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PERFORMANCE OF 75-MILLIMETER-BORE BEARINGS USING

ELECTRON-BEAM-WELDED HOLLOW BALLS WITH

A DIAMETER RATIO OF 1. 26

by Harold H. Coe, Richard J. Parker, and Herbert W. Scibbe

Lewis Research Center

SUMMARY

These experiments compared the rolling-element fatigue life of electron-beam-

welded hollow balls with 1. 8-millimeter (0. 070-in.) wall thickness with previously run

solid balls and 1. 5-millimeter (0. 060-in.) wall thickness hollow balls. Also, the oper-

ating characteristics of ball bearings using 17. 5-millimeter (0. 6875-in. ) diameter hol-

low balls were compared with similar bearings using solid balls.

The 75-millimeter-bore bearings were tested at a 2200-newton (500-1b)thrust load

at shaft speeds up to 28 000 rpm or 2. 1x106 DN (bearing bore in millimeters times shaft

speed in rpm). Each of the AISI M-50 steel hollow balls used in these bearings had a wall

thickness of 1.8 millimeters (0. 070 in. ). These balls weighed 50 percent less than

similar solid balls.

The fatigue life of the hollow balls, determined in the NASA five-ball fatigue tester

at a maximum Hertz stress of 4. 8x10 9 pascall (700 000 psi) was not significantly less

than that of the previously run solid balls of the same material. The ball failures re-

sulted from classical subsurface fatigue and did not occur in the weld area.

The results of the full-scale bearing tests showed that the outer-race temperatures

of the bearings with the hollow balls were slightly lower than those with the solid balls.

However, the bearing torque was about the same for all conditions tested for both the

solid and the hollow ball bearings. The ball failures during the bearing tests were due

to flexure fatigue. Most of the tracks on the balls that were examined were directly on

the weld.

1pascal = newton per square meter.



INTRODUCTION

Trends in gas turbine design have resulted in a requirement for higher shaft speeds

and larger shaft diameters (ref. 1). Although bearings in current commercial aircraft

turbine engines operate in a speed range up to 2 million DN (bearing bore in millimeters

multiplied by shaft speed in rpm), future engines may require bearings that can operate
at DN values of 3 million or higher. However, when bearings are operating at high DN
values, the balls produce significant centrifugal forces at the outer race. The resulting

high Hertz stress at the outer-race contacts can shorten bearing fatigue life (ref. 2).
A possible solution to the high speed bearing problem is to reduce the mass of the

ball and thus reduce the centrifugal force (ref. 3). One method of reducing the mass is
to make the ball hollow. By reducing the mass 50 percent below that of a comparable

solid ball, the bearing fatigue life might be improved by a factor of five for a lightly
loaded, high speed application (ref. 3). A hollow ball can be fabricated by welding two
hemispherically formed shells (refs. 4 and 5).

Electron-beam-welded hollow balls were evaluated for potential use as bearing balls
in references 5 and 6. Also, some operating characteristics of a full-scale bearing
using hollow balls were determined experimentally in reference 6. The results of these
tests showed that the hollow ball is susceptible to flexure failure if the wall is suffi-

ciently thin. The 12. 7-millimeter (0. 500-in.) diameter hollow balls (diameter ratio
1.67; 21. 7-percent weight reduction) operated satisfactorily in a 75-millimeter bore
bearing with no failures. The 17. 5-millimeter (0. 6875-in.) diameter hollow balls
(diameter ratio, 1.21; 56. 5-percent weight reduction) operated satisfactorily in a
75-millimeter bearing for only a short time until ball failures occurred. Subsequent
examination revealed that these balls had failed by flexure fatigue in the area of the
weld.

The 17. 5-millimeter (0. 6875-in.) diameter balls tested in reference 6 had a 1. 5-
millimeter (0. 060-in.) wall thickness. However, the wall thickness can be increased
by 17 percent to 1. 8 millimeters (0. 070 in.) and a diameter ratio of 1.26, and the ball
will still weigh significantly less (50 percent) than a comparable solid ball. This in-
vestigation (1) determines the rolling-element fatigue life of hollow balls with a 1. 8-
millimeter (0. 070-in.) wall thickness, (2) compares the hollow-ball life with the life of
solid balls, (3) determines experimentally the operating characteristics of bearings
using those hollow balls, and (4) compares the hollow-ball results with data from a
similar bearing with solid balls.

The NASA five-ball fatigue tester was used to determine the fatigue life of the hol-
low balls. Tests were conducted at a maximum Hertz stress of 4. 8x10 9 pascal
(700 000 psi) at a shaft speed of 9700 rpm and a contact angle of 34. 50

2



The bearing tests were conducted with 215-series, 75-millimeter bore, deep-

groove ball bearings using both hollow and solid balls. The bearings were operated

with a 2200-newton (500-1b) thrust load at shaft speeds up to 28 000 rpm (2. 1x106 DN)

using oil-jet lubrication.

APPARATUS AND INSTRUMENTATION

Five-Ball Fatigue Tester

A NASA five-ball fatigue tester was used for the hollow-ball fatigue tests. This

apparatus (fig. 1) is identical to that used in reference 5 and is described in detail in

reference 7. A fatigue tester consists essentially of an upper test ball pyramided on

four lower support balls that are positioned by a separator and are free to rotate in an

angular-contact raceway. Load is applied to the upper test ball through a vertical shaft

that drives the ball assembly. In operation the upper test ball is analogous to the inner

race of a bearing, while the separator, lower support balls, and the raceway function

like the cage, balls, and outer race in a bearing. The axis of rotation of the upper test

ball is fixed upon its insertion into the fatigue tester. However, the positioning of the

ball is such that the orientation of the weld of the hollow ball is random.

Bearing Test Rig

A cutaway view of the bearing test apparatus is shown in figure 2. A variable-speed,

direct-current motor drives the test bearing shaft through a gear speed increaser. The

ratio of the test shaft speed to the motor shaft speed was 14. The limiting speed of the

test shaft was 28 000 rpm.

The test shaft was supported by two oil-jet-lubricated ball bearings and was canti-

levered at the driven end. The test bearing was thrust loaded by a pneumatic cylinder

through an externally pressurized gas thrust bearing. A gas bearing was used so that

test bearing torque could be measured.

Bearing torque was measured with an unbonded strain-gage force transducer con-

nected to the periphery of the test bearing housing, as shown in figure 2. This torque

was recorded continuously by a millivolt potentiometer. Estimated accuracy of the data

recording system was ±0. 006 newton-meter (+0. 05 lb-in. ).

Bearing outer-race temperature was measured with two iron-constantan thermo-

couples positioned as shown in figure 2. The estimated accuracy of the temperature

measuring system was about ±1 K (±2 Fo).
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The lubricant used for this investigation was a superrefined naphthenic mineral oil
with a viscosity of 75x10 - 6 square meter per second at 311 K (75 cs at 1000 F).

Test Bearings and Hollow Balls

The hollow balls were fabricated by electron-beam welding two hemispheres of
AISI M-50 consumable-electrode vacuum-melted (CVM) steel. The wall thickness of
the finished ball was 1. 8 millimeters (0. 070 in.), which results in a weight reduction of
50 percent from that of a solid ball. A chemical analysis and heat-treatment schedule
of the M-50 material is given in table I. Balls from a single batch of M-50 steel were
used for both the five-ball fatigue tests and the bearing tests.

Test bearing specifications are listed in table II. The bearings were 7 5-millinmeter
bore, deep-groove ball bearings with 17. 5-millimeter (0. 6875-in.) diameter balls. The
races and solid balls were made from AISI M-2 CVM steel. The two-piece machined
cages were outer-race riding and were made from annealed AISI M-2 steel. One
shoulder of the inner race was removed to make the hollow ball bearings separable. A
photograph of the bearing is shown in figure 3.

PROCEDURE

Fatigue Tests

Fatigue tests were conducted in the five-ball fatigue tester at a maximum Hertz
stress of 4.82x109 pascal (700 000 psi). The drive-shaft speed was 9700 rpm, and the
contact angle (0 in fig. 1) was 34. 5 . Tests were run continuously for 300 hours, or
until failure occurred in either the hollow upper test ball or a solid lower support ball.
The outer-race temperature stabilized at about 336 K (1450 F) with no heat added. The
17.5-millimeter (0. 6875-in.) diameter hollow balls had a Rockwell C hardness of 61.5
to 62.5 and were run with 12.7-millimeter (0. 500-in.) solid AISI M-50 lower support
balls with a Rockwell C hardness of 64 to 64. 5. The lubricant was superrefined naph-
thenic mineral oil.

Bearings Tests

Each bearing was started under a 2200-newton (500-1b) thrust load with an oil flow
rate of 8x10 - 3 kilogram per second (1 lb/min). After 5 minutes at idle (700 rpm) the
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shaft speed was increased to 7000 rpm. After an additional 15 minutes the speed was

increased to 16 000 rpm, and the oil flow rate increased to 15x10 - 3 kilogram per second

(2 lb/min). Each bearing was operated at this initial test condition until temperature

equilibrium was achieved. Equilibrium was assumed to have been achieved for each

data point when the bearing outer-race temperature had not changed more than 1 K

(20 F) in 10 minutes. The oil inlet temperature was maintained at 316 K (1100 F).

After the initial data point was taken, the shaft speed was increased in increments

of 2000 rpm while the load was held constant. The maximum Hertz stress of the solid

ball bearing at 28 000 rpm was approximately 1.7x10 9 pascal (250 000 psi) at the outer

race ball contact.

Two types of bearing tests were conducted: In the first the previously described

procedure was used with the oil flow rate held constant while the shaft speed was varied;

in the second the same procedure was used until the shaft speed was 20 000 rmp, at which

point the shaft speed was held constant and the oil flow rate was varied. Oil flow rate

was first increased to about 4x10- 2 kilogram per second (5 lb/min) and then decreased

to about 8x10 - 3 kilogram per second (1 lb/min) in about eight increments. Data at

equilibrium conditions were taken at each flow rate. As a final check point, data were

then taken again at a flow rate of 15x10 - 3 kilogram per second (2 lb/min) to make cer-

tain the bearing operating characteristics had not changed.

Posttest Inspection

After the fatigue tests the hollow balls with failures were cleaned and examined.

The balls were electropolished to determine the location of the weld, the orientation of

the weld relative to the ball track, and the proximity of the spall to the weld area. Some

balls were sectioned through and parallel to the track. The sections were polished and

photomicrographs were taken. After testing, the bearings were disassembled, cleaned,

and inspected for damage.

RESULTS AND DISCUSSION

Fatigue Tests

The results of rolling-element fatigue tests with 17. 5-millimeter (0. 6875-in.)

diameter electron-beam-welded hollow balls with a 1. 8-millimeter (0. 070-in.) wall

thickness are shown in figure 4. The 10-percent life of these hollow balls is slightly

less than that of the solid balls (ref. 8), but the differences are statistically insignifi-
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cant, since the solid ball data fall within the 90 percent confidence bands of the hollowv

ball data, as determined by methods of reference 9.

Posttest Inspection of Fatigue Balls

The eleven 17. 5-millimeter (0. 6875-in. ) diameter hollow balls that had been tested
in the five-ball fatigue tester were electropolished to determine the position of the weld.
On all 11 balls the running track that was in contact with the lower balls crossed the

weld. Eight of the balls had fatigue spalls located randomly with respect to the weld,
and no spalls we-e located directly on a weld. Tests with the remaining three balls

were suspended at the 300 hour cutoff time without failure.

Four of the balls that failed and two of the balls that did not fail were sectioned

parallel to and through the running track and etched. No cracks that could be related to

the weld area were observed in any of the sections. The weld area in these balls was

nearly identical in appearance to the 17. 5-millimeter (0. 6875-in. ) diameter balls of

reference 6, and the weld bead had formed a similar stress concentration on the inside

surface of each ball.

The fatigue spalls were the result of classical rolling-element fatigue and originated

near the outer surface with random distribution around the running track. It is con-
cluded (1) that, under the load and stress conditions present in the five-ball fatigue tester,

the hollow balls with 1. 8-millimeter (0. 070-in.) wall thickness did not fail due to flex-

ure of the wall as did the 1. 5-millimeter (0. 060-in.) wall thickness balls of reference 6
and (2) that the weld area had a fatigue strength as good as the parent material, since no

failures occurred in the weld area. This result agrees well with the results of refer-

ence 5. A summary of the hollow ball tests is shown in table III.

Bearing Tests

The results of the variable speed tests are shown in figure 5. The outer-race tem-
perature tended to be lower for the hollow ball bearings over the entire speed range. As

expected, larger differences occurred at the higher speeds. No significant differences

in bearing torque were observed between the solid and hollow bearings, however, over
the same speed range.

Results of the variable oil-flow tests are shown in figure 6. Outer race tempera-

tures tended to be the same or just slightly lower for the hollow ball bearings over the
flow range. The bearing torques were about the same for all bearings at each flow rate
over the flow range (fig. 6(b)). Torque values doubled with the fivefold increase in oil
flow rate.
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For comparison analytical predictions of bearing performance were obtained using
the computer program described in reference 10. This program is capable of calculat-
ing the thermal and kinematic performance of high-speed ball bearings. A comparison
of the experimental data from solid ball bearing 8-S with the computed values is shown
in figure 7. The temperature of the bearing housing and the test shaft, at both the oil-
inlet and the oil-outlet ends, are required input for the computer program. Successive
assumed values of these end temperatures allowed the computer predicted values of
outer race temperature to become very close to the actual experimental data. The
accompanying values of predicted bearing torque, however, were only about one-half
the experimental values, although the trends seemed to be correct.

Bearing Posttest Inspection

Inspection of the bearings revealed extensive damage to some of the hollow balls.
The total running times and damage to the hollow balls of each bearing are summarized
in table IV.

The damaged balls were electropolished to determine the orientation of the weld
relative to the running track. All of these tracks were virtually on top (within 100) of
the weld. This result indicated a preferential rotational axis and is probably related to
the effect of the weld bead on the moment of inertia of the ball. A photograph of a
typical damaged ball is shown in figure 8. The spall is located directly in the weld area.

Two of the balls were sectioned as shown in figure 9: One ball was sectioned
parallel to and through the ball track (fig. 9(a)); the other ball was sectioned at right
angles to the ball track (fig. 9(b)). Note the surface spalls, the irregularity of the weld
bead, and the cracks across the weld. These specimens were polished and examined

further; the results are shown in figure 10. These results are very similar to those
obtained in reference 6, the main difference being that reference 6 showed most of the
ball tracks crossing the weld. It was concluded that the present failures, like those

in reference 6, were due to flexure fatigue.

CONCLUDING REMARKS

The 1. 8-millimeter (0. 070-in.) thick wall ball showed promise in the five-ball
fatigue tests, but still failed by flexure when tested in an actual bearing. Because the
number of ball stress cycles in the bearing tests was in the same range as those of the
five-ball fatigue tests (100xl0 6 to 500x10 6 stress cycles), it was concluded that the dif-

ference in results was due to the difference in the manner of ball loading in the two tests.

7



In the five-ball rig the upper test ball is loaded between a ring (the end of the drive

shaft) and the four lower support balls. This is a considerably different loading arrange-

ment from that of the normal contact loads in a ball bearing. Further, the normal load

in the contact of the upper ball and each lower ball is 645 newtons (145 lb) for the con-

ditions of these tests and of those of reference 6. The normal load in the contact of the

ball with the outer race of the 75-millimeter-bore bearing at the 28 000 rpm, 2200-

newton (500-1b) thrust load test condition is 1520 newtons (342 lb). It is apparent that

the bearing tests impose the more severe stress condition at the inner surface of the

ball.

It should be noted, however, that the fact that the balls with a 1. 5-millimeter

(0. 060-in.) wall tested in the five-ball rig in reference 6 failed by flexure fatigue, while

balls with a 1. 8-millimeter (0. 070-in.) thick wall, tested in the present work at iden-

tical conditions, did not fail by flexure, implies that the thicker wall significantly re-

duced the inner surface stresses.

Finally, based on the examination of the ball failures experienced in the bearing

tests, it may be concluded that a diameter ratio of 1.26 results in a wall that is too

thin for use as a bearing ball.

SUMMARY OF RESULTS

An experimental investigation was conducted to determine the operating character-
istics of a full-size bearing using 17. 5-millimeter (0. 6875-in. ) diameter hollow balls

with a 1. 8-millimeter (0. 070-in.) wall (50 percent less weight than comparable solid

balls), to determine the rolling-element-fatigue life of these hollow balls, and to com-

pare the results with those of a solid ball and a similar hollow ball with a 1. 5-millimeter
(0. 060-in.) wall thickness (56 percent less weight than comparable solid balls). The
75-millimeter-bore bearings were operated up to 28 000 rpm with a 2200-newton

(500-1b) thrust load. The results were compared with data from a similar bearing using
solid balls. The following results were obtained.

1. The hollow-ball failures in the bearing tests were due to flexure fatigue. Most
of the tracks on the balls examined were directly on the weld.

2. The temperatures of the outer race were consistently lower for the bearings
with hollow balls; however, the bearing torque was approximately the same at each con-
dition tested for both the solid and the hollow ball bearings.

3. The rolling-element-fatigue life of the balls with 1. 8-millimeter (0. 070-in. ) wall
thickness, at 4. 8x109-pascal (700 000-psi) maximum Hertz stress in a five-ball fatigue
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tester, was not significantly less than previously run AISI M-50 solid steel balls. The

ball failures were the result of classic subsurface fatigue and were not due to flexure

fatigue.

Lewis Research Center,

National Aeronautics and Space Administration,

Cleveland, Ohio, September 27, 1974,

501-24.
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TABLE I. - CHEMICAL ANALYSIS AND HEAT TREATMENT OF AISI M-50

CONSUMABLE-ELECTRODE VACUUM-MELTED

STEEL HOLLOW BALLS

[Nominal Rockwell C hardness, 62-0. 5

(a) Chemical analysis

Element Content, Element Content,

wt.% wt.%

Carbon 0. 813 Vanadium 1.10

Silicon .21 Molybdenum 4. 18

Manganese .25 Cobalt .01
Sulphur .002 Nickel .08

Potassium .009 Copper .06

Tungsten .03 Iron Balance

Chromium 4. 08

(b) Heat treatment

Anneal after electron-beam welding Heat to 1103 K (15250 F) in spent cast

iron chip; hold for 8 hr; furnace cool

to 811 K (10000 F) at 11 K/hr (20 Fo/hr)

Austenitize Preheat in salt bath at 1116 K (15500 F)

for 6 min; austenitize in bath at 1394 K

(20500 F) for 6 min

Quench Molten salt to 811 K (10000 F) for

6 min

Temper 811 K (10000 F) for 120 min; repeat for

second and third temper
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TABLE II. - BEARINGa SPECIFICATIONS

Bearing outside diameter, mm 130

Bearing inside diameter, mm 75

Bearing width, mm 25

Bearing internal radial clearance, mm (in.) 0. 051 (0. 0020)

Outer-race curvature 0.53

Inner-race curvature 0.53

Number of balls 11

Ball diameter, mm (in. ) 17. 5 (0. 6875)

Retainer design Two-piece machined, riveted

Retainer material Annealed AISI M-2

Race and solid ball material AISI M-2b

Hollow ball material AISI M-50b

Hollow ball wall thickness, mm (in.) 1. 8 (0. 070)

Hollow ball outside/inside diameter ratio 1.26

aTolerance grade ABEC-5.
bConsumable-electrode vacuum-melted.

TABLE III. - SUMMARY OF HOLLOW BALL TESTS

Ball diameter Wall thickness Outside to Weight Results

inside reduction,
mm in. mm in. diameter percent Five-ball rig tests Bearing tests

ratio

12.7 0.500 2.5 0. 100 1.67 21.7 Normal-subsurface No failuresa

fatiguea

17. 5 .6875 1. 5 .060 1.21 56. 5 Flexure failuresa Flexure failuresa

17.5 .6875 1.8 .070 1.26 50. 0 Normal-subsurface Flexure failures

fatigue

aResults are from reference 6.

TABLE IV. - SUMMARY OF HOLLOW-BALL

BEARING DAMAGE

Bearing Total running time, Number of spalled

hr ballsa

14-H 75.7 3

17-H 31.9 2

20-H 19.6 None

aSpalls initiated from cracks originating at the
inside surface of the hollow ball and propagat-

ing to the outside surface.
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p;I -Cover plate
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Drive spindle-, pickup
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Oil tubeL- --Load arm Support
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Five-ball test Separator-
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Rubber mount -- / ' , LContact

Drain- CD-6784-15 axs

Basepate / nsulation, Race way-/ \-Test ball
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(a) Cutaway view of five-ball fatigue tester. (b) Five-ball test assembly.

Figure 1. - Test apparatus.
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7 Force transducer

"N Lubricating oil r Gas thrust
i bearing air

S supply

Test bearing
Test shaft i

Torque wire

Outer-race
thermocouple
location--

Heating coils
. .. Thrust Ioad

CD-10513-15

Figure 2. - Bearing test apparatus.

Figure 3. -Deep groove test bearing with inner race shoulder removed;
two-piece machined cage construction.
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80- ---- - Ninety-percent
confidence limits

60 /
S/-Estimated for AISI

M-50 solid balls
40- 1.5-mm 10. 060-in.) (adjusted from ref. 8)

wall, flexure failures
(ref. 6)-,.

--./

10- --- 1. 8-mm (0. 070-in. ) wall,
8 - no flexure failures

.6-/

10 20 40 60 100 200 400 600 1000x10l
Stress cycles

Figure 4. - Rolling-element fatigue life of AISI M-50 consumable-electrode vacuum-
melted steel balls in five-ball fatigue tester. Maximum hertz stress, 4. 8x10 9 pascal
(700 000 psi); speed, 9700 rpm; no heat added; lubricant, super-refined naphtenic
mineral oil.

400 - 480 Bearing Type
number of ball

1O 8-S Solid
15- 6O 14-H Hollow

440E 17-H Hollow
- 0 20-H HollowE 300- E . -

400 - s 10- t 1. 2
040

200 - 360 .8
14 18 22 26 30x10 3  14 18 22 26 30x10 3

Shaft speed, rpm Shaft speed, rpm

(a) Outer-race temperature. (b) Bearing torque.

Figure 5. - Bearing performance as function of shaft speed. Thrust load, 2200 newtons (500 Ib); oil flow rate, 15x10- 3 kilograms per
second 12 Iblmin); oil inlet temperature, 316 K (1100 F).
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400- Bearing Type 2.0-
number of ball

( 8-S Solid E
O 14-H HollowT 15 .

n 17-H Hollow -1.6

E 300O 20-H Hollow M

2 400 1. 2
L 10 -

200- 6 1 1 I 1  I I 1 I
360 .8

0 10 20 30 40x10 3  0 10 20 30 40x10- 3

Oil flow rate, kg/sec Oil flow rate, kgIsec

) I I I I I I I I
0 2 4 6 01 2 4 6

Oil flow rate, Iblmin Oil flow rate, Iblmin

(a) Outer-race temperature. (b) Bearing torque.
Figure 6. - Bearing performance as function of oil flow rate. Thrust load, 2200 newtons (500 Ib); inlet oil temperature, 316 K (1100 F)l;

shaft speed, 20 000 rpm.

E

r .8-

00 012

.4

4

S44Calculated

f 400-

C -

360 1
12 16 20 24 28x10 3
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Figure 7. - Comparison of experimental and calculated values of

bearing performance characteristics. See table I for bearinq
specifications. Load, 2200 newtons (500 Ib); oil flow 15x10-
kilogram per second (2 Iblmin).
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Ball track and electron-beam
weld area

weld area

1 mm

C-74-1381

Figure 8. -View of external surface showing typical spall. Ball
track directly on weld area.
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(a) Section parallel to and through ball (b) Section perpendicular to ball track.
track.

Figure 9. - Sectioned specimens of typical failed balls.
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(a) Typical sectional view of specimen from figure 9(a).

(b) Typical sectional view of specimen from figure 9(b).

Figure 10. - Photomicrographs of polished specimens from figure 9.

18 NASA-Langley, 1975 E-7961



-Revolution counter

/-Cover plate
I I
I i ,'-Vibration
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(a) Cutaway view of five-ball fatigue tester. (b) Five-ball test assembly.

Figure 1. - Test apparatus.
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Figure 2. - Bearing test apparatus.

Figure 3. - Deep groove test bearing with inner race shoulder removed;
two-piece machined cage construction.
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