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- Consider the ordinary differéntial equation
x = £(t,x) ' ' (D)
where x and £ belong to Rn, t is a real scalar and where f is-assumed to
be continuous on D_ = {(t,x) : £ >0, x <r}, 0<r<+> Let x(t,t ,x_)
denote a solution of (I), such that x(to,to,xo) = X_. In the following, if
"a, b both belong to R" and ay z_bi (ai > bi) for all 1 = 1,2,...,n we shall

write a > b (a > b).. Further, a functionAf(x) where f and x belong to R",

will be said to be of type K in a set § if £ (a) < £,(b) (i = 1,2,...,n) for

any two points a, b in S with a, = bi and a, < b, for all i k.

i k k
In addition to (I) we will also consider the "comparison' differential
equation |
=) | - ao
where w and r belong to R" and w is assumed'continuous for all (t,r) such
that t > 0 and re-Rm. It will also be necessary to require w to bé a
function of type K, for each fixed t, in R".
The following lemma is given relativevto (I) and (I1) and is of funda-
ﬁental importance. It comprises the basic idea of the comparison principle.
Lemma. Let v(t,x) belong to R™ and be continuous and locally Lipschitzian,

with respect to x, on Dr' Suppose that

vk(t,x) = 1lim sup h-1 {v[t+h, xt+hf(t,x)] - v(t,x)} < w(t,v(t,x)
b0 + @

for all (t,x) Dr and also suppose v(O;xo) <r. Let rm(t,O,ro) denote a
maximal solution of (II) and let J denote its right maximal interval of
existence. Then v(t,x(t,O,xo)) i_rm (t,O,ro) for all t €J such that
(t,x(t,O,xo))e Dr‘

The existence of the maximal solution.rm(t,O,ro), under the conditions

placed on w, was established by Kamke. It can easily be shown that the local



"Lipschitz condition assures that v*(t,x) coincides with the upper right

derivative of v(t,x(t,O,xo)) for every (t;x)e-Dr. The lemma then follows
immediately from another theorem of Kamke. With respect to the applications,

it should be noted that

vh(t,x) = —g{ + -g—:f . £(t,x)

in the case v(t,x) has continuous partial derivatives.

This lemma, or special cases of it, has been used by a nuﬁber of indi-~
viduals to obtaiﬁ sufficient conditions for the existence of solution pro-
portion of classical stability theory; An example of its application can
be found in the paper of Appendix I, "6n a stability property of Krasovskii",

which was published in the International Journal of Non-Linear Mechanics,

Vol. 5, pages 507-512. 1In this paper, sufficient conditions for a type of
practical stability, proposed by Krasovskii, were obtained. The résults are
of particular value to investigations involving the behavior of systems over
a finite interval of time.

A different version of the comparison lemma was given in the paper of

Appendix II, "A comparison lemma for highér order trajectory derivatives",

pubiished in the Proceedings of the American Mathematical Sociefy, Vol. 27,
Number 3, in Marcﬁ 1971. Here thg basic lemma on comparison theory was used
to obtain a compafison lemma which is useful when higher order trajectory
derivatives of Liapﬁnov functions are knowﬁ.

Appendix ITI, "A stability condition for linear comparison systems",

published in the Quarterly of Applied Mathematics, July 1971, presents a
result wpich is.useful when applying the'comparison principle fbllowing
the basic approach given in a paper of Bailey. Using a result of this
paper, it is possible to provide a very much simplified proof ofvan impor-

tant section of Bailey's original paper.



. The paper of Appendix IV, "A result on differential inequalities and
its application to higher order trajectory derivatives', was published in

the SIAM Journal on Analysis, Vol. 4, Number 4, in November 1973. This

paper was conéerned with the iﬁportant problem of obtaining a less restrictive -
condition fér.comparison systems than that imposed by the type K condition.:

In addition to obtaining a less réstrictive condition, an example was given

of its applicatién to highe; order trajectory defivatives. The example
considerably improved thaﬁ given in the paber of Appendix II.

The result obtained in Appendix IV required investigation of the adjoint
differential equation of the variational equation of the right side of the
inequality. The éondition i§se1f céﬁld be éonsideredlas the failu;e to
satisfy a certain two point.boundary value problem. Consequently some effort
~ was devoted to study of two point boqndary valug problems.' Papers resulting
f;om this 1investigation were. those of Appendix V, "An existence theorem for

boundary value problems™, published in the Quarterly of Applied Mathematics,

April 1973; Appendix VI, "Conditioning of linear boundary value problems",

published in the Swedish Journal BIT, Vol. 12, 1972; Appendix VII, "Application

of Liapunov theory to boundary value problems II", published in the Proceedings

of the American Mathematical Society, Vol. 37, Number 1, January 1973; Appendix

VIII, "Optimization of bounds for boundary sets', presented at the 1974 Inter-

national Congress of Mathematicians, Vancouver, Canada.

An application of the comparison prinéiple to the analysis of approximate

systems was given in the paper of Appendix IX, "Error estimates for approximate

dynamic systems", to be published in a 1974 issue of the International Journal
of Control. In this paper, two approaches were considered for obtaining

estimates . on the error between approximate and exact solutions of dynamic

systems.



It sométimes occurs that the matrix of a linear coﬁparison system is
n§t of the required type K. In these cases it is sometimes possible to
maintain the inequality while replacing the matrix by one whose off diagonal
elements are the absolute values of the original matrix. The paper of |
Appen&ix X, "Stability of a class of matrices similar to nearly ﬁon—negative

matrices'", to be published in the SIAM Journal on Applied Mathematics in

1975, is concerﬁed with the question of when the stability of the former
matrix implies the stébility of tﬁe latter and wﬁether a simple test for
the stability of such matrices exists. |

Closely related to stability theory is”the topic pfﬂbifurcation-analysis.
Roughly, a system will bifurcate when it loses stability. The papers of
Appeﬁdices XI and XII are concerned with this problem. Appendix XI, '"'Sus-
tained émall osciilations in nbnlinear control systems", submitted for publi-

cation to the International Journal on Control concerns some results from the

theory of bifurcating solutions which can be used to obtain conditions which
allow sustained small oscillations in aircraft-spacecraft>dynamiés. Appendix

XII, "Structurally stable bifurcating systems', submitted to the International

Journal of Nonlinear Mechanics is concerned with showing that a system of

-

ordinary differential equations with a vertical bifurcation cannot be structur-

ally stable. The purpose of these investigations was to determine the applica-
tion of comparison theory to bifurcation analysis. So far, it is not clear.
Finally, the paper of Appendix XIII, '"Scalar n-th order comparison systems',

submitted to the IEEE Transactions on Automatic Control discusses results from

sgvefal papers and their application to comparison theorems involving higher

order trajectory derivatives.
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AFFENDIX VII

APPLICATION OF LIAPUNCV THEORY TO
BOUNDARY VALUE PROBLEMS, II*
by

J. H. George** and R. J. York'

1. Introduction. In [1], George and Sutton formulated a Liapunov

theory for the existence and uniqueness of solutions to the following class
of boundary value problems; |

(1.1a) x'" = f(t,x,x")

(1.1b) x(a) = A, x(b) =B

where A,B are fixed n-vectors, ' = d/dt, .x is a n-vector with a
coqtinuous second dérivative on ([a,bl, ana the n-vector functipn f is

Zq where [a,b] 41is an interval on

defined and continuous on D = [a,b] x R

the real line. The development ;n (1] replaced certain conditions of

Hartman [2], by Liapunov-type results. Fundamental to this approach.was

the construction of aAfunction g which is equal té‘ f on a bounded region.
LEMMA 1.1. (Hartman (2, p. 432]). Supvose f isldefined and contin-

uous on D, = [a,b] X {x : ||x]] <1} x R" and let N> 0 be given. Then

for any [tl,tzl [a,b] there exists a continuous function g bounded on

D,, such that f =g on D

M 1

By placing Liapunov conditions on

= [t),t,] X {x ¢ x| <M} x {x' : ||x'|] < N},

(1.2) x' = g(t,x,x")
it was shown in [1] that the solqtioﬁs of (1.2) and (1.1b) are also
solutions of (1.1). '

-In this paper, a more restrictive class of'Liapunov functions than

those considered 1n‘{1] are introduced. This allows the existence theorems



4

in (1] to be proved with conditions in terms of £ rather than g as in
[1]. Thus, a principlé difficulty in using the results of [1] are removed.
Also, the new class of Liapunov functions is still sufficiently large to

include Hartman's condition, [2].

2. Liapunov Conditions for existence of solutions. Let a Liapunov-
function V(t,x,x') be a continuously differentiable in (t,x,x'), real

valued function.. Lét

v - ( 3V) v (av' v )
geoeoe g » [) gt ey A J
9x ax x * 9x 3x1 axn

Let <-,°> denote the dot product in n-dimensional Euclidean space. Then
define the derivative of V with respect to t along a solution of (l.la)

to be,

LAY L AV BV
Ve = ae * mex” * Syt

Also let =x(t) belong to the class Cz(tl,tzl if x"(t) 1is continuous
on [tl,tzl. We will now restate a Lemma of George and'Sutton_[ll in terms
of this Liapunov function.

LEMMA 2.1. (George and Sutton [1]). Suppose there exists a Liapunov
function U(t,x,x') defined on D2 = [tl,tzl x {x: lellli M} x R%, Let
X(t) be the set of functions x(t) € Cz{tl,tzl satisfying ||x(t)||_§ M
on [tl,tzl, ana also the following properties:

(1) U(tl,x(tl),x'(tl)) =0 .
(11) U(t,i,x')_i (t - tl) [} (||x'||), where ¢ 1s a positive continuous
function defined on {[0,®) such that ¢(t) +©® ag ¢+ ®,

(111) there exists a positive constant L such that

U U x> + <§gw,x"> Z L in the interior of D

1 ]
U = et %

2°
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Then there exists a positive constant N such that ||x'(£)|| <N on
[tl?tzl’ for every x(t) belonging to X(t).
EXAMPLE. Let
U= (t - tl)Hx'”z-

Then conditions (i) and (ii) are satisfied. Condition (i1ii) becomes

- |Ix'(e]l?

(2.1 <x' (t),x"(t)> < 7t = tl) on (ti,tzl

From the lemmé, there exists an N such that if (2.1) is satisfied and

[[x(t)l|.§ M then ||x'(t)}]| <N on [tl,tZ]. Many lemma's similar to

Lemma 2.1 could be developed. This was simply an attempt in [1l] to show

that alternatives existed to the standard Nagumortype theorems [2,'p. 428-9].
THEOREM 2.1. Assume there exists a Liapunov function satisfying the

hypothesis of Lemma 2.1. Let >V(t,x,x') be another Liapunov function

 defined on  Dy = [t,,t,] X {x: lell'Z.M} x R®  and satisfying:

W &e><co for |x|| 2, |[x']| 2w+1

and o

(11) <§2"TTETTf(t x')> > <g ,,f> for ||x|| > u and |[x'|| <N

Then Vé >0 in the interior of D, implies V; >0 1in the interior of D,.

Proof. Let N be the constant provided by Lemma 2.1. As in Hartman

g -8(}|x"}] - ME(e,x,x") on Dy
(2], let g(t,x x') = <(. g(t. Hx ,x') when ||x|| > M.
Here,
(o if x<0
-8(8) = ) if 0<s <1
if s> 1

The proof now consists of establishing that V;.Z.O on D with []x]l = M.
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Then, the argument is extended to ||x|| > li. The proof is motivated by a
result of Knoblock [3]. '

On 1),I with ||x|| =1,
v L8V v

+ 5% x'> + <av

TS ox’ BT

(2.1) A

where 1 =1 - 6(||x"|| -~ ¥) € [0,1]. Since (2.1) is a linear function of

Te0,1], 4f V>0 for T=0 and T=1 then V >0 for all

te[0,1]. At T=1, VI =V >0. At 10, [[x'[| > N + 1, we have

from condition (i)

- 8V Vv av v <! aVv -
Vg ot + <ax,x > >3 Nt + <a‘ > + <a > vf 2_0.
1t ||x|| > u, |
av ggl’ ' Hx " o
Vg a5t + <a > + <ax,,-”——n- (t,'”—;”-,x )> s

W AV Ly, T AV Mx

at ¥ “ox TT=IT “ow £ T* > 2 0

' by repeating the argument above for T = 0 and T = 1, using condition (ii)
when T =1 and condition (i) when T = 0.
Using this result, THEOREM 4.2 in [1] can now be stated as .follows:
THEOREM 2.2. Let x(t) be a solution of (1.2) definéd on'_[tl;le
{a,b} ‘and suppose that ||X(t1)||_§ M, ||x(t2)’|':_u, Let there exist a
Liapunov function V(t,x,x') defined on D, such that
(1) Vv(t,x,x') = 0 whenever Flx})] = ™

(11 v, %,x') > 0 whenever ||x|| > u

v

<o f> <0 for Hxl) 21, Hx'll>w+1

(111) <

\ ; v
(iV)' <"aa"" n_xi-le(t'Tl%-le’x )> > <8 o, £>  for . “xH > M, Hx'“ <N

(v) Vf > 0 in the interior of 03
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Then |[|x(t)]] <M for all te [t),t,].

Proof. From Theorem 2.1, condition (v) can be replaced by V;.i_o in
the 1nterior'6f ~D3. The proof continues exactly the same as the proof of
Theorem 4.2 in [1].

12 2 2 Vv -

EXAMPLE. V = |[x'||"(||x||® - ¥") shows that 3=, need not be zero.
In this case, (iii), (iv) and (v) will impose conditions on f£.

' THEOREi{ 2.3. Suppose the Liapunov function in Lemma 2.1 has the

additional properties U;.i L 1in the interior of DZ and

W Q>0 for |lxl] <m, [Ix']] 2w+

Then U;.§ L in the interior of D2'
Proof. In a similar fashion to Theorem 2.1,

- ' du u ‘3U

- o2 o A | =
U =3 ¥ 5> * GreP> T
' ' : ‘ L] i 1 R au U _,
] - = B2 —— — — P >
At T =1, Ug Ug < 0. Vhen T =0, Ug T <3x’.xA> S5t Sgpex> t

U '
<3x"f> = Uf

The results of [1l] can now be stated entirely in terms of f.

< L, by condition (1).

THEOREM 2.4. Suppose f(t,x,x') 1s defined and continuous on
[a,b]) x R?n. Suppose there exists two Liapunov functibns v(t,x,x') and
U(t,x,x') as described in Theorems 2.2 and 2.3. Then the boundary value
p:oblem'(l.l) and x(tl) = Xy, x(tz) = Xy, ||x1||, ||x2|| < M has at least
one solution. o

Proqf. From Theorem 2.2 and 2.3, we have Vé 2> 0 1in the interior of
.D3 and U; < L 1in the interior of .DZ' The proof is now the same as
Theorem 4.4 in [1].

EXAMPLE., Hartman [2, p. 433] givgs the followinpg condition fo insure

|'x(t)|| <M on [tl,tzl:
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<x.f> + Hx'll2 >0 4f <x,x'>=0 and ||z|] > M
By choésing Vit,x,x") = <x,x> - Mz, V; = 2<x,x'>, V; = 2{<x,f> +
Hx"Hz]. Hartman's condition implies V evaluated along a solution x(t)
of (1.1la) does not have a maximum at any point t ¢ [tl’.tzl when
|1x(e)|| > M. This follows since 1f V_ =0, V. > 0. Wow V =0 when
l|x]] =M and v >0 1f ||x|| > M 1f there existed a solution x(t)

such that ||x(t)|| > M, then Ve >0 and all conditions of the theorem

are satisfied with the observation that -g%, =0
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APPENDIX VIII

*
EXAMPLES CONCERNING SOLUTIONS TO BOUNDARY VALUE PROBLEMS

i k%
Ross Fraker

1. Consider the boundary value problem given by

- | - y' = £(t,y,y")
(2) | y(©) =A y() =B

.where f(t,y,y') is continuous on [0,1] X R2

and A and B are real.

A recently developed technique for solﬁing boundary value problems
with very general eﬁdpoint constraints developed by,Bebérnes and Wilhelmsen
(1), (2}, (3], did not‘iend‘itself directly to boundary value problems
(BVP)-(l) - (2). Beybﬁd the assumption of_loﬁer and upper solutions of
equation (1) their principal restriction QasAa differentiai boundedness
céndition imposed on the solutions of equation kl).

By strengthening the differential boundedness to é'Nagﬁmo condition
Bebernes and Fraker [4] Hemonstrated a modification of the teéhniques
suitable'for solvi@g BVP (1) - (2). The.results possible because of the
modification have been discussed in different settings by Jackson and |
Schrader [5] and. Jackson and Klaasen [6]5

Examples are given showing that the differential boundedness condition
is neither sufficient nor necessary for demomnstrating the existence of
solutions to BVP (1) - () using the techniques in [1], [2], or [3].

2. Let a(t) and B(t) € 02[0,1] be lower and upper solutions, respectively,
of equation (1) on [0,1] with a(t) < B(t) for all t € [0,1]. A solution,

y(t), of equation (1) is said to be initially differentially bounded

24
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(to the right) with respect to a lower solution - upper solution pair
(& < B) if there exists a positive N(n,to) such that. [y'(t)]| < N(n,to)
for t ¢ [O,to] whenever [y'(0) | < n and a(t) < y(t) < g(t) for all t ¢ [O,tO].

Let_S be a coﬁpact connected set in the (0,y,y') - plane such that

1
there exist points (O,yl,yl') and (0,y2,y2') with ¥y = g(0), yl' > B'(O);
Y5 = a(0), and y2' < a'(0), and let 82 be a closed connected set in the
(to,y,y') - plane such that the set |

S, f[{(to.st') : akto) <y < é(to), y' =k (arbitréry)}
is non;empty for every k. If the solutions of equation (1) are initially
differentially bounded with respect to some lower sblution - upper solution
pair (a-f 8) then there exists at lgast one solution to equation (1) with
(0,y€0),y'(0)) € 8;, (tg,y(ty),y'(ty)) e S,, and a(t) < y(t) < B(t) for
Aall t e [O,tO]; (see the theorem of [3]), It is clear that this result
can not ip general be applied to BVP (1) - (2).
3. It is noted in [2] that the properties of the set Sl are not necéssary

hfor the existence of a solution originating between a(0) and g(0). It

is sufficient only that the soluﬁion funnel of a compact connected component
of the initial set intersect both the uﬁper solution and the lower solution
at least by time to, A Nagumo conditiqn can be used to eliminate the neces-
sity of checking this property. Under both conditions BVP (1) - (2) can be
solved. The folléwing example shows that even the weaker differentially

boundedness condition is not necessary for the solvability of BVP (1) - (2).

Consider y" = (y')3 on [0,1]. Let a(t) = -1 and 8(t) = 1. In order

to solve BVP (1) - (2) for a(0) < A < 8(0) and a(1) < B < B(1) it is suffi-

1A

IA

{(0,A,y") : [y'| < 2} since by the mean value theorem

cient to take Sl
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y'(t) > y'(0) + t-min f(t,y,y') > 2
' O<t<l
~leysl
y'>2
when y'(0) > 2 for example. The connectedness of the funnel cross section
at t =1 yields a solution if _
%=IQJJW:|f|<ﬂ.
The example we give now shows that differential boundedness is not
sufficient to solve BVP (1) - (2).
Consider y" = —(y')3 on [0,1]. Let a(t) = -1 and B(t) = 1. Clearly
the solutions, when they‘exist, are differentially bounded. Let A = -1

and B = 1. To solve the differential equation we consider the'auxillary

equation z' = -z3 to find that

| -/ ‘
y'(e) = Qe+ (y'(0)) Y . y'(0) > 0,
_o1/2
y'(t) = =2t + (y'(0)) ©) ., y'(0) < 0, and
y'(t) =0 s y'(0) = 0.

Since we want y(0) = -1, y(1) =1, and -1 < y(t) < 1 for all t ¢ [0,1] we
must take y'(0) > 0 and because of the form of the equation we must require J
y'(0) > 2. This leads to the solution

172
y(t) = (2t + (yf(O))- ) +c

for appropriate constants y'(0) and c.

The boundary values lead to the equations

-1= Iy'(O)I-1 + c and -

-2 1/2 .
1l=(24+ (y'(0)) %) + c.
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Eliminating ¢ we find that

- . 1/2
2+ |y @)™ = 2+ o' on7DH

or
L+ GO+ 4y @] = 2+ (572
Hence we must have 4
ly' ()] = - %‘
which is clearly impossible. Thus no solution to this boundatry value

‘problem is possible.
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APPENDIX X

STABILITY OF A CLASS OF MATRICES
SIMILAR TO NEARLY NON-NEGATIVE MATRICES

"R. W. Gunderson and E. ﬁ. Underwood*

~ Abstract. A simpleistability condition is obtained for a class
~ of matrices which occur in the application of linear differential inequalities.

1. Introduction. Let a,b belong to R" énd write a < b if
xand onlyhif ag S.bi for each 1 =1,2,....,n . Let A bean n xn

real matrix gnd z(t)_ élﬁecto;-function safisfying
© - 2t < Az(e)
fof te[ta;T]. .Sq?pose_furthér that

. _zv(to) 5 .x(toj

where x{t). is a soliution of -

" over the same interval [to,T]. Then it is known ([1],Pn137) that
z(t) < x(t) .
for all te[to,T] if and only if the matrix A is nearly non-negative;

‘that is, a;, 20 for all i #3 and i,j = 1,2,....,n. Further, it is

known that the nearly non—negafive matrix A is stable if and only if its

th k

k successive principal minor has sign  (-1) ([2]),p.74).
The above results have a number of interestiﬁg apﬁlications, ranging
from estimating the errors of approximate solutions of differential equations

[3] to the stability analysis of composite, or inter-connected,

. *¥Dept. of Mathematics, Utah'Staﬁe University. The research of the
first author was supported by NASA Grant No. NGR-002-016.
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,systémsjv[4]~[6]. It often occurs,_howeyer, that the matrix A of Kl)
does not turn out to be of the required type, i.e. nearly non-negative.
In tﬁese cases it is sometimes possible té maintain the inequality (1)
andAat the same time replace A by IA] » where IAI is obtaiﬁed from A
by replécing the off-diagonal clements by their absolute value.i Thus,
IAI is nearly non;negative and the preceding results apply.

It is of interest in the applications to know when the spectrum of
A is retained by- IAI. In particular, it is of interest to know when the -
stability of A implies the stabilify‘of |A| and whether a simple test

for the stability of such matrices exists, such as it does for IAl»-

2. A Family of Matrices Similar to Nearly Non-Negative Matrices.

For a given M X n matrix A, draw a line through the first row in which
a negative mon-diagonal element appears. Denote the number of the row by
i
l ..
next row which has a negative non-diagonal element, not in column,vil._

'andfdraw a line through the column il . Now draw a line through the

E.Dén?te th;s row by i2 and draw a line through column i2’ and so foréh.

In tﬁig manﬁer the matrix is covered with lines over every negative element.
Now subpbée that every non-diagonal element covered By a line is non-
pbsitiﬁe, Qith the exéeption of those cbvered‘at intersections of lines,

which are non-negative. Then it is clear that there exists a permutation

matrix ' P such that

3) .. A - A, B,

where the square matrices Al and A2 are nearly non-negative and Bl and B2



<0

are non-positive. If A1 is of dimension (n-m) x (n-m). and Az‘ is

AA m x m, then A will be similar to a nearly non-negative matrix - K, where

%) -1 0 A, B -1 0

Rémé;k i. In the applications of comparison theory, (1) occurs as
a systeﬁ of differential inequalities satisfied by the t;ajectory
derivatives of vector Liapunov functions [3]-[6]. Since the component-
Liapunov functions are almost always postive definite, it is worthwhile
fo congsider (1) under the.assumption Sz 3_0 and with A of (1) assumed
similar to a nearly non-negative matriﬁ‘as.described abové. In such-caées,
defiﬁé'the vector .y by

-y =Pz .

Since y _is only a rearranged'versiOh of z , it follows from (1) and

the definition of - P that

A, B
y' :_PTAPy Y B S | y
B2 A2
-and, since y > 0, finally that
y! < Ky
i.e.
z' < lAIz
‘where
T

|A] = PrP
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Remark 2. In equilibrium theory of economics, a matrix AV satisfying
(4) is célled a Moroshima matrix if, in éddition,’1t'is';rreducib1e and
has all negative diagona; elements [7). The requirement of irreducibility
allows augeneralized Perron-Frobenius theorem to hold, from which some
of the results of this paper can be dgduced. The approach taken here does
not:réquire the Perron—Froﬁgnius theoreﬁ and, hence eliminates the restiction

to irreducible matrices.

3. Stabilitv of Matrices Similar to Nearly Non-Negative Matrices.

Following Marcus and Mipc [8], let Qr,n denofe thg set of all
strictlyvincreasing seduenceé of length r, formed from the firé;' n’
integefs; Any submatrix of-thg‘ n'x n matrix A can then be répresentéd:>
b& A[aIB] where a and B  both belong to Qr,n for l<r<n rand |
where .aA'determines the sequence of rows and B8 the sequénce of coluﬁns.

‘USing this notation, an ﬁ.x n matrix H is said to be Hicksian‘f7] if
det A[ala]Aé (—l)r!det_A[qla]l

forfeach  aeQr’n and all ; <r 5_n’; that is, if‘every_th o;der'principal
minor 6f:;he matrix A has sign -1)*. |

Definition. A n x n matrix. P will be-called a signed pefmutatioﬁ _
ﬁétfix if the_matrix oBtaiﬁéd by replacing the‘elements of . Pf py'§heir N
absolufe:vglueS'is a férmutation ﬁatrix}h | B

nggé. Let P ‘bean n *xn siéned permutation matrix and

consider the family of all r x r minors
“det P[a]B]

where u,BeQr 0t For a given a there corresponds one sequence B*
4
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such that

det P[ﬁ'B*].= +1
and |

det P[a]B] = 0

otherwise.

Proof. First observe that

PPT[ala] =1
and that
det P [w|a] = det P[alw]
for any a,wéQr n " By the Cauchy-Benet theorem
. ’ . .

det PPL[GIG] = :E: det P[alw] det PT[WIa]'

we
: Qr,n

=Z (det PlalwD)? =1 R
WE_Qr,n :

It follows that det P[dlw]'= + 1 for one and.only one w and is zero

otherwise.
Theorem 1. Let A be Hicksian-and P .a signed permutation matrix,
both of dimension n x n. Then, the matrix

H = pAPT

is also Hicksian.
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Proof. Again apply the Cauchy-Benet theorem to obtain

det PAP [a]a] = :§: det PA[alw] det PT(w|a]

we
Qr,n

= :i: ' det-PT[wld]:Ez,_ ‘det P[a,y] det A[Y,W]-
n .

we -
Qr, YﬁQr’n

= :E: :E: _ det P[&Iw] det P[&IY] det_A[wa].

weQ €
Qr,n L Qr,n

By the lemma,

det Pla|w] det Plaly] = 0
unles?“ W=y ?,B£,. and it follows that '

det PAPT[Q{a] = det A[s*fs*j.

Since A 41s Hicksian, so is PAPT. -
.Theorem 2. Suppose there exists a signed permutation matrix P
' such that

pAPT = K

where K 1is nearly non-negative. Then |A|‘is stable if and only if A

is Hicksian.

Proof. From the similarity established in the preceding section, it
-follows that if IAI is stable'then K 1is also stable. Since K is stable
its successive principal-diagonal‘minors'have sign (—l)k,»as mentiouned |
in the introductibn. .By a result of Kételyanskii ([2],p.71) it follows that
K is Hicksian. Hence by the lemma, A is Hicksian. If A 1s Hicksian,

then K 1is Hichsian and thus stgble, since its successive principal |

diagonal minors then have sign (~1)k. But, 1f K is stable, |A] 1s stable.
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1. Introduction

Consider:.the system of first order equations

x' = £(x,u) , (1)
where | is a parameter, £ is assumed analytic in x apd U at the origin
of (x,u) space and £(0,u) = 0. Suppose there exists a family of
solutions |

x(t,0) (2)

such that to each meighborhood of the origin (k,u) there corresponds
at least one value, ﬁ, such that (x(t,u), u) is contained in that

neighborhood. In this case, the origin is called a bifurcation point,

~the family of solutions x(t,1) is called a bifurcating branch and the
.solutions corresponding to fixed values of the parameter U are called

Bifuxcatingvsolutions'(Krasnosel'skii 1964) .

Examp}é. Consider, the scalar.equatioﬁ
- o x' = x(x - W.
It can éasily be seen.that'
| x(t,u) = U

is a Bifurcating branch of solutions corresponding to a bifurcation

branch at .the origin 6f_the two-dimensional (x,H) space and that tﬁe

bifurcating solutions are constant, or steady state solutioms.

In the following we shall utilize some results from bifuréation

_ theory to investigate the existence of small amplitude periodic behavior

in launch vehicle dynamics. It will be assumed that the nonlinearity

exists as a cubic term in the rudder respomnse.

el A
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Starting with Poincare, there have been.a number of important
contributors to the theory. Among the early contributors to the
theory .of periodic bifurcations were Hopi {1942) and Friedrichs (1965).

We shall follow quite closely the approach given in Sattinger (1973).

2. -Bifurcations in System Theory

In addition to the existence of bifurcating solutibns, either steady
state or periodic, it is usually necessary in practice to determine their
stability properties. The definition of asﬁmptotic stability of steady
state solutions is well-known and need not be presented here. However,
the definition of orbital stability of periodic solutions is perhaps
less well-known and given here for convenience.

Definition. Let Y denote the closed path x = p(t) in x—space;
. The periodic solution p(t) is said to be ofbitaLly stable'if'for each
€ > 0 there exists a correspondiang ¢ > O such that every solution
x(t) of (33) whdse distance from Y is less than § for t = 0 is
defined and remains at a distance less than € from Y fdr all
tpz 0. It is said to be orbitally asymptotically stable (and Y is
said to be 'a lizmit cycle) if in addition the distance of x(t) f£from Y
tends to zero as t > .
| Consider ﬁoﬁ the special case of equation (1) given by

x'" = (A + u2)x + N&) NG =0 ‘ 3)
where. A,B are real n X n matrices and N(x) is an analytic vector
function beginning with non-zero k-th order terﬁs, k.3_2; In addition,

assume that the pair (A,B) has one of the following properties:
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Property I. The matrix -A has a simple eigenvalue at the crigin and
if A¢° = ATwo = (0, then <B¢o,wo> # 0, where <°,'>. is the dot product
éf Rn. Further, the matrix A + PB has all roots with negative real
partiwhen. u < 0 énd has exactly one unstable root for u > O.
Progerfz II. The matrix AA has a pair of simple, pure imaginary, root§
"at iiwé Aana if .AEO = iwo,ATno = iwno' then <B£o,n0 > # 0. Further
assume 'A + uB has all its eigenvalues with negative real parts when
. u<o and has exactiy one unstable complek éair if u > 0.

_’Tbe following'theoréﬁ can then be given feiative to the above
pfopertiés:- . |
Theoreﬁ. (Hopf (1942), Sattingef (1973), Friedrichs (1965)).
a) Assumé'that (3) satigfies froperty_I zad, in addition, assume that
<N(¢o),wo> # O.. Then the origin is a bifﬁréation point and the
bifurcating branch consists'of.asymptotically stable steady state solutioms.
b) Assume that (3) satisfies Property II and,.in additioﬁ, that

<N(€;),no>,¢ 0. Then the origin is a bifurcation point andlfhe.A '

bifurcation branch consists of orbitally asymptoticaily stable periodic " .

solutions.

'Remark.f:fhé ?ﬁeorem’is proven bf showing tﬁe-existence of:an analfficﬁ'”
oﬁefﬁarameger family of soldtions (x(g),u(e)) satisfying x{O) = 0,
H(0) = 0. .The conditions <N(6.),¥># 0 and <N(E),n> # 0 then
allow the'ﬁse of the implicit.funétion theorem to solveAfor € as a
fﬁnbtion of M, providing Ehe'bifurcéting'ﬁranch.,

Reuark. Propertiés I and II both.req;i;e that the simple eigé£§alu¢s?

either real or pure imaginary, pass from the left to the right side of -
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the complex plane when u = 0. This, of course will,not occur in general,
but a simple transformation will place the system in proper form.
Suppose, for example, the érossing over occurs for u = uo in equation

(35. Thén set

=
il
>
+
§=
(o]
™

and the new system
| - )
x' = (A1 -+ ABl)x + N(x)

will satisfy the condition.

3. Application to Flexible Bodvy Dynamics

Consider the following system of equations, obtained from the znalysis

of flexible body dynamics together with rigid body and control system

dynamics.
.¢r + c28 =0
6. + 2krwd. + wlh, = wlkp
b B b
B =£(0) =0 - a203
o=a (¢ + ) +a (b + $y)
where

¢_ - attitude angle of the rigid body
B - rudder (control force)-deflection
ey = control effectiveness coefficient
aj, a; - contxol system gains

¢b - attitude angle due to bending dynamics (fixed mode)



Z,w — damping and natural frequency of bending mode
k - normalization constant
O = control command

£{o) - nonlinear control command

Letting

equations (4) can be put into the form

x' = (A+ uB)x + b03
where
0 1 0 0
Ao -c2ao -c2a1 4 —czao -c2a1
0 0 0 1
0 0 ) —w2 0
0 0 0 0
B = 0 0 0 0
0 0 0 0
wa Qza W a wa —Zcm/
o 1 1
0
€222
b= 0
-=ka m2



3/

and
‘p =+k
It can easily be seen that there exists a pure imaginary pair of complex
eigenvalues at #jw , providing cy3; > 0. It remains to enforce the
conditions of Property II. To find Eo and no it is necessary to
solve |
AEO = ino

| Atno = iwno
Carrying out the calculation, it turns out that
b . 0

0

1 1
iw i iw/

where bl’ b2 are complex éonstants depending on ags 2y, w and Cpe
Consequently, the dot product conditions become
< > =
3£o,n° 2zw # 0
and
< > 4
N(E_).n > # 0
if
, 70
3a w # (a b + a + ay b )
a bl + a, + a b2 # 0
4. Conclusion

In the preceding, we have assumed a cubic nonlinearity in the rudder

dynamics and have determined conditions under which a bifurcating branch
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of orbitally stable periodic solutions will exist. In the case
considered, it was possible to determine rather easily conditions under
which the system matrix had a paif of simple, pure imaginary, eigenvalues.
In more complicated cases this can still be accomplished by utilizing
various linear stability techniques. The D-decomposition method of
determining stability regions (Siljak 1969) ought to prove especiall&

useful in this applicationm.
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APPENDIX XII
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“/:5 Iﬁ‘isiéhown that a system of ordinary differewt{sl equations w.

N : oL : . S
a vertical bifurcation canmnot be structurally stzble. <Conditions are

| fﬁéﬁfd':ibéd which can be used to detect the presence of a vertical
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1. Introduction. In the applications it is usaully required that a

system possesées thg prbperty of structural stability. 3Briefly, thié
means that small chaﬂges in the differential equation result in
topblogicallyAequiValent solutiopbehéVior. In this paper we show that
a system which has a vertical'pifurcation cannof be structurally stable
in a neighborhébd of tﬁg origin'and develop a'procedure'tO'dete;mine
the éxisten;e of such bifurcations.

2. Structural Stability and Vertical Bifurcations.

Consider the system
| x' = (AHB)x + N(x) %)

where A,B are n X n matrices and N(x) is an anaiytic vector.
function defined ou R° and begins with non-zero k-th order terms,
kqg 2. We shéll LH;uﬁe, for simplicity, that N is a b%linear form.

Suppose there exists a family of scluti-ns

%(t5A) £ 0

such :hat to’each neig:b;zhooc of the origin of the n + 1 space
(x,A). there 'corresp',onas at' least one value, A, such that | i(t,}\),k) is
cont;iuad‘;a tha:,xe;gLaorhood. :Then thg origin is called a bifurcation
point;'thg fgmily of solutions é(:,k)_ is called a bifurcating branch
and the solutions corresponding to fixéd values of the parameter aré
,calleﬁ-ﬁifurcating soiutions (Kﬁésnosel'skii [1)D.

A s§%:em will be called struc;urally stable_in‘a neighborhood

of th¢ origin if, for any sufiiciently small perturbations, there exists
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a homeomorphism that carries ezch trajectory.of the original system to

a trajec:ory:of the perturbed system (dirsch and Smale [2]). A
bifurcating brancn (x(t,A),A) d1s structurally staeble if for all values
of » # 0 ., sufficiently small, the system obtained by substituting -
X =y - ;(t,k) into (1) is structurally stable in a neighborhood of

the origin. |

3. Existence of Vertical Bifircations. Following Sattinger [3,4],

assume (i) that A has a one-dimensional null space, Auo = 0. Since A
is & ¥ u matrix it satisfi2s a Fredholm alternative. “hat is, the
system Au = f has a solution if and only if < f,uo > = 0, where
T % % % '
Au =0 and < u U > = 1. Further < Av,uo > =0 for all v in
R".

t . 1§ % - . .

Le. Mo = {ulu-e R, < u,u > = 0}. By the above A 1s invertible -
on Mo' Denote its generalized inverse by Ko and the projection onto
M .

L ‘

Finally, assume (ii) A + AB has its spectrum in .the left half
plane for A <0, .. a onc dimensionzl null space when A = 0 and,
wherr A < 0, this cigenvalue ‘crosses into the right half plane, while
‘all others remain in the ieft half plane.

The steady statc vifurcations of (1) can now be obtained by
setting

(A + ABJu + N(u,u) = 0 @
. *
Let [y] denote the inner zroduct < y,u

o > and introduce a parameter

£ into (2) by setting
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) w= e(u°+g), A = €0
whers
| £ = Qut6), [E] = 0.
Equation (2) then takes the form’
| AE .+ €O’B(u;i-€) + EN(uo+€,tio+E) = 0. ‘ (3)

Opersting on.(3) first by KXQ, thenAtaking the t'] on (3) leads to

£ + e£0KQB (uo+€) + EKQN(uo+€,u°+€) = 0 v (%)
and . _ | - | ‘

o[B §,] + OB E] + (NGa+E,u+D)] =0 )
Equations (4) anl (5) are called the Liapandv—Schmidt equations [3,4].

The implicit function theorem can now be uséd to prove the following:
Théorem l.r(Sat;inger [3,4]); Under the assumptions (1) and (ii),Aand
ifj.[B,“O] # 0 there egists an analytic one-parameter family. u =‘u(e),
A = A(e) of solutions of (2) such that [u(e)] = € and A(0) = 0,
w(0) = 0. | ) |
Rsmark 1. The ststément of ths theorem and the proof do not rule out
the_possibiliﬁy that u{g;:$ S, A(E) E_d. If this is the case,'the
corresponding'brsnch is called a verticel bifurcation.
‘Example: 1. Coneider the scala: linear equation |
| . x' = Ax

With eacl: A =0, the quatidn for sﬁsady,state soluﬁions is satisfied
for aﬁy value of x;. That,is,'s vertisal bifurcation oécuss at the

origin, which is a bifurcationm poirnt.



37

Example 2. Consider

u'=<g_°)+>\<(2) g>+ (é} ) : (6)
- which also satisfies the conditions of Theorem 1. The steady state
solutions are u = 0 when A.¥ 0 and u, = ui +uy when
A =0 and uy # 0.

We next show that a vertical bifurcation cannot be strucfurally

stable.

Theorea 2. Supposé the system
x' = F(x) ‘ N

has the property that
(a) there exists Gl(xl) such that the solution x, = 0 of
L = -
Xy F(xl) + Gl(xl) is asymptotically stable
(b) there exists Gz(xz) such that the solution x, = 0 of
LI ;
X, F(x,) + G(xz) is unstable.

Then the system (7) is not structurally stable. Here F, G G, are

1> 72

. sufficiently smooth, 'IGi(x)I <a |x|, and o sufficiently small.

Proof: Supp&se the éystem is structurally stable. . It follows that their
exists a homeomorphism X, = Txl. Since the system of part (a) is
asymptoticall; stable, its solutions form a compact set so that the solutions
of part (b) must form a bounded set. However, ;he solutions of (b)

are unstable and hence not bounded.

Corollary. If the system (2) has a vertical bifurcation then it is

not structurally stable.

« oy N [E- . R i ARV SR e A st e o o
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Existonce of Vertical Bifurcations. Assume that

E = gle -+ 5252 4 eee 4 eee

o___.o +O—€+o-.+-uo
0 1

and substitute into equation (4) to obtain

|
[pat
—
|

-52 = 2KQN(¢O,€I) + olKQB ¢0 + UOKQB El

7
gZKQN(ElP , En) ,» . even

; r, 2 (8)
-En = ZI\QN(QPO,&n_l) + o+ 2 2
KQN(EP__}_, 55_:_&), n odd
2 Y2
0 (B o) l+ cer +0y[B E ]
anc .. -0 (5) to obtain the solvability conditions:
7olB 0] + [N(y,6)] = 0
91 (B 9g1 + 0B €1 + 20N(8,E)] = 0
: (9)
-on_l[B ¢0] + s o UO[B En_l] +
. "//ZIN(EE;_ > 53)] , 1 even:i
+ 2[N(¢o.€n_l>1 + o0+ 2 2 b= 0

[N(E » & )], n odd ';
. ~1 a—-1 ’
(s 5 J
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Theovren 2. Suppose [N(GO,¢O)] =0 and ’(QO,QQ) iz not identically zero

and tnat there exists a basis {xl,xz, .o ,xkf, Kk <a-1, for the
1 =

- space spanned by {51,52, ces ’En’ ...} which satisfies

[N(¢O,xi)] 0 i=1,2, ... ,k

(10)

.[N(xi’xj)] 0 i’j = 1’2) L :k » 1< k

Then ecuation (B) and (9) have the solution E&{&) $ 0, o(e) = 0. That

~~

is, (2} has a vertical bifurcation.
Proof:  Since {xl, e ,xk} is a basis and since N(x) is a bilineatr
form it follows that condition (10) implies for i > j, 4,j = 1,2, °*-°

N{§4,80] = 0
* (1w

e
=4
N
M
-
Y
L
—
L]
o

From (9), 0(8} z 0. Selving (8) for Ei " yields thé deéited
nonzere solution.
Théorem 3. There ziways exists a family of bilinear forms for which the
hypothesis of Theoyem 2 is satisfied, providing {N(¢O,¢O)]'= 0 and
'N(¢0;;0) is not r:atically zevo;when n > 2.

Proof: From (9) GO = 0 and from (8)

&y = ~KQN(dy.90)

Let El = xl and assume

[NGgx )] = 0 . o S a2)
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Then, from (8)
gz = —ZKQN<¢O’xl)-
If =x

1,52 are linearly independent, let 52 = xé and set

0

[N(9g,%,)]

(13)
[N(xl,xz)] =0 . A

if ﬁhey are dependent, continue on with 53, .o ’Ej e« until
determining a ve;tor Ej which is linearly independent. In this manner,
it is 'possible co generate a set qf linearly indeéeﬁdent vectors

(xl, .o ,xk), k <n -1, from a finite set of vectors

(€l, e Em), m > k, belonging to A{Ei}, i=1,2,... . By construction

there exist constants O

jm’ i=12,... , m=1,2,...,k such that

for all j = 1,2, ... .

Now the conditions (12), (13), ... can be summarized as

|
o

[N(¢O’Xi)] -

(14)
[N(xi’xj)]

]
(=]

for i,j=1,2,...,k , 1 < j.

Equation (14) along with [N(¢O,¢O)] = 0 consists of

-%’-(k2+3k+4)_<_%—(n2+n+2)
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}
!

conditions for k < n - 1. Now N(x,x) can be written as
N(x,x) = (le, ces ,Nnx)x

where N ,Nn are symmetric n X n matrices, which yields

l, LI

%-n‘(n + 1) elements which can be choséﬁ arbitrarily to satisfy (13).

2

" system in the %-nz(n + 1) grbittary eiements:of the. N

Since ;'nz(n + 1) 2;% (n2 % n + 2), equation (13) represents a linear
IREL

it is clear that conditions éan be imposed to assure the existence of

the guadratic nonlinear term frém (13)<

Remark. If conditions are imposed on the solvability condition (9)

to insure that 0o(g) $ 0, the vertical bifurcation does not occur.
Further, using Saﬁtinger‘s arguments on the exchange of stability,

it Is possible to prove that the bifurcating branch of solutions now
obtained by the implicit function theorem is either asymptotically stable
or unstable from the first variation equation of (1). Appealing to

a theorem of iiartman [5], we can now conclude that the bifurcating branch

- of solutions is structurally_stable for € > 0, € sufficiently small.
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INTRODUCTION

The theory of differential inequalities has found an important application
in-the theory of comparison systems (vector Liapunov functionsj. The theory |
of composite systems, for example, has been developed extensively since first
‘introduced by Bailey in [1]_(See'éi1jak [2] for an excellenf survey). At
the same time, there haﬁe been several papers dealing with the application of
higher order trajectory derivatives in the analysis of dynamical systems t3],
[4], [5], and [6]. 1In this note we shall discuss some recent results on the.
application of differential inequalities to comparison theorems involving

higher ordervtrajectory derivatives.
NOTATION AND DEFINITIONS

Consider the system of first order differential equations
x = f£(t,x) | (1)
and thé m-th order comparison system ‘
u™ ) = wit,u,ut,.. 0@ @
where x, f belong to R" and t, u are scalars. Assume f continuous on
Dr = {(t,x) 0<t<T<+e, x < r} and the right side of (2) continuous
on [0,T] x R™. A solution of (1) satisfying the initial condition X at
t, will be denoted by x(t,to,xo) and a solution of (2) satisfying
uj(to) = uj(j = 1,2,...,m-1) will be denoted by u(t,t ,U).
Definition. The scalar function g(x), x belonging to Rn, will be said
to be of type W* on a set § R" if g(a) j_g(b)vfor any a, b in S such that

a = bn’ a; j_bi (i=1,2,...,n-1).

COMPARISON THEOREMS

The following lemma was given in [5]:

‘ ' -1
Lemma. Let v:Dr—% R and let v belong to Cm, f belong to Cm.. on Dr’ Let w



/6

of equation (2) be of type W* in S for each t, where § = {t, v(t,x),v'(t,x),

Rt (t,x)} and : | o

. (3-1) (G-1)
(3 - v A4
v (e,%) = 57 el E(ex) (3)
Suppose '
v™ (&, %) < w(t;v,v",---,v(m—l)) (4)

for (t,x) belonging to Dr and set VJ(O,xo) uj. Let J denote the maximal

interval of existence of the right maximal solution um(t,O,Uo). Then
° u)
v (6,2 (e,0,0 ) < B e,0,0) 5)
for each t belonging to J ([0,T] and j=1,2,...,m-1,

Remark. Since the inequality (4) implies the system of first order

inequalities
vy =V,
V2 © V3
(6)
Vn-i w(t,vlfvz,...,vm)

it is natural'ﬁo view higher order derivatives as a meansvof obtaining
vector Liapunov functions. (The fact thét w is of type W# assures that
the righ; side of (6) saﬁisfies the corresponding monoténe property for
vector functions). Thefe are several practical difficulties, however, to
this approach of constructing vector Liapunov functions. For example, one
such difficulty is‘the requirement that the right side of (4) Be of type
W*.- Since the characteristic polynomial of a linear n-th order comparison
equation must then be of the form

st & a 4 sn”1 —a sn_2 e e TS - ao'= 0 (ai > 0)
to be of type W%, it follows that even in the linear éase, the comparison
equation cannot be stable, except when n=1.

In order to improve the applicability of scalar n-th order comparison

theorems, we introduce the following special case.of a more general theorem .

whose proof is given in [7],
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Theorem 1. Assume

(n)

-1
X = w(t,x,x',...,x(n )

(7)
where w is the right side of (2), holds for t belonging to some interval I.
Suppose the solution z(t,t,E) of thg adjoint equation to (7) is non-negative
on the interval to’ t for each t 3_t0; to’ t belonging to I, and where |
E =‘(1,0,...,0). Then (7) and (2) together imply
u(t) i_x(t,to,Uo)

for all-t_i to’ t belonging'to I.

The following is an example of a second order system which is not of
type W* but which satisfies the conditions of the theorem:

Example. .The second order system

il
o

x" + 3x' + 2x

has the adjoint equation

il
(o]

z" - 3x' + 22_
which has the solution
z(t) = e(t—to)(Z - e(tuto))
4satisfying the conditions
z(to) = ]
z'(to) =0
Clearly z(t) > 0 for all t < t s so that the conclusion of the theorem
holds.on any interval I.
In fact, it is not difficult to shéw that the conditions of the theorém
are satisfied by any second order system with real, unequal, roots.
Using the above theorem it is then possible to prove comparisgn theorems
of the following type [7]:
Theorem 2. Let v(x) = xTHx be a positive definite quadratic fdrm and
suppose the trajectory derivatives of v formed relative to (1) satisfy

v + a u(m—l) + .. .4+av<yo



for (t,x) belonging to Dr' Suppose>the comparison system

(m) +a Dy

u m—-1

. .o+ au = 0 (8)
satisfies the conditions of theorem 1. Then there exists constants
c,...,cm such that EL

x(t,to,xo) zli-%, ;;’ c.uj(t)

for t:i to’ where is the minimal eigenvalue of H and the functions uj(t)

are linearly independent solutions of (8).
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