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1. introduction

The basic jdeas concerning the elucidation of the development of
wavelike eddies in a growing mean turbuleﬁt flow ;re presented previously
(Liu 2974) to which we refer as an introduction to the formulation of the
physical problem. In that paper applicationé are given for the plane mixing
layer withrdiscussion of the near field properﬁies in relation to observa-
tiont and control of the development of such eddies, The wavelike eddies
‘ultimately decay and give up their enérgy to the fine scale turbulence.

In a real jet_flow,.the fully mefged,jet pegion is much more efficient in
turbulent diffusion compared to the mixing layer rggion. Thus, one of the
natural questions raised concerns the role played by this relatively enhanced
turbulent diffusion in the development of such eddies. The consideration of
such an evelution, starting from thé mixing 1ajer should alse bring out the
relative importance of the varicose and sinuoﬁs modes in the near jet noise
fieid._ We turn our attention to such gecmetric applications in tﬁis paper,
with the aim of bringing insight into the streamwise'lifétimé or cut-off of
the large scale coherent eddies in a veal jet flow. The understanding of
the mechanisms leading to the cut-off of the noise sources in the jet is of
jmportance to the far aerodynamic noise field (Lighthill 1952; 1962; Mollo~
Christensen 1960, 1967). In this paper we éddress ovrselves only to the
large scale wavelike eddies, now thought to be the dominant- source of jet

noise (Bishop, Ffowcs Williams & Smith 1971; Liu 1971, 1974).

2. Formulation

The formulation given in Liu (1974) uncouples the wave development from
the turbulent mean motion, the argument being that the initial amplitude of
the wave which renders the subsequent development is sufficiehtly weak so

as to make possible the independent calculation of wave development at



various fréquencies. The real initial amplitudes at the nozzle. lip under
“natural” conditions could include a wide variety of mechanisms such as
oscillations of the flow at the jet exit, vibratidné of the nozzle wall,
noise from the internal flow with the lower bound being the turbulent
boundary layer on the nozzle wall prior to m1x1ng. In Liu (1974) the
latter is used as a basis for estimation of the 1n1t1al amplltudes, whlch'
are broad banded in the "low'" frequency spectrum of interest (Kistler &
Chen 1963). The calculated subsequent streamwise wavelike eddy develop-
ment generates a near field that bears striking resemblance to observations
~in both feétu#es aﬁd magnitude. In ordef.to check the influence of wave-
like eddy development on the mean flow within the éame framework, we for-
mulated the fully coupled problem which includes the effect of the wave
or eddy Reynolds stresses on the mean flow development. For these same
initial #alues-of the wave energy, the meén motioﬁ was found indeed to be
.negligibly affected. However; we are cautious to point out that this
statement is only 1ntended for the formulation which treated the wave-
1nduced turbulent Reynolds stresses v1a an eddy viscosity model.

It, therefore,,suffices only to mention that we formulated the coupled
mean flow - wave interactiéﬂ model and its computation~results'are essen~
tially the same as the corresponding uncoupled one in the ranges of initial
wave amplitudes of practical interest.: Because it is significantly more
cumbersome to present the coupled formulation, all our subsequeﬁt presenta-
tion will be in terms of the simplified version. . The main purpose of this
paper is to follow the wave deveiopment from the mixing region into the
merged jet flow and thus to elucidate the effect of the enhanced small scale

 turbulent "dissipation' on the large scale eddy klnetlc energy in the nerged



vegion. This then provides the insight into the@streamwiserlifetime or
cut-off of the large scale wavellke eddies in a real jet flow. Since we
wish to provide some understandlng of the above problem as well as the rcle
played by the sinuocus and varicose modes of wave development, we consider
the simpler case of two-dimensional mean flow in which two-dimensional wave

motions develop {(Liu 1974, Brown & Roshko 1971, 1972).

2a. The mean flow

The configuration of the two?dimeﬁsional fully expanded jet is illustrated
in Fig. 1, where y, is the dividing'streaﬁline sepavating fluid particles
that originate from within the nozzle from the ones that originate in the
ambient field, u® is the streamwise component of the velocity along the
dividing streémline, § 1is the shear layer width and 62 and Gl measure
fhe shear .layer thickness above and below the dividing streamline respec-
tiyely, GO is the shear layer width at the exit of the jet, R is the
half-width of the jet exit. The indices Jj and a denote quantities at
the exit of the jet and in the ambient field, respeétively; and p, T, U
‘are the corresponding density, temperéture, and velocity, respectively.
 The index - b denotes quantities along the centerline of the jet.

We consider the development of instability waves in a mean flow whose
doﬁinant interaction is with the fine scale turbulence. We invoke Morkovin's
hypothesis (1964) that the turbulence structure is unaffected by compressi-
bility and negleét terms which involve turbulent fluctuations‘of pressure
and densitf. We apply Prandtl's boundary layer assumpticns to .the time
averaged equations of motion and assume.the turbulent Prandtl number is
unity, - We aléo neglect the unimportant molecular effects. The integrated

forms of the continuity and momentum equations together with the mechanical,



energy relation for the mean flow and the thermal energy relation take the

following forms for our two-dimensional cold jet.

4 f Tav = 0 (2.1)
dax J_ _ o _
a
4 247 = | ' (2.2)
ax I u }dy‘ = 0 . . ’ _
- ' ’
iR J 5 U dy = ['E(Bi' dy _
T i u 2 u,
T % 143 ('7«1)1-3[1-(‘3“) ] ;3 oM, = 2 (2.4)
E 3 J YRT,

where u is the streamwise mean velocity, y is the Howarth-Doronitsyn
coordinate which is related to the normal coordinate, y, through the
relation dy = (E/pj)dy = (leT)dy, ¢ is a streamwise dependent incom-

pressible eddy viscosity related to the compressible eddy viscosity, €5

via the relation p2e = piﬁ g, wﬁere P is a reference density. Alber
and Lees (1968) showed that in the mixing region Py is the proper ref-

erence density and that &= Kerﬁ, where 8 is the tpansformed momentim
thickness and KB £.0,06. The above expression for & is inadequate for
the description of the merged region of the jet which diffuses faster than

the miking region. Consequently, we chose = 0,037 Uy, §l/2 as a-proper

eddy viscosity for the merged region with pj as a reference density,



;1/2 denofes the location in which the velecity is half its centerline
value, (For many possible expressions for the eddy viscosity see Eggers
(1966), for instance.} It should be pointed out that the eddy viscosity
is identically zero outside the shear region.

Next, we normalize the system of equations by referring the physiqal
quantities to the cofresponding‘free stream quantities at the exit of the
jet. Consequently, vélocity, density and température arc scaled on Uj’
Py and Tj reSpecti§ely. The transformed half-width of the jgtHexit,.ﬁ,
is chosen as the reference length scale. In the following analyéis we
shall deal only wifh nondimensional quantities though retaining the same
symbols, unless otherwise stated.

| Following ideas of Kubota and Dewey (1964) and Alber and Lees {1368}

we assign different shape functions for the velocity field above and below

the dividing streamline.
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The last two relations are obtained by matching the shear across the dividin

stpeamline. In the core fegion Ub = 1 and in the developed region §d‘= 8

g
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The three unknowns ((u*,?d,ﬁ) in the core region and (Ubﬂu*,ﬁ) in the
developed region) are determined with the aid of equations (2.1)-(2.3) sub-
ject to the initial conditions that u* = 0, §d =1 and § = 30 at x= 0.
The mean flow, thch is to be used in the local eigenvalue problem
subsequently, is best exhibited by the development found for u*, the velo-
city aleng the dividing streamline, as a functlon of the distance downstream.
It begins from a mlxlng_reglon type’ behavior and reaches the similar solu-
tion value of about 0.58 prior to merging (Liu 1874). Subsequent to‘the
-1/2

end of the potential core, u¥* decays and Ub ~x 7., The lenéth of the

potential core region is found to be 2, Z 25 while that of the sonic

it

region is x_ £ 48 for the Mj = 2.22 jet and for an estimated & = 0.10

ni

(note that R = R). Although no strict comparisons could be made with the

e

round jet, it could, however, be mentloned that Eggers (1966) found X, 22

and X = 50 for the Mj = 2.22 round jet.

2b. The wave kinetic energy equation and the eigenvalue problem

Liu (1971, 1974) derived the equation determining the evolution of the

wave., In our notation it takes the following form

4 13 u(u’ 2 2)d_;,v = - -]Lu'v‘ -a—g-dfr - (Eu'EE‘+ v' —a}—)-l) dy h
dx 2 - - axr -
o ww T oy = ay
= 1
J‘ =7 2{}_;_ [(311 a2, ( 2.1 gi 3\—7'
- 72 ay T 3y
su'  9v',2 ' '
+ (__-——-—-._ + 3}: }d . {(2.6)
Tay :

where primes denote components of the large-scale disturbance. Equation {2.6)

states that the evolution of mean kinetic energy of the wave convected by the



mean flow is determined by three energy exchange mechanisms: (a9 transfer‘of
energy from the mean flow to the wave, commonly termed as "production," the
first term on the right-hand side; (b) work done by the instability pressure
gradients, the second term on the right-hand side; (c) energy exchange between
the wave and the fine-scale turbulence which we call "turbulent dissipation,”
the last term on the right-hand side. Tﬁe first two integrals can take
either sign depending on the dynamicés of the pfocess. (In our case they are
pOSlthe ) ‘The last integral is always positive since it permlts transfer
of energy in one way only--from the wave to the fine-scale turbulence. This
result follows the phenomenologlcal assumption that the wave-induced turbu-
lent Reynolds stresses can be related to the wave rates-of-strain via a
postulated eddy viscosity (Liu 1974).

In order to obtain an amplitude equation for each freqﬁency component
of the large scale structure from (2.6), following éarlier works (Ko, Kubota
£ Lees 1970, Liu & Lees 1870, Liu 1374) wé assert that the form of any
fluctuating cbmponent'of the large scale structure, q', is given by the
eigenfunction of the local linear theory Q exp(-ift), but suitably modified

by an amplitude function A:
q'(x,n) = A(x) Qln;x) exp(-iBt) + c.c. (2.7)

where Q. is the shape function, n = y/3. is the local normal coordinate,
8 is a local dimensionless frequency related to the real physical frequency
B* wvia the relation B = 803/30 ‘and B_ = B*(GOR)/Uj, t is the physical

time made dimensionless by (ER)/Uj.
(i) The shape function Q

For the shape function Q, the linear theory gives us the folléwing

eigenvalue equation



2u"

- ot - a%ﬁ-ﬁ?(ﬁm)%w: 0 (2.8)

(u-c)
which has to be supplemen{ed by hemogeneous boundéry conditions to be
prescriﬁed later. w is the shape function of the pressure distributidn
and primes denote differentiation with respect to n, ¢ = cr-!-ici ris the
complex phase velocity pf the waﬁé and o = ar+iai is the complex wave
number. Equation (2.8) is written in dimensionless form in which &,

- Ul pj . and -Tj serve as scalés.. Loca}ly Wwe have that B = ac. Once
the eigenvalue problem is solvéd'for,,n, the shape functions of the other
components of the distﬁrbance aré obtained from tﬁe local linear theory.
The varicose and sinuoué modes are described by the following boundary

conditions imposed on the axis (see Lees and Gold (1964)):

(2.9a)

u
[=]

.varicose mode w1 {0)

L1
o

sinuous mode n(o) '~‘(2.9b)

In the ambient field far away from the jet the radiation condition dictates

the other boundary condition for the ﬁressure perturbation. Ve obtain

2 2)1/21I ' ~

Tt 'l-"(lTa(l-Mac = 0 n-+w .
Qaafq%wr/?},w-\ | . a
2 2.1/2
fc.t <3§g[a(l-Mac / 3] > 0 . (2.10)
: 2 . 12 - 1 2
M T M, T, d 1 + {y-1K;

where Ha is the Mach number of the jet exit velocity based on the ambient
speed of sound. Note that a; < 0 for spatially amplifying waves. The

behavior of a neutral wave (ai =0,¢ = 0) in the ambient field depends
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on whether the wave is supersonic or not with respect to the ambient speed

of sound. When the wave is supersonic (Hacr > 1) we obtain a laterally
non-décaying barmonie solution, similar to the case of Mach waves generated
by a supeﬁsonic flow over a wavy wall. When the wave is subsénic (Macr < 1)
the solution decays exponentially. When ¢ is complex the wave always
decays exponentially bécause ¢y introduces an imaginary parf to (1- M2 2)1/2
However, we shall see that a supersdnic ampllLylng wave induces a different
near fleld than a subsonlc ampllfylng wave. It should be pointed out that &
wave which is locally supersonic in the jet region may be subsonlc with-
respect to the ambient field. The semicircle theorem (Drazin and Howard
(1966)) limits the vange of c; consequently, no supersonie waves can exist

beyond the mean flow sonic point at which UEMz = 1. So far our remarks

have been concerned about the shape function Q@ in (2.8).
(ii) The amplitude function A

The amplificafién and decay 6f‘the large scalertructure comes primarily
from the amplitude function A(x) in_(2.8) for the.éeveloping mean flow,
and this is determined from the energy balancing mechanisms of (2.6) after
the substitution of (2.8) rather thanN;;: ampl;flcatlon rates of the local
linear theory. The linear eigenfunctions, Q, and the associated amplifica-
tion rates play a subsidiary role in that they occur under integrals asso-
ciated with the physical mechanisms of energy preduction, pressure work and
turbulent "diséipation" in (2.6). Such integrals appear as x~dependent
coefficients in the amplitude equation for 'A(x). These are discussed in
more detail in Liu (1974). |

With regard to the integrand of these interaction integrals, the

symmetry of the mean flow with respect to the centerline of the jet bears
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diréctly‘on such éigénsolutions of equation (2.8). Two Fundamental modes
of disturbance exist: varicose and sinuous.- (The symmetyry inherent in
our analysis is not present in Liu's mixing layef analysis,) Somé infor-
mation about the relative importance df these two modes exists in the
literature-for'the nondeveloping'parallei mean flow. Lessen, fox & Zien
(1965) considered a compressiblé‘top hat plane jet profile with a timelike
amplifying disturbance. ‘According to their calculations the sinuous mode
is more unstable than the varicose mode. Mattingly & Criminale (1971)
considerad an incompressible fuiiy deveioped plane jet with a spgtially
amplifying disturhance. Again, their analysis predicts a ddminating sinuous
disturbance. However, the two idealized cases mentioned do not apply to a
real developing jet. In this paper we investigate the development of the
two fundamental modes of the disturbance taking into account the spread of
the initial mixing regions and their merging downstfeam. That is, the two
modes for Q, which occur under the interaction integrals, are used to
study the stréamwise development ;f‘ A(x), subjected to the "spectrum" of

>

initial conditions -Aé.

 2c. The near jet noise field

It has been shown (Liu 1974) that 5ecause the Q shape functioné\of
(2.7) decay laterally (radially in the case of a round jet) in a weakly |
exponential manner; the instability wave exerts’an influence in-the "near
field" well beyond the confines of the jet which resembles the near field
observations (see, for instance, Lassiter E.Hubbard 19563 Howes; Callaghan,
Coles & Mull 1957). Such striking resemblances are obtained throﬁgh'the
diréct calculation of near field ?roperties obtained through the large
scale structure quantities in the form of (2.7}, rather than through a

. vetarded potential calculation. "The present work is intended to consider



1z

such ‘near field" properties contributed by thé sinuous.andlvaricose modes.
In so doing, we obtain some understanding of the behavior of such aerodynamic
sound sources;'
o ’ | - - -The far sound field, which is not conmsidered
here, must then be obtained through a retarded potential calculation
(Lighthill 1952, 1952) that includes'thg:éggifibutions. |  ﬂ | T
The direct qalculation of fhé,near,field properties in terﬁs of an |
averaged energy flux or pressure fluctuations squared would contaln from
the form of (2.7), the square of the amplltude function, ]A(x)lz, and pro-
ducts of the shape function Q2 which descrlbes the local lateral behavior
according to the local characteristics of the wave. Any properly defined
shape function should give us the qualitative desired lateral behavior
and for defin;teness we use the pressure-velocity correlation vector,
Cohsequently, we define a 1§cal inténsity vector (which should not be

confused with that obtained by a retarded potential consideration), a

B P'U'._:'L + Plvl 3 ‘ (2-11)

where I and J are unit vectors in the x and y directions, respec-
tively. Upon expressing the components of 1 in terms of the shape

functions we find that in the ambient field

vipf & _2M|2e:q>{-23,r1&"l[m(1—1~1§<:2)J‘/:‘)]}'1“_;17?.¢F’_[m(1-.M2 2)1/2 ;
| | | (2.12)
WpT v 2|a|2expl- 2yR£[a(1 M c2)1/2]}'r Kﬁ(—)

where !A]z is the square of the amplitude of the wave determlned by (2.6).
In the framework of our ‘analysis the elgenvalue problem gives us an

approximate description of the various wave shape functions. However, the
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extent in the streamwise direction of a significant wave- activity is deter-
mined primarily by |a]2, the evolution of which is governed by equation (2.6).
In other words, the energetics of the flow in the jet determines the natural

streamwise cut-off of the wave.

3. Results and_Discussion

In our nﬁmerical éxample we utilized Egger's data (1.966) for his
Mj = 2.22 jet and eséimated the ingtial boundary layer thickness as one-
tenth of the exit radius. The lengths of the potential core and- the sonic
core obtained in the calculatioss are in good agreement with experimental |
evidence (Merkine {1974)). 1In order to iﬁtegrate.(2.5) the initial ampli-
tude of the wave together with its physical frequency is specified and we
have chosen a broad-band IA[i = 107° as the initial value of the square’
of thé wave amplitude as élready discussed. This choice is.of ‘the right
order of magnitude for the "naturally" existing disturbances iﬁ the flowl
field (Liu 197%). Our frequency range is spread over the frequency para-
meter, Bo, from 0,01 to 0.1 which éorrespond to dimensional frequencies in
the-range 0.1-10 Hz. The noise frequency spectrum obtained by Jones (1971)
for a jet similar to Eggér!s indicates that our range of frequencies covers
most of the spectrum. The solution of (2.6} has justified the decoupling
of this equation from the‘rest of the mean flow eguations.

The dévelopment.of the amplitude of the wave and conséquently the
‘wave-induced noise sources depend on the role played by the various energy
exchange mechanisms appearing in (2.6). In all the calculationsrperformed |
it was found that in the early stages of the wave development, "production'
dominates over pressure wérk and "turbulent dissipation" and the aﬁplifude

of the wave increases rapidly. At more advanced stages pressure work and
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"turbulent dissipation' become comparable to the'“prodﬁction“ term and
evenfually.qverride it., This behavior causes the amplitude of the wave to
attain a peak and eventually to decay. It has also been found that the
1qwer the frequency, the further downstream the peak is located. Observa-
"tions in the near field (Lassiter & Hubbard 1956; Howeé et al. 1957) indi-
cate-that high-frequeney contributions to the pressure fluctuations or
intensity dominate the region near -the jet exit, whereas low frequency
contributions dominate in the region far downstream. fhis is in accordance
with our purely local considerations,; In these eariier near fieid obser-
vafions, the contributions from the sinuous or varicose modeé are not
differentiated. Our results for these two modes would therefore provide
such an understanding. Our discussions thus far then suggest method; for
noise source.suppression according to which jet noise control can be achieved
by controlliﬁg the mechanisms gerrning the development of the large scale
wave amplitude. Liu (1974) gives a rather extensive treatment of the sub-
ject. Our.reéults for the development of the wave amplitude and the various
energy exchange mechanisms are entirely similar to h1s and, therefore will
wn detai '
"not be represented herq\ But instead, we will elucidate the roles played
by the sinuous and varicose modes. -
Figures 2a and 2b depict the behavior of the real part of the complég :
phase velocity of thé wave for the sinuous and varicose modes of the distur-
~ bance, respectively. Tor the sinuous mode (Flg. 2a) the wave starts with
subsonic velocities (MacR'< 1). If the frequency of the wave is high enough
it accelebétes and saturates gboﬁt a supersonic speed.(cRMa > 1) which is

higher for higher frequencies. The behavior is different for low frequencies.

When 8 = 0.01 the wave reaches the developed region with a subsonic speed
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and, folléwing an adjustment region, its phase velocity begins to decay as
it is limited by the decreasing Ub' It will be shownrlater that supersonic
waves influences the near field more profoundly fﬁan subsonic waves. Ther
varicose mode (figure 2b) shows different bghavior from the sinuous mode.
We find that low frequencies are associated with high phase velocities.
For Bo = 0.01 the wave'starts.immediately with supersonic phaseveloéity.
Porlthe Bo f G.075 casg ﬁhe behavior is similar to the sinuous case except
that the saturated value is attained soonef.

Our résults indicate that wé are dealing with large-scale ihstability
wavés, since their wavelengths are of the same order of magnitude as the
jet diameter. We have also found that the local linear-theory predicts
that the sinuous waves haﬁe larger local amplification rates, -uiR, than
the varicese waves, as has already been Suggested by the earlier works.
For later'reference, we are showing the linear local amplification rates,
-a,R; for the two modes in figure 3. As we.already discussed the eigen-
functions of the linear theory as well as e provide the vertical struc-
twre while the amplitﬁde'function_gives streamwise structure according to
@.7. |

The next two graphs depict constant‘nofmal ihtensity levels (;TET;=
constant) expressed in decibels. In this unit the wave-induced normal -

- intensity flux is given by

. V'p' U:p. . 2 ,
I = 10 log-——I———-3—1 dB , I __= 1o¢w;m (3.1)

For Egger's jet we have that Uj = 538 m/sec and pj = 2.404 kg/mz.
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Acoustic measurements are made through the determination of the pressure
field. Our results are represented in terms of the wave-induced normal flux
vip' , but the local linear theory provides us with a proper conversion re-

lation,through the form given by (2.7). ‘We'find-that in the ambient field

. 2 o '
p'° = v |°,l|, _ nve i _ (3.2)
Cpta R [ia(1-4 ]

o NiH

c”) _

and we refer, of course, to local contributions onlf. Figure 4 fepresents

~ the wave~ihduéed normal flux for a ranggfof frequenciés for the ginuous

'mode of the disturbancé. It is clear that high fﬁequency waves peak earlier

than low frequency waves. This result is also bofne out in Liu's work and

is a dominating feature of the experimental chservations. An important

feature is that for a fixed y—statién the dominant intensity shifts down-

stream wiéh the highest intensity occurring at the end of the potential

core. In the subsequent fully developed region, where the fine scale tur-

bulence is mofe active than in the mixing region, the amplitude of the wave

~decays rapidly as a résult of the enhanced "dissipation" of its kinetic

energy. This is reflected in figure 4 in the rapid decay of the normal

‘inteﬁsity for éll frequenciés and again it.éppears to exﬁlain the appear-

aﬁce'of the observed maximum acoustic intensity in the vicinity of the eﬁd

of tha potential core (éee, for example, Potter and Jones/(lgﬁ’?/);. Bishop ot al, (‘770,
Ve should point out that only the nonparallel formulation for A?(xj _

which includes the Froper energy exchangé mechanisﬁs accounts for the decay

in the amplitude of the wave. The local linear theory cannot account for

this decay in that it indicates the existence of a nearly neutral wave

far downstream (see fipure 3). The linear theory, of
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course, serves as local lateral shape functions in our consideration of
the developing mean flow problem (Liu 1974). As-an illustration, the development
of |A|2/]A°|2 for the Bo = 0,05, sinuous mode is shown in Figure 5, which

makes a maximum contribution of about 15 db.'The streamwise development of IN

(flgure 4(c) for this case) essentlally follows that of 10 log,, IAIZ/IA 12,

The fast decay of the flow field downstream of the potential core
restrlcts the phase velocity of thezlarge scale eddies which enter the
devglopgd region, since‘the phase velocity can never surpass the local
maximum flow velocity and, therefore, no Supersonic phaée velocities can-
exist downstream of the sonic point. Our results indicafe that supersonic
wavelike-eddies attennate rapidly in the fully d§Veloped region; This .
result is also'suppoftgd by Salant, Gregory & Kolesar (1971) who did not
observe ambient - waves downstream of the tip of the potential core. The
Bo = 0.01 freqﬁency wave, though subsonic throughout its development,
depicts the narrow lateral extent of the region of sourcéé generated b&
the subsonic wavelike eddies that can exist downstream of the sonic.point.
The observations which indicate that the intensity decays rapidly dgwnstream
of thé sonic point results from the,féct that only subsonic waves can exist
in this region. Since the lateral extent of the intensity of suﬁersqnic
eddies is greater than that of subsonic eddies it might be conjectured
that supersonic eddies exert greater influence over the far field than
subsonic eddies and that the main noise producing eddies occur before the
termination of the potential core region. | ‘

In figure 6 we show the constant normal intensity linés for the véricoser
mode of the wavelike eddies compared with SOmé of the results of the sinuous
mode at the same frequency parameter, Bo' For the 'Bo = 0.01 case, we.npte
from the discussion of phase velocities shown in figure 2, that the varicose
mode is supersonic at the outset while the sinuous mode remains'subsonic

throughout its streamwise history. Also, from fhe'calculated results of
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the local linear theory, the general level of -a.R for the varicose mode
is much lower. Thus these account, through equation (2.12), for the vari-

cose mode having a much larger lateral influence than the_sinuous mode for

the low frequency Bo = 0.01 case. TFor thi§ case, though dominating
laterally, the varicose mode has a much shorter streamwise lifetime. TFor

the higher fregquency modes, typified by the Bo = 0.075 case, the varicose

mode whicﬁ also starts out subsonically, becomes supérsonic earlier and has

a generally lower level of -aiR than the correspoﬁding sinuous mode,

" Thus the varicose mode has a greateriinfiuence in the lateral extent and
again has a shorter streamwise lifetime. In general, given the same initial
"natural® (Liu 1974) excitation level of IAIg = 10_5, the varicose mode
intensity levels are relatively lower close to the jet than the sinuous mode .
'Although it was discussed in Liu (1974) that the Stronhal number based on
the nozzle diameter (2R) is not necessarlly the approprlate indicator of
the "peak emitter,” we note here its correspondence with the appropriate fréquency

“parameter, B_, Sty = BO(QRIGO)(G;)/E;O)%. For 8, = 0.01 and 0.075, Sty

4
is 0.05 and 0.36, respectively for the initial boundary layer to nozzle

1

radius ratio of 0.1 and for Mj = 2,22, 60/30 2 1.49 according to the

Howarth transform inversion. ‘

It can be mentionéd that for a low speed plane jet, Oseberg & Klineﬁ“
(1971) found observationally that in the near field a predominant varicose
mode existed in the region before the end of the potential core, while the
sinuous mode existed further downstréaﬁ. Thislis fhus in agreement with

our discussions.
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¥, Concluding remarks

&t has been fhe aim of this paper to elﬁcidaterthe question of the
streamwise lifetime of the varicose and sinuous modes of the Qavelike
eddies in a developing real jet flow. The round jet problem, though of
practical interest, is now a problem of a computational nature, the signi-
ficant physical features being exhibited by the present much simpler plane
pfoblem. The problem of the understanding of the wave-induced turbulent

Reynolds stresses and the far sound field contributions from the large

scale structure ik
APGRRF are the subjeéts‘of our investigations and these will be reported

at later dates.

Ohe-of us (L.M.) wishes to acknowledge the support of a Brown University
Fellowship during the 1970-71 acadeﬁic year during which time this work
efolved. Its completion was made possible thgough the support by the National
Science Foundation through Grants NSF GK-10008 and ENG73-04104 and by the
National Aeronautics and Space Administration, Langley‘Research Centefﬁthfougﬁ"
Grant NSG 1076, The preliminarf aépects of this work was first reported
ﬁt the A.I.A.A, 10th Aerospace Sciences Meeting, San Diego; 24—257January
1972-{M;rkine_£ Liu 1972), the details of which appeér as Part I of

Merkine (1974).
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List of Figures and Captions

Two-dimensional jet flow.

Schematic.

Streamwise development of the phase velocity at Mj = 2,22,

a)

sinuous mode

b) wvaricose mode

Streamwise development of the local linear amplification rates,

~a.,R , at M, = 2.22,
i ]

a)

sinuous mode

b) wvaricose mode

Contours of the wave normal intensity levels IN (re. 10"12 W/mQ)

for Mj = 2.92 for the sinuous mode at various values of the

frequency parameters:

a)
b)
c-)
d)

= 0.1

o N

= 0.075
Q

= 0.05
o]

= 0.0l
(o]

Streamwise development of the amplitude function for Mj = 2,22,

lAOI_z = 1075, B_ = 0.05, sinuous mode

. 3

: I . o 12 .2
Contours of the normal intensity levels IN (re. 10 12 W/m")

for Hj = 2.22 for the varicose mode, sinuous mode contours

are included for comparison.

BO

BO

0.0l ———— and B°-= 0.075_———-———-*—~?are varicose modes.

0.0l - —— ~ ——

‘and 8 = 0.075 ---- are sinuous modes.
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