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Abstract

A collisional electromagnetic dispersion relation is derived from

two-fluid theory for the interchange mode coupled to the Alfve'n, acoustic,

drift and entropy modes in a partially ionized plasma. The fundamental

electromagnetic nature of the interchange mode is noted; coupling to the

intermediate Alfvn mode is strongly stabilizing for finite k . Both ion

viscous and ion-neutral stabilization are included, and it is found that

collisions destroy the FLR cutoff at short perpendicular wavelengths.
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Int rod u ct ion

This paper is motivated by a study of the instability of the

nighttime equatorial F region called spread F (Hudson 1974; Hudson

and Kennel 1974a). We develop a set of plasma equations to suit

equatorial F region parameters, which are also applicable to Q

machines and other laboratory plasmas. Although Coulomb colli-

sions predominate in the F region, neutral collisions may determine

the altitude threshold for spread F onset (Hudson 1974; Hudson and

Kennel 1974a), so both have been included in our analysis. Colli-

sional fluid equations are used (Braginskii 1965), which are appro-

priate for parallel wavelengths exceeding the total electron mean free

path and perpendicular wavelengths greater than the ion Larmor

radius. Equatorial localization permits even longer parallel wave-

lengths, so both finite electron heat conduction along the magnetic

field (Tsai et al. 1970) and energy transfer between species must be

included. Since this is the first of two papers on the low frequency,

density gradient driven modes of a partially ionized collisional plasma,

the full dispersion relation for all such modes (interchange, entropy,

and drift) will be derived and the modes will be decoupled here. In

the second part of this paper we will be concerned with the structure

of the interchange mode: its electromagnetic corrections, ion finite

Larmor radius (FLR) stabilization (Rosenbluth, et al. 1962) and the

relative effect of neutral and coulomb collisional damping.

In order to treat the interchange mode properly, it is necessary

to derive an electromagnetic dispersion relation. The interchange mode
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is often derived in the electrostatic approximation neglecting pertur-

bations along the magnetic field (kz = 0) (cf. Rosenbluth et al. 1962).

While this procedure gives the correct dispersion relation at km = 0,

it conceals the fundamental electromagnetic nature of the interchange

mode. The interchange mode appears in lowest order in the ion FLR

parameter b in the small kzCA/W limit of the full electromagnetic

dispersion relation; electrostatic modes such as the drift which require

finite k z are obtained in the large kzCA/ w limit, where CA is the

Affvn speed. It is incorrect to solve for the finite parallel wavelength

(kz ) corrections to the interchange mode from the electrostatic disper-

sion relation, since the dominant stabilizing term comes from coupling

to the electromagnetic Alfvn mode.

The collisionless interchange or Rayleigh-Taylor mode destabi-

iized by gravity antiparallel to a density gradient and perpendicular to the

magnetic field was first suggested by Dungey (1956) as a source of equa-

torial F region irregularities. Haerendel (Balsley et al. 1972; Haerendel

1974) included neutral collis.ions but neglected Coulomb collisions in the

Rayleigh-Taylor mode, so his analysis is restricted to lower altitudes

than typical spread F observations at finite perpendicular wavelengths

(Hudson and Kennel 1974a). Both Dungey and Haerendel neglected FLR

stabilization, which Rosenbluth et al. (1962) have shown to be important

at short perpendicular wavelengths.

The purpose of the second part of this paper which deals exclu-

sively with the interchange mode is, to extend the previous work in

slab geometry to higher altitudes and answer the following questions.

What is the effect of Coulomb collisions on the Rayleigh-Taylor growth

rate , and how does it depend on plasma density? This is compared with
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the growth rate dependence on neutral collisions and neutral density

(Balsley et al. 1972; Haerendel 1974). What is the shortest perpen-

dicular wavelength above the FLR cutoff, and how do collisions affect

this FLR cutoff? This is compared with the observation that spread F

perpendicular wavelengths can extend below the ion Larmor radius.

We will find that collisional particle diffusion drifts oppose the collision-

less FLR drift of Rosenbluth et al. (1962), and can extend the unstable

perpendicular wavelength range down to the ion Larmor radius where

the approximations break down. However, the effect of both neutral

and Coulomb collisions at long perpendicular wavelengths is to reduce

the maximum growth rate of the interchange mode.

Assumptions and Basic Equations

W aSs e that a par.t-lly ione la pl n m na mmr n

a uniformn z-directed magnetic field. There is a constant vertical den-

sity gradient in the positive x-direction and gravitational acceleration

g in the negative x-direction. We neglect particle sources and sinks,

zero order drifts along x and z, static electric fields and zero order

temperature gradients.

We will restrict our analysis to perpendicular wavelengths greater

than the ion Larmor radius and parallel wavelengths greater than the electron

mean free path for momentum transfer to ions and neutrals Xe = a e/(vei + ven)

which depends on the electron thermal speed ae and the sum of the electron-

ion and electron-neutral collision frequencies v . and v defined in Table 1.
et en
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I'The following set of fluid equations then applies to the jth species, electrons

or ions for j = e or i

n./at + V. (n.v.) = 0 (1)

m.n.(dvj/dt) = -v(n.T.) -vn.1j + n.e[E

+ (v.j/c) x B]- CtneVT + R ei + R (

(3/2)n.(dT./dt) + n.T. V. v. = -V. S + Qj (3)

R ei = -R. = -C mn (v - v.) (4a)e ,_e r e e ei e 4

R = Cmnv v (4b)en r e e en e

R. = m.n.v. v. (4c)in i i in v1

m =m, m. = M
t" L

Equations (1) - (3) are the momentum, continuity, and heat flow

equations written in the neutral rest frame. Neutral dynamics are neglected

for oscillation frequencies satisfying w>> v. n./n n However momentum
in 1 n

and energy loss to the neutral sink are included.

The transport coefficients for a fully ionized plasma including ion

dynamics in an arbirtary magnetic field were computed by Braginskii (1965).

His resistive, tllernio-el'ctric and electron thermal conductivity coeffi-

cients along the magnetic field are Cr = 0. 51, Ct = 0.71 and C 3. 16r t x

respectively. Shkarofsky (1961) has tabulated them as functions of

v on /vi for a partially ionized plasma neglecting ion dynamics, hence

ion drift with respect to neutrals, and Schunk and Walker (1970) have

plotted them. These exact numerical coefficients enable us to write



6.

'the electron equations (1 - 3 ) in the identical form to the fully ionized

case replacing Vei by the total electron collision frequency v = v . + v .ei e et en

For example in Equation (2) we have for V. = 0

R. + R -C m n v vei en r e e e e

where C is a function of v /v ..
r en et

Approximations in ion equations

In the limit k C /D <<1, where C2 = T /M is the ion acoustic

speed and WDI k C2/i.L is the diamagnetic drift frequency, ions primarily
S y s t I

move perpendicular to B, undergoing a shear rather than a compressional

motion (Tsai et al. 1970). As a result, ion temperature fluctuations are

scaled down from electron temperature fluctuations by the ion FLR factor

b = k C22 /2 <<1. We have independently checked that including ion
j s I

temoerature fluctuations does not significantly affect the interchange mode

(Hudson 1974). Therefore, we will neglect them here, thus eliminating

the ion heat transfer equation from the set (1 - 3).

We retain parallel ion pressure, finite ion inertia, FLR effects

and viscosity. We use the fully ionized ion viscosity tensor (Braginskii 1965),

since momentum exchange between ions and neutrals is treated separately

in (4c). Our separate treatment of the two collision processes makes the

reasonable assumption that an ion-neutral collision transfers the total ion

mementum to the neutrals, while Coulomb collisions are a diffusion pro-

cess in a spatial gradient. This is a good approximation for charge

exchange collisions, and hard sphere collisions when ion and neutral

masses are comparable, since the momentum exchange rate then

scales as M./M ,- i.
1 n
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The only contributing terms in the ion stress tensor to order

b = I 2 CZ/2 / are (Shkarofsky et al. 1963)
s i

V. rr = -l/(2. i ) Pi. 2 + (V p) . (vxz)

+ (zx Vpi. V v

- 3/10 [;pv../_)V 2 + (vpi.ii/, . vj1v

- .zxV V..vZ.

- 1/3v(pi /v.)V v (5)

The collisionless stress term is the ion FLR effect. The first collision

term corresponds to shear stress due to ion viscosity, and the second

corresponds to compressional stress from the collisional relaxation of

n - n differences (Stix 1969). The compressional term is of order b
I - II

in the ion continuity equation (Stix 1969) and will be dropped along with all

other terms higher order than b . Parallel ion viscosity like parallel ion

heat conduction, which has been included in the collisional electrostatic

drift-acoustic dispersion relation of Coppi and Mazzucato (1971), only
1

affects short parallel wavelength modes kz X ~(m/M)4 and will be
ze

neglected here. The remaining ion viscosity term then determines

the coefficient of perpendicular ion-ion collisional momentum transfer.

We will see that this factor is reduced from unity, the coefficient of

ion neutral collisional momentum transfer in (4c). In (5) we have

neglected collisionless FLR terms of order b2 w (Kennel and Greene 1966)

and retained those of order b v.. for application to low frequency oscil-

lations w/v.. <<l.
I1



Approximations in electron equations

We neglect electron inertia at frequencies low compared to the elec-

tron plasma frequency w < < w pe. The perpendicular electron motion can be

treated in the guiding center approximation for the modes of interest

(k /k <<1). We therefore neglect the perpendicular pressure,I Z

diamagnetic drift and off diagonal heat flow terms in the electron equations

(I - 3). It can be shown that including these does not alter the final

result since all additional terms cancel in the perturbed equations.

Electron thermal conductivity along the magnetic field greatly exceeds

ion thermal conductivity in general; hence electron temperature fluctuations

have been included along with parallel electron pressure.

The parallel electron heat flux is

tneeez (T mr) T !M
e Te ez -x e e' e ' -e

Again Ct and Cx are functions of en / Vei (Shkarofsky 1961) defined so as to

write the electron equations (1- 3) in the fully ionized form, replacing Vei by

v = v . + v . The collisional energy transfer from electrons to ions and
e el en

neutrals is given by

Qe =3 (m/M) ne (Te - Ti) Tn = Ti (6b)

Here we assume that ion and neutral masses and temperatures are equal,

and that all electron energy lost to the ions is subsequently lost by ion

neutral collisions to the neutral sink. This assumption is valid for

v. / v.. >2 M (Hudson 1974). For v. / v.. <-2 Mf/ the ions
in ii in 11

prefer to give their energy back to the electrons via Coulomb collisions.
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Qe becomes important when parallel wavelengths are comparable

to the energy transfer mean free path from electrons to ions and neutrals, a

factor of M/--m longer than the momentum transfer mean free path Xe

Such wavelengths are typically long compared to laboratory plasmas, so

this term has previously been neglected in the derivation of the following

modes (Tsai et al. 1970). However, the possibility of very long parallel

wavelengths exists in the ionosphere, so the energy transfer term has been

retained.

Equilibrium

Perkins (1973) has examined the F region equilibrium, where the

Hall conductivity is negligible, and Coulomb collisions make no contribu-

tion to the Pederson conductivity. In the frame where neutral winds

vanish, the ion momentum eauation (2) :ields

cF A cT.

.V. B eB 0
(7a)

in c i Vn + Vin 2
+ - B eB n n 2

Since v. / << I in the F region, higher order terms are dropped.In

The electron momentum equation (2) yields
(7b)

B

Perkins (1973) finds that only the East-West (9) component of the

current L = ne (V - VIc) contributes to the equilibrium. Since the

primary electric field in the nighttime F layer is vertical due to polari-

zation (Rishbeth 1970), the only contribution to the equilibrium comes
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from
cT (7c)

j - Vn x z 4- ne x z
B Q

which is independent of electric fields and neutral collisions. This

is just the current due to the density gradient drift and gravitational

guiding center drift. We will neglect electric fields in the perturbed

equations which introduce the E x 13 instability (Simon 1962) to be

treated in a. sepalate paper in the finite heat conduction limit.

Perturbed equations

We linearize the above set of fluid equations assuming the fluctuations

are low frequency oscillations of the form ei(k r-w t ). For k L >>1 the x-
X .1

dependence of the perturbation is weak and a good estimate of the eigen-

frequency is obtained by setting kx = 0 (Krall 1968).

The parallel ion momentum transfer equation yields

kV kV
ie r( 1+ y y) E - E

zi wML E z W y

2~k Cn.
+ R z s i

w n (8a)

We solve the perpendicular ion momentum transfer equation iteratively

for low oscillation frequencies and low ion-ion and ion-neutral collision

frequencies v.i and v. defined in Table 1 assuming w/0., v ../0. and

vii/fi ~ b < < 1 appropriate for the F-region where ions are magnetized.

We obtain

i= - i i xi i n

(81b)

-xi c( "/B)- l(kyC2/)RT( in)

- 0.3b2,v. [(ie/k Te )v + R,( i/n) (8c)



where
w w + i.L/b

v1 /b = vin +0.3b vi iR T, RT = TiT e

v /b is the frequency which scales the perpendicular ion diffusion rate.

v. and v.. always appear in this set of equations in this combination. Ion-
in 11

ion collisions only affect transport in the presence of a spatial gradient,

where ions in a denser region encounter more collisions with other ions

and diffuse toward less dense regions. This is in contrast to a homogeneous

plasma, where the center of mass remains stationary in an ion-ion collision

and there is effectively no diffusion. It further contrasts with ion neutral

collisions where we assume that the total ion momentum is lost. Even if

only a fraction of the ion momentum is lost in a single ion-neutral collision,

the ions will random-walk and diffuse through the neutrals, which act as a

momentum sink.

For k L >> 1 the important scale length is the perpendicular wave-
Y ±

length. The different b dependences of v.. and v. in v suggest that the two

collision processes will be significant over different perpendicular wave-

length ranges. We will subsequently find that ion-neutral collisions damp

the drift mode at long perpendicular wavelengths. Ion viscosity will also

be found to increase the collisional damping of the interchange mode at

short perpendicular wavelengths.

Substituting v xiv yi and Vzi into the perturbed ion continuity

equation, assuming k L >> 1 and dropping terms of higher order than b2

eliminates the collisional terms in (8c) and yields the following relation



between ion density and electric field fluctuations

S+ RTbw - kg 0 - Rk 2 /]

= + (e/k TwD - bw - (k 2C2/W2)k yV yE

+ k e/ 1 + k Vy w)Tz

(9)

The electron momentum transfer equation yields, assuming Wm/ e,

v ./ and v /0 <<1
et e en e

v = cE /B (10a)
xe y

v = 0 (10Ob)
ye

k kV

T k z y
z (10Oc)

where v = k a /ZC v and v = v . + v . v scales inversely with the
II z e re e el en I

sum of the collision frequencies. It must be small compared to the electron

transit frequency over a parallel wavelength, k a , since k a /v = k z <<1.ze ze e ze

By assumption many collisions must occur over a parallel wavelength for this

colliional fluid analysis to apply.
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We substitute v x and v into the electron heat flow equation and
xe ze

retain energy transfer from electrons to ions and neutrals. At very low

oscillation frequencies w<< Vei + V en) the collision frequencies adjust to

the electron density and temperature fluctuations; therefore we must perturb

the electron density and temperature dependences of the collision frequencies.

-3/2 1/2
From Table 1 V n eT , while v c= n T is independent of electronel e en n e

density. The perturbed electron heat flow equation yields

- - £(2/3)iv1 +Ct ne/ n- (ie/kT)z

+ i2(1 - RT)(m/M)(2vei +Ven6enl,

/ + ivi ) (Ila)

where

- 2/3[CrCx+(1+Ct)2] +i2(m1M)veIv

+ i 1 - RT)(m/M)(ven- 3vei)/l

(lb)

Substituting (10a), (10c) and (11) into the electron continuity equation yields

the following relation between electron density and electric field fluctuations
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. i E yT wD - i (vl/w)k V (W + IVIX)

+ ik i 1 +k Vw

2)
3(w + V 11- + Sv

(12a)

where

WD = kyVey -yCOL. (12b)

= 2/3(1 +C) 2 +C +2(1 +C)( - R,)

(12c)

(m/M)(2ve i+Ven)/Vi

X and F are combinations of terms which arise from finite parallel

electron heat conduction which permits electron temperature fluctuations,

and energy transfer between species. They are discussed further and

plotted as functions of v /v ei by Hudson and Kennel (1974b).

Electromagnetic Dispersion Relation

To the set of five fluid equations we add Faraday's law

Vx E +- 1 -B 0 (13a)
c at

and Ampere's law, neglecting the displacement current for w <<Wpi

Vx B = J (13b)
- c
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Neglecting the displacement current is equivalent to assuming quasi-

neutrality in place of Poisson's equation.

F'ollowing Mikhailovskii and Rudakov (1963) and Coroniti and

I<cnnel (1970) we will neglect the parallel component of the oscilla-

tory magnetic field. This eliminates the fast, or magnetosonic mode

of hydromagnetics, which does not couple significantly to the modes

of interest here, with perpendicular phase velocities the order of the

dialmagnetic drift. However, the intermediate and slow modes are

well known to couple to drift and flute modes (Kennel and Greene 1966)

so the Alfvn and acoustic terms will be included in our initial set of

c(luationls.

For B = 0 and kx = 0 the linearized Faraday's law expresses

.... ..... ...nl...n n rc .... . . L tL. osc lldtory imiagnetic field in

terms of the nonzero electric field components

(14)

Substituting (14) into the linearized Ampere's law yields the

oscillatory current components

I k Z  k (I5a)
y = ney +iieVyi - kY( (k z E - kE z  (15a)

, -e( z k 2 )
Svz e v (15b)

(15b)
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We substitute for v., v y., n and v from (8ab), (9) and (10c), making use

e
2 2

in E and E CA = B /4TnM is the Alfve'n speed. The determinant of
y zA

(16) must vanish for a nontrivial solution; the cross term cancels much of

the main diagonal, yielding the collisional electromagnetic dispersion

relation. This reduces to the fluid limit of the collisionless electromag-

nectic dispersion relation obtained by Coroniti and Kennel (1970) from

kinetic theory. We will now examine the structure of (16) in the large

and small k CA /w limits.



2(2R T +gflk C)[w0, b@D k (kC jkv/ 2 + 2 (wR T + gnlk S~)( + -V/

i~C~+ iwt~+ + R~bW - kg/l - R k C/W). VI) -kkCA ik~(w + R~b - k g/n ~~~w

C2 2

ik k C IkC A~
+tkZv ~~+) +O 2 2yp w k2C2 Tw+ iv RVI

-kz z s z s

1Z (I~v)(~, ) 2 [(W+ iv, )(W +ivo-) i VuwI

yz s
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Eilectrostatic Limit lz CA/ - Cm

In the very low $ <m/M limit appropriate for ionospheric application

where Cs <a < CA we let kz CA/2  2 
- in (16), and the Alfven terms are

whe C s  e A

clinioated from the electromagnetic dispersion relation, which reduces to

b{( +RTWD) (w+ 1v1/b) +g/L}

- (k C/W) + RTWD)

Sw[l1 + ob) - TO + IV

-- z C ,s/ p = 1 + R

(17a)

The second term on the left hand side of (17a) (an electromagnetic correction)

is negligible for v >>k2 C 2 /w or w/v >>m/2M. The rest of (17a) corresponds
SII z s e

to the electrostatic limit which can be obtained directly by assuming quasi-

neutrality, n. = n e , and substituting E = - ik wo and E = - ik cp in (9) and (12a).
I y y z z

As required by the continuity equation (1) this electrostatic result can also be

obtained by making the same substitutions in the conductivity matrix J = a. E

(16) and setting V . J = 0, recalling that kx = 0. Neglecting the energy

transfer terms in Xand S, neutral collisions, acoustic terms and gravity,

this electrostatic dispersion relation (17a) reduces to that obtained by Tsai

et al. (1970).

We have written (t7a) in a form which separates the interchange

mode on the left hand side from the product of entropy and drift mode terms

respectively on the riglt hand side. Note tliat tl j i a :e o ld . alp'nrs



only as FLR and acoustic corrections in the large kzCA limit. Also

note that in the large or small v limit where (X- ) - X, the entropy

mode (Hludson and Kennel, 1974c) is eliminated from (17a) which becomes

b(w + RTWD)(W+ 1/b) + g/L

-(k"CrL/W)(W + RTW)k I C /

S- iv 1I + m pb3 - (tD +'pV ks ) (17b)

Neglecting neutral collisions, acoustic terms, and gravity this 
quadratic

isothermal dispersion relation reduces to that obtained by Chu et al. (1969).

Electromagnetic Flute Mode Limit kz - 0

The limit k - 0 requires that v - 0 and (16) hecomes

S( + RT +D (w+ iv/b) + g/L}

(w) (w + iv 1 ) ( - kyVD) 0 (18)

where v X-.2 (m/M) ve as v - 0.
II II

The first bracket in (18) contains interchange mode terms. The

second bracket in (18) contains a zero frequency ion acoustic mode (w),

a damped entropy mode (w + iv 1), and a purely oscillatory drift mode

(w - k V These three modes are basically electrostatic, and require finite

k for growth. In low <<1 plasmas the Alfvn speed CA >> Cs, the

ion acoustic speed, which is the characteristic electrostatic phase velocity

along the magnetic field. Hence these finite kz electrostatic modes are

properly treated in the large k CA/w limit of the electromagnetic disper-

sion relation (16).
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:ccoupled interchange mode: k CA 2/ < <

In the preceding section we saw that the interchange mode was

obta inwd in the small k CA/u limit of the collisional electromagnetic

222
dispe ;irsic n relation (16). Retaining terms of order k z CA/w and dropping

ttvrln5 of order bk CA/Iw, the interchange mode dispersion relation is

w +RT + I v/b)+g/L - k 2C2 = 0 (19a)

I'The solutions are

w = 1/2- (RTWD + iv/b)

+ (RTD i/b) 2 +4 k 2 C - g/L) (19b)

'.eo k z C Lerm i, (19in ) is strongly stabilizing in most applications.

Solving the electrostatic dispersion relation (17a) for the finite kz

correction to the interchange mode gives a less restrictive and incor-
2 2

rect restult. The k C term restricts the interchange instability to
zA

k z 0 in slab geometry, and to the lowest order flute perturbations of

an entire flux tube in general geometry. Haerendel (1974) has performed

a dipole geometry calculation treating magnetic field lines as equipoten-

tials. Assuming that the plasma density is field-aligned, he has averaged

all density-dependent quantities in the local dispersion relation (20d)

over an entire flux tube. Although the plasma density is altitude -

rather than field - aligned below the F maximum, the step to averaging

over altitude-aligned plasma density in dipole geometry is not straight-

forward. We will not pursue the general geometry flute mode further;

int:ead we will focus on new results in slab geometry.



]'lute1 Mode; k = 0 in Slab Geometry

Setting kz = 0 and neglecting gravity in (19b), one root is damped

and the other is marginally stable

w= -v = - RTWD

+V Oa )

Including gravity, the roots are

w = "- (Rw 0 + i /b)

+±(RTWD- liD/b) - 4g/L (Ob)

UI becomes unstable and can be written in the form

w. = R. - T.. I . Z

2 , \ I U .

exp[ - i/2 tanl (y/x)+ inrr/2 (O2c)

where

x - (RT w) 2  ( ./b)2- 4g/L

y = 2 (RTwDO /b) ,(U0 <fu

n = 0 x O n= 1 x<O

At b = 0 the real frequency vanishes and the growth rate is

illa;xilllun

., - i n '-

(2 d )
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In this limit vL/b = \in and R T (1)D = 0, hence the growth rate is

independent of Coulomb collisions and FLR effects. This limit corres-

ponds to that obtained by Haerendel (Baisley et al. 1972; Haerendel

197-1) for slab geometry. We have plotted this maximum growth rate as

y/ //L. vs v.i /v from (20d) in Figure 1. We see that the col-

lisionless growth rate is maximum and that the growth rate decreases

with increasing neutral collision frequency.

In the collisionless limit v - 0, (20c) yields precisely the resalt

obtained by Rosenbluth et al. (1962) from kinetic theory

(Zla)

where FLR effects are stabilizing for

(21b)

This sets an upper limit on unstable b or lower limit on unstable perpendicular

wavelengths.

In the collisional limit of (20c)

(RT' - iv/b) 2 >> 4g/L1

(22a)

we can expand the radical to obtain one growing root

(RTD + Iv.L/b)
+=- RT"D + g/L 2(R TWD) + (v1/ b)

(22b)
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In tile limit v /b >> R1 uWD, the growth rate is

Y = v /b = v + 0.3by RT

(22c)

which agrees with the collisional Rayleigh-Taylor mode growth rate of

Ilaerendel (1974; Balsley et al. 1972), here modified to include ion

viscous damping, which we have seen vanishes for b = 0.

'fhe full dispersiocn relation (Z0c) is more gene-al tlan eiter

, 'result of I-iaerendel (20d) or Rose-,bluth et al. (21a). In addi.ion to

including Coulomb collisions, (20c) demonstrates the effect of neutral

collisions as well on the collisionless FLR cutoff. In Figure 2 we

have plotted the complete Rayleigh-Taylor growth rate (ZOc) at k = 0

as a function of b at fixed v. , L and two different values of v.in

The top curve is essentially collisionless (v <2,/g-Lj ); the bottom curve

is collision-dominated (v 1 >2,/g-TL). The growth rate is maximum at

b = 0 in both cases, and smaller in the collision-dominated case, as

indicated in Figure 1. Collision dominated growth extends to shorter

perpendicular wavelengths than permitted by the collisionless FLR cut-

off (Rosenbluth et al. 1962) of the top curve. The y term in (20c), which

vanishes in the collisionless limit and becomes significant as b -. 1 in the

collisional case, is responsible for the extension of the instability region

down to the ion Larmor radius, where the present fluid analysis breaks

dow. Physically the collisional particle diffusion drift opposes and

cancels the collisionless FLR drift. This diffusion drift depends on

v., /b = v. + 0. 3 b v.., hence both neutral and Coulomb collisions at

finite perpendicular wavelengths.
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Ion viscosity only affects transport when there exists a spatial

gradient. For k L >> 1I the important spatial gradient is the perpendicular

wavelength or b. It is clear from (22c) that in a plasma where v >>v.,ii in

such as the nighttime equatorial F region, ion viscosity previously neg-

lected will dominate ion-neutral collisions in determining the perpendicular

ion diffusion rate v 1 /b and Rayleigh-Taylor growth rate at short perpen-

dicular wavelengths.

Conclusion

From two-fluid theory we have derived a collisional electromagnetic

dispersion relation for the interchange mode coupled to the Alfve'n, acoustic,

drift and entropy modes. We have demonstrated the fundamental electro-

magnetic nature of the interchange mode which appears in the opposite

limit ' < <1) of the clcctrormagnetic dispersion relation (1i6) from

the electrostatic modes (k2C2 /W2 >> 1). The main stabilizing affect

for finite kz comes from coupling to the electromagnetic Alfvn mode

rather than electrostatic modes, even though interchange mode terms

appear in the electrostatic dispersion relation. Coupling to the Alfvdn

mode restricts the interchange mode to kz - 0 in slab geometry.

In all limits the interchange mode destabilized by gravity has a

positive growth rate only when gravity is directed antiparallel to the

density gradient. For example, this precludes the growth of the Rayleigh-

Taylor instability on the topside of the F-layer. The growth rate maxi-

mizes at kz = 0 and b = 0. Only neutral collisions affect the growth

rate at b = 0, and the growth rate decreases with vin. For finite b,in
into-ion collisions contribute to the perpendicular ion diffusion rate

1b . -I 0. 3b v... T'here is comllpetition )between the collisional1I1 ii
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diffusion drift and the collisionless FLR drift at short perpendicular

wavelengths. When v /b < 2 / gL 1 , the collisionless FLR drift mode

(Roscabluth et al. 1962) stabilizes short perpendicular wavelengths.

When v /b >2 /g/L 1  collisions eliminate the FLR cutoff and extend

the unstable spectrum down to the ion Larmor radius where the small

b expansion breaks down.

Since v.. >> v. at the altitudes where spread F is generally

observed, including ion viscosity is an important extension of the col-

lisional Rayleigh-Taylor instability theory (Balsley et al. 1972; Haerendel

1974). Our consideration of finite perpendicular wavelengths has shown

that it is possible for the Rayleigh-Taylor instability to cover the entire

range of perpendicular wavelengths above the ion Larmor radius in the

limit v 1 /b >2 A where collisions eliminate the FLR cutoff. How-

ever, typically v/b < ? /gIL at the altitudes where spread F is

observed (Hudson and Kennel 1974b). Hence, the Rayleigh-Taylor instability

is primarily collisionless and Haerendel's limit does not apply. The

FLR cutoff then restricts the Rayleigh-Taylor instability to perpendicular

wavelengths the order of a hundred meters or greater, and the drift

mode which is investigated in the companion paper (Hudson and Kennel

1974b) has a larger growth rate at shorter perpendicular wavelengths.
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Table 1 Notation

parameter perpendicular to

magnetic field B

parameter parallel to magnetic

field B

perturbed quantities which vary

as ei(k . r - wt)

R T ./T ion electron temperature ratio
T i e

m/M electron-ion mass ratio
(A /10)n e

- 4 3/2 electron-ion collision frequency,
ei 3. 5 x 10 3/2 (eV)

e single charged ions

v = /(1 ) vei ion-ion collision frequency

= 3. 5 x 1-8n ee)

S= 3. 5 x 10-n T (eV) electron-neutral collision
en ne

frequency (Nicolet 1963)

v. = /(n/2M)) v ion-neutral collision frequency
in en

Ve = ve + Ven total electron collision frequency

A Coulomb log (Spitzer 1967)

a = 2T /m electron thermal speed
e ve

A. = /2Ti/M ion thermal speed

C = T/M ion acoustic speedCs= e
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Q = eB/Mc ion cyclotron frequency

Pe = eB/mc electron cyclotron frequency

0. = A./0 ion Larmor radius
1 1

P =a /0 electron Larmor radius
e e e

w = 4rrne2/M ion plasma frequency
p

X =a /v total electron mean free path
e e e

X.. = A./v.. ion-ion mean free path
11 1 11

L1 = (Vn/n)-1 perpendicular density gradient

scale length

b = kC2 /2 ion finite Larmor radius parameters s

WD = (cTe/eB2 ')k. (v n x B)/n Diamagnetic drift frequency, de-

fined to be positive for waves

propagating in the electron drift

direction

v = bv. + 0. 3b v.. perpendicular ion diffusion rate

22
VII = k a /2C v parallel electron streaming rate

ze re

Cr = a /c 1 ratio of perpendicular to parallel

electrical conductivities (Braginskii

1966)

Ct dimensionless thermoelectric

coefficient

C dimensionless electron thermalx

conductivity coefficient



31.

- =(2/3) CCx + 1+ C t)

+ i2(m/M)v /vIi

+ i (1 - RT ) (m/M) (ven - 3v i) heat conduction and energy

S 3)2 transfer coefficients

= (2/3) (1 +Ct)

+ 2 ( - t)( 1 - RT)(m/M)

(2v . + v en/v I

All other notation standard
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Figure 1

Plot of maximum Rayleigh-Taylor growth rate in slab geometry

(20d) which occurs for b = 0 and k = 0, normalized as y/ / g-- vs.

v. / g/L . Note that the growth rate is maximum in the collisionless

limit and decreases with increasing neutral collision frequency; ion

viscosity and FLR stabilization do not affect the b = 0 mode.

We have scaled the x = v. / g/L axis with altitude for an average

model neutral atmosphere (Johnson 1965) and the y = y/ /gILaxis with

growth rate for two reasonable choices of L± for the bottom of the nighttime

F layer, L± = 9. 42 and 25. 6 km. The altitude dependence is affected more

than the magnitude of the growth rate by this change in L 1 .

Figure 2

RPtrl igh-Tayrlor growth rate (20c) at k = 0 as a fiinction onf h t

-1
fixed L 1 = 9. 42 km and v.. = 0. 55 sec for two different values of

-l
-1

v. = 0. 014 and 0. 08 sec . The top curve is essentially collisionlessin

Vin <2/ gIL); the bottom curve is collision-dominated vin >27 g/L).

The growth rate is maximum at b = 0 in both cases and smaller in the

collision-dominated limit. Collision dominated growth extends to shorter

perpendicular wavelengths than permitted by the collisionless FLR cutoff

(Rosenbluth et al. 1962) of the top curve, but the theory breaks down as

b - 1 (dashed line).

The two different neutral collision frequencies (v.in = 0. 014 and

0. 08 sec-) correspond to two different altitudes h = 400 and 280 km for

an average model neutral atmosphere (Johnson 1965).
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