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ABSTRACT

In this paper, an economical low-noise plasma simulation model origi-

nated by Denavit is applied to a series of problems associated with electro-

static wave propagation in a one-dimensional, collisionless, Maxwellian

plasma, in the absence of magnetic field. In Part I, the model is described

and tested, first in the absence of an applied signal, and then with a small

amplitude perturbation. These tests serve to establish the low-noise fea-

tures of the model, and to verify the theoretical linear dispersion rela-

tion at wave energy levels as low as 10-6 of the plasma thermal energy:

better quantitative results are obtained, for comparable computing time,

than can be obtained by conventional particle simulation models, or direct

solution of the Vlasov equation. The method is then used to study propaga-

tion of an essentially monochromatic plane wave. Results on amplitude

oscillation and nonlinear frequency shift are compared with available

theories. The additional phenomena of sideband instability and satellite

growth, stimulated by large amplitude wave propagation and the resulting

particle trapping, are described in Part II.

This work was supported by the National Aeronautics and Space Admin-
istration, and the National Science Foundation.

tNow at Plasma Physics Laboratory, Princeton University, Princeton, N.J.
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1. INTRODUCTION

This paper is concerned with computer simulation of electron plasma

waves in a Maxwellian plasma, in the absence of magnetic field. The aims

of our simulations are, first, to develop an economical low-noise simula-

tion technique, and second, to apply it to the study of linear and non-

linear wave phenomena in a one-dimensional plasma with periodic boundary

conditions. Throughout the work, emphasis is placed on simulations for

wave and plasma parameters comparable with those assumed in available

theories, and accessible in laboratory experiments.

There are two distinctly different approaches to the simulation of

plasma dynamics: first is the use of a particle simulation model in

which individual charged particles are followed, and second is direct

numerical solution of the Vlasov equation describing the charged parti-

cle velocity distribution function. The particle simulation model has

the disadvantage that the fluctuation level is usually several orders of

magnitude higher than in an actual plasma. This stems from the fact that

it is not feasible to follow on the computer the dynamics of as many parti-

cles as there are ina plasma. The fluctuations not only give rise to non-

physical effects, but also make it difficult to study linear and weakly

nonlinear phenomena. This is particularly unfortunate since most of the

nonlinear theories to date are based on an expansion method which is valid

only in weakly nonlinear cases. Consequently, they cannot be clearly vali-

dated by particle simulation, nor vice versa. Direct solution of the

Vlasov equation is subject to numerical instability associated with the

free-streaming term in the Vlasov equation. This tends to limit application
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of the method to short-time simulations. However, since the Vlasov equation

does not contain discrete particle encounters and thermal fluctuations of

macroscopic quantities such as the electric field and charged particle

density, the behavior of very small amplitude waves can be studied in a

quantitatively accurate manner.

Denavit has proposed a hybrid approach which can drastically reduce

the fluctuations inherent in the particle simulation model, and greatly

ease the computational difficulties of the Vlasov equation approach.1 His

model is a particle simulation model in the sense that the motions of a

large number of particles are followed in time. The particles do not keep

their identities, however, and there are similarities to the Vlasov approach

in that values of the velocity distribution function are defined on a grid

in phase-space. Despite its attractive features, and obvious potential for

application to a wide range of linear and nonlinear problems, little use of

the approach seems to have been made so far. The purpose of this paper is

to apply it to a logical series of such problems, involving electron plasma

waves in a Maxwellian plasma, and so provide results for quantitative com-

parison with available theories and experimental results.

In Section 2, a hybrid simulation model suitable for studying one-

dimensional electron plasma waves is described. In Section 3, its equili-

brium characteristics are tested, i.e., noise growth with zero applied

signal amplitude is examined. In Section 4, linear wave propagation is

studied, for a very small amplitude monochromatic signal. Progressive

increase in signal amplitude causes amplitude oscillation, nonlinear

Landau damping, and nonlinear frequency shift effects to appear. These

phenomena are studied in Section 5. The results are discussed.briefly

in Section 6.
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2. HYBRID SIMULATION MODEL

The model to be used in this work employs a cloud-in-cell (CIC) scheme.

This was originally devised to reduce fluctuations in particle simulation

models, and involves considering the particles as clouds of distributed

charge; the center of the cloud is taken to be the particle coordinate,

and a spatial grid is used for computing field quantities.2 In addition

to this grid, we introduce a grid in velocity-space, and represent the

particles by points in (x-v) phase-space as shown in Fig. 1. The phase-

space is consequently covered with a rectangular grid of dimensions

Ax,D v . The velocity grid extends from v1  to v2  , where v 1 and

v2  are chosen such that the numbers of particles with velocities in the

intervals v < v1 or v > v2  are negligible.

In creating a plasma with a Maxwellian velocity distribution, our

model employs the following method. The particles are equally divided

into a number of velocity groups. All the particles in one group are

assumed to have the same velocity, v , and mass and charge are assigned

to them in proportion to exp (-v2/2v2) , where v t  is the electron

thermal velocity. This is shown schematically in Fig. 1. Since the

charge-to-mass ratio is the same for all of the particles, the accelera-

tion is also the same. One of the advantages of this method of generating

a Maxwellian distribution by weighted particles is that improved resolu-

tion is provided in the tail of the velocity distribution, compared with

a Maxwellian distribution with identical particles.

The system is set up at time t = 0 using a quiet start technique,

and proceeds as in a CIC model. After a certain number of time-steps,

3
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FIG. 1. Phase-space covered with a rectangular grid, and a Maxwellian velocity distribution

approximated by beams.



the distribution function is reconstructed at the grid points by periodic

smoothing, and is interpreted as representing a distribution of new dis-

crete particles. The motions of these particles are followed until the

next reconstruction. The quiet start technique, and the periodic smoothing,

are essential parts of the hybrid approach proposed by Denavit. They are

used to achieve a very low fluctuation level, and allow the model to be

applied to a wide range of linear and nonlinear problems.

2.1 Quiet Start

The quiet start technique, proposed by Byers, is a method of elimi-

nating macroscopic fluctuations in a particle code at early stages of

evolution.3 This is done by placing the particles only on the equilibrium

trajectories in phase-space at time t = 0 , as shown in Fig. 1, and in

principle provides a noiseless system. In practice, round-off errors due

to the finite number of digits representing the numbers in the computer

introduce some fluctuations. However, this level is many orders of magni-

tude lower than that in the particle codes.

Although the quiet start technique works well at early times, it

ceases to be effective after a time, 27r/(k Av) , where k is the maxi-m

mum wavenumber possible in the system.1 This breakdown occurs because the

velocity distribution of the particles is being replaced by a set of dis-

crete beams. Such a system is also subject to streaming instability, even

if the envelope of the beam density is Maxwellian.h In the limit of small

beam spacing, the temporal growth rate. . is given by1

). ,- (n -+0 (1)



Therefore, a simulation can be carried out with very low fluctuations up to

-1
times of order m. . Since o.-+0 as Av-+O , in principle it is possible

i 1

to perform a low-noise simulation for as long as is desired by choosing

a sufficiently small Lv . In practice, however, Av cannot always be

made as small as is desirable, because the smaller zv is to be, the

more particles are necessary. Periodic smoothing may be used to combat

this instability, and to make a long-time simulation possible with a

relatively small number of beams. 1

2.2 Periodic Smoothing

Periodic smoothing constitutes a periodic averaging of the distri-

bution function in phase-space. It can be expressed by

(x,v,t) =ff(x' v',t)w (x - x')w (v - v')dx'dv , (2)

where w and w are weighting functions for coordinate- and velocity-

space, f is the averaged distribution function, and the integration is

over the whole of phase-space.

In particle models with a phase-space grid such as that shown in

Fig. I, the integral in Eq. (2) reduces to a sum over the collection of

particles, and we want to find the averaged distribution function, f

at the phase-space grid points. If f(x',v',t) is taken to be the mass

of a finite-size particle, the center of which is located at (x',v') at

time t , then Eq. (2) implies that the value of f at the (i-j) grid

point, (xivj) , is obtained by distributing the mass of each particle

among the neighboring grid points according to the weighting prescribed

by wx and wv . This is a reconstruction of the distribution function

from a given distribution of particles.
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Since the smoothing process expressed by Eq. (2) does not conserve

all of the moments of the distribution function, it causes diffusion of

the distribution function. It is to be expected that, with judiciously

chosen weighting functions, this diffusion may suppress the streaming

instability with a minimum of other undesirable effects. Such weighting

functions are described, and their diffusion rates are estimated, in

Reference 1. In our work, we shall use the quadratic weighting func-

tion which conserves particles, momentum, and energy. The frequency of

smoothing necessary to quench the streaming instability depends on the

choice of weighting function and the beam spacing. A rough estimate

would be that at least one smoothing operation is necessary within the

growth time of a perturbation with the maximum wavenumber of the system.

2.3  Comparison with Denavit's Model

In the work of Denavit,l the Lewis variational method5 was used to

construct a model. In the Denavit model, finite-size particles are

chosen to have a triangular spatial distribution, instead of the uniform

charge distribution of the CIC model. The numerical scheme based on that

model turned out to be more complicated, therefore more time-consuming,

than our model. In addition, although his scheme is energy-conserving,

it does not conserve momentum, whereas the CIC scheme is formulated in

such a way as to conserve momentum.6 The non-conservation of momentum

indicates the existence of self-force, i.e., a particle is effected by

the force due to the field that is created by itself, which is non-

physical. The energy-conserving feature of the Denavit scheme may not

be very useful in practice, since energy conservation is exact only in

the limit of a vanishingly small time-step.
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It may be remarked, further, that in testing his model Denavit chose

to study two-stream instability. He compared his results with those from

a particle code7-9 and the Vlasov approach.9 These simulations were car-

ried out at relatively high electrostatic energy levels, i.e., 10-3 - 10-2

times the total energy, which is to be compared with an order of 10- 6 in

our tests to be described in Section 4.
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3. EQUILIBRIUM BEHAVIOR

It is logical to begin our series of numerical experiments on a

Maxwellian plasma with no applied perturbation at all. Here, and

throughout the paper, only electron motions are followed; positive ions

are considered to constitute a homogeneous, immobile, neutralizing back-

ground. Periodic boundary conditions are applied in space: a particle

leaving one end of the system is immediately reintroduced at the other

with the same velocity. The most important parameters are the number

of time-steps, Ns , after which the smoothing operation is repeated,

and the beam spacing, v.

In Fig. 2, the total field energy is plotted against time for

Av = vt/7 . It will be seen that by increasing the frequency of

smoothing, i.e., decreasing N , the streaming instability is sup-

pressed; for Ns < 32 , the field energy stays roughly constant

throughout the simulation run. To study this further, the initial

energy spectrum, and the time-averaged energy spectrum are shown in

Fig. 3. The energy spectrum for Ns = 32 shows that mode energy

tends to increase as time increases. For N = 16 and 8 , the mode

energy seems to stay at roughly the same level, i.e., the streaming

instability is stabilized. The total energy of the system, i.e., the

particle kinetic energy plus the field energy, was found to be con-

served to within 0.1% up to w t - 270 , where w is the electron
p p

plasma frequency.

9
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In a simulation for Av = vt/1 4  , it was observed that the growth

rate of the field energy is greatly reduced compared with the case

Av = vt/7 , and larger values of Ns are adequate to suppress the

streaming instability.10

The important fact established here is that, for stable cases, the

-8total field energy is fluctuating at a level 10 times lower than the

thermal energy of the plasma during the whole run. Since the level of

fluctuations in the particle model for a system of length L = 32 XD 

where XD is the electronic Debye length, with N = 4096 electrons, is

of the order of 10 - 10-2 times the thermal energy, we have achieved

50 - 60 dB reduction in fluctuations. The fluctuation amplitude in the

particle model can be reduced by increasing N , but it should be remem-

bered that the level varies only as N-l/2

12



4. LINEAR WAVE PROPAGATION

The purpose of this simulation was to verify predictions of Landau

damping for electron plasma waves. Waves were excited at t = O by

applying the perturbations

xi = AXD cos kx , vi = Avt sin kx , (3)

where x , xi , and Av. are the position, displacement, and velocity

perturbation of particle i , A is the amplitude, and k[= 27n/L] is

the wavenumber. In this simulation, only Mode 2 (n = 2, i.e., there are

two wavelengths in the system) was excited. The results are shown in

Fig. 4. For Ns < 16 , there is excellent agreement with the theoreti-
5-

6
cal prediction by Langdon, shown by solid lines, which takes into account

finite-size particle effects and spatial grid effects.

Although the fluctuation amplitude due to round-off errors in Fig. 4

increases with time, note that the ratio of electrostatic energy to ther-

2 2 -6mal energy, [(eE/me p) 2 /v] , at t = 0 is 4.25 x 10 in this simu-

lation. Particle simulation with such good quality, at such a low electro-

static energy level, has not been feasible with previous models. For

example, in order to reduce the fluctuation level to 10 times the thermal

energy in a particle simulation with the same system length, it would re-

quire 103 - 104 times more particles than are used in this simulation.

Since the computing cost increases roughly in proportion to the number of

particles, it would be prohibitively expensive. In contrast, the computing

cost in this simulation was found to be less than twice that with the corre-

sponding CIC model. Suppose the smoothing operation is performed every

15
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16 time-steps. One smoothing operation in our computer code takes about

7 sec on an IBM 360/67 for 8192 particles. It is equivalent to an increase

of about 0.44 sec per time-step. Since it takes our computer code about

0.75 sec per time-step for the CIC model with 8192 particles and a system

with 128 cells, the total computing time per time-step is about 1.2 sec.

In addition to our check on temporal Landau damping of a signal, we

have verified the predicted linear dispersion characteristics of electron

plasma waves. The results are shown in Fig. 5, and agree well with theory.

The initial perturbations were applied for Modes 7-20 with random phases.

The electrostatic energy of the individual modes excited was about

4 x 106 times the thermal energy at t = 0

The simulation results presented in this section serve to demonstrate

that the hybrid approach provides quantitatively accurate results on the

collective behavior of plasma in the linear regime, where comparison with

theory can readily be made. There is no reason why it should not be an

equally effective tool in the nonlinear regime, for which analytical

results are not so readily available. In the remainder of the paper, we

shall employ it in the study of a number of nonlinear wave phenomena which

appear when the signal amplitude is increased. Before doing so, however,

we may comment on a well-known phenomenon associated with simulation by

the Vlasov equation approach.

4.1 Recurrence Phenomenon

In a simulation such as that carried out in this section, a perturba-

tion with wavenumber k first damps to a low level at the Landau damping

rate,. and then reappears suddenly at time t = 27/kev with higher

15
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amplitude than its initial one. After its reappearance, the perturbation

decays with a damping rate slightly different from the Landau damping rate.

This recurrence results from approximating the continuous distribution

function by a finite number of delta-function beams: the perturbation with

wavenumber k on each beam comes back into phase after a time TR = 2'T/kAv

and with larger amplitude than its initial value due to the streaming insta-

bility. In the limit of infinitely many beams, phase-mixing prevents recur-

rence of the initial state. The recurrence phenomenon was observed by

Denavit.1 Similar phenomena have been observed in the numerical solution

of the Vlasov equation by the Fourier-Hermite method,11 the finite dif-

ference method,11 and the Lewis variational method, 12 and have been ascribed

to finite resolution in describing velocity-space oscillations. According

to our own numerical experiments, periodic smoothing alone does not suffice

to prevent the recurrence.

In anticipation of succeeding sections on nonlinear phenomena, we can

say that the recurrence phenomenon has not been found to pose any problems

in our simulations. In Section 5, on large amplitude wave propagation, no

irregularity is demonstrated at the recurrence time, TR . Similarly,

where growth of small amplitude test waves is concerned, no irregularity

is observed.

17



5. NONLINEAR WAVE PROPAGATION

Since plasma is a highly nonlinear medium, the linearized analysis

gives only a limited description of its behavior. The question arises

of what will happen to Landau damping and wave dispersion when the wave

amplitude is increased. Theoretical studies of this question were first

made by O'Neil, and Al'tshul and Karpman.14 These authors found that

the amplitude changes in time in an oscillatory manner, after initial

Landau damping. The amplitude oscillation is due to periodic exchange

of energy between the wave and electrons trapped in the potential wells

of the wave. The exchange occurs on a time scale of 1/N , where

a[= (ekE/me) 1/2] is the bounce frequency of an electron oscillating

at the bottom of a potential well, k is the wavenumber, and E0  is

the wave electric field amplitude.

In solving the Vlasov equation, O'Neil, and Al'tshul and Karpman,

assumed that the amplitude variation is so small as to satisfy

7L/B << 1 , where 7L is the Landau damping rate. Under the same

assumption, Bailey and Denavit have taken into account the effects of

the slowly-varying amplitude, and obtained essentially the same ampli-

tude oscillation, except that the time at which the amplitude begins

to grow again after the initial damping is delayed.1 5 Gary has treated

the case 7L/ > I analytically, and shown that the wave starts to

decay at a rate smaller than the Landau damping rate at a time when the

linear theory is expected to break down.16 Sugihara and Kamimura have

considered a wide range of 7L/0 values. Unlike the theories mentioned

so far, their treatment is self-consistent: it includes the interaction

18



between the electric field and the averaged electron velocity distribution.17

Recent work by Oei and Swanson is also self-consistent, and gives similar

results to those of Sugihara and Kamimura for 0 < 7L/ < 1 18

All of the theoretical studies discussed above assume that the elec-

tric field is so small that the distribution function in the resonant

region can be expressed by a Taylor expansion about the wave phase velocity

up to the first order term in velocity. This condition may be written as

/wB > > (v/vt) 2 , where vp is the phase velocity of the wave (m/k)

This is such a stringent condition that it is not easy to meet in laboratory

experiments, especially when also satisfying the condition YL/cB << 1

A few experimental data on Landau damping of large amplitude waves

have been reported. Malmberg and Wharton1 9 observed spatial amplitude

oscillation in qualitative agreement with the O'Neil theory1 3 modified to

fit the spatial case by Lee and Schmidt.20 Oei and Swanson compared their

theoretical results with the experiments of Malmberg and Wharton, and found

agreement on the amplitude oscillation lengths but not on the detailed

behavior of the amplitude.18 One of the reasons may be that their experi-

mental parameters do not meet the condition W/nB > > (vp/vt 2  . Speci-

fically, they have yL/B ~ 0.1 and m/ ~ (v /vt)2 for the results which

exhibit amplitude oscillation. Franklin et al. have made detailed measure-

ments of the spatial dependence of amplitude for electron plasma waves with

different initial amplitudes, i.e., for different values of .21 How-

ever, for large initial amplitude, they failed to obtain results in agree-

ment with the theory. This was ascribed to the appearance of sideband

growth due to trapped particle instability.2 2 Their experimental parameters

for the measured results, corresponding to YL/ B < 0.45, yield m/ < 4(v p/Vt) 2

19



This suggests that comparison of the available theories with the experiments

is inappropriate.

In view of the foregoing difficulties, computer simulation suggests

itself as a means of bridging the gap between the theoretical assumptions

and readily attainable experimental parameters. It allows conditions to be

studied for which analytical approaches are not tractable. Such simulations

have been carried out by Knorr,23 and Armstrong, 4 using direct solution of

the Vlasov equation, and by Dawson and Shanny,25 using the particle simula-

tion model. Knorr observed a decrease in the damping rate for large ampli-

tude waves at times such that it - 1 . Armstrong considered the same

problem and found in addition to Knorr's results that large amplitude waves

grow again after damping initially. He also found that the initial damping

of a large amplitude wave is stronger than is predicted by the Landau theory.

A similar observation of the enhanced initial damping was made by Dawson and

Shanny.

One of our purposes has been to use the hybrid model described in

Section 2 to investigate the nonlinear behavior of longitudinal monochromatic

plasma waves more comprehensively than has been possible previously. Another

has been to investigate the nonlinear frequency shift of electron plasma

waves. In a plasma of infinite extent, or of finite length with periodic

boundary conditions, the frequency of a wave of large amplitude deviates

from that of a small amplitude wave due to nonlinear effects. In an experi-

mental plasma, in which a wave is excited at a fixed frequency, the shift

should occur in wavelength instead of frequency.

The frequency shift has been studied analytically by Manheimer and

Flynn,26 Morales and O'Neil,2 7 Dewar,28 and Lee and Pocobelli,2 9 and found

20



to be proportional to E/2 . So far, there has been no report of labora-

tory observations of nonlinear wavelength shift for comparison with these

theories. In this section, we shall test the theoretical predictions of

nonlinear frequency shift against computer simulations carried out by use

of the hybrid model.

5.1 Computations

We have performed a series of computer simulations to demonstrate the

nonlinear behavior of monochromatic electron plasma waves in a collision-

less plasma. The electrostatic energy of the waves in these simulations

-h
was of the order of 10 times the thermal energy. This is about two orders

of magnitude smaller than in the simulations of Dawson and Shanny.2 5 Some

of the simulations by Knorr,2 3 and Armstrong, 4 are in our range of energy.

Their computations have not, however, been carried out for long enough times

to demonstrate amplitude oscillation.

Amplitude Oscillation: Figure 6 demonstrates clearly this phenomenon.

Mode 3 was excited initially according to Eq. (3), and the evolution of the

amplitude was followed in time with periodic boundary conditions applied in

space. The amplitude oscillates and approaches a constant value due to

phase-mixing of the trapped particles, and formation of a Bernstein-Green-

Kruskal (BGK) mode.3 0

The initial amplitude of the wave was eEO/me tW p  3.4 x 10- 2

corresponding to a bounce frequency of 0/w p = 0.09 The measured

initial damping rate is 7L/ wp = 0.0119 . These combine to give

7L/G = 0.13 . The measured frequency is /uWp = 1.15 . The corre-

sponding wave phase velocity is v p/vt  3.91 ,so that m/UB = 13  and
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N = 8192, L = 64 Ax, H = Ax = XD' Vl = -4.25 vt, v2 = 4.82 vt, at = 0.25/o ].
(Nonsymmetric velocity-space is used to provide resonant particles at high velocities.)



Figure 7 shows the temporal behavior of the distribution function, in

the vicinity of the wave phase velocity, averaged over space. The changes

in the distribution are relatively small; for example, at w t = 48 , the
p

ratio of the peak value to the maximum value of the (nearly) Maxwellian

distribution is of the order of 10-3 . A bump is formed in the distribution

for w t N 48 , and reappears for u t - 144 and 240 . Comparison withp p

Fig. 6 indicates that these times correspond approximately to minima in

the amplitude. The height of the bump becomes progressively smaller on

its reappearances, because of phase-mixing of the trapped particles. 13

A similar bump was observed by Armstrong, and considered to cause growth

of waves with phase velocities lying in that region of the bump that has

positive slope.24 The bump on the tail of the distribution function has

spatial structure. This may be contrasted with the initially spatially

homogeneous distribution whose evolution is considered in the quasilinear

theory of a warm beam-plasma system.3
1 ,3 2

In Fig. 8, we present the results of a series of simulations for various

values of the initial electric field, EO , expressed in terms of the con-

venient parameter 7L/B , where we recall that a = (ekE/me) /2 . Only

one mode was excited at t = 0 for each simulation run, and a different

mode and amplitude were used in each run. The amplitude was normalized to

unity at t = O in the plots. it will be seen from Fig. 8 that amplitude

oscillation occurs for small values of 7L/ , and that the oscillation

becomes less pronounced, with Landau damping extended for a longer period,

as 7L/o increases. The fluctuations in the curves for large values of

7L /B are due to the round-off errors made in representing numbers by a

finite number of digits in the computer.
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Frequency Shift: Figure 9 shows the variation of the nonlinear fre-

quency shift as a function of the electric field amplitude. Mode 3 was

excited initially according to Eq. (3), with amplitude (eEO/mevt"p)

varying from small values (9 x 10 3), which exhibit Landau damping, to

large values (3 x 10-1) such as were studied in the simulations of Dawson

and Shanny.2 5 For each simulation with different amplitude, the frequency

of Mode 3 was measured by computing the total amount of phase change in

the Fourier transform of the electric field between c t = 6 and 60
p

The frequency shift plotted in Fig. 9 was then obtained by subtracting

the linear frequency, oL = 1.247 op , obtained from the Langdon theory,6

from the measured frequency. Except for very small amplitudes, the non-

linear frequency shift is proportional to E /2 and given by

0

- 0.006 - o.2 (4)

P P

To check the dependence of this result on the beam spacing, the simulations

were repeated with the beam spacing halved, and the same number of smooth-

ing operations. The differences in frequency shift were not more than 3%.

A significant fact to note here is the high degree of accuracy with

which it was possible to determine the frequency, and frequency shift. The

model based on the hybrid approach is, thereforeY much more efficient than

a particle code in terms of computing cost for this measurement.

5.2 Comparison with Theory

First, we may check the observed initial damping against the linear

theory of Langdon, which includes finite size particle and spatial grid

effects. The theoretical values of the Landau damping rate, 7L , and
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frequency, 1L , obtained by retaining only the p = 0 term in the summa-

tion in the expression for plasma permittivity given in Reference 6 are

7L/ p = 0.0118 and L/w p = 1.145 for Mode 3 plotted in Fig. 6. We see

very good agreement with the measurements described in Section 5.1. The

theoretical predictions for each mode presented in Fig. 8 have also been

found to agree with the measured initial damping and frequency with errors

of less than 1%.

Amplitude Oscillation: Next we consider the nonlinear theories due

to O'Neil, 1 3 Bailey and Denavit, 1 5 and Sugihara and Kamimura.1 7 O'Neil

obtained a theoretical expression for the time-varying damping rate by

using an energy conservation relation between the resonant particles and

the wave. Substituting the initial damping rate (7L / = 0.0119)

obtained from our computer simulation (Fig. 6), and the bounce frequency

(0 /wp = 0.09) calculated from the initial amplitude in the same simulation,

we obtain the amplitude variation plotted in Fig. 6. After damping initially,

the wave starts to grow somewhat earlier than it does in the simulation. This

can be ascribed to the variation in wave amplitude, which was not taken into

account in calculating particle trajectories.

Bailey and Denavit incorporated the effects of slowly-varying wave ampli-

tude to lowest order in &/a 2  , where a(t) = [ekE(t)/m e]/2 , =  w(0) ,

and a = dc/dt We have solved numerically a set of differential equa-

tions which they obtained, for the same values of 7L and q used above,

and with the results plotted in Fig. 6. There is very good agreement between

the theory and the simulation. We note, however, that there is a slight dif-

ference in amplitude, and that the phase-mixing is somewhat slower in the
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simulation results than the theory predicts. These differences are prob-

ably due, first, to the fact that the condition, / >> (Vp/vt) 2  , is

not satisfied in the simulation, and second, that the theory of Bailey and

Denavit is not self-consistent.

Sugihara and Kamimura derived from the Vlasov equation a set of integro-

differential equations which describe the behavior of the amplitude of a mono-

chromatic wave. Numerical solutions of these integro-differential equations

demonstrated amplitude oscillation for YL/'U << I , and Landau damping

for 7L/LB >> 1 Some of their results are reproduced in Fig. 8. First,

we note that their calculation shows that, for 7L /B = 0.1 , the amplitude

approaches a constant value after nearly two periods of oscillation, although

the distribution function still retains nonuniform features. In our simula-

tion, however, the amplitude oscillation lasts more than two periods, and

does not seem to die out so quickly. This fact seems to be in at least

qualitative agreement with a nonlinear spatial Landau damping experiment by

Malmberg and Wharton1 9 in which there was no clear sign of phase-mixing. A

similar feature of this persistent amplitude oscillation was also observed

in the behavior of an externally excited large amplitude wave in a simula-

tion of sideband instability by Denavit and Kruer.9 Second, we recall that

Sugihara and Kamimura found that there is a critical value of 7L/( = 0.77 ,

which.separates waves into those with oscillatory behavior (7L/OB < 0.77) ,

and those which are continuously damped (YL/% > 0.77) . Figure 8 indi-

cates that there is no such critical value below xL/w = 0.93 . Third,

we note that there is a tendency in our simulation results for the amplitude

to decrease to a lower level, for a given value of yL/cB  , than is predicted

by the theory of Sugihara and Kamimura; the first maximum is also lower than

29



the theory predicts. Although the simulation results given in Fig. 8 are

similar to the theoretical results obtained by Sugihara and Kamimura, it

is important to note that in our simulations /U a (vp/vt)2 , whereas

26
they implicitly assumed that m/O >> (v /vt)2

Frequency Shift: Manheimer and Flynn examined the self-consistency

of the O'Neil solution for the time-asymptotic state:1 3 they studied

whether the potential created by the O'Neil solution satisfies the Poisson

equation. They found that it is approximately self-consistent if a frequency

shift given by

eE 1/2 2 2 -

m k k 2 v 2
e Va0=vL

is included, where B is a numerical factor equal to 21/2, fo is the

initial distribution function, and 6 is the linear plasma permittivity.

In deriving Eq. (5), Manheimer and Flynn only considered the trapped par-

ticles with simple harmonic motions, i.e., those nearthe potential wells

of the wave, and the untrapped particles with straight line orbits. Morales

and O'Neil solved an initial value problem to find the time-dependent shift

in the complex frequency of the wave.27 They took into account the exact

trajectories for both the trapped and untrapped particles, and obtained a

frequency shift which varies in an oscillatory manner and approaches a

constant value in the time-asymptotic limit. Their time-asymptotic frequency

shift is expressed in the same form as Eq. (5) except that P m 1.63

Lee and Pocobelli predicted frequency shifts for waves with Vp/V t vt

up to about 50% larger than those predicted by Morales and O'Neil. These

were obtained by including effects of electrons not in the vicinity of the
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phase velocity of the wave.2 9 In contrast to these theories treating the

case in which the wave is switched on suddenly at t = O , Dewar considered

the case of an adiabatically excited wave, i.e., the wave was turned on

gradually.2 8 He obtained a time-asymptotic frequency shift similar to that

expressed by Eq. (5), but with p = 1.09

Substituting L/wp = 1.247 for Mode 3, obtained from the Langdon

theory and the Maxwellian distribution for fo in Eq. (5), we have

-0.19% (Morales and O'Neil),

-0.135 (Dewar) ,

which are plotted in Fig. 9. We see that the slopes of the lines from the

simulation, and from the theory of Morales and O'Neil, are very similar.

This is to be expected because our simulation of an initial value problem

resembles the Morales and O'Neil problem, rather than the Dewar problem.

It should be remembered, howeverY that the theoretical result is the time-

asymptotic value, whereas the measured frequency shift is an average over

the period co t = 6 to 60 . It should also be recalled that the value ofp

O corresponds to the initial amplitude of the wave. Since the theoreti-

cal result due to Morales and O'Neil was obtained under the condition that

the amplitude variation is very small, it does not matter much whether the

bounce frequency is computed from the initial amplitude or from the time-

asymptotic amplitude. In our simulation, however, the amplitude variation

is not negligible; if the bounce frequency were computed from the time-.

asymptotic amplitudes, the points in Fig. 9 would be moved towards the
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theoretical line of Morales and O'Neil. A similar amplitude dependence of

the nonlinear frequency shift has recently been observed using the Vlasov

approach.

Lee and Pocobelli have reported further simulation results of non-

linear frequency shift. 4 They used a one-dimensional particle simulation

model (charge sheet model) with a spatial grid, and obtained agreement be-

tween measured frequency shifts and theoretical calculations.28 In this

simulation, a standing wave was driven by applying external electric field

for a short time. This is in contrast to our case of an initial value prob-

lem with a propagating wave. It is noteworthy that they used as many as

40,000 particles. We needed only 4096 particles to obtain quantitative

results of similar quality using the hybrid model.
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6. DISCUSSION

In this part of our paper, we have studied essentially monochromatic

electron plasma wave propagation by means of a variant of the economical,

low-noise, hybrid simulation approach of Denavit.1 In Sections 3 and 4,

computational studies of the model were made for equilibrium conditions,

and small-signal propagation. The linear wave dispersion characteristics

predicted by theory for long wavelength collective behavior were demon-

strated to be followed very precisely. This verification of the validity

and effectiveness of the simulation model is very important as a starting

point for the subsequent study of nonlinear phenomena. It also serves to

establish the validity of the widely-used CIC model, 2 and the Langdon

theory describing the finite-size particle model.6 Quantitative results

in the very low energy range discussed here have never been obtained

previously with such a high degree of accuracy with simple particle

models.

In the study of amplitude oscillation and Landau damping in Section 5,

we have attempted investigation in areas where analytical approaches are

not easily tractable, i.e., in cases where the condition, W/aB > > (Vp/vt)2,

is not satisfied. The results of our simulations show good qualitative

agreement with the theories of Bailey and Denavit,15 and Sugihara and

Kamimura,17 who have made the assumption, / >> (Vp//v) 2  
. However,

there are significant differences between our simulation results and the

theoretical results of these authors; first, phase-mixing of the amplitude

oscillation is slower than predicted, and second, there exists no critical
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value of 7L/ZB within our parameter range such as was found by Sugihara

and Kamimura. It is hoped that these results will be helpful in better

understanding the phenomenon, and in developing an analytical theory for

W/ < (v/vt)2

In the study of nonlinear frequency shift made in Section 5, we have

measured the frequency shift for large amplitude waves, and compared the

results with theoretical predictions. It has been demonstrated that the

simulation results agree well with the theoretical predictions of Morales

and O'Neil.2 7

The deformation of the velocity distribution, particularly particle

trapping, caused by a large-amplitude wave gives rise to a variety of wave

amplification and coupling phenomena. Sidebands develop in addition to the

monochromatic wave applied, and additional satellite frequencies appear.

These can be studied as growth from noise, or by injection of suitable

test waves. A series of such studies is presented in Part II of the

paper.
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