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potential core only to be subject to dissolution by the more enhanced

fine scale turbulent activity in that region.
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1. Introduction

The basic ideas concerning the elucidation of the development of

wavelike eddies in a growing mean turbulent flow are presented previously

(Liu 1974) to which we refer as an introduction to the formulation 
of the

physical problem. In that paper applications are given for the plane mixing

layer with discussion of the near field properties in 
relation to observa-

tions and control of the development of such eddies. The wavelike eddies

ultimately decay and give up their energy to the fine scale turbulence.

In a real jet flow, the fully merged jet region is much more efficient in

turbulent diffusion compared to the mixing layer region. Thus, one of the

natural questions raised concerns the role played by this relatively enhanced

turbulent diffusion in the development of such eddies. The consideration of

such an evolution, starting from the mixing layer should also bring out the

relative importance of the varicose and sinuous modes in the near jet noise

field. We turn our attention to such geometric applications in this paper,

with the aim of bringing insight into the streamwise lifetime or cut-off of

the large scale coherent eddies in a real jet flow. The understanding of

the mechanisms leading to the cut-off of the noise sources in the jet is of

importance to the far aerodynamic noise field (Lighthill 1952, 1962; Mollo-

Christensen 1960, 1967). In this paper we address ourselves only to the

large scale wavelike eddies, now thought to be the dominant-soirce of jet

noise (Bishop, Ffowcs Williams & Smith 1971; Liu 1971, 1974).

2. Formulation

The formulation given in Liu (1974) uncouples the wave development from

the turbulent mean motion, the argument being that the initial amplitude of

the wave which renders the subsequent development is sufficiently weak so

as to make possible the independent calculation of wave development at
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various frequencies. The real initial amplitudes at the nozzle lip under

"natural" conditions could include a wide variety of mechanisms such as

oscillations of the flow at the jet exit, vibrations of the nozzle wall,

noise from the internal flow with the lower bound being the turbulent

boundary layer on the nozzle wall prior to mixing. In Liu (1974) the

latter is used as a basis for estimation of the initial amplitudes, which

are broad banded in the "low" frequency spectrum of interest (Kistler &

Chen 1963). The calculated subsequent streamwise wavelike eddy develop-

ment generates a near field that bears striking resemblance to observations

in both features and magnitude. In order to check the influence of wave-

like eddy development on the mean flow within the same framework, we for-

mulated the fully coupled problem which includes the effect of the wave

or eddy Reynolds stresses on the mean flow development. For these same

initial values of the wave energy, the mean motion was found indeed to be

negligibly affected. However, we are cautious to point out that this

statement is only intended for the formulation which treated the wave-

induced turbulent Reynolds stresses via an eddy viscosity model.

It, therefore, suffices only to mention that we formulated the coupled

mean flow - wave interaction model and its computation results are essen-

tially the same as the corresponding uncoupled one in the ranges of initial

wave amplitudes of practical interest. Because it is significantly more

cumbersome to present the coupled formulation, all our subsequent presenta-

tion will be in terms of the simplified version. .The main purpose of this

paper is to follow the wave development from the mixing region into the

merged jet flow and thus to elucidate the effect of the enhanced small scale

turbulent "dissipation" on the large scale eddy kinetic energy in the merged



region. This then provides the insight into the-streamwise lifetime 
or

cut-off of the large scale wavelike eddies in a real jet flow. Since we

wish to provide some understanding of the above problem as well as the 
role

played by the sinuous and varicose modes of wave development, we consider

the simpler case of two-dimensional mean flow in which two-dimensional wave

motions develop (Liu 1974, Brown Roshko 1971, 1972).

2a. The mean flow

The configuration of the two-dimensional fully expanded jet- is illustrated

in Fig. 1, where yd is the dividing streamline separating fluid particles

that originate from within the nozzle from the ones that originate in the

ambient field, u* is the streamwise component of the velocity along the

dividing streamline, 6 is the shear layer width and 62 and 61 measure

the shear.layer thickness above and below the dividing streamline respec-

tively, 6o is the shear layer width at the exit of the jet, R is the

half-width of the jet exit. The indices j and a denote quantities at

the exit of the jet and in the ambient field, respectively, and p, T, U

are the corresponding density, temperature, and velocity, respectively.

The index b denotes quantities along the centerline of the jet.

We consider the development of instability waves in a mean flow whose

dominant interaction is with the fine scale turbulence. We invoke Morkovin's

hypothesis (1964) that the turbulence structure is unaffected by compressi-

bility and neglect terms which involve turbulent fluctuations of pressure

and density. We apply Prandtl's boundary layer assumptions to .the time

averaged equations of motion and assume the turbulent Prandtl number is

unity. We also neglect the unimportant molecular effects. The integrated

forms of the continuity and momentum equations together with the mechanical



energy relation for the mean flow and the thermal energy relation 
take the

following forms for our two-dimensional cold jet.

Yd
d u y = 0 (2.1)

Yd

d 2  
0 (2.2)

d 2 -3 -= _ 2 (2.3)

-x 2 u u.

T - 1+ -1) -( ; M (2.4)

T 2 3 U

where u is the streamwise mean velocity, y is the Howarth-Doronitsyn

coordinate which is related to the normal coordinate, y, through the

relation dy = (p/pj)dy = (Tj/T)dy, Z is a streamwise dependent incom-

pressible eddy viscosity related to the compressible eddy viscosity, E.

via the relation 2 2 = p E, where pr is a reference density. Alber
r r

and Lees (1968) showed that in the mixing region pa is the proper ref-

erence density and that t = K U 8, where 8 is the transformed momentum

thickness and K ' 0.06. The above expression for i is inadequate for

the description of the merged region of the jet which diffuses faster than

the mixing region. Consequently, we chose t = 0.037 Ub l1/2 as a proper

eddy viscosity for the merged region with p5 as a reference density,



denotes the location in which the velocity is half its centerline
Y1/2

value. (For many possible expressions for the eddy viscosity see Eggers

(1966), for instance.) It should be pointed out that the eddy viscosity

is identically zero outside the shear region.

Next, we normalize the system of equations by referring 
the physical

quantities to the corresponding'free stream quantities 
at the exit of the

jet. Consequently, velocity, density and temperature are scaled on Uj,

j and T. respectively. The transformed half-width of the jet exit, R,

is chosen as the reference length scale. In the following analysis we

shall deal only with nondimensional quantities though retaining the same

symbols, unless otherwise stated.

Following ideas of Kubota and Dewey (1964) and Alber and Lees (1968)

we assign different shape functions for the velocity field above and below

the dividing streamline.

u U 0 sy - Yd- 61

yd-y 2 - -

Y'yd 2
u - u*(l- 2 d < 1 Yd + 62 -(2.5)

62

u = o d + 62

U -u*

S , 2 =

The last two relations are obtained by matching the shear across the dividing

streamline. In the core region U = 1 and in the developed region yd = 61
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The three unknowns ((u*,Yd, ) in the core region and (U, ,u*,) in the

developed region) are determined with the aid of equations (2.1)-(2.3) sub-

ject to the initial conditions that u = 0, yd = 1 and = o at x = 0.

The mean flow, which is to be used in the local eigenvalue problem

subsequently, is best exhibited by the development found for u*, the velo-

city along the dividing streamline, as a function of the 
distance downstream.

It begins from a mixing region type behavior and reaches the similar solu-

tion value of about 0.58 prior to merging (Liu 1974). Subsequent to the

-1/2
end of the potential core, u* 'decays and Ub v x . The length of the

potential core region is found to be x c 25 while that of the sonic

region is xs 48 for the M. = 2.22 jet and for an estimated 6 - 0.10
s

(note that R - R). Although no strict comparisons could be made with the

round jet, it could, however, be mentioned that Eggers (1966) found xc = 22

and x a 50 for the M. = 2.22 round jet.
c 3

2b. The wave kinetic energy equation and the eigenvalue problem

Liu (1971, 1974) derived the equation determining the evolution of the

wave. In our notation it takes the following form

-.I .-- I I
u(u' +v'2 )dy - J uv -d - (v

2I 24 au'2 1 (v' 2 1 u' av'

3 ax y T ay

u +av' 2
+ ( + a) }dy (2.6)

ax

where primes denote components of the large-scale disturbance. Equation (2.6)

states that the evolution of mean kinetic energy of the wave convected by the



mean flow is determined by three energy exchange mechanisms: 
(a) transfer of

energy from the mean flow to the wave, commonly termed 
as "production," the

first term on the right-hand side; (b) work done by the instability pressure

gradients, the second term on the right-hand side; (c) 
energy exchange between

the wave and the fine-scale turbulence which we call "turbulent dissipation,"

the last term on the right-hand'side. The first two integrals can take

either sign depending on the dynamics of the process. (In our case they are

positive.) The last integral is always positive since it permits transfer

of energy in one way only--from the wave to the fine-scale turbulence. This

result follows the phenomenological assumption that the wave-induced turbu-

lent Reynolds stresses can be related to the wave rates-of-strain via a

postulated eddy viscosity (Liu 1974).

In order to obtain an amplitude equation for each frequency component

of the large scale structure from (2.6), following earlier works (Ko, Kubota

& Lees 1970, Liu & Lees 1970, Liu 1974) we assert that the form of any

fluctuating component of the large scale structure, q', is given by the

eigenfunction of the local linear theory Q exp(-i~t), but suitably modified

by an amplitude function A:

q'(x,n) = A(x) Q(n;x) exp(-iBt) + c.c. (2.7)

where Q is the shape function, n = y/6 . is the local normal coordinate,

8 is a local dimensionless frequency related to the real physical frequency

0* via the relation 8 = 6/6o and 8 = 8*(6 R)/Uj, t is the physical

time made dimensionless by ( R)/U..

(i) The shape function Q

For the shape function Q, the linear theory gives us the following

eigenvalue equation
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2u' 2T[TM2(u-c)2 = 0 (2.8)

(u-c)

which has to be supplemented by homogeneous boundary conditions to be

prescribed later. n is the shape function of the pressure distribution

and primes denote differentiation with respect to n, c = c +ici is the

complex phase velocity of the wave and a = ar+ia. is the complex wave

number. Equation (2.8) is iwitten in dimensionless form in which 6,

U., p. and T. serve as scales. Locally we have that 8 = ac. Once

the eigenvalue problem is solved for_ T, the shape functions of the other

components of the disturbance are obtained from the local linear theory.

The varicose and sinuous modes are described by the following boundary

conditions imposed on the axis (see Lees and Gold (1964)):

-varicose mode ' (0) = 0 (2.9a)

sinuous mode 7(0) =0 (2.9b)

In the ambient field far away from the jet the radiation condition dictates

the other boundary condition for the pressure perturbation. We obtain

22)1/2
n' + aT (1-M c2  7 0 n

a a

"0 (F1,L 7(c (1-Mac 2 1/2] > 0 (2.10)

2 1 2 1 2
M -M. T = 1 + y-1)M
a Ta j

where M is the Mach number of the jet exit velocity based on the ambienta

speed of sound. Note that a. < 0 for spatially amplifying waves. The

behavior of a neutral wave (a = 0, c = 0) in the ambient field depends
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on whether the wave is supersonic or not with respect to the anibient speed

of sound. When the wave is supersonic (Macr > 1) we obtain a laterally

non-decaying harmonic solution, similar to the case of Mach waves generated

by a supersonic flow over a wavy wall. When the wave is subsonic (Macr < 1)

the solution decays exponentially. When c is complex the wave always

2 2 1/2
decays exponentially because c. introduces an imaginary part to (l-Mac

However, we shall see that a supersonic amplifying wave induces a different

near field than a subsonic amplifying wave. It should be pointed out that a

wave which is locally supersonic in the jet region may be subsonic with

respect to the ambient field. The semicircle theorem (Drazin and Howard

(1966)) limits the range of c; consequently, no supersonic waves can exist

beyond the mean flow sonic point at which UM2 1. So far our remarks

have been concerned about the shape function Q in (2.8).

(ii) The amplitude function A

The amplification and decay of the large scale structure comes primarily

from the amplitude function A(x) in (2.8) for the developing mean flow,

and this is determined from the energy balancing mechanisms of (2.6) after

the substitution of (2.8) rather thanthe amplification rates of the local

linear theory. The linear eigenfunctions, Q, and the associated amplifica-

tion rates play a subsidiary role in that they occur under integrals asso-

ciated with the physical mechanisms of energy production, pressure work and

turbulent "dissipation" in (2.6). Such integrals appear as x-dependent

coefficients in the amplitude equation for A(x). These are discussed in

more detail in Liu (1974).

With regard to the integrand of these interaction integrals, the

symmetry of the mean flow with respect to the centerline of the jet bears



directly on such eigensolutions of equation (2.8). Two fundamental modes

of disturbance exist: varicose and sinuous. (The symmetry inherent in

our analysis is not present in Liu's mixing layer analysis.) Some infor-

mation about the relative importance of these two modes exists in the

literature for the nondeveloping parallel mean flow. Lessen, Fox & Zien

(1965) considered a compressible top hat plane jet profile with a timelike

amplifying disturbance. According to their calculations the sinuous mode

is more unstable than the varicose mode. Mattingly 6 Criminale (1971)

considered an incompressible fully developed plane jet with a spatially

amplifying disturbance. Again, their analysis predicts a dominating sinuous

disturbance. However, the two idealized cases mentioned do not apply to a

real developing jet. In this paper we investigate the development of the

two fundamental modes of the disturbance taking into account the spread of

the initial mixing regions and their merging downstream. That is, the two

modes for Q, which occur under the interaction integrals, are used to

study the streamwise development of A(x), subjected to the "spectrum" of

initial conditions A

2c. The near jet noise field

It has been shown (Liu 1974) that because the Q shape functions of

(2.7) decay laterally (radially in the case of a round jet) in a weakly

exponential manner, the instability wave exerts an influence in the "near

field" well beyond the confines of the jet which resembles the near field

observations (see, for instance, Lassiter & Hubbard 1956; Howes, Callaghan,

Coles & Mull 1957). Such striking resemblances are obtained through the

direct calculation of near field properties obtained through the large

scale structure quantities in the form of (2.7), rather than through a

retarded potential calculation. The present work is intended to consider
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such "near field" properties contributed by the sinuous and varicose modes.

In so doing, we obtain some understanding of the behavior of such aerodynamic

sound sources.

The far sound field, which is not considered

here, must then be obtained through a retarded potential calculation

Source .
(Lighthill 1952, 1962) that includes the contributions

The direct calculation of the near field properties in terms of an

averaged energy flux or pressure fluctuations squared would contain, from

the form of (2.7), the square of the amplitude function, IA(x)1 2 , and pro-

ducts of the shape function Q2 which describes the local lateral behavior

according to the local characteristics of the wave. Any properly defined

shape function should give us the qualitative desired lateral behavior

and for definiteness we use the pressure-velocity correlation vector.

Consequently, we define a local intensity vector (which should not be

confused with that obtained by a retarded potential consideration), as

I = p'u' i + p'v' j (2.11)

where i and ] are unit vectors in the x and y directions, respec-

tively. Upon expressing the components of I in terms of the shape

functions we find that in the ambient field

v'p' 2A exp{-2yRZ[(1-M 2c2))12]T Ea [i a (l-M2c2 )1/2 ] 1
a a a

(2.12)

u'p 21A 2exp{-2yR[a(1-M 2c2 1/2T R( 1)a a c

where JA)2  is the square of the amplitude of the wave determined by (2.6).

In the framework of our analysis the eigenvalue problem gives us an

approximate description of the various wave shape functions. However, the
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extent in the streamwise direction of a significant wave- activity is deter-

mined primarily by 1A1 2 , the evolution of which is governed by equation (2.6).

In other words, the energetics of the flow in the jet determines the natural

streamwise cut-off of the wave.

3. Results and Discussion

In our numerical example we utilized Egger's data (1966) for his

M. = 2.22 jet and estimated the initial boundary layer thickness as one-

tenth of the exit radius. The lengths of the potential core and- the sonic

core obtained in the calculations are in good agreement with experimental

evidence (Merkine (1974)). In order to integrate (2.6) the initial ampli-

tude of the wave together with its physical frequency is specified and we

have chosen a broad-band (A12 = 10- 5 as the initial value of the square-o

of the wave amplitude as already discussed. This choice is of the right

order of magnitude for the "naturally" existing disturbances in the flow

field (Liu 1974). Our frequency range is spread over the frequency para-

meter, So, from 0.01 to 0.1 which correspond to dimensional frequencies in

the range 0.1-10 Hz. The noise frequency spectrum obtained by Jones (1971)

for a jet similar to Egger's indicates that our range of frequencies covers

most of the spectrum. The solution of (2.6) has justified the decoupling

of this equation from the rest of the mean flow equations.

The development of the amplitude of the wave and consequently the

wave-induced noise sources depend on the role played by the various energy

exchange mechanisms appearing in (2.6). In all the calculations performed

it was found that in the early stages of the wave development, "production"

dominates over pressure work and "turbulent dissipation" and the amplitude

of the wave increases rapidly. At more advanced stages pressure work and
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"turbulent dissipation" become comparable to the "production" term and

eventually override it. This behavior causes the amplitude of the wave to

attain a peak and eventually to decay. It has also been found that the

lower the frequency, the further downstream the peak is located. Observa-

tions in the near field (Lassiter & Hubbard 1956; Howes et al. 1957) indi-

cate that high-frequency contributions to the pressure fluctuations or

intensity dominate the region near- the jet exit, whereas low frequency

contributions dominate in the region far downstream. This is in accordance

with our purely local considerations. In these earlier near field obser-

vations, the contributions from the sinuous or varicose modes are not

differentiated. Our results for these two modes would therefore provide

such an understanding. Our discussions thus far then suggest methods for

noise source suppression according to which jet noise control can be achieved

by controlling the mechanisms governing the development of the large scale

wave amplitude. Liu (1974) gives a rather extensive treatment of the sub-

ject. Our results for the development of the wave amplitude and the various

energy exchange mechanisms are entirely similar to his and, therefore, will

not be represented here But instead, we will elucidate the roles played

by the sinuous and varicose modes.

Figures 2a and 2b depict the behavior of the real part of the complex

phase velocity of the wave for the sinuous and varicose modes of the distur-

bance, respectively. For the sinuous mode (Fig. 2a) the wave starts with

subsonic velocities (MacR < 1). If the frequency of the wave is high enough

it accelerates and saturates about a supersonic speed (cRMa > 1) which is

higher for higher frequencies. The behavior is different for low frequencies.

When 8 = 0.01 the wave reaches the developed region with a subsonic speed
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and, following an adjustment region, its phase velocity begins to decay as

it is limited by the decreasing U . It will be shown later that supersonic

waves influences the near field more profoundly than subsonic waves. The

varicose mode (figure 2b) shows different behavior from the sinuous mode.

We find that low frequencies are associated with high phase velocities.

For 0o = 0.01 the wave starts immediately with supersonic phase velocity.

For the Bo = 0.075 case the behavior is similar to the sinuous case except

that the saturated value is attained sooner.

Our results indicate that we are dealing with large-scale instability

waves, since their wavelengths are of the same order of magnitude as the

jet diameter. We have also found that the local linear theory predicts

that the sinuous waves have larger local amplification rates, -aiR, than

the varicose waves, as has already been suggested by the earlier works.

For later reference, we are showing the linear local amplification rates,

-aiR for the two modes in figure 3. As we already discussed the eigen-

functions of the linear theory as well as -a. provide the vertical struc-1

ture while the amplitude function gives streamwise structure according to

(2.7).

The next two graphs depict constant normal intensity levels (vp =

constant) expressed in decibels. In this unit the wave-induced normal

intensity flux is given by

V1p' U.p
Z = 10 log dB I 10 /m2 (3.1)SI rref e f

For Egger's jet we have that U. = 538 m/sec and pj 2.404 kg/m 2 .
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Acoustic measurements are made through the determination of the pressure

field. Our results are represented in terms of the wave-induced normal flux

v'p' , but the local linear theory provides us with a proper conversion re-

lation through the form given by (2.7). We find that in the ambient field

2 2 a= v'p', r (3.2)S cT 2 2 1/2
r a R [ia(l-M c )I ]

e a

and we refer, of course, to local contributions only. Figure 4 represents

the wave-induced normal flux for a range of frequencies for the sinuous

mode of the disturbance. It is clear that high frequency waves peak earlier

than low frequency waves. This result is also borne out in Liu's work and

is a dominating feature of the experimental observations. An important

feature is that for a fixed y-station the dominant intensity shifts down-

stream with the highest intensity occurring at the end of the potential

core. In the subsequent fully developed region, where the fine scale tur-

bulence is more active than in the mixing region, the amplitude of the wave

decays rapidly as a result of the enhanced "dissipation" of its kinetic

energy. This is reflected in figure 4 in the rapid decay of the normal

intensity for all frequencies and again it appears to explain the appear-

ance of the observed maximum acoustic intensity in the vicinity of the end

of the potential core (see, for example, Potter and Jones/i967 B-shop 's. M7.

We should point out that only the nonparallel formulation for A2(x)

which includes the proper energy exchange mechanisms accounts for the decay

in the amplitude of the wave. The local linear theory cannot account for

this decay in that it indicates the existence of a nearly neutral wave

far downstream (see figure 3). The linear theory, of
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course, serves as local lateral shape functions in our consideration of

the developing mean flow problem (Liu 1974). As an illustration, the development

of AI12/Ao1 2 for the 8o = 0.05, sinuous mode is shown in Figure 5, which

makes a maximum contribution of about 15 db. The streamwise development of IN

(figure 4(c) for this case) essentially follows that of 10 logl0 IA12/IAo12 .

The fast decay of the flow field downstream of the potential core

restricts the.phase velocity of the large scale eddies which enter the

developed region, since the phase velocity can never surpass the local

maximum flow velocity and, therefore, no supersonic phase velocities can

exist downstream of the sonic point. Our results indicate that supersonic

wavelike eddies attenuate rapidly in the fully developed region. This

result is also'supported by Salant, Gregory & Kolesar (1971) who did not

observe ainbient -waves downstream of the tip of the potential core. The

Bo = 0.01 frequency wave, though subsonic throughout its development,

depicts the narrow lateral extent of the region of sources generated by

the subsonic wavelike eddies that 'can exist downstream of the sonic point.

The observations which indicate that the intensity decays rapidly downstream

of the sonic point results from the fact that only subsonic waves can exist

in this region. Since the lateral extent of the intensity of supersonic

eddies is greater than that of subsonic eddies it might be conjectured

that supersonic eddies exert greater influence over the far field than

subsonic eddies and that the main noise producing eddies occur before the

termination of the potential core region.

In figure 6 we show the constant normal intensity lines for the varicose

mode of the wavelike eddies compared with some of the results of the sinuous

mode at the same frequency parameter, 8 . For the 8o = 0.01 case, we note

from the discussion of phase velocities shown in figure 2, that the varicose

mode is supersonic at the outset while the sinuous mode remains subsonic

throughout its streamwise history. Also, from the calculated results of
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the local linear theory, the general level of -aiR for the varicose mode

is much lower. Thus these account, through equation (2.12),_for the vari-

cose mode having a much larger lateral influence than the sinuous mode 
for

the low frequency B = 0.01 case. For this case, though dominating

laterally, the varicose mode has a much shorter streamwise lifetime. 
For

the higher frequency modes, typified by the 5o = 0.075 case, the varicose

mode which also starts out subsonically, becomes supersonic earlier 
and has

a generally lower level of -aR than the corresponding 
sinuous mode.

Thus the varicose mode has a greater influence in the lateral extent 
and

again has a shorter streamwise lifetime. In general, given the same initial
-5

"natural" (Liu 1974) excitation level of A1 = 105 , the varicose mode

intensity levels are relatively lower close to the jet than the sinuous mode.

Although it was discussed in Liu (1974) that the Stronhal number based on

the nozzle diameter (2R) is not necessarily the appropriate indicator of

the "peak emitter," we note here its correspondence with the appropriate frequency

parameter, Bo, Std= 1o(2R/6o0 )(/60 )2. For 8 = 0.01 and 0.075, Std

is 0.05 and 0.36, respectively for the initial boundary layer to nozzle

radius ratio of 0.1 and for M. = 2.22, 6 ° / 1.49 according to the

Howarth transform inversion.

It can be mentioned that for a low speed plane jet, Oseberg & Kline

(1971) found observationally that in the near field a predominant varicose

mode existed in the region before the end of the potential core, while the

sinuous mode existed further downstream. This is thus in agreement with

our discussions.



4. Concluding remarks

It has been the aim of this paper to elucidate the question of the

streamwise lifetime of the varicose and sinuous modes of the wavelike

eddies in a developing real jet flow. The round jet problem, though of

practical interest, is now a problem of a computational nature, the signi-

ficant physical features being exhibited by the present much simpler plane

problem. The problem of the understanding of the wave-induced turbulent

Reynolds stresses and the far sound field contributions from the large

scale structurega [ -

stXOag are the subjects of our investigations and these will be reported

at later dates.
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List of Figures and Captions

Figure 1: Two-dimensional jet flow. Schematic.

Figure 2: Streamwise development of the phase velocity at M = 2.22.

a) sinuous mode

b) varicose mode

Figure 3: Streamwise development of the local linear amplification rates,

-a.R , at M. = 2.22.

a) sinuous mode

b) varicose mode

Figure 4: Contours of the wave normal intensity levels IN (re. 10-12 W/m2 )

for M. = 2.22 for the sinuous mode at various values of the

frequency parameters:

a) 8 = 0.1

b) B = 0.075

c) 0 = 0.05

d) 0 = 0.01

Figure 5: Streamwise development of the amplitude function for M. = 2.22,

IAo 2  1= 0- 5, 0 = .05, sinuous mode

-12 2
Figure 6: Contours of the normal intensity levels IN (re. 10 2  m )

for M. = 2.22 for the varicose mode, sinuous mode contours

are included for comparison.

00 = 0.01 and 00 = 0.075 are varicose modes.

00 = 0.01- -- - -- and 8 = 0.075 ---- are sinuous modes.
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