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ABSTRACT

Rb and Sr isotopic data and other chemical data indicate major

lunar differentiation at about 4.6 AE and very limited subsequent differenti-

ation. The constraintsof limited differentiation post 4.6 AE and the apparent

lack of H20 on the moon, when applied to the derivation and petrogenesis of

lunar samples,suggest the following: 1) soil samples, breccias, metaclastic

rocks, and feldspathic basalts represent mixtures of repeatedly-modified

clastic material, which was ultimately derived from materials formed during the

'4.6 AE differentiation; 2) mare basalts crystallized from melts which formed by par-

tial melting and, which developed without equilibration between the melt and

crystalline residuum.



I. Introduction

Rb- Sr mineral isochrons currently provide the basic chron-

ology of lunar evolution (Albee et al., 1970a, 1970b, 1974;

Papanastassiou et al., 1970; Papanastassiou and

Wasserburg, 1970, 1971a, 1971b, 1972a, 1972b, 1972c, 1973; Tera et al.,

1974a, 1974b, Wasserburg and Papanastassiou, 1971). Rb/Sr data also impose

rigorous constraints on lunar petrogenetic models. This paper will

discuss these constraints, emphasize the important role of large scale

differentiation which occurred at about 4.6 AE (AE E109 years) and show that

only limited chemical fractionation occurred during the subsequent

evolution of most lunar rocks. Regardless of other types of evidence, no

petrogenetic theory for the origin of lunar rocks can invoke extensive fraction-

ation later than about 4.6 AE as a dominant part of the theory. The lack of

H20 on the moon may be the critical physical-chemical factor limiting subsequent

fractionation in many processes.



II. Rb-Sr systematics and fractionation factors

Measurements of the isotopic abundance of Rb and Sr in the various

mineral phases of a rock provide information not only on the time of crystalliza-

tion and equilibration (Tx), but also on the fractionation history of the

rock prior to this most recent crystallization and equilibration. As illustrated

on Figure 1, cogenetic systems, either consanguineous total-rocks or the

various minerals in a single rock, attain identical values of Sr/8Sr, but during

equilibration at Tx different values of 87Rb/8%r. On the Rb-Sr evolution diagram

these different compositions subsequently evolve along straight line trajectories

with a slope of -1. If the systems were closed to gain or loss of Rb and Sr since

Tx, then the cogenetic systems measured at any time form a linear

array on the Rb-Sr evolution diagram. An array based on minerals from a single

rock is a mineral or internal isochron and one based on cogenetic rocks is a

total-rock isochron. The isochron has a slope indicative of the time since equi-

libration(slope= exp(ATx-1)) and a 87Sr/ 86Sr intercept, (8 7Sr/ 86Sr) I equal

to the Sr isotopic composition at time Tx (Lanphere et al., 1964).

The deviation of (87Sr/86Sr)I from that assumed to have existed at some time

prior to Tx coupled with the 8 7Rb/86Sr,provide an integrated measure of the Rb/Sr

fractionation history of the rock. This fractionation history can be parametrized

by a two-stage model as illustrated in Figure 1. The model assumes that a source

material originated at reference time To = 4.6 AE with the "BABI" value of 87Sr/86Sr

((87Sr/86Sr)BABI = 0.69898) (Papanastassiou and Wasserburg, 1969). Fractionation

at time Tx resulted in three fractions, one enriched in Rb relative to Sr, one

unfractionated, and one depleted in Rb relative to Sr. Mineral isochrons

on all three rocks would yield identical ages (T ) and the same (87 Sr/86Sr).

However, they would have different model ages, TBABI, which is the time required



for the 87Sr/86Sr of the total rock with its measured 87Rb/86Sr to evolve

from ( 87Sr/ 86Sr)BABI The unfractionated rock will have TAI 4.6 AE,BABI BABI ,

the enriched rock will have TBABI < 4.6 AE and the depleted rock will have

TBABI > 4.6 AE. Thus, any deviation of TBABI from 4.6 AE indicates a

fractionation history prior to Tx .

The fractionation factor for this two-stage model is (Papanastassiou

and Wasserburg, 1972c):
87 b/86 T T

( Rb/ Sr) -Tox
2

D 87 b/86 T BABI-T

This approximation is quite accurate since the decay constant for Rb is small.
During the time interval from To to Tx numerous episodes of fracitionation
could have affected the rock as opposed to the simple two-stage model

illustrated. However, (87 Rb/86Sr) is still the integrated 87Rb/ 86 Sr
in the interval from T to T

o x

As noted previously To = 4.6 AE and (87Sr/86 Sr) T = 0.69898 are reference
0

values, and the subsequent conclusions drawn in this paper are basically indepen-

dent of their precise value. In fact, the time of major differentiation is

probably not 4.6 AE, but may be as low as 4.5 AE or even 4.4 AE (Tera et al.,

1974b).

III. Lunar rock groups

On the basis of petrologic characteristics seven different groups of

lunar rocks are recognized. Each of these groups has a distinctive Rb-Sr

isotopic pattern. The Rb-Sr data are summarized on Fig. 2, which shows Tx,

TBABI, and KD for representative members of each group. Most of the type

examples shown are those on which we have made detailed petrographic and

electron probe studies in conjunction with the Rb-Sr isotopic studies of

Papanastassiou and Wasserburg. Figure 2 indicates that six of these groups
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are characterized by TBABI close to 4.6 and KD< 2. The seven groups are as

follows:

1) Soils with T = 4.6 + 0.3 AE
BABI

Clots from the soil samples and friable soil-breccia samples, as well as

bulk soil samples, have model ages of about 4.6 AE. This group includes samples

from all landing .sites and has a wide range of Rb/Sr (Papanastassiou and

Wasserburg, 1972c). To a large extent many of these model ages are dominated

by a small fraction of very high Rb/Sr material with a model age

of about 4.6 AE (Papanastassiou and Wasserburg, 1972c).

2) K-rich fragments with TBABI = 4.3 to 4.6 AE

These fragments, the so-called "KREEP" rocks (Hubbard et al., 1971), in-

clude glass-rich agglutinates and metaclAstic rocks, and have been found in the

soils at all landing sites. Most are small fragments such as Luny Rock 1

(Albee and Chodos, 1970), and no internal isochrons have been measured on them.

Nyquist et al. (1973), however, showed that by grouping such fragments by

chemical composition and location, Rb and Sr data yield linear arrays, which,

if interpreted as total-rock isochrons, indicate ages ranging from 4.1 to 4.4 AE.

Sample 12013 is the only large sample which we would place in this group. It is
heterogeneous

a/metaclastic rock with K, Th, and U concentration a factor of forty greater than

typical mare basalts and a factor of ten greater than Apollo 11 K-rich basalts

(Anderson, 1970). Fragments of 12013 have a model age of 4.52 AE and a re-

crystallization age (Tx) of 4.01 AE (Albee et al., 1970b).

3) Metaclastic rocks with Tx  3.95 AE and TBABI 4.5 AEx BABI

This group includes a large proportion of the Lunar Highlandssamples and also

constitutes a large proportion of the lithic fragments in soil samples from

all landing sites. These clastic rocks, composed predominantly of plagioclase, have



been extensively recrystallized by metamorphic and/or partial melting processes

(Albee et al., 1973). Typical examples are 65015 and 76055, both of which

display isotopic and petrologic evidence for extensive, but not complete

equilibration at 3.95 AE (Albee et al., 1973; Papanastassiou and Wasserburg,1972c;

Tera et al., 1974b;Jessberger et al., 1974) Step-wise heating 40Ar- 39Ar studies

on 65015 suggest that the cores of the larger plagioclase clasts have an age
greater than 4.46 AE (Jessberger et al., 1974). This is also suggested by
Rb-Sr isotopic data (Papanastassiou and Wasserburg, 1972c).

4) Feldspathic basalts with Tx ; 3.85 AE and TBABI 4.3 AE

This group includes a number of samples of intersertal, plagioclase-rich

basalts from the Apollo 14 and 16 landing sites (e.g., 14310, 14276 and 68415).

In addition to the high plagioclase content (60 to 80%) they are characterized

by high K, rare earth element, P, Ba, U and Th contents (Gancarz et al., 1972),

and a high content of siderophile elements, (Morgan et al., 1972). Even in these

rocks, which almost certainly crystallized from a melt, plagioclase grains are

present which, on the basis of electron probe data, have not completely

equilibrated with the melt (Gancarz et al., 1972). 40Ar- 39Ar studies also in-

dicate older relict plagioclase and provide evidence for an older event

(Huneke et al., 1972b, 1973).

5) Mare basalts with Tx = 3.16 to 3.95 AE and TBABI = 4.1 to 5.0 AE

This group includes all of the mare basalts with the exception of those in

Group 6. Samples from each landing site have similar Tx and TBABI, but (87Sr/86Sr)j

values and trace element concentrations differ for samples from an individual

landing site (Papanastassiou and Wasserburg,1971a, 1973; Tera et al., 1974a,

1974b; Schmitt and Laul, 1973). This suggests derivation of individual samples

(and flows) from different sources (Schmitt and Laul, 1973) or differing

degrees of assimilation of country rock (Papanastassiou and Wasserburg, 1971a).



7.

Typical well-characterized samples from the various landing sites include:

10044 (Agrell et al., 1970; Albee et al., 1970a; Turner, 1970),

12040 (French et al., 1972; Reid et al., 1973; Papanastassiou
and Wasserburg,1971a),

14053 (Gancarz et al., 1971; Papanastassiou and Wasserburg,1971b;
Turner et al., 1971),

15682 (Dowty et al., 1973; Papanastassiou and Wasserburg, 1973),

75055 (Albee et al., 1973; Tera et al., 1974;Huneke et al., 1973),

and Luna 16, B-1 (Albee et al., 1972; Papanastassiou and Wasserburg, 1972a;
Huneke et al., 1972a).

6) Mare basalts with Tx=3.65 AE and T BABI=3.85 AE

Although grossly similar to the Apollo 11 low-K basalts included in Group 5, these

samples from the Apollo 11 landing site are higher in K and other incompatible

elements, and have much younger model ages. A typical well-characterized example

is 10017 (Adler et al., 1970; Albee et al., 1970a; Turner, 1970).

7) "ANT" rocks with TBABI = 4.6 AE

The "ANT" rock suite includes the coarse -.grained rocks of

the anorthosite-norite-troctolite-dunite suite. In general they display magmatic

cumulate textures, but are extensively modified by shock processes.

Dunite sample 72417 has both an isochron age and a model age of about 4.6 AE

(Albee et al., 1974). No mineral isochron ages have been measured on anortho-

site samples such as 15415 (James, 1972; Turner, 1972) or on troctolite samples

87 86
such as 76535 (Gooley et al., in press). However, low Sr/ Sr ratios

indicate that these rocks cannot have equilibrated and resided in a higher Rb/Sr

environment for any extended length of time (Wasserburg and Papanastassiou, 1971;

Papanastassiou, personal communication).
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IV. Nature of major differentiation at .4.6 AE

Many types of chemical, isotopic and physical evidence are consistent

with the hypothesis of primitive, large-scale, crustal differentiation (Albee

et al., 1970a; Ringwood and Essene, 1970; Smith et al., 1970; Wood et al., 1970).

The presence of a "magic component" (Papanastassiou and Wasserburg, 1970) with

TBABI of 4.6 AE and a high 87Rb/86Sr which dominates the model age of :many

lunar soil samples indicates that this differentiation occurred at about 4.6 AE

and produced rocks with very high Rb/Sr ratios. The existence of high Rb/Sr

material with relatively old model ages was confirmed by the discovery of the

K-rich rock 12013 (Albee et al., 1970b) and other fragments (Albee and

Chodos,1970; Hubbard et al., 1971). The existence of material complementary

to the Rb/Sr rich material is indicated by dunite sample 72417, which has

crystallization and model ages of 4.6 AE (Albee et al., 1974).

Rb-S data also indicate that, only limited fractionation occurred, subsequent

to the primitive differentiation,and furthermore suggest that most of the

observed chemical characteristics were produced during the primitive differentia-

tion. That most of the chemical differences observed in the lunar rocks are

consistent with primitive differentiation at n4.6 AE rather than subsequent

fractionation processes is illustrated in Figure 3. Sm/Eu, a parameter sensitive

to fractionation, varies by a factor of n200, whereas KD, a measure of

fractionation after the differentiation atv4.6 AE, varies only by a factor of

about 2. The strong fractionation indicated by Sm/Eu must have occurred prior

to the time of crystallization. Although neither K nor Sm/Eu are particularly

sensitive to olivine or Ca-poor pyroxene fractionation, both are extremely

sensitive to fractionation of plagioclase or of late stage K-rich material.

The large range of Rb/Sr observed between samples, approximately a factor of
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1000, is comparable to the range of Sm/Eu. Hence, we conclude that the Sm/Eu

differences must have been a characteristic of the source from which the rocks

were derived and that most chemical differences in lunar rocks are a result of

primitive differentiation at about 4.6 AE.

Regardless of physical details, this primitive differentiation process

resulted in a fraction rich in K (Rb, Ba, U, Th, trivalent rare earth elements,

a Ca-Al-Si rich fraction (anorthosite and anorthositic gabbro), and a Mg-Fe

rich fraction (dunite, troctolite, and norite). Samples of the Ca-Al-Si

rich fraction and the Mg-Fe rich fraction have survived subsequent excavation

by meteorite impact, but exhibit a wide range of modification. Less-modified

samples suggest that these fractions cooled slowly enough to produce rocks with

coarse-grained, homogeneous phases. The original nature of the K-rich frac-

tion is not clear as no samples have been recognized which have not been

extensively modified.

V. Possible petrogenetic processes involving limited fractionation

The Rb-Sr constraint on the amount of fractionation, as well as constraints

imposed by many other kinds of data, are satisfied if we hypothesize that soils,

glass-agglutinate fragments, friable breccias, and progenitors of metaclastic

rocks and feldspathic basalts (Gkoups 1-4) are all basically mixtures of clastic

material, which have been subsequently modified by a variety of processes,

including fragmentation, metamorphism, partial melting and complete melting. Rb

and Sr would not be fractionated if the formation of the clastic mixture involved

only fragmentation of preexistent rocks from one or many sources; even if

fragmentation occurred repeatedly over a long period of time. Consequently,

if the source regions of a clastic mixture are primary, unmodified

materials formed during the primitive differentiation at%4.6 AE, or if they
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themselves are clastic mixtures repeatedly modified either by continued

fragmentation and mixing,or by processes characterized below, then Rb and

Sr will remain unfractionated and the model age of the mixture will still

reflect the time of primitive differentiation.

Preservation of the old model age of such a mixture would be accomplished

during subsequent modification by processes with the following characteristics,

even if repeated many times:

1) Volatile loss of Rb was in general not significant.

2) Metamorphism, in the absence of H20, was strictly controlled by

solid-state and grain-surface diffusion and resulted in lithification by

sintering at grain boundaries with only short-range migration and limited

segregation of elements.

3) Partial melting in the metaclastic rocks of Group 3 and in the K-rich

fragments of Group 2, was characterized by extensive reaction between an inter-

stitial melt and larger clastic grains. Lack of Rb-Sr fractionation dictates very

limited mobility of the melt and only short-range migration of elements within

the melt. These characteristics can be partially attributed to the absence of

H20 and to the fine-scale homogeneity of the fragmental mixture. Local

segregation of Rb-rich material and partial Sr equilibration is suggested by

the Rb/Sr data of Nyquist et al.,(1973)on small chemically-defined groups of

samples from single sites. The Rb/Sr data on these samples have been interpreted

as total-rock isochrons representing distinct e6ents at times ranging from 4.1 AE

to 4.4 AE. These may alternatively be interpreted as the result of local

segregation of K-rich, Rb-rich material without total Sr equilibration at 3.95

AE.

4) Impact-produced melts, which formed by nearly total melting of soil,



breccia, or metaclastic rocks, crystallized as the feldspathic basalts of

Group 4. Such an origin would preserve the old model age of the source and

would satisfy several other geochemical constraints on these rocks, such as

the high content of siderophile elements. However, the Rb-Sr constraint could

also be satisfied if these rocks formed by partial melting of plagioclase-rich

source rocks with the additional restrictions described below for mare basalts.

The Rb-Sr restraint limiting fractionation is satisfied if the

ultimate source of the clastic mixture formed during the large-scale differentia-

tion at n 4.6 AE. If the modification process or processes retain the character-

istics described above, or if modification is a simple fragmentation process,

then fractionation does not basically occur and old model ages are preserved.

This is true regardless of either the order or the number of times this clastic

mixture is modified.

Mare basalts with near 4.6 AE model ages (Group 5) must also have been

derived without substantial fractionation of Rb and Sr, either during formation

of the parent magma or during the ascent and crystallization. All other

chemical parameters suggestive of a greater degree of fractionation must be

a characteristic of the source region. The origin of the mare basalts is further

restricted by the (87Sr/86Sr)I values, which suggest that rocks of the same age

were derived from a number of different sources. A magma meeting these require-

ments could be produced by several mechanisims (Gancarz et al., 1972):

1) Total melting of a source rock which has a Rb-Sr model age of 4.6 AE

and also meets all other chemical and isotopic constraints would form a rock

satisfying the Rb-Sr constraints. Although total melting is generally regarded

as an unlikely terrestrial event, it is possible that, in the absence of H20

and tectonic activity, instability and separation of a melt from a source

region would be delayed until complete melting occurs. Total melting could
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also occur as a result of impact processes.

2) Uniform contamination of relatively low Rb/Sr melts by assimilation

of Rb-rich crustal material with a model age of 4.6 AE is the mechanism

invoked by Papanastassiou and Wasserburg (1971a).

3) Our preferred hypothesis is that, in the absence of H20, partial

melting occurs by incremental melting of integral volumes of solid phases

with little or no equilibration between melt and crystalline residuum. Thus,

the low-temperature phases rich in Rb and 87Sr would melt totally and grains

of higher-temperature phases would melt peripherally, but the solid residuum

would not equilibrate with the melt. As pointed out by Graham and Ringwood

(1971), the resulting melt would have the same model age as the source region.

Any crystallization and separation of Ca-rich pyroxene and/or plagioclase during

the ascent of the melt to the surface would result in Rb-Sr fractionation.

However, silicate melt curves typically have a positive slope (AP/AT >O) in

the absence of H20, and under these circumstances the melt may become superheated

as it moves upward, effectively preventing crystallization and consequent

Rb-Sr fractionation. Production of a superheated magma is also an important

consideration in the contamination hypothesis, since it would facilitate

assimilation and homogenization.

The Apollo 11 K-rich mare basalts (Group 6) could also form by this process,

but the younger model ages require a greater degree of equilibration between the

melt and residuum or of some fractional crystallization before extrusion onto

the surface.

VI. Conclusion

An intriguing feature of these explanations for deriving lunar rocks

without fractionation Rb and Sr is the linking of this special characteristic
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to another characteristic lunar feature--the apparent lack of indigenous H 0.
2

The hypotheses outlined here differ from other models of lunar petrogenesis

in that many rock types would be derived by near-surface modification of rocks

formed during primitive crustal differentiation. This can be accomplished

with energy partially derived from impacting bodies rather than totally from

internal heat sources.

Acknowledgments

Most of the Rb-Sr patterns summarized here are based on mineral isochron

data from G. J. Wasserburg and D. A. Papanastassiou. Furthermore, many of the

arguments incorporated into these hypotheses have been expressed in their

published papers and expressed even more vociferously in numerous discussions

during the course of our cooperative work since July 1969. Unpublished Sm and

Eu data were provided by N.J. Hubbard and by J.A. Philpotts. This paper has

been supported by NASA grants NGL-05-002-188 and NGL-05-002-338.



14.

References

Adler I., Walter L.S., Lowman P.D., Glass B.P., French B.M., Philpotts
J.A., Heinrich K.J.F. and Goldstein J.I. (1970) Electron microprobe
analysis of Apollo 11 lunar samples, Proceedings of the Apollo 11 Lunar
Science Conference, Geochimica et Cosmochimica Acta, Supplement 1, V. 1,
p. 87-92.

Agrell S.O., Scoon J.H., Muir I.D., Long J.V.P., McConnell J.D.C. and
Peckett A. (1970) Observations on the chemistry, mineralogy and
petrology of some Apollo 11 lunar samples, Proceedings of the Apollo
11 Lunar Science Conference, Geochimica et Cosmochimica Acta, Supple-
ment 1, V. 1, p. 93-128.

Albee A.L. and Chodos A.A. (1970) Microprobe investigations on Apollo 11
samples, Proceedings of the Apollo 11 Lunar Science Conference,
Geochimica et Cosmochimica Acta, Supplement 1, V. 1, p. 135-157.

Albee A.L., Burnett D.S., Chodos A.A., Eugster O.J., Huneke J.C.,
Papanastassiou D.A., Podosek F.A., Russ G.P. III, Sanz H.G.,
Tera F. and Wasserburg G.J. (1970a) Ages, irradiation history, and
chemical composition of lunar rocks from the Sea of Tranquillity,
Science, V. 167, p. 463-466.

Albee A.L., Burnett D.S., Chodos A.A., Haines E.L., Huneke J.C.,
Papanastassiou D.A., Podosek F.A., Russ G.P. III and Wasserburg
G.J. (1970b) Mineralogic and isotopic investigations on lunar rock
12013, Earth and Planetary Science Letters, V. 9, p. 137-163.

Albee A.L., Chodos A.A., Gancarz A.J., Haines E.L., Papanastassiou
D.A., Ray L., Tera F., Wasserburg G.J. and Wen T. (1972)
Mineralogy, petrology, and chemistry of a Luna 16 basaltic fragment,
sample B-i, Earth and Planetary Science Letters, V. 13, p. 353-367.

Albee A.L., Gancarz A.J. and Chodos A.A. (1973) Metamorphism of
Apollo 16 and 17 and Luna 20 metaclastic rocks at at about 3.95 AE:
Samples 61156, 64423,14-2, 65015, 67483,15-2, 76055, 22006, and 22007,
Proceedings of the Fourth Lunar Science Conference, Geochimica et
Cosmochimica Acta, Supplement 4, V. 1, p. 569-595.

Albee A.L., Chodos A.A., Dymek R.F., Gancarz A.J., Goldman D.S.,
Papanastassiou D.A. and Wasserburg G.J. (1974) Dunite from the
Lunar Highlands: Petrography, deformation history, Rb-Sr age, In:
Lunar Science V, p. 3-5, The Lunar Science Institute, Houston, Texas.

Anderson D.H. (1970) The preliminary examination and preparation of
lunar sample 12013, Earth and Planetary Science Letters, V. 9,
p. 94-102.

Brunfelt A.O., Heier K.S., Nilssen B., Sundvoll B. and Steinnes E.
(1972) Distribution of elements between different phases of Apollo 14
rocks and soils, Proceedings of the Third Lunar Science Conference,
Geochimica et Cosmochimica Acta, Supplement 3, V. 2, p. 1133-1147.



15.

Dowty E., Prinz M. and Keil K. (1973) Composition, mineralogy, and
petrology of 28 mare basalts from Apollo 15 rake samples, Proceedings
of the Fourth Lunar Science Conference, Geochimica et Cosmochimica Acta,
Supplement 4, V. 1, p. 423-444.

French B.M., Walter L.S., Heinrich K.F.J., Loman P.D. Jr., Doan A.S. Jr.
and Adler I. (1972) Compositions of major and minor minerals in five
Apollo 12 crystalline rocks, National Aeronautics and Space Administration
SP-306, 142 pp.

Gancarz A.J., Albee A.L. and Chodos A.A. (1971) Petrologic and mineralogic
investigation of some crystalline rocks returned by the Apollo 14 mission,
Earth and Planetary Science Letters, V. 12, p. 1-18.

Gancarz A.J., Albee A.L. and Chodos A.A. (1972) Comparative petrology of Apollo
16 sample 68415 and Apollo 14 samples 14276 and 14310, Earth and Planetary
Science Letters, V. 16, p. 307-330.

Gast P.W., Hubbard N.J. and Wiesmann H. (1970) Chemical composition and
petrogenesis of basalts from Tranquillity Base, Proceedings of the
Apollo 11 Lunar Science Conference, Geochimica et Cosmochimica Acta,
Supplement 1, V. 2, p. 1143-1163.

Goles G.G., Randle K., Osawa M., Lindstrom D.J., Jerome D.Y., Steinborn
T.L., Beyer R.L., Martin M.R. and McKay S.M. (1970 Interpretations and
speculations on elemental abundances in lunar samples, Proceedings of the
Apollo 11 Lunar Science Conference, Geochimca et Cosmochemica Acta,
Supplement 1, V. 2, p. 1177-1194.

Goles G.G., Duncan A.R., Lindstrom D.J., Martin M.R., Beyer R.L., Osawa
M., Randle K., Meek L. T., Steinborn T.L. and McKay S.M. (1971)
Analyses of Apollo 12 specimens: Compositional variations, differentiation
processes, and lunar soil mixing models, Proceedings of the Second Lunar
Science Conference, Geochimica et Cosmochimica Acta, Supplement 2, V. 2,
p. 1063-1081.

Gooley R., Brett R., Warner J. and Smyth J.R., Sample 76535, a deep lunar
crustal rock, Geochimica et Cosmochimica Acta, in press.

Graham A.L. and Ringwood A.E. (1971) Lunar basalt genesis: The origin of
the Europium anomaly, Earth and Planetary Science Letters, V. 13, p. 105-
115.

Haskin L.A., Allen R.O., Helmke P.A., Paster T.P., Anderson M.R., Korotev
R.L. and Zweifel K.A. (1970)Rare earths and other trace elements in
Apollo 11 lunar samples, Proceedings of the Apollo 11 Lunar Science
Conference, Geochimica et Cosmochimica Acta, Supplement 1, V. 2, p. 1213-
1231.

Haskin L.A., Helmke P.A., Blanchard D.P., Jacobs J.W. and Telander K.
(1973) Major and trace element abundances in samples from the lunar
highlands, Proceedings of the Fourth Lunar Science Conference, Geochimica
et Cosmochimica Acta, Supplement 4, V. 2, p. 1275-1296.



16.

Hubbard NJ, and Gast P,W, (1971) Chemical composition and origin of nonmare
lunar basalts, Proceedings of the Second Lunar Science Conference,
Geochimica et Cosmochimica Acta, Supplement 2, V. 2, p. 999-1020.

Hubbard N.J., Meyer C. Jr., Gast P.W. and Wiesmann H. (1971) The composition
and derivation of Apollo 12 soils, Earth and Planetary Science Letters,
V. 10, p. 341-350.

Hubbard N.J., Gast P.W. and Meyer C. Jr. (1972a) Chemical composition of
lunar anorthosites and their parent liquids, In: Lunar Science III, p. 404-
406, The Lunar Science Institute, Houston, Texas.

Hubbard N.J., Gast P.W., Rhodes J.M., Bansal B.M., Wiesmann H. and Church
S.E. (1972b) Nonmare basalts: Part II, Proceedings of the Third Lunar
Science Conference, Geochimica et Cosmochimica Acta, Supplement 3, V. 2,
p. 1161-1179.

Huneke J.C., Podosek F.A. and Wasserburg G.J. (1972a) Gas retention and
cosmic-ray exposure ages of a basalt fragment from Mare Fecunditatis,
Earth and Planetary Science Letters, V. 13, p. 375-383.

Huneke J.C., Podosek F.A. and Wasserburg G.J. (1972b) An argon bouillabaisse
including ages from the Luna 20 site, In: Lunar Science IV, p. 403-405,
The Lunar Science Institute, Houston, Texas.

Huneke J.C., Jessberger E.K., Podosek F.A. and Wasserburg G.J. (1973)4DAr/ 3 9Ar measurements in Apollo 16 and 17 samples and the chronology of
metamorphic and volcanic activity in the Taurus-Littrow region, Proceedings
of the Fourth Lunar Science Conference, Geochimica et Cosmochimica Acta,
Supplement 4, V. 2, p.1725-1756.

James O.B. (1972) Lunar anorthosite 15415: Texture, mineralogy, and metamorphic
history, Science, V. 175, p. 434-438.

Jessberger E.K., Huneke J.C. and Wasserburg G.J. (1974) Evidence for a U4.5
aeon age of plagioclase clasts in a lunar highland breccia, Nature, V.
248, p. 199-202.

Lanphere M.A., Wasserburg G.J.F,Albee A.L. and Tilton G.R. (1964) Redistri-
bution of strontium and rubidium isotopes during metamorphism, World
Beater Complex, Panamint Range, California, In: Isotopic and Cosmic
Chemistry, eds. H. Craig, S.L. Miller and G. J. Wasserburg (North-Holland,
Amsterdam, 1964) 553 pp.

Laul J.C., Wakita H., Showalter D.L., Boynton W.V. and Schmitt R.A. (1972)
Bulk, rare earth, and other trace elements in Apollo 14 and 15 and Luna 16
samples, Proceedings of the Third Lunar Science Conference, Geochimica et
Cosmochimica Acta, Supplement 3, V. 2, p. 1181-1200.

Morgan J.W., Laul J.C., Kr'ahenbu'hl U., Ganapathy R. and Anders E. (1972)Major impacts on the moon: Characterization from trace elements in Apollo
12 and 14 samples, Proceedings of the Third Lunar Science Conference,
Geochimica et Cosmochimica Acta, Supplement 3, V. 2, p. 1377-1395.



17.

Morrison G.H., Gerard J.T., Potter N.M., Gangadharam E.V., Rothenberg A.M.
and Burdo R.A. (1971) Elemental abundances of lunar soil and rocks from
Apollo 12, Proceedings of the Second Lunar Science Conference, Geochimica
et Cosmochimica Acta, Supplement 2, V. 2, p. 1169-1185.

Nyquist L.E., Hubbard N.J., Gast P.W., Bansal B.M., Wiesmann H. and
Jahn B. (1973) Rb-Sr systematics for chemically defined Apollo 15 and
16 materials, Proceedings of the Fourth Lunar Science Conference, Geochimica
et Cosmochimica Acta, Supplement 4, V. 2, p. 1823-1846.

Papanastassiou D.A. and Wasserburg G.J. (1969) Initial strontium isotopic
abundances and the resolution of small time differences in the formation
of planetary objects, Earth and Planetary Science Letters, V. 5, p. 361-
376.

Papanastassiou D.A., Wasserburg G.J. and Burnett D.S. (1970) Rb-Sr ages of
lunar rocks form the Sea of Tranquillity, Earth and Planetary Science
Letters, V. 8, p. 1-19.

Papanastassiou D.A., and Wasserburg G.J. (1970) Rb-Sr ages from the Ocean of
Storms, Earth and Planetary Science Letters, V. 8, p. 269-278.

Papanastassiou D.A. and Wasserburg G.J. (1971a) Lunar chronology and evolution
from Rb-Sr studies of Apollo 11 and 12 samples, Earth and Planetary Science
Letters, V. 11, p. 37-62.

Papanastassiou D.A. and Wasserburg G.J. (1971b) Rb-Sr ages of igneous rocks
from the Apollo 14 mission and the age of the Fra Mauro Formation, Earth
and Planetary Science Letters, V. 12, p. 36-48.

Papanastassiou D.A. and Wasserburg G.J. (1972a) Rb-Sr age of a Luna 16 basalt
and the model age of lunar soils, Earth and Planetary Science Letters,
V. 13, p. 368-374.

Papanastassiou D.A. and Wasserburg G.J. (1972b) The Rb-Sr age of a crystalline
rock from Apollo 16, Earth and Planetary Science Letters, V. 16, p. 289-298.

Papanastassiou D.A. and Wasserburg G.J. (1972c) Rb-Sr systematics of Luna 20
and Apollo 16 samples, Earth and Planetary Science Letters, V. 17, p. 52-63.

Papanastassiou D.A. and Wasserburg G.J. (1973) Rb-Sr ages and initial Strontium
in basalts from Apollo 15, Earth and Planetary Science Letters, V. 17, p.
324-337.

Philpotts J.A., Schnetzler C.C., Nava D.F., Schumann S., Kouns C.W., Lum
R.K.L. and Bickel A.L. (1973) Apollo 16: Large ion lithophile trace element
abundances in some fines, a basalt and an anorthosite, In: Lunar Science IV.
'p. 592-594, The Lunar S ince Institute, Houston, Texas

Reid M.J., Gancarz A.J. and Albee A.L. (1973) Constrained least-squares
analysis of petrologic problems with an application to lunar sample 12040,
Earth and Planetary Science Letters, V. 17, p. 433-445.



18.

Rhodes J.M. and Hubbard N.J. (1973) Chemistry, classification, and petrogenesis
of Apollo 15 mare basalts, Proceedings of the Fourth Lunar Science Conference,
Geochimica et Cosmochimica Acta, Supplement 4, V. 2, p. 1127-1148.

Ringwood A.E. and Essene E. (1970) Petrogenesis of Apollo 11 basalts,internal
constitution and origin of the moon, Proceedings of the Apollo 11 Lunar
Science Conference, Geochimica et Cosmochimica Acta, Supplementl, V. 1,
p. 769-799.

Schmitt R.A. and Laul J.C. (1973) A survey of the selenochemistry of major,
minor and trace elements, The Moon, V. 8, p. 182-209

Smith J.V., Anderson A.T., Newton R.C., Olsen E.J. and Wyllie P.J. (1970)
A petrologic model for the moon based on petrogenesis, experimental petro-
logy, and physical properties, Journal of Geology, V. 78, p. 381-405.

Tera F., Papanastassiou D.A. and Wasserburg G.J. (1974a) The lunar time
scale and a summary of isotopic evidence for a terminal lunar cataclysm,
In: Lunar Science V. p. 792-794, The Lunar Science Institute, Houston,
Texas.

Tera F., Papanastassiou D.A. and Wasserburg G.J. (1974b) Isotopic evidence
for a terminal lunar cataclysm, Earth and Planetary Science Letters, V. 22
p. 1-21.

Turner G. (1970) Argon-40/argon-39 dating of lunar rock samples, Proceedings of
the Apollo 11 Lunar Science Conference, Geochimica et Cosmochimica Acta,
Supplement 1, V. 2, p. 1665-1684.

Turner, G. (1972) 4 0Ar- 3 9Ar age and cosmic ray irradiation history of the Apollo
15 anorthosite, 15415, Earth and Planetary Science Letters, V. 14, p.
169-175.

Turner G., Huneke J.C., Podosek F.A. and Wasserburg G.J. (1971) 4 0Ar- 3 9Ar
ages and cosmic ray exposure ages of Apollo 14 samples, Earth and Planetary
Science Letters, V. 12, p. 19-35.

Vinogradov A.P. (1971) Preliminary data on lunar ground brought to Earth by
automatic probe "Luna-16", Proceedings of the Second Lunar Science Conference,
Geochimica et Cosmochimica Acta, Supplement 2, V. 1, p. 1-16.

Wakita H. and Schmitt R.A. (1970) Elemental abundances in seven fragments from
lunar rock 12013, Earth and Planetary Science Letters, V. 9, p. 169-176.

Wasserburg G.J. and Papanastassiou D.A. (1971) Age of an Apollo 15 mare basalt;
Lunar crust and mantle evolution, Earth and Planetary Science Letters, V.
13, p. 97-104.

Wood J.A., Dickey J.S. Jr., Marvin U.B. and Powell B.N. (1970) Lunar
anorthosites and a geophysical model of the Moon, Proceedings of the Apollo
11 Lunar Science Conference, Geochimica et Cosmochimica Acta, Supplement 1,
V. 1, p. 965-988.



19.

Figure 1. Rb-Sr evolution diagram. Material formed at T with (87Sr/86Sr)
0

equal to (87Sr/86Sr)BABI is represented by a square. Fractiona-

tion at time Tx results in a portion enriched and a portion depleted in

Rb relative to Sr (circles) and an unfractionated portion (square), all of which

lie along the Tx isochron. The unfractionated portion yeilds a model age, TBABI'
equal to To, whereas fractionated portions yield model ages different from T

o

Figure 2. TBABI versus Tx . Despite the variety of rock types represented,

nearly all samples indicate less than a factor of 2 fractionation of Rb relative

to Sr subsequent to To = 4.6 AE. Only the K-rich mare basalts indicate a greater

degree of fractionation.

Figure 3. Sm/Eu versus 1. The large range of Sm/Eu, indicative of extensive

fractionation, is not commensurate to the fractionation of Rb relative to Sr

as indicated by the small range of KD. This indicates that the fractionation

of Sm and Eu occurred prior to Tx; and, from additional data, most likely occurred

during the large-scale lunar differentiation at r 4.6 AE. Sm and Eu data are from

the following: Brunfelt et al., (1972), Gast et al., (1970), Goles et al.,

(1970, 1971), Haskin et al., (1970, 1973), Hubbard and Gast (1971), Hubbard et al.,

(1971, 1972a, 1972b), Laul et al., (1972), Morrison et al., (1971), Philpotts

et al., (1973), Rhodes et al., (1973), Vinogradov et al., and Wakita et al., (1970).
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