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Abstract

Solutions in three cases are given for the diffusion of trapped

particles in a planetary magnetic field in which the first and second

adiabatic invariants are preserved but the third is not, using as boundary

conditions a fixed density at the outer boundary (the magnetopause) and

a zero density at an inner boundary (the planetary surface). Losses to an

orbiting natural satellite are included and an approximate evaluation is

made of the effects of the synchrotron radiation on the energy of

relativistic electrons. The three cases considered have diffusion

coefficients proportional to L10, L6, and L2(L-1), respectively. The

first two derive from familiar mechanisms, the last from a speculative

mechanism in which the diffusion is driven by ionospheric winds. Choosing

parameters appropriate to Jupiter, the first two cases fail completely to

explain the electrons required to produce the observed synchrotron

radiation; the third can explain the electrons using a large, but not

unreasonable, value of the diffusion coefficient if the mechanism is

acceptable. Only if a mechanism of this type is the true explanation

of the electrons producing the synchrotron emission can one reliably

conclude that Jupiter's inner magnetosphere should be occupied by an

energetic proton flux that would be a serious hazard to spacecraft.
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I. Introduction

The only accepted explanation of the decimetric radiation

observed near Jupiter is that it is due to the synchrotron radiation

of relativistic electrons. The most commonly accepted mechanism for

supplying the electrons is inward diffusion of solar wind electrons

from the magnetosheath by a process that conserves the first and second

adiabatic invariants. If the diffusion hypothesis is indeed correct

then it seems almost certain that protons will diffuse inward by the

same mechanism and that their flux density and energy can be deduced from

the flux density and energy of the electrons required to produce the

synchrotron radiation. Almost all analyses (Beck, 1972) along these

lines lead to high fluxes of energetic protons that will be a serious

hazard to all spacecraft that venture within a few Jupiter radii of its

surface. If the diffusion hypothesis should not be correct, the

relativistic electrons could perhaps be explained by some more local

acceleration hypothesis and might have but little connection with

energetic protons. In this case, no reliable estimate of the flux

density of energetic protons could be made in advance of in situ

measurements, but it would be quite plausible to assume that it would

be considerably lower than in the diffusion case.

In this report, we investigate the diffusion process to learn

what characteristics it must have if it is to be able to supply the

electrons needed to explain the synchrotron radiation. We find that the

diffusion mechanisms usually used to explain the particles in the earth's

radiation belts are far too slow for Jupiter, but that diffusion driven by

winds and turbulence in the ionosphere or upper atmosphere could produce

the relativistic electrons provided the diffusion coefficient is rather,

but not unreasonably, large.
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II. The Fokker-Planck Equation

Assume that Jupiter's field is approximately a dipole and that

the particles conserve the first and second adiabatic invariants, p and J,

but violate the third, the flux invariant. The resulting radial diffusion

of the particles is described by a Fokker-Planck equation. (Davis and
II

Chang, 1962 and Falthammer, 1966)

First, some definitions. Let

Rj = the radius of Jupiter = 7 x 104 km

r = (radial distance)/Rj

L = value of r for a field line at the equator

= polar angle from Jupiter's magnetic axis

n = number density in (p,J L) space

RI = the radius of o10 = 1/40 R

Note that L and r are dimensionless.

Consider the diffusion of particles having p in a small range

dp and J in dJ. Then the Fokker-Planck equation is

SAL I2 2

n -(n (L))- --- (n ( 6L )) - A (1)
At 2 2 At n

where ( ) and ( ) are the mean and mean square change of L

per unit time, and -An is the contribution to )n/at due to the absorbtion

of particles by a satellite such as Io.

For much of the discussion it is more convenient to replace

the dependent variable n by f, where it will turn out that f = kL2n and

k is a suitable normalization constant that drops out of the equations.

Since we assume p and J to remain constant, we drop them in the subsequent

discussion. In thinking of n and.f we suppose them to refer only to the

particles in some particular range of i and J and ignore the possible
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presence of other particles. In a sense now to be discussed, f may be

defined as the fraction of full flux tubes at any L or, equivalently, as

the filling fraction of any one flux tube. We first suppose that

diffusion takes place by the convection, random walk, or interchange of

flux tubes, including their entire contents of both cold plasma and

energetic particles. We suppose that all tubes at the magnetopause,

where L = L1, have been filled to the standard level with particles in

the ranges of p and J of interest, and hence that f(L1 ) = 1. We suppose

that at L , which is at or near the surface of Jupiter, all tubes are

emptied of these particles and f(L ) = 0. Between Lo and LI some tubes

will be empty, those that had random walked to Lo since walking to LI,

and some will be full; f(L) is the fraction that are full.

The connection between n and f is easily deduced. A shell that

intersects the equatorial plane in a ring of radius RJL and width R dL

contains (n dp dJ) dL particles; and the magnetic flux, or total number

of flux tubes, in R dL is 2jR 2BL dL. The number of full flux tubes is

2 dL
f.(flux) = fBR 2vL dL f . Since the number of particles is

L f
proportional to the number of full flux tubes we have n -.

2

The differential equation for f, temporarily regarded as the

fraction of the tubes that are full, is derived from (1), the connection

between f and n,;and the relation

2 2
AL L2  (I (2)
At 2 L L 2  At

derived by Falthammer (1966). The result is

f 2 ) D f
L C D ] -A (3)Bt bL 2 L

L

where D = ((AL) /At)/2 and A = L A is the rate at which f decreasesn

due to the satellite.
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Next suppose that in any L-shell the gradient and curvature

drifts cause energetic particles to move from one tube to another with

the same L at a rate that depends on energy and the mass/charge ratio.

This stirring tends to equalize the degree of filling of all tubes in

this shell and we say that all are filled to the fraction f of the particle

density they would contain if brought without loss from the magnetopause.

In considering the subsequent transport of particles to another L-shell,

it does not matter, on the average, whether we move a tube filled to the

fraction f or whether we make a random choice from a mixture of tubes of

which the fraction f are completely filled and the remainder are empty.

Thus, the entire analysis is valid for both meanings of f.

In the following, expressions for D and A are obtained, and

equation (3) with these expressions is solved for f.
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III. The Diffusion Coefficient

We will consider solutions of the Fokker-Planck equation with

three different expressions for the diffusion coefficient D. First we

will assume that diffusion is produced by the violation of the 3rd

adiabatic invariant due to fluctuations in the magnetic field produced

by variations in the solar wind pressure. The diffusion coefficient for

this mechanism was found by Davis and Chang (1962) to be proportional

10
to L . On the assumption that conditions near Jupiter are similar to

those near earth, Mead and Hess (1972) estimate the proportionality

constant. We use their value, rounding 0.13 upward to 0.2 since we are

interested in an upper limit, and get

D = 0.2 L-8 L10 day-1 (4)

where L1 is the value of L at Jupiter's magnetopause and the subscript

SW means that this expression for D is appropriate for diffusion driven

by fluctuations in solar wind pressure. The expected value of L1 is 50.

Radial diffusion due to fluctuating electric fields in the

magnetosphere has been considered by several authors as a mechanism for

populating the earth's radiation belts (Falthammer, 1965, Birmingham,

1969, and Cornwall, 1972). If o is the azimuthal drift frequency,

Pm(m cQt) is the power in the Fourier component of E having frequency

m ,D' and c is the velocity of light, the diffusion coefficient, measured

in units of length2/time for use in a diffusion equation in which the

position of the diffusing particle is given by a coordinate with the

dimensions of length, is

2 C
c 2 -1

DE 2 mlm (mwD) cm sec
8B m=1
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For the case of the earth, with BOE the earth's surface equatorial

field, Tc the correlation time, and a,the mean square amplitude of the

electric field fluctuations, this can be written (Birmingham, 1969) as

2 6
c aLc -1

D sec
DE =2 E2 sec

4 BOE E

where L refers to the earth's magnetosphere and the units are 1/time for

use in a diffusion equation where the position of a particle is measured

by L. Typical values for the earth are (see Birmingham) Tc 1 hr.,

-4 V 2 -4 -1
(2 x 10 M) . This gives DE(Earth) = 1.3 x 10 day . If we assume

that and a are about the same for Jupiter as for the earth, we get

(Jupiter) JBO R E DE(Earth)

(5)

= 1.7 x 10-9 L6 day - 1

where this will be used in an equation where L refers to Jupiter.

In the inner magnetosphere, winds and turbulence in Jupiter's

upper atmosphere and ionosphere could be (Brice, 1972) more effective in

producing diffusion than the processes described above. Consider a field

line emerging from the surface of Jupiter. The electric potential along

this field line is constant since above the ionosphere electric fields

cannot be maintained parallel to the magnetic field. In general, a

neighboring field line will be at a different potential because of the

electric fields produced by the motion of the upper atmosphere. These

potential differences cause tubes of flux to be interchanged in cyclical

processes, and the feet of these tubes of flux can be viewed as performing

a random walk on the surface of Jupiter. It is shown in the Appendix

that the dipole field is maintained during this interchange of flux tubes.
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The result will be diffusion of particles by violation of the 3rd adiabatic

invariant (since the magnetic shell of a tube, given by L, changes when

tubes are interchanged), while 1 and J will be conserved.

Let us discuss DA, the diffusion coefficient for this process.

For a dipole field, a line which emerges from the surface of Jupiter at

colatitude 0 crosses the equatorial plane at a radial distance LRJ, where

L = I/sin 2 0 (6)

If the foot of a flux tube at the surface moves a distance RJ A in the

0-direction, the change in L is

-2 cos 0 3 2)1/2
AL A AG = -2 (L -L ) A9 (7)

sin e

This constitutes one step of length sI = R A in the random walk of the

foot of the flux tube. After N steps, which require a time Ntl' if t1 is

the mean time per step, the mean displacement of the foot given by random

walk theory is

R 2 M((e)2) = N (s12

and the mean square change of L per unit time is

((AL)2) _ 4L 2 (Ll-)(()2 4L 2 (L-1)(s 2

At Nt 2 (8)

To obtain avalue for D = (1/2)( AL(L) we need to choose
At

reasonable values for the step length sl and for tl .  Differential rotation

observed in the Jovian lower atmosphere suggests velocities of the order

of 0.1 km/sec. If we assume that similar velocities extend into the

ionosphere and if the wind blows in approximately the same direction for

104 sec (z 3 hrs.), the distance the foot of a flux tube moves is

s = 103 km, and t is 10 sec = 10 - 1 day. 'This
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DA = 4 x 10 - L2 (L-1) day 1  (9)

where the subscript A implies that D is due to atmospheric motion.

With different assumptions on the distributions with elevation

of wind velocity, conductivity, and coherence time, it would be plausible

to propose considerably smaller values of this diffusion constant, but

it seems difficult to propose a plausible model in which the constant

would be increasedby an order of magnitude. We have assumed that the random

velocity is horizontal in the ionosphere and is independent of latitude.

If a different dependence on latitude were assumed, a somewhat different

L dependence in (9) would result. Another alternative would be to consider

the ionospheric electric field which may be regarded as driving the

fluid motions above the ionosphere and which, we assume, combines with

gravity and pressure gradients to produce our horizontal motions in the

ionosphere. If the average value of the square of the strength of this

field is independent of latitude, the factor L2(L-1) in (9) is replaced

by L3 . This simplifies somewhat the solution of the diffusion equation

but does not make an significant change in the results beyond about L = 2.

Recent work by Coroniti, Kennel, and Thorne (private communication)

examines the mechanisms that could drive the ionospheric winds whose

existence we have postulated on the basis of Brice's conjecture. They

conclude that such winds may well be possible and deduce a diffusion

coefficient proportional to L3 with a numerical value roughly an order

of magnitude smaller than ours.

As shown in Figure 1, the diffusion coefficients are of the

same general magnitude near the magnetopause in all three models. But

DA is very much larger than the others for 1.5 < L < 6, and this makes

drastic differences in the expected population of the inner radiation belts.
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IV. Absorbtion by Io.

In this section we derive the loss term in equation (3) due to

the collision of trapped particles with the satellite Io, whose orbit

will be taken to be in the L = 6 shell. Similar terms for the other

satellites are easily deduced but will be neglected here since the flux

in the region L < 6 is dominated by the effects of Io.

To calculate the loss rate we need to know the properties of

typical energetic particles near L = 6. For relativistic electrons,

observations of synchrotron radiation indicate (Warwick, 1970) a typical

kinetic energy of T = 6.2 MeV at L = 1.8. To compute the energy at L = 6,

the relativistic adiabatic invariant p /2mB must be used (p is the

electron momentum normal to B and m is the rest mass of the electron) and

the energy loss due to synchrotron radiation must be estimated. This is

done below for a 10 gauss equatorial surface magnetic field strength,

two values of the diffusion coefficient, and particles in very flat

helices that mirror near the equatorial plane. We find T to be in the

range 1 to 2 MeV at L = 6. For these I MeV electrons, the gyroradius is

1 km, the bounce period is B = 5 sec, and the drift period is D = 30 days

(Hamlin et al., 1961). The variation of these parameters with pitch

angle is unimportant.

For protons, our main interest is in those which, after

thermalization in the bow shock and stagnation region, have energies of

the order of 1 keV just inside the magnetopause and hence, by conservation

of p for particles in flat helices, energies of 0.58 MeV at L = 6* Thus,

the gyroradius here is 22 km, TB = 120 sec, and TD = 35 days. The gyro-

radii of both electrons and protons is so small compared to the 1750 km

radius of Io that we may use the guiding center approximation.
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As a simple approximation, assume that Io moves in a circle at

L = 6 in the Jovian magnetic equatorial plane with a siderial period of

42.5 hours. The period with respect to the tubes of force, which rotate

with Jupiter, is 13 hours and at L = 6 the velocity of Io with respect to

the tubes of force is 57 km/sec. In the model considered for the deriva-

tion of DA as given by equation (9), a velocity of 0.1 km/sec at the foot

of a flux tube produces a velocity of the tube of 1.5 km/sec if it is in

the azimuthal direction and, by equation (6), of 2.7 km/sec if it is

meridional. Thus, these velocities due to the non-static nature of the

magnetic field can be ignored compared to the velocities of the field 
due

to Jupiter's rotation. However, the trapped particles of interest to us

do not move with the tubes of force; they drift around the L-shell with

period TD" The values of TD found above are so large compared to the 13

hour orbital period of Io that the drift motion can also be neglected in

making a first order approximation to the loss coefficient.

If Io blocks off a tube of force in the equatorial plane for

half of the bounce period, the tube will be completely emptied of

particles. For electrons with TB/2 = 2.5 sec, Io moves only 143 km

during this time. This is so much less than the 3500 km diameter of Io

that all tubes through which lo passes are completely emptied of electrons

except for a few whose L shells are nearly tangent to Io's surface. Thus,

for L in a ring of width LL = 3500/70,000 = 0.05 at L = 6, all tubes are

emptied of whatever particles they may contain in the 13 hours it takes Io

to make one revolution and the contribution to 'f/bt is -A=-(1/13)f hr-

If we define a by A = af, we have

2 day -I  if 6 . L . 6.05

oj (10)

0 olberwi se
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This formula is accurate for all particles for which T /2 is much less

than TM = 3500/57 = 61 sec, the time required for Io to move a distance

equal to its diameter, and thus is to be used for fast enough particles

whether they are electrons or protons.

If TB/2 > TM, no particle that could be striking Io can have

been lost during its previous bounce and the entire area of Io is

effective in removing particles. If Io filled the entire ring of width

L, u would be 2/TB . Since actually the cross-sectional area of Io, Slo,

is very much less than the area of the ring, SR = 2 R 2LLL, we have

2 So if 6 L < 6.05
TB SR

(11)

0 otherwise

Strictly, this formula should vary with L over 6 .< L < 6.05; a being

equal to C(L)/TB RjL, where C(L) is the chord of lo's equatorial plane cut

off by an L-shell. However, the use of a constant, average value as in

equation (11) should be a good approximation. Also, for TB/2 only a bit

less than TM, a is given by C(L)/B iR L for those chords far from lo's

center where this is less than 2 day - 1 , the value for the chords nearer

the center. This correction drops rapidly in importance as T /2 decreases

below TM and for practical purposes it should be adequate to use (10)

whenever TB/2 < TM; i.e., for energies above 300 eV for electrons and

above 0.56 MeV for protons.

In a more complete and precise treatment, it would be necessary

to consider a number of other effects. The roughly 100 angle between the

magnetic equator and the orbit of Io means that particles mirroring at

less than 210 from the equator (35% of an isotropic distribution) can strike

Io during only part of their drift period. The center of To's circular
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orbit is not at the dipole center of the magnetic field; thus the particle

loss takes place over a somewhat larger interval than the LL assumed above,

but with a lower value of a. Both the loss rate to Io and f vary with

longitude and with time as Io moves in the orbit. Only if the average

over longitude and time of the product Qf is the product of the averages

will our treatment in which a and f are such averages be completely valid.

As the electrons move into the region of strong magnetic fields and

become relativistic, they will lose energy because of synchrotron radia-

tion. However, in this treatment, we postpone all such refinements for

consideration after the characteristics of the simpler, approximate

formulation have been worked out.

The effect of Io on diffusion can be estimated from the ratio

pl j]nL (12)

L= 6

since a is the fraction of particles lost per unit time and the average

time a particle remains in the range AL in which a A 0 is AL/VD 1, where

VD, the average convection velocity produced by the diffusion, may be

estimated from eq. (23) to be of order D/L. For the 3 different values

of D, the values of pl are:

-8 10 -l -15 10 -1 6
1) When D = DSW = .2(50) -8 L 0 day - = 5 x 10- 15 L 0 day -  1 = 2 x 106

Since p >> 1, the effect of Io is overwhelming, i.e., almost all

particles will be lost to Io.

2) For D = DE = 1.7 x 10
-9 L6 day -1 , I =7 x 103, so p >> 1i here also

and almost all particles will be absorbed.

3) For D = DA  = 4 x 10 L (L-1) day - , Pi 1, so in this case the

effect of .o is neither overwhelming or negligible.
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V. Solutions of the Fokker-Planck Equation

For a steady state, eq. (3) becomes

2d L dL] - af = 0 f(L 1 ) = 1, f(L 0 ) = 0. (13)

To solve eq. (13) for an arbitrary diffusion coefficient D, define a

new independent variable

y = DO  dL, (14)

L

where DO is the constant factor in D. Note that we have chosen the constant

of integration in y such that y(LO) = 0. Substituting y for L in equation

(13), we get

d2 f y(L) 2f = O, y(L) 2  OD2 (15)

dy L D02

Since a 0 0 only in L < 6 < L + AL, where AL is small, by y we always

mean y(6) where the value of a is the typical or average value for this

range. Also, define y(L 1 ) = Y 1, y(6) = y 6, y(6 + AL) = Y6 +, and

A = 6+ - Y6. The solution of'equation (15) that satisfies the boundary

conditions f = 0 at LO and f = 1 at L1 is

Ay if L < 6

f = BI eY(-Y6) + B2 e-Y(Y-Y6) if 6 < L < 6 + AL (16)

1 - C(yl-y) if L > 6 + AL

By requiring that f and df/dy be continuous at y equal to y6 and y6+, we

find that the coefficients are
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A = 2yBI/(Y 6 Y-I)

B1 = 2(y6Y+1)/[y(y l-)cosh yA + (1+y 2 6 (Y1-Y 6+)) sinh A

(17)

B 2  B1 (Y 6 -1)/(y 6y
+-l)

C = 2yB(y 6 ysinhyA + cosh yA)/(y 6y+l)

Equations (14), (16) and (17) then give f(L). The results for various

choices of D both neglecting and including the effect of Io are shown in

figure 2. These solutions are valid for both electrons and protons. From

this figure we conclude that practically no particles will get past Io

for D = DSW and D = DE, while if D = DA a large fraction of the particles

will not be absorbed by Io and will diffuse in to the region L < 6. For

-60
example, when the effect of Io is included,f 10-0 for L < 6 when

-10
D = DSW, and f - 10 fr L < 6 when D = D . Since synchrotron radiation

from electrons is observed from L < 6 and DSW and DE cannot produce a

significant number of particles in this region, we will neglect the

effect of these mechanisms and will restrict further attention to

D =DA.

L-
In the case D = DA, y = in (L-1 ) and it is not reasonable to

apply a boundary condition at L 1 = 1. Accordingly we require that f = 0 at,

say, L0 = 1.1. This can either be applied as an arbitrary'condition for

particles in completely flat helices, or we can use the argument that in

an isotropic distribution about half of the particles at L = 1.1 would

mirror below the surface and hence this is a good mean value to use as

a uniform cut-off for all particles.

The density per unit volume, N, can be obtained from f by

recalling that f a nL2 and ndL is the number of particles in dL per unit

range of p and J. If the density is independent of 0 and po near the
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equator, then N n/L2 , or

N(L) = N(L1) f(L) (L /L)4 (18)

(Hess, 1968, p. 229).

Figure 3 is a plot of the electron density N(L) for the 
three cases

-4 -3

indicated, each normalized to N(2) = 6.7 x 10 cm , the densities

required at L = 2 to give the observed synchrotron radiation (Warwick,

1970). If N is evaluated at L = L1 = 50 for these cases assuming no

loss mechanisms between L = 6 and L = 50, values of N ranging between-7 -3

2 x 10 - 8 and 2 x 10 - 7 cm are obtained. Since the expected densities

-3
in the solar wind are of order .3 cm , there should be no difficulty in

supplying the required particles by diffusion driven by ionospheric

winds even if transfer across the magnetopause is impeaded and there are

losses by other mechanisms as suggested by Kennel (1972) and by Thorne

and Coroniti (1972). Similar calculations for the other two diffusion

mechanisms, with their much smaller value of f(2)/f(L1 ) when losses at

Io are included, show that in these cases N at the magnetopause would

have to be larger than in the solar wind.

The differential flux, j(particles/cm
2 s sr MeV) is related to

f by j c f/L3 (Roederer, 1970, p. 122). To get the total integrated

flux, , one must integrate j over energy and solid angle just as to get

the total particle density N must be integrated over p and J.
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VI. The Effects of Synchrotron Radiation

In this section we first consider the effect of synchrotron

radiation on relativistic electrons and, secondly, we estimate the

particle diffusion time and compare this with the electron radiation

lifetime. Since the energy losses of the electrons has no effect on

their density, the solutions for f in Section V remains valid even with

synchrotron radiation if the ranges of p and J occupied by particles

of interest are suitably adjusted. For these order of magnitude

estimates, we shall consider only electrons moving normal to the magnetic

field; i.e. in the magnetic equatorial plane.

The rate of change of total energy, E, measured in MeV, by an

electron moving normal to the field is (Rossi and Olbert, 1970, p. 39)

dE 2 2 2 -9 -1 -2 -1
-K B c p , where K = 3.8 x 10 MeV G sec (19)

dt

:.-K B2 E2  if E >> mc2 = 0.51 MeV.

For the highly relativistic range, it follows that the time for a

particle's energy to drop from E to E/2, or from infinity to E, is

ad = 1/K B2 E (20)

For a field of (10/1.8 3) Gauss and an energy of 6 MeV at L = 1.8,

Trad = 175 days and it increases rapidly with L. For particles of any

kinetic energy, T = E - mc , the time required for the kinetic energy to

drop from T to T/2 is

S= n T + 4mc 2  (21)

rad 2mc K B2 T + 2mc 2

We would like to determine the amount of energy that the

electrons near L - 2 have lost because of synchrotron radiation.

This is a difficult problem to attack with any rigor because the electrons
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progress inward by a random walk and different electrons spend different

amounts of time in each region. The ideal procedure would be to solve

a three-dimensional Fokker-Planck equation for f(L,p ,J) (Farley and Walt,

1971)

t L2= L(2 B 2 d ( )f) f) (22)

t BL 2 BL ?p dt ?J dt

Here (-t \ dE dJ

Here <dt BE and (dJ are the rates of change of p and J due to the
dt BE dt dt

energy loss by synchrotron radiation. If we consider only particles in

very flat helices, J - 0, the last term is

S dJ f d f
- (( ) f)l =(d)

J dt dt 2pJ=0

and (22) becomes two dimensional. Solving even this equation would

require a substantial effort and would require a knowledge of the

distribution f(L1, p) on the outer boundary. We will instead attempt a

simpler, approximate solution of the problem in which we assume that all

particles that start at L = 50 with a particular energy have lost the

same energy by synchrotron radiation by the time they have diffused in

to any particular L. This ignores the random walk process and aims at

a simple approximation based on the average inward motion. Thus, we get

an estimate of the effect of the synchrotron radiation in modifying the

energy predicted from the conservation of the first two adiabatic in-

variants. We first consider estimates of Tdif' the time to diffuse

through the high field region, for comparison with 
Trad' the characteristic

time for energy loss. If Tdif >> Trad' the electrons will not be able

to reach small L values with relativistic energies.

One way to estimate the diffusion time is to introduce the

concept of average diffusion velocity, VD, which we take equal to the

net flux of particles at a point divided by the particle density. First,
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write the Fokker-Planck equation in the form of a conservation equation

(Roederer, 1970, p. 130)

N D
aN + q'(N = -Losses

By equation (6), near the equatorial plane L-shells are essentially

spherical and in the divergence operator in spherical polar coordinates

we may replace r by L. Also N is proportional to f/L . Hence, we get

f+ L 2  D ) = -A (23)
at aL D 2

if we assume that VD is essentially radial. When equation (23) is compared

with equation (3), we see that

V = -D d n f (24)
D dL

Because B = 10/L 3 and p2 is proportional to B, the synchrotron

radiation for L > 3 will be' relatively small and can be ignored. The

relativisitc electrons required to explain the observations are mostly

in the range 1.5 < L < 3. Hence the mean time to diffuse from L = 3 to

1.5 is an appropriate Tdif' and our first estimate of this is

1.5

Tdif dL (25)dif f VD

This assumes that all particles move in steadily at a rate determined by

the gradient in f, i.e. by a solution that depends on all the boundary

conditions and on the losses at Io. Alternatively, one could argue that

to random walk a distance AL should take a mean time of the order of

AL2/2D and hence that a plausible estimate that emphasizes the random

motion is

Jdif = 2 .5/2D 2 (26)
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where D is evaluated for L = 2 rather than L = 2.25 because diffusion

is slower at small L. For L < 6 where equation (16) gives f = Ay and

equation (14) gives y in terms of D, it is easy to evaluate Tdif

and Tdif for each of the diffusion models considered in Section III.

The results of this calculation are shown below in Table 1.

Table 1. Values of.Tdif, Tdif (equations 25 and 26), and %l (equation 12),
the parameters that measure the effects of synchrotron radiation on

electrons and the absorbtion of Io on all particles, for the diffusion

mechanisms and coefficients under consideration.

Mechanism Diffusion 7dif 7dif = AL
responsible coefficient, D 1 D/L
for diffusion (day)-l (days) (days) L = 6

Deformation of 5 x 10-1 5 L 1013 2 x 10 2 x 106
the magnetic
field by the
solar wind

-9 6 7 7 3Randomly 1.7 x 10 L 6 x 10 10 7 x 10
fluctuating
electric fields

Interchange of 4 x 10- 3 L 2(L-1) 300 70 1
flux tubes by -4 2 3
ionospheric 4 x 10 L (L-1) 3 x 10 700 10
motions

When these values of Tdif and Tdif are compared with Trad 175 days,

and when the values of pi are compared with unity, it is obvious that the

two well-known diffusion mechanisms, the first two, are unable to balance

the drain due to synchrotron radiation in order to maintain electrons at

relativistic energies and are unable to transport enough particles past

Io to produce either the observed synchrotron radiation or a radiation
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hazard to spacecraft. These failures are by very large factors and can-

not be repaired by reasonable changes in the parameters. In the case of

diffusion driven by ionospheric motion, the example with the smaller

diffusion constant would probably be in some difficulty but the case with

the larger constant would probably be satisfactory since only a small

fraction of the electrons potentially available from the solar wind are

needed to produce the synchrotron radiation. The major problem with this

model is that it is based on conjectures whose validity we have not

investigated. A less serious problem is that the numerical parameters

must be pushed toward the highest reasonable values. If this model is

not acceptable, we see no other way to supply the relativistic electrons

by diffusion from the magnetopause or to produce high fluxes of MeV

protons for L in the range 1.5 to 4.

If the values of 'dif and dif in Table I are compared, one

based on the average flow and the other on a random walk, we see that

in the third case they are of the same order of magnitude. This suggests

that in this case it may not be unreasonable to use the average flow

model to make rough estimates of the typical electron energy as a function

of L. Since an accurate treatment based on a solution of equation (22)

appears very difficult, we proceed with the approximation. For dL/dt, we

use VD as given by equation (24) with D = DA . Write

dE dE dE
dL dL +dLad sync

(27)

dE dE -1

ad sync

where the subscript "ad" refers to terms produced by adiabatic changes

when p is conserved and "sync" refers to effects produced by synchrotron
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radiation. The relativistically exact form of equation (19) with

2 2 2 2 4  2
c p = E m c and p = p /2mB for the case of electrons in very

flat helices yields

2 24 2 2 24
dE 3(E -mc4) KB (E -m c (28)
dL 2EL -VD

where the first term on the right is the contribution due to the

conservation of p and the last term gives the effect of the synchrotron

radiation.

Equation (28) gives the energy, including the effect of

synchrotron radiation, as a function of L. The equation is solved by

numerical integration for various values of the parameters and the results

2
shown in Figure 4 as plots of T = E - mc , the kinetic energy, vs L.

In the case in which synchrotron radiation is neglected, i.e. K = 0 in

equation (27), the solution,

1/22 24 24 2
T = [(L 1 /L) 3 (E - m )+ m c - mc (29)

2 1

where E1 = T(L1) + mc2 is obtained directly from the conservation of p.

For L larger than about 4, this solution is essentially the same as the

corresponding solutions with finite K and VD derived from third model.

However, for smaller values of L, the curves are very different. If

DSW or DE had been used to determine VD, the much smaller value of VD

would keep the electrons from ever reaching relativistic velocities. For

solutions with the electron energy normalized near L - 2 to the values

used in Figure 4, the electron kinetic energy at L = 50, the assumed

magnetopause, is 3.75 keV for curves 1 and 10.7 keV for curves 2, which

is much larger than the approximately 0.2 keV usually assumed (Brice,

1972). This suggests that diffusion models have some difficulty in

supplying electrons of the energy needed to produce the synchrotron
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radiation unless the magnetopause is placed at L1 = 100 or 200 or unless

the electrons in the magnetosheath are very hot indeed.

The total power radiated per unit volume is PT c N(L) t c fp2 /L0

Figure 5 is a plot of P T(L)/PT(2) expected on the basis of this analysis

for the same cases as in figure 4. Note that curves Ic and 2c have their

maxima near L = 2 in rough agreement with observations.

Now consider the energy lost by particles with pitch angles

S#x/2. The power radiated by these particles E is given by

E 2 2
B 2 sin 2

2
" B
E eq
eq

where the subscript eq refers to equatorial particles. Since p const

2
over a bounce period, sin2 P = B/B where B is the value of B at the

m m

mirror point. Thus, for particles with the same energy but different

mirror points, B
• - at 0 = v/2

E 3  B
B BmE B B B

eq eq m m at =
B 2  m

eq

B [3 cos 2  + 1]1/2
For = 600, m _ m 3.1

m B 6
eq sin 0m

Since particles spend more of their time near the mirror points, it is

clear that for particles of a given energy, the smaller P is, the more

energy is lost to synchrotron radiation. Thus, for small L values, the

electrons with the largest energy would have pitch angles near v/2.
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VII. Summary

The conclusions derived from the preceeding analysis are:

1) When electron energy is computed, the effect of synchrotron radiation

must be included. This results in a higher energy required at LI = 50

if the energy at L = 2 is to be close to 6 MeV, which we have taken to be

the characteristic electron energy there. A reasonable estimate of the

energy of an electron at L = 50 is .2 KeV, while the required energy is

in the range 2 - 10 KeV. This could be remedied by extending the

magnetopause, or assuming that the electrons in the magnetosheath are

very hot, or by assuming that the electrons gain energy in some way

besides conservation of the first adiabatic invariant (e.g. by

disturbances near Io).

2) One specific model of diffusion due to the wind-driven interchange

of tubes of flux is shown to have a diffusion coefficient of the form

D = DO L2(L-1). This diffusion mechanism succeeds where the diffusion

mechanisms usually used for the earth's magnetosphere fail for Jupiter,

i.e. it is large enough in the region L ~ 6 to (1) get sufficient

numbers of electrons past Io and (2) diffuse electrons inward fast enough

to supply the energetic electrons required for synchrotron radiation.

If this general mechanism is not acceptable, the electrons must be

accelerated near Io and the energetic proton flux there is very

difficult to estimate. If the particle flux matches the predictions

of the diffusion model, this will give powerful support for Brice's

mechanism.
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Appendix

In this section we will show that electric fields " at the feet

of dipole field lines will cause the plasma above the ionosphere to move

such that field lines (whose motion is defined by the motion of the

plasma) move into other dipole field lines. In other words, the magnetic

field maintains its dipole configuration during the diffusion process.

We will consider two cases: 1) E = E cp and 2) E = r r + 0

where E*B = 0.

Case 1

Consider 2 neighboring field lines, both emerging from the

surface at the same value of 0 but one at cp and one at cp + Ap, where aV

is small. The existence of E T implies that they differ in potential by

some amount AV. Since the potential V = const. along a field line,

AV = constant as we map the electric field out into the magnetosphere.

The distance between the field lines in the T direction is ASP = r sine Ac,

so E (r,e) = - 1 V. The velocity of the field lines
4 AS r sine Ac(

u = c 2 is in the r, 0 plane perpendicular to B. If a field line is to

move into another dipole field line we must have u w ASre' where ASrG

is the distance between two field lines in the rO plane which are

separated by be at the surface. The expression for ASre can be obtained

as follows.

Consider a small surface perpendicular to B. Let its dimensions

be AS in the 9 direction and ASr9 in the rO plane. The flux through it

is A = B AS ASr = B S ASr = const. Thus AS BS , and
surface r B

E _ c AVcS
B BAS ASrO
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so the field remains a dipole.

Case 2

This is similar to case 1. Here the field lines emerge from

the surface at the same cP but one at 0 and one at e + 6e, so E is in

E
^

the re plane, and u = c . If the field lines are to remain dipole,

we must have u er AS . If the field lines differ in potential by AV,

then E AV B AS and u ce AS as required.
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Figure 1

The diffusion coefficients D(L) for the three cases
DA = 4 x 10- 3 L2 (L-1) day - 1, DE = 1.7 x 10-9 L6 day-l,

and DSW = 5 x 10-15 L10 day -1 .
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Figure 2

The fraction of full flux tubes, f, as a function of L for D = DSW (curves 1), D = DE
(curves 2), and D = DA (curves 3). The labels a, b, c, identify, respectively, the curves

for the cases in which a/Do is zero (the effect of Io is neglected), -/D0 has its nominal

value, and a/Do has ten times its nominal value (presumably because of a lower diffusion

rate). The curves lb and 2b are essentially zero for L < 6.
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Figure 3-3

The density, N, in particles cm-3 as a function of L for the case D = DA using as

normalization N = 6.7 x 10 - 4 cm- 3 at L = 2. As in Figure 2, the labels a, b, c,

identify, respectively, the curve for /Do = O, q/D = 2/(4 x 10-3), the nominal

value, and o/Dn = 2/(4 x 10-4).
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Figure 4

Electron kinetic energy T(MeV) in the synchrptron radiation zone for 6 cases. The label
2 implies T(L = 6) = 2 MeV, while I implies T(L = 6) = I MeV. Curves labeled a are the
solutions neglecting the loss of energy by synchrotron radiation, and those labeled b and
c are the solutions including the energy loss. Curves labeled b use D = DA, while curves
labeled c use D = 1/10 D A.
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Figure 5

The total power radiated per unit volume, PT,

divided by PT(2). The labels have the same

meaning as those in figure 4.


