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ABSTRACT

The efficiency and other related parameters of Smithsonian Astrophysical Observa-

tory's four laser receivers were measured at the observing stations by using equipment

already available at the stations. If the efficiency is defined as the number of photo-

electrons generated by the photomultiplier tube divided by the number of photons enter-

ing the aperture of the receiver, its measured value is about 1% for the laser wave-

length of 694 nm. This value is consistent with the efficiency computed from the spec-

ified characteristics of the photoreceiver's optical components.
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PHOTORECEIVER EFFICIENCY MEASUREMENTS

C. G. Lehr

1. INTRODUCTION

Laser systems as used for satellite tracking are different from other laser track-

ing systems (Lehr, 1974). In some ways they are simpler, because:

A. The objects tracked are in stable orbits.

B. Output data are not required immediately.

In other ways, they have requirements that are particularly stringent; for example,
they must track objects at megameter ranges with decimeter accuracies. Further-

more, the currently shifting emphasis in application from geodesy to geodynamics,
along with the launch of spherical satellites such as Lageos and Starlette, will require

both increased range and increased accuracy (Kaula, 1969).

Currently, all laser systems for satellite tracking are pulsed systems (Halme,
1973), whose performance is characterized by the amount of energy in the received

signal. This energy is low and is usually expressed in photon counts per pulse or,
when a photomultiplier tube (PMT) is used, in photoelectrons per pulse. It is impor-

tant to be able to calculate and measure N, the number of electrons in a return for

two reasons: In the first place, N must be at least unity for the return to be detected,
and in the second, the accuracy of a single return increases with N. To see this,
consider a pulse of width t ns. Assuming the return has the shape of a normal prob-

ability density function, the error associated with a return of a single electron is

t
at 1/2 ns , (la)

2(2 In 2)

This work was supported in part by Grant NGR 09-015-002 from the National
Aeronautics and Space Administration.
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or

OR = cm (lb)
(2 in 2)

where, for example, GR = 127 cm when t = 20 ns. However, when N > 1, we have

N (2)

which, for N = 300, a value just below the point where PMT saturation begins to set in

for the RCA 7265 PMT, is

127N =12 7 cm
3001/ 2

In calculating and measuring N values, we also determine the laser receiver's

efficiency and related quantities. Then we can do the following:

A. Observe any decrease in receiver efficiency with time.

B. Compare one laser receiver with another.

C. Measure atmospheric extinction at the laser wavelength.
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2. QUANTITIES MEASURED

The receiver efficiency is the principal result of the measurements described in

this report. It is defined herein as the number of photoelectrons generated by the PMT

divided by the number of photons reaching the aperture of the receiving telescope. The

most important factor in the receiver efficiency is the quantum efficiency of the PMT,
but transmission losses in the receiving telescope are also significant. These losses

include the aperture blocking of the secondary mirror and its supporting spider, along

with absorption in the reflector, lenses, and narrow-band filter. The central wave-

length of the measurement is that of the laser, 694 nm, but the measured efficiency is

an integrated value over the receiver's bandwidth (several angstroms) rather than over

the spectral width (< 1 A) of the transmitted laser energy.

Other quantities are obtained along with the measurement of the receiver's effi-

ciency. Of these, the value of the PMT gain is useful because it influences the noise-

figure and gain requirements of the video amplifier that follows the PMT. The single-

electron distribution of the PMT is important in distinguishing weak returns from the

noise- background. The receiver-threshold level can be set lower when this distribution

is narrow than when it is wide. The area of a single electron allows the number of

electrons in the received pulse to be calculated from the area under the received pulse.

The duration of a single-electron pulse is a measure of the overall response time of

the receiving system.
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3. TECHNIQUE USED

Measuring receiver efficiency is similar to measuring the quantum efficiency of a

PMT. A technique commonly used at present for the latter requires a calibrated light

source for the input and a discriminator and counter for the gain and output measure-

ment (Klobuchar et al., 1974). The procedure is complicated for the general case

because it is necessary to consider the wavelength and intensity of the input light as

well as the distribution of the light beam over the photocathode. However, certain

simplifications result from the limited nature of the present situation. Our measure-

ments are made only for the ruby-laser wavelength of 694 nm, for intensities below

the saturation level of the PMT, and for a light beam that covers the photocathode.

The technique described herein uses only equipment already available at an observ-

ing station. The input light flux F and the PMT anode current IA are measured simul-

taneously. The gain G of the PMT is measured shortly before or after the measure-

ment of F and IA . The cathode current I is IA/G. If F is in photons per second and I

in electrons per second, the efficiency of the receiver is

= (3)

Bright stars are used as sources of input light, with values of F computed from

tables of narrow-band photometric data. The PMT gain is determined by dividing the

average measured output charge of a single-electron pulse by the electronic charge,
q = 1. 602 X 109 Coulomb. The output charge is found by measuring and averaging

the areas under single-electron pulses in the anode current. These pulses are dis-

played on a fast oscilloscope and photographed. The charge, in Coulombs, is the area

under one of these pulses when the vertical scale is in amperes and the horizontal

scale is in seconds.

Actually, IA is the measured anode current less the background current that exists
when F = 0.

PRECEDING PAGE BLANK NOT FILMED
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A number of measured pulse areas are averaged to reduce the statistical variation

introduced by the dynode amplifiers of the PMT. We use oscilloscope photography

because that equipment is already available at the Smithsonian Astrophysical Observa-

tory (SAO) observing stations; there are other less time-consuming possibilities, but

they would require additional equipment or modification of components now in use. If

a discriminator and frequency counter were available, the cathode current could be

measured directly in photoelectrons per second. Or if the "lock-out" feature of the

laser system's time-interval counter could be made temporarily inoperative, the

cathode current could be obtained by averaging measured intervals between successive

electron pulses in the anode current. The cathode current is the reciprocal of this

average value.
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4. DESCRIPTION OF THE PHOTORECEIVER

A block diagram of the laser receiving system as set up for range measurements

(Lehr et al., 1971) is shown in Figure 1. The transmitted and received pulses are

displayed on a Tektronix type 454 oscilloscope, whose bandwidth is 150 MHz. Figure 2

is a block diagram for receiver efficiency measurements. The PMT's dc anode current

is measured by a microvoltmeter connected across a 100-ohm resistor, and single-

electron pulses in the anode current are displayed on the fast oscilloscope. Figure 3

is an optical diagram of the Cassegrain receiving telescope (Gates, 1970), whose

characteristics are given in Table 1. A transmission curve for a typical narrow-band

filter is reproduced in Figure 4. Pertinent characteristics of the RCA 7265 photomul-

tiplier, taken from the manufacturer's data sheet (RCA, 1968), are listed in Table 2.

Using Tables 1 and 2, we can estimate values to be expected in our measurements.

The receiver efficiency should be the quantum efficiency of the PMT times the reflect-

ances of the two mirrors times the transmissions of the three lenses times the trans-

mission of the narrow-band filter, or

= 0.025(0. 88) 2 (0.999)3 (0.625) X 100 = 1.2% .

We can also estimate the background current due to the light from the dark night

sky:

IB=NX *AR R 0 R * q G , (4)

where

NX = the spectral radiance of the sky,

AR = the area of the receiver aperture,

0R = the field of the receiver (solid angle),

AX = the bandwidth of the filter,

7 = the receiver efficiency,
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q = the electronic charge,

G = the gain of the PMT.

For the dark night sky, NX is approximately 1013 photons s m - 2 sr - pm -1 (Lehr,
1974; see Table IV). The other quantities are AR= 0.2 m2 R= 10-6 sr for a field of

arcmin, A\ = 8 X 10 pm , 1= 1.2%, q= 1. 6 X 10 Coulomb, and G = 4. 8 X 10.

We obtain IB = 0. 1 nA, which is negligible compared with the specified dark current

of 50 nA. It should be noted, however, that for the most part in our tests, the dark

current was only a few nanoamperes.

Table 1. Optical characteristics of the photoreceiver.

Primary Mirror

0. 508-m diameter

f/4

parabolic

88% reflectance

Secondary Mirror

0. 146-m diameter

flat

88% reflectance

Lenses

99. 9% transmission at 694 nm

Table 2. Specified characteristics of the RCA 7265
photomultiplier tube.

Operating voltage 2400 V

Quantum efficiency (at 694 nm) 2.5%

Gain 4.8 X 107

Dark current (at 220C) 50 nA

Pulse rise time (10 to 90% of peak) 2. 7 ns

Maximum anode current 1 mA

The equivalent pulse width for a gaussian pulse is
3.8 ns.
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5. CALCULATIONS

The first task in calculating the receiver efficiency is to determine F, the input

light flux at the laser wavelength. To do so, we must have spectral flux densities for

the stars used in the measurements. These are taken from the published results of

Mitchell and Johnson (1969) on 1000 bright stars in 13 narrow-wavelength bands. Of

use to us is band 72, whose central wavelength is 724 nm and whose effective rectangu-

lar bandpass is 8. 1% or (695 nm, 753 nm). The ruby-laser wavelength, 694 nm, is at

the edge of this band, but adjacent band 63 appears to be less suitable, having a central

wavelength of 635 nm and an effective bandwidth of 5. 1% or (619 nm, 651 nm).

The stars measured by Mitchell and Johnson are brighter than 5th visual magnitude

and north of -20 ° declination. This declination limit eliminates some bright southern

stars (such as Achernar, Antares, Canopus, and Fomalhaut) from the tables. The stars

are listed according to their bright-star numbers, found in the Yale Catalog (Hoffleit,

1964). The photometric data are referenced by AO V stars of zero magnitude. An

AO V star is a main-sequence star whose color index, B - V, is zero. Table 2 of

Mitchell and Johnson gives an absolute calibration of 1.73 X 10 W cm - 2 pm- I in

filter band 72 for a zero-magnitude AO V star.

The spectral irradiance of a given star is found by using the absolute calibration

from above along with Table 7 of Mitchell and Johnson. This table is entered with the

star's bright-star number. Two magnitude values are selected: the one headed 52,

which we call x, and the one from the column headed 52-72, which we designate by y.

Since x is the magnitude of the star in spectral band 52 and y is the magnitude difference

between bands 72 and band 52, we have the following relation:

logl0 - =0. 4 (x - y) , (5)

where 10 and I are, respectively, the spectral irradiance values for the AO V reference

star and for the star in question. Using the given value for 10, we have
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S= 1.73 X 10- 12 X 10
- 0 4(x-y) W cm 2 pm - 1  (6a)

= 6.05 X 1010X 10 -0. 4(x-y) photons s - 1 m-2 m-1 , (6b)

where in equation (6b) we used the fact that hv = 2.86 X 10- 1 9 Joule for the laser

wavelength, 694 nm. The value of I given by equation (6) is that outside the earth's

atmosphere. In computing the light flux entering the aperture of the receiver, we must

correct for atmospheric extinction, for which we use

T= e-T/sin a . (7)

Here, a is the star's altitude angle and T is given by Kaula (1962), as follows:

T= ( 0.00114 -0.1 2 6h +. -0.65h) dh, (8)e 0. 145e dh,
h0

where h 0 is the station height in kilometers and X is the wavelength in micrometers.

The first term in the integrand comes from molecular scattering, with a scale height

of 7. 9 km. The second term is due to water-vapor absorption, which has a scale

height of only 1. 5 km and hence is affected significantly by the station's ho value. For

a ruby laser with X = 0. 694 pim, equation (8) becomes

7= 0. 0389 0 126he + 0. 2 2 3 e- 0 65h 0  (9)

We can compute a from the epoch of the observation and the coordinates of the

star and the station (see Appendices A and B) from the following (Sidgwick, 1971, p. 509):

sin a = sin 6 sin 4 + cos 6 cos cos H , (10)

where H and 5 are the star's hour angle and declination and is the station's latitude.

The hour angle is
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where RA is the right ascension of the star and LST, the local sidereal time, is

LST = (1. 002738) UT + X + ST , (12)

in which UT is the universal time, X is the east longitude of the station, and ST is the

hour angle of the equinox for Oh UT on the day of the measurement. LST, UT, X, and

ST in equation (12) can be expressed in either hours or degrees. The conversion

factor is 150 per hour.

We now calculate the input flux F for a given star:

F=1 * AR  .A * T photons s - 1  (13)

where I and T are given by equations (6b), (7), (9) and (10); AX is the width in microm-

eters of the narrow-band filter, and AR is the aperture area of the receiving telescope

in square meters. The SAO receiving telescope has an aperture diameter of 0. 508 m,
2

for which AR = 0. 203 m 2 . The value of AX varies from one filter to another between

7 X 10- 4 and 9 X 10- 4 pm. The cathode current I is

Is - Ib -1I = photoelectrons s , (14)
(1. 602 X 10 1 9 )G

where I is the anode current in amperes with the star in the receiver's field of view,

Ib is the background current with the star out of the receiver's field, and G is the

measured gain of the PMT. At the SAO stations, the PMT output current is measured
-6

as a voltage across a 100-ohm resistor. Hence, I s = (Vs/100) X 10 and
-6

Ib = (Vi100) X 10- 6, where Vs and Vb are voltages in microvolts. Equations (3),

(13), and (14) give the efficiency of the receiver.

For an idea of the I values we might expect from various stars, we assume a
s

station at sea level, a star altitude of 45, a filter bandwidth of 0.7 nm, a receiver

13



efficiency of 1. 2/6 and a PMT gain of 4.8 X 107 . For zero background current, we

obtain the following expression for Is from equations (3), (13), and (14):

-3
I s = 9.041 X 10- 3  p . (15)

Estimated I values are given in Table 3 for the 18 bright stars selected for the photo-
s

metric measurements (see Appendix A). The criteria for their selection were as follows:

A. The star must have a name. It was felt that a named star could be easily

identified by an observer, who would then check that the proper star was in the field

of the telescope.

B. The star must not be variable.

C. The computed PMT current must be -0.2 pA or more so as to be well above

the background current.

No attempt was made to track stars during the photometric measurements. The

telescope's direction was fixed and the star drifted through. If the telescope's field is

f arcmin, the star will be within this field for at least 4f s. Hence, for a field of

several arcminutes, there is enough time to make the measurement.
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Table 3. Characteristics of the 18 stars used for photoreceiver measurements.

Estimated
Bright- PMT anode

star x y -1 -2 current, I
Name number (52) (52-72) (photons s m pum (pA)

Aldebaran 1457 1. 333 1. 797 9. 269 X 1010 0.84

Algeiba 4057/8 2.303 1.198 2. 185 X 1010 0.20

Alphard 3748 2. 384 1.452 2. 563 X 1010 0.23

Altair 7557 0.799 0.236 3. 600 X 1010 0.32

Arcturus 5340 0. 243 1.321 1. 632 X 101 1  1.5

Capella 1708 0.243 0.859 1.066 X 1011 0.96

Deneb 7924 1.309 0. 185 2. 148 X 1010 0.19

Dubhe 4301 2. 068 1.072 2. 416 X 1010 0.22

Eltanin 6705 2. 662 1.675 2. 436 X 1010 0.22

Hamal 617 2. 315 1. 181 2.128 X 1010 0.19

Kochab 5563 2.479 1.525 2.511X 1010 0.23

Menkar 911 2.951 1. 969 2. 447 X 1010 0.22

Mirach 337 2.510 1.873 3. 363 X 1010 0.30

Pollux 2990 1.388 1.025 4. 327 X 1010 0.39

Procyon 2943 0. 462 0. 485 6. 176 X 1010 0.56

Rigel 1713 0. 172 0.080 5. 554 X 1010 0.50

Sirius 2491 -1.421 0.009 2. 257 X 1011 2.0

10
Vega 7001 0. 039 0.008 5. 876 X 10 0.53
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6. PROCEDURE

Receiver efficiency measurements are currently made at least once every 6 months

at each of the four observing stations. Before the measurements are started, coordi-

nates in azimuth and altitude for those stars (from Appendix A) that will be more than 200

above the horizon during the period of observation are sent to the station for epochs

5 min apart. Predictions are made for each night over a period of a week to a month

by using appropriate subroutines from the satellite-prediction program.

The actual measurements are made on clear nights, and measurements are con-

ducted on several stars, preferably those at high altitudes where the atmospheric

correction is minimal. PMT current readings are taken with a high-impedance volt-

meter across a 5% 100-ohm resistor that carries the anode of the PMT. The telescope

field is set to 4 arcmin, so at least 16 s will be available for the measurement.

The PMT is turned on 10 min before the transit of the first star, and the anode

voltage is set to the desired value and measured. The PMT current is read as each

star passes through the field, and the background current is read before and after the

passage of the star.

Single-electron measurements, needed to find the gain and other relevant param-

eters of the PMT, are made shortly before or after the star measurements. If desired,
an artificial light source can be used. The amount of light entering the PMT is adjusted

to give an anode current of 100 pA, a value that turns out to be convenient for oscillo-

scope photographs. Expanded pulses, taken with a sweep speed of 5 ns per division

(see Figure 5), are used to find the width of a single-electron pulse, and compressed

pulses, photographed with a sweep of 200 ns per division, are used to measure the

pulse amplitudes. If the gain of the PMT is the specified value, 4.8 X 107, there

should be about 26 compressed pulses on the photograph (see Figure 6). Since the

amplitudes have large variations, at least five photographs are taken for a good repre-

sentation of the distribution.

~ECEDING PAGE BLANK NOT FILMED
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One of the uses of the single-electron measurements is to calculate the number of

electrons in the return from a satellite or from a fixed reflector on the ground. This

number can be obtained from measuring the area under a single-electron pulse. For

the SAO systems, the return pulses are displayed after a video amplification of 31 dB,

the voltage gain for the Avantek AV-5 amplifier for input signals of 300 mV or less.

To take account of video amplification, the pulse areas derived from PMT anode-

current measurements are multiplied by 1031/20 = 35. 5.

Figure 5. Single-electron pulses: 20 mV per
division; 5 ns per division.

Figure 6. Single-electron pulses: 20 mV per
division; 200 ns per division.
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7. COMPUTATIONS

Although we have already presented the basic formulas for computing the quantities

described in Section 2, a few more details should now be supplied.

The amplitude distribution of single electrons is computed from the measured

pulse heights of photographs like Figure 6; the average amplitude is the mean of this

distribution. The average pulse width is determined from photographs like Figure 5.

The average single-electron area is assumed to be the area under a curve having the

shape of a normal distribution with an amplitude equal to the average amplitude and a

width equal to the average width. The width of the single-electron pulse is the full

width between half-amplitude points. Some pulses, however, are unsymmetrical,

having marked changes in slope on their trailing edges, which often occur near the

half-amplitude points. For this reason, the pulse width is not measured directly;

instead, we measure the area of the pulse and its amplitude. Then the width is taken

to be that for a curve having these area and amplitude values and the shape of a normal

distribution. If the pulse height is H and the area is A, this width is

1/2
2A 1 2 2 =0. 9394 A (16)
H H

If Wav is the average value of W computed from photographs similar to Figure 5

and H is the average amplitude from photographs like Figure 6, the average electron
av

area of the pulse before video amplification is

-1/21 (17)

av r / Hav av (17)

In principle, Aav could have been found by averaging the area under several hundred

pulses, but in practice, it is not convenient to do so, because many time-consuming

area measurements would have to be made. The method actually used takes advantage

of the fact that the pulse shape is fairly stable from pulse to pulse, although the pulse

amplitudes change markedly.
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Two programs were written for the Data General Nova minicomputer in the language

Forth (Collins and Cherniack, 1974): the first for computing PMT parameters from

single-electron-pulse photographs, and the second for computing receiver efficiency

from measurements on the stars. These are given in Appendices C and D.

20



8. RESULTS

Table 4 summarizes the results of recent photoreceiver measurements at the four

SAO stations, and Figure 7 gives plots of single-electron distributions.

The measured values of the efficiency are close to the expected value of 1. 2%

obtained in Section 4. Errors for the efficiency are sample standard deviations com-

puted from the efficiency values obtained with different stars as references. The

single-electron pulse widths are larger than the specified value for the PMT given in

Table 2; this stretching may be due to the video circuitry and the oscilloscope that

follows the PMT. The PMT gain is consistent with the specified value in Table 2.

The broad single-electron distributions shown in Figure 7 are as expected for a tube

(such as the RCA 7265) that was not designed to resolve single electrons. Pearl (1967)

also found a wide distribution for the RCA 7265.

(MV)
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10 XX
20 XXXXXXXXXXXXXXXXXXXX
30 XXXXXXXXXXXXXXXXXXXX
40 XXXXXXXXXXXXXXXXXXXX
50 XXXXXXXXXXXXXXXXXX
60 XXXXXXXXXXXXXXXXXXXXXXX
70 XXXXXXXXXXXXXXXXXXXXXXX
80 XXXXXXXXXXXXXXXXXXX
90 XXXXXXXXXXXXXXXXXXXXXXXX

100 XXXXXXXXXXXXXXXXXX
110 XXXXXXX
120 XXXXX
130
140
150

Figure 7. Single-electron distribution. (a) South Africa,
July 8, 1974; PMT S24439.
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Figure 7. Single-electron distribution. (b) Peru,
August 1, 1974; PMT S24245.
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Figure 7. Single-electron distribution. (c) Arizona,
July 10, 1974; PMT S24244.
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Figure 7. Single-electron distribution. (d) Brazil,
July 13, 1974; PMT S24240.
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Table 4. Results of photoreceiver efficiency measurements at the four SAO stations.

Average Average Area of
Date of Receiver electron electron single PMT

Station measurement efficiency (%) amplitude (mV) duration (ns) electron (V ns) gain

South Africa July 8, 1974 1.0 ± 0.2 63 6.5 15.4 5.4X 107

Peru Aug. 1, 1974 0.8 ± 0.1 55 5.9 12.2 4.3X107

Arizona July 10, 1974 1.0 ± 0. 1 116 6.3 27.5 9.7 X 107

Brazil July 13, 1974 1. 3 ± 0.2 92 7.1 24.6 8.7 X 107
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APPENDIX A

BRIGHT STARS USED FOR RECEIVER EFFICIENCY MEASUREMENTS

Visual Right
Name of star magnitude ascension Declination

Aldebaran a Tau 1.1 68? 621 +16 . 460

Algeiba y Leo 2.6 154.649 +19.969

Alphard a Hyd 2.2 141.590 - 8.549

Altair a Acq 0.9 297.390 + 8.801

Arcturus a Boo 0.2 213. 630 +19.312

Capella a Aur 0.2 78. 710 +45.974

Deneb a Cyg 1.3 310. 145 +45.190

Dubhe a UMa 1.9 165.549 +61.886

Eltanin yDra 2.4 269.006 +51.491

Hamal a Ari 2. 2 31. 440 +23. 345

Kochab P UMi 2.2 222. 690 +74.258

Menkar a Cet 2.8 45.242 + 3. 992

Mirach p And 2.4 17.082 +35.488

Pollux P Gem 1.2 115. 947 +28. 088

Procyon a CMi 0.5 114.498 + 5.290

Rigel pOri 0.3 78.334 - 8.229

Sirius a CMa -1.6 101.012 -16.681

Vega a Lyr 0.1 279.023 +38.759

The star positions are for 1975. 0 (from The American Ephemeris and Nautical
Almanac for the Year 1975, U.S. Govt. Printing Office, Washington, D. C., 1973).
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APPENDIX B

STATION COORDINATES

Height
Station (kmin) Latitude East Longitude

South Africa (7902) 1. 544 -25 . 959 28 . 248

Peru (7907) 2.452 -16.465 288. 508

Arizona (7921) 2.383 31.684 249. 122

Brazil (7929) 0.046 - 5.928 324. 836

From Gaposchkin, E. M., editor, 1973 Smithsonian Standard Earth (III), Smithsonian
Astrophys. Obs. Spec. Rep. No. 353; see especially pp. 339-341.
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APPENDIX C

FORTH PROGRAM; SAMPLE INPUT AND OUTPUT DATA

FOR COMPUTING PMT PARAMETERS

Forth Program

299
* 45 LOAD START 300 LOAD DONE 1
* ;S

45
* ( COMPUTATION OF PMT PARAMETERS FROM PULSE HEIGHTS AND WIDTHS ) 1
* DISCARD REMEMBER DISCARD 2
*3 D! 3
* ( H-SCALE MV/DIV IS FOR COMPACT PULSES P-SCALE IS FOR PLOT ) 4
* ( W-SCALE NS/DIV IS FOR EXPANDED PULSES ) 5
* ( IN: #BINS, P-SCALEp H-SCALE, W-SCALE ) 6
*( W: AREA DIV SQ, HEIGHT DIV ) 7
* ( H: HEIGHT DIV ) 8
* 40 LOAD 41 LOAD 42 LOAD 43 LOAD 9
* ;S

40
* " AVE. ELECTRON AMPLITUDE (MV) = " MESSAGE AVH-M 1
* " X" MESSAGE M 2

" AVE. ELECTRON DURATION (NS) = " MESSAGE AVW-M 3
* " AREA OF SINGLE ELECTRON (V-NS) = " MESSAGE AREA-M 4
* " PLOT OF SINGLE-ELECTRON DISTRIBUTION: " MESSAGE 5
* PLOT-M 6
* " (MV)" MESSAGE UNITS-M 7
* " PMT GAIN = " MESSAGE GAIN-M 8
* ( CONTINUED ON BLOCK 41 ) 9
* ;S
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41
* 36 INTEGER #BINS I INTEGER P-SCALE I
* 0. .VAR H-SCALE 0. -VAR -SCALE 2
* 1 1 0 #BINS @ 3 ARRAY BIN 3
* 0. .VAR H-SCALE 0. OVAR W-SCALE 4
* 0. *VAR KOUNT 0. eVAR K 0. oVAR Y 5
* 0. .VAR SUM-H 0. .VAR W-SUM 6
* 0. VAR X 0. .VAR A 0 INTEGER NX 7

: START CR CR 20 SPACES e I BIN MCLEAR 0. KOUNT o. 8
* 0. K .! 0. SUM-H .i 0. W-SUM .! ; 9
* : PUTINBIN 10. ./ .5 .+ .FIX I BIN 10
* DUP @ 1 + SWAP ! ; 1
* ( CONTINUED ON BLOCK 42 ) 12
* iS

42
* : IN W-SCALE .1 H-SCALE ! .FIX P-SCALE ! oFIX #BINS 2 1
* : H 0 DO KOUNT 1. .+ KOUNT .! H-SCALE o* .DUP 2
* PUTINBIN SUM-H .+ SUM-H . LOOP ; 3
*: W 2 / 0 DO K 1. .+ K .! ./ W-SCALE .939437 8* 9* 4
* W-SUM .+ W-SUM .! LOOP ; 5
* : AVH CR CR AVH-M SUM-H KOUNT ./ *DUP 6
*Y .! .. 7
*: AVW CR AVW-M W-SUM K ./ *DUP X .• .. 1 8
* : AREA CR AREA-M Y X 1.06447 .* o* .DUP 9
* A .! .035481 ., .o 10
* ( CONTINUED ON BLOCK 43 ) 11
* iS

43
* : GAIN CR GAIN-M A 50. ./ 1.6021E-7 ./ .o 1 1

4 F ! 2
* 0 INTEGER X'S 3
* " XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXX" 4
* X'S ! 5
* : P X'S @ COUNT DROP NX @ DUP IF TYPE ELSE DROP DROP THEN 1 6
* : PLOT CR CR PLOT-M CR CR UNITS-M CR OBINS 0 7
* 0 DO CR I 10 * . E 3 BIN @ P-SCALE @ / 8
* NX ! P LOOP J 9
* " ELECTRON AMPLITUDES WERE MEASURED" MESSAGE E-M 10
* : ELECTRONS KOUNT .. E-M ; 11
* : DONE AVH AVW AREA GAIN PLOT CR CR ELECTRONS ; 12
* ;S
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Notes: A. # BINS controls the number of 10-mV intervals that will appear in the

plot of the single-electron distribution.

B. H-SCALE (mV/div) and W-SCALE (ns/div) are, respectively, the

vertical oscilloscope setting for the compact pulses and the sweep

speed for the expanded pulses.

C. P is a constant that can be increased to prevent the plot of the single-

electron distribution from going off scale.
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Sample Input Data

300
* % PERU 1 AUG 74 PMT S24245 % 1
* 16. 1. 20. 5, IN 2
* C 2.7 2.4 6.1 4.4 4.6 3.8 4.4 4. 3.2 2. 3 W 3
* C 1.8 1.5 4. 3.3 2.7 2.2 4.6 3.6 5.3 4.4 3 W 4

* C 2.9 2.2 3.7 2.8 5.9 5. 1,4 1.4 7.5 4.9 3 W 5

* C 2.7 1.5 4.1 3.1 6. 1.8 2.2 .8 1.5 2.7 3 H 6

* C 2.4 1.5 3.6 1.6 2. 3.6 2.2 3.6 3.1 1.3 3 H 7

* C 2.8 1.5 2.4 4.2 4.2 1.4 2.8 1.1 6. 1.7 3 H 8

* C 1.7 3.2 1.6 2. 2.3 2.5 2.4 5. 4.3 3.3 2 H 9
* C 3.6 1. 5.8 1.8 1.7 4.1 3.4 .8 1.2 2.6 3 H 10
* C 3.2 2. 2.5 1.5 2.8 1.4 2.7 4.2 1.5 3 H 11
* C 1.7 3. 3.4 3.3 5.8 3.4 1.8 6. 2.2 2.4 3 H 12

* C 1.4 6. 2.4 2.8 1.4 3.1 1.4 .8 4.1 3 H 13

* 301 LOAD 14
* JS

301
* C 6. 2.2 4. 4. 3.1 2.9 .9 5.3 1.7 .6 3 H 1
* C 3. 1.5 3.1 1.6 1.2 .6 3.4 1. 3. 3 H 2

* C 1.4 1.4 3. 5.6 2.9 3.4 2.1 1.7 1.8 3.4 3 H 3

* C 1.5 2.9 4.3 1.8 4.8 5.8 2.4 3.8 .9 3 H 4
* C 1.9 1.6..4 1. 6. 1.6 3.7 1.8 3.9 3.4 3 H 5

* C 1.7 5.3 4.1 1.9 4.6 1.9 1.2 4.3 2.3 2 H 6

* C 1.8 3.7 2.8 2.6 .5 5.1 5.8 1.7 4.5 3.6 3 H 7

* C 3.5 1.4 3.4 1.5 2. 6. 1.7 2.2 .4 3 H 8

* C 5.4 1. 3. 2. 4.6 1.7 1.2 .5 4. 1.6 3 H 9

* e 1.9 3.8 3.4 1.8 3.6 1.6 2.7 6. 4.2 3 H 10

* C 1. 4.8 3.9 2.4 5.4 2.4 1.4 4.5 1.5 .4 3 H 11
* C 4.7 1.2 3.7 4.5 3.6 1. 4.3 4. 302 3 H 12

* 302 LOAD 13

* ;S

302
* C .7 1.2 1.4 1.8 4.7 3.3 2.6 3.4 1.8 4. 4.4 6. 3 H 1
* C 4.2 3. 2.7 3.8 .6 3.4 .7 3.8 1.5 2.5 6. 2.7 3 H 2
* E 1. .6 4.6 4.5 4.8 3.6 3.7 1.6 3.7 2.7 1.6 .5 3 H 3
* [ 1.2 .7 1. 1.5 2.9 1.9 .6 5.2 1.6 4.2 4. 1. 3 H 4

* C 5.2 1.7 2.3 1.8 5.7 2.8 .5 2.4 3.5 2.6 1.5 .7 3 H 5
* C 1.9 2.7 3.3 3.3 3. 3.9 4.4 1. 4.4 1.6 3.6 1.7 3 H 6
* C 3.7 4.6 6. .5 2.3 1.2 1.7 3.4 1.3 4,2 3.2 1.8 1 H 7
* C 3.4 2.2 2.4 4.6 2. 6. 1.6 .8 1.1 3.6 1.7 1.6 3 H 8

* C 4.4 2.5 1.2 4.8 .8 2. 2.3 3. 1.1 5.4 2.4 3.8 3 H 9
* E 1.5 2.1 .5 3.5 1.4 2.7 1.5 3 H le

SC-4
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Sample Output Data

299 LOAD

PERU 1 AUG 74 PMT S24245

AVE. ELECTRON AMPLITUDE (MV) = 5.478E+1
AVE. ELECTRON DURATION (NS) = 5.917E+0
AREA OF SINGLE ELECTRON (V-NS) = 1.224E+1
PMT GAIN = 4.307E+7

PLOT OF SINGLE-ELECTRON DISTRIBUTION:

(MV)

0
10 XXXXXXXXXXXXXXXXXX
20 XXXXXXXXXXXXXXXXXXXXXXXXXXXXX
30 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
40 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
50 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
60 XXXXXXXXXXXXXXXXXXXXXXXXXXX
70 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
80 XXXXXXXXXXXXXXXXXXXXXXXXX
90 XXXXXXXXXXXXXXXXXXX
100 XXXXXXXX
110 XXXXXXX
120 XXXXXXXXXXXXXXX
130
140
150

3.070E+2 ELECTRON AMPLITUDES WERE MEASURED
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APPENDIX D

FORTH PROGRAM AND SAMPLE OUTPUT FOR

RECEIVER EFFICIENCY COMPUTATIONS

Forth Program

23
* ( STELLAR PHOTOMETRY ) 1
* DISCARD REMEMBER DISCARD 2
* 22 LOAD 24 LOAD 25 LOAD 26 LOAD 3
* 27 LOAD 28 LOAD 29 LOAD 33 LOAD 4
*3 D! 5
* ;S

22
* " " MESSAGE MO I
* " EFFICIENCY (Z) ALTITUDE (DEG) " MESSAGE MI 2
* " AVERAGE EFFICIENCY (%) = " MESSAGE M2 3
* " ESTIMATED ERROR =" MESSAGE M3 4
* : HEADING CR MO MI CR ; 5
* : MA CR CR M2 ; 6
* : MS CR M3 ; 7
* ( CONTINUED ON BLOCK 24 ) 8
* ;S

24
* 0. .VAR FILTER 0. .VAR GAIN 0. .VAR C 1
* 0. .VAR LAT 0. .VAR LONG 2
* 0. .VAR L 0. .VAR ST 0. .VAR UT 3
* 0. .VAR SV 0. .VAR BV 0. .VAR RA 4
* 0. .VAR DEC 0. .VAR E-S 0. .VAR E-SQ 5
* 0. .VAR N 0. .VAR E-AV 0. .VAR E 6
* : ZERO 0. E-S ! 0. E-SQ .! 0. N .! ; 7
* : DEGREES 3600. ./ .SWAP 60. ./ .+ .+ 15. .* 3 8
* : RAD 57.2958 ./ 3 9
* I CONSTANT SAFRICA 2 CONSTANT PERU 10
* 3 CONSTANT ARIZONA 4 CONSTANT BRAZIL 11
* ( CONTINUED ON BLOCK 25 ) 12
SiS
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25
*4 3 MATRIX STATION-ARRAY I
* : Q 4 1 DO DUP 4 J - 2 STATION-ARRAY .1 LOOP DROP ; 2
* .1138 -25.959 28.248 1 Q 3
* .07387 -16.465 288.508 2 Q 4
* .07616 31.684 249.122 3 Q 5
* .2557 -5.928 324.836 4 Q 6
* 1ICONSTANT ALDEBARAN 2 CONSTANT ALGEIBA 7
* 3 CONSTANT ALPHARD 4 CONSTANT ALTAIR 8
* 5 CONSTANT ARCTURUS 6 CONSTANT CAPELLA 9
* 7 CONSTANT DENEB 8 CONSTANT DUBHE 10
* 9 CONSTANT ELTANIN 10 CONSTANT HAMAL. 11
* 11 CONSTANT KOCHAB 12 CONSTANT MENKAR 12
* 13 CONSTANT MIRACH 14 CONSTANT POLLUX 13
* 15 CONSTANT PROCYON 16 CONSTANT RIGEL 14
* ( CONTINUED ON BLOCK 26 ) 15
* ;S

26
* 17 CONSTANT SIRIUS 18 CONSTANT VEGA 1
*18 3 MATRIX STAR-ARRAY 2

: R 4 1 DO DUP 4 J - 2 STAR-ARRAY .! LOOP DROP ; 3
* 265.2 68.621 16.460 1 R 4
* 62.52 154.649 19.969 2 R 5
* 73.32 141.590 -8.549 3 R 6
* 103. 297.390 8.801 4 R 7
* 466.9 213.630 19.312 5 R 8
* 305.1 78.710 45.974 6 R 9
* 61.44 310.145 45.190 7 R 10
* 69.13 165.549 61.886 8 R 11
* 69.7 269.006 51.491 9 R 12
* 60.88 31.440 23.345 10 R 13
*( CONTINUED ON BLOCK 27 ) 14
* ;S
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27
* 71.85 222.690 74.258 11 R I
* 70.02 45.242 3.992 12 R 2
* 96.22 17.082 35.488 13 R 3
* 123.8 115.947 28.088 14 R 4
* 176.7 114.498 5.290 15 R 5
* 158.9 78.334 -8.229 16 R 6
* 645.7 101.012 -16.681 17 R 7
* 168.1 279.023 38.759 18 R 8
* : STATION GAIN *! FILTER .! C DUP 1 3 STATION-ARRAY 9
* C .! E DUP 2 3 STATION-ARRAY LAT .! E DUP 3 3 10
* STATION-ARRAY LONG .! DROP HEADING ; 11
* ( CONTINUED ON BLOCK 28 ) 12
* ;S

28
* : LST UT 1.002738 .* LONG .+ ST .+ ; I
* : HA LST RA .- I 2
* : S DEC RAD SIN LAT RAD SIN .* DEC RAD COS 3
* LAT RAD COS HA RAD COS .* .* .+ ; 4
* : A S .DUP .DUP .* .MINUS 1. .+ SQRT ./ ; 5
* : ALTR A ATAN ; 6
* : ALT ALTR 57.2958 .* .. CR $ 7
* : X C .MINUS ALTR SIN ./ ; 8
* ( CONTINUED ON BLOCK 29 ) 9
* IS

29
* : ATTEN X EXP ; 1
* : CURRENT SV BV .- GAIN ./ 1.6021E-4 ./ ; 2
* : FLUX 7084.5 L FILTER ATTEN .* .* .* 1 3
* : KOUNT N 1. .+ N .! f 4
* : E-SUM E-S E .+ E-S .! 1 5
* : E-SQ-SUM E .DUP .* E-SQ .+ E-SQ .I 1 6
* : AVE KOUNT E-SUM E-SQ-SUM 1 7
* : EFFICIENCY CURRENT FLUX ./ 100. .* .DUP E .! .. AVE 1 8
* : STAR BV .1 SV .! DEGREES UT .! DEGREES ST .! 9
* C DUP 1. STAR-ARRAY L .! 1 DUP 2 3 STAR-ARRAY 10
* RA *I C DUP 3 3 STAR-ARRAY DEC *! DROP 11
* EFFICIENCY ALT i 12
* ( CONTINUED ON BLOCK 33 ) 13
* IS
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33
* i AV E-S N ./ .DUP E-AV .! .. 1 1
* : STD MS E-AV .DUP .* N .* *MINUS E-SQ .+ 2
* N 1. .- ./ SQRT .. ZERO 1 3
* : TEST N 1. .= IF ZERO ELSE STD THEN 3 4
* : AVERAGE MA AV TEST ; 5
* IS

Notes: A. The 3 X 4 matrix "station array" contains each station's location (latitude

and longitude), along with its constant 7 for atmospheric extinction.

B. The 18 X 3 matrix "star array" contains each star's location (right

ascension and declination), along with a constant that gives its spectral

intensity at 694 nm.
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Sample Output

23 LOAD OK

PERU 7. 4.307 STATION
EFFICIENCY (%) ALTITUDE (DEG)

HAMAL 20. 32. 56. 07. 15. 02. 17. 1.45 STAR 8.644E-1 3.022E+1
MIRACH 20. 32. 56. 07. 40. 02. 24. 1.50 STAR 7.829E-1 3.289E+1
MENKAR 20. 32. 56. 07. 45. 00. 16. 1.50 STAR 6.889E-1 3.476E+1
ALTAIR 20. 32. 56. 08. 05. 05. 27. 1.55 STAR 8.621E-1 2.463E+1
MIRACH 20. 32. 56. 08. 10. 02. 24. 1.40 STAR 7.796E-1 3.546E+1
MENKAR 20. 32. 56. 08. 15. 01. 18. 1.50 STAR 7.697E-1 4.158E+1
HAMAL 20. 32. 56. 08. 40. 02. 17. 1.50 STAR 8.281E-1 4.363E+1
MENKAR 20. 32. 56. 08. 45. 02. 18. 1.55 STAR 7.581E-1 4.820E+1
HAMAL 20. 32. 56. 09. 10. 02. 18. 1.55 STAR 8.736E- 1 4.693E+1
ALDEBARAN 20. 32. 56. 09. 15. 02. 62. 1.60 STAR 7.772E-1 2.846E+1

AVERAGE

AVERAGE EFFICIENCY (%) = 7.985E-1
ESTIMATED ERROR = 5.817E-2

Notes: A. The computation is started by entering the name of the station followed

by the bandwidth of the filter (in angstroms), the PMT gain (with the

factor 10- 7 omitted), and the word STATION.

B. The photometric observations are entered by the name of the star

followed by ST (hours, minutes, seconds) for the date of the observation,

UT (hours, minutes, seconds), two readings of the microvoltmeter

(with the star in and out of the field), and the word STAR.

C. The average efficiency and the estimated error are obtained by entering

the word AVERAGE.
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