High Dispersion Observations of Venus During 1972
The $\mathrm{CO}_{2}$ band at $7820{ }^{\circ}$
by

L. D. Gray Young<br>A. T. Young<br>Physics Department<br>Texas A\&M University<br>College Station, Texas 77843<br>and<br>A. Woszczyk<br>Astronomical Observatory Nicholas Copernicus University Torun, Poland

Report No 15
The research described in this report was
funded by the

National Aeronautics and Space Administration
Contract No. NGR 44-001-117

Department of Physics
Texas A \& M University College Station, Texas


January 31, 1975
A paper based on the material in this report has been submitted to Icarus.
(NASA-CR-142023) HIGH DISPERSION
OBSERVATIONS OF VENUS DURING 1972 THE CO 2
BAND AT 7820 ANGSTROM (TEXAS AGM UAIV.)
56 P HE $\$ 4.25$

PRECROING PAGE BI,ANK NOT FILMED

## Abstract

Forty-seven well-exposed photographic plates of Venus which show the spectrun of the carbon dioxide band at 7820 were obtained at Table Mountain Observatory in September-October 1972. These spectra showed a semi-regular 4-day variation in the $\mathrm{CO}_{2}$ abundance over the disk of the planet (Young et. a1. 1974). We also find evidence for temporal variations in the rotational temperature of this band and temperature varlations over the disk. The two quantities, $\mathrm{CO}_{2}$ abundance and temperature, do not show any obvious relationship; however, an increase in the temperature usually is accompanied by a decrease in the abundance of $\mathrm{CO}_{2}$. The average temperature, found from a curve of growth analysis assuming a constant $\mathrm{CO}_{2}$ line of width, is $249 \pm 1.4^{\circ} \mathrm{K}$ (one standard deviation). This temperature is noticeably higher than the rotational temperature of $242 \pm 2^{\circ} \mathrm{K}$ found for this same band in 1967 (Schorn et. al. 1969) and of $242 \pm 1.2^{\circ} \mathrm{K}$ in 1968-9 (Young et. al. 1971).

## I. Introduction

For the past 9 years there has been a spectroscopic patrol of Venus, to monitor the apparent abundance of carbon dioxide visible in reflected sunlight abover her cloud tops and to measure the rotational temperature of the $\mathrm{CO}_{2}$ (See Young, 1972). This patrol began, and continues, at McDonald Observatory; observations have also been made more recently at Table Mountain Observatory. The 24 -inch telescope at Table Mountain provides a relatively small image of the planet, compared to that of either the 82 -inch or 107 -inch telescopes at McDonald Observatory. As a result the Table Mountain observations were mainly intended to monitor daily changes at a few standard slit positions; areal coverage over the planet was restricted. On the other hand, the dispersion of the plates obtained at Table Mountain ( $1.6 \mathrm{R} / \mathrm{mm}$ ) was somewhat higher than that of the best plates previously obtained at McDonald Observatory ( $2 \mathrm{~A} / \mathrm{mm}$ ).

In September of 1972, an intensive spectroscopic patrol of Venus was * simultaneously undertaken at both Table Mountain and McDonald Observatories. These observations were made in cooperation with the Paris, New Nexico State University and Lowell Observatories, where ultraviolet photographs of cloud marking were taken. This was the first extensive effort made to observe Venus in both the ultraviolet and infrared regions of the spectrum over a fairly long. time interval ( 3 weeks). One difficulty, in the past, had been the comparative lack of overlap of the dates of observation for the planetary patrols in the two spectral regions. This paper will only be concerned with the results of the Table Mountain observations of the $\mathrm{CO}_{2}$ band at 7820 . When the results from the other observations are published, we shall see if any correlation exists between our results and theirs.

## 2. Observations and Measurements

The spectrograms used in this study are listed in Table 1. The plate number is given in column 1. When more than one spectrum was taken on one plate. (as was usually the case, to conserve plates) successive spectra are denoted by the suffixes $a, b$, and $c$. The spectra were taken at the coude focus of the 24 -inch telescope. The spectrograph has been described by Young and Young (1972): The $7820 \AA$ spectra were taken in 4 th order ( $1.6 \mathrm{~A} / \mathrm{mm}$ ) through a RG-715 filter. A typical exposure time of 30 minutes was required. Columns 2 and 3 of Table 1 give the date and time of the observations. Column 4 gives the slit orientation. We have followed the numbering scheme of Schorn et. al. (1969) to indicate the six standard* slit positions used in this set of obsercations: 1) pole-to-pole near the terminator; 2) pole-to-pole near the limb; 3) parallel to the equator near the South Pole; 4) parallel to the equator near the sub-Earth Point; 5) parallel to the equator near the North pole; 6) Parallel to the line joining the cusps and midway between limb and terminator. The last position of the slit was adopted as "standard" because it produced spectra of the greatest.width and uniformity. On days when local weather conditions were such that it appeared we would be lucky to get one spectrum of Venus, we always used this "standard" slit position. Our seeing estimates are given in Column 5 (for comparison we note that the diameter of Venus during this period was about 18 seconds of arc).
*
In Table 5, a slightly more refined scheme is used to indicate the slit position on Venus. The information given in Table 1 is meart to facilitate a comparison of the present results with those of Schorn et. al. (1969).

In our preliminary paper, (Young et, al., 1974) the photographic and photometric procedures we used were described in great detail. In summary, all the Table Mountain spectra were taken on ammonia-hypersensitized IV-N plates, developed for 14 minutes in D-76 with vigorous agitation. Spot plates were taken at the same time, for the same length of exposure, and developed with the Venus plates. The spectra were traced in the density mode, which for IV-N plates amounts to a direct intensity tracing.

All three authors measured the heights (in mm) of 11 solar lines and $25 \mathrm{CO}_{2}$ lines for each tracing of a Venus spectrum. The average sum of the heights of the solar lines in m, is given in Column 6. Column 7 gives the ratio, $R$, of the average sum of the heights of the $\mathrm{CO}_{2}$ lines (in mm) to the average sum of the heights of the solar lines (in mm). This quantity, $R$, was used in our preliminary paper as a measure of the relative abundance of $\mathrm{CO}_{2}$. The main reason for using this ratio was to eliminate the uncertainty in the conversion from square counts to mA for the equivalent widths of the carbon dioxide lines. The heights of the $\mathrm{CO}_{2}$ lines are directly proportional to their equivalent widths; the Venusian lines are narrow compared to the instrumental width so the apparent "line profile" is, in fact, the instrumental slit function.

On the other hand, the solar lines are generally much broader than the slit width and their line shape is usually well resolved. Whether or not the solar lines were completely resolved does not affect the $\mathrm{CO}_{2}$ abundance ratio for the following reason: All the Venus plates were taken with an identical slit width for the spectrograph and were always traced using the same slit width for the microdensitometer. Thus the ratios, $R$, were all affected by the same instrumental effects, and are "good" measures of the $\mathrm{CO}_{2}$ abundance variations. Obviously the choice of different instrumental parameters would affect the numerical value of the ratios, but not their usefulness in sensing small changes in the $\mathrm{CO}_{2}$ abundance.

Because the height of the $\mathrm{CO}_{2}$ lines is directly proportional to their equivalent width, one can use these heights directly to obtain the rotational temperature for a particular spectrum. And that is what was done in this paper. However, in order to compare these results with other measurements on the 7820 A band, it is necessary to convert the heights of the $\mathrm{CO}_{2}$ lines to equivalent widths in mA. This calibration was done using the solar lines given in Table II. We have used the equivalent widths of the solar lines given by Moore et, al. (1966), out of necessity, but the equivalent widths measured by Barker and Perry for integrated sunlight are in fact the appropriate ones for our Venus spectra. As can be seen from Table II, the average ras difference in the two measurements of solar equivalent widths is 13.4 percent, while the difference in the sum of the five lines is 208.2-209.0 mA or only 0.4 percent. Our usual calibration procedure has been to use the average of the conversion factors (from ma of chart paper to $m$ ) found from the sum of the solar lines and that obtained from the individual solar lines. In view of Barker and Perry's new measurements, it would appear that the conversion factor obtained from the sum of the equivalent widths is the better one to use. This sum equals 429 mf for the solar calibration lines given in Table II: Table I gives the sum of the heights of these solar lines for each plate. The equivalent width of a Venus line is given by

$$
\begin{equation*}
W_{q}=h_{q}\left(b_{q} / b_{\theta}\right)\left(\Sigma W_{\theta} / \Sigma h_{\rho}\right) \tag{1}
\end{equation*}
$$

where $h$ is the height of the line and $b$ is the base of a triangular shaped line of equivalent width $W$. The ratio $\left(b_{Q} / b_{\odot}\right)=2 / 3$ for our data.
III Determination of Rotational Temperatures and other parameters.
The rotational temperature can be found if we assume that the curve of growth can be locally approximated by a straight line of slope, b, i.e.

$$
\begin{equation*}
W(m) \propto S(m)^{b} \tag{2}
\end{equation*}
$$

where $m$ is the rotational line index. The index $m$ is related to the rotational quantum number of the lower state, $J^{\prime \prime}$, by $m=J^{\prime \prime}$ for the $p$ branch of a band and $\mathfrak{m}=J^{\prime \prime}+1$ for the R branch. The intensity of a rotational line in the 7820 A band of $\mathrm{CO}_{2}$ is given by

$$
\begin{equation*}
S(\mathrm{~m})=\left(\mathrm{S}_{\mathrm{v}} / \mathrm{Q}_{\text {rot }}\right)|\mathrm{m}| \exp (-\mathrm{hcBm}(\mathrm{~m}-1) / \mathrm{kT}) \tag{3}
\end{equation*}
$$

where $S_{v}$ is the band intensity (equal to the sum of the individual rotational line intensities), $Q_{\text {rot }}$ is the rotational partition function, (hcB/k) $=0.5614$ for this band and $T$ is the rotational temperature. From equations (2) and (3) we see that

$$
\ln \left[W(m) / m^{b}\right]=\ln W_{0}-[0.5614 m(m-1) b / T]
$$

where $W_{0}$ corresponds to the equivalent width of the Ro line; depending upon the pressure, temperature and amount of absorbing gas where the lines are formed, $W_{o}$ w111 be a function of the amount of absorbing gas and may also be a function of the effective pressure for line formation, etc.

In a linear least-squares fit to (4), the rotational temperature is determined for a particular value of $b$; the quantity $W_{o}$ is merely the intercept of this line, and it will be equal to the measured equivalent width of the Ro $\mathrm{CO}_{2}$ line only if the best fit to all the $\mathrm{CO}_{2}$ lines in the band goes through RO. However, $W_{o}$ is a convenient measure of the $\mathrm{CO}_{2}$ abundance.

For historical reasons, we first compute the rotational temperature assuming a square-root absorption law, $b=0.5$. The results of these computations are given in Column 2 of Table 3, for each of the three authors' measurements. The individuals are identified by a single initial following the plate number given in Column 1: $G=$ LDGY, $Y=A T Y$, and $W=A W$. In Column 3, the quantity $W_{0}$ is given; this has been converted to $m \AA$ by the calibration scheme discussed previously. In Figs. I to 16 each individual's measurements' of the heights of the Venus lines, in mm, are shown. We have done this in preference to converting
these heights to $m \AA$, because we have come to doubt the accuracy of our absolute calibration and believe the relative measurements are more accurate. In Column 4 we give the percentage standard deviation in the heights (or equivalent widths) as found from the square-root curve of growth temperature fit.

The assumption of a square-root absorption law is the first in a series of iterations where $b$ and hence $T(b)$ are allowed to vary. The quantity $T_{0}$ (given in Column 9 of Table 3) is the temperature for which line intensities are computed from equation (3) to be used for the curve of growth indicated by equation (2). As an example of how this iterative scheme works, we show, in Table 4, the intermediate results found for a typical plate.

The first column of Table 4 shows what happens when we assume $T_{0}=240^{\circ} \mathrm{K}$. Columns 2 to 4 give the temperatures found from each author's measurements of plate T660B. Columns 5 to 7 give the standard deviation of the heights (or equivalent width) obtained from the temperature fit: Columns 8 to 11 give the differences between $T(b)$ and the assumed value of $T_{0}$. The values of $T(b)$ are seen to be higher than $T_{0}$, suggesting that $T_{o}$ should be increased. When $T_{0}$ is increased to $250^{\circ} \mathrm{K}$, both the standard deviation in the heights and $\Delta T=T(b)-$ To decrease. At this point a familiar problem crops up. One person's measurements suggest that $T_{0}$ should be increased further, while the other two individuals' measurements suggest it should be decreased slightly. We want to use the same value of $T_{o}$ for any given spectrum and not allow it to vary from one person's measurments to another, since all three measurments are combined to find the average value of $T(b)$ from a least-vquares fit to all the data. Increasing $T_{0}$ from $250^{\circ} \mathrm{K}$ to $260^{\circ} \mathrm{K}$ gives a good fit to one person's measurments, but a poor fit to the measurments of the other two people. The temperature, $T_{o}$, which shows the minimum sum of the standard deviations (or $\Delta T$ ) is chosen as the "best" value of $\mathrm{T}_{\mathrm{o}}$.

The values of $b$ (the slope of the curve of growth) and $T(b)$ are given in Columns 5 and 6 of Table 3. Column 7 gives $W_{o}(b)$, converted from heights to mid; the standard deviation of $W_{0}(b)$ is given in Column 8. .

Table 5 summarizes our final results. The exact slit position for each spectrum is given in Column 2; the remainder of Table 5 resembles Table 3 in layout.

The histogram of the final temperatures, $T(b)$, is shown in Fig. 17. We note that the external spread of the individual temperature determinations, $\sigma_{\text {ext }}$, is significantly larger than the average internal precision of a single temperature detemination, $\sigma_{i n t}$, which is given by the least-squares solutions for $T$. These data are the first examples of a significant temperature spread detected in the $7820 \AA \mathrm{CO}_{2}$ band; earlier data (Young et al., 1971; Schorn et al., 1969) gave essentially equal values of $\sigma_{\text {int }}$ and $\sigma_{\text {ext }}$.

At the end of Table 5 we give the errors in the mean found from both $\sigma_{\text {int }}$ andio ext for each region on the planet. If oxt is markedly larger than of int for a region; a real variation In temperature is indicated. If oext is less than $\sigma_{\text {int }}$, which usually happens only if a few spectra cover that region, the external agreement must be regarded as fortuitous, and the larger value ( $\sigma_{i n t}$ ) must be taken as a more reliable estimate of the mean error. This is because $\dot{\sigma}_{\text {int }}$ is based on a large number of degrees of freedom (the number of measured lines) while $\sigma_{\text {ext }}$ has only a few degrees of freedon (the number of spectra for a given region.) For this reason, we have based mean-error estimates on $\sigma_{\text {int }}$ in the past. We find that the average temperature at the equator is slightly higher than temperature of the polar regions (and the average temperature over the planet). Since the temperatures found for regions of Venus where the slit was aligned parallel to the equator aie sjightly warmer than the temperatures found when the slit was aligned from pole-to-pole, this might suggest that the average temperature distribution over the planet consists of three-warm zones (N. polar, equatorial and S. polar) separated by 2 cooler zones. The evidence for such a suggestion
is rather weak, as can be seen from Table. 6 . The best data to compare with our present results are those of Young et al. (1971) for the $7820 \AA$ band and those of Schorn et a1. (1974) for the $8689 \AA$ band; the other spectra were taken at lower dispersion, but are included in this comparison. With the exception of the present results and those of Young et al. (1969), the number of measurements (indicated in parentheses in Table 6) was usually much greater for the pole-to-pole observations than for those made with the slit aligned parallel to the equator. The temperature differences, weighted inversely by the error squared, indicate the average temperature in the equatorial and polar regions is $2.3^{\circ} \mathrm{K}$ higher than that near the limb or terminator.

From Table 5 we also find that greater than average amounts of $\mathrm{CO}_{2}$ are found above the terminator and the north and south polar region; less than average amounts are found above the limb, equatorial and standard slit positions. Thus we do not find a correlation between higher than average amounts of $\mathrm{CO}_{2}$ and higher than average rotational temperatures (as one would expect for almost any ordinary model atmosphere). If we ignore the limb and terminator results, because of the comparatively small number of measurements at these locations, the situation is not improved: A higher than average temperature (equatorial) region has a lower than average $\mathrm{CO}_{2}$ abundance, but so does a lower than average temperature (standard slit position) region. Once again, we find no obvious relation between $\mathrm{CO}_{2}$ abundance and temperature from our measurements of Venus.

Figure 18 shows the relation between the intercept of the linear least squares fits to the temperature, $W_{0}(0.5)$ and $W_{0}(b)$, and the $\mathrm{CO}_{2}$ absorption ratio relative to the solar lines $R$. We see that $W_{o}(0.5)$ is probably a better measure of the $\mathrm{CO}_{2}$ abundance than $W_{0}(b)$ since the former quantity shows less scatter as a function of $R$. Figure 19 shows the values of $T$ as a function of the $W_{0}$. Since $T(b)$ is believed to be the actual value of the rotational temperature and $W_{0}(0,5)$ the best measure of $\mathrm{CO}_{2}$ abundance; this quantity is also shown. Once again, no relation between temperature and $\mathrm{CO}_{2}$ abundance is obvious.

In Table 7. we give the differences $\Delta W_{o}(0.5)=\left(W_{0}(0.5)_{i}-\bar{W}_{0}(0.5)_{i}\right)$ and $\Delta T(b)=\left(T(b)_{i}-\bar{T}(b)_{i}\right)$, where $i$ refers to the region on Venus; these are shown as a function of date in Figure 20. While there was no obvious correlation between temperatures and $\mathrm{CO}_{2}$ abundances, it appears that these differences are correlated in the sense that positive values of $\Delta W$ correspond to negative values of $\Delta T$. That is to say that $\frac{d T}{d W}<0$ (or $\frac{d T}{d P}<0$, since $W$ is related to the abundance and hence the pressure, since $\mathrm{CO}_{2}$ is a major, uniformly mixed constituent of the Venus atmosphere). This result implies that the region of the atmosphere we are observing is stable; since the warmer layers of the atmosphere are presumably at higher altitudes no convection is expected. Yet we observe quite considerable temporal variations in the temperature and, to a somewhat lesser extent, variations in the $\mathrm{CO}_{2}$ abundance.

## IV. Conclusions

We appear to be seeing real temperature variations in the atmosphere of Venus, as we 11 as Indications that the $\mathrm{CO}_{2}$ abundance above the cloud tops (or optical depth $\mathrm{t} \sim 1$ ) varies. The values of these two quantities do not appear to be related; however, the derivatives of these quantities with respect to time, $\frac{d T}{d t}$ and $\frac{d W}{d t}$ appear to be related by $\frac{d T}{d t}=-C \frac{d W}{d t}$, where $C$ is presumably a constant. The average temperature ( $249 \pm 1.4^{\circ} \mathrm{K}$ ) found for this set of observations appears to be somewhat higher than the average temperature ( $242 \pm 2^{\circ} \mathrm{K}$ ) found in the past (Young, 1972) for series of observations extending over a longer time period. It will be of some interest to compared our results with those obtained at McDonald Observatory during the same tine period, when the latter become available.

## IV. Acknowledgement

This researhc was supported in part by the scientific exchange program of the American and Polish National Academies of Science, and in part by the National Aeronautics and Space Administration under contract Number NGR 44-001-117 at Texas A\&M University.
E. S. Barker and M. A. Perry (1974), "Solar Equivalent Widths (Integrated Disk) for P-Branch Region of the $7820 \AA \mathrm{CO}_{2}$ and $8689 \AA$ Bands". McDonald Observatory.
C. E. Moore, M. G. J. Minnaert, and J. Houtgast, (1966), "The Solar Spectrum 2935A to $8770 \%^{\prime \prime}$. Monograph 61, National Bureau of Standards, Washington, D.C.
R. A. Schorn, L. D. Gray, and E. S. Barker, (1969), High Dispersion Observations of Venus. III. The Carbon Dioxide Band at 7820 ${ }^{\prime \prime}$ Icarus 10, 241-257.
R. A: J. Schorn, A. Woszczyk, and L. D. G. Young, (1974), High Dispersion Observations of Venus During 1968 and 1969 II. The Carbon Dioxide Band at $8689 A^{\prime \prime}$ Icarus (to be published).
R. A. Schorn, L. G. Young, and E: S. Barker, (1970), High Dispersion Spectroscopic Observation of Benus VI. The Carbon Dioxide Band at 10362 ${ }^{\prime \prime}$ Icarus 12, 391-402.
R. A. Schorn, L. G. Young, and E. S. Barker, (1971), VIII The Carbon Dioxide Band at 10627A" Icarus 14, 21-35.
A. T. Young, A. Woszczyk, and L. G. Young, (1974), "Spectroscopic Observations of Spatial and Temporal Variations on Venus", Acta Astron. 24, 55-68.
A. T. Young and L. G. Young, (1972), "OBserving Venus near the Sun" Sky and Te1. 43, 140-144.
L. D. G. Young, (1972), "High Resolution Spectra of Venus - A Review" Icarus 17, 632-658.
L. D. G. Young, R. A. J. Schorn, E. S. Barker, (1970), High Dispersion Spectroscopic Observations of Venus. VIII. The Carbon Dioxide Band at 104888" Icarus 13, 58-73.
L. D. G. Young, R. A. J. Schorn, E. S: Barker, and M. MacFarlane, (1969), High Dispersion Spectroscopic Observations of Venus V. The Carbon Dioxide Band at 86898" Icarus 11, 390-407.
L. D. G. Young, R. A. J. Schorn, E. S. Barker, and A. Woszczyk, (1971), High Dispersion Spectroscopic Observations of Venus during 1968 and 1969. I. The Carbon Dioxide Bands at 7820A and 7883 ' Acta Astron. 21, 329-363.
L. G. Young, A. T. Young, J. W. Young, and J. T. Bergstraih, (1973), "The Planet Venus: A New Periodic Spectrum Variable" Astrophys. J., 181, L5~L8.

## List of Figures

Figure 1-16

Figure 17

Figure 18

- Figure 19

Figure 20

Height of Venus $\mathrm{CO}_{2}$ lines, measured from density tracings of Venus spectra as a function of the rotational line index. The measurements of different individuals are indicated by different symbols as shown on the figure. Histogram of rotational temperatures found from a curve of growth analysis of the data shown in Figures 1 to 16.

The relation between $\mathrm{CO}_{2}$ abundance indicators $\mathrm{W}_{\mathrm{o}}(0.5)$ and $\mathrm{W}_{\mathrm{o}}(\mathrm{b})$ and the $\mathrm{CO}_{2}$ abundance indicator $R$ (the ratio of the sum of the heights of the $\mathrm{CO}_{2}$ lines to the sum of the heights of the $\mathrm{CO}_{2}$ lines to the sum of the heights of the solar calibration lines listed in Table 2). Rotational temperature as a function of carbon dioxide abundance. The quantities $T(b), W(b)$. and $T(0.5), W_{0}(0.5)$ use the left hand and bottom scales; $T(b)$ and $W_{o}(0.5)$ use the right hand and top scales.

The quantities $\Delta W_{0}(0.5)$ and $\Delta T(b)$ for the dates of our 1972 observations.

Table I
Spectrograms Studied

| Plate | Date ${ }^{\text {c }}$ | Time of observation $U$. T. | $\begin{gathered} \text { Slit } \\ \text { Orientation } \\ \hline \end{gathered}$ | Seeing <br> Sec. of arc | $\Sigma h_{\rho}$, <br> Height of solar <br> lines, mm | ```R, Ratio of CO solar linEs``` |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T622 | 17 IX 72 | 13:06-13:36 | 6 | 1-3 | 228.7 | 2.04 |
| T624a | 17 IX 72 | 17:15-17:50 | 1 | 2-6 | 208.0 | 2.13 |
| T624b | 17 IX 72 | 17:52-18:27 | 2 | 2-6 | 208.3 | 2.00 |
| T625a | 18 IX 72 | 12:56-13:26 | 6 | 3-6 | 244.7 | 2.09 |
| T625b | 18 IX 72 | 14:06-14:36 | 3 | 3-6 | 219.0 | 2.15 |
| T625c | 18 IX 72 | 14:38-15:08 | 5 | 3-6 | 237.7 | 2.18 |
| T627a | 19 IX 72 | 14:58-14:28 | 6. | 4-10 | 414.7 | 1.97 |
| T630a | 20 IX 72 | 14:51-15:21 | 6 | 1-2 | 263.0 | 1.96 |
| T630b | 20 IX 72 | 15:26-15:56 | 5 | 1-2 | 220.0 | 1.89 |
| T630c | 20 IX 72 | 15:58-16:33 | 5 | 1-2 | 170.0 | 2.17 |
| T631a | 20 IX 72 | 16:45-17:05 | 4 | 2-3 | 242.0 | 1.89 |
| T631b | 20 IX 72 | 17:05-17:35 | 3 | 2-3 | 250.3 | 2.01 |
| T633a | 21 IX 72 | 14:52-15:22 | 6 | 2-3 | 253.7 | 2.07 |
| T633b | 21 IX 72 | 15:45-16:15 | 4 | 2-3 | 258.7 | 1.98 |
| T636a | 23. IX 72 | 14:20-15:10 | 6 | 2-4 | 295.0 | 1.94 |
| T636b | 23. $1 \times 72$ | 15:16-16:08 | 3 | 1-3 | 276.7 | 2.03 |
| T636c | 23 IX 72 | 16:11-17:01 | 5 | 5-7 | 284.7 | 1.93 |
| T640a | 25 IX 72 | 14:31-15:01 | 6 | 2-4 | 254.3 | 2.15 |
| T640b | 25.1 P 72 | 15:06-15:36 | 4 | 2-6 | 245.0 | 2.08 |
| T640c | 25 IX 72 | 15:40-16:10 | 3 | 4-8 | 262.7 | 2.04 |
| T641a | 25 IX 72 | 16:34-17:04 | 3 | 3-10 | 255.7 | 1.94 |
| T641b | 25 IX 72 | 17:27-17:57 | 3 | 3-10 | 253.7 | 1.96 |
| T641c | 25 IX 72 | 18:16-18:41 |  | 6-10 | 221.0 | 1.99 |
| T644a | 26 IX 72 | 14:19-15:09 | 6 | 2-4 | 279.7 | 1.97 |
| T644b | 26 IX 72 | 15:12-15:52 | 2 | 3-6 | 262.0 | 1.92 |
| T644c | 26 IX 72 | 15:55-17:15 | 1 | 4-6 | 172.7 | 2.01 |
| T645a | 26 IX 72 | 17:41-18:11 | 4 | 4-6 | 251.3 | 2.07 |
| T645 b | 26 IX 72 | 18:28-18:58 | 5 | 5-10 | 179.3 | 2.04 |
| T645c | 26 IX 72 | 19:01-19:31 | 3 | 3-1.5 | 177.0 | 2.09 |
| T647b | 27 IX 72 | 15:01-15:31 | 4 | 1-3 | 240.3 | 1.86 |
| T647c | 27 IX 72 | 15:34-16:04 | 4 | 2-5 | 271.0 | 1.89 |
| T648a | 27 IX 72 | 16:10-16:40 | 3 | 2-5 | 216.0 | 1.97 |
| T648b | 27 IX 72 | 16:44-17:14 | 6 | 1-6 | 227.0 | 1.93 |
| T649b | 28 IX 72 | 18:21-1.8:59 | 6 | 5-20 | 243.0 | 1.91 |
| T650b | 30 IX 72 | 13:09-13:49 | 6 | 1-2 | 261.7 | 2.12 |

Table I - Cont. Page 2

| Plate |  | ate | Time of observation U . T . | Slit Orientation | Seeing <br> Sec. of arc | Height of solar lines, mm | $\begin{aligned} & \text { Ratio of } \\ & \mathrm{CO}_{2} \text { to } \\ & \text { solar lines } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T650c | 30 | IX 72 | 13:52-14:22 | 4 |  |  |  |
| T651a |  | IX 72 | 14:32-15:02 | 4 | 1-2 | 239.0 | 2.13 |
| T651b | 30 | IX 72 | 15:05-15:35 | 3 | 2-5 | 253.7 | 2.11 |
| T651c | 30 | IX 72 | 15:40-16:05 | 6 | 2-5 | 225.0 | 2.16 |
| T654b | I | X 72 | 16:53-17:23 | 6 | 3-6 | 255.0 269.0 | 2.11 1.84 |
| T655b | 2 | X 72 | 13:17-13:52 | 6 |  |  |  |
| T657b | 3 | X 72 | 13:46-15:27 | 6 | 10-20 | 263.7 | 1.91 |
| T658b | 4 | X 72 | 13:27-14:08 | 6 | 3-10 | 266.3 | 1.99 |
| T660b | 5 | X 72 | 12:56-13:27 | 6 | 5-10 | 240.3 | 2.07 |
| T660c | 5 | $\times 72$ | 13:33-14:03 | 4 | $1-2$ $1-3$ | 268.0 226.7 | 1.98 1.86 |
| T661b | 7 | X 72 | 14:17-14:56 | 6 |  |  |  |
| T661c | 7 | X 72 | 15:03-15:31 | 4 | $1-3$ $1-3$ | 251.0 217.7 | 1.93 |

Table 2
Solar Lines used for Intensity Calibration

| $\begin{gathered} \text { Wavelength, } \\ \hline \end{gathered}$ | $\mathrm{MOH}+$ | $\mathrm{m} \AA$ <br> BP玄* | $\Delta W$, percent |
| :---: | :---: | :---: | :---: |
| 7800.000 | 61 | ---- | - |
| 7802.51 | 12 | --- | ---- |
| 7807.916 | 64 | ---- | - |
| 7835.317 | 42 | 43.8 | 4.1 |
| 7836.130 | 64 | 65.6 | 2.4 |
| 7849.984 | 66 | 54.9 | -20.2 |
| 7855.405 | 25 | 29.9 | 16.4 |
| 7861.045 | 12 | 14.0 | 14.3 |
| 7863.799 | 15 | --- | ---- |
| $\div 7896.378$ | 28 | -- | ---- |
| 7912.870 | 40 |  |  |

* Moore et al. (1966)
** Barker and Perry (1974)

Table 3

Results of Analysis of the 1972 data for the 7820A
Band of Carbon Dioxide, assuming
a constant $\mathrm{CO}_{2}$ Ine width

|  |  | Square Root Absorption Law |  |  |  | Curve of Growth Absorption Law |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Plate <br> Number |  | $\begin{gathered} T(0.5) \\ { }^{\circ} \mathrm{K} \\ \hline \end{gathered}$ | $\begin{gathered} W_{0}(0.5) \\ \mathrm{mA}^{2} \\ \hline \end{gathered}$ | $\begin{gathered} \sigma_{Q} \\ \text { Percent } \end{gathered}$ | b. | $\begin{gathered} \mathrm{T}(\mathrm{~b}) \\ { }^{\circ} \mathrm{K} \\ \hline \end{gathered}$ | $W_{0}(b)$ $\mathrm{mA}$ | $\begin{gathered} \sigma_{o} \\ \text { Percent } \end{gathered}$ | $\mathrm{T}_{0}$ 0 K |
| T622 | G | 212220 | 11.8 | 2.4 | 0.666 | 230236 | 8.5 | 1.8 | 240 |
|  | $Y$ | $212^{221}$ | 11.6 | 2.5 | 0.681 | 237242 | 8.0 | 1.7 | " |
|  | W | $220 \begin{array}{r}234 \\ 207\end{array}$ | 11.0 | 3.6 | 0.718 | 238243 | 7.5 | 1.6 | " |
| average |  | $214 \begin{array}{r}219 \\ 210\end{array}$ | 11.3 | 1.2 | 0.677 | 236238 | 8.0 | 0.9 | 240 |
|  |  |  |  |  | $\because$ |  |  |  | ; |
| T624a | G | 213223 | 12.1 | 2.7 | 0.640 | 238246 | 9.1 | - 2.1 | 240 |
|  | Y | $225 \begin{aligned} & 235 \\ & 215\end{aligned}$ | 11.5 | 2.6 | 0.605 | 240248 | 9.3 | 2.1 | " |
|  | W | 2292419 | 11.7 | 2.8 | 0.582 | 243232 | 9.8 | 2.2 | " |
| average |  | $222 \begin{array}{r}228 \\ 216\end{array}$ | 11.8 | 1.5 | 0.606 | 241245 | 9.5 | 1.2 | 240 |
|  |  |  |  |  |  |  |  |  |  |
| T624b | G | 2081224 | 11.2 | 4.5 | 0.746 | 233242 | 7.1 | 2.5 | 240 |
|  | Y | $218_{200}^{240}$ | 10.7 | 5.6 | 0.792 | $246 \begin{array}{r}253 \\ 239\end{array}$ | 6.1 | 2.5 | ' |
|  | W | $20218{ }^{217}$ | 11.2 | 4.5 | 0.773 | $232 \begin{aligned} & 238 \\ & 225\end{aligned}$ | 6.6 | 2.6 | 1 |
| average |  | $\begin{array}{r} 209 \\ 2019 \end{array}$ | 11.0 | 2.8 | 0.779 | 238242 | 6.5 | 1.5 | 240 |

Table 3 - Cont.
Page 2

| Plate <br> Number |  | $\begin{gathered} T(0.5) \\ { }^{\circ} \mathrm{K} \end{gathered}$ | $\underset{\mathrm{mA}}{\mathrm{~W}_{\mathrm{O}}(0.5)}$ |  | b | $\begin{gathered} T(b) \\ \mathrm{o}_{\mathrm{K}} \end{gathered}$ | $\mathrm{W}_{0}(\mathrm{~b})$ $\mathrm{m} \mathrm{\AA}$ |  | ${ }^{\text {T }}{ }_{\text {T }}^{\mathrm{O}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T625a | G | $253_{237}^{273}$ | 10.9 | 3.7 | 0.682 | ${ }^{262} 2685$ | 7.9 | 1.8 | 260 |
|  | Y | 238254 | 11.0 | 3.6 | 0.760 | 265270 | 6.4 | 1.5 | " |
|  | W | $238254$ | 11.3 | 3.5 | 0.738 | 265271 | 7.0 | 1.7 | " |
| average |  | $243_{234}^{252}$ | 11.1 | 2.1 | 0.714 | 263267 | 7.2 | 1.0 | 260 |
|  |  |  |  |  |  |  |  |  |  |
| T625b | G | ${ }_{230}^{243}$ | 11.7 | 3.1. | 0.646 | 244250 | 8.8 | 1.7 | 240 |
|  | Y | $218_{206}^{231}$ | 11.4 | 3.6 | 0.679 | ${ }^{238} 2385$ | 8.1 | 2.2 | ¢" |
|  | W | $235{ }_{221}^{251}$ | 11.1 | 3.5 | 0.649 | 249257 | 8.4 | 2.2 | " |
| average |  | $227_{220}^{235}$ | 11.5 | 2.0 | 0.655 | $\begin{array}{r}243 \\ \hline 239\end{array}$ | 8.5 | 1.2 | 240 |
| T625c |  | $220_{208}^{233}$ | 12.4 | 3.3 | 0.690 | $237{ }_{231}^{242}$ | 8.7 | 1.8 | 240 |
|  | Y | $225 \begin{array}{r} 239 \\ 213 \end{array}$ | 11.7 | 3.5 | 0.691 | $244 \begin{array}{r}248 \\ 239\end{array}$ | 8.1 | 1.5 | " |
|  | W | $223{ }_{213}^{233}$ | 11.9 | 2.8 | 0.640 | ${ }^{237} \begin{array}{r}242 \\ 232\end{array}$ | 9.1 | 1.6 | " |
| average |  | 222229 | 12.0 | 1.8 | 0.678 | 239243 236 | 8.6 | 1.0 | 240 |
|  |  |  |  |  |  |  |  |  |  |
| T627a | G | $216_{204}^{229}$ | 11.1 | 3.5 | $0.681$ | $229 \begin{aligned} & 235 \\ & 223\end{aligned}$ | 8.0 | 1.9 | 240 |
|  |  | $211_{199}^{225}$ | 10.8 | 3.8 | 0.719 | 228232 | 7.3 | 1.8 | " |
|  | W | $226_{212}^{241}$ | 10.6 | 3.8 | 0.703 | $244 \begin{array}{r}250 \\ 238\end{array}$ | 7.2 | 1.7 | " |

Table 3 - Cont.
Page 3


Table 3 - Cont.
Page 4


Table 3 - Cont
Page 5


Tablè 3 - Cont.
yage 6

| Plate <br> Number |  | $\begin{gathered} T(0.5) \\ { }_{0_{K}} \\ \hline \end{gathered}$ | $\underbrace{\text { W }}_{\text {W0 }}$ (0.5) | $\begin{gathered} \sigma_{q} \\ \text { Percent } \\ \hline \end{gathered}$ | b | $\begin{gathered} \mathrm{T}(\mathrm{~b}) \\ \mathrm{o}_{\mathrm{K}} \\ \hline \end{gathered}$ | $\begin{gathered} \mathrm{W}_{\mathrm{O}}(\mathrm{~b}) \\ \mathrm{m} \mathbb{R} \end{gathered}$ | $\begin{gathered} \sigma_{\circ} \\ \text { Pexcent } \end{gathered}$ | $\xrightarrow{\mathrm{T}_{\circ}^{\circ} \mathrm{K}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T640a | G | 226236 | 12.0 | 2.4 | 0.628 | 237 232 231 | 9.5 | 1.4 | 240 |
|  | Y | $223_{212}^{235}$ | 11.6 | 3.0 | 0.660 | 2382423 | 8.6 | 1.4 | " |
|  | W | 223235 | 11.6 | 3.1 | 0.672 | 239244 | 8.4 | 1.4 | " |
| average |  | 224230 | 11.7 | 1.6 | 0.659 | 239232 | 8.8 | 0.8 | 240 |
|  |  |  |  |  |  |  |  |  |  |
| T640b | G | $247_{234}^{262}$ | 11.1 | 3.0 | 0.651 | 262271 | 8.3 | 2.2 | 260 |
|  | Y | $243_{230}^{256}$ | 10.8 | 2.9 | 0.657 | $258{ }_{251}^{266}$ | 8.0 | 2.1 | " |
|  | W | 247262 | 10.7 | 3.2 | 0.667 | 261269 | 7.8 | 2.1 | " |
|  | G | 253274 | 10.8 | 4.2 | 0.644 | 260 248 273 | 8.3 | 3.3 | 1 |
|  | Y | 245240 | 10.8 | 3.2 | 0.661 | 259266 | 7.9 | 2.2 | " |
|  | W | $252_{237}^{270}$ | 10.2 | 3.6 | 0.633 | $26 \epsilon_{256}^{276}$ | 7.9 | 2.5 | " |
| average |  | $248 \frac{254}{242}$ | 10.8 | 1.4 | 0.652 | 260264 | 8.0 | 0.9 | 260 |
|  |  |  |  |  |  |  |  |  |  |
| T640c | G | $243_{224}^{266}$ | 11.0 | 4.1 | 0.718 | 256261 | 7.1 | 1.5 | 260 |
|  | Y | 241253 | 10.7 | 2.8 | 0.686 | 269274 | 7.1 | 1.4 | " |
|  | W | $\begin{array}{r} 239257 \\ 224 \end{array}$ | 10.9 | 3.4 | 0.725 | 268274 | 6.6 | 1.6 | " |
| average |  | $240_{231}^{250}$ | 10.9 | 2.0 | 0.709 | 264267 | 7.0 | 0.9. | 260 |

Table 3 - Cont.
Page 7


Table 3 - Cont.
Page 8


Table 3 - Cont.
Page 9


Table 3 - Cont.
Page 10

| Plate Number |  | $\begin{gathered} T(0.5) \\ 0_{\mathrm{K}} \\ \hline \end{gathered}$ | $\mathrm{W}_{\mathrm{O}}^{\mathrm{m}} \mathrm{m}$ (0.5) | $\begin{gathered} \sigma_{o} \\ \text { Percent } \\ \hline \end{gathered}$ | b | $\begin{gathered} \mathrm{T}(\mathrm{~b}) \\ { }_{\mathrm{o}}^{\mathrm{K}} \\ \hline \end{gathered}$ | $\mathrm{W}_{\text {O }}^{\text {mR }}$ (b) | $\begin{gathered} \sigma_{i} \\ \text { percent } \\ \hline \end{gathered}$ | ${ }_{\text {¢ }}^{\text {¢ }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T648b | G | $242_{233}^{251}$ | 10.3 | 2.0 | 0.640 | $253_{249}^{257}$ | 7.8 | 1.0 | 250 |
|  | Y | $233{ }_{224}^{242}$ | 10.1 | 2.2 | 0.664 | 248241 | 7.4 | 0.7 | " |
|  | W | 222232 | 10.4 | 2.4 | 0.695 | 241234 | 7.1 | 0.9 | " |
| average |  | $232_{227}^{237}$ | 10.3 | 1.3 | 0.668 | 248242 | 7.4 | 0.5 | 250 |
|  |  |  |  |  |  |  |  |  |  |
| T649b | G | $218_{203}^{235}$ | 10.8 | 4.4 | 0.735 | ${ }_{241}{ }_{236}^{246}$ | 6.9 | 1.7 | 240 |
|  | Y | ${ }_{209}{ }_{198}$ | 10.1 | 5.2 | 0.832 | 234239 | 5.4 | 1.9 | " |
| average | W | ${ }_{203}{ }_{191} 19$ | 10.5 | 4.1 | 0.789 | ${ }^{236} 242$ | 5.9 | 2.2 | " |
|  |  | ${ }^{210} 219$ | 10.5 | 2.7 | 0.778 | 23723230 | 6.1 | 1.2 | 240 |
|  |  |  |  |  |  |  |  |  |  |
| T650b | G | 232 2242 | 11.0 | 2.3 | 0.669 | 248252 | 8.1 | 1.3 | 250 |
| average | Y | $\begin{array}{r} 239 \\ 223 \\ 223 \end{array}$ | 11.5 | 1.7 | 0.648 | 249252 | 8.5 | 1.1 | " |
|  | W | $226235$ | 11.2 | 2.3 | 0.680 | 244247 .348 | 7.9 | 1.0 | " |
|  |  | ${ }_{229} 2325$ | 11.3 | 1.2 | 0.669 | 247245 | 8.1 | 0.6 | 250 |
| T650c | G | $\begin{array}{r}244253 \\ \hline 235\end{array}$ | 11.8 | 2.0 | 0,668 | 251 ${ }_{246}^{256}$ | 8.5 | 1.2 | 250 |
|  | Y | $228_{220}^{237}$ | 11.5 | 2.2 | 0.707 | $247 \begin{array}{r}241 \\ 242\end{array}$ | 7.5 | 1.1 | " |
|  | W | $236 \frac{246}{227}$ | 11.4 | 2.3 | 8.725 | $246_{242}^{251}$ | 7.3 | 1.2 | " |
| average |  | $236 \frac{241}{231}$ | 11.5 | 1.3 | 0.687 | $\begin{array}{r} 249252 \\ 246 \end{array}$ | 8.0 | 0.7 | 250 |

Table 3 - Cont.
Page 11

| Plate Number |  | $\begin{gathered} T(0.5) \\ { }_{0} \mathrm{~K} \\ \hline \end{gathered}$ | $\underset{\mathrm{mA}}{\mathrm{W}} \mathrm{O}$ | $\begin{gathered} \sigma_{q} \\ \text { Percent } \\ \hline \end{gathered}$ |  | $\underset{{ }_{\mathrm{o}}^{\mathrm{K}}}{\mathrm{~T}(\mathrm{~b})}$ | $\mathrm{W}_{\substack{\mathrm{o} \\ \text { mA } \\ \\ \text { (b) }}}$ | $\begin{gathered} \sigma_{o} \\ \text { Percent } \\ \hline \end{gathered}$ | $\stackrel{{ }_{\text {O }}^{\text {O }} \mathrm{K}}{ }$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T651a | G | 2342420 | 11.5 | 3.7 | 0.707 | 259264 | 7.6 | 1.3 | 260 |
|  | Y | 238225 | 11.1 | 3.6 | 0.780 | 269274 | 6.2 | 1.3 | " |
|  | W | ${ }_{236}^{252} 2$ | 11.1 | 3.7 | 0.754 | 261266 | 6.7 | 1.6 | " |
| average |  | $236_{228}^{245}$ | 11.2 | 2.1 | 0.749 | 262264 | 6.9 | 0.9 | 260 |
|  |  |  |  |  |  |  |  |  |  |
| T651b | G | $2322_{222}^{242}$ | 11.7 | 2.5 | 0.640 | ${ }^{247} 2532$ | 8.9 | 1.6 | 250 |
|  | Y | ${ }_{229} 239$ | 11.5 | 2.2 | 0.653 | 253248 | 8.3 | 1.4 | " |
| average | W | 237 2248 2268 | 11.5 | 2.6 | 0.665 | 258264 | 8.0 | 1.5 | " |
|  |  | 233238 | 11.5 | 1.4 | 0.649 | 251248 | 8.5 | 0.9 | 250 |
| T651c | G | 237246 | 11.4 | 2.2 | 0.542 | 244231 | 10.4 | 1.7 | 240 |
| average | Y | $235_{226}^{245}$ | 11.3 | 2.3 | 0.583 | 2452328 | 9.5 | 1.7 | 1 |
|  | W | ${ }_{233}{ }_{224}^{243}$ | 11.4 | 2.3 | 0.579 | 24224236 | 9.6 | 1.8 | - |
|  |  | 235240 | 11.4 | 1.3 | 0.566 | 2442480 | 9.9 | 1.0 | 240 |
|  |  |  |  |  | $\because$ |  |  |  |  |
| T654b | G | $238_{227}^{251}$ | 9.8 | 2.7 | 0.651 | $255{ }_{249}^{262}$ | 7.2 | 1.8 | 260 |
|  | Y | $238_{226}^{252}$ | 9.9 | 3.1 | 0.729 | $263{ }_{257}^{269}$ | 6.2 | 1.5 | " |
|  | W | $234_{221}^{248}$ | 9.8 | 3.3 | 0.690 | 252248 | 6.7 | 1.7 | " |
| average |  | $\begin{array}{r} 244 \\ 237 \\ 230 \end{array}$ | 9.8 | 1.7 | 0.692 | 258262 | 6.7. | 1.0 | 260 |

Table 3 - Cont.
Page 12

| Plate Number |  | $T\left(0_{o_{K}}^{(0.5)}\right.$ | $\underset{\mathrm{m}}{\mathrm{~W}_{0}(0.5)}$ | $\stackrel{\sigma_{0}}{\stackrel{+}{\text { Percent }}}$ | b | $\begin{gathered} T(b) \\ { }_{{ }^{\circ}}{ }_{K} \end{gathered}$ | $\begin{gathered} \mathrm{W}_{\mathrm{o}}(\mathrm{~b}) \\ \mathrm{mA} \mathrm{~A} \end{gathered}$ |  | ${ }^{\mathrm{T}_{\circ}{ }_{\mathrm{K}}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T655b | G | $215_{206}^{226}$ | 10.6 | 2.8 | 0.705 | 2382323 | 7.0 | 1.5 | 240 |
|  | $Y$ | ${ }_{229} 239$ | 10.4 | 2.5 | 0.629 | 244250 | 8.1 | 1.7 | :" |
|  | W | 233245 | 10.2 | 2.7 | 0.622 | 248245 | 8.0 | 1.9 | " |
| average |  | $226_{220}^{232}$ | 10.3 | 1.5 | 0.648 | ${ }^{244} 24240$ | 7.7 | 1.0 | 240 |
|  |  |  |  |  |  |  |  |  |  |
| T657b | G | 235245 | 10.7 | 2.5 | 0.688 | 250253 | 7.5 | 1.1 | 250 |
|  | $Y$ | ${ }_{231}^{242}$ | 10.6 | 2.6 | 0.709 | 251255 | 7.0 | 1.1 | " |
| . | W | 226236 | 10.7 | 2.5 | 0.702 | ${ }^{241} 244$ | 7.3 | 1.0 | " |
| average |  | ${ }^{230} 2325$ | 10.7 | 1.4 | 0.695 | 247249 | 7.4 | 0.6 | 250 |
|  |  |  |  |  | $\because$ |  |  |  |  |
| T658b | G | 235246 | 11.3 | 2.5 | 0.684 | 257263 | 7.8 | 1.4 | 260 |
|  | $Y$ | $237_{225}^{250}$ | 11.1 | 2.9 | 0.712 | $260{ }_{254}^{266}$ | 7.2 | 1.7 | 11 |
|  | W | $\begin{array}{r} 232243 \\ 220 \end{array}$ | 11.1 | 2.6 | 0.705 | 256262 | 7.2 | 1.6 | " |
| average |  | 234241 | 11.1 | 1.5 | 0.702 | $257{ }_{254}^{260}$ | 7.4 | 0.9 | 260 |
|  |  |  |  |  | . |  |  |  |  |
| T660b | G | $226_{217}^{236}$ | 10.8 | 2.4 | 0.694 | $255_{249}^{261}$ | 7.2 | 1.5 | 250 |
|  | Y | $\begin{array}{r} 217_{209}^{226} \end{array}$ | 10.9 | 2.3 | 0.694 | $248{ }_{243}^{252}$ | 7.3 | 1.2 | " |
|  | W | $222_{214}^{230}$ | 10.8 | 2.1 | 0.705 | 249253 | 7.1 | 1.0 | " |
| average |  | $222227$ | 10.9 | 1.3 | 0.699 | 251253 | 7.2 | 0.7 | 250 |

Trab'le 3 - Cont.
Page 13

| Plate Number |  | $\begin{gathered} T(0.5) \\ \hline{ }_{0} \mathrm{~K} \end{gathered}$ | $\underset{\mathrm{m}}{\mathrm{m}} \mathrm{S}$ | $\begin{gathered} \sigma_{q} \\ \text { Percent } \\ \hline \end{gathered}$ | b | $\begin{gathered} \mathrm{T}(\mathrm{~b}) \\ { }_{\mathrm{o}}^{\mathrm{K}} \mathrm{~K} \\ \hline \end{gathered}$ | $\begin{gathered} \mathrm{W}_{\mathrm{o}}(\mathrm{~b}) \\ \mathrm{mA} \\ \hline \end{gathered}$ | $\begin{gathered} \sigma \\ \text { Percent } \end{gathered}$ | ${ }^{\mathrm{T}_{\mathrm{o}} \mathrm{K}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T660c | G | $257{ }_{248}^{267}$ | 9.8 | 2.0 | 0.488 | 257266 | 10.0 | 1.7 | 250 |
|  | Y | $235{ }_{227}^{244}$ | 9.7 | 2.0 | 0.610 | 248243 | 7.8 | 1.3 | " |
|  | W | $234 \begin{aligned} & 243 \\ & 226\end{aligned}$ | 9.7 | 2.1 | 0.575 | 242248 | 8.2 | 1.6 | " |
|  | G | 226233 | 10.6 | 1.9 | 0.526 | $231{ }_{225}^{237}$ | 10.0 | 1.6 | " |
|  | Y | 235243 | 9.7 | 1.9 | 0.577 | 241246 | 8.4 | 1.4 | " |
|  | W | 2382429 | 9.3 | 2.3 | 0.6 .22 | 248254 | 7.4 | 1.5 | " |
| average |  | ${ }^{237} \begin{array}{r}241 \\ 233\end{array}$ | 9.8 | 0.9 | 0.574 | 2452482 | 8.4 | 0.7 | 250 |
| T661b | G | $244 \begin{aligned} & 262 \\ & 228\end{aligned}$ | 10.5 | 3.9 | 0.704 | $265{ }_{2}^{274}$ | 6.9 | 2.1 | 260 |
|  | Y | ${ }_{238}{ }_{223}^{256}$ | 10.3 | 3.9 | 0.711 | ${ }^{260} 267$ | 6.8 | 1.9 | " |
|  | W | 241259 | 10.5 | 3.9 | 0.720 | ${ }^{262} 2695$ | 6.7 | 1.8 | " |
| average |  | 241251 | 10:5 | 2.2 | 0.713 | $262 \begin{aligned} & 266 \\ & 258\end{aligned}$ | 6.8 | 1.1 | 260 |
| T661c | G | $227{ }_{220}^{234}$ | 11.6 | 1.8 | 0.679 | ${ }^{249} 246$ | 8.1 | 0.9 | 250 |
|  | Y | $228_{221}^{236}$ | 11.5 | 2.0 | 0.688 | 249243 | 7.8 | 1.1 | " |
|  | W | $\begin{array}{r} 21826 \\ 210 \end{array}$ | 11.5 | 2.2 | 0.694 | $243 \begin{gathered} 247 \\ 239 \end{gathered}$ | 7.7 | 1.2 | " |
| average |  | $224229$ | 11.5 | 1.2 | 0.685 | ${ }^{248} 246$ | 7.8 | 0.6 | 250 |

Table 4
Temperatures found for different values of $T_{0}$.


| Plate Number | $\begin{gathered} \text { Slit } \\ \text { Position } \\ \hline \end{gathered}$ | Square Root Absorption Law |  |  | Curve of Growth Absorption Law |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{gathered} T(0.5) \\ 0_{\mathrm{K}} \\ \hline \end{gathered}$ | $\begin{gathered} \mathrm{W}_{\mathrm{o}}(0.5) \\ \mathrm{m} A \end{gathered}$ | $\begin{gathered} \sigma_{q} \\ \text { Percent } \\ \hline \end{gathered}$ | b | $\begin{gathered} \mathrm{T}(\mathrm{~b}) \\ { }^{\circ} \mathrm{K} \end{gathered}$ | $\begin{gathered} \mathrm{W}_{\mathrm{o}}(\mathrm{~b}) \\ \mathrm{mA} \\ \hline \end{gathered}$ | $\begin{gathered} \sigma_{q} \\ \text { Percent } \\ \hline \end{gathered}$ |
|  |  |  |  |  |  |  |  |  |
| T622 | Std | - 214219 | 11.3 | 1.2 | 0.677 | 2362388 | 8.0 | 0.9 |
| T624a | T | 222228 | 11.8 | 1.5 | 0.606 | ${ }_{241}^{245} 236$ | 9.5 | 1.2 |
| T624b | L | ${ }_{209}^{219}$ | 11.0 | 2.8 | 0.779 | $238{ }_{234}^{242}$ | 6.5 | 1.5 |
| T625a | Std | 243252 | 11.1 | 2.1 | 0.714 | 263267 | 7.2 | 1.0 |
| T625b | S -28 | ${ }^{227} 2320$ | 11.5 | 2.0 | 0.655 | 2432429 | 8.5 | 1.2 |
| T625c | N +27 | ${ }_{222}^{229} 216$ | 12.0 | 1.8 | 0.678 | 239243 | 8.6 | 1.0 |
| T627a | Std | 219225 | 10.8 | 1.6 | 0.703 | $235{ }_{232}^{237}$ | 7.4 | 0.8 |
| T630a | Std $+18^{\circ}$ | ${ }_{227} 2319$ | 10.5 | 2.1 | 0.678 | 243246 | 7.5 | 1.1 |
| T630b | N +26 | 2382227 | 9.8 | 2.7 | 0.780 | 266272 | 5.7 | 1.5 |
| T630c | NN +54 | $226 \begin{array}{r}232 \\ 220\end{array}$ | 12.5 | 1.6 | 0.551 | 248254 | 11.2 | 1.2 |
| T631a | Eq -9 | ${ }^{227} 234$ | 10.3 | 1.7 | 0.733 | 260263 | 6.4 | 1.0 |
| T631b $=$ | S -17 | 241248 | 10.7 | 1.5 | 0.535 | 243238 | 10.2 | 1.2 |
| T633a | Std +30 | ${ }_{228} 234$ | 11.2 | 1.4 | 0.658 | $245{ }_{242}^{248}$ | 8.3 | 0.8 |
| T633b | Eq - 6 | $225{ }_{222} 2$ | 11.0 | 1.0 | 0.661 | 248240 | 8.0 | 0.6 |
| T636a | Std+28 | $238235$ | 10.5 | 1.6 | 0.704 | $264{ }_{260}^{267}$ | 6.9 | 0.9 |
| T636b | S -24 | $\begin{array}{r} 229_{224}^{234} \end{array}$ | 10.7 | 1.2 | 0:682 | $\begin{array}{r} 250_{248}^{258} \\ \hline \end{array}$ | 7.3 | 0.8 |
| T636c | N. +15 | $222 \begin{gathered} 227 \\ 218 \end{gathered}$ | 10.5 | 1.3 | 0.714 | 248240 | 6.9 | 0.7 |

Table 5 - Cont.
Page 2

| Plate Number | $\begin{gathered} \text { Slit } \\ \text { Position } \\ \hline \end{gathered}$ | $\begin{gathered} T(0.5) \\ { }_{0_{\mathrm{K}}} \\ \hline \end{gathered}$ | $\begin{gathered} \text { Wo }(0.5) \\ m A \end{gathered}$ | $\begin{gathered} \sigma_{q} \\ \text { Percent } \end{gathered}$ | b | $\begin{gathered} \mathrm{T}(\mathrm{~b}) \\ { }_{\mathrm{o}}^{\mathrm{K}} \end{gathered}$ | $\begin{gathered} \text { Wo (b) } \\ \mathrm{m} \AA \\ \hline \end{gathered}$ | $\begin{gathered} \sigma_{o} \\ \text { Percent } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T640a | Std+19 | $223 \begin{aligned} & 235 \\ & 212 \end{aligned}$ | 11.7 | 1.6 | 0.659 | $239{ }_{236}^{242}$ | 8.8 | 0.8 |
| T640b . | Eq-2 | 248254 | 10.8 | 1.4 | 0.652 | 260264 | 8.0 | 0.9 |
| T640c | S. -33 | 240250 | 10.9 | 2.0 | 0.709 | 264267 | 7.0 | 0.9 |
| T641a | $\mathrm{Eq}+8$ | ${ }^{249} 258$ | 10.0 | 2.0 | 0.647 | 260265 | 7.6 | 1.3 |
| T641b | $\mathrm{Eq}+10$ | ${ }^{248} 256$ | 10.3 | 1.7 | 0.618 | 261266 | 8.3 | 1.2 |
| T641c | L. +50 | 222229 | 10.7 | 1.9 | 0.644 | 241 246 | 8.0 | 1.4 |
| T644a | Std+24 | ${ }^{207} 2196$ | 10.9 | 2.6 | 0.756 | ${ }_{239} 243$ | 6.6 | 1.0 |
| T644b | L +47 | 222229 | 10.5 | 1.8 | 0.660 | 242246 | 7.6 | 1.3 |
| T644c | T +0 | 230235 | 10.8 | 1.2 | 0.674 | 248251 | 7.6 | 0.6 |
| T645a | Eq -6 | ${ }_{240} 246$ | 11.1 | 1.3 | 0.646 | $257 \begin{aligned} & 261 \\ & 254\end{aligned}$ | 8.4 | 0.9 |
| T645b | N +42 | ${ }_{209} 213$ | 11.5 | 1.2 | 0.595 | ${ }_{226} 2229$ | 9.3 | 0.8 |
| T645c | S. -36 | ${ }_{2} 233238$ | 11.3 | 1.4 | 0.597 | $245 \begin{array}{r}249 \\ 241\end{array}$ | 9.3 | 1.0 |
| T647b | N +42 | $\begin{array}{r} 237246 \\ 229 \end{array}$ | 10.0 | 2.0 | 0.689 | 257263 | 6.8 | 1.5 |
| T647c | Eq-4 | 224230 | 10.3 | 3.5 | 0.691 | $252 \begin{aligned} & 255 \\ & 249\end{aligned}$ | 6.9 | 0.8 |
| T648a | S -28 | $\begin{array}{r} 238243 \\ 234 \end{array}$ | 10.5 | 1.0 | 0.603 | ${ }_{250} 252$ | 8.7 | 0.7 |
| T648b | Std+21 | $232 \frac{237}{227}$ | 10.3 | 1.3 | 0.668 | $248_{246}^{250}$ | 7.4 | 0.5 |
| T649b | Std | $210_{201}^{219}$ | 10.5 | 2.7 | 0.778 | $\begin{aligned} & 237 \\ & 230 \\ & 230 \end{aligned}$ | 6.1 | 1.2 |

Table 5 - Cont.
Page 3

| Plate Number | $\begin{gathered} \text { Slit } \\ \text { Position } \\ \hline \end{gathered}$ | $\begin{gathered} T(0.5) \\ 0_{\mathrm{K}} \\ \hline \end{gathered}$ |  | $\underset{\mathrm{mA}}{\mathrm{~W}_{\mathrm{o}}(0.5)}$ |  | b | T (b) |  | Wo (b) | $\sigma^{\circ}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | : |  |  |  |  |  |
| T650b | Std+17 | $229 \begin{gathered} 234 \\ 225 \end{gathered}$ |  | 11.3 | 1.2 | 0.669 | ${ }^{247} 24250$ |  | 8.1 | 0.6 |
| T650c | Eq. -6 | 236241 .231 |  | 11.5 | 1.3 | 0.687 | 249246 |  | 8.0 | 0.7 |
| T651a | N +32 | ${ }_{236} 232$ |  | 11.2 | 2.1 | 0.749 | 262264 |  | 6.9 | 0.9 |
| T651b | S -37 | $233{ }_{227}^{238}$ |  | 11.5 | 1.4 | 0.649 | $251{ }_{248}^{255}$ |  | 8.5 | 0.9 |
| T651c | Std+37 | $235{ }_{230}^{240}$ |  | 11.4 | 1.3 | 0.566 | 244248 |  | 9.9 | 1.0 |
| T654b | Std+12 | ${ }_{2}{ }^{3} 7244$ |  | 9.8 | 1.7 | 0.692 | 258262 |  | 6.7 | 1.0 |
| T655b | Std+13 | $226 \begin{array}{r}232 \\ 220\end{array}$ |  | 10.3 | 1.5 | 0.648 | 2442470 |  | 7.7 | 1.0 |
| T657b | Std +15 | 230236 |  | 10.7 | 1.4 | 0.695 | 247242 |  | 7.4 | 0.6 |
| T658b | Std+15 | 234242 |  | 11.1 | 1.5 | 0.702 | 257260 |  | 7.4 | 0.9 |
| T660b | Std+12 | ${ }_{222} 227$ |  | 10.9 | 1.3 | 0.699 | 251253 |  | 7.2 | 0.7 |
| T660c | Eq +10 | 237241 |  | 9.8 | 0.9 | 0.574 | $245{ }_{242}^{248}$ |  | 8.4 | 0.7 |
| T661b | Std | ${ }_{241}^{251} 2$ |  | 10.5 | 2.2 | 0.713 | $262 \begin{array}{r}266 \\ 258\end{array}$ |  | 6.8 | 1.1 |
| T661c | $E q+0$ | 224229 |  | 11.5 | 1.2 | 0.685 | $248{ }_{246}^{250}$ |  | 7.8 | 0.6 |
|  |  | $\sigma_{\text {int }}$ | $\sigma_{\text {ext }}$ |  |  |  | $\sigma_{\text {int }}$ | $\sigma_{\text {ext }}$ |  |  |
| average | Eq | $236 \pm 2.2$ | 3.3 | 10.7 | 0.5 | 0.659 | $254 \pm 1.3$ | 2.6 | 7.7 | 0.3 |
| average | N | $227 \pm 3.2$ | 4.0 | 11.1 | 0.8 | 0.679 | $249 \pm 1.8$ | 5.2 | 7.9 | 0.5 |
| average | S | $234 \pm 2.6$ | 2.1 | 11.0 | 0.6 | 0.633 | $249 \pm 1.5$ | 2.8 | 8.5 | 0.4 |
| average | L | $218 \pm 5.4$ | 4.3 | 10.7 | 1.6 | 0.694 | $240 \pm 3.1$ | 1.2 | 7.5 | 1.0 |
| average | T | $226 \pm 5.5$ | 4.0 | 11.3 | 1.). 4 | 0.640 | $245 \pm 3.6$ | 3.5 | 8.6 | 0.9 |
| average | Std | $228 \pm 1.6$ | 2.2 | 10.8 | 0.4 | 0.688 | $248 \pm 0.8$ | 2.1 | 7.5 | 0.2 |
| average | all | $230 \pm 1.3$ | 1.5 | 10.9 | 0.25 | 0.671 | $249 \pm 0.6$ | 1.4 | 7.8 | 0.15 |

Table 6
Sumary of Measurements of Temperatures over different areas of Venus


Table 7
Variation in temperature and $\mathrm{CO}_{2}$
Abundance from the average
value for Each region on Venus































