

NASA CR-2510

NASA CR-2510

VAPORIZATION RESPONSE
 of evaporating Drops WITH FINITE THERMAL CONDUCTIVITY

V. D. Agosta and S. S. Hammer

Prepared by
PROPULSION SCIENCES, INC.
Melville, N.Y. 11746
for Lewis Research Center

[^0]
VAPORIZATION RESPONSE OF EVAPORATING DROPS

WITH FINITE THERMAL CONDUCTIVITY
by V. D. Agosta and S. S. Hammer

SUMMARY
The primary objective of the analysis was to obtain a numerical computing procedure for determining the vaporization response of droplets with finite thermal conductivity in an oscillating pressure and flow field. The governing equations for vaporization of liquid drops in a rocket combustor environment were taken from Refs. 1 and 2. Additional equations were employed to account for finite thermal conductivity of the liquid drop (Ref. 3). The system of equations were solved utilizing a finite difference technique and a high speed digital computer. Oscillation in the rates of vaporization of an array of repetitively injected drops in the combustor were obtained from the summation of individual drop histories. A nonlinear in-phase frequency response of the entire vaporization process to pressure oscillations was calculated and a response factor, $R_{n l^{\prime}}$ was determined as defined by Equation 1 of Ref. 4. In addition, a nonlinear out-of-phase response factor, $I_{n \ell}$ in-phase and out-of-phase harmonic response factors $R_{1}, R_{2}, I_{1}, I_{2}$ and a Princeton type " n " and " τ " were determined as described in Refs. 5 and 6. In general, it was found that the nonlinear inphase response factor, $\mathrm{R}_{\mathrm{n},}$, was not very sensitive to variations of up to 10^{3} in the liquid thermal conductivity, for the frequency range of interest in combustion instability studies.

The resulting data was correlated and is presented in graphical format. Qualitative agreement with the open literature is obtained in the behavior of the in-phase response factor.

INTRODUCTION

Studies on nonlinear combustion instability have been performed (Refs. 2,4.7) which indicate that vaporizing drops are sensitive to frequency-dependent pressure oscillations. The sensitivity of the vaporization processes has been traced to thermal time lags, namely, that time delay between changes in the drop temperature and subsequent mass vaporization and changes in the drop environment. The thermal time lag model proposed in Ref. 7 is extended to include the effects of drop thermal conductivity on drop surface temperature and mass vaporization.

Wave deformation effects on droplet vaporization as proposed in Ref. 5 were also considered in this investigation by varying the harmonic distortion in a pressure disturbance propagating in a liquid rocket combustion chamber.

Nonlinear and harmonic in-phase and out-of-phase response factors which have been evolved from linear limit-cycle stability analyses have been adopted for use in this report. This procedure is consistent with present usage and allows for the comparison of data and results for similar parameters and factors.

THEORY

Drops of liquid oxygen are assumed to be vaporizing in combustion gases, composed of stoichiometric reaction products with hydrogen in a cylindrical combustion chamber, with an established travelling-transverse acoustic mode. The instantaneous pressure and gas velocity functions consist of the steady state and oscillating components attributed to the acoustic mode. They are expressed as

$$
\begin{align*}
& \mathrm{p}=\overline{\mathrm{p}}_{\mathrm{c}}\left(1+.859 \mathrm{~J}_{1}\left(\frac{1.841 \mathrm{R}}{R_{w}}\right)\left(\frac{\Delta \mathrm{p}_{1}}{\overline{\mathrm{p}}_{\mathrm{c}}} \cos (2 \pi f t-\theta)+\frac{\Delta \mathrm{p}_{2}}{\bar{p}_{c}} \cos (4 \pi f t-\varphi)\right)\right. \tag{I}\\
& U=\left[\mathrm{U}_{\mathrm{a}}^{2}+U_{R}^{2}+U_{\theta}^{2}\right]^{\frac{1}{2}} \tag{2}
\end{align*}
$$

$$
\begin{align*}
& U_{R}=.430 \frac{a}{\gamma}\left(J_{0}\left(\frac{1.841 R}{R_{w}}\right)-J_{2}\left(\frac{1.841 R}{R_{w}}\right)\right)\left(\frac{\Delta p_{1}}{\bar{p}_{c}} \sin (2 \pi f t-\theta)+\frac{\Delta p_{2}}{\bar{p}_{c}} \sin (4 \pi f t-\varphi)\right) \\
& U_{\theta}=.467 \frac{a}{\gamma} \frac{R_{W}}{R} J_{1}\left(\frac{1.841 R}{R_{w}}\right)\left(\frac{\Delta p_{1}}{\bar{p}_{c}} \cos (2 \pi f t-\theta)+\frac{\Delta p_{2}}{\bar{p}_{c}} \cos (4 \pi f t-\varphi)\right) \tag{4}\\
& U_{a}=U_{a_{f}}\left(1-\frac{m}{m_{i}}\right. \tag{5}
\end{align*}
$$

where

$$
\begin{aligned}
\mathrm{a} & =\text { speed of sound } \\
\mathrm{f} & =\text { frequency of oscillations } \\
\mathrm{J} & =\text { Bessel function } \\
\mathrm{m} & =\text { mass of droplet } \\
\mathrm{m}_{\mathrm{i}} & =\text { initial mass of droplet } \\
\mathrm{p} & =\text { instantaneous pressure } \\
\bar{p}_{\mathrm{C}} & =\text { mean chamber pressure } \\
\Delta \mathrm{p}_{1} & =\text { peak-to-peak pressure amplitude (fundamental) } \\
\Delta \mathrm{p}_{2} & =\text { peak-to-peak pressure amplitude (harmonic) } \\
\mathrm{R} & =\text { radial location in chamber } \\
\mathrm{R}_{\mathrm{N}} & =\text { radius of chamber } \\
\mathrm{t} & =\text { time } \\
\mathrm{T} & =\text { temperature } \\
\mathrm{U} & =\text { gas velocity } \\
\mathrm{U}_{\mathrm{a}} & =\text { final axial gas velocity } \\
\theta & =\text { phase angle } \\
\mathrm{Y} & =\text { isentropic exponent }
\end{aligned}
$$

The wave is assumed to be adiabatic with chamber temperature and pressure related by

$$
\begin{equation*}
\frac{T_{c}}{\bar{T}_{c}}=\left(\frac{p_{p}}{\bar{p}_{c}}\right)^{\frac{\gamma-1}{\gamma}} \tag{6}
\end{equation*}
$$

The oscillations of pressure and velocity are superimposed on the mean level of parameters affecting drop evaporation and motion. The vaporization rate is controlled by heat and mass transfer to the surface of a drop with finite thermal conductivity. Drop motion is controlled by a momentum balance as a result of drag with the enveloping gas. Axial gas velocity is proportional to the fraction of drop mass vaporized, and it attains a final assumed velocity at complete evaporation. The complete drop history is defined by the following equations for weight evaporation rate heat transfer, acceleration in an axial direction and temperature distribution within the drop.

The governing differential equation for temperature in a spherical liquid droplet is given by

$$
T_{t}=\alpha\left(T_{r r}+\frac{2}{r} T_{r}\right) \quad 0 \leq r \leq r_{S} \quad \begin{align*}
& \geq 0 \tag{7}
\end{align*}
$$

where $\alpha=$ liquid thermal diffusivity

$$
\begin{aligned}
& \mathbf{r}=\text { radial coordinate within the drop } \\
& \mathbf{r}_{\mathbf{s}}=\text { surface radius. }
\end{aligned}
$$

The subscripts r and t represent differentiation with respect to radius and time, respectively. For small droplets the assumption of spherical geometry is usually accepted. It is recognized that hwere drag exists, droplets deform; however, in this analysis the deformation is neglected. The initial condition assumes that the droplet is at uniform temperature T_{0} 。

$$
\begin{equation*}
T(r, 0)=T_{0} \quad 0 \leq r \leq r_{s} ; t=0 \tag{8}
\end{equation*}
$$

The boundary conditions are

$$
\begin{equation*}
T(0, t) \text { is finite } \quad r=0 ; t \geq 0 \tag{9}
\end{equation*}
$$

and

$$
\begin{array}{r}
h\left(-T_{c}^{-T}\right)=k T_{r}+\frac{\dot{w}}{A_{d}}\left[\lambda+c_{p_{v}}\left(T_{c} T_{s}\right)\right] \tag{10}\\
r=r_{s} ; 0 \leq t \leq \infty
\end{array}
$$

where $h=$ heat transfer coefficient
$T_{S}=d r o p$ surface temperature
$\mathrm{k}=$ liquid thermal conductivity
$\lambda=$ heat of vaporization
$c_{p_{v}}=$ specific heat of droplet vapor
$\dot{\mathrm{w}}=$ mass evaporation rate
$A_{d}=$ droplet surface area
It is assumed that the film thickness surrounding the droplet is small compared to the droplet diameter.

The mass evaporation is given by

$$
\begin{equation*}
\dot{w}=A_{d} K_{g} p \ln \frac{p}{p-p_{v}} \quad r=r_{s} \tag{11}
\end{equation*}
$$

where $p_{v}=$ droplet vapor pressure

$$
K_{g}=\text { mass transfer coefficient. }
$$

The heat and mass transfer coefficients h and K_{g}, respectively, are obtained from the Nusselt correlations

$$
\begin{equation*}
\frac{2 r_{s} h}{k_{m}}=2+0.6(\operatorname{Pr})^{1 / 3}(\operatorname{Re})^{\frac{1}{2}} \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{2 x_{s} \bar{R}_{u} T_{m} K_{g}}{M_{v} D}=2+0.6(\mathrm{Sc})^{1 / 3}(\mathrm{Re})^{\frac{1}{2}} \tag{13}
\end{equation*}
$$

where $\quad k_{m}=$ vapor-gas mixture thermal conductivity
$\bar{R}_{u}=$ universal gas constant
$M_{v}=$ molecular weight of vapor
$T_{\mathrm{m}}=$ arithmetic mean temperature, $\frac{T_{C}+T_{S}}{2}$
$\operatorname{Pr}=$ Prandtl number $\left(C_{p} \mu / k\right)_{m}$
$S c=$ Schmidt number $(\mu / D \rho)_{m}$
$\operatorname{Re}=$ Reynolds number $2 r_{s}(V E L)\left(\frac{\rho}{\mu}\right)_{m}$
$\mathrm{V}_{\mathrm{d}}=$ drop velocity
D = molecular diffusion coefficient
and

$$
\begin{equation*}
V E L=\left(\left(U_{a}-V_{d}\right)^{2}+U_{r}^{2}+U_{0}^{2}\right)^{\frac{1}{2}} \tag{14}
\end{equation*}
$$

The droplet acceleration is determined by considering the momentum transfer between the liquid drop and gases due to aerodynamic drag

$$
\begin{equation*}
\frac{d v_{d}}{d t}=\frac{3}{8} c_{D} \frac{\rho_{m}}{\rho_{l}} \frac{(\Delta V) \backslash \Delta V \mid}{r_{s}} \tag{15}
\end{equation*}
$$

and the drag coefficient

$$
\begin{equation*}
C_{D}=27{\frac{2 \rho_{m} \Delta V r_{s}}{\mu_{m}}}^{-.84} \tag{16}
\end{equation*}
$$

where ΔV is the difference between the axial gas velocity and arop velocity.

The droplet radius is, of course, a function of time and is related to the mass evaporation rate,

$$
\begin{equation*}
\dot{r}_{s}=\frac{\dot{w}}{p_{i} e^{A_{d}}} \tag{17}
\end{equation*}
$$

where $\dot{r}_{s}=$ surface regression rate; time rate of change of drop radius.

The analysis of droplet evaporation in a gas stream, as formulated above, is developed into a computer program for the numerical solution of the time dependent evaporation rate, droplet radius and temperature distribution within the drop. A detailed discussion of the calculation procedure and a program listing are contained in Appendix B. Beginning with a specification of the initial conditions the droplet vaporization and surface regression rates are determined from Eqs. (11) and (17). The heat balance equation (10) at the droplet surface is then used to determine the temperature gradient at the surface. By finite difference techniques the temperature gradient at a point adjacent to the surface, and the second derivative of temperature with respect to r at the surface-are determined.

Equation (7) is then used to obtain the variation of surface temperature with time. Interior point temperature calculations are performed by utilizing a finite difference scheme for the solution of Eq. (7). At the end of the time interval new values are calculated for surface radius, drop velocity, surface temperature and droplet mass by integrating ghe appropriate time derivatives over the interval. The gas pressure, temperature and velocity are evaluated at the end of every interval from Eqs. (1)-(6). These thermodynamic and geometric properties then become the initial conditions for the next time interval. The procedure continues until the droplet mass is reduced to 10% of its initial value.

A summation of single-drop histories is used to determine the time variations in vaporization rate of a one-dimensional array of repetitively injected drops. An arbitrary number of drops are injected into the chamber every cycle at times distributed evenly over the oscillation period. For the case of four drops injected per cycle these would appear in the chamber at intervals of onequarter period. Vaporization histories vary among drops injected at different times during one pressure oscillation; however, drops injected at times one period apart experience identical acoustic pressure and velocity fields and thus, have identical histories. Eventually the same number of drops are completely vaporized per cycle as are injected, and the number of drops in the array becomes constant over each full cycle. When this steady state condition is reached the fully developed array consists of a number of drops equal to the ratio of drop burning time to oscillation period times the number of drops injected per cycle. The droplets in the array have a decreasing mass down the length of the chamber and range in age from a new drop just injected to an old one almost completely vaporized. With the array fully developed, the mass vaporizing from the entire array of drops at any time is obtained from a summation of the vaporization of the individual drops that constitute the array.

Since the history of each injected drop is calculated independently of the preceding or succeeding drops, the ccmputation time is dependent on the number of drops injected per cycle. In order to simulate a continuous injection of drops, it would be necessary to analyze an unwieldy number of drops. Alternatively, it is possible to smooth out perturbations in the array vaporization history caused by the appearance and disappearance of a small finite number of drops by artificially inserting additional drops between those whose histories are calculated. The vaporization rates of the artificially injected drops are determined by interpolation between the vaporization rates of the drops for which calculations are performed. Thus the instantaneous vaporization rate for the entire array is obtained from a summation of the calculated drop histories and interpolated artificial drop histories.

The vaporization history of eight drops, injected at equal intervals during a pressure cycle is shown in Figure 1. The vaporization rate tends to be higher at both the maximum and minimum pressure condition in the oscillation than at the mean pressure conditions. This is a result of lower total velocities at the mean pressure condition. For the case shown in Figure 1 , the next drop injected (drop 9) would exhibit the identical behavior as drop 1. For a burning time of .001 seconds and a pressure oscillation period of . 00033 seconds the fully developed array would consist of 30 drops with drops $1,9,17,25$ exhibiting identical behavior, drops 2, 10, 18, 26 exhibiting identical behavior, etc. The vaporization from the entire array is obtained by adding the evaporation rates of all of the constituent drops at corresponding times in the pressure cycle. The results of this calculation, along with the pressure curve, is shown in Figure 2. It is evident from this curve that the evaporation rate tends to be higher at times in the pressure cycle corresponding to maximum or minimum pressure with relatively lower evaporation rates occurring at the mean pressure.

The calculation shown in Figures 1 and 2 required 160 seconds of computing time on a CDC 6600 computer.

In order to insure that certain computational procedures being used would yield results that were reproducible, the following tests were conducted: In the drop evaporation test runs, calculation was terminated after 90% of the drop mass had evaporated. In order to insure that this was not a premature cutoff point, one run was extended to the 97% mass evaporation point. In the former case, the response function was 0.548 ; in the latter, 0.545 . The difference is negligible; thus a mass termination point of 90% was adopted.

In the determination of the response factor, $R_{n \ell}$, eight drops were introduced, evenly spaced during the pressure cycle. The cumulative mass evaporation from these drops was calculated and subsequently the response factor. At low frequencies the drop array size was not statistically meaningful. The question posed was: are eight oxygen drops a statistical meaningful array at a frequency of 1000 Hertz? A quick answer was sought. In one run, 20 drops were used in a drop array and the resulting response factor thus determined did not vary significantly from the results for the eight-drop array.

RESPONSE

Imposing acoustic oscillations on the pressure and velocity field in a rocket combustion chamber causes perturbations in the vaporization rate of the array of droplets resident in the chamber. The oscillation in vaporization rate will exhibit harmonic components of the imposed frequency of acoustic oscillations. A series of response factors are calculated in this study in order to relate vaporization rate oscillations to pressure and velocity field oscillations. These response factors are the in-phase and out-ofphase components of the vaporization rate oscillations relative to the acoustic pressure oscillations, where both oscillations are given as fractional perturbations about the mean value of the variable.

The nonlinear in-phase response factor, $R_{n \ell}$, can be extracted from the array vaporization rate and normalized by correlation procedure (Ref. 5) defined by

$$
\begin{equation*}
R_{n \ell}=\frac{\int_{0}^{2 \pi} W^{\prime} P^{\prime} d \omega t}{\int_{0}^{2 \pi}\left(P^{\prime}\right)^{2} d \omega t} \tag{18}
\end{equation*}
$$

where

$$
\mathrm{P}^{\prime}=\frac{\mathrm{P}-\overline{\mathrm{P}}_{\mathrm{C}}}{\overline{\mathrm{P}}_{\mathrm{C}}}
$$

and

$$
W^{\prime}=\frac{W-\bar{W}}{\bar{W}}
$$

where W is the instantaneous evaporation rate from the entire array and \bar{W} is the average value of W taken over a full cycle.

The nonlinear out-of-phase response factor, $I_{n \ell}$ is given by

$$
\begin{equation*}
I_{n \ell}=\frac{\int_{0}^{2 \pi} W^{\prime} \sum_{n=1}^{\infty} P_{n} \sin \left(2 \pi f_{n} t-\varphi_{n}\right) d \omega t}{\int_{0}^{2 \pi}\left(P^{\prime}\right)^{2} d \omega t} \tag{19}
\end{equation*}
$$

where

$$
\begin{equation*}
P_{n}=.859 J_{1}\left(\frac{1.841 \mathrm{R}}{R_{w}}\right) \frac{\Delta P_{n}}{\bar{P}_{c}} \tag{20}
\end{equation*}
$$

Additional response factors were calculated as part of this study:

$$
\begin{align*}
R_{1}= & \frac{\int_{0}^{2 \pi} W^{\prime} P_{1} \cos (2 \pi f t-\theta) d \omega t}{\int_{0}^{2 \pi}\left(P_{1} \cos (2 \pi f t-\theta)\right)^{2} d \omega t} \tag{21}\\
R_{2}= & \frac{\int_{0}^{2 \pi} W^{\prime} P_{2}(\cos 4 \pi f t-\varphi) d \omega t}{\int_{0}^{2 \pi}\left(P_{2} \cos (4 \pi f t-\varphi)\right)^{2} d \omega t} \tag{.22}
\end{align*}
$$

Out-of-phase harmonic response factors

$$
\begin{align*}
& I_{1}=\frac{\int_{0}^{2 \pi} W^{\prime} P_{1} \sin (2 \pi f t-\theta) d \omega t}{\int_{0}^{2 \pi}\left(P_{2} \sin (2 \pi f t-\theta)\right)^{2} d \omega t} \tag{23}\\
& I_{2}=\frac{\int_{0}^{2 \pi} W^{\prime} P_{2} \sin (4 \pi f t-\theta) d \omega t}{\int_{0}^{2 \pi}\left(P_{2} \sin (4 \pi f t-\theta)\right)^{2} d \omega t} \tag{24}
\end{align*}
$$

A Princeton type " n " and " τ " defined in Ref. 6 are also calculated from the nonlinear response factors

$$
\begin{equation*}
" n "=\frac{R_{n \ell}\left(P_{1}^{2}+P_{2}^{2}\right)}{P_{1}^{2}(1-\cos 2 \pi f \tau)+P_{2}^{2}\left(1-\cos 4 \pi f_{\tau}\right)} \tag{25}
\end{equation*}
$$

where T is defined from the following equation:

$$
\begin{equation*}
\frac{P_{1}^{2}(1-\cos 2 \pi f \tau)+P_{2}^{2}(1-\cos 4 \pi f \tau)}{P_{1}^{2} \sin 2 \pi f_{\tau}+P_{2}^{2} \sin 4 \pi f_{\tau}}=-\frac{R_{n \ell}}{I_{n \ell}} \tag{26}
\end{equation*}
$$

RESULTS AND DISCUSSION
A. Parametric Study of Response Functions

A series of calculations were made, utilizing the previously described computer program, in order to determine the effect of a variety of boundary conditions on the magnitude of the response functions for evaporating liquid oxygen droplets. The thermodynamic properties used in the calculations were:

Thermal diffusivity $=7.56 \times 10^{-7} \mathrm{ft}^{2} / \mathrm{sec}$
Liquid density $=72 \mathrm{lbm} / \mathrm{ft}^{3}$
Prandtl number $=.712$
Gas viscosity $=4.2 \times 10^{-5} 1 \mathrm{bm} / \mathrm{ft}-\mathrm{sec}$
Vapor specific heat $=.288 \mathrm{BTU} / \mathrm{lbm}^{\circ} \mathrm{F}$
Liquid thermal conductivity $=2.21 \times 10^{-5} \mathrm{BTU} / \mathrm{ft}-\mathrm{sec} \mathrm{O}_{\mathrm{F}}$
Gas thermal conductivity $=4.04 \times 10^{-5} \mathrm{BTU} / \mathrm{ft}-\mathrm{sec}^{-}{ }^{\circ} \mathrm{F}$
Isentropic exponent $=1.135$
Initial drop temperature $=140^{\circ} \mathrm{R}$
Combustion gas temperature $=6500^{\circ} \mathrm{R}$
The vapor pressure and heat of vaporization of the liquid oxygen is evaluated as a function of the drop surface temperature by

$$
\begin{aligned}
& \mathrm{p}_{\mathrm{v}}\left(1 \mathrm{bf} / \mathrm{ft}^{2}\right)=\mathrm{e}^{16.93-\frac{1476}{\mathrm{~T}-3.57}} \\
& \lambda(\mathrm{BTU} / \mathrm{lbm})=61.33+.5916 \mathrm{~T}-.00248 \mathrm{~T}^{2}
\end{aligned}
$$

The following parameters were varied over the range indicated:
Chamber pressure: $100-600$ psia
Initial drop radius: $15-150$ microns
Final gas velocity: 400-2400 ft/sec
Initial drop velocity: 50-200 ft/sec
Frequency of oscillation: $200-30,000 \mathrm{cps}$
Amplitude of fundamental $\left(\Delta p_{1}\right)$: . $01 p_{c}-.8 p_{c}$
Amplitude of harmonic $\left(\Delta p_{2}\right): 0-1.2 \Delta p_{1}$

Table I gives the full range of tests conducted with boundary conditions and response functions.

A cursory look at the values calculated for the in-phase nonlinear response factor, $R_{n l^{\prime}}$ indicates many values that are greater than those previously found by the methods of Refs. 2 and 4. The present study includes the effects of finite thermal conductivity which, as discussed previously, causes a significant decrease in the time required for the drop surface to reach an effective equilibrium temperature. In addition, the temperature of the drop center remains relatively unchanged over the entire lifetime of the drop with the temperature gradient in the drop concentrated at the drop outer surface. Both these factors make the drop more sensitive to fluctuations in ambient pressure and temperature with concomitant increased response factors.

The major cause of larger response factors obtained in this study, however, appears to be due primarily to the effect of wave distortion, i.e., inclusion of harmonics in the ambient pressure field. This causes more relative peaks and valleys in the impressed pressure oscillation with attendant increases in evaporation rate. Another significant contributing effect is the presence of the array of drops in a varying gas velocity field.

Figures 3 and 4 indicate the quantitative effect of wave distortion and amplitude on the nonlinear in-phase response factor, $R_{n \ell}$. For the case of a constant ratio of the first harmonic to fundamental wave pressure amplitude, $\Delta \mathrm{P}_{2} / \Delta \mathrm{P}_{1}=0.8$, Figure 3, the variation of $R_{n_{\ell}}$ is relatively independent of fundamental amplitude provided $\Delta P_{1} \geq 0.1 P_{c}$. For the case where the fundamental amplitude is small. $\Delta \mathrm{p}_{1}=0.01 \mathrm{p}_{\mathrm{c}}$, the response factor increases significantly to a maximum value of $R_{n \ell}=1.68$. This behavior agrees qualitatively with that shown in Figure 2 of NASA TN D-6287, Ref. 5. Figures 4a, $4 b$ and $4 c$ show the effect of variations in the relative magnitude of the harmonic amplitude. The maximum response curve occurs at a value of $\Delta p_{2}=0.8 \Delta \dot{p}_{1}$. This too is in agreement with the results found in Ref. 5. It is
observed from Figures $4 a, b, c$ that the frequency at which the maximum value of $R_{n \ell}$ occurs decreases with increasing fundamental amplitude.

Figure 4 b contains the results of calculations made for zero harmonic content, $\Delta p_{2}=0$. As discussed above, the results obtained in Ref. 4, NASA TN D-3749, also were for the case of no harmonic content in the pressure oscillation. The magnitude of the response factors calculated in this study for $\Delta p_{2}=0$ are lower than those obtained with non-zero harmonics and are consistent with those obtained in NASA TN D-3749.

The final gas velocity greatly affects the value of $R_{n \ell}$. This effect is observed in Figure 5 at all frequencies. A crossplot was made at 1200 Hz , Figure 6, and the final gas velocity extended on the low scale to 50 feet per second with drop velocities of 100 feet per second. It is seen that the value of the nonlinear in-phase response factor increases to 2.36 at a final gas velocity of 200 feet per second. It is also observed that the values of $R_{n l}$ are about twice those observed in the previous Figures 3 and 4. In the regime $\Delta p_{1} \geq 0.1 p_{c}$, the values and behavior of the nonlinear response factor, $R_{n \ell}$ agree both qualitatively and quantitatively with those shown in Figure 7, NASA TN D-6287, Ref. 5.

An attempt was made to correlate all of the response factor data obtained utilizing the transformed frequency suggested in Refs. 2 and 4. However, the buckshot nature of the resulting curves indicated that while qualitative agreement between the two studies is obtained, the previous correlations are unsuitable for the kind of model employed in this study. In order to correlate the data it was necessary to use a transformed response factor together with a modified transformed frequency. The transformations were obtained by trial and. error in an attempt to minimize the data scatter. It was found that rather than include the effects of wave amplitude and distortion in the transformed coordinates, the effect of these variables could best be seen by utilizing parametric curves.

The transformed frequency is defined as

$$
F=f\left(\frac{1200}{u_{f}}\right)^{1 / 3}\left(\frac{300}{p_{c}}\right)^{1 / 3}\left(\frac{r^{\prime}}{50}\right)^{3 / 2}
$$

and the transformed response factor is

$$
R_{\mathrm{n} \ell}\left(\frac{u_{\mathrm{f}}}{1200}\right) \cdot 56\left(\frac{100}{\mathrm{v}_{\mathrm{D}}}\right) \cdot 15\left(\frac{300}{\mathrm{p}_{\mathrm{C}}}\right) \cdot 1\left(\frac{50}{r}\right) \cdot 12
$$

Figure 7 shows the results of the correlation study with separate curves to depict the effect of wave distortion and amplitude. For fundamental amplitudes greater than $.1 p_{c}$ the effect of fundamental amplitude is not significant, but the effect of harmonic amplitude must be considered. Decreasing the fundamental amplitude to $0.01 p_{c}$ causes significant increases in the response factor.

The study was extended to include the correlation of the inphase fundamental response factor R_{1} and harmonic response factor R_{2}, and these are shown in Figures 8 and 9. Both response factors are transformed similar to $R_{n \ell}$ and correlated against the transformed frequency factor cited above. The fundamental response factor increases with the amplitude of the harmonic and is relatively insensitive to variations in the amplitude of the fundamental for $\Delta p_{1} \geq-1 p_{c}$. The magnitude of the harmonic response function increases with a decrease in the magnitude of the harmonic pressure oscillation component. Response factors, R_{2}, on the order of 3.0 were calculated for harmonic amplitudes equal to 0.2 times the fundamental amplitude. The qualitative behavior, and the juxtaposition of these curves, agree with those shown in Figure 8, Ref. 5. The curves shown in Figures 7,8,9 represent the best fit through the available data. Deviations from the curve were generally less than 10% from the arve.

Figures lo,ll and 12 represent the correlation of the results for the nonlinear out-of-phase response factor, $I_{n \ell}$, the fundamental
out-of-phase response factore, I_{1}, and the harmonic out-of-phase response factor, I_{2}. The $I_{n \ell}$ curves were correlated with transformations similar to those employed for the in-phase response factor. The shape of the curve is similar to a cubic with a relative maximum point in the transformed frequency range of $300-400 \mathrm{cps}$ and a relative minimum at a frequency corresponding to the location of the maximum point on the $R_{n \ell}$ curves.

The results for the correlation of the out-of-phase fundamental response factor indicate that wave amplitude and distortion have no effect. In addition, excellent correlation was obtained by transforming $I_{\frac{1}{3}}$ by a multiple of $\left(300 / p_{C}\right)^{\cdot 1}$ and the frequency by a multiple of $(r / 50)^{\frac{1}{3} / 2}$. Thus the final gas velocity and initial drop velocity are not effective in varying the magnitude of I_{1}.

The correlation of the data for the out-of-phase harmonic response factor, I_{2}, required utilizing a transformed ordinate

$$
I_{2}\left(\frac{u_{f}}{1200}\right)^{.2}\left(\frac{100}{v_{D}}\right)^{.15}\left(\frac{300}{p_{c}}\right)^{.1}
$$

plotted against a transformed frequency

$$
f\left(\frac{r}{50}\right)^{3 / 2}
$$

Correlation also required the use of parametric curves to display the effect of wave distortion; i.e., the magnitude of I_{2} decreases with increasing harmonic component amplitude.

In Figure 13, a corelation of a Princeton type " n " was plotted vs. frequency factor, F. It is seen to remain essentially constant over a broad spectrum of frequency factor. The value of " n " increases with the amplitude of the harmonic pressure perturbation amplitude.

Figure 14 is a plot of τ vs. frequency of oscillation for a variety of drop radii, initial drop velocity, final gas velocity and amplitude of pressure disturbance. The variation_of-the-values-of
of the parameters cited above are those which normally occur in liquid rocket engine practice. The results inđicate that it is possible to correlate the values of τ with the frequency of oscillation without any significant dependence on any of the other parameters. The correlation seems to indicate a relationship between τ and f of the form,

$$
\mathrm{ft}=\text { constant. }
$$

The value of τ is determined from Eq. (26). The right-hand side of the equation, i.e.. $R_{n \ell} / I_{n \ell}$ has a value in the range 0.1 to 4.0 for the vast amjority of cases tested in this study. The corresponding values for $2 \pi f T$ are in the range 250 to 350 degrees. These, when plotted for the specific case tested. yielded essentially a straight line on a log-log plot as is suggested in the above equation.

The data from the above studies were regrouped for each of the seven response factors to show the effects of fundamental pressure perturbation amplitude $\left(\Delta p_{1}\right)$, harmonic pressure perturbation amplitude $\left(\Delta p_{2}\right)$, injection velocity $\left(V_{D}\right)$, final gas velocity (u_{f}), droplet radius (r) and chamber pressure (P_{c}). The following table shows a summary of the relative effects of the various parameters on the different response factors:

	Δp_{1}	Δp_{2}	V_{D}	u_{f}	R	P_{c}
$R_{n \ell}$	weak	moderate	weak	strong	strong	weak
R_{1}	weak	strong	weak	strong	strong	moderate
R_{2}	weak	strong	weak	strong	strong	weak
$I_{n \ell}$	weak	moderate	weak	moderate	moderate	weak
I_{1}	weak	weak	weak	weak	moderate	weak
I_{2}	weak	moderate	moderate	moderate	moderate	weak
n	weak	strong	moderate	strong	moderate	weak
τ	independent of all parameters					

B. Effect of Thermal Conductivity

In general, it was found that the nonlinear in-phase response factor, $R_{n l}$, was not very sensitive to variations of up to 10^{3} in the liquid thermal conductivity, for the frequency range of interest in combustion instability studies. These results are explained below.

The calculation for the $R_{n \ell}$ requires the summation of the instantaneous evaporation rate of the complete array of drops in the chamber over an interval of time. Thus, any particular local event resulting from the interaction of the pressure wave and one drop is masked by the summation of all the other events occurring at the same time. In other words, the random event associated with each drop is masked by the stoichastic behavior of the drop array.

A second reason for the insensitivity of $R_{n \ell}$ to the thermal conductivity variation is that an open loop analysis is assumed. There is no feedback to the wave behavior from the droplet evaporation. This feedback can be significant in deforming the wave shape, and consequently the response factor, $R_{n l}$. The wave shape can be deformed not only by coupling the relaxation time to the evaporation but also by the amount of vaporization occurring from the array of drops during the coupling. These two situations are discussed below for a particular case.

The drop is introduced at a uniform temperature of $140^{\circ} \mathrm{R}$. The drop surface heats up to about $240^{\circ} \mathrm{R}$ and remains at that temperature during its lifetime. For a 50μ radius oxygen drop, and normal thermal conductivity, it takes $1.99 \times 10^{-6} \mathrm{sec}$. for the drop surface to reach 238° R. For the drop with high thermal conductivity, i.e.. $10^{-2} \mathrm{Btu}$ $\mathrm{ft}^{-1} \mathrm{O}_{\mathrm{R}}{ }^{-1} \mathrm{sec}^{-1}$, it takes $1.87 \times 10^{-4} \mathrm{sec}$. for the drop surface to reach 239° R. It is noticed that the time lag differs by about two orders of magnitude. In a closed loop analysis, this difference in time lag could mean the difference in the effective coupling of the drop evaporation to drive the passing pressure wave.

For the case where the normal thermal conductivity is employed, the drop center does not appreciably heat up during its lifetime. For example, after 90% of the drop mass has evaporated, the temperature of the drop center is still $144^{\circ} \mathrm{R}$. As found previously (Ref. 3), the temperature gradient is concentrated at the drop outer surface. For the case where the large thermal conductivity is used, it is found that the drop remains uniform in temperature。 The uniform temperature drop has a much larger thermal inertia than the normal drop; thus the dynamic behavior of these drops would be very different, not only in the lag times, but also in the mass evaporation response to a disturbance. For example, for a passing compression wave, the normal drop would obtain a much greater surface temperature than the uniform temperature drop for the same amount of heat transfer to the droplet. If one includes the nonlinearity of the Clausius-Clapeyron equation, then the additional mass evaporation in the former case would be much greater, with increased concomitant response factor.

SUMMARY OF RESULTS

The objective of this investigation was to analytically determine stability parameters relating drop vaporization response rates in a liquid rocket combustor to nonlinear-high amplitude pressure oscillations for drops vaporizing with finite liquid thermal conductivity. The results of the program can be summarized as follows:

1. A computer program was developed for determining the vaporization response of droplets with finite thermal conductivity to high amplitude distorted pressure oscillations.
2. Drop vaporization responses for an array of drops traveling through a rocket combustor are significantly different than the response of a single drop stationary in a flow field.
3. The vaporization rate responses were very dependent on drop size, final gas velocity in the combustor and wave distortion. The responses were moderately dependent on liquid droplet velocity and weakly dependent on chamber pressure and wave amplitude.
4. A general correlation scheme was developed to relate various response numbers that can be used in stability analyses to combustor operating conditions.
5. For the Princeton type time lag response, the time lag was found to be inversely proportional to the frequency, resulting in a phase lag of 250 to 350 degrees.

REFERENCES

1. Priem, R.J. and Heidmann, M.F.: "Propellant Vaporization as a Design Criteria for Rocket-Engine Combustion Chambers". NASA TR R-67, 1960.
2. Heidmann, M.F. and Wieber, P.R.: "Analysis of n-Heptane Vaporization in Unstable Combustors with Travelling Transverse Oscillations" NASA TN D-3424, 1966.
3. Agosta, V.D. and Hammer, S.S.: "Droplet Vaporization with Liquid Heat Conduction". Propulsion Sciences, Inc., NASA CR-72672, 1970.
4. Heidmann, M.F. and Wieber, P.R.: "Analysis of Frequency Response Characteristics of Propellant Vaporization". NASA TN D-3749, 1966.
5. Heidmann, M.F.: "Amplification by Wave Distortion of the Dynamic Response of Vaporization Limited Combustion". NASA TN D-6287. 1971.
6. Private communication with R.J. Priem.
7. Heidmann, M.F. = "Frequency Response of a Vaporization Process to Distorted Acoustic Disturbances". NASA TN D-6806, 1972.

TABLE I

*PARAMETRIC STUDY OF RESPONSE FUNCTIONS

*Unless otherwise noted, the boundary conditions used to calculate the response functions are:

Chamber pressure $p_{c}=300$ psia
Drop radius $=50$ microns
Drop initial temperature $=140^{\circ} \mathrm{R}$
Drop initial velocity $=100 \mathrm{ft} / \mathrm{sec}$
Final gas velocity $=1200 \mathrm{ft} / \mathrm{sec}$
Amplitude of fundamental pressure perturbation; $\Delta p_{1}=.2 p_{c}$ Amplitude of harmonic pressure perturbation; $\Delta p_{2}=.8 \quad \Delta p_{1}$

f	$\mathrm{R}_{\mathrm{n} \ell}$	R_{1}	R_{2}	$I_{n \ell}$	I_{1}	I_{2}	n	Tx10 ${ }^{3}$
150	. 289	. 244	. 359	. 345	. 252	. 491	. 404	5.7
200	. 351	. 276	. 468	. 442	. 389	. 524	. 519	4.3
400	. 581	. 526	. 666	. 448	. 606	. 20	. 541	2.019
800	. 810	. 910	. 654	. 185	. 265	. 0603	. 538	. 873
1500	. 986	1.112	. 789	. 232	. 216	. 025	. 65	. 46
3000	. 941	1.04	. 781	. 255	. 193	. 352	. 682	. 24
6000	. 831	. 987	. 628	. 44	. 355	. 583	. 63	. 125
12000	. 549	. 8	. 255	. 684	. 609	. 802	. 73	. 071
30000	. 086	. 340	-. 309	. 765	. 808	. 967	. 4	. 032

$\Delta \mathrm{p}_{1}=.1 \mathrm{p}_{\mathrm{C}}$

600	.674	.720	.602	.425	.558	.216	.555	1.3
1200	.911	.854	1.0	.131	.189	.0415	.606	.56
2400	1.026	1.032	.823	.241	.162	.411	.632	.316
5000	.844	.979	.635	.412	.329	.542	.627	.152
10000	.623	.843	.275	.630	.547	.760	.729	.084

$\mathrm{f} \quad \mathrm{R}_{\mathrm{n} \mathrm{\ell}} \quad \mathrm{R}_{1} \quad \mathrm{R}_{2} \quad \mathrm{I}_{\mathrm{n} \mathrm{\ell}} \quad \mathrm{I}_{1} \quad \mathrm{I}_{2} \quad \mathrm{n} \quad \tau_{\mathrm{x} 10^{3}}$
$\triangle P_{1}=.4 P_{C}$

250	.431	.316	.612	.438	.466	.394	.525	3.35
500	.724	.783	.631	.331	.503	.061	.527	1.507
1200	.891	.998	.725	.160	.214	.071	.590	.57
3000	.920	1.012	.757	.240	.182	.338	.615	.236
8000	.742	.916	.470	.518	.423	.666	.647	.099

$\xrightarrow{\Delta P_{1}=.8 P_{c}}$

400	.683	.672	.7	.322	.485	.067	.501	1.89
800	.948	1.091	.724	-.001	.003	-.0072	.674	.84
1600	.941	.979	.882	.115	.0625	.197	.628	.41
2500	.918	.995	.797	.196	.152	.265	.609	.277
6000	.814	.938	.621	.387	.299	.526	.599	.126

$\Delta P_{2}=0 \quad \Delta P_{1}=.2 P_{c}$

800	.566	.566	-	.075	.075	-	.3	.67
1500	.692	.692	-	.096	.096	-	.305	.331
3000	.488	.488	-	.176	.176	-	.273	.202
6000	.43	.43	-	.32	.32	-	.335	.117
12000	.244	.244	-	.54	.54	-	.673	.072

$\Delta P_{2}=.2 \Delta P_{1}$

800	.791	.656	3.16	.102	.137	.322	.418	.68
1600	.874	.722	3.61	.185	.176	.399	.470	.36
3000	.72	.635	3.16	.188	.209	.580	.400	.196
6000	.655	.566	2.95	.346	.315	.792	.430	.111
12000	.455	.432	2.5	.530	.525	1.11	.550	.067

$\begin{array}{llllllll}\mathrm{R}_{\mathrm{n} \mathrm{\ell}} & \mathrm{R}_{1} & \mathrm{R}_{2} & \mathrm{I}_{\mathrm{n} \mathrm{\ell}} & \mathrm{I}_{1} & \mathrm{I}_{2} & \mathrm{n} & \tau \times 10^{3}\end{array}$
$\Delta \mathrm{P}_{2}=1.2 \Delta \mathrm{P}_{1}$

400	.548	.618	.499	.334	.716	.068	.427	2.03
800	.689	1.04	.	.445	.130	.295	.015	.500
1500	.87	1.30	.574	.250	.193	.264	.557	.27
3000	.831	1.33	.587	.362	.302	.403	.538	.254
6000	.698	1.23	.408	.461	.371	.509	.583	.133
12000	.380	.984	.098	.710	.627	.755	.941	.076

$\Delta P_{2}=.2 \quad \Delta P_{1} \quad \Delta P_{1}=.1 P_{c}$

600	.642	.551	2.91	.411	.352	.191	.470	1.155
1500	.873	.743	4.135	.280	.291	-.005	.500	.404
4000	.821	.725	3.195	.151	.156	.472	.441	.140
10000	.519	.441	2.475	.536	.516	.665	.557	.077

$\Delta P_{2}=1.2 \Delta P_{1} \quad \Delta P_{1}=.1 P_{c}$

600	.580	.788	.435	.302	.630	.075	.422	1.327
1200	.773	1.067	.568	.205	.300	.139	.644	.325
2500	.956	1.532	.62	.33	.060	.437	.719	.317
5000	.749	1.23	.410	.388	.131	.494	.544	.159
10000	.475	1.051	-.091	.664	.696	.732	.780	.088

$\xrightarrow{\Delta P_{2}=1.2 \Delta P_{1} \quad \Delta P_{1}=.8 P_{c}}$

400	.631	.774	.531	.034	.538	.029	.418	1.93
1000	.922	1.146	.513	.110	-.2	.128	.486	.557
2500	.831	1.098	.575	.174	-.214	.216	.487	.255
6000	.720	1.12	.539	.415	.167	.496	.512	.134

$\Delta P_{2}=.2 \quad \Delta P_{1} \quad \Delta P_{1}=.8 P_{C}$

400	.558	.498	2.06	.385	.378	.557	.428	1.76
800	.798	.722	2.69	-.041	.0752	.229	.420	.603
1600	.774	.688	2.99	+.032	-.0429	.100	.368	.322

f	$\mathrm{R}_{\mathrm{n} \ell}$	R_{1}	R_{2}	$I_{n \ell}$	I_{1}	I_{2}	n	Tx10 ${ }^{3}$
2500	. 784	. 671	2.52	. 098	-. 0166	. 119	. 379	. 217
6000	. 688	. 61	2.27	. 2926	. 0934	. 632	. 360	. 106
$\Delta \mathrm{P}_{2}=.8 \quad \Delta \mathrm{P}_{1}$		$\Delta \mathrm{P}_{1}=.2 \mathrm{P}_{\mathrm{c}}$		$\mathrm{U}_{\mathrm{g}}=400$				
300	1.43	1.636	1.112	. 848	1.130	. 403	1.147	2.6
600	1.950	2.22	1.510	. 3177	. 3677	. 239	1.290	1.13
1000	2.082	2.50	1.429	. 090	. 344	. 463	1.380	. 68
2000	1.720	2.12	1.340	. 182	. 0805	. 366	1.166	. 329
4000	1.645	1.941	1.181	. 353	. 262	. 496	1.095	. 1755
9000	1.390	1.755	. 821	. 616	. 502	. 786	1.007	. 0834

400	.414	.322	.557	.416	.466	.326	.476	2.09
800	.608	.636	.563	.260	.391	.056	.435	.935
2000	.699	.743	.630	.086	.1	.062	.466	.332
5000	.693	.776	.562	.383	.330	.466	.537	.152
12000	.425	.603	.147	.595	.518	.715	.719	.076

$\mathrm{U}_{\mathrm{g}}=400 \quad \mathrm{~V}_{\mathrm{D}}=50$

300	1.11	1.185	.994	.715	.977	.304	.926	2.62
600	1.533	1.750	1.196	.162	.262	.0056	1.028	1.098
1500	1.724	1.933	1.397	.147	.126	.180	1.164	.434
4000	1.551	1.8	1.164	.231	.178	.315	1.029	.168
9000	1.298	1.63	.766	.587	.487	.743	.941	.0836

$\mathrm{U}_{\mathrm{g}}=2400 \quad \mathrm{~V}_{\mathrm{D}}=50$

400	.398	.313	.531	.430	.440	.347	.465	2.09
800	.599	.623	.561	.244	.390	.0179	.424	.929
2000	.679	.663	.575	.035	.066	-.0133	.431	.319
5000	.652	.724	.539	-.359	.318	.422	.505	.154
12000	.406	.578	.138	.591	.518	.703	.724	.073

f $\quad \mathrm{R}_{\mathrm{n} \mathrm{\ell}} \quad \mathrm{R}_{1} \quad \mathrm{R}_{2} \quad \mathrm{I}_{\mathrm{n} \mathrm{\ell}} \quad \mathrm{I}_{1} \quad \mathrm{I}_{2} \quad \mathrm{n} \quad \tau \times 10^{3}$
$\mathrm{U}_{\mathrm{g}}=400 \quad \mathrm{~V}_{\mathrm{D}}=200$

600	2.415	2.876	1.694	.254	.246	.266	1.619	1.097
1000	2.00	2.59	1.064	.145	.075	.255	1.355	.648
2000	1.805	2.036	1.438	-.026	-.047	.0057	1.275	.191
4000	1.707	1.96	1.35	.135	.06	.253	1.255	.168
9000	1.5	1.86	.937	.515	.382	.723	1.03	.0809

$\underbrace{}_{\underline{q}=2400 \quad V_{D}=200}$

800	.716	.868	.478	.374	.402	.332	.544	.958
2000	.779	.939	.528	.237	.101	.451	.527	.359
5000	.700	.758	.610	.339	.2811	.430	.518	.152
12000	.442	.633	.148	.601	.523	.721	.718	.072

$U_{G}=1200 \quad V_{D}=200$

200	.441	.331	.612	.499	.459	.564	.578	4.25
800	1.056	1.087	1.008	.209	.308	.0557	.7	.862
1500	1.22	1.44	.867	.1482	.519	.425	.858	.494
3000	1.019	1.2	.735	.288	.131	.535	.685	.237
6000	.935	1.101	.675	.425	.334	.567	.679	.125
12000	.586	.85	.173	.695	.621	.816	.810	.071

$U_{q}=1200 \quad V_{D}=50$

200	.321	.253	.426	.416	.354	.511	.494	4.32
800	.733	.82	.596	.161	.223	.0646	.486	.87
1500	.825	.889	.724	.084	.113	.037	.554	.44
3000	.923	1.004	.795	.323	.305	.350	.635	.243
6000	.79	.928	.574	.452	.384	.557	.622	.129
12000	.508	.738	.149	.667	.597	.777	.791	.072

f	$\mathrm{R}_{\mathrm{n} \mathrm{\ell}}$	R_{1}	R_{2}	$\mathrm{I}_{\mathrm{n} \mathrm{\ell}}$	I_{1}	I_{2}	n	$\tau \times 10^{3}$
$\mathrm{r}=15 \mu$	$\mathrm{U}_{\text {g }}=1200$	$\mathrm{~V}_{\mathrm{D}}=100$						
2000	.431	.340	.573	.473	.507	.428	.551	.423
4000	.660	.713	.577	.374	.409	.162	.518	.193
7000	.792	.822	.745	.197	.225	.153	.528	.1
15000	.811	.914	.627	.474	.18	.538	.641	.05
30000	.578	.781	.261	.600	.325	.719	.695	.028

$r=150 \mu$

150	.888	. .990	.730	.168	.259	.0266	.589	4.58
300	1.111	1.25	.913	.299	.17	.228	.747	2.31
600	1.052	1.217	.793	.462	.297	.563	.758	1.25
1200	.822	1.029	.497	.575	.501	.691	.718	.664
3000	.261	.565	-.233	.740	.718	.665	1.342	.311

$r=50 \mu \quad p_{C}=100$

500	. .712	.797	.580	.195	.258	.096	.477	1.42
1000	.853	.967	.676	.162	.172	.147	.565	.687
2000	.870	.953	.741	.191	.165	.232	.577	.348
4000	.783	.897	.603	.281	.211	.390	.541	.183
8000	.629	.799	.362	.523	.429	.669	.620	.102

$\mathrm{p}_{\mathrm{c}}=600$

500	.568	.498	.677	.501	.637	.296	.587	1.65
1000	.847	.959	.672	.255	.348	.109	.572	.718
2000	1.05	1.167	.866	.3	.285	.325	.706	.357
4000	.974	1.105	.769	.343	.262	.469	.671	.183
8000	.803	1.00	.493	.567	.475	.711	.706	.099
16000	.401	.711	-.083	.792	.760	.842	1.119	.056

a	speed of sound
${ }^{\text {A }}$ d	droplet surface area
$C_{\text {d }}$	drag coefficient
c_{p}	droplet vapor specific heat
D	molecular diffusion coefficient
f	frequency
h	film heat transfer coefficient
k	liquid thermal conductivity
k_{m}	vapor-gas mixture thermal conductivity
K_{g}	mass transfer coefficient
M	molecular weight
m	droplet mass
Pc_{c}	mean chamber pressure
P_{V}	vapor pressure
$\Delta \mathrm{p}_{1}$	amplitude of fundamental pressure perturbation
$\Delta \mathrm{p}_{2}$	amplitude of harmonic pressure perturbation
r	droplet radius
$\dot{\dot{r}}_{\text {S }}$	regression rate of droplet surface
Re	Reynolds number
t	time
$\mathrm{T}_{\text {c }}$	chamber temperature
T_{S}	droplet surface temperature
U	gas velocity
V_{d}	drop velocity
w	mass evaporation rate
α	thermal diffusivity
γ	isentropic exponent
p	density
λ	heat of vaporization
μ	viscosity

APPENDIX B
Calculation Procedure and Program Listing

The procedure used in calculating the droplet evaporation histories, temperature distribution within the drop and response factors is illustrated by the flow diagram.

Step l. Load into the machine the following boundary conditions, initial conditions and computational parameters.

Card 1. (14 I5) NRUN - Number of test case
NMONTH - Month
MDAY - Day
MYEAR - Year
JA - Number of calculation steps between output for each drop
NA - Number of mesh points minus one within drop
NP - Number of drops injected per cycle
NY - Number of summation histories per period
NART - Number of artificial drops insisted between each of tne NP calculated drops

Card 2. (8E 10.4) S - Initial drop radius (ft.)
PO - Mean chamber pressure ($\mathrm{lbf} / \mathrm{ft}^{2}$)
VGAF - Final gas velocity (ft/sec)
VDI - Initial drop velocity (ft/sec)
DPC - Ratio of peak-to-peak fundamental pressure oscillation to mean chamber pressure
DPCI - Ratio of harmonic pressure oscillation to fundamental oscillations
OMEGA - Frequency of pressure oscillations (cps)
A - Stretching parameter (1.3)

Write out the value of all input variables and calculate all parameters that are constant throughout calculations. Initialize droplet and qas parameters to begin calculation of $N^{\text {th }}$ drop history. Redefine variables as follows:

$$
\begin{equation*}
\dot{U}=\operatorname{Tr} \tag{Al}
\end{equation*}
$$

so that Eq. (7) becomes

$$
\begin{equation*}
U_{t}=\alpha U_{t t} \tag{A2}
\end{equation*}
$$

The space variable within the drop is also redefined:

$$
\begin{equation*}
\mathrm{a}=\mathrm{r} / \mathrm{s} \tag{A3}
\end{equation*}
$$

where s is the drop surface radius as a function of time. The space variable is further redefined as:

$$
\begin{equation*}
x=A \sigma(z+1 /(\overline{A-z}))-\sigma \tag{A4}
\end{equation*}
$$

wh where

$$
\begin{equation*}
\sigma=(A-1) /\left(A^{2}+1-A\right) \tag{A5}
\end{equation*}
$$

and A is a stretching parameter which concentrates mesh points near the surface of the drop. The heat conduction equation (A2) can now be written:

$$
\begin{equation*}
U_{T}=\left(\frac{\alpha S_{t} z Y}{s}+\alpha Y Y_{X} / s^{2}\right) U_{x}+\frac{\alpha Y^{2}}{s^{2}} U_{x X} \tag{A6}
\end{equation*}
$$

where $Y=\frac{d x}{d z}$.

Step 3.
The interior point calculations are performed (temperature distribution within the drop) by utilizing a finite difference scheme for the solution of the transformed heat conduction equation based upon the current values of drop surface temperature and heat transfer rate to the drop.

Step 4.
Droplet evaporation rates, changes in combustion gas properties, droplet velocity and net heat transfer to the drop are calculated by solving Eqs. (10) through (17). The evaporation rate is stored for future summation
in the array history. Intermediate results are printed at the end of every JA time increments.

Step 5.
If the drop is not 90% evaporated, time and other thermodynamic and dynamic variables are incremented and control is transferred to Step 3.

Step 6.
If the drop has reduced to 10% of its initial mass, the evaporation rate is transferred into the array summation matrix at a predetermined number of points during the period (NY).

Step 7.
An interpolation of the evaporate rate between the $N^{\text {th }}$ and $(N-1)^{\text {th }}$ drop is made for each of the artificial drops injected between two drops for which calculations are performed. These evaporation rates are added to the array matrix.

Step 8. Test for end of evaporation calculations.
Step 9. Calculation of response factors by solving Eqs. through (26).

Step 10. Print results.
The machine computation time is primarily a function of the number of drops injected per cycle. For the case described in Figs. 1 and 2, i.e., eight drops injected per cycle, a total of 160 seconds of CDC 6600 computer time was required.
(2)
(3)
(4)

FLOW CHART

000036 000064 000110 000134 000160 000204 000214 000221

000241 000244 000247 000253 000254 000256 000260 000262 000264 000266 000271 000303 000335 000357

000431 000435 000447

000455 000457 000460 000464 000466
C
c
C
c
c
c
C
c
c
C

```
    PPOGRAM DROPS(INPUT,OUTPUT,TAPE5 = INPUT,TAPEG = OUTPUT)
    PROGRAM DROPS WITH RNL,INL,RI,R2,II,IZ,F,G, AND N AND TAU AUG. 7
    COMMON WWW(3000),TTT(3000),W(400).INDEX,KKZ,VEL,VD,AKG,DD,PPV,H&D
    IMI,SIT,S,TIME,J,K,JA,NA,NC,DX,DT,ST,SN,STN,WDOT,P,TF
    COMMON SAVW(30,400),MARK,KK,NART,NN,NP
    COMMON X(64),Z(64),AB(64),AC(64),AD(64),UO(64),U(64),UN(64),T(64)
    1R(64)
```

 c. NY=NUMRER OF SUMMATION HISTORIES PER PERIOD (400 MAXIMUM)
 C A=STRETCHING PARAMETER
 READ (5.250) NRUN,MONTH,MDAY,MYEAR,JA,NA,NP,NY,NART
 READ (5,260) S,PO,VGAF,VDI,DPC,OPC1,OMEGA,A
 READ (5,260) STAB,TFO, TO, THETA,AJO,AJI, AJ2,RWR
 READ \((5,260)\) GAMMA, ALPHA,RHOL,RR,PCA,PCB,TCA,TCB
 READ (5,260) EMA,EMB,AA,BB,EMV,PR,AKB,CPV
 \(\operatorname{READ}(5,260)\) VIS.AK
 DD2 \(=\) SQRT (TCA*TCB)
 \(D D 1=(P C A * P C B) * * .333333 / S Q R T(E M A * E M B /(E M A+E M B)) *(T C A * T C B) * * .4166\) :
 17
 TAV \(=(T F 0+T O) * .5\)
 ROAV \(=\) PO\#EMR/(RR*TAV)
 SCH = VIs/ruav/UItU,IAVI
 SIT \(=S\)
 \(N C=N A+1\)
 TAU \(=1 . / 0 M E G A\)
 \(N X=N Y-1\)
 DTST \(=\) TAU/FLOAT (NX)
 DTBAR \(=\) TAU/FLOAT (NP)
 WRITE \((6,320)\)
 WRITE \((6,330)\) NP, NART, NY
 WRITE (6.270) NRUN,MONTH,MDAY,MYEAR,JA,PO,TFO,S,TO,VGAF,VDI
 WRITE(6,340) OMEGA,THETA,DPC,AJO,AJI,AJ2,RWR
 WRITE \((6,280)\) ALPHA,RHOL,RR,PCA,PCB,TCA,TCB,EMA,EMB,EMV, AA, BB, SCH
 1PR,AKB,CPV,AK,GAMMA,VIS
 WRITE \((6,290)\)
 WRITE \((6,300)\) NA,A,STAB
 WRITE 6,410) DPCI
 C CONVERT DPC TO \(1 / 2\) PEAK TO PEAK PERTURBATION
 CONVERT DPCI TO RATIO OF DPI TO PO
 \(P V(W)=2980.9579867\) EXP (8.928-1476.5/(W-3.568))
 \(S L(W)=61.33+.5916 * W-.00248 * W \not W^{*} \% 2\)
 \(D(W, 0)=D D 1 / W * A A *(0 / D D 2) * * B B\)
 NA = NUMBER OF MESH POINTS MINUS ONE
 JA =NUMRER OF STEPS BETVEEN OUTPUTS FOR THE FIRST DROP
 NP = NUMRER OF DROPS INJECTED PER CYCLE
 \(D P C=D P C / 2\).
 DPCI =DPC \({ }^{\circ} P \mathrm{PCl}\)
 PI = 4. *ATAN(1.)
 DUM8=P1*4.*RHOL
 PI2 \(=2 . \% \mathrm{PI}\)
 000467 0004 ? 1 00047.3 000475 000477 000500 000504 000510 000513 000515 000516 000520 000521 000526 000527 000530 000533 000534 000536 000537

000547 000550 000552 000553 000554 000555 000556 000557 000560 000561 000562 000566 000567 000570 000571

000613 000620 000623 000626 000632 . 000636 000637 000642 000656 000660 000665 000666 000667 000672 000675 000700 000701 000704 000707

```
    PIWZ = NI/C.
    POMEGA = PIZ*OMFGA
    GA = (GAMMA-1.)/GAMMA
    VD = VDI
    TI = 0.
    CCl=חPC*(AJO-AJ2)*.430/GAMMA
    CC2=RWR*AJI*.467*DPC/GAMMA
    DUM4 = EMV/2./RR
    DX = 1./FLOAT(NA)
    DDX = 1./DX
    DNX2 = 1./DX/DX
    TWODX=2.*DX
    SIG = (A-1.)/(A*(A-1.).1.)
    AI = A*SIG
    A2 = 2.*A1
    A3 = SIG*(A**?+1.)
    A4 = AL**2/SIG
    OO 1 I =1.30
    DO 1 J=1,400
l SAVW(I;J)=0.
    INITIALIZATION OF VALUES FOR THE (NN)TH DROP
    DO 220 NN = 1.NP
    S = SIT
    S2 = S**2
    SN=S
    WDOT = 0.
    STS = 0.
    ST}=0
    k=0
    J=0
    DT = STAB
    TIME = DTBAR*(NN-1)
    KKl = 0
    KK2 = O
    VO = VDI
    P=P0*(1.*.859*DPC*AJI*COS(POMEGA*TIME-THETA) +.859*DPCl*AJI*COS(2.
[POMEGANTIME))
    TF = TFO*(P/PO)**GA
    TAV = (TFO +TO)*.5
    ROAV = PO#EMB/(RR*TAV)
    SCH = VIS/ROAV/D(P.TAV)
    DUM2 = .6*PR**.333333
    DO 10 N = 1,NC
    X(N) = DX*FLOAT(N-1)
    Z(N)=(A3+X(N)-SQRT((A3+X(N))*#-A4*X(N)))/AZ
    R(N)= Z(N)*S
    F=X(N)/A1+1./A-Z(N)
    F2 = FAF
    F3 = F*F2
    Y=A1*(1.*F2)
    AR(N) = Z(N)AY
    AC(N) = A2*F3*ALPHA
    T(N) = T0
    IF (N.EQ.NA) YNA = Y
    AD(N) = Y**2*ALPHA
    U(N)=R(N)#TO
```

000715 000726 000730 000731 000733 000735 000737 000741 000742 000746 000751 000751 000754 000756

000757 000760 000762 000764 000766 000771 000776 001002 001004 001007 001011 001015 001016 001024

001027
001030
001031
001032
001033
001035
001035
001041
001050 001053 001054 001057 001060 001061 001064

001106 001113 001116

10 CONTINUF
TINT = TIME

C TIME DEPENDENT COMPUTATION REGINS HERE
20 IF (NN.EQ.1.AND.J.EQ.JA)CALL OUTPUT
$K=K+1$
$J=J+1$
IF(K.LT.100) GO TO 40
$D T=S T A B * 10$.
IF(K.LT.200) GO TO 40
DT $=100$.
$0030 \mathrm{~N}=1, \mathrm{Na}$
DT3 $=(R(N+1)-R(N)) * \& 2 / A L P H A / 4$.
IF (DT.LT.DT3) GO TO 30
DT $=$ DT3
30 CONTINUE
40 TIME = TIME+DT
$\operatorname{UN}(1)=0$.
C
C
INYERIOR POINT COMPUTATION BEGINS HERE
LOOP $=0$
$500070 \mathrm{~N}=2, \mathrm{NA}$
$N O=N+L O O P$
$N M=N O-1$
$U X=(U(N Q)-U(N M)) * D D X$
$U X X=(U(N+1)+U(N-1)-2 . * U(N)) * D D X 2$
$A E=A B(N) * S T S+A C(N) / S 2$
$A G=A D(N) / S 2$
$U T=A E * U X+A G \otimes U X X$
IF (LOOP.EQ.1) GO TO 60
$U N(N)=U(N)+U T 4 D T$
GO TO 70
$60 U N(N)=(U O(N)+U(N)+U T * D T) * .5$
70 CONTINUE
C
C
BOUNDARY POINT COMPUTATION BEGINS HERE
DTI = DT
$T I M=0$.
$T I=T I M E-D T$
$K I M=30$
DTI = DT/FLOAT (KIM)
80 CONTINUE
IF (LOOP.EQ.O) $S N=S+S T * D T$
IF (LOOP.EQ.1) $S N=.5 *(S+S 0+S T \# D T)$
TNAMN $=U N(N A-1) / S N / Z(N A-1)$
IF ILOOP.EQ.OI GO TO 90
$T(N C)=U O(N C I / S O$
$U(N C)=U O(N C)$
$S=S O$
90 TI=TIME-DT/Z.
$P=P 0 *(1 .+.859 * D P C * A J I * C O S(P O M E G A * T I-T H E T A)+.859 * D P C l * A J I * C O S 12 . * P r$
1MEGANTI))
$T F=T F O *(P / P O) * W A$
$T A V=(T F+T(N C)) * .5$
$D D=D(P, T A V)$
.001120 001123 001125 001132 001140

001161
001200
001204 001206 001224 001230 001237 0012.44 001251 001257 001261 001262 001266 001271 001274 001277 001300 001301 001305 001307 001310 001325 001332 001336 001341 uvis4s 001345 001351 001355 001363 001367 001371 001372 001373 001375 001377 001402 001404 001406 001410 001414 001420 001422 001423 001424 001425 001426 001430 001431 001432
ROAV = PAEMR/(RR*TAV)
VOR $=$ VIS/ROAV
D(IMI $=.6 *(V O R / O D) \# .333333$
$A S=S Q R T(G A M M A * 32.2 * P / R O A V)$
$V R=C C I * A S *(C O S(P O M E G A * I+P I D 2-T H E T A)+D P C 1 / D P C * C O S(2 . * P O M E G A * I+P I \|$
12))
$V H=C C 2 * \triangle S *(C O S(P O M E G A * T I-T H E T A)+O P C I / D P C * C O S(2 . * P O M E G A * T I)$
VGA $=$ VGAF* (1.-(S/SIT) $0 * 3)$
$D V=V G A-V D$
$V T=5.65 *(R O A V * A B S(D V)) * * .16 *(V I S / S) * * .84 * D V / R H O L / S$
$V D=V D+V T * D T / Z$.
$V E L=S O R T(D V * * 2+V R * * 2+V H * * 2)$
DOMI = SORT(2.*VEL*S/VOR)
$H=A K R / 2 . / S *(2 .+D U M 2 * D O M 1)$
AKG $=(2 . *$ DUMI $* D O M 1) * D D * D U M 4 / S / T A V$
$A K G P=A K G \# P$
SI $=5$
$95 \operatorname{PPV}=P V(T(N C))$
$D U M=1 .-P P V / P$
IF (DUM.GT.1.E-20) GO TO 100
WRITE (6,310)
CALL DUTPUT
CALL EXIT
100 DUM $=A K G P * A L O G(O U M)$
STN = OUM/RHOL
DUM $=-$ DUM
$T R=-((T(N C)-T F) \# H-(T(N C)-T F 0) * D U M * C P V+D U M \# S L(T(N C))) / A K$
TNAM $=T(N A-1)+(T N A M N-T(N A-1))$ TIM/DT
TX=(T(NC)-TNAM)/TWODX
SIM $=S I+5 T * D T 1$
RNA $=S 1 \neq Z(N A)$
IRNA $=$ TKFYNAISI
$T R R=(T R-T R N A) /(S)-R N A)$
$U R=T(N C)+S I * T R$
$U T=A L P H A *(S) * T R R+2 * T R)+U R * S T$
$U N(N C)=U(N C)+1 J T \# D T I$
$T(N C)=U N(N C) / S I M$
$S T=S T N$
$S I=S I M$
TIM $=T I M+D T 1$
IF (TIM.LT.DT)GO TO 95
IF (KIM.GT.O) SN = SIM
DO $110 \mathrm{~N}=1 \cdot \mathrm{NC}$
$U 0(N)=U(N)$
$R(N)=S N * Z(N)$
If (N.NE.I) $T(N)=U N(N) / R(N)$
$110 U(N)=U N(N)$
SO $=S$
$S=S N$
$52=5 * * 2$
$S T=S T N$
$S T S=S T / S$
IF (LOOP.FQ.1) GO TO 120
LOOP $=1$
GO TO 50
120 CONTINUE

001432 0011435 001436 001440 001441 001442 001444 001445 001445 001456 001460 001463 001465 001467 001477 001500 001505 001510 001512 001515

001515 001523 001527 001531 001532 001533 001536 ごこごさ v0́1354 001560 001565 001567 001574 001577 001577 001601 001602 001607 001610 001616 001621 001622 001622 001624 001624 001624 001630 001632 001633 001642 001643 001646 001653 001654

C

```
    WNOT = DU&R*SZ*ST
    KKI=KKI +1
    IF (KK1.LT.3) GO TO }13
    KK2 = KK2+1
    KK1 = 0
    WWW(KK2) = -WNOT
    TTT(KK2) = TIME
    130 CONTINUE.
    T(1)=(UN(2)*Z(3)**2/Z(2)-UN(3)*Z(2)**2/Z(3))/(Z(3)**2-Z(2)**2)/SN
    IF (NN.EQ.1) GO ro 140
    RATIO=(S/SIT)*#3
    IF (RATIO .GE. 0.1) GO TO 20
    TR=T IME-TINT
    WRITF. (6,350) NN,RATIO
    GO TO 150
    140 IF (S.GT.0.4641589*SIT) GO TO 20
    WRITE (6,360)
    TB = TIME
    IF (NN.EQ.1) T90 = TB
    150 CONTINUE
```

 C
 C COMPUTATION OF SUMMATION HISTORIES BEGINS HERE
 DUMAI \(=T B+\) OTBAR* \((N N-1)\)
 DUMAZ \(=T A U+\) OTBAR* \((N N-1)\)
 IF (TB.GE.TAU)GO TO 155
 MARK=1
 DO \(153 \mathrm{KK}=1\), NY
 IF (NN.EQ.I)W(KK) \(=0\).
 \(T K=T R+(K K-1) \# D T S T\)
 IF (TK.GT. DUMAI.AND.TK.LT.DUMAZ) TK \(=-100\).
 IF (TK.GT, TB + DUMA 2) TK \(=-100\).
 IF (TK.GE.DUMAZ)TK=TK-TAU
 INDEX=KK2
 \(W(K K)=F W D O T(T K)+W(K K)\)
 153 CONTINUE
 GO TO 220
 \(15500210 \mathrm{KK}=1\), NY
 MARK=1
 \(T K=T B+(K K-1)\) DDTST
 \(I=1\)
 160 T1 \(=T B+(I-1) * D T B A R\)
 IF (TK.GT.T1) GO TO 170
 \(I I=I\)
 GO TO 180
 170 I \(=\mathrm{I}+1\)
 GO TO 160
 180 CONTINUE
 IF (NN.EO.1) \(W(K K)=0\).
 INDEX \(=\) KK2
 DO \(190 \mathrm{~N}=1.2\)
 IF (NN.LT.II.AND.N.EQ.1) GO TO 190
 \(J J=N-1\)
 \(T I=T K-J J * T A U\)
 \(W(K K)=W(K K)+F W D O T(T I)\)
 MARK = MARK +1
 190 CONTINUE
 001656
001661 001663 001671
001674 001677 001704 001705 001710 001712 001715 001720 001733 001734 001736 001746 001747

001755
001756 001757 001760 001761
001762
001763
001764
001765
001766
001757
001770
001771
001772
001777
002001
002011
002030
002040
002050
002067
002077
002107
002112
002115
002120
002123
002126
002131
002134
002137
002143
002147
002153
002157
002166
002167
002171
$N T=T K / T A U$
DO 200 NI $=2 . N T$
$T 2=N I * T A U+(N N-1) * D T B A R$
IF (TK.LT.TZ) GO TO 200
$T I=T K-N T \$ T A l l$
$W(K K)=W(K K)+F W D O T(T I)$
MARK = MARK +1
200 CONTINUE
210 CONTINUE
220 CONT TNUE
WRITE $(6,380)$
WRITE $(6,370)(W(K K), K K=1, N Y)$
WAV $=0$.
DO $230 \mathrm{KK}=1 . \mathrm{NX}$
230 WAV $=W A V+(W(K K)+W(K K+1)) / 2 . * D T S T$
WAV = WAV/TAU
WRITE $(6,390)$ WAV
COMPUTATION OF RESPONSE FACTORS BEGINS HERE
$P S Q=0$.
$P 1 S Q=0$.
$P 2 S Q=0$.
$P I S Q=0$.
PIlSQ=0.
PI2SO $=0$.
RNL $=0$.
R1 $=0$ 。
$R 2=0$.
AINL=0.
$A I l=0$.
$A I 2=0$.
DO $231 \quad K K=19 \mathrm{NY}$
$T K=T B+(K K-1) * D T S T$
$P N=1$.
IF (KK.EQ.I.OR.KK.EQ.NY) $P M=.5$
$A P S Q=.859 \approx A J 1 *(D P C * C O S(P O M E G A * T K-T H E T A)+D P C 1 * C O S(2 . * P O M E G A * T K))$
$A P 1 S Q=.859 * A J 1 * D P C * C O S(P O M E G A * T K-T H E T A)$
AP2SO $=.859 * A J 1 * D P C l * C O S(2 . * P O M E G A * T K)$
APISQ $=.859 * A J 1 *(D P C * S I N(P O M E G A * T K-T H E T A)+D P C 1 * S I N(2 . * P O M E G A * T K))$
API1SQ $=.859$ \&AJI*DPC*SIN(POMEGA*TK-THETA)
API2SO=.859*AJI*DPCI*SIN(2.*POMEGA*TK)
$W P R M=(W(K K)-W A V) / W A V$
$R N L=R N L+P H * W P R M * A P S Q$
$R 1=R 1+P M \neq W P R M * A P 1 S Q$
$R 2=R 2+P M * W P R M * A P 2 S Q$
$A I N L=A I N L+P M * W P R M \# A P I S Q$
$A I I=A I I+P M * W P R M * A P I I S Q$
$A I 2=A I 2+P M * W P R M * A P I 2 S Q$
PSQ=PSQ*PM*APSQ**2
$P 1 S Q=P 1 S Q+P M * A P 1 S Q * 2$
$P 2 S Q=P 2 S Q+P M * A P 2 S Q * 2$
PISQ=PISQ*PM*APISQ**2
PIISQ=PI1SO+PM*API1SQ**2
231 PI2SO=PI2SO+PM*API2SQ**2
RNL $=$ RNL/PSQ
$R 1=R 1 / P 150$
R2=R2/P2SQ

002172
$00 \hat{0} 174$
002175
002177
002225 002243

C
C
C
002270
002273
002275
002277 002300
002301
002302
002335
002336
002337
002340
002341 002344
002352
002354
002356
002377
002413
002420
こここうこ，
$00<4<b$
002426
002426
002426

002426

002426

002426
002426
002426
002426

002426
C

AINL $=A I N L / P I S O$
AII：＝AII／PIISQ
$\Delta I 2=A I 2 / P I 2 S O$
CAPF＝OMEGA＊（STT／．000166）＊\＃1．5＊（800．／VGAF）＊＊．3333＊（．1／DPC）＊＊．3333＊
1（43200．／PO）＊』． 3333
CAPG $=$ CAPF＊（VGAF／800．）＊＊（7．13．）＊（DPC／．1）＊＊．633
WRITE（6，400）RNL，R1，R2，AINL，AI1，AI2，CAPF，CAPG，T90

$$
A P=.859 * A J 1 * D P C
$$

$B P=.859 * A J 1 * D P C 1$
$W T=P 12 / 2000$ ．
SAVFX＝0．
SAVJ＝0．
DO $240 \mathrm{I}=1,2000$
$F X=R N L / A I N L *(A P * * 2 * S I N(W T)+B P * * 2 * S I N(2 . * W T))$ \＆BP＊＊2＊（1．－COS（2．＊WT））
1＋AP＊\＃2\＃（1．－Cos（WT））
IF（FX）232，238，233
$232 \mathrm{~J}=-1$
GO TO 234
$233 \mathrm{~J}=1$
234 IF（J＋SAVJ）239．238，239
238 WTS＝WT＋PI2／2000．＊（FX／（SAVFX－FX））
PTAU＝WTS／POMEGA
ANGLE＝WTS＊360．／PI2
PEN＝RNL＊（AP＊\＃2＋BP＊\＃2）／（AP＊＊2＊（1．－Cos（WT））＋BP＊＊2＊（1．－COS（2．＊WT）））
WRITE $(6,500)$ WTS，ANGLE，PTAU，PEN
$239 W T=(I+1) / 2000$ ． FPI 2
SAVFX＝FX
こ〒i うivJ＝J
CALL EXIT
250 FORMAT（1415）
260 FORMAT（8E10．4）
270．FORMAT（1HO．10HRUN NUMBERI5，5X，2HONI3，1H／I2，1H／I2／／
1 13H OUTPUT EVERYI6．6H STEPS／／14H GAS
2 PRESSURE＝E13．5．7H LB／FT2／17H GAS TEMPERATURE＝E13．5，8H RANKINE／24F
3 DROPLET INITIAL RADIUS＝E13．5，3H FT／21H DROPLET TEMPERATURE＝E13．5．
48H RANKINE／11H FINAL VGA＝E13．5．7H FT／SEC／18H DROPLET VELOCITY＝E．13． 55，7H FT／SEC／51H AUTOMATIC STOP WHEN 90 PERCENT MASS HAS EVAPORATEC 6）
280 FORMAT $19 H 0$ ALPHA， $7 X, 4 H R H O L, 6 X, 12 H G A S$ CONSTANT， $3 X, 3 H P C A, 9 X, 3 H P C F$ $1,9 \mathrm{X}, 3 \mathrm{HTCA}, 9 \mathrm{X}, 3 \mathrm{HTCB} / 7 \mathrm{E} 12.4 / 14 \mathrm{X}, 2 \mathrm{HMA}, 10 \mathrm{X}, 2 \mathrm{HMB}, 10 \mathrm{X}, 2 \mathrm{HMV}, 11 \mathrm{X}, 1 \mathrm{HA}, 11 \mathrm{X}, \mathrm{H}$ ． 2R，9X，3HSCH，9X，2HPR／7E12．4／／4X，2HKB，8X．5H（CP）V，7X，5HKAPPA，7X，5RGAMA 3A．7X，3HVIS／5E12．4／）
290 FORMAT $(35 H \operatorname{PV}(T)=E X P(16.928-1476.5 /(T-3.568)) / 36 H \operatorname{LAMRDA}(T)=61.32$ $1+.5916 * T-.00248 * T * 2 / 83 H D(P, T)=(P C A * P C B) * * 1 / 3 / S Q R T(M A * M B /(M A+M R))$ 2＊（TCA＊TCB）＊＊5／12／P＊A＊（T／SORT（TCA＊TCR））＊＊B）
300 FORMAT（36HONUMBER OF INTERVALS INSIDE DROPLET $=13,23 H$ ．STRETCHING IPARAMETER＝E12．4／21H SYABILITY PARAMETER＝E12．4）
310 FORMAT（6HOFAILI）
320 FORMAT（1HI，36HPROGRAM DROPS AUGUST 1972 VERSION ）
330 FORMAT 46 H THE NUMEER OF CALCULATED DROPS PER PERIOD IS $15 / 58 \mathrm{H}$ THF 1 NUMBER OF ARTIFICIAL DROPS BETWEEN EACH REAL DROP IS 15／51H THE E 2．VAPORATION FROM THE ENTIRE ARRAY IS SUMMED AT，I4，1BH POINTS PER PE 3RIOD）
340 FORMAT 9 OHO OMEGA， $7 \mathrm{X}, 5 \mathrm{HTHETA,5X,10HOPC} \mathrm{PK-PK,6X,3HAJ0,9X,3HAJI}$,

9X,3HAJ2.9X,3HRWR/7E12.4)

002':26 002426 002426 002426 002426 002426

002426 002426

002426

350 FORMAT(1HO,5HDROP $15,36 H$ CALCULATION ENDS WITH A MASS RATIO=E10. 3 Y 360 FORMAT (1H0,5X,32H90 PERCENT EVAPORATION COMPLETED) 370 FORMAT (1X.10E10.3) 380 FORMAT (1H1,6H W IS)
390 FORMAT ($1 X .5 H$ WAV $=E 12.5$)
400 FORMATIIX,5H RNL $=E 12.5 / 1 X, 5 H \cdot R 1=E 12.5 / 1 X, 5 H$ R2 $=E 12.5 / 1 X, 5 H$ INL $=$ 1 E12.5/1X,5H Il=E12.5/1X,5H I2=E12.5/1X.5HF=E12.5/1X.5H G = 2E12.5/1X.5H T90=E12.5. 8H SECONDS
410 FORMAT ($1 \mathrm{X}, 5 \mathrm{HDPCl}=\mathrm{E} 12.5,5 \mathrm{X}, 9 \mathrm{H}(\mathrm{DP} 1 / \mathrm{DPC})$)
500 FORMAT $/ / / / 9 H$ WTS $=$ El2.5.8H RADIANS $/ 9 H$ ANGLE $=$ E12.5.8H DEGREES 1/9HTAU $=$ E12.5.8H SECONDS/9H N = El2.5)
END

000003
000003
000003
0000.06 000010 000015 000021 000022 000024 000027 000030 000031 000034 000036 000037 000044

000051
000054 000056 000057 000061 000065

000065 000067 000100 000101 000102 000106 000107 000111

000136 000142 000143 000144

FUNCTION FWDOT (T)
COMMON WWW(3000), TrT(3000),W(400), INDEX,KK2,VEL,VD,AKG•DD,PPV,H, 0
IMI,SIT,S,TIME,J,K,JA,NA,NC,DX,DT,ST,SN,STN,WDOT,P,TF
C
COMMON SAVW $(30,400)$, MARKOKK, NART, NN, NP
IF (T.LT.TTT (1))FWDOT=0.
IF(T.LT.TTT(1)) GO TO 30
IF (T .GT.TTY(KK2)) FWDOT $=$ WWW(KK2)
IF(T.GT.TTY(KKZ)) GO TO 30
DO $101=1$ I INDEX
$L=$ INDEX $+1-\mathrm{I}$
IF (TTT(L).GE.T) GO TO 10
$L M=L$
GO TO 20
10 CONTINUE
$20 L P=L M+1$
INDEX = LP
$E P S=(T T T(L M)-T \quad) /(T T T(L M)-T T T(L P))$
FWDOT $=W W W(L M)+E P S *(W W W(L P)-W W W(L M))$
C
C
C
30 1F(NART.EQ.O) RETURN
$W W=F W D O T$
DLAST=0.
IF (NN.NE. 11 GO TO 40
SAVW (MARK,KK) $=W W$
$A R T=0$.
C

C
DO $35 \mathrm{I}=1$, NART
35 ART = ART + FL.OAT (I)/FLOAT (NART + 1) *WW
FWDOT = FWDOT + ART
RETURN
40 IF (NN.EQ.NP) DLAST=1.
ART $=0$.
DO $50 \mathrm{I}=1$, NART
50 ART = ART + SAVW(MARK,KK) +FLOAT (I)/FLOAT (NART+1)*(WW-SAVW(MARK,KK))
1 + OLAST*(WW-FLOAT (I)/FLOAT(NART+1) $\left.{ }^{2} W W\right)$
SAVW (MARK,KK) =FWDOT
FWDOT =FWDOT + ART
RETURN
END
00000?
000002
000002
000002
000004
000021
000024
000025
000027
000031
000053
000054
000055
000060
000073
000111
000121
000121
000122
000123
000123
000123
000123

```
```

```
```

 SURROUTINE OUTPUT
    ```
```

```
                SURROUTINE OUTPUT
```

```
```

 SURROUTINE OUTPUT
 000123 60 FORMAT (2X,2HP=E10.3.1X,3HTF=E10.3)
000123 60 FORMAT (2X,2HP=E10.3.1X,3HTF=E10.3)
000123 60 FORMAT (2X,2HP=E10.3.1X,3HTF=E10.3)
000123 70 FORMAT(2X,4HVEL=EIO.3.3HVD=EIO.3,4HAKG=E10.3.3HOU=t10.3.4HPRV=E1U.
000123 70 FORMAT(2X,4HVEL=EIO.3.3HVD=EIO.3,4HAKG=E10.3.3HOU=t10.3.4HPRV=E1U.
000123 70 FORMAT(2X,4HVEL=EIO.3.3HVD=EIO.3,4HAKG=E10.3.3HOU=t10.3.4HPRV=E1U.

```
                SURROUTINE OUTPUT
```

 SURROUTINE OUTPUT
    ```
                SURROUTINE OUTPUT
        COMMON WWW(3000),TTT(3000),W(400),INDEX,KK2,VEL,VO,AKG,DD,FPV,H,DO
        COMMON WWW(3000),TTT(3000),W(400),INDEX,KK2,VEL,VO,AKG,DD,FPV,H,DO
        COMMON WWW(3000),TTT(3000),W(400),INDEX,KK2,VEL,VO,AKG,DD,FPV,H,DO
        IMI.SIT.,S,TIME.J,K.JA,NA,NC.DX,DT,ST,SN,STN,WDOT,P,TF
        IMI.SIT.,S,TIME.J,K.JA,NA,NC.DX,DT,ST,SN,STN,WDOT,P,TF
        IMI.SIT.,S,TIME.J,K.JA,NA,NC.DX,DT,ST,SN,STN,WDOT,P,TF
                                COMMON SAVW(30,400),MARK,KK,NART,NN,NP
                                COMMON SAVW(30,400),MARK,KK,NART,NN,NP
                                COMMON SAVW(30,400),MARK,KK,NART,NN,NP
                                    COMMON X(64),Z(64),AB(64),AC(64),AD(64),UO(64),U(64),UN(64),T(64),
                                    COMMON X(64),Z(64),AB(64),AC(64),AD(64),UO(64),U(64),UN(64),T(64),
                                    COMMON X(64),Z(64),AB(64),AC(64),AD(64),UO(64),U(64),UN(64),T(64),
        1R(64)
        1R(64)
        1R(64)
    C
    C
    C
        DUM = TIME
        DUM = TIME
        DUM = TIME
        WRITE (6,40) K,DUM,SN,ST,WDOT
        WRITE (6,40) K,DUM,SN,ST,WDOT
        WRITE (6,40) K,DUM,SN,ST,WDOT
        NH=(NC+1)/2
        NH=(NC+1)/2
        NH=(NC+1)/2
        NM = NC/2
        NM = NC/2
        NM = NC/2
        DO 10 N = 1.NH
        DO 10 N = 1.NH
        DO 10 N = 1.NH
        L=NM+N
        L=NM+N
        L=NM+N
        10 WRITE (6,30) N,R(N),T(N),L,R(L),T(L!
        10 WRITE (6,30) N,R(N),T(N),L,R(L),T(L!
        10 WRITE (6,30) N,R(N),T(N),L,R(L),T(L!
        IF (K.EO.O) GO TO 20
        IF (K.EO.O) GO TO 20
        IF (K.EO.O) GO TO 20
        REY = DOM1**2
        REY = DOM1**2
        REY = DOM1**2
        DUM = (S/SIT)**3
        DUM = (S/SIT)**3
        DUM = (S/SIT)**3
        WRITE (6,50) H,REY,DUM,DT
        WRITE (6,50) H,REY,DUM,DT
        WRITE (6,50) H,REY,DUM,DT
        WRITE (6,70) VEL,VD,AKG,DD,PPV
        WRITE (6,70) VEL,VD,AKG,DD,PPV
        WRITE (6,70) VEL,VD,AKG,DD,PPV
        WRITE (6,60) P,TF
        WRITE (6,60) P,TF
        WRITE (6,60) P,TF
        20 CONTINUE
        20 CONTINUE
        20 CONTINUE
        J = 0
        J = 0
        J = 0
        RETURN
        RETURN
        RETURN
    C
    C
    C
            30 FORMAT (I9,2E15.5(I9,2E15.5)
            30 FORMAT (I9,2E15.5(I9,2E15.5)
            30 FORMAT (I9,2E15.5(I9,2E15.5)
        40 FORMAT (1HO//5X,4HSTEPI6,10X.5HTIME=E12.4,5X,3HRS=E12.4/24X,6HRSDOO
        40 FORMAT (1HO//5X,4HSTEPI6,10X.5HTIME=E12.4,5X,3HRS=E12.4/24X,6HRSDOO
        40 FORMAT (1HO//5X,4HSTEPI6,10X.5HTIME=E12.4,5X,3HRS=E12.4/24X,6HRSDOO
        IT=E12.4,5X,5HWDOT=E12.4/118X,1HR,13X,1HT,24X,1HR,13X,1HT,
        IT=E12.4,5X,5HWDOT=E12.4/118X,1HR,13X,1HT,24X,1HR,13X,1HT,
        IT=E12.4,5X,5HWDOT=E12.4/118X,1HR,13X,1HT,24X,1HR,13X,1HT,
    50 FORMAT (2X,2HH=E10.3,1X,4HREY=E10.3,1X,11HMASS RATIO=E10.3,1X,3HDT
    50 FORMAT (2X,2HH=E10.3,1X,4HREY=E10.3,1X,11HMASS RATIO=E10.3,1X,3HDT
    50 FORMAT (2X,2HH=E10.3,1X,4HREY=E10.3,1X,11HMASS RATIO=E10.3,1X,3HDT
        l=E10.31
```

 l=E10.31
    ```
        l=E10.31
```



```
    70 FORMAT (2X,4HVEL=E10.3.3HVD=Ei0.3,4HAKG=E10.3.3HOU)=t10.3.4MHPV=t1U.
```

 70 FORMAT (2X,4HVEL=E10.3.3HVD=Ei0.3,4HAKG=E10.3.3HOU)=t10.3.4MHPV=t1U.
    ```
    70 FORMAT (2X,4HVEL=E10.3.3HVD=Ei0.3,4HAKG=E10.3.3HOU)=t10.3.4MHPV=t1U.
        13)
        13)
        13)
        END
```

 END
    ```
        END
```


FIG. 1
(2.2

FIG. 2 array evaporation rate VS. time

OF AMPLITUDE卣 f- FREOUENCY FREQUENCY. 6810^{3}
FACTOR
$\stackrel{9}{7}$
FIG. 3

FACTOR VS. FREQUENCY: EFFECT OF DISTORTION
FIG. $4 \mathrm{c} \begin{array}{ll}\text { RESPONSE } \\ & \Delta P_{i}=0.8 P_{c}\end{array}$

FACTOR FREQUENCY $\stackrel{9}{8}$ RESPONSE FACTOR HARMONIC
${ }_{21} \cdot\left(\frac{y}{0 g}\right)_{1} \cdot\left(\frac{\partial d}{00 \varepsilon}\right)_{91} \cdot\left(\frac{0 \wedge}{001}\right)_{9 s}\left(\frac{00 z 1}{y_{n}}\right){ }^{2} y$

$z_{1} \cdot\left(\frac{1}{0 G}\right)_{1}\left(\frac{\rho_{d}}{00 \varepsilon}\right)_{g 1} \cdot\left(\frac{0 \Lambda}{001}\right)_{g q}\left(\frac{00 Z 1}{1 n}\right) * u$

FIG. 14τ VS. FREQUENCY
"The aeronautical and space activities of the United States shall be conducted so as to contribute . . to the expansion of buman knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."
-National Aeronautics and Space Act of 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.
TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS:

Information receiving limited distribution because of preliminary data, security classification, or other reasons. Also includes conference proceedings with either limited or unlimited distribution.
CONTRACTOR REPORTS: Scientific and rechnical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include final reports of major projects, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION

PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Technology Surveys.

Defails on the availabilify of these publications may be obtained from:
SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Washington, D.C. 20546

[^0]: *For sale by the National Technical Information Service, Springfield, Virginia 22151

