey to the wurthoe. Miso there is zero shear at the liquit surtace which facilftates the turning and tende te minimize the induence of the turning zone in the firing plues. These ant types of assumptiont are discusered in ref. ( 10 ) for : free convection pluye ebove a heated cylinder. Consequently an analysis without the effect of the turnIng zone should yiela reasonable verticnl pumpins reten.

## Gas Continuity

For a singla rising bubbie, Let the ratio of the vike volume to the twblie volume be a quantity K .

Iran ref. (11), for bubble Regnolds mumbers grester than thout 200 , which would be reasonable for the lurge bubbles in the present application, the 14 is essentiniIy constant and equals about 1, s. $^{\text {. }}$, Then in the core wgion of lockl radius $4(x)$ in Hig. 3 , on the average 1/(x +1$)$ of the vertical height is occupled by ges bubbles and $\mathrm{K}(\mathrm{X} \cdot 1)$ is occupied by vile regions. This assumes for matheratical simplicity that the bubbles are wiaing in a chain-bubble rashion in which the bubbles are vertically spaced by the liquid vakes. strictiy speating such a configuration exists oniy over e certrait range of Clow rates. Hovever, the reenle Grom this modal zay appiy to other bubble regines. This is because, sa ascussed later, the turbulent entrainment of liquid by gas is minor compared with the entralnment by liquid. This tends to dirinish the inportance of the exact conflguration of the rising gan. Since the gas weight how rate is constant,

$$
\begin{equation*}
N_{8}=\int_{0}^{a_{e}} \frac{\frac{\ell_{\pi x}}{}}{x+1} \rho_{s^{u}} d r=\text { constent } \tag{1}
\end{equation*}
$$

## Perfect Gas Luy

The pressure at helght $x$ ebove the norzle 15 of $(1-x)$. Then tron the perfect get lav the gas density at $x$ is

$$
\begin{equation*}
\rho_{s}=\frac{1}{\mathrm{R}}\left[\mathrm{~F}_{\mathrm{a}}+q_{f}(L-x)\right] \tag{2}
\end{equation*}
$$

where $\mathrm{P}_{\mathrm{a}}$ is atanopheric pressure st the $11 q u i d$ surtese.

## Liguid Continuity

The liquid continuity equation ecounts for the Liquid carried into the jet by turbulent entrairment. The entrained Liquid goes into the 14quid region surrounding the core, or into the bubhle wakes which are erowing ss the rising bubbles expend,
$\frac{d}{d x}\left[\frac{\mathrm{x}}{\mathrm{x}+1} \int_{0}^{a_{c}} 2 \pi \mathrm{arg}_{q} \mathrm{u}_{z} \mathrm{dr}+\int_{a_{c}}^{-} 2 \pi \mathrm{raq}_{q} u_{i} d r\right]$

$$
\begin{equation*}
=-\left(2 \pi \rho_{1} T w\right)_{r-w} \tag{3}
\end{equation*}
$$

The term on the right will be expressed later in terma of a turbulent entralnaent relation.

## Ges end Liquid Monenty

In most applications lnvoiving air driven jetw. the surrounding body of water la lerge: hence for simplicity in the present analysis, the surfuunding liquid region will be assamed infinite. The analysis of a jet in a small container would be much nore compliceted because of Llquid recirculation and the intermetion with the contsiner walls.

The upuara bueyancy force of the bubbles produces a change in monentum (usuvily quite mall) of the gas bubbles, a monentum change of the Liquid in the bubble vakes, sad a monentum chenge of the liquid in the ragion surrounding the bubbly cort. This yields the mosentwe equetion as,
"Top Het" Distributions
To integrate eqs. (1), (3), and (4), "top hat" velocity profiles are asaued which have yielded good results for free convection plumee ( Q ),

$$
\begin{align*}
& u_{g}(x, r)=u_{g}(x)  \tag{5e}\\
& u_{l} \leq r \leq e_{c}(x)  \tag{5b}\\
& u_{l}(x, r)= \begin{cases}u_{l}(x) & c_{c}(x)<r \leq a(x) \\
0 & a(x)<r\end{cases}
\end{align*}
$$

The
$u_{g}$ and $u_{2}$ are related by

$$
\begin{equation*}
u_{g}(x)=u_{l}(x)+u_{\infty} \tag{6}
\end{equation*}
$$

where $u_{m}$ is the terminal velocity of a single bubble rising in a large region of quiescent liquid.

Insert eq. (5) into eqs. (1), (3), and (4) to obtain

$$
\begin{gather*}
M_{g}+\frac{\pi a_{c}^{2}}{K+1} \rho_{g}^{u}=\text { conatant }  \tag{7}\\
\frac{\pi K_{g} \rho_{l}}{K+1} \frac{d}{d x}\left(u_{g} a_{c}^{2}\right)+\pi \rho_{l} \frac{d}{d x}\left[\left(a^{2}-a_{c}^{2}\right)_{u_{l}}\right] \\
=-\left(2 \pi \rho_{l} R v\right)_{r-\infty}  \tag{8}\\
\frac{\pi K \rho_{l}}{K+1} \frac{d}{d x}\left(u_{\tilde{g}}^{2} a_{c}^{2}\right)+\pi \rho_{l} \frac{d}{d x}\left[u_{l}^{2}\left(a^{2}-a_{c}^{2}\right)\right] \\
 \tag{9}\\
\end{gather*}
$$

## Entrainment Function

An expression is now needed for the entrainment on the right side of eq. (8). As discussed by Morton (12) for free convection plumes above fires. for a buoyant single phase jet the entrainment depends on an additional variable which is the density in the plume relative to the density of the surrounding fluid. The entrainment is reduced when the plume density is smaller than the density of the surrounding Iuid. The present situation involves two distinct phases that each maintain their separate identities; hence there will be two types or entrainment, liquidliquid and gas-liquid. For the latter there is a lack of entrainment information when the density ratio is as small as that for air to water. As soon as some liquid is in motion, much of the entrainment is by liquid entraining additional liquid which is reasonably well understood.

It was deduced in ref. (12) by using the information in ref. (13), that for a single phase jet the usual jet entrainnent coefficient $E$ used when the fet and outer fluid have the same dehsity, should be modified when the jet and outer fluid densities are different. The $E_{o}$ is multiplied by the density ratio $\left(\rho_{i} / \rho_{0}\right) 1 / 2$ where $\rho_{i}$ is the density in the jet and $\rho^{2}$ is outside the jet. For the present situstion the liqui. -liquid entrainment terms will therefore have a unity ratio factor, while the gas-liquid terms will contain $\left(\rho_{g} / \rho_{1}\right)^{1 / 2}$. Since the entrainment is so different för the two phases, the taophase nature of the jet will be retained rather than trying to assign an average density to the entire jet. The entrainment also depends on the velocity of the jet relative to its surroundings, and on the in-
terfacial area between the jet and the ourrounding redion. These velocities and areas are different for the and and liquid portions. The liquid region moving at velocity $u_{2}$ as shown in fig. 3 , entrains liquid from the quiesdent fluid around it. The higher velocity bubbly region is moving at velocity $u$ relative to its ourrounding liquid, and hence should eabance the entrainuant process. A well defined interfacial area bounding the bubbly rezion can only be obteined by utilizing a amplified mocei such as in fig. 3, and thie area it uged to obtain the magnitude of the enireinent. However, if this entrainment were assumed to be roteined in the core, the core vould then becor a liquid jet containing a biobly core and the difficulty of defining the entrainment for this twophase inoar jet would become the same as that for the original two-phase problem. Although the concept of a bubbly care is used to provide a well defined interfacial area, it is realized that the bubbly motion is ectually more random. With these considerations in miad and in the abseace of any better information on such a two-stage entrainment process, it is assumed that the vigorous action of the bubbly region increases the turbulence in the liquid surrounding the bubbles and thereby enhances the total entrainment into the moving region. This is in accord with the results in ref. (13) that the entraisment is a function of the excess momentum flux in the jet. Thus in the present model, as the jet grows with increasing height above the $30 u r c e$ of gas the core will retain its identity ss being composed of only bubbles and t.. zir wakes. Hence the total entrainment will be taken as the entreinment by the movirg liquid outside the tubbly core. augented by the entrainment effects of the liquid wakes and gas within wa core, and is given by

$$
\begin{align*}
&-\left(2 \pi \rho_{l} r v\right)_{I \infty}=2 \pi E_{0} \rho_{2} u_{i}+2 \pi E_{o} \rho_{l} \frac{K}{1+K} a_{c} u_{\infty} \\
&+2 \pi E_{0} \rho_{l}\left(\frac{\rho_{g}}{\rho_{l}}\right)^{1 / 2} \frac{a_{c}}{1+K} u_{\infty} \tag{10}
\end{align*}
$$

valution for $u_{q}$ and $a$
To obtain the amount of liquid being pumped by the rising gas. the liquid velocity and jet radius must be obtained. The liquid mass flow rate in the wake regions is known from the specified gas flow rate as $\mathrm{KM}_{\mathrm{B}}\left(0, / \rho_{\mathrm{g}}\right)$. The macs flow rate of liquid is then

$$
\begin{equation*}
M_{l}=\pi\left(a^{2}-a_{c}^{2}\right) \rho_{l} u_{l}+K M_{g} \frac{\rho_{l}}{\rho_{g}} \tag{11}
\end{equation*}
$$

Since $M$ in eq. (7) is a constant, eqs. (8) and (9) can be simplified by using eq. (7) to eliminate same of the $u_{z}$. Eq. (10) is then substituted for the right sice of eq. (8). The resuit is the continuity and momentum equations in the form,

$$
\begin{align*}
\frac{K}{\pi} M_{B} \frac{d}{d x}\left(\frac{1}{\rho_{g}}\right)+\frac{d}{d x}\left[\left(a^{2}-a_{c}^{2}\right) u_{i}\right] & =2 E_{0}\left[a_{i}+\frac{K a_{c}}{1+K} u_{0}\right. \\
& \left.+\left(\frac{\rho_{g}}{\rho_{2}}\right)^{1 / 2} \frac{a_{c}}{1+K} u_{\infty}\right] \tag{12}
\end{align*}
$$

# $$
x \frac{M_{8}}{\pi} \frac{d}{d x}\left(\frac{u_{8}}{D_{g}}\right)+\frac{d}{d x}\left[u_{l}^{2}\left(s^{2}-a_{c}^{2}\right)\right]+\frac{M_{g}}{T O_{l}} \frac{d_{g}}{d x}
$$ <br> $$
\begin{equation*} =\frac{e_{2}^{2}}{1+x}\left(-\frac{D_{5}}{D_{2}}\right) \tag{13} \end{equation*}
$$ 

The $u_{8}$ can be eliminated in teras of $u_{f}$ by uins eq. (6), and the $p_{n}$ is given in terms of $x$ by eq. (2). Fromeq. (7) the ac can than be eliminated in terms of $u_{f}$ and $x$. Thus eqs. (12) and (23) are reduced to equations for the uaknown $u_{2}(x)$ and $a(x)$. To obtain numerical results the differeatiations were carried out analytically and then the equations combined to eliminate $\mathrm{du}_{l} / \mathrm{dx}$ or $\mathrm{d} / \mathrm{dx}$. The result was the follooring set of simultaneous differential equations that were solved by the RungeSutta method (14),

$$
\begin{align*}
& \frac{d u_{l}}{d x}-\left[2 E _ { 0 } u _ { = } u _ { l } \left\{\frac{\pi a_{g} u_{l}}{M_{g} u_{\infty}}+\left[\frac{\pi \rho_{g}}{M_{g}(K+1)\left(u_{l}+u_{\infty}\right.}\right]^{1 / 2}\right.\right. \\
& \left.\left.\times\left[K+\left(\frac{\rho_{g}}{\rho_{l}}\right)^{1 / 2}\right]\right\}-\frac{g\left(1-\frac{\rho_{g}}{\rho_{l}}\right)}{u_{i}+u_{0}}+\frac{K}{R T} \frac{\rho_{q} u_{0}}{\rho_{g}}\right] /\left[\frac{(K+1) u_{2}}{u_{l}+u_{a}}\right. \\
& -\frac{\pi \rho_{g} a^{2} u_{2}}{M_{g}}-\left(\frac{\rho_{g}}{\rho_{2}}+K\right)=F\left(u_{2}, a, x\right)  \tag{14}\\
& \frac{d s}{d x}=E_{0}\left\{1+\frac{u_{\infty}}{a u_{2}}\left[\frac{u_{g}}{\pi(K+1) \rho_{g}\left(u_{2}+u_{\infty} j\right.}\right]^{1 / 2}\left[K+\left(\frac{\rho_{g}}{\rho_{2}}\right)^{1 / 2}\right]\right\} \\
& +\frac{M_{i} O_{2}}{2 \pi R_{R} 0_{g}^{2}}\left(\frac{K+1}{u_{2}+u_{\infty}}-\frac{K}{u_{i}}\right) \\
& -\left[\frac{a}{2 u_{Z}}-\frac{(x+1) u_{a} M_{g}}{2 a u_{q} \pi \rho_{g}\left(u_{q}+u_{\infty}\right)^{2}}\right] P\left(u_{q}, a, x\right) \tag{15}
\end{align*}
$$

At $x=0$, $a=a_{c}$, and $u_{l}=0$ a that $u_{g}=u_{\infty}$. Then the initial conditions at $x=0$ - to begin the integration are from eq. (7),

$$
a(x \oplus 0)=\left[\frac{M_{g}(1+K)}{\pi u_{\infty} \frac{\left(p_{a}+o_{l}^{L}\right.}{R T}}\right]^{1 / 2}
$$

and $u_{2}(0)=0$. The latter condition hovever causes aterting difficulty in the integration since it is in the denominator of a few terms, so a small value was used, $u_{l}(0)=0.001$. The calculations were tested using amaller $u_{i}(0)$ and no significant changea were
found.

ETgTMTS
To compute the induced IIquid How, number of quantities anst be specified. The results that follow are with regerd to the prevention of ice in lakes by reising varm bottom vater to the surface. For these conditions the bulk vater is a few degrees $K$ above freering so in what follors $T=275 \mathrm{~K}\left(495^{\circ} \mathrm{R}\right)$. The ternatal velocity $u_{0}$ of a single bubble in undisturbed Fuid vas obtiained fron the relation (15) (16)

$$
\begin{equation*}
u=1.53\left[\frac{\operatorname{tg}\left(\rho_{2}-\rho_{g}\right)}{\rho_{2}^{2}}\right]^{2 / 4} \tag{16}
\end{equation*}
$$

which yielded $u_{\infty}=0.252 \mathrm{~m} / \mathrm{sec}(0.825 \mathrm{ft} / \mathrm{sec})$ for air bubhles in viter.

A aiguificant source of uncertainty is in upecifing the entrainment coefficient $E_{0}$. In ref. (17) which is concerned with the penetration of a condensing vapor jet into a liquid, a "top hat" velocity prorlle is uned and a range of E from 0.06 to 0.12 ia gaven as being found in the ifterature. For entraiment of various gas jets in atill air with danalty ration in the range $\rho_{i} / \rho_{0}=0.66$ to 14.5 , the wark in ref. (13) yielded $E_{0}=0.08$ besed on considerations of the excess momentum in the jet. The entrainment is proportional to a characteristic velocity in the jet. If a Geussian velocity profile is used, the centerline velocity is used as the characterlstic velocity which is larger than the average velocity used in the "top hat" profile. As a result in ref. (18) $E_{0}=0.082$ is recommended for use with a Gaussian profile and $E_{0}=0.116$ for a "top hat" proflle. In view of all these considerations it was dacided to obtain two sets of calculations using $E_{0}=$ 0.08 and 0.116 . The rasults will be discussed in the next section.

Equations (14) and (15) were integ ed to $x=L$, the surface of the water, to obtain $u_{3}(L)$ and $a(L)$. By using eqs. (5) and (7) a (L) is found ort the upward flow of liquid then obtalned from eJ. (11). In reality the upward flow wil begin to turn as it approaches the surface, but the influence of the water surface was not accounted for here, as previously discussed. Figure 4 gives the mass flow rate of liquid being pumped to the surface as a tunction of the mass flow rate of air, for the air being introduced at various depths below the surface. In terms of the same quantities fig. 5 shows the radius of the jet region at $x=L$ and fig. 6 gives the ilquid velocity at $x=L$. Some of the results in flg. 5 have been cross plotted in fig. 7 to show the trend of the jet radius with orifice depth for fixed gat mass flow rates.

## DISCUSSION

As show by fig. 4 the liquid pumped to the curface increases with the deptin of the orifice below the aurface and with the gas flow rate. For a fixed weight flow rate, the volume of the gas introduced at the orifice decreases as the orifice depth increases. Hence it seems better to present the results in terms of gas weight flow rate than in terms of volume flow. For each orifice depth the results in fig. 4 lie fairly well along a straight line on a log-log plot. The alope decreases somewhat as $L$ is increased but the results vary essentially as $M_{l} \propto M_{p}^{\circ}$. A cross plot of the results shows that for a givin $M_{g}$ the $M_{2}$ variation with $L$ is also as a power function.
$M_{2}=L^{1.4}$. Then an approxdente correlation of the celculated results is given by

$$
\begin{equation*}
M_{2}=C M_{g}^{-4} L^{1.4} \tag{17}
\end{equation*}
$$

When $M_{2}$ and $M_{g}$ are in $\mathrm{kg} / \mathrm{sec}$ and $L$ is in $m$, then $C=365$ for $E_{0}=0.08$ and $C=550$ for $E_{0}=0.116$. When $M_{2}$ and $M_{g}$ are in H/sec and $L$ is in ft, then $C=11$ for $E_{0}=0.08$ and $C=172$ for $E=0.116$.

To examine in more detail the effect of the varLous entrainment terms in eq. (20) calculations were made with either the liquid walce term and/or the gas

 and eflitice terth.

figure 5. Redlus of rising pet of mater surface es a function of sir flow rat and oritike devin.


Figuret - Verical velocity of entranmelinuit in rising pet if miter surice


[igure ) - Jef radius at inquit surlace compared with present results and resulis from - 14.

trainment term had less than a 14 offect on the pumped liquid mase. The liquid wike term had anignificant effect for small $x$ where the total iiquid flow is small, as it helped initiate the ontrainmant process. The effect of this term decreased as the total entrained flow became more aubstantiel. For a Copth of 1.524 m ( 5 ft ) this term increased the flow in the range of 10 to $7 d$ as the ges flow ranged trom the smmllest to the largeat voives on fig. 4. For a cepth of $9.144 \mathrm{~m}(30 \mathrm{ft}$ ) the wake term contributed about $5 \%$ to the pumped flow for any gas flow rate. The liquid wake term on the left aide of eq. is an especially important feature of the present anclysis. For small $x$ it provides inertia within the flow when the total entrained liquid is still small and preventa the buoyancy force from producing unrealistically high liquid velocitios near the arigin of the numerical calculations.

The bubble pumping process provides \% Guctuating flow so that experimantal meaurements are difficult. Sowe comparisons will now be made with the sanil amount of data available in the literatura. These results will serve to emphasize that although there is still appreciable uncortainty in the anount of fiow being pumped. the trends with depth und gas flow rate have been approximately eatablished. The moat atriking feature is that the retio of purped liquid volume to gas volume is quite large.

In fig. 13 of ref. (6) Kobus gives the ratio of pumped ilquid valum to the gas flow rate for various gas flow rates. There is a set of data for the local flow rate at a location 3.3 m above an orifice 4.5 m doep. These local flow rates vere aiso obtained from the present somputer calculations and a comparizon is made in table I. For $E_{0}=0.3$, the present theory predicts a flow that is aomewhat low at the high gas flow rates and somewhat high at the low fluw rates. For $E_{0}=0.116$ the agreement is good at the high air flow rates. Before further discussion the results of ref. (4) should be insluded.

In ref. (4) the following correlation is given from available data in terms of volume flow rates of air and water and depth of submergence (in ref. (5) the exponent on $Q_{g}$ is $1 / 2$ ),

$$
\begin{equation*}
Q=\text { Const. } Q_{B}^{2 / 3_{L}} 3 / 2 \tag{18}
\end{equation*}
$$

Also in refs. (4) and (5) a discharge of $0.000472 \mathrm{~m}^{3} /$ sec ( 0.0167 ft$)^{3} / \mathrm{sec}$ ) of air at a submergence of $1.68 \mathrm{~m}(5,5 \mathrm{ft})$ is reported to raise about $0.0567 \mathrm{~m}^{3} /$ $\sec \left(2 \mathrm{ft}^{3} / \mathrm{sec}\right.$ ) of water to the surface. The present calculation yields a pumping of about $0.0373 \mathrm{~m}^{3} / \mathrm{sec}$ ( $1.33 \mathrm{ft}^{3} / \mathrm{sec}$ ) of water when $E_{0}=0.08$ is used, and $0.0585 \mathrm{~m}^{3} / \mathrm{sec}\left(2.07 \mathrm{ft}^{3} / \mathrm{sec}\right)$ when $\mathrm{E}=0.116$. The experimental values were inserted into eq. (18) to evaluate the constant and the formula then used to calculate local values for the conditions in table $I$. The flow rates are seen to be about twice those given in ref. (6).

It is noted from table ! that the pumped volune of water per unit volume of air decreases as the air flow rate increases, so that a more efficient pumping system is obtained at low flow rates. In ref. (6) It was found that the volume pumping rate decreased as the air flow to the -0.4 power, in ref. (4) it is the 0.33 power, in ref. (5) it is the 3.5 power and the present eq. (17) gives approximataly the 0.6 power. It is felt that additional sets of data are needed vefore refinements can be made in

## the ebpery.

To provide a little more information on bubble pupling consider brienty some reaults roported in ref. (9) from en approxinate anolysis made in 1946 by Konovalov of the pumping in a geometry that is two dimasional in rectangular coordinates as produced by air released fram a submerged perforated pipe. The empirical conatants in the theory were evaiuated from leboratory observations for lepths of the perforated pipp up to about 1 im and air flow rate: up to 0.00138 $\mathrm{m}^{3} / 00 \mathrm{c}$ per meter of pipe length. There were also some linited fulli scele tests run at dopthe up to 10 m . The results for arifice depths greater than 1 m are given by the correlation

$$
\begin{equation*}
Q_{I}=0.75\left[(10+L) L^{2} \ln \left(1+\frac{L}{10}\right)^{1 / 3} Q_{E}^{1 / 3}\right. \tag{19}
\end{equation*}
$$

where $Q_{2}$ and $Q_{B}$ are in $\mathrm{m}^{3} / \mathrm{sec}$ and $L$ is in meters.
pecause of the difference in geometry precise comparisons cannot be made, but it is interesting to see how the predictions of liquid volume pumped per unit gas volume $Q_{2} / Q_{g}$ compare for the release from an orifice as obtained fromeq. (17), and from a meter length of perforated pipe. eq. (19). Results are given in table II and it is seen that the pumping rates are of the same magnitude. The of was assumed to be at the diacharge location, although this was not clearly specified in the reference.

In ref. (19) it is mentioned that the bubbly region of the axisymetric jet is approximately contained within a cone having a total included angle of $12^{\circ}$. Although the present mathematical model considers all the gas to be in the form of large butiles cantained in the core of the jet. In the physical case there are amall bubbles that break off from the large ones as ahown in fig. 2. The turbulent motion diffuse. the small bubbles within the flow so that they prooably extend throughout most of the entrained region. Hence the total bubbly region should give an indication ..- the extent of the jet region. Using a total inc-uded cone argle of $12^{\circ}$, the jet radius at the surface 19

$$
\begin{equation*}
a(x=L)=L \tan 6^{\circ}=0.105 L \tag{20}
\end{equation*}
$$

The photographs in fig. 2 indicate an increase of cone angle with gas flow rate. In fig. 2(a) the cone angle is about $14^{\circ}$, while in fig. $2(\mathrm{~d})$ it is about $19^{\circ}$.
Equation (20) is plotted in fig. 7 and compares reasonably well with calculated results for an entrainment coerficient of $E_{C}=0.08$. For a larger total included angle of say $10^{\circ}$, which is characteristic of figs. $2(c)$ and ( d ), eq. (20) becames $a(L)=0.158 \mathrm{~L}$. As shown by fig. 7, this provides reasonable agreement with the values computed with $E_{0}=0.116$.

## CONCLUSIONS

A tractable mathematical model was formulated for computing the liquid carried upward in an axisymmetric jet driven by a rising stream of gas bubbles. The model geometry was based on obervations of air rising through water 0.6 m deep. Liquid is carried into the jet by turbulent entrainment and a difficulty in the analysis is in specifying the proper value of the entrainment coefficient. Calculations were made for two values of the entrainment coefficient within the range given in the literature. The large buoyancy resulting fram the lerge density difference between the gas and 11quid produced considerable liquid movement compared
vith ordinary liquid free convection induced by thermil meant, whare deneity differences are weully on the order of a few percent. The present reaulta indicated that for air riaing through water the rate of liquid transpart to the vater surface veries as the 0.4 power of the air mass flow rate and the 1.4 power of the submergence depth of the air orifice. More experimental data is needed befor the theory can be further refined.

## RESTERTNCES

1. Batchelor, G. K. "Heat Convection and Buoyancy Effecta in Fluids," Quarterly Journel Roval Meteorological society. Vol. 60, 1954, pp. 339-358.
2. DeNevers, N., "Bubble Driven Fluid Circulations," AIChE Journal Val. 14. Mo. 2, Mar. 1968, pp. 222-226.
3. Williams, G. P.. "Winter Water Temperatures and Ice Prevention by Air Bubbling." The Engineering Journal. Val. 44, No. 3. March 1961, 7p. 79-84.
4. Beines, W., "The Principlea of operation of Bubbling Systems." in: Procending Symposiva on Alr Bubbling. Ottava. May 1961, National Research Council (Canads), pp. 12-22. (Available as Tech. Mano. No. 70).
5. Baine:, W. D., and Hamilion, G. F., "On the Flow of Water Induced by a Rising Column of Air Bubbles," in: International asuociation for Hyaraulic Parearch, Proceedings of the Eighth Congress, Vol. 2, Montreel, 1959, Paper 7-D.
6. Kobus, H. E., "Analysis of the Flow Induced by Air Bubble Systems," Coastal Engineering Conference, VUl. II, Chapter 65, pp. 1016-1031, London, 1968.
7. Cederwall, K., and Ditmars, J. D., "Analysis of Air-Bubble Plumes". Report No. KH-R-24, W. M. Keck Laboratory of Hydraulics and Water Resources, Division of Engineer'ng and Applied Science, California Institute of Technology, Pasadena, California, Sept. 1970.
B. Morton, B. R., Taylor, G. I., and Turnar, J. S., "Turbulent Gravitational Convection from Maintained and Instanteneous Sources," Proc, of the Roval Society, Series A, vol. 234. pp. 1-23, 1956.
8. Balanin, V. V., Borokin, B. S., and

Malkonyan, G. I., "Utilization of Deep Water Heat in Reservoirs for the Maintenance of Unfrozen Water Areas," Cold Regions Research and Engineering Laboratory, 1970 (Available at AD 716 306), Translation of a Russien report (1964).
10. Fand, R. M. . and Keswani, K. K., "Mase Rate of Flow in the Natural-Convection Flume Above a Heated Horizontal Cylinder Lnmersed in a Liquid," Journal of Heat Trensfer, Trans. ASiE, Serien C, Vol, 95 , No. 2, May 1973, pp. 192-198.
11. Subramanian, G., and Tien. C., "Mixing in Liquid Phase Due to Bubble fotion," AIChE Paper No. 43D, 1970.
12. Morton, B. R., "Mode' ing Fire Flumes, "proceedings of the Symposium (International) on vombustlon, 10th. August 17-21, $19 \mathrm{H}^{4}$ at University of Cambridge, Cambridge, England, 1365. pp. 973-982.
13. Picou, F. P. , and Spalding, D. B., "Measurements of Entrainment by Axisymmetrical Turbulent Jets, "Journal of Fluid Mechanics, Vol. 11, Pt. 1, Aug. 1961, pp. 21-32.
14. Scarborough, J. B., "Numaricsi Mathematical Ansiysis. "Fourth Ed., John Hopkins Press, Baltimore, 1958, pp. 314-322.
15. Zuber, N. and Findley, J. A., "Average Valumetric Concentration in Two-Phase How Systems," Journal of Heat Transfer. Trans, AEME, Series C, Vo1, 87, No. 4. Nov. 1965, pp. 453-468.
16. Barmathy, T. Z., "Velocity of Large Drops and Bubbles in Madie of Infinite or Reatricted Extent," AIChE Journil, Vol. 6, No. 2, June 1960, pp. 281288.
17. Walmer, J. C., Feeth, G. M., and 0lson, D. R., "Renetration of Vapor Jets Submerged in Subcooled L"quide," ATChE Journal, Vol. 19, No. 3, May 1963, pp. 552-558.
18. Morton, B. R.. "Forced Plumes," Journal of Muid Mechanice, Vol. S, Pt. 1, Ju.. 1959, pp. 151163.
19. Michel. B. Cald Regions Science and Engincering Monograph 3, Section Bla; "Winter Regime of Rivers and Lakes," U.S. Army Cald Regions Research and Englaeering Laboratory, Peport No. CCREL-CRSE-3Bla, 1971. (Available as $A D 724$ 121).
tabie i. - Volunetric parping rates in an axi-
SNEDTRIC JET AT A LOCATION 3.3 M ABOVE ORTFICE SUB-
MIRCED 4.5 M BILLON SURFACE

| Air fiow at atandara conditions. $Q_{g}, 1 /$ mec | $\frac{\text { Voluma rater pumped }}{\text { Volume air }}=\frac{Q_{l}}{Q_{g}}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
|  | Kobus (6) | $\begin{aligned} & \text { Baines (4) } \\ & \text { (extrap- } \\ & \text { oleted) } \end{aligned}$ | $\left\lvert\, \begin{aligned} & \text { Present ca } \\ & E_{O}-0.08 \end{aligned}\right.$ | alculations $E_{0}=0.116$ |
| 0.00040 | 175 | 349 | 217 | 327 |
| . 00130 | 100 | 236 | 108 | 163 |
| . 00255 | 86 | 188 | 73 | 110 |
| . 00420 | 67 | 159 | 54 | 81.5 |
| .00620 | 62 | 140 | 42 | 63 |

TABLE II. - VOUUNETRIC PUMPING RATES FOR SUBMERGED
AXISYMETRIC JET OR PERFORATED PIFE ( $Q_{g}$ IS VOLUME

| Plpe depth, I <br> m | $\begin{gathered} Q_{g} \\ \mathrm{~m}^{3 / \mathrm{sec}} \end{gathered}$ | $\left\lvert\, \begin{array}{r} \text { Axisymme } \\ \text { fram } \\ E_{0}=0.08 \end{array}\right.$ | $/ q_{g}$ <br> tric jet, <br> q. (17) $E_{0}=0.116$ | $Q_{l} / Q_{g}$ <br> Perforated pipe 1 m long. eq. (19) |
| :---: | :---: | :---: | :---: | :---: |
| 2 | $\begin{aligned} & 0.0001 \\ & .001 \\ & .01 \end{aligned}$ | 284 71.4 17.9 | $\begin{aligned} & 440 \\ & 111 \\ & 27.8 \end{aligned}$ | $\begin{array}{r} 717 \\ 154 \\ 33.3 \end{array}$ |
| 3 | $\begin{aligned} & 0.0001 \\ & .001 \\ & .01 \end{aligned}$ | $\begin{gathered} 540 \\ 13 \hat{6} \\ 34.1 \end{gathered}$ | $\begin{aligned} & 836 \\ & 211 \\ & 52.8 \end{aligned}$ | 1090 234 50.6 |
| 6 | 0.0001 .001 .01 | $\begin{array}{r} 1490 \\ 374 \\ 94.0 \end{array}$ | $\begin{array}{r} 2310 \\ 580 \\ 146 \end{array}$ | $\begin{array}{r} 2250 \\ 485 \\ 105 \end{array}$ |
| 12 | 0.0001 .001 .01 | 4460 1120 281 | $\begin{array}{r} 6910 \\ 1740 \\ 435 \end{array}$ | $\begin{array}{r} 4720 \\ 1020 \\ 219 \end{array}$ |


[^0]:    Experimental results obtained with help of or. Y. Y. Hisu.

