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Abstract

A. collisional electromagnetic dispersion relation is derived from
two-fluid theory for the interchange mode coupled to the Alfven, acoustic,
drift and entropy modes in a partially ionized plasma. The fundamental '
electromagnetic nature of the interchange rnlode is noted; coupling to the
intermediate Alfvén mode is strongly stabilizing for finite kz. Both ion
viscous and ion-neutral stabilization are inc;luded, and it is f(.)und that

collisions destroy the FLR cutoff at short perpendicular wavelengths;'



Introduction

This paper is motivated by a study of the instability of the
nighttime equatorial F region called spread F (Hudson 1974; Hudson
and Kennel 1974a). We develop a set of plasma equations to suit |
equatorial F region parameters, which are also applicable to Q
machines and other laboratory plasmas, Although Coulomb colli-
sions predominate in the F region, neutral collisions may determine
the altitude threshold for spread F onset (Hudson 1974; Hudson and
Kennel 1974a), so both have been included in our analysis. Colli-
sional fluid equations are used (Braginskii 1965), which are appro-
priate for _parallel. wavelengths exceeding the total electron mean free
path and perpendicular wavelengths greater than the ion Larmor
radins. Fquatorial localization ;)ermi,ts even longer parallel wave-
lengthe, so both finite electron heat conduction along the magnetic
field (Tsai et al. 1970) and energy transfer between species must be
included. Since this is the first of two pa,p'ers' on thellow frequency,
density gradient _driven modecs of a partially ionized collisional plasma,
the full dispersion relation for all such modes (interchange, entropy,
and drift) will be ‘derived ax;d the modes will be decoupled here. 1In
the second part of this paper we will be concerned with the structure
of the interchangermode: its electromagnetic corrections, ion finite
Larmor ;adius“ (FLR) stabilization (Rosenbluth, et al.. 1962) and the
relative effect of neutral and coulomb collisional damping.

In order to treat the interchange mode properly, it is necessary

to derive an electromagnetic dispersion relation. The interchange mode



.is often derived in the electrostatic approximation neglecting pertur-
bations along the magnetic field (k, = 0) (cf. Rosenbluth et al. 1962).
While this procedure gives the correct ciispersion relation at kz =0,

it conceals the- fundamental electromagnetic nature of the interchange
mode, The interchange mode appears in lowest order in the ion FLR
parameter b in the small kZCA/UJ limit of the full electromagnetic
dispersion relation; electrostatic modes such as the drift which require
finite k_are obtained in the large kch/UJ limit, where C, is the
Alfvédn speed., It .is incorrect to solve for the finite parallel wavelength
(kz) corrections to the interchange mode from the electrostatic disper-
sion relation, since the dominant stabilizing term comes from coupling
to the electromagnetic Alfvén mode.

The collisionless interchange or Rayleigh-Taylor mode destabi-
lized by gravity antiparallel to a density gradient and perpendicular to the
magnetic field was first_suggested by Dungey (1956) as a source of equa- ‘
torial F region irregularities. Haerendel (Balsley et al, 1972; Haerendel
1974) included neutral collisions but neglected Coulomb collisions in the
Réyleigh-Taylor mode, so his analysis is restricted to lower altitudes
than typical spread F observations at finite perpendicular wavelengths
{Hudson and Kennel 1974a). Both Dungey and Haerendel neglected FLR
stabilization, which Rosenbluth et al. (1962) have shown to be important
at short perpendicular wavelengths.

The purpose of the second part of this paper which deals exclu-
sively with the interchange mode is to extend the previous work in
slab geometry to higher altitudes and answer the following questions,

What is the effect of Coulomb collisions on the Rayleigh-Taylor growth

rate, and how does it depend on plasma density? This is compared with



(the growth rate dependence on neutral collisions and neutral density
(Balsley-__gg___q._l.- 1972; Haerendel 1974), What is the shortest perp;an-—
dicular wavelength above the FLR cutoff, and how do collisions affect
this FLR cutoff? This is compared with the observation that spread ¥
perpendicular wavelengths can extend below the ion Larmor radius.

We will find that collisional particle diffusion drifts oppose the collision-
less FLR drift of Rosenbluth et al. (1962), and can extend the unstable
perpendicular wavelength range down to the ion Larmor radius where
the approximations break down., However, the effect of both neutral

and Coulomb collisions at long perpendicular wavelengths is to reduce

the maximum growth rate of the interchange mode.

Assumptions and Basic Equations

- - s
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a uniform z-directed magnetic field. There is a constant vertical den-
sity gradient in the positive x-direction and gravitational acceleration
g in the negative x-direction. We ne;glect particle sources and sinks,
Zero order drifts along x and z, static electric fields and zero order

temperature gradients,

We will restrict our analysis to perpendicular wavelengths greater
than the ion Larmor radius and parallel wavelengths greater than the electron
mean free path for momentum transfer to ions and neutrals Ae = ae/(v Lt v ),
' el en

which depends on the electron thermal speed a, and the sum of the electron-

ton and electron-neutral collision frequencies Vei and Vo defined in Table 1.
n



The following set of fluid equations then applies to the jth species, electrons
or ions for j = eori

anj/at + 7. (njxlj) =0 | (1)

m.n,(dv . /dt) = -9(n.T,) -v. n. +n.e[E
JJ 7 J ) - ) -

}
+ &j/c) x B]~ C.n 9T _+ REi + Ri& - (2)
3/2¥n.(dT./dt) + n. T, v.v, = -%q, + Q. | 3
( )J( j ) 0Ty 9.9, 4 QJ (3)
Rei ™ "Rie " CrMeeVei Ve ™ ¥i) (42)
R = Cmnv v (4b)
en T e e eﬂ_i
R, = mn,v, V, (4¢)
11 11 _m __1__ -
m =m, m, = M
< L

Eguations (1) - (3) arc the momentum, continuity, and heat flow
equations written in the neutral rest frame. Neutral dynamics are neglected
for oscillation frequencies satisfying w>> Vio ni/nn. However momentum
and energy loss to the neutral sink are included.

The transport coefficients for a fully ionized plasma including ion

dynamics in an arbirtary rmagnetic field were computed by Braginskii (1965).

His resistive, thermo-clectric and electron thermal conductivity coeffi-

cients along the magnetic ficld are Cr = 0, 51, Ct = 0.7l and Cx = 3,16

respectively, . Shkarofsky (1961) has tabulated them as functions of
vt'n/vci for a partially ionizcd plasma neglecting ion dynamics, hence

ton drift with respect to ncutrals, and Schunk and Walker (1970) have

plotted them, These exact numerical coefficients enable us to write
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“the electron vquations {1 - 3 ) in the identical form to the fully ionized

case replacing Vi by the total electron collision freguency Ve Vei t v

For example in Equation (2) we have for V, =0

1
R . +R = -Cmnv v
el en r ee e

where C_ is a function of v /v ..
r en’ ‘ei

Approximations in ion eguations

In the limit ikzcs/le <<1, where CZ; = Te/M is the ion 'a'c;,oustic
speed and le| = J.-cyCi/QiLl is the diamagnetic drift freﬁuency, ions primarily
move perpendicular to B, undergoing a shear rather than a compressional
motion (Tsai M 1970}, As a result, ion temperature fluctuations are
scaled down from electron temperature fluctuations by the ion FLR factor
b = kiCi/Q? <<1l., We have independently checked that including ion
temperature fluctuations does not significantly affect the interchange mode
{(Hudson 1974). Therefore, we will neglect them here, thus eliminating
the ion heat transfer equation irom the set (1 - 3),

We retain parallel ion pressure, finite ion inertia, FLR effects
and viscosity. We use the fully ionized ion viscosity tensor (Braginskii 1965),
since momentum exchange between ions and neutrals is treated separately
in {4c). Our separate treatment of the two collision processes makes the
reasonable assumption that an ion-neutral collision transfers the total ion
mementum to the neutrals, whi.le Coqlomb collisions are a diffusion pro-
cess in a spatial gradient. This is a pgood approximation for charge
exchange collisions, and hard sphere collisions when ion and neutral

masses are comparable, since the momentum exchange rate then

scales as M./ M ~ 1.
i'" 'n



The only contributing terms in the ion stress tensor to order

b = kzci/nzi are (Shkarofsky et al. 1963)
1

v, m= -1/ {[p@ tvp). v v xd)

+(£x vyp.). v v }
1! 1l 1

- 3/10 {[kpivii;{%) Vi*("lpi"nm?) : Vl}"l

~ 2 ~ .
-[ax Vl\pi"umi} A S

- 1/3ch-[([).l/\aii)\?’L . Vv ] | (5)

————

The collisionless stress term is the ion FLR effect. The first collision
term corresponds to shear stress due to ion viscosity, and the seco:_ld
corresponds to compressional stress from the collisional relaxation of

n - n differences (Stix 1969). The compressional term is of order b3

*

L (]
in the ion continuity equation (Stix 1969) and will be dropped along with all

other terms higher order than bz. Parallel ion viscosity like parallel ion
heat conduction, which has been included in the collisional electrostatic |
drift-acoustic dispersion relation of Coppi and Mazzucato (1971), only
affects short parallel wavelength modes kz?\e "“l(rn/M)% and will Ibe
neglected here, The remaining lon viscosity term then determines

the coefficient of perpendicular ion-ion collisional momentum transfer.
We will see that this factor is reduced from unity, the coefficient of

ion neutral collisional momentum transfer in (4c).. In (5)Awe have
neglected collisionless FLR terms of order bzw_(Kennel and Greene 1966)
ami retained those of order b2 Vi for application to low frequency oscil-

lations w/ Vit << 1,



Approximations in electron eguations

We neglect electron inertia at frequencies low compared to the elec-
tron plasma frequency w << wpe' The perpendicular electron motion can be
treated in the guiding center approximation for the modes of interest
(ki_/kz <<l). We therefore neglect the perpendicular pressure,
diamagnetic drift and off diagonal héat flow terms in the electron equations
(L - 3). It can be shown that including these does not alter the final
result since all additional terms cancel in the perturbed equations.

Electron thermal conductivity along the magnetic field greatly exceeds
ion thermal conductivity in general; hence electron temperature fluctuations
have been included along w.ith parallel electron pressure.

The parallel electron heat flux is

- L) , E \ m
e Cx (“eTe‘m e / v

- CtneTe"Ez_ e

Again Ct and Cx are functions of Ueh/ Vi (Shkarofsky 1961) defined so as to
write the electron equations (l - 3} in the fully ionized form, replacing Vei by
Vo T Vai Ve The collisional energy transfer from electrons to ions and
neutrals is given by

Q, = -3(m/M) n v, (T, ~T;) T =T, {(6b)

Here we assume that ion and neutral masses and temperatures are equal,
and that all electron energy lost to the ions is subsequently lost by ion
neutral collisions to the neutral sink. This assumption is valid for

Vin / i >2 /m/M (Hudson 1974). For v.m/ Vii <2 /m/M the ions

prefer to give their energy back to the electrons via Coulomb collisions.
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Q. be comes important when pé.rallel wavelengths are comparable
to the ene‘rgy transfer mean free path from electrons to ions and neutrals, a
factor of /M/m longer than the momentum transfer mean free path Ag
Such wavelengths are typically long compared to laboratory plasmas, so
this term has previously been neglected in the derivation of the following
modes (Tsai et al. 1970). However, the possibility of very long parallel
wavelengths exists in the ionosphere, so the energy transfer term has been

retained.

Equilibrium

Perkins (1973) has examined the F region equilibrium, where the
Hall conductivity is negligible, and Coulomb collisions make no contribu-
tion to the Pederson conductivity, In the frame where neutral winds

vanish, the ion momentum equation {Z) rields

= CExXZ gxz
Vi = - ¥ynxz +
—t! B eB s 0
| (7a)
v cT, v, 2
+1n(_c_:_£_}___ 1@4.5-_)4.0(1“)
Q B eB n 0 2
Q .
Since vin/0<<l in the F region, higher order terms are dropped.
The electron momentum equation (2) yields
(7b)
v _cExZ
M- - B

Perkins (1‘)-73) finds that only the East-West {y) component of the
current j, = ne (Vy; - V o) contributes to the equilibrium, Since the
primary eclectric field in the nighttime F layer is vertical due to polari-

zation (Rishbeth 1970), the only contribution to the equilibrium comes
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from
cT
i a - 7
: - yn x Z + ne p X z (Te)
_Y B —

which is independent of electric fields and neutral collisions. This
is just thc current due to the density gradient drift and gravitational
gﬁiding center drift. We will neglect electric fields in the perturbed
equations which introduce the E x I3 instability (Sirﬁon 1962) to be

trecated in o separate paper in the finite bcat conduction limit,

Perturbed cquations

We linearize the above set of {luid equations assuming the fluctuations
are low frequency oscillations of the form ol Z-ut) g k L >>1 the x-
L
dependence of the perturbation is weak and a good estimate of the eigen-

frequency is obtained by setting kxl: 0 (Krall 1968).

The parallel ion momentum transfer equation yields

. k V . ~ k V.
v, - i1y g e g
zi oM w 2 W y
2~
+ Ry kzcsf_i_
w n

(8a)
We solve the perpendicular ion momentum transfer equation iferatively

for low oscillation frequencies and low ion~ion and ion-neutral collision
frequencies v, and v, defined in Table 1 assuming w/Q.l, vii/Qi and

vii/ni ~b < < | appropriate for the F~region where ions are magnetized.
We obtain

Ver = - i(i;/ni);;xi 90 Ayfn
(8b)

in = C(ty/B) - i(kyci/ni)RT(ﬁi/ ")

S 0‘3!)2‘” i[(ie/kyTe)ty +R'T(‘ﬁi/ n>J (8c)
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'where - .
W = oW+ M,;L/b

vi/b = v; +0.3b v Ry, Ry = Ti/Te

v /b is the frequency which scales the perpendicular ion diffusion rate.
1 _

v, and LT always appear in this set of equations in this combination. Ion-
in -

ion collisions only affect transport in the presence of a spatial gradient,
where ions in a denser region encounter more collisions with other ions

and diffuse toward less dense regions. This is in contrast to a homogeneous

plasma, where the center of mass remains stationary in an ion-ion collision

and there is effectively no diffusion., It further contrasts with ion neutral
collisions where we assume that the total ion momentum is lost. Even if
only a fraction of the ion momentum is lost in a single ion-neutral collision,
the ions will random-walk and diffuse through the neutrals, which act as a
momentum sink,

For kYLL>> 1 the important scale length is the perpendicular wave-
length, The different b dependences of Vi and Vin in v.L suggest that the two
collision processes will be significant over different perpendicular wave-
length ranges, We will sqbsequently find that ion-neutral collisions damp
the drift mode at long pe.;-pendit:ular wavelengths. Ion viscosity will also

be found to increase the collisional damping of the interchange mode at

short perpendicular wavelengths.

~ ~ P
Substituting Vi Vyi and Vi into the perturbed ion continuity
equation, assuming kyL >>1 and dropping terms of higher order than b2
L

eliminates the collisional terms in (8¢} and yields the following relation
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between ion density and electric field fluctuations

(ﬁ'i/>[w+Rwa-kyg 0 - Rk’ 2¢ / ]
- + i@/kyTin- bw - (k Z)ky JJE,
+kae/mr}(| +ky\ly'/m)'Ez

(9)

The electron momentum transfer equation yields, assuming w/Qe.

v . /0 and v /01 <<1
ei’ e en' e

v =ckE /B (10a)
Xe y .
Y=g . (10b) .

ye

<!
B
L}

I 3 Io'-";
+
Pt
T
o

-.‘.Z-g

ze kz t/
" ':5' “'wvy)tz' w Y
e X, (10c)
where v = k aZIZC Vo and Vo Vi t Vent VY scales inversely with the
I el en I

sum of the collision frequencies. It must be small compared to the electron
transit frequency over a parallel wavelength, k a , sincek a /v _ =k A <<1,
Z e zZ e e Zz €

By assumplion many collisions must occur over a parallel wavelength for this
L]

colligional {luid analysis to apply.
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We substitute VNxe and ‘Tze into the electron heat flow equation and
retain energy transfer from electrons to ions and neutrals. At very low
oscillation fr;aquencies w<< kvei  Ven /l the collision frequencies adjus‘t to
the electron density and temperature fluctuations; therefore we must perturb

the electron density and temperature dependences of the collision frequencies.

-3/2 . 1/2 '
From Table 1 v_. «n T / » while Ven mnnTe/ is independent of electron

density, The perturbed electron heat flow equation yields

T : -
T’g - - {(2/3“”“(‘ +ct)[ﬁe/n - (ie/sze)tzJ

e
+ iZ(I ) RT')((m/M)(zvei + ”en)ﬁe/ "}
/(w+ Tuyx) o | | (11a)

where

x =g cc +(1+ c;)z] +i2(m/M)y, foy

+i. (1 - RT) (I'I‘I/M)(ven - 3“&5)/““
| (11b)

Substituting (10a), (10c) and (11) into the electron continuity equation yields

the following relation between electron density and electric field fluctuations
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(g ALt + Fon) (¥ Fon) +Evy}
= i@EY/kYTJU}D - i (v“/u}}kyvy}(w + I\I“-\Z)

+.i@€z/kzrg{iv“(1 + kyVy/w)

R 4
o (w+ Tvyy) "’E\-‘nj

(12a)
where
ap = kVe, = - kc2faL, . (12b)
€= 2/3(1+¢,) 2+ 2(1+c)(1- R, )
(12¢)

+ (m/M )(2"eil + "en)/”il

Y and E are combinations of terms which arise from finite parallel
electron heat conduction which permits electron temperature fluctuations,
and energy transfer between species. They are discussed further and

plotted as functions of vcn/ Vei by Hudson and Kennel (1974b).

Flectromagnetic Dispersion Relation

To the set of five fluid equations we add Faraday's law
1 3B '

vxE 4= rrnt 0 (13a}
and Ampere's law, neglecting the displacement current for v < <u:pi
vx B = ‘-L-f’-g, {(13b)

- C
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«Neplecting the displacement current is equivalent to assuming quasi-
neutrality in place of Poisson's equation.

Follc;wing Mikhailovskii and Rudakov (1963) and Coroniti and
Kennel (1970) we will neglect the parallel component of the oscilla-
tory magnetic field. This eliminates the fast, or magnetosonic mode
of hydromagnetics, which doe_s nét couple significantly to the modes
of interest here, with perpendicular phase velocities the order of the
diamagnetic drift. However, the inte;‘rmediate and slow modes are
well known to couple to drift and flute modes (Kennel and Greene 1966)
so the Alfvén and acoustic terms will be included in our initial set of

equations,

vaniching componcat of the oscillatory magnetic field in

terms of the nonzero electric field components

By - -&(kz!y - kytz)

(14)
Substituting (14) into the linearized Ampere's law yields the
oscillatory current components |
. -~ ~ ik 2 ~
J = nev , +n.eVv . o )( T . ) (15a)
y yi i yi = m I’; kZEY kYEZ

- - N - 2 T L
I, = “e("zi “Vze) = %!('&F)(kzgv ) kYEZ) (15b)
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We substitute for \rrvz., v ., nand \,;,Ze from (8ab), (9) and (10c¢), making use

of (11la) to eliminate ’rf’Je/Te. Equations (15a, b) reduce to a 2x2 matrix (16)

A
A

(16) must vanish for a nontrivial solution; the cross term cancels much of

in EY and Ez. Cc, = B2/4nnM is the Alfveh speed. The determinant of

the main diagonal, yielding the collisional electromagnetic dispersion
relation. This reduces to the fluid limit of the collisionless electromag-
netic dispersion relation obtained by Coroniti and Kennel (1970) from
kinetic theory. We will pow examince the structure of (l6) in the large

and small k C,/wlimits.
z A
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' ' \w +Rybu - kyg/0- RTk /“’) =Y =Y ¥ (weRpbu - ,9/a- Ryl % /w)
- ik k€3 1k2c2
—E e {iy (‘l‘"‘f"') *‘:FA {(a+x Vy)(kzcz m) m}
Vit e ifyn ot ipg)(w+ivny qu_[(m+ kv\fd)(m+wu}- lgv“wh: J}
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2 2,2
INlectrostatic Limit k?CA/uJ — o

In the very low B <m/M limit appropriate for ionospheric application
2.2, 2 .
wherc C,s <ae < CA we let LZCA/w -~ o in (16), and the Alfvén terms are

clitnianted from the electromagnetic dispersion relation, which reduces to

b{(w + Rymp) (w + 1v,/b) +9/L,}

- (kZe f) (@ + Rywp)

e - [m*‘ivn(;‘F)]
- VI e + ivix])

ul1+0bT - wp +iv0

eq/w)e] e = 1Ry
(17a)

The second term on the left hand side of (17a) (an electromagnetic correction)
is negligible for v“>> kzzcglm or w/ Vo ~>m/2M. The rest of {17a) corresponds
to the electrostatic limit which can be obtained directly by assuming quasi-
neutrality, 'Hi =hﬁe. and substituting EY = - ik;:o and Ez = - ikzrcsin (9) and (12a).
As required by the continuity equation (1) this electrostatic result can also be
obtained by making the same substitutions in the conductivity matrix J =g. E
(16) and setting v. J = 0, recalling that kx = 0. Neglecting the energy
transfer terms in X and %, neutral collisions, acoustic terms and gravity,
this electrostatic dispersion relation (17a) reduces to that obtained by Tsai
et al. (1970).

We have written {17a) in a form which separates the interchange

mode on the left hand side from the product of cntropy and drift modc terms

respectively on the right hand gide.  Note Lhat the interchani;e mode aphears
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limit., Also

' limit where (X- E) =%, the entropy

mode (Hudson and Kcennel, 1974c) is eliminated from {172) which becomes

b{(w+Rywp) (w+ Ty, /b) + o/L,}

only as FLR and acoustic corrections in the large kch
.

note that in the large or small v

- (K32/a) (0 + Ryo)

. Lty 0
a - ivn{w[‘ +pb] -wptivep - (kzcs/‘”)pf (17b)
Neglecting neutral collisions, acoustic terms, and gravity this quadratic

isothermal dispersion relation reduces to that obtained by Chu et al. (1969).

Electromagnetic Flute Mode Limit k_—0

The limit kz -+ 0 requires that v, 0 and (16) becomes

{(w+ R’I‘ o )(w‘l‘ iv/b) + g/LJ_}

{) w+iv T (- KVp) } = 0 18)

where vui—-z (m/ M) v, a8 v = 0.
|

The first bracket in (18) contains interchange mode terms. The

second bracket.in (18) contains a zero frequency ion acoustic mode (w),

a damped entropy mode (w + iv"'i), anci a purely oscillatory drift mode

{w - kyVy). These three modes are basically electrostatic, and require finite
kz for growth. In low B <« 1 plasmas the Alfvén speed CA >> Cs’ the

ion acoustic speed, which is the characteristic electrostatic phase velocity

along the magnetic ficld, Hence these finite kz electrostatic modes are

properly treated in the large ky,CA/w limit of the electromagnetic disper-

sion rclation {16).
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2 2

‘Decoupled interchange mode: z. /uJ < <]

In the preceding section we saw that the interchange mode was
2 .
obtained in the small k? Ci/wz limit of the collisional electromagnetic

dispersion relation (16).  Retaining terms of order ki Ci/m2 and dropping

2.2, 2 .
terms of order bszA/uJ , the interchange mode dispersion relation is

2.2
(m+RTmD)(W+iv_L/b)+g/LL kch = 0 (192 )
The solutions are
o = 172 (g + i)
i«./( T~ '\’.L/b) +"+(k2C g/L )} (L9b)
e k% CE lerm in (13b} is strongly stabilizing in most applications.

Solving the electrostatic dispersion relation (17a) for the {inite ky

correction to the interchange mode gives a less restrictive and incor-

rect result, The. kz Cz
z A

k? = { in slab geometry, and to the lowest order flute perturbations of

term  restricts the interchange instability to

an cntife flux tube in general geometry. Haerendel (1974) has p-erformed
a dipole geometry calculation treating magnetic field lines as equipoten-
tials. Assuming that the plasma density is field-aligned, he has averaged
all density-dependent quantities in the local dispersion relation (20d)
over an entire flux tube, Although the plasma density is altitude -
rather than field - aligned below the F maximum, the step to averaging
over altitude~-aligned plasma density in dipole geométrjy is not straight-
forward, We will not pursuec the general geometry flute mode further;

instead we will focus on new results in slab geometry.
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Ilute Mode; ky = 0 in Slab Geometry

Setting kz = 0 and neglecting gravity in (19b), one root is damped

and the other is marginally stable

w m - i\’.l. w = - R l!JD
+ ) T 0a)

Including gravity, the roots are

w = %{ - (RT“’D* iu,_/b)

iJ(RT‘”D - i-..‘J_/b)2 . hg/FL}

w, becomes unstable and can be written in the form

(20b)

exp[ -i/2 tan’ ](v/x) + inn/Z]} (:20¢)
where
x = (Rywp)? - (v, /6)% - g/t

[ Z(RT“’D"L/") SORE
Nnw0 x20 n= 1 x<0

At b = 0 the real frequency vanishes and the growth rate is

- jein [’7“{“1(‘1‘
U 2 i Yin L,

maxirmum

(20d)
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In this limit v /b = v and RT Wy = 0, hence the growth rate is
independent of Coulomb collisions and FLR effects. This limit corres-
. ponds to that obtained by Haerendel (Balsley et al. 1972; Haerendecl
1974) for slab geometry. We have plotted this maximum growth rate as
v/ \/m ve v /W from (20d) in Figure . We sce that i;he col-
lisionless growth rate is maximuwn and that the growth rate decrecases
with increasing neutral collision frequency.

In the collisionless limit v, = 0, (20¢) yields precisely the résu[t

obtained by Rosenbluth et al. (1962) from kinetic theory

where FLR effects are stabilizing for

(2la)

. ? v e 2.
([‘T"‘D> ("'l(‘az/L*) R

(21b)
This sets an upper limit on unstable b or lower limit on unstable perpendicular

wavelengths,

In the collisional limit of (20c¢)

(Ryap - ivy/b)2 55 g/t
(22a)

we can expand the radical to obtain one growing root

(Ryug + 1v,/b)
RTWDF‘*‘ (\:,_/b )2

Wy = - Rywp+ 9/LL(

(2213)
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In the limit v, /b >> RTU}D, the growth rate is

- |-k =
Y IL.L"’.L , vi/b vin+0.3bviiRT
(22¢)

which agrees with the collisional Rayleigh-Taylor mode growth rate of
lHacrendel {(1974; Balsley et al. 1972), bhere modified to include ion
viscous damping, which we have seen vanishes for b = 0,

‘flie full dispersion relation (20c) is more general than eil ey
i. v result of Haerendel {20d) or Roscobluth et al. (2la). In addiiion to
including Coulomb collisions, (20c) demonstrates the effect of neutral
collisions as well on the collisionless FLR cutoff. In Figure 2 we
have plotted the complete Rayleigh-Taylor growth rate {20c) at kz= 0

as z function of b at fixed Vg L, and two different valuecs of Vin

The top curve is essentially collisionless (v, <2/g7/L ] ); the bottom curve
is collision-dominated (v; >2/g/L;). The growth rate is maximum at

b = 0 in both cases, and smaller in the collision-dominated case, as
indicated in Figure l. Collision dominated growth extends to shorter
perpendicutlar wavelengths than permitted by the collisionless FLR cut-
off (Rosenbluth et al. 1962) of the top curve. The y term in (20¢), which
vanishes in the collisionless limit and becomes significant as b = 1 in the
collisional case, is respoasible for the extension of the instability region
down to the ion Larmor radius, where the present fluid analysis breaks
down,  Physically the collisional particle dilfusion drift opposes and
cancels the collisionless FLR drift.  This diffusion drift depends on

v, /b = Vin + 0.3b Vi hence both neutral and Coulomb collisions at

finite purpendicular wavelengths.
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Ion viscosity only affects transport when there exists a spatial
gradient. For kyLJ_ >>1 the important spatial gradient is the perpendicular
wave;ength or b, It is clear from {22c¢c) that in a plasma where vii > Vi
such as the nighttime equatorial F region, ion viscosity previously neg-
lected will dominate ion-neutral collisions in determining the perpendicular

ion diffusion rate v,;/b and Rayleigh-Taylor growth rate at short perpen-

dicular wavelengths,

Conclusion

From two-fluid theory we have derived a collisional electromagnetic
dispersion relation for the interchange mode coupled to the.Alfve'n, acoustic,
drift and entropy modes. We have demonstrated the fundamental electro-
magnetic nature of the interchange mode which appears in the opposite
Vimit (bici/mz < <1} of the clectromagnetic dispersion relation (io) irom
the electrostatic modes (kgci/wz >2> 1), The main stabilizing affect
for finite kz comes from coupling to thé electromagnetic Alfvén mode
rather than electrostatic modes, even though interchange mode terms
appear in the electrostatic dispersion relation. Coupling to the Alfvén
mode restricts the interchange mode to kz = 0 in slab geometry,

In all limits the interchange mode destabilized by gravity has a
positive ‘growth rate only when gravity is directed antiparallel to the
density gradient. For example, this precludes the growth of the Rayleigh-
Taylor instability on the topside of the F-layer., The growth rate maxi-
mizes at k, = 0 and b = 0. Only neutral collisions affect the growth
.r:ﬂu at b = 0, and the growth rate decreascs with W+ For finite b,

ton-ton collisions contribute to the perpendicular ion diffusion rale

v/l = . There 19 e .
v/ Vi 0.30L TE here is competition between the collisional



diffusion drift and the collisionless FLR drift at short perpendicular
wavelengths.  When v /b <2 /g/L |, the col‘lisit;nlcss FLR drift mode
(Roscnbluth et al, 1962) stabilizes short perpen.dicular wavelengths .
When v /b >2 /g/L;| collisions elim.inatfe’the FLR cutoff and extend
the unstable spectrum down to the ion Larmor radius where the small
b expansion breaks down.

Since v > vy, at the altitudes where spread F is generally
observed, including ion viscosity is an important extension of the col-
1isjonal Rayleigh-Taylor instabilify theory (Balsley et al. 1972; Haerendel
1974). Our consideration of finite perpendicular wavelengths has shown
that it is possible for the Rayleigh-Tay}or instability to cover the entire
range of perpendicular wavelengths above the ion Larmor radius in the
limit v, /b >2 fgﬁ? where collisions eliminate the FLR cutoff. How-
ever, typically vl/‘b < 2 J'g_frl at the altitudes where spread F _ié
observed (Hudson and Kennel 1974b). Hence, the Ray'leigh-Taylor instability
is primarily collisionless and Haerendel's limit does not apply. The |
FLR cutoff then restricts the Rayleigh-Taylor instability to perpendicular
wavelengths the order of a hundred meters or greater, and the drift
mode which is investigated in the companion paper (Hudson and Kennel

1974b) has a larger growth rate at shorter perpendicular wavelengths.
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m/M
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v.. = J/{m/ZM) Vei
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v = 3.5x10 8 T (eV)
en n- e
Vip = J(m/2M) Ven
v = WV + v
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H ‘
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1
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X
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parameter perpendicular to

magnetic field B

parameter parallel to magnetic

field B

perturbed quantities which vary
as eb (k. r- wt)

ion electron temperature ratio

electron-ion masgs ratio

electron-ion collision frequency,

single charged ions
ion-ion collision frequency

electron-neutral collision
frequency (Nicolet 1963)

ion-neutral collision frequency-
total electron collision frequency

Coulomb log (Spitzer 1967)

electron thermal speed
ion thermal speed

ion acoustic speed



0 = eB/Mc
i =eB/mc
e

p. = A./0

i i

O =aelﬂe

@ = 41'rnez/M
P

le =ae/ve
Ae. = ALV,
i i' Tii

L, = (Vn/n)-:l

22,2
b = kiC/0Q

w,, = —(cTe/eB2>k_L. (vanx B)/n

D
- 2

vy =bv, +0.3b%v
in i

vy =k-a”/2C_v
e r

C —CT_L/O'"

Ct

C

X
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ion cyclotron frequency
electron cyciotron frequency

ion Larmor radius

electron Larmor radius

ion plasma frequency

total electron mean free path
ion-ion mean free path

perpendicular density gradient
scale length

ion finite Larmor radius paramecter

Diamagnetic drift frequency, de-
fined to be positive for waves
propagating in the electron dfift
direction

perpendicular ion diffusion rate
parallel electron streaming rate

ratio of perpendicular to parallel
electrical conductivities (Braginskii
1966)

dimensionless thermoelectric
coefficient

dimensionless electron thermal

conductivity coefficient



emfoscy (10 GF)
iZ(m/M)ve/v”

(1= Ry )/ (v - 3ves)
T=@/3) (1 + ct)z

v2(1- ) (1= ryg Yo

(Zv .tV )/vn
. 21 en

<]
+ 1

e

All other notation standard

heat conduction and energy

transfer coefficients
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Figure |

Plot of maximum Rayleigh-Tayler growth rate in slab geometry
(20:1) which occurs for b = 0 and k=0, normalized as v/ / glL | vs.
vin/fm.' Note that the growth rate is maximum in the collisionless -
limit and decreases with increasing neutral collision frequency; ion
viscosity and FLR stabilization do not affect the b = 0 mode.

We have scaled the x = v.m/ / g/L | axis with altitude for an average

model neutral atmosphere (Johnson 1965} and the y =~/ S g/l axis with

growth rate for two reasonable choices of L | for the bottom of the nighttime
F layer, L, =9.42 and 25. 6 km. The altitude dependence is affected more

than the magnitude of the growth rate by this change in L ;.

Figure 2

Ravieigh-Tavlor growth rate (20c) at kz = 0 as a function of h at
fixed L, = 9.42 km and Vii 0. 55 sv.swz:-l for two different values of
Vin T 0.014 and 0, 08 sec-l. The ‘top curve is essentially collisionless
k‘u.m <2/§7L__L); the bottom curve is collision-dominated kvin ‘;-2@::).
The growth rate is maximum at b = 0 in both cases and smaller in the
collision-dominated Limit. Collision dominated growth extends to shorter
perpendicular wavelengths than permitted by the collisionless FLR cutoff
(Rosenbluth et al. 1962) of the top curve, but the theory breaks down as
b -1 (dashed line).

The two different neutral collision frequencies (vin = 0.014 and

0. 08 sec’l) correspond to two different altitudes h = 400 and 280 km for

an average model neutral atmosphere (Johnson 1965),
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