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CHAPTER I
INTRODUCTION

1.1 Motivation and Relevance of Report. In April of 1974

the National Aeronautics and Space Administration conducted

‘a high altitude balloon experiment called LACATE (Lower At-

mosphere Composition and Temperature Experiment) which em-
ployed an infrared radiometer to sense remotely vertical
profiles of the concentrations of selected atmospheric trace
constituents and temperature. The constituents were measured
by inverting infrared radiance profiles of the earth's hori-
zon. The radiometer line of sight was scanned vertically
across the horizon at approximately 0.25° per second, requir-
ing 30 seconds to acquire a complete rédiance profile. The
specificaﬁions require that the relative vertical position of
the data points making up a profile be known to approximately
30 arc sgconds.

The balloon system for accomplishing the mission (see
figure 1) consisted of: (1) a45 million cubic feet balloon,
(2) a load-bar containing the balloon control equipment, (3)
a package containing additional balloon control electronics
and a gondola recovery parachute, and (4) a gonddla containing
the fesearch payload. Instrumentation to determine altitude
consisted of a magnetometer and three orthogonally orienﬁed
precision rate gyros, the latter were used to obtain accurate
time histories of the roll, pitch and yaw motions of the gon-
dola. The magnetometer and gyros were flown with the research

payload and their outputs were telemetered to ground operations
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for recording and real time data reduction and display.

Figure 2 gives the dimensions and weight of the various
subsyétems comprising the balloon system. Two kinds of conn-
ectors between subsystems were emploved: a clevis and ring
shown in figure 3a and a triangular plate connection shown in
figure 3b;

In order to fix the orientation of the line of sight of
the radiometer, it is necessary to be able to determine the
confiqguration of the platform in space, i.e. the attitude of
thé system. This can be_accomplishéd by simulating the bal-
loon system and using the gyro output in conjunction with a
parameter estimation process. This process is described in
greater detail in reference 1. The critical problem arising
in the simulation of the high altitude balloon system is the
development of the mathematical model. This model must enable
one to predict the orientation of the pldtform with sufficient
precision such that the position of the data points can be
determined within the required values. At the same time the
model must be as simple as possible in order to be amenable.
to simulation.

The actual motion of the balloon system (once it reaches.
float altitude) is extremely complex and involves various
types of oscillations including bounce (vertical oscillation),
pendulations (in plane motion) and spin (rotatidn). In the
general caée, where the system is subjected to arbitrary in-
put (initial conditions) these oscillations will be coupled.

The modeling problem is further complicated by other factors;
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e.g. the presence of damping forces, the significant mass

(relative to the payload) and elasticity of the cable, the

-y

tendency (due to support conditions) of some of the gondolas
- to oscillate independently of the main system, and the fact
that the balloon itself is actually a distributed parameter

system and hence its properties (e.g. moment of inertia)

must first be approximated in order to develop a lumped para-

meter model for the entire system.

1.2 Objectives of Report. The main objective of this report

will be to develop a mathematical model for predicting the
three dimensional motion of the halloon svstem. The model
will incorporate the various factors discussed previously and
~includes the effects of bounce, pendulation and spin of each
subsystem. Also, some work will be done in analyzing the bal-
loon itself, i.e. determine the best way for treating it as

an equivalent lumped parametef system. This will require some

i : investigation of boundary laver effects and the aerodynamic
forces acting on the balloon. Finally, various simplified
forms of the system mathematical model will be developed based

on an "order-of-magnitude" analysis.

1.3 Idealization of System. In general, it is necessary to

idealize the physical system before one obtains the mathemat-
ical model. For purposes of this study, the following assump-

tions will be made :

o’

(1) The masses of balloon, subsystems and interconnecting

subsystems will be "lumped" at the locations shown in figure 4.



i

-

|
|

Fig. 4 Idealized Talloon oystem




L

(2) The balloon will be treated as an "equivalent"
rigid body.

(3) The generalized drag reactions will be computed by
assuming that balloon and masses are spherical in shape.

(4) The altitude of the balloon statié equilibrium pos-
itionv(float altitude) will be assumed to be a constant during
the entire period of observation, i.e. changes in this alti-
tude due to the losses of or changes in the properties of he-
lium will be neglected.

(5) The cables will be treated as though they were in-
flexible.

Further assumptions are made in this study but these will

be discussed in the main body of the thesis.



CHAPTER II
BASIC OONCEPTS

2.1 Equilibrium Principles of Mechanics. The vector (Newton's law)

and the variational (Hamilton's principle and Lagrange's Bquation)
principles of mechanics provide two methods for obtaining mathematical
descriptions of the same realm of natural phenomena. The vector theory
bases everything on two fundamental vector quantities (momentum and
force), while the variational theory bases everything on two scalar
quantities (kinetic energy and generalized work function). In the

case of free particles, i.e. particles vhose motion is not constrained,
the two forms of description lead to identical equations. lLiowever,

for systems with constraints the analytical treatment is simpler and

more efficient. With the variational method, the given constraints are

considered in a natural way by letting the system move along all the
possible paths (in configuration space) in harmony with them. With
the vector metl;.od, the forces which maintain the constraints must be
considered. The vector method does not restrict the nature of a force,
while the variational method j:equires that the acting forces can be
derived from a scalar quantity, termed the work function. | Forces,
which cannot be derived from a generalized work function (e.g. Coulomb
friction) must be included via the generalized force concept.

There are tvo advantages in modeling the balloon system under

study by the analytical method.

(a) The energy terms and generalized forces can be computed in

a straightforward manner without great difficulty.
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(b) The internal reaction forces which exist at the interface
of the subsystems do no work during the motion, and hence
they can be ignored. This results in a simplification of

the form of the model.

2.2 llamilton's Principle and Lagrange's Dquation. Hamilton's

principle states that the motion of any mechanical system in confiqura-

tion space is such that

)
5{t (T + W*)dt =0 , (2-1)
l .
where: T = kinetic energy,
n
W* = ¢ Q.q. = generalized work function,
i=1 3 o
n = nunmber of degrees of freedom,
n __ 9T, ]
.Q. = ¢ F.,-——— = generalized force,
J ._+ 1 0g.
i=1 1
’ ' !
?i = external forces acting on system,
E& = position vector to point where the external force acts,
ai = generalized coordinates, and
N = nuber of external forces.

From the calculus of variation, the necessary and sufficient
conditions (Fuler-Lagrange Dquations) for equation (2-1).to be

satisfied are

d 9T T

—d-E 3&- - —B-CT = Oi (izl. . -n) y : (2_2)
1 1 .
and 6qi(tl) = 6qi(t2) = 0.

Moreover, if (a) the generalized forces can be divided into conserva-

tive and non-conservative conmponents, i.e,
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N
Q. =0, + Qi , vwhere

c _ .
Qi = av/aqi , and if

(b) the potential energy (V) is not a function of the generalized

velocities (qi),rthen equation (2-2) can be written as

d oL 3L, _ . N
at 3.  °q, 9 (2-3)
i i
where the Lagrangian L = T - V.
Fquation (2-3) can be written in state-variable form by first

defining a generalized momentum (pi),

= 9T -

Substituting (2-4) into (2-3) yields
TS A | (2-5)
Equations (2-4) and (2-5) can be ermployed to obtain tﬁe 2n.state
variable equations (in terms of generalized coordinates and geheralized
momentum) by inverting equation (2-4) to get the genéralized velocities
in terms of p; and g4 and then substituting these expressions into
equation (2-5).
If (a) the system is conservative (QiN = 0),
(b) the generalized forces can be divided into applied
forces (Qia)_and reaction forces (QiR) such that
(c) the work done by the rcaction forces during a virtual
displacement is equal to zero, and

(d) the applied forces can be written in the form
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then, equations (2-4) and (2-5) yield the Canonical equations of

Hamilton; i.e.

b, == AL -

Pi =7 aq; (2-6)

hd ol

d; = =5 (2-7)
1 api

where H, the Hamiltonian, is defined by

Hip,q,t) = };éipi - L(qi,éi,t)
1

2.3 Generalized Coordinates. The generalized coordinates for a given
system are those coordinates which are employed to specify the configura-
tion of the system at any instant of time. 1In any mechanicai system
there will be as many generalized coordinates as there are degrees of
freedom. 1In the case of the idealized lumped parameter system shown
in figure 4, gleven generalized coordinates are required to specify
the configuration. These oohsist of three t:anslational coordinates
to locate the mass center of the balloon (relative to a set of axes
fixed in the space) and eight Fuler angles to specify the orientation
of the three pendulum subsystems.

In general, the Euler angleé give the orientation of the body
coordinate system (Xi"') relative to a fixed system (Xi).. If the two
systems are initially coincident, a series of three rotations about

the body axis is sufficient to allow the body axes to attain any

orientation.
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Several sets of Fuler angles are possiblé for fixing the orientation
of the balloon and subsystems. Three sets were investigated in this
work and they are shown in figure 6. The sequence of the three
rotations which define the set which was finally employed*in this work
is described belaow.

(a) A positive rotation 6 about the Xl axis resulting in the

xi body system,
(b) a positive rotation y about the xé axis resulting in the
xﬁ body system, and
(c) a positive rotation ¢ of the body about the xg axis relative

to the XE system. Since the final rotation is relatiwve to

the x; system, the transformation erquation is giwven as

3?.= AX, (2-8)
where
c(y) s(y)s(6) ~-s(y)c(0)
A= 0 c(0) s(0) (2-9)

s (¢) -s(6)c(y) c(¥)c(e)

This set is convenient whenever a body has at least one axis of

symetry.

2.4 DPerodynamic Reactions. The exact mathematical model for the

balloon system consists of the equations of motion of the solid
(balloon fabric and payload) and the fluid-dynamic equations. These
equations are coupled through the boundary conditions which must be
satisfied at the interface of the solid and fluid media. The resulting

mathematical model is extremely conplex and consists of a system of
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coupled non-linear differential equations which rust be solved
simultaneously in order to predict the behavior of the system.

For purposes of this work the mathematical rrodél will be simplified
by treating the system as a lumped parameter system. In order to
accomplish this it is first necessary to develop approximate expressions
for the forces and torques which result due to the interactions between
the solid system and the fluid media (air-helium). In the lumped
parameter model, these forces and torques are then treated as external
reactions on the solid system.

The reactions which the fluid media exert on the solid system
consist of (a) a "static” lift force due to buoyancy, (L) "dynamic"
buoyancy forces due to the acceleration of the fluid approaching the
system, (c) ﬁscous drag forces due tb the ﬁranslational motion of a
solid body in a fluid medium, (d) viscous drag torques due to the
rotation of the balloon in the fluid nedié, and (e) inertia drag forces

and torques due to the unsteady notion of the fluid media relative to

the balloon system.  The expressions for these reaction forces and

" torques are presented below.

2.5 Static Buoyancy Force. The net 1lift force due to the acrostatic

pressures is given as

FLo=Valo, = o) : (2-10)
where Fo = static lift force in the z direction,

Vi = volume of helium,

Pa = densify of air, ard

p,, = density of helium .

I
If we assume (a) that the mission takes place in the isothermal

region of the atmpsphere and (b) that helium undérgoes an adiabatic
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process, then the expressions for Pa and Py are given as

poa g
- z
Po
Py ™ Pog (& ’ (2-11)
and
o g | =
- La zZ n[-I
Py = 0 e po
H OoH r (2-12)
where Poa = density of air at the static equilibrium position
(i.e. the float altitude),
Por = density of helium at the static equilibrium position,
Py = atmospheric préssure at static equilibrium position,

‘N
it

elevation measured from the static equilibrium position,

and

n, ratio of specific heats for helium, (c p/cv) .

Substitution of (2-11) and (2-12) into equation (2-10) yields the

expression for the static lift force (FL) as

_ Poa¥® (1 - i}
P p np
_ _oa (o) ) _41. _
Fro= oV 9 . e 1 (2-13)

The presence of a static-buoyancy force results in an extemmal
torque (see figure 7) whenever the balloon shape is such that the
center of gravity of the shell does not coincide with the center of

buoyancy. The magnitude of this torque is givenv as

NL =d x Froy (2—14).
where FIL = external torque, and
d = vector between the center of gravity and center of

buoyancy.
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linear function of z.

can be obtained from a truncated Taylor-series expansion:

where FO = lift force at the static equilibrium position.
F,=w,
w = veight of the solid balloon system.
dr
The equivalent spring constant KO = a-z—L— 7=0 is optained by

ary

N
z=0

19

Fquation (2-16) indicates that the static lift force is a non-

A linear expression for F_, valid for small z,

differentiating equation (2-13) and considering pHVHg to be a constant.

This development is presented in Zppendix A-

2.6 Dynamic Buoyancy Force.

The absolute acceleration of the fluid

approaching the balloon results in a uniform pressure drop across the

balloon in the direction of the acceleration of the fluid.

force which acts on the balloon in the direction of the absolute

acceleration of the fluid. The expression for this force, termed

dynamic buoyancy force, is given as

where

This force acts at the center of buoyancy and results in a torcque

Fp = YiPaVu
;F—B = dynamic buoyancy force, and
‘\7W = absolute acceleration of air.

This

pressure drop, when integrated over the balloon surface, results in a

(2-15)

whenever the center of buoyancy does not coincide with the center of

gravity (see figure 7).
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2.7 1Inertia Drag Force. Whenever a hody accelerates in a fluid

medium, it is subjected to a resisting force even if the fluid is
assumed to be frictionless. This resisting force, termed the inertia
drag force, has the same effect as that obtained by increasing the
hody's mass by an anount equal to that of the fluid carried along with
it. The expression for the inertia drag force on a spherical body
due to the external flow of air ( 2) is given as .

Fo=-1x A -
Fr=-Ze% [Vb Vw}’ (2-16)

while, for the internal flow of helium, the expression is given as

L= - oy Vi | (2-17)
vhere FI = inertia drag force, and
Vb = acceleration of the balloon.

2.8 Visoous Drag Force. The expression for the resisting viscous

drag force ( 3) which acts on a spherical solid due to its translation

relative to air is given as

F o= - _CI_D_ oA 1V, - Vil 0-%0 (2-18)
D 2
where .'E_‘D = viscous drag force,
Ch = drag coefficiwt,

A = projected area of the body on a plane normal to the
relative velocity,

= balloon velocity, and

E<:| o=

= air velocity.

The magnitude of CD depends on the Reynolds number.
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2.9 Visocous Drag Torque due to the Rotation of a Spherical Balloon

in Viscous Fluid Media. The expression for the drag torque on

a balloon rotating about a single axis depends on the range of ths Reynolds
wr “p

nunbers under consideration. For high Reynolds numbers, Re = ° a ’
. a
and lelz >> ||w||, the expression ( 4) is given as
v o 1/2 1/2 4 *, (2-19)
NV = I\l (pw) w r,oow

where NV = viscous drag torque,
¢ = viscosity of the fluid,
w = angular velocity of balloon along the rotation axis,
r, = mean radius of the balloon,
?:7 = angular acceleration of the balloon,
|| |= amplitude of u, and
le |= anplitude of w
The above expression is valid for both oscillatory and non-oscillatory
motion.

Equation (2-19) can be used to obtain the drag torque duve to both
internal and external fluids and was developed under the following
assmptioné:

(1) The boundary layer thickness of the fluid is a constant and

is taken to be equal to the boundary layer thickness on an

 infinite rotating disk. This thickness (5 ) is given as

§ =4.51L (2-20)

*Refer to Appendlx B for development of this expression.



For the case of a sphere undergoing oscillatory motion with

frequency Q about a single axis and having low Reynolds nunbey, the

(2)

(3)

where

$

w:

The

boundary layer thickness, and

magnitude of'angular velocity of the balloon.

22

boundary layer thickness is assumed to be small compared

to the mean radius of the balloon, and

The tangential velocity is assumed to vary parabolically

across the boundary layer thickness.

expression ( ) for the viscous torque due to the relative motion of

where

For the relative motion of the outer fluid, the expression (6) for

NV

il

“the inner fluid is given as

8 3
3" W5 (BHro) wor

internal viscous torque due to helium

viscosity of helium,

’

frequency of rotational oscillation, and

kinematic viscosity of helium.

the torque is given as

where

2

2.2
3+ 66arO + 68a ro + ZBa

3

r
O

3

- __8
Ny =~ 3 ™alo ~ 22

1+ 26aro + 2Ba rb

external viscous torque due to air,
viscosity of air,
(n/zva)l/z, and

kinematic viscosity of air.

[

r

(2-21)

(2-22)
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2.10 1Inertia Drag Torque due to the Unsteady Rotation of a Spherical

Balloon in Viscous Fluid Media. The expression for the inertia

drag torque on a spherical balloon rotating about a single axis depends
on the magnitude of the Reynolds number. For high Reynolds number and

1o]]2 >> [|e||, the expression is (4)

=z
|

= -k, (w72 b C (2-23)

where N. = inertia drag torqﬁe.

Equation (2-23) is valid only for the case of non-oscillatory motion
but can be used to determine the inertia drag torquerdue to both inner
and outer flows.

For low Reynolds number, the expression (6) for the inner flow is

given as
__4 5 -1° : _
NI = 3 T Oy ro (BHrO) w (2-24)
where N, = internal inertia drag torque.

For the case of outer flow, the expression for the torque is given as

1l +B_r .
NI = - %—wparos ao >y Wy (2-25)
1+ 28aro + ZBa T
where N, = external inertia drag torque.

*See Appendix C for developrent of this expression.
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CHAPTER ITT
DEVELOPMENT OF STATE VARTABLE EQUATIONS

3.1 Kinematics. In order to obtain the kinetic energy of the ballcon
system, it is first necessary to develop the kinematic expressions for
the velocitieé (angular and linear) of the balloon and subsystems shown
in figure 4. By employing the Lulerian Angles which were described in
Chapter II, the angular velocities for the balloon and subsystems can
be writtén as |

—0 _ -1 _ T A Tl
W o= W = elc(wl) e + Uy &5+ (els(wl) + ¢l) ey

o - - . - )
w = ezc(wz) e + ¢2 e, + (ezs(wz) + ¢l) es s (3-1)
-3 _ -3 © =3 i =3
w> = 0,c(Y,) e + by ey + (858003) + 43) ey
-0 .

where w = angular velocity of the balloon,
o = angular velocity of the it subsystem (i=1,2,3),

ei’wi'¢i = Euler angles of rotation, and

52 = unit vectors for the jth subsystem (see figure 4 )

For purpose of this work, the spin of subsystem 2 is assumed to be

identical to the spin of the balloon, i.e. él = éz. This assumption is

reasonable because of the type of connectors employed (refer figure3 ).
The linear motion of the ballbon center is referred to an axis

which is fixed in space at the balloon static equilibrium position

(see figure‘8 ). The velocity expression is given as

P =xT+yJ+zk, (3-2)
where 50 = wvelocity of balloon center, and

X,y,z = components of the velocity of the balloon center.
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The ve1001ty e)q_oressmns for subsystems are given as

VP or wxE, (=123 (3-3)
where o= velocity of the mass center of the ith subsystem,
1= velocity of the mass center of the (i-l)th subsystem,
r. = distance between m, and m,
i i l

The detailed velocity expressions in terms of the Euler angles and
their rates are obtained by substituting equation (3-1) and (3-2) into

(3-3) and these are presented in Appendix D-

3.2 Kinetic Energy. The general kinetic energy expression for the

balloon shell which is undergoing both rotational and translational

motion is
—9—\70 P+ 2L 92 (wo)zj + lo3 W2, (3-4)
2 1 2 2 3
where T° = kinetic energy,
m = mass of balloon shell,
o1 Y03 = roments ef inertia of the balloon shell relative
to the € modified body axis, and
wi = components of the balloon angular velocity along

'é']?_ modified body axis.
The detailed expression for the kinetic energy is obtained by sub-
stituting equations (3-1) and (3-2) into equation (3-4). rThis
expression is presented in Appendix}i- |
The kinetic energy expressions for the subsystems are obtained by

substituting equations (3-1) and (3-3) into the following

i I. ) I.' .
dghgt e Wb B2 eh? e B oWy’ (3-5)

(i=1,2,3)
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where 'I‘i = kinetic enerqgy of the ith subsystern,
m, = mass of the ith subsystemn,
i3 = moments of inertia of the ith subsystem relative to
‘é? modified body axis, and
w;' = components of angular velocity of the ith subsystem

along _e—; direction.
For purposes of this work, the moments of inertia Iiland Ii2Were

neglected in which case equation (3-5) becomes

LMo L3 a2
™ = - TRl Tl —= w3, (1=1,2,3) (3-6)

The detailed expressions for Ti are given in Appendix E . The total
kinetic energy (T) of the balloon system is obtained by summ.ng up the
expressmns in equatlons (3-4) and (3- 6) , 1.e.

3

T = TO + T _ (3-7)
i=1 '

3.3 Potential Energy. The expressions for potential energy due to the

gravitational forces acting on the subsystems are given as

. i
vt o= - mi- g jilrjc(wj)c(ej) , i=1,2,3 (3-8)

where vt o= potential energy of the ith subsystem with datum
" through the balloon mass center.
The expression for the potential energy due to the static buoyancy

force is given as

-Ko 2
V =-—=2 (3-9)
S 2
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potential energy due to static buoyancy force,

where vV, =
s
KO = equivalent spring constant, and
z = elevation measured from balloon static equilibrium
position.

The total potential energy (V) for the balloon system is obtained by
suming up equations (3-8) and (3-9), i.e.

3

V= sV +V ' (3-10)
. s
i=1 :
The Lagrangian (L), which is defined in equation (2-3 ), is

obtained by subtracting the total potential energy in equation (3-10)
from the total kinetic energy in equation (3-7) and is given as

: 3, 3 .

=T -v=1"4+ 1T - IV -V_. (3-11)
. . S
i=1 i=1l

3.4 Generalized Forces. The generalized force Qs corresponding to
the generalized coordinate q;, can be determined from equation (2-1 )
or, in the case of torgques, by determining tﬁe virtual work done by the
torque during a virtual displacement qu (7 ). In this manner the
generalized forces corresponding to each of the aerbdynamic reactions
(refer Chapter II) were determined and the resulting non-zero
expressions are presented below.

(a) Static Buoyancy Force*
1

Qo =V d s(0;), and . N (3—1_2)
%l=wdﬂﬁh

*The generalized forces presented here are due (only) to the torque of
the static buoyancy force, since the force itself is considered via
the potential energy expression (see equation 3-9 ).



(b) Dynamic Buoyancy Force*

(c)

- VHpavl !

N

Q

= VHpaV2 , and

o
|

2 _ .
Q= VHpavB d
where VW = Vl

Inertia Drag Force

T +v,3+ v

wind velocity.

13

-0,V 5&!

Qi = =0.50, V(% - 1) - oYy
Q; = -0.5p V. (v - Vy) = eV y , and
Qi = ~0.5p V. (Z = V3) = oy Z -

(d) Viscous Drag Force**
Qi =T %CDADa[ (5<—vl)2 + (ﬁ'/-vz)2 + (é—v3)2]1/2
o = - L cpo [l ? + Grvy? + (amvy) 72
Qi == %— Cppe L (5<—vl)2 + (1}—v2)2 + (é—v3)231/2
where A= roz.

(e) Viscous Drag Torgue
(1) High Reynolds Numbers
le = -3.72 ro4[(paua) 1/2+(9HUH)1/2](('3]2_+@§+&>§)
Qp) = -3.72 £ 4000 10 24 oy 230 THD)
0y, = -3.72 r o py) V21 (0 /2102435483

~ * The torque due |

study.

-
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(3-13)

(3-14)

(X_Vl) '

(Y‘Vz) ’ &

1/4
1/4

1/4

(3-15)

( Z_vj) ’

(5,45 (b)),
(b, & (3-16)

(815 b))+ -

to the dynamic buoyancy force was neglected in this

**The translational drag forces acting on the subsystems m; are

- neglected in th

is study.



(£)

(2) Low Feynolds Numbers

5 8 3 3+68 r +682r +28§ 03
0., = |- 5 mu_r -
0l 3 ao 14281 +28, 2r 2
(91 + ¢ls(wl)) '
5 _[_8 3 22,3 3] _
le = §—nuaro 34683 r +66 ry +28aro
2 2
B l+2Baro+28a Y
(@1), and
5 8 3 3+68 r +682r 2+28§ 03
Q = (= = Ty_Tr
1 3 ao 2 2
1+28aro+28a r
(OlS(wl) + ¢l)-
Inertia Drag Torque
1) w > 9
6 _ _ 3 L= 2°2° 2. -4
r 2+ by (P 4,8 (9))
0 17'1"1 1 1 1 !
00 = —6.28[ (o_u_) %+ ](e LA
0y = ~6-28Logua) oppuyy) 1™
r 44, -6.8,c(p;)) , and
o 1 7171 1 f
6 _ _ % oo 202 2,-%
r (B s (b )40 b cp ) +g)
o 17T
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T o B

8 3
3 Mo i)

(3-17)

8 3
-3 iy Bt

(3-18)



' 1+ r

8 5 ao 4 5 -1
- = np_Y - = TP (B )

3 ao 1+2Baro+2832r 2 3 Hrb Hro

o}

(81419 0 ()05 (0))

5 l+Baro

-3 Ta’o 1428 T +28 2r 2 3 "Ho o
a o a o

(4,=6161¢(¥;)) , and

5 l+BarO
2
l+2Baro+28a ro

1

-.8..-“’ r "é"'" S(B )-
3 TP 31 73 "o o

a O

(6,5 () +81byc () +dp) -

31

(3-19)
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Generalized Momenta. The géneralized momenta corresponding to

each generalized coordinate is given below

The

the

oT
X oX

T
y 9y

=T (3-20)

p = 3T
37 3¢4”
expressions for the generalized momenta are obtained by substituting

expression of kinetic energy in equation (3-7) into equation (3-20).

The resulting detailed expressions are presented in 2Appendix F.



3.6 State Variable Equations.

obtained by first inverting equation (3-20) and solving for the

The state variable equations are

33

generalized velocity c}i and employing these equations in conjunction

with the following

. » 6 .
p. =34 3ot
X 9x . X
i=1
. 6 .
oL i
P =24 Q8 ,
y “w L%
i 6 .
_ oL 1
PZ' = ‘5'2— + f QZ ’
-1
. 6 .
_ oL 1
Po1 =38, T .2 %1
1 i=
: 6 .
oL, 1
P =<1+ $0Q
02~ 36, = 7,702
. 6 .
oL 1
P_.=22 41 30
63~ 305 4,793
6 .
L 1
Pp.=224 30
WLy gL
. 6 .
p.=L 4 3ot

b2 By g V2

1
V3 By g3

S T

and

(3-21)
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: 6 .
oL 1 -

P.,=+2 4 10

3 %3 4 03

The detailed expressions for equation (3-21) are presented in Appendix G.
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CHAPTER IV
RESULTS AND CONCLUSIONS

4.1 Linearized Mathematical Model. The general form of the mathemati-

cal model can be obtained by direct expansion of the state -variable
equations which are presented in Appendix G (i.e. equation 3-20 and
3-21). It is clear that this expansion would be quite tedious and,
one expects the form of the resulting math model to be extremely
complex thus requiring a numerical integration method for solution.
In this work, the form of the mathematical model was simplified by
neglecting all non-linear terms, i.e. by dropping those terms which
involve products of the state variables (e.q. qiqj, qic';j, etc.). This
approximation is justified in view of the fact that actual observations
indicate that the displacements and velocities of the balloon systems
are small, i.e. [q;|, |q;] << 1. The result of this is a linear model
which admits a closed form solution thus simplifying the simulatibn

process. Two forms of the linearized model were obtained in this study

and these are discussed below.

4.2 First Approximation of Mathematical Model. The first approximation

of the mathematical model was obtained by neglecting:
‘ (a) wviscous drac_;; forces and torques,
(b) inertia drag torques,
(c) the relative spin of the subsystems, i.e. r;bl=<.bz=<.1>3,
(d) the acceleration of the wind, and o
(e) all nonlinear terms.

Under these assumptions equation 3-20 and 3-2]1 can be 'wr'itten
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Pr=Brq .
P, =B, q, , (4-1)
P3 = B»3 q3
Pp=Ca +Dpq
172 = C2 52 + D2 a2 , and . (4-2)
P3 =C34a3+ D343
where
P ) (P ) p
X y z
'P— _ Pwl = _ Pel = _
= P. = P. =
17, 27 |, 370,
02 02 ol] 7
Fv3) "e3)
(x ) (v ) 2
5o- 1 g -l g -
1 2 37
¥y %y 61
3} 3

and the elements of the Bi' Ci and Di matrices (i=1,2,3) are defined in

Appendix H
The state variable form of the model is obtained by first inverting

equation (4-1), i.e.

62 =8 i)_ ’ (4_3)
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where B, = B, (i=1,2,3)

and the By matrices are defined in Appendix I. Differentiation of

equation (4-3) and substitution into equation (4-2) yields

PL=h 9
ﬁé =23, ~ (4-4)
Py =293

where A, = (I - D,8,)7C; - (i=1,2,3) (4-5)

The elements of the By matrices are presented in Appendix J . Equations
(4-3) 7and (4-4) comprise the state variable form of the math model.
These equations can be written in second order form by differentiating

equation (4-3) with respect to time and employing equation (4-4) to

yield
Eil = Oi]_ al r
q, = a, a, » and (4-6)
43 = 0393

where a; = BiA, . (i=1,2,3) (4-7)

The elements of the matrices a; are defined in Appendik K.

4.3 Second Approximation of Mathematical Model. The second approxima-

tion of the mathematlcal model was obtained by retaining the dynamic
buoyancjy, visoous drag and inertia drag reactions along with the
effects of wind velocity and acceleration. liowever, as in the case of
the first approximation, all non-—lineai terms were 'dmpped and the
relative spin of the subsystems was neglected under these assunptions,

the state variable equations are given as
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1= 4% Pt E

)
i

5 Y2q26+ 2P2 + F2 , and (4-8)

P3 = y3q36+ 3P3 + F3 .

G = APy
d3 = B3P3 .

where ﬁi' Ei and B8, are defined as in equation (4-1), Yy and §, are

matrices defined in Appendix L and Fi is defined in Appendix M.

4.4 Recommendation for Future Study. Before employing the mathematical
models (refer sections 4.2 and 4.3) in the attitude determination

process, the models should be evaluated in order to determine the

contribution of various terms on the system response and attitude.

For exanple, the J'mpdrtahce of retaining the inertia drag torque in
the system model can be determined by: (a). solving the mathematical
model given in equations (4-3) and (4-4), (b) modifying the form of
this model to include the effect of ﬁI (see equations (2-23 - 2-25)),
and (c) resolving the modified model. By comparing the results, e.g.
natural frequencies, angular velocity, etc., one can determine whether

this term is important. In the same manner one can determine whether

the viscous drag reactions, wind velocity and wind acceleration are

~ inportant. Finally the effect of the non-linear terms can be investi-

gated by developing a third approximation of the mathematical model
which retains first and second order temms and employing the same

process. This work will be conducted in the near future.
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Appendix - A

Development of Equivalent Spring Constant

The net 1ift force acting on the ballooﬁ is

FL:/OHVHg(/é%— /), 7 (A-1)

If (a) the mission takes place in the isothermal
region of the atmosphere,and

(b) the helium undergoes an adiabatic process;

then [o,d gz

AN CH (1-2)

fH :./)OH' <€-%%2[>k/_” ' (A-3)

Substitution of equation (A-2) and (A-3) into equation

(A-1), gives

Fu = fug| 52 e

JOH

-/Dcl%glz(/—-i’;)_ | ] (A1)

The equivalent spring constant is obtained by
differentiating equation (A-4) with respect to 2, then

setting 2=0 and considering [,V 7 to be a constant,

i.e.
- | 2 R
— d/:'l_ — f \/‘& ;} /L"l_l _ _I_
_KO“ d‘“z)g:o :, I ( Z ) (4-5)
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Appendix B

Development of Viscous Drag Torques due to

Rotation of a Spherical Balloon

(a) Velocity Distribution of Fluid Across the
Boundary Layer Thickness
assume (1) parabolic velocity distribution(sece figure )

7 (2) a,b,c are determined by the boundary conditions,

V‘Pz r, w Sin 8 at y=0
Vp =0 at y=§
dvep at y=§
=0 y=§
(Lg
i 1ot 5/7@ < _
V¢ =1, WSiné- —%—"Lf-é—i—,’g? t 'Ly_;%— (? ) (B !)

(b) Shear Stress on the Surface of the Balloon

Tr(p)r:{é:—'/tt (“5’n€ i;r—f‘l“a ))r n , S <,< S
T (ra_ar‘—(i/rﬁ))rzra; (ilﬁ, ; ‘)W) O(Pl

Substitution equation (B-1) into (B-2) yields

'Zr¢)r=:z = v/LL b = R gu e (8’5)

{c¢) Viscous Drag Torque

o i
Ny = jo (Trg)pop (2T Sine) (12 Sint) (17 Le)

Substitution for (rrT)r:% ; we obtain



Appendix C

Development of Inertia Drag Torque due to
Unsteady Rotation of A Spherical Balloon

in A Viscous Fluid Media

Average momentum of fluid per unit mass (see figure 9)

g o
M¢ ’—‘"’;: S \/¢ dj _—:L\"DU) Snd

¢] 3

Angular momentum (I ¢) of the fluid

T
H¢ = 3 (average momentum per unit mass) (arm) dm
-, C N
= S“ L ewsite (esm o) (2T % sin ) odd (45

4]
= 12.5b (PLL\"L N

Inertia Drag Torque (NI) is given as

Ne= 4 = pag et e

———

dt

41
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Appendix D

.Velocity Expressions for Subsystems

»
Mass
Mass
Mass
]

™
V= (R-nei$ )T
(4 Frcgeley &-ns)se) i ) j o+
RS S CINCIRERUISLIN D k.
"2
- 2
Yy, = ( X - (>:-1r C((/.)L//“ > ~
g+ 2 Crece, ) é -z/rtsu/)wn)/ )7
.z : ')—'
s cu P ALEUAY:
3

L2 N

( x —LZ:; e Y. ) &

| S L
4 ( d{ + )J ne)o(e) G‘-"Z ndf‘f;)d(&)‘/_} )J

o<\

1(5:2,<(t/)5(p)€4z 5(7[)/FN )/

43

(p-1)

(—()’:2)

(p-3)



(b) For m

44

Apprendix E

Expressions for Kinetic Energy of the Balloon and
Subsystems

(2) For Balloon m

0
T = ’”“(x byt 3ty ST )
P S‘f'f,)+¢>, F2S0h) 8 ) (E-1)

1

m . ‘ <2 ‘ 3,72 3. [ oo~
T'=F (34§73 + 0+ nie ) dancty 1,
f 20 Cif) ey j‘é/ "117'5("/7)5(‘6’/)(7' G20 c(4)5@)3 ¢
P I3 2 5 T2 - 3 o
+205WH) Clep3 ) + (&5 (4) + P+ 2848 $ ) (E-2)

(¢) For m,

’ 2 MJ(I 4J _;,} 4 /J ‘f + _Z(‘C(f/)bj(?f))(@/ e-l) 6/%

2030 6 SUR)Cle60) Gt 2 ctf Relk) Cle-6,)6 s
=2 5 S R AE)S (8-6,)4, 6, +é rfc’(ﬁ) 6.2 Izj y’; ) 17
ranctinn <l ‘f, ﬁ 2 r‘c(’/,)c/e,)d'i 4 ~206(%')J(0,)/“/‘/;
Cthic(en) § & =21504)le,) j ot 2G5 (403
t2h 5‘%)0 e 3 i #2 helg)S(e,) ] b2 BRI %
65+ G 2, &%) (E-3)
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(d) For mg

TE?(x 44 -)(j "4 _g ﬂ( ur,c((/,)l 5(%) S(é 6)6,%
+2 5S4 55 )e (@,»@)k/,wm(%» lU’C("‘p&)#/ 4,
’Jl’,S(()bC(“/)S(p-%L)‘/, €, + L» ¢ (%)e f);rz,r (Y, )y
4 20004 ) 570 47 ; e q yi)qp Q//P yhs(«f))(p)
+‘)3~_),,f;0 r(y)Sm)+).jz' Y)<(p)
b2 0k 216 () (8 93)r2’5“g5(7§)u' oS00 (-5 )
t31 &) 2j > ‘(7»((],[3)(3(@~’€’)"313'93(“(/‘)¢&.'Jr' 305 (0 0y)
b 2% c(t@)(i/mw/ D &S+ ¢
+2 685 */3)7‘3) (E-4)

/!



Appendix F

Development of Lxpressions for Generalized Momenta

3 . 3 Y . o
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Appendix G

Development of Expressions for State Variable

Equations
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