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CHAPTER 1

INTRODUCTION

1.1 General Statement of the Problem

A turbomachinery rotor, henceforth referred to as a rotor, forms
an essential and integral part of the turbo-power and propulsion plants
for underwater, air, land, and space applications. Rotor performance
depends upon the effectiveness of its aerodynamic and mechanical design.
There are a large number of problems related to the efficient design of
a rotor., A few of these problems have been resolved using theoretical
and experimental information on a cascade of airfoils -and using
empirical data on actual rotors. There are still many problems which
remained unresolved until recently. One such problem is the viscous
region behind a cascade of airfoils and rotors. The viscous region
downstream of cascade of airfeils and the rotor in an otherwise uniform
stream of fluid is known as the cascade and rotof wake, respectively.
This wake region excludes tip vortices, boundary layers on the annulus
and hub walls. Lack of information on the characteristics of cascade
and rotor wakes has hindered the development of adequate theories for
the prediction of noise, unsteady aerodynamic loading, bending, and
torsional vibrations of the blades in a multi-stage turbomachine.

The investigation of the total wake problem is very complex. Due
to the complicated nature of the problem, it still continues to be one
of the least understood phenomena in turbomachines. The complications
involved in the analytical and experimental investigations are many.
The flow field behind a rotor is highly three-dimensional. There is

periodic variation, as well as random fluctuation in velocity. Moreover,



the flow field behind the rotor is a function of a number of parameters
such as radial and axial pressure gradients, speed of rotation,
incidence, solidity, hub/tip ratio, blade geometry, blade outlet angle,
free stream turbulence, and the distance downstream of the trailing edge.
Due to complexity, economics, and time limitations, it is not
feasible to study the effect of all parameters on which the rotor wake
depends in a rotating facility. However, some of the parameters on
which the rotor wake depends can be easily simulated; theoreticallf and
experimentally, in a cascade of airfoils. Unfortunately, the literature
survey on two- and three-dimensional wakes (Chapter II) indicates that
even a two-dimensional cascade wake model is not yet available and most
aerodynamists and acousticians still use the isolated airfoil wake model
developed by Silverstein et al. (57): The use of this model for the
prediction of mixing losses and noise from rotors is seriously doubted.
Although it is convenient and economical to-study the turbo-
machinery flow field in a cascade setup, the presence of coriolis and
centrifugal forces, swirl, and pressure gradients which cannot he
simulated in a cascade, would make the‘rotof wake characteristics
di fferent from those of a. cascade or isolated airfeoil. The variation
of the blade element circulation along the blade span gives rise to
shed vortices. This effect, in addition to radial variation of blade
boundary layer growth and spanwise flow, causes considerable variation
in the properties of the wake along the span. Hence, there is a great
need for an experimental and analytical study of the rotor wake in an
actual environment with a view to cbtain more accurate wake models for

turbomachinery rotors.



1.2 Objectives of the Present Investigation

The present program on the investigation of turbulent wakes of a
rotor and a cascade of airfoils was undertaken with the following
objectives:

(a) To understand the rotor wake properties, especially to discern
how the centrifugalrand the coriolis forces, pressure gradient,
and rotor cascade geometry affect the wake development,
experimentally, in a cascade -of airfeils and a rotor.

{(b} To study the cascade wakes and how they differ from an
isolated airfoil. |

{(¢) To develop an appropriate model, based on theory and experi-
ment, for the prediction of rotor wake properties. It is

intended to include as many variables as possible,

1.3 Method and Means of Investigation-

Realizing the difficulties stated in the previous sections, the
present investigation is carried out in two phases. Phase one includes
extensive theoretical and experimental study of the characteristics of
a cascade wake, while phase two covers a detailed study of the rotor
wake.

The general problem for the prediction of the mean and turbulence
quantities for both the rotor and the.cascade wake is first formulated
(Chapter III) by considering the equations of continuity, mean motion,
Reynolds stress, and turbulence dissipation. These equations are
obtained in a generalized tensor form and expressed-in a relative
rotating coordinate system. The technique used for medeling the various

terms in the absence of rotation and curvature is adopted from Lumley



(40) and Lumley and Khajeh-Nouri (41). The complete set of equations
governing the wake flow form a closure problem with eleven unknowns and
few undetermined constants.

After the formulation of the general problem a simplified cascade
wake model is developed {Chapter IV). Boumdary layer approximations
and an order of magnitude analysis are used to simplify the equations
of mean motion, Characteristics of mean velocity at the wake centerline
and the wake width are predicted by applying the principle of self-
similarity to the simplified equations of mean motion and correlating
the Reynolds stress to mean velocity gradient through eddy viscosity.
The principle of self-similarity in this analysis on the basis.of
strong experimental evidence is used even close to the trailing edge of
the blade. The cascade wake model so developed is capable of predicting
mean flow characteristics of the near and. far wake characteristics of
turbulent quantities. Some relative estimates of turbulence quantities
are made.

The experimental investigations are carried out in a cascade of
airfoils (Chapter VI). The measurements of the mean and turbulence
quantities are carriedlout with a five-hole pressure probe and a two
sensor hot-wire probe.at various axial and transverse locations down-
stream of the wake. Using the analytical model and the experimental
data, the concept of self-preservation, the effect of incidence,
solidity, variation of eddy viscosity, and decay rate of mean and-
turbulence quantities are examined. A thorough investigation of a
cascade wake is helpful in the understanding and the development of

simplified rotor wake models.
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The effect of some of the parameters wﬁich cannot be investigated
in a cascade (e.g., rotation, pressure gradient in spanwise direction,
etc.) are included in the second phase of the investigation. Simplified
rotor wake models are developed (Chapter V) for two types of rotors-
staggered and unstaggered blades. Equations of mean motion are
simplified by an order of magnitude analysis. Solutions for the mean
radial and streamwise profiles are predicted by using the principle
of self-similarity. Equations of Reynolds shear stress are examined for
the near and far wake characteristics of turbulence quantities. Some
relative estimates of turbulence quantities and the effect of rotation
on them are determined.

The experimental investigation on the rotor wake is carried out
using a pre-calibrated static pressure probe, single sensor, and a
triple sensor hot-wire probes (Chapter VI). The measurements are taken
in a stationary coordinate system at various axial and radial locations
downstream of the rotor. The measurement of the overall disturbance
level and its decay wiﬁh_distance downstream of the trailing edge of
the rotor blade ‘is carried out with a single sensor hot-wire probe.

The mean velocity profiles and distribution of turbulence intensities
and shear stresses across the rotor wake are obtained from the triple
sensor hot-wire probe data. The data from the triple sensor hot-wire
probe is memorized in a tape recorder. Details on processing the data

from the triple sensor probe are described in Chapter VI.



CHAPTER II

LITERATURE SURVEY ON WAKES AND TURBULENCE MODELING

Interest in the study of flow fields past bodies originated around
1920. The non-zero vorticity region downstream-of a body in an other-
wise uniform stream of fluid is commonly referred to as ''wake'". The
investigations started with the study of wakes of simple bodies
(cylinder, sphere, flat-plate, and.airfoil) at low Reynolds numbers.
Excellent reviews (3, 21, 27) are available in early work on wakes of
simple bodies at low Reynolds numbers. Later on, it was realized that
many of the flows in engineering applications are at comparatively high
Reynolds numbers and are usually turbulent. Therefore, the study of
laminar (low Reynolds number) wakes remained more or less of academic
interest.

In the following sections, a comprehensive review of the theoreti-
cal and experimental work on the two- and three-dimensional turbulent
wakes is presented. Most of the available literature on two- and three-
dimensional turbulent wakes is on the prediction of mean properties of
the wake. However,. for the . accurate prediction of the wake properties,
turbulence modeling is important. Hence, a qualitative review -of
turbulence modeling is also presented and the various problems
encountered in turbulence modeling of turbomachinery flows are also

outlined.



2.1 Turbulent Wakes

2.1.1 Two-Dimensional Wake

2.1.1.1 Bluff Bodies. The turbulent wakes behind two-

dimensional bluff bodies were first investigated by Schlichting (56).
His theory was based on Prandtl's mixing length theory. According to

Prandtl's theory,

5,90, Gl
T = pL lg)-;‘l 3y ' (2:1)
where
T = Reynolds stress,
y = transverse coordinate,
L = mixing length, and
U = mean velocity in the wake.

A similar solution based on Prandtl's new theory was later obtained by

Reichardt (51)}. According to Prandtl's new theory,

30 :
. z _ T
T =D leﬁ;w-and Vp = xR(UZO UC), (2.2)
where
V.. = eéddy viscosity or turbulent exchange coefficient for momentum,

% = half the wake width,
¥ = empirical constant,
U = wake edge velocity, and

U = wake center line velocity.

The above mentioned solutions are valid only at a distance far down-

stream of the body (50 diameters in the case of a cylindrical body).



The main reason for this is that in the case of bluff bodies, the
analytical description of the flow field close to the body is difficult
due to the existence of large scale unsteadiness in this region. More-
over, the above solutions were obtained by applying boundary layer
approximations and the precise location beyond which the theory is valid
has not been established.

Olsson (44) studied turbulent wakes of equally spaced, identical
cylinders. This case was investigated both theoretically and experi-
mentally and the theoretical results were found to be in fairly good
agreement with the experimental results. This solution takes into
account the effect of spacing and showed that the wake centerline
velocity recovers at a slower rate with an increase in spacing. The
solution is not valid for near wake prediction. Palmer and Keffer (45)
also investigated the similar case but with unequally spaced cylinders
of unequal diameters. In this investigation, it‘was-establishedAtha;'
the energy reversal region exists in the wake of these cylinders,
Cordes (17) studied the near wake characteristics of equally spaced.
c¢ylinders and estimated the second order effects on the characteristics
of the wake as the body is approached,

All of the above cases were investigated for constant pressure
along the streamwise direction. Hill et al. (29) studied the wake of
a rectangular body with a pressure gradient in the streamwise direction
and derived the criteria for the growth and decay of a wake. The
criteria were based on the family of wake profiles represented by
L Bzz
=1+a (=7 , (2.3)

UZO et



where
B = fraction of ﬁc at the centerline of the wake,
e: = momentum thickness at the trailing edge, and
a, = parameter representative of pressure gradient.

If ay > 0.10, the wake would decay an order of~magnitude faster than the

. < «0.01, the wake

constant .pressure wake. On the other hand, for a;

would tend to grow rather than decay. -

2.1.1.2 Streamlined Bodies. The laminar wake solution

provided a good starting point for the development of an empirical
turbulent wake model. As discussed in Reference (26), the wake center-
line velocity in the case of a flat plate laminar wake could be esti-

mated from the following relation:

UC 2 Fol” 1/2 2 2ol
a*=1-%(g+g% +dy, [T+ (2.4)
z0
‘where ¢ is the length of the plate and 8,525 and d are constants for
a particular flow and geometry of the flat plate. Near the trailing
edge, i.e., for z < ¢, both of the terms in Equation (2.4) would
dominate the solution, while far downstream of the trailing edge, i.e.,
for z > ¢, the first term in Equation ({2.4) would dominate the solution.
This explains why the centerline velocity recovery would be faster near
the trailing edge. However, due to intense turbulent mixing, the
recovery in the centerline velocity of a .turbulent wake would be much.

faster than in the case of a laminar wake.  In general, the velocity

recovery characteristics of .the turbulent wake could be described by
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the relation

Gc , Iy " 1/2
.i-;._..:]_-a_3 (E—"FE——) s (2.5)

where constants ag and Z, would be different from a, and Zys used in
relation (2.4) of a laminar wake,

The measurement of mean velocity profile in the wake of a flat
plate was carried out by Eagleson et al. (21) in water and by Chevray
and Kovasznay (14) in air. In both of these investigations, the measure-
ment of turbulence intensities and Reynolds stresses were also carried
out. It could be inferred from both of these investigations that the
wake flow near the trailing edge would not be completely self-preserved,
however, the mean velocity profiles would be self-similar. It should
be stressed that Equation (2.5) would be valid when the turbulence level
in the free stream would be low. If the turbulence level in the free
stream is high (7 to 8 percent), then the recovery rate would vary,
probably as (z/c + Za/c)‘1 (Ref. 21). However, detailed experimental
data is needed to explicitly express the effect of free stream turbu-
lence on wake centerline -velocity recovery rate. No data is available
on thelstudy of the near wake of a flat plate under pressure gradient,

Near and far wakes of a symmetrical airfoil were first investi-
gated experimentally by Silverstein et al. (57), who provided empirical
relationships for the wake decay. Preston and Sweeting (47) and
Preston et al. {48) carried out a systematic investigation of the
characteristics of the wake behind an isolated airfoil and observed
that a similarity in mean velocity profile exists close behind the air-
foil and that the wake centerline velocity recovered to about 80 per-

cent of the free-stream velocity in a quarter chord length from the
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trailing edge. These observations led Spence-(58) to give a general

expression of the form

[

- £ = 0.1265 (5 S
- £ =0, (F + 0.025) . (2.6)

[t}

Z0
According to Spence, this expression would hold irrespective of the
geometry of the airfoil, which is in doubt.

There is at present no general theoretical formulation of wake
structure as a function of physical characteristics of an airfoil or
its loading. Based on the model equations of Bradshaw et al. (6),
Bradshaw (4) suggested a different type of approach to predict the mean
velocity characteristics of the near wake of a symmetrical airfoil
using a "mixing length" fit to data of Chevray and Kovasznay (14).
Bradshaw concluded that the mixing length fit used in the analysis is
not valid once the inner wake has-spread outside the inner layer of the
boundary layer. This type of analysis may not be carried out for the
case of an axisymmetric wake since mixing length may be imaginary in
part of the flow. In the case of a cascade of cambered airfoils, no
analytical treatment is.available which predicts the wake centerline
velocity, wake width, or the turbulence characteristics. Even experi-
mental data is scarce. The only experimental data on mean velocity
profiles in a cascade is due to Lieblein and Roudebush (37) and no
conclusion could be drawn from these experiments since the ﬁeasurements
reported by Lieblein and Roudebush are for a very limited range of
cascade flow parameters.

Detailed investigations on cascade wakes were reported by Raj and
Lakshminarayana (49). Both mean and turbulence characteristics of a

cascade wake were considered.
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2.1.2 Three-Dimensional Wake

The literature available on three-dimensional wakes has no direct
relevance to the rotor wake, but some basic information which can be
used in the development of a rotor wake model can be inferred from the

following review on three-dimensional wakes.

2.1.2.1 Stationary Bodies. The study of three-dimensional

wakes at low Reynolds number started as early as-1930. A short review
of the early experimental and theoretical work was reported by Goldstein
(27). It could be shown.by using Oseen's approximation that even at
low Reynolds number and at a large distance away from the body, the
wake centerline velocity, in the case of a three-dimensional symmetrical
body, would decay faster than in the case of a two-dimensional symmetri-
cal body. However, at large Reynolds number, the wake would be
turbulent and the situation would be different than the laminar wake.
Swan, (60), using the mixing length hypothesis, showed.that the wake"
centerline velocity at far downstream of the body of revelution varies
as v (1 -z~ 2/3), Detailed experimental and theoretical investi-
gations on the turbulent wake of a body of revolution were carried out
by Chevray (13). Analytical expressions were derived to express the
manner in which the mean characteristics of the wake develop in the
established flow region. The measurement of turbulent quantities was
also carried out. The results were claimed to be in good. agreement
with the. theory.

Explanatory investigations of the turbulent wakes behind bluff
bodies (flat plate, a circular disc) were carried out by Cooper and

Lutzky . (16). The theoretical analysis of Cooper and Lutzky was no
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different from those of Goldstein (27) or Swan (60).  However, plenty
of experimental data was given on turbulence measurements. The work
of Cooper and Lutzky appears to have been repeated by Hwang and Baldwin
(31) and Carmody (8) after a lapse of about nine years. Hwang and
Baldwin distinguished three.regions:

(a) Region of high anisotropy extending from the body to about
fifty diameters away from it.

(b) Region of near isotropy extending from about one hundred
diameters to about four hundred diameters. This is the
region of approximate similarity and isotropic relations are
adequate for estimating the decay.

{c) Region of high intermittancy extending beyond four hundred
diameters and decay rate slows down in the final period. .

Stieger and Bloom (59) examined the three-dimensional wakes with

initial eccentricity. They reported the following theoretical
conclusions:

(a) The wake with any degree of initial eccentricity degenerates
to an axisymmetric configuration and the mode of decay.

(b) If two wékes have identical flight conditions, identical
initial velocity at the axis and identical drag, the wake
with the largest initial eccentricity will decay most rapidly,

An interesting approach to the solution of the problem of swirling

wakes and jets was given by Reynolds (52) by considering the conservation
of both the angular and the axial momentum. Two different cases were
considered: (a) flows dominated by axial momentum and.(b) flows
dominated by angular momentum. Case (a) corresponds to the well known

axisymmetric turbulent wake and the Case (b) to the wake of a self-
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propelled body. However, no specific conclusions were drawn when both
the axial momentum and the. angular momentum were of -the same order of
magnitude,

A recent study on the typical features of turbulent plane and
axisymmetric wake flows was carried ocut by Ermshaus . (22).  The results

showed that each kind of wake has its own distinct characteristics.

2.1.2.2 Rotating Bodies. Chervinsky and Lorenz (12}

discussed the case of a free wake behind a rotating body. They showed,
analytically, that the maximum swirl component of velocity decays

faster in a free jet than in a wake. However, no experimental data is
available on the wake of a rotating body. The measurement of mean
velocity profile beyond a rotating disc was. carried out by Chanaud (10).
The momentum integral analysis reported by him did not lead to accurate
predictions of the mean.flow close to the disc.

The qualitative correlation between the wakes in axial flow
compressors and the blade vibrations was first given by Pearson and
McKenzie (46}. However, no experimental data or theoretical formulation
of the compressor wake problem was provided or proposed. An analytical
method for predicting the distorted wake geometry behind a helicopter
rotor was described by Landgrebe (35). His analysis was developed by
the use of Biot-Savart law and numerical integration. . However, it was
assumed that the wake of a rotor is in the form of a thin vortex sheet.
This assumption is of doubtful validity since, due to turbulence and
mixing with free stream, the sheet of vortices would develop into a
crude wedge. The initial application of Landgrebe's.work indicated

that significant distortions of the wake geometry occur.
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An experimental technique for surveying wake characteristics
(mean velocity) of arrotor wake ‘using a single hot-wire was given by
Whitfieid et al. (63). The hot-wire was used in a stafionary system,
Lakshminarayana and Poncet (33) developed a method of measuring the
mean as well as turbulence properties of the wake using three sensors
located in the three coordinate directions at the exit of a rotor blade.
They measured the wakes of a.three-bladed Rocket Pump Inducer. Kiock
(32) and Evans (23) also carried out measurements of rotor wakes with
single and cross-wires, respectively. Kiock (32) investigated,
experimentally, the overall disturbance and turbulence level in cascade,
fan, and compressor rotor wake. The effect of Reynolds number on the
turbulence level was also investigated. However, the theoretical
representation of the decay of turbulence level is not appropriate since
the decay law is derived from the principle of self-preservation, and
the principle of self-preservation is not applicable close to the
trailing edge of the blade. The hot-wire analysis and measurement
carried out by Evans (23) were based on the assumption that radial
velocity was zero. Even though this might be true outside the wake,
the imbalance between centrifugal and pressure forces inside the wake
would-give rise to radial velocity. This radial velocity is

propertional to wake defect.

2.2 Turbulence Modeling

Most of the models developed for the prediction of mean velocity
profile in two-dimensional wakes, jets, and turbulent boundary layers
employ the concept of eddy viscosity or:mixing length. Such models are

quite successful from the point of view of predicting the gross behavior.
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There are some major drawbacks of these models. First, these models
are based on gross physical reasoning and hence, are unlikely to provide
the prediction of local properties accurately. Second, the models fail
in several situations [e.g. recirculating flows, energy reversal
regions in wakes, etc.). In the region of energy reversal, the mean
velocity gradient vanishes and the shear stress is not zero. The
existence of such regions in wakes of a cascade of cylinders of unequal
diameters and a cascade of cambered airfoils has. been established (45,
49), Moreover, the mixing length hypothesis does not take into account
the past history of the flow field.

Few of the shortcomings of the mixing length hypothesis can be
overcome by representation of eddy viscosity [vT) in a medified form

(due to Prandtl and Kolmogorov)

Vip = LIy T
and
Vr = '[q_z-L » (2.7
where
U;z - turbulence intensity in the transverse direction,
T = time scale for return to isotropy,
;§'= turbulence energy, and
L = mixing length.

Knowing the eddy viscosity and the mean velocity prefiles, it is
possible to estimate the shear stress but not the turbulence
intensities. In some flow fields, shear stresses may be of the same

order as that of turbulence intemsity. Excellent critical reviews of
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the eddy viscosity and mixing 1engtﬂ models are provided by Batchelor
(1) and Launder and Spalding (36).

Although it is possible to predict approximately the mean velocity
profile by the use of eddy viscosity or mixing length models, it is
impossible to obtain a description of the turbulent motion. With
regard to the prediction of turbulence quantities, Hu (30) and .Chou
(15) proposed some theoretical models. Due to the lack of advanced
calculating machines, no numerical calculations were performed.
Batchelor and Townsend (2) obtained quantitative estimates of turbu-
lence quantities using a principle of self-preservation. The principle
of self-preservation in wakes is applicable only far downstream of the
body where the turbulence reaches an equilibrium structure. However,
in the wakes of streamlined bodies, the equilibrium structure of
turbulence -is reached much earlier compared to bluff bodies. In any
case, even éloser to a body, there is always a.small region at each
cross-section in boundary layers and wakes where the turbulence
structure is in equilibrium, i.e., production of turbulence equals
dissipation of turbulence. These regions are usually away from the
region of maximum shear and occur closer.to the outer edge, i.e., about
0.5 to 0.30 times the thickness of the viscous region. The axisymmetric
flows are also self-similar and can be handled by similar techniques.
The turbulence quantities in plane two-dimensional flows obtained by
the use of the principle of self-preservation cbey the following

relationship (Ref. 2, 62):

- -n
U22 « (z - zo) 1 (2.8)
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where ny is a function of anisotropy and the.type of flow field. z, is
the virtual origin. For isotropic turbulence and two-dimensional plane

= 1. In the case of é.plane jet, n. = 2. In the case of a

wakes, n 1

1

wake of an axisymmetric body, n, = 4/3.

1

The experimental data on turbulence properties of flat plate (14)
and cascade (49) wakes is inconsistent with the values of the power
mentioned earlier. This indicates that the predictions baseé on the
principle of self-preservation are no longer correct very close to a
body. There are many other factors which affect the self-preservation
principle in actual flow fields (e.g. streamline curvature, rotation,
etc.). The detailed effect of streamline curvature.on turbulent flow
was described in detail by Bradshaw (5} and that of rotation by Raj and
Lumlgy (50).

Higher order closure schemes, which were proposed as early as
1944 (Ref. 15, 30), could provide detailed structure of turbulence in
the wake and other types of turbulent flows. Subsequently, several
simplified closure techniques were developed. Details on some of the
closure techniques were described by Launder and Spalding (36). A
detailed quantitative discussion of merits and shortcomings of multi-
equétion models of turbulence is considered in Chapter III of the
thesis. At this point, however, a passing reference is needed to
introduce one equation model of Bradshaw et al. (6) which is characterx-
istic of its class. Bradshaw et al.'s closure technique can predict
five quantities, three mean components of velocity, and two components
of shear stress. One of the major drawbacks of the model is the

assumption that shear stress is proportional to turbulent energy and

the ratio of two quantities is constant throughout the flow field.
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This assumption cannot be justified on the basis of the available
information except in some simple flows. Moreover, the model does.
not account for transport of length scale. Most of the literature on
closure problems is referred to in References (5) and (36). More
recent closure techniques are due to Lumley and Khajeh-Nouri (41, 42).

Most of the models referred to above have been developed for a
stationary, rectangular coordinate system while, at present, most of
the boundary layer and wake problems in turbomachinery rotors employ a
relative rotating frame of reference which includes both the curvature
and rotation terms. Resolving the problems in a rotating frame of
reference eliminates the effect of periodic unsteadiness. The-
transformation of the whole set of turbulence model equations from a
stationary coordinate system to a rotating coordinate system appears
simple at first glance, but the actual procedure is complicated.

Lumley (38) has indicated a method of carrying out such a transformation.
The modeling procedure should properly account for the effect of
curvature and rotation on the turbulence structure. This is a difficult
task and has not yet been accomplished.

The effect -of rotation can be large, moderate, or small depending
upon the speed of rotation of the machine and blade geometry. If the
strain rate (sij) and the speed of rotation (Eijkgk) of the machine are
of the same order of magnitude, it is not difficult to implement the

necessary changes in the modeling. However, if ¢

_iijk>S,.,'there is no

"7
available technique by which the effect of rotation can be taken into
account .in the modeling. In such a situation; it appears that the

dominant length and time scale of the turbulence motion are controlled

by rotation only, and strain rates have a secondary effect on these scales,
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CHAPTER III

THEORETICAL FORMULATION OF THE  TURBOMACHINERY WAKE PROBLEM

A critical review of turbulent boundary. layers and wakes presented
in the second chapter indicates that most of the existing closure
techniques on turbulence modeling are not applicable to turbomachine
rotors. There is also no technique which can accommodate a situation
when angular speed of rotation () is higher than the mean strain rate
of the flow.

The main .objective of this chapter is to describe the formulation
of a rotor wake closure problem in a generalized coordinate system.

The generalized coordinate system will include all curvature and rotation
terms. This problem will then be simplified by retaining only the
highest order terms as applicable to turbomachinery rotor wakes. The
problem formulated in a generalized coordinate system could easily be
reduced to a-non-inertial frame of reference for stators and cascade
wakes. A description of the rotor wake problem, the physical nature and

classification of the cascade and rotor wake will be discussed.

3.1 Physical Nature of Cascade and Rotor. Wakes

3.1.1 Cascade Wake

The mean velocity in a cascade wake is two~dimensionﬁl and is
asymmetric, The asymmetry in the wake is due to the past hiétory of
the flow. Fa; downstream, the wake of adjacent airfoils in a cascade
interact and the resultant mean velocity profile becomes a periodic
function with a period equal to spacing of the blades. The cascade wake,

unlike the wake of an isolated airfeil, encounters an adverse pressure
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gradient because the edge velocity in. a cascade wake decreases
continuously downstream. A cascade wake differs from the wake of a
cylinder, flat plate, and an isolated airfoil (symmetrical and cambered)

not only in its mean properties but alsc in turbulence properties.

3.1,2  Rotor Wake

Wakes of rotor blades, unlike a cascade or an isolated airfoil-
wake, is three-dimensional in nature (see Figure 3.1), The three-
dimensionality of the rotor wake is due to the imbalance in the pressure
gradient and the centrifugal forces inside the wake. While the pressure
gradient is nearly the same aéross the wake, there is a variation in the
centrifugal forces inside the wake due to velocity defect and this
results in-radial flows. Depending upon the distribution-of absolute
tangential velocity, the radial flows can be large or small inward or
outward. It should be noted that distribution of absolute tangential
velociﬁy acorss the wake can be of wake-type or jet-type, when viewed
from a stationary system. This trend is reversed when viewed from a
relative system. However, the distribution of axial and radial
components of velocity remain the same in the absolute and the relative
frame of reference.

Referred to a stationary coordinate system, a cascade or an
isplated airfoil wake is continuously moving away from the airfoils,
Whereas, a rotor wake remains in close proximity to the rotor blade for
a longer period of time due to the rotation of the blade and the
resulting swirl. Hence, it might be expected that the wake distortions
which are neglected for a cascade or an isolated airfoil assume greater

importance for a rotor. Unlike a cascade or an isolated airfoil wake,.



Figure 3.1 Nature of Turbomachinery Rotor Wake and Notations Used.
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a rotor wake is periodically unsteady viewed from a stationary frame

of reference. However, if referred to a rotating coordinate system, the
rotor wake is steady. Furthermore, there is interference in the develop-
ment of rotor wake from the downstream blade row., Wakes of rotors in

the last stages of a turbomachine develop under the influence of
pressure gradients and high free stream turbulence. All these effects
make the rotor wake extremely complicated in nature.

A rotor wake, like cascade and isolated airfoil wake, is also
asymmetric. The asymmetry is due to the loading on the blades. Far
downstream, the wake of one rotating blade may interact with the wake
of an adjdcent blade in high solidity rotors. In addition to this, the
flow separation at the trailing edge can also cause changes in the
decay rate,

The variation of blade element circulation along the blade span
causes the generation of shed vortices which can cause intense mixing
of the wake region with the free stream. This may accelerate the decay
of wake defect and is also a source of generation of additional
turbulence in the flow. The presence of hub and tip boundary layers,

secondary flows, etc., are additional sources affecting the decay rate.

3.2 Generalized Form of Governing Equations

In the formulation of the generalized rotor wake problem, the
continuity, Navier-Stokes (mean momentum), Reynolds stress and turbu-
lence dissipation equations are used. All the abovementioned equations
are presented below in a generalized tensor form for an incompressible
fluid. The equations include the curvature terms implicitly and the

rotation term explicitly.
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Continuity
=i t,i
Ul =0, Ui, = 0, (3.1)
where
ﬁi = time averaged component of velocity, and
1
u; = fluctuating component of velocity.

Navier-Stokes (mean momentum)

—_— p— ] 1 LI
U, +0. .02 +(uuly . #=2¢._oF @
1 1,] 1 2] F 1Pq

j

=-P.‘i /p+v g Ul, &3, (3.2)
where
Eipq = an alternating tensor,
&3 .
g = a metric tensor,
P,i = time averaged pressure gradient, and
QP = angular velocity,

Reynolds Stress

The equation for Reynolds stress is obtained from the momentum

t 1
equation for Ui as follows: the momentum equation for Uy is multiplied

' t
with Uk and that of Uk with Ui' The resulting two equations are added

]
and time averaged to obtain the equation for UiUk :
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where P;,i is the gradient of fluctuating pressuré.

The significance of various terms in the equatioﬁ may be summarized
as follows: the first term represents a local variation of stress with
time; the second term represents transport or convection of stress-by
the mean flow; the third and fourth terms represent generation or
suppression of turbulence; the fifth and sixth terms represent
redistribution due to rotation and pressure fluctuations; and the
seventh tgrm represents dissipation due to viscosity.

The differential form of Equation (3.3) for a generalized curvi-

linear coordinate system with Qp = (0 is given in Nash and Patel (43).

Turbulence Energy
The equation of turbulence energy is obtained from the equation of -

Reynolds-stress (3.3) by contraction of indices, i.e.,.

2 ik !
q =g UiUk'

It is interesting to note that the rotation term vanishes identically
in this equation because it does no work on the material element. The

equation can be written as follows:
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The significance of various terms in this equation are similar to

the one as explained for Equation (3.3).

Turbulence Dissipation

The expression for the turbulence dissipation is written as

follows:

otk ifkm .t !
p=2vs ;s e 2y gt M 8T

where L 1 ! '
S k=7 Wy g ¥ Uy 5

The time .averaged value of D.is written as D. The equation for D
1
is obtained from the momentum equation for Ui as follows: from the

: ' t
momentum equation for Ui and equation for U 1k is obtained by
3

L]
differentiating the equation for U i with respect to subscript k.
I
Interchanging the indices, an equation for U X.i is obtained. The
>

L .
and U k.1 are added and divided by 2. The resulting

1
equation for U ik

t 1
equation is the equation for.S i Similarly, an equation for S

k° 2m
1 1
is obtained. Now, the equation for S sk is multiplied with S um and

' f
the equation for § im is multiplied with S N The resulting equations

K’
1 1
are added which results in an equation for S‘ikS o The equation for

L] ] H
S ikS om is multiplied by a factor 2 glggkm and time averaged to obtain

the equation for O/v. The equation for D/v is written as follows:
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(3.5)
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The significance of vgrious terms in this equation may be
summarized as follows,

The first term represents the local variation of dissipation; the
second and eighth terms represent the flux of dissipation due to mean
and fluctuating velocity components, respectively, and are large. The
third, fourth, sixth and seventh terms may be called the generation
terms and are small. The fifth and twelvth terms are contributions to
dissipation due to inhomogeneity in the flow and are small. The ninth
term represents the production of velocity gradients which is due to
the stretching of the fluctuating strain rates and is large. The tenth
term represents the redistribution due to rotation and is not identi-
cally zero. The eleventh temm represents a diffusion transport of
dissipation by pressure fluctuation and is small. The thirteenth term
represents destruction of gradients by viscosity and is large.

Equations (3.1} to (3.5) are presented in generalized tensors and
do not explicitly show the curvature terms. It is necessary to point
out that there are nine curvatures in a three-dimensional space. The
curvature terms in these equations are associated with the Christoffel
symbol (Fﬁig). Not all the curvatures aré important for investigating
the mean properties of the flow in the field of turbomachinery. How-
ever, for higher order approximations, all the curvature terms are

equally important.

3.3 Turbulence Modeling

A set of equations can be chosen from Section (3.2}, depending
upon the information and accuracy desired for formulating the closure

problem. Any set of equations.chosen do not form a closure problem
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for the complete description of the rotor wake, since the number of
unknowns is more than the number of chosen equations. Moreover, not

all the equations given in Section (3.2) are needed for the formulation
of the closure problem for a turbulent flow: For example, if the
Reynolds stress equation is used as a first transport equation then the
use of the turbulence energy equation as a seéond transport, equation
does not reveal any additional information because the latter equation
is obtained from the Reynolds stress equation by contraction of indices.
However, one equation can be used to provide information for the second
equation as was done by Bradshaw et al., (6), and Hanjalic and Launder

(28).

3.3.1 Turbulence Modeling in Reynolds Stress Equation

Three terms need to be considered for modeling the Reynolds
stress equation. They are (a) the pressure gradient velocity corre-
lation, (b) triple velocity correlation, and (c) the viscous term.

{a) Pressure Gradient Velocity Correlation. Chou (15) was the

first to propose that the pressure gradient velocity correlation

consists of two parts; that is,

P,U, +U.P S F
( 3z + l ,k) / p - FI‘lk U ,5 + bik.!

(3.6)
where functions‘Fiik and bik can be uniquely determined from double
and triple velocity correlation. The form of functions Fiik and bik
given by Chou indicates that part one of the pressure gradient velocity
correlation originates from the interaction of the mean strain rate

with the turbulence, and the second part is due to the mutual inter-

action between the fluctuating components. The form of pressure
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gradient velocity correlation givén above limits its use to regions
away from the immediate viéinity of the solid boundary. Recently,
Hanjalic and Launder (28) and Lumley and Khajeh-Nouri (42) have proposed
different forms of the fourth order tensor. Lumley and Khajeh-Nouri
gave ‘a more general expression valid for higher order approximation
while that of Hanjalic and Launder is only a first order approximation.
Lumley and Khajeh-Nouri point out that the first part corresponds to
rapid distortion theory, while the second corresponds to non-linear
return to-isotropy in the absence of shear.

Raj and Lumley (50) have added correction for the effect of
rotation on the tendency to equipartition in the modeling of Lumley and
Khajeh-Nouri (42). With this correction, the first part of pressure

gradiént velocity correlation was written as follows:

A ~ ,
2 (0.29%) B, (@ -e @) (3.7)

where F (6.6, + GrkSS.] /2 + .

srik ~ “ri’sk i
This modeling is valid for turbomachinery flow fields when the flow is
analyzed in the relative rotating coordinate system.

The second part of the pressure gradient velocity correlation in

Equation (3.6) for a nonisotropic homogeneous flow was first modeled

by Rotta (54}, —
o T ‘9_2_ o L 22 s

where A is a numerical constant of order unity and L is an integral'

scale of the turbulence. The effect of pressure gradient velocity

correlation is to decrease the anisotropy and the Reynolds stress.
Hanjalic and Launder (28), and Lumley (38) replaced the term A qz/L
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in Equation (3.8) with 1/T, where T = k qz/ﬁ, k is a constant and T is
known as relaxation time or time scale for return to isotropy. Daly

and Harlow (19) recognized that any modeling technique should satisfy
Galilean.and tensor invariance. Lumley (38) applied the tensor
invariance concept to simple turbulent flows. Donaldson (20) formulated
a turbulence closure problem based on tensor invariance. His modeling -
technique included the dependency on rotation of the mean velocity

field (vorticity vector) suggested by Lumley (38) earlier. In a recemnt
work, Lumley and Khajeh-Nouri (42) noted that it is not the vorticity

vector but the anti-symmetric rotation temsor (qu) which is to be

included in the expansion scheme.of a functional given below. According -

"to the authors a second rank tensor could be written as follows:

2 C
A,.=-q/T. £.(0® ,R . (3.9
ij v/ i5 ®pq’ Rpa’ (3:9)

where f.. is a functional of b__ and R and
1] Pa Pg ’
b X 8
The expansion of fij is given in Reference (42).

(b) Triple Velocity Correlation. Lumley (40) proposed that the

trace of_(U‘kP‘,i + U‘iP',k)/p; i.e., 2 S;kEU'jP!),j/Sp due to
- inhomogeneity in the flow can be included with the triple velocity
correlation.

In Chou's (15) closure technique, it was not necessary to model
the triple velocity correlation because the second transport equation
he employed is an-equation for the triple velocity correlation. 1In
other closure techniques (Ref. 19, 20, 28, 41), it was not considered

appropriate to use the triple velocity correlation equation as a
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reasonable level of closure., Hanjalic and Launder (28} did not-use the
triple velocity correlation as a second transport equation but used it
to simulate the triple velocity correlation by terms of lower order.

Using a tensor invariance technique, Lumley (40) modéled triple
velocity correlation along with a trace of pressure gradient velocity

correlation., In a generalized tensor system, this can be written as

follows: e : - -5 )
(U U, +28, P /300U )= Ay TGA7/3) [8;,8° +
iR L oj Z 2 2 ik
+ a (6i Sk + §i 6k) ]l q g A12 T (q°/3) [Gikd *
TN A AU A |
+b (8 & * 8. &) 1D, | (3.10)

where a, b, A 17 and A12 are undetermined coefficients. The above

1
~modeling can be easily reduced to the case of homogeneous flow for i# k.
There are many other forms of modeling techniques such as by Dély
and Harlow (19) for triple velocity correlation, and by Donaldson (20) ,_f
for trace of pressure gradient velocity correlation.. The proposed |

models are. a simple diffusion representation.

(¢) Viscous Term, The viscous term in the. Reynolds stress-

s Ty v 1 1 :
equation is v gﬂlj (U kU l’RaJ + U 1U k’g.']) and can be decomposed
as follows:
Lj 0 T T ]

The first temm is the viscous transport term while the second term is a
viscous dissipation. Donaldson (20) modeled the second term assﬁming
that it was proportional to the shear stress. He provided no supporting
arguments - for this assumption. In most casés (e.g. high ‘Reynolds

number approximation) the first term in Equation (3.11) is neglected.
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3.3.2. Turbulence Modeling in Turbulence Energy Equation:

The turbulence energy equation is independent of the coordinate
transformation. The modeling techniques presented for the various
terms in the Reynolds stress equation can also be used for modeling

terms in the turbulence energy equation.

3.3.3 Simplification of the Turbulence Dissipation
Equation and its Modeling: ‘

The turbulence dissipation equation presented in an exact form for
a generalized coordinate system {Section (3.2)) is very difficult to
solve, One of the most suitable methods of simplifying this équation is
to use a high Reynolds number approximation. With such an assumption, |
many terms which are dominant at low Reynolds'number (e.g. in the- |
Viscous sublaver very close to the solid boundary)'afe eliminated.
However, in the present‘investigation of the rotor wake characteristits,
flows away from the boundary are of interest and the'high Reynelds
number approximation is valid. In this case, the expression for

turbulence dissipation can be simplified as follows:

D=2vSES ikS

ig km T v ST
8 i,k am T U Ukl

|
<
oo
=

Now [U-i’kU

where RL = gL/v.
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If we ignore terms of order 1/RL, then:

i km,. ! !

=vgg (U i,kU g,m)

=
!

- Y Ui’kUi’k ' | . . ' . (312) .
Several authors {e.g., Daly and Harlow (19}, Hanjalic and Launder (28),
Lumley and Khajeh-Nouri (41), etc.] ha#e contributed towards the develop-
ment of suitable models for the turbulence dissipation equation in the
cartesian tensor form. With the exception of Lumley and Khajeh-Nouri
{41), most of the authors have retained terms not consistent with the
order of other terms retained in the equation. Therefore, it appears.
appropriate at this time to extend Lumley and Khajeh-Nouri's—teéhnique
.to the generalized turbulence dissipation Equation (3.5). Following '
the arguments developed by Lumley aﬂd Khajeh-Nouri (41) and using an
order of magnitude analysis similar to those of Tennekes anerumley
(61) for the vorticity equation, Equation (3.5) takes the folloﬁing
form:

= 5 ) Y3y
D+ D,.00 + (DU 7)., =
j ( )’ 5

T3 ] LI 1 L5 3
v Utk w2V L sl 1,k5 (3.13)

A similar equation in cartesian tensors is given by Lumley (40). Both

the terms on the right-hand side of Equation (3.13) are of order one

-1/2_

(Ref. 41) but they differ by an order RL Using Lumley and

Khajeh-Nouri's (41) arguments, the right-hand side of Equation (3.13)

can be represented by

- 3y DZ/q2 + ag D P/q2 s (3.14)
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where constants a, and'a5 would be different from those given by Lumley

-
and Khajeh-Nouri. The term DU J can be modeled as follows (40):

'l oA, @/m@/ oAy, T @ B,

where A, and A2 are undetermined constants. It should be remarked

21 2
here that for the highest order approximation of one, Equation (3.14)

takes the following form:

i,k 3 _ 1 1,kj
Wy =y U ), (3.15)

and is similar to the Taylor's vorticity budget.

3.3.4 Comments on Rotation and Curvature Terms in
Turbulence Dissipation Equation

The turbulence dissipation is a scalar,  But its equation is not
independent of transformation from a non-inertial frame of reference to
a rotating frame as is evident from Eqﬁation-(S.S). This is a further
confirmation of Lumley's statement (Ref. 38) that equations of motion
for a turbulent flow field do not satisfy the principle of material
indifference. Considering turbulence dissipation Equation (3.5) in
cartesian tensors, it turns out that the rotation terms do not vanish.

The terms are:

1 [] [} 1 t

1
2V 085U 5 Uy 2= U g Uy gl + 385U, 50, 5)

—_— e
t 1 1 '

-2 QS (U u U

1,19 2,10 %5 (U505 )] (3.16)

In Equation (3.16), subscript 3 denotes the axis of the machine (z)
about which the rotor is rotating, subscript 2 denotes the tangential

direction (y) and subscript 1 denotes the radial direction (r). For
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isotropic turbulence, all the correlations mentioned in Equation
(3.16) are identically zero.

For non~-isotropic flows, as is usually the case, an order of
magnitude analysis of the rotation texm can be carried out in a
similar way to those carried out by Tennekes and Lumley (61) in the
vorticity equation. The rotation term (10) in the Equation (3.5) is

of the order of:

QPD/RLI/Z : (3.17)

If the abovementioned term is to contribute to the turbulent dissi-
pafion Equation (3.13), then it haé to be of the order of terns
retained in the.Equation (3.13), i.e.,

D.oq/L . (3.18)
Equating (3.17) and (3.18), it is possible to estimate,thé order of the
free parameter QP {angular velocity of the machine) necessary to havé a

significant effect on the turbulence dissipation that is
‘ ‘ 1/2 S '
2"~ (q/L) R, z (3.19)

Similarly, if (3.17) has to be of the order of terms retained in
Equation (3.15) then

o~ g/ R | (3.20)

A simple calculation for a wake of width two inches and a turbulence
intensity of fourteen percent with a wake edge velocity of abput fifty
feet per second indicates that the order of af in Eqﬁation.(S.iQJ turns
out to be 3 x 102. Such a level of angular velocity is most commonly
encountered in the field of turbomachinery. The rotation term in the

turbulence dissipation equation not only affects the dissipation rate



37

directly, but also acts indirectly through changing the mean and
fluctuating velocity gradients in the turbulent flowfiel&.

Kolmogolov hypothesis says that all small scale structure of
turbulence is isotropic at infinite Reynolds number. But due to the
finite value of Reynolds number in most of the flows, the small scale
structure of turbulence is not absolutely isotropic. The terms given
above may be considered as a measure of the anisotropy in the gmall
scale structure of turbulence‘at finite Reynolds numBer. From the
engineering point of view the term is significant and should not be
neglected,

The modeling of the rotation terms in the turbulence dissipation
. equation is a very complex and is a risky proposal'in thelabsence of
any directlexperimental verification. But the rotation term is
proportiohal‘to the anisotrdpy in the flow. Therefore, it can be.
evaluated by the following relation {(considering only the largest order

term in the Equation (3.16})

.
Q.v U
A, — L _pyrl2 (3.21)
33 — L
T U" 2 ,
2

where T = k ?j’ﬁ, k and A ; are constant.

The curvature term cannot be treated in the same manner. The
contribution to turbulence dissipation due to streamline curvature will
always be present whether the flow is isotropic or anisotfopic. However,
the extent of this contribution is a function of anisotropy. The
effect of curvature is hidden in Equation (3.13) through the Christoffel

symbols.r
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3.4 Classification of Cascade and Rotor Wakes

3.4.1 Cascade Wake

Characteristics of a cascade wake can be classified and discussed
under two categories depending upon the mean and turbulence properties

(see Figure 4,1 for notation}:

(a) Near Wake: When ﬁzo -0 = Gzo and at the wake centerline,

d
U;Z > U;z > U;Z_. The wake width increases rapidly with streamwise‘
distance downstream of the trailing edge. Here, U;z » U;Z s U;? . are
the mean turbulgnce‘intensities alqng the z, X, y directions.
() FarWake: When D, -0 <0, (ie (B, - L-Jg)j_ s
negligible compared to ﬁzoz). At the wake centerline, U;z = U;? =
U;? . The wake width bhecomes either ;onstant or increases very slowly.

3.4.2 Rotor Wake
Depending upon the mean and turbulence properties, a rotor wake

can be classified under two categories (see Figure 3.1 for notation):

{a) Near Wake: When ﬁso - U = GSO, the difference between the

L : ] T ' . .
turbulence intensities U g 2 U n2, and U r2 is large. Nothing is known

about their relative order of magnitude at this time. ‘In a rotating

1 1
coordinate system, the relative order of magnitude of U 52, U n2’ and’

1
U r2 is probably the same as in a cascade or an isolated airfoil for

- which the effect of rotation is weak.

(b) Far Wake: (When USO - UC < USo i.e. (Uso - Us] << I.I.so s

where ﬁc is the wake centerline velocity in the s.and n plane.)

1 1 t
The turbulence intensities U Sg, U n?’ and U r2 will significantly be

different from a cascade and the effect of rotation will be strong.
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The mean radial velocity component has not been considered in the

above classification for the following reasons:

(1) The mean radial velocity component close to the trailing
edge is bnly ten to twenty percent of the mean axial
velocity components.

{2) The mean radial velocity component usually disappears in a

short distance behind the trailing edge.
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CHAPTER 1V

ANALYSIS OF THE WAKE OF A CASCADE OF AIRFOILS

A study of the wake of a cascade of airfoils was started with the
objective of discerning the effect of pressure gradient and. the
interference effect of adjoining blades on the wake decay. Cascade
wake models may be satisfactory for stationary guide vanes or a §tator.

' The cascade wake models occupy an intermediate position in accuracy
between the isolated airfoil and the rotor wake models. 'in addition, a
thorough undersfahding of the wakes of a cascade of airfoils is essential
.for the development of the rotor wake models.

Three regions can be identified in the wake of a cascade of airfoils
depending upon the characteristics of each region..{The three wake
regions are as -follows:

(é)’ The region very close to the trailing edge of the blade where.
the effect of thickness of the trailing edge (bluffnéss]
dominates. This region is similar to the regions behind
other bluff bodies and‘is characterized by large unsteadiness.

- (b) The region very close to the trailing edge is followed by

the near wake region where the effect of the cascade'geometry.
dominates and the effect of bluffness of the body is
considerably less. A study of this region is extremely
important from the point of view of many considerations such
as design, loss estimate, and noise generation in turbo-
machinery. The near wake region is of utmost practical

importance in turbomachinery since the rotor or stator row is
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usually followed by another blade row spaced approximately
one chord length downstream of the blade trailing edge.

(c) The near wake region is followed by the far wake region where
the effect of the geometry of the body (thickness and profile,
etc.) disappears. Héwever, the spacing of the blades and
flow parameters still control the wake characteristics.

The velocity distributions in the region (a) is the most compli-
cated to analyze. Even when the free stream flow is steady, large
scale unsteadiness exists in this region. However, compafed to thel
region due to bluff bodies such as cylinders, etc., the extent of this
region is likely to be small for streamlined bodies with sharp or round
trailing edges unless there is flow separation at the trailing edge.(aé
in theAcaSe_of supersonic turbomachinery or heavily loaded blades).
These regions are difficult to analyze mathematically. Furthermore, .
even tﬁe_relevant flow measurement is hard to obtain in view of the
unsteadiness and physical constraint of the probe dimensions..

The analyses.of the regions (b) and (c) are less complicated as
long as the—flow is well behaved at the trailing edge of the blade.
Mdfeover, these regions are of boundary layer nature since the vorticity
shed from the surface of the airfoil is being convected in the stream-
wise direction and diffused by viscosity and turbulence. Since the
vorticity is spreading continually, it follows that the convection is
more important than streamwise diffusion and that streamwise gradients
of velocity are small compared to the gradients in the lateral plane.
Thus, the boundary layer type of approximations are applicable for high

Reynolds number flows usually encountered in turbomachinery practice.
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The mean properties of the cascade wake are completely described
by the following three parameters: (i) width, (ii) wake centerline
velocity, and (iii) shape of the profile. Therefore, attention will be .
first given to the prediction of the above mentioned parameters. Later,
part of this chapter will deal with the description and qualitative

estimate of the turbulence quantities,

4,1 Theoretical Considerations

Equations of continuity, mean motion, and Reynolds stress derived
in generalized tensor form (Chapter IIT) can be written in cartesian

tensors as follows:

U, . =0 ‘ (4.1)

(4.2)

. -5 7 1 1 1 -
UiUk + Ui,j‘u jU Kt Uk,j u jU i + (U iU k)’j Uj +
— i T —
0 )
-2U0, .Uu. .1 , (4.3)

where P, v, p are static pressure, kinematic viscosity and density,

respectively and the superscript dot denotes a time derivative.

1/2

The dissipation equation with terms of the order RL_ retained

- (36) can be written.as

— T i ' _2 2
D+ D,j Uj + v (U\i,kU i,kU j);i = 4 D7/q (4.4)
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2 t t t ]

am = U U, D=Vl a0y

! 1

Ty 1
The terms (U iU kU jJ’j and v (U i,kU i,kU j)’j may be modeled by

f 1 T 1
simple gradient transport while the deviatoric part of (U kP sp ¥ U iP ’k)

may be expressed as (Ref. 38)

(u.'iu'k - ¢ 5,/3) . | (4.5)

1 1 1 t .
The trace of (U g ;i t U iP ’k) may be included in the gradient
[] J
transport model of (U'iU kU j)’j' Here, T is the time scale for return

to isotropy and Sik is Kronecker delta. T is given by Lumley (38).

1 g2
T=2= % . (4.6)
8 5 |

Using the above modeling, Equations (4.3) and (4.4) can be expressed as

. [] L] 1 1 ._
8] iU + U ,U U, +u .U jU ; + (U iU k),j Uj

\ 1 1 T 1 ¥ T "'f'
- [(u iU k)‘ﬁ U iU T]’j + T—(U J..U K "9 Gik/S) +
+ 2/3D aik =0 | ' 4.7)
B+D, 0, -(p,, U U.T 4 52/q2 4.8
+ U, - s . s = - .
37 LI N 4 ‘ (4.8)

For a two-dimensional cascade, wake Equations (4.1}, (4.2), (4.7), and
(4.8) constitute a closed set of eleven equations in eleven tinknowns .

If it is assumed that velocity correlation
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t 1 t 1 1 []
-U v = - U U << -U_U
Z° X Yy X Z ¥y

(seeﬁFigure‘4.1 for notations), then the number of equations and

unknowns are reduced to nine with boundary conditions to be satisfied

as follows:

I 1
Aty =0andb ;U U =20
z Yy

4,2 Mean Quantities

Consider Equation (4.2) for steady and incompressible flow in
two-dimensional Cartesian coordinate system. Applying boundary layer
approximations, and neglecting the viscous diffusion and normal stress
terms which are-usually small, Equation (4,2) can be written as (sge
Figﬁre 4.1 for notations)

30 50 U U
z zy

30_
- z ~ zo
+

z 3z Uy ay * ay zo0 0z (4-9)

Assuming self-similarity (experimental results described later confirm
this) and using Townsend's (62) model, the velocity (ﬁd) and length

(2) scales are introduced by the relationship

u = GZO - Ud £(y/%) , (4.10)

where

Lot
H]

velocity defect at the wake centerline.

1 1
Replace U ZU y in Equation (4.9) with eddy viscosity model,

—
S s vy | (4.11)
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Measuring Stations: z/c = 0.012, 0.08, 0.16, 0.24,
0.32, 0.40, 0.56, and 0.72,

Station 1 Station 2 Station 3
= 0,00 in. z = 0.5 in. z = 1.2 in.

Suction

MAWNL

Surface -
- f———"‘";;
/ —
# | Pressure é
Surface '
" \

=
w
=
L1

Cascade A;is

X is normal to y and z

Figure 4.1 Schematic Representation of Cascade Wake Development
with Notation,
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Substitute Equations (4.10) and (4.11) in Equation (4.9) and eliminate
Uy in the resulting equation by the use of continuity equation [see

Reference (24) for details] we get:

2 Y a0 g 300

L—I dZ t-j 2 dz
d d

a(d_ 1) . ali.n

L 20" ey -4 d° e fdn

['] dz .a dz
d d 0

U ‘ 1
e AL | (4.12)
UdR
where

-d’Q‘ ) e,

T =_Rd is Reynolds number and is assumed to be constant,
T . ‘
ﬁd = wake velocity defect at the wake centerline,

%2 = half the wake width, and
Uzo = wake edge velocity .

It is easy to show that the condition of self-similarity in the
2

mean velocity profile is satisfied only if coefficients of £, £, and
1

f are constant in Equation (4.12}: i.e.

d(Udl)

dz

dUd 3 d(UZOUd) d(Uzol)
dz *? i 2 dz ? dz
d 4 d d

(4.13) | |

C!P@
r:ulr--l

and %—
u

are constant.
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4,2.1 Near Wake

When z/c is small, the first temrm in Eduation {4.12) is small
compared to other terms because the wake centerline velocity recovers
to about 60-to 70 percent between z/c = 0 to z/c = 0.2 (Chapter VII).
Furthermore, experimental results (Chapter VII) indicate that Gdﬁ is
nearly constant acrosé the near wake. Hence, self-similarity is

attained if

L -ld(UZOUdL K, and 1 201 K | (4
g2 dz 1 g. 9z 27 _ ;
d d
where Kl, K2 are constants., Substituting ﬂdﬂ = K3 (constant) in

Equation (4.14), we get

[-j 3 dz K3 4
Z0
and _ - \ '
1 d(Uzo/Ud) K2
— I ==K (4
U 3
0

Adding Equations (4.15) and (4.16), we get

du K + K
4 5 = 3 ) (4

-~ z0 _
Ud dz 2 Uzo

Let g n —%-; then, from Equation (4.17), we get-

1 d 1
a’™ w072 p

i

(4.

14)

:15)

.16}

.17)7

18)
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_Case I:
When m is very small {(m = 0), i.e., ﬁzo is nearly constant, then,
6, v /22, 1 222
This is the case of a c¢ylinder wake (z > 100 diameters), near wake of a
flat plate, and isolated airfoil when placed in uniform stream without
pressure gradient.
~ Case II:

When m > 0 (adverse pressure gradient), the wake centerline velo-
city will recover slower than Case I. This is the case in cascade of
airfoils and compressors., If the pressure gradient is large enough
m > 1), thé wéke‘may grow rather than decay. Hill et al. (29)
demonstrated this experimentally.

Case III:

When m < 0 (favorable pressure gradient), the wake centerline
velocity will recover faster than Case I.

Considering the momentum integral relationship relating the
velocity defect in the wake to the profile drag, it can be easily shown
that the constant of proportionality in Equation (4.18) is a function

of the coefficient of drag (cdlzz) of the cascade of blades (62).

Therefore, a general expression of the form

K Cd1/2
Lo - 9 (4.19)
(z/c + zc’/c)(-m*'l)’/2

et}

fand}

Z0
will predict the wake centerline velocity recovery in the near wake of
a cascade of airfoils. The value of L from various experimental data
(including that of Chapter VII) is found to be 1.25, and Zofc is the

virtual origin. In all practical cases zo/c for a cascade of airfoils
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is between 0.02 and 0.03 (Ref. 37). 1In the present investigation
{Chapter VII}, it is found to be 0.02.

Therefore, the final expression for the wake centerline velocity
is

1/2
d

] (z/c + 0.02)(1-]’!}/2

(==t}

1.25 - ¢

=1 (4.20)

Cll

4.2.2 Far Wake
When ﬁzo - ﬁc << Gzo‘ the wake width is nearly equal to spacing (S).
Hence, d%/dz = 0. The pressure gradient effects are also negligible in

the case of a cascade far wake. Therefore, from Equation (4.14), we

have
d(UioUd) - K
i 2 dz . 6
‘ d
or ' o (4.21)
= 1
Ug™ 7

The constant of proportionality can be evaluated from the momentum
integral equation -and from the periodic nature of the solution. It can
easily be shown that the wake centerline velocity in this case recovers

as

- - 1 J
=1 [Z/CJ L]

75 (4.22)

— 1/2
: K

Uc 7cd

0

where constant K., is dependent upon the turbulence characteristics and

7
the wake width. If the spacing and the turbulence characteristics at
the far wake of cascade are similar to the far wake of an equally spaced

row of bars, then according to Reference (54},
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1 S, 2
K, = == (3
7 8W3 L » (4.23}

where L is the mixing length. For low free stream turbulence (< 1%),
K7is found to be 0.40 (Ref. 56).

The coefficient of drag given in the above énalysis can be
evaluated theoretically as follows: the total pressure loss in a
cascade is mainly caused by (i) the viscouS and turbulent stresses in
the boundary layer, (ii) the flow separation, if any, at the trailing
edge, and (iii) by the wake mixing downstream of a cascade, The total
pressure loss coefficient {g} can be evaluated from the following

relation [see References (18) and (55) for details]:

= 3 - 3
*
. =_A o _0.075 g [Uz°s _ EZOF?. , (4.24)
%-p ﬁaZ Rel/S 2 Ua
where
| APO = total pressure loss,
Re = Reynolds number based on chord length and inviscid axial
velocity,
ﬁzo ’ﬁzop = inviscid maximum velocities oﬁ the blade suction and
5

pressure, respectively, and

Ua = inviscid axial velocity at the trailing edge.

Relating the.cascade geometry to the pressure losses, it can be proved
{18) that the drag coefficient is

3
cos Bm
cq=T S/ —5> , (4.25)
cos 81 '
where
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cascade mean air angle, and

™
i

air inlet angle to the cascade (measured from the axial

™
i}

direction).
Hence, the expression for the drag coefficient is

(ﬁzos " I“Jzo 3) cossB
o o 0.075 s D m_ . (4.26)
d R 1/5 2 3
e a

2
cos Bl
Therefore, in the final form, the wake centerline velocity recovery for

the near and far wake can be written as follows:

Near Wake:

3 - 3 3
g 0.075(0__~ + 0 “ycos 8 1/2
L .- 1.25 [ ] P ]
U (z/c + 0_02)(1-m)/2 Rel/SCZﬁ 3) coszﬁl
Z0 a (4.27)
Far Wake:
0.075(0 500 3)cosSB 1/2
¥ . 20, 20 m
0.
< o120 (5/0) [ ]
UZD z/c Re [2Ua ) cos Bl

(4.28)
A few important conclusions can be drawn from Equations (4.27)
and (4.28 regarding the characteristics of wake decay as a function of
the cascade geometry and the flow parameters. These conclusions are as
follows:
(i) In the high Reynolds number flows, the wake decays much
faster as compared to the low Reynolds number flows.
(ii) The high solidity (c/S) cascade wake decays faster than the
low solidity cascade wake,
(iii) The wakes of a cascade of highly staggered blades decay

faster than the wakes of a low staggered cascade of blades.
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(iv) The wake decay law is a function of the pressure gradient.
The wake decays faster in a favorable pressure gradient as compared to

adverse or zero pressure gradient.

4,3 Turbulence Quantities

Turbulence characteristics of the near and far wake of a cascade
are quite different. The qualitative nature of the turbulence

characteristics is discussed below.

4,3.1 Near Wake
Equation (4.7) will be used to determine the qualitative nature of
the turbulence intensities at the wake centerline very near the trailing

edge of the cascade.

Assume that the flow is steady and the development of flow is

confined to a narrow region (3/8z << 3/3y). Then, the quantities with
- ' [} 1
dots over them vanish. Near the wake centerline, D, U‘zz, u y2’ U x2

2
(and hence, q°) are nearly constant across the wake. Moreover,

v -
8] zU y = 0, while dUz/dy need not necessarily be zero, but will be

small. Using the continuity equation and applying the above mentioned
conditions to Equation (4.7) and rearranging the terms, we get, for

turbulent intensities at the wake centerline,

12 -
av — - K —
. z 1 12 3 25 c T3
¥ R £ (P2 WS- R IS G
c dz T Z 3 dz z
au' ? au
6, —Le -k 2 oqm - P2 L7
¢ iz 7
3 —
au — _
_ 1 .02 3 2D
i il R CARE W B (4.29)
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Qualitatively, Equation (4.29) suggests that (since dﬁc/dz is .always

positive}: :

U 22‘ du'xz au' 2
> - >
Iven il el B vl

Far downstream (z/¢ > 1), the turbulence in a wake tends to be nearly

v '
Z 7., 2
Z X

t
isotropic, i.e., U = | y If there aren't any abrupt changes,
i.e., the process is continuous from z/c < 1 to z/c > 1, we conclude

that near the wake centerline

] _ .
% MaAX _ 4.84 (4.30)

near the trailing edge of the cascade of airfoils. This effect is

' '
due to the confinement of the flow by the wall. The ratio U iz/u y2

in the.case of the near wake of a flat-plate is 3.8 (Ref. 14). It is.
not possible to compare these results with the available data on a
cylinder (62) since the measurements in the wake of a cylinder are

carried out at distances farther downstream.

4.3.2 Far Wake

In a far wake, the width of the wake becomes.equal to the spacing.
As a result of this, the wakes of adjacent airfoils interact and are no
longer separated by the inviscid velocity profile. The peak turbulence
intensity and shear stress occur away from the wake centerline.

Therefore, it is not possible to calculate the variation of turbulence
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intensity at the wake centerline by the proposed method, However, it is
possible to calculate the relative magnitude of the turbulence
intensities away from the wake centerline in the region of maximum
shear where the intensities are nearly independent of y. Since the

wake edge velocity is nearly constant far downstream, Equation (4.7)

1 T 1 T
takes the following forms (neglecting U ZU X and U YU x):

e 30
L | r—— —

2 —_ 1 .2 _

Wy 5y = -2 -4 - s, (4.31)
al
7 Y, |5 '

v e FuY, (4.32)

_ )
0 =2 (U yz - gy w23, (4.33)

1 '2 2 -
and 0 =L ?-a¥m +2i/s . (4.34)
7 T3

- 1
It is evident from Equations (4.33) and (4.34) that U y = U -
Substituting this result and Equation (4.6) in Equation (4.33) or

] [}
(4.34), it can be shown that U ZZ/U YZ

2. Similarly, using these

1 l
results in Equations (4.31) and (4.32), it can be shown that U zU y/

. _
U 22 = 0,354, From the experimental data at z/c = 0,72 (Chapter VII),

it is found that

w2

: y “max
and the wake data near half of the wake width indicates that (Figure

7.15)
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If the turbulence properties in the cascade near and far wake
are self-preserving, the turbulence quantities could be represented by
the following relations (Ref., 61, 62):
v 2

-n ’
v’ % ez - 2™, (4.35)

where n depends on anisotropy. For isotropic turbulence and plane
wakes, n, = 1. The experimental data on the wakes closer to the flat-

1
plate trailing edge (Ref. 14) and cascade of airfoils (Ref. 47) give

different values of nfn # 1) for the decay of u'_? and u'y2 . This
indicates that the cascade wake is not self-preserving close to the
trailing edge. This is found to be in contradiction to Kiock's (32):
suggestion about the cascade wake turbulence decay law which is based
on the concept of self-preservation. Streamline curvature and pressure
gradient, etc., aie some of the other parameters that can affect the

" self-preservation. Further discussion on this subject is presented in

Chapter VII.
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CHAPTER V

ANALYSIS OF THE WAKE OF A ROTOR BLADE

Study of flow field induced by a compressor rotor can be investi-
gated under three headings:

(a) Flow field upstfeam of the rotor.

(b) Fiow field inside the rotor passage.

(¢) Flow field downétream of the rotor.

In each of the abovementioned headings, the flow is inviscid as
well as viscous in character.

In fact, the real fluid is viscid and turbulent and, though the
viscous effects are predominant only in a small portion of the flow
field, still they play a decisive part in the determination of the
actual flow characteristics. In addition to the hub and the annulus
wall boundary layers which are common to all the three cases (a), (b),
and (¢) the predominant viscous regions are:

In Case (a): undiffused wake of the previous row of stator blades.

In Case (b): blade surface boundary layer and the undiffused
Iwakes if any from the previous row of stator blades -
which might have entered the blade passage.

In Case (c): blade surface boundary layer which develops inte a
wake region after the flow leaves the trailing edge
of the blade.

Inrthe investigation of compressor rotor wake characteristics, we

are essentially concerned with viscous regions discussed in Case (c).

These viscous regions .are three-dimensional, unsteady, turbulent and

anisotropic which make the analytical and experimental investigations

horrendous.
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Characteristics of the rotor wake are dependent on a number of
variables such as the pressure gradient in the radial and the axial
directions, blade spacing, blade camber, geometry of the rotating blade,
free stream turbulence, speed of rotation, etc. It is certainly not
possible to take into account all the abovementioned parameters in
addition to the already mentioned complexities in the flow field.
Therefore, the problem has to be solved step by step in coordination
with the experiments to determine the gradients of normal and shear
turbulence stresses which play a significant role.in the analytical
modeling of the mean flow characteristics.

In this chapter, the rotor wake models are developed for two types
of rotor geometries. The main.objective is to predict analytically the
mean velocity profiles in the axial as well as the radial planes and to
establish the decay laws for the viscous wakes developing downstream of
the yotor blades. In addition to this, it was found desirable to
qualitatifely establish the turbulence characteristics of the rotor wake.

Since a stationary observer cannot visualize continuous development
of a wake from a rotor, it is appropriate to transform the coordinate
system from stationary to rotating where the observations can be
theoretically made from the rotor. In this way, it is possible to
visualize the development of a compressor wake more clearly. The
equations of motion along with the continuity equation in the cylindri-
cal rotating coordinates are given in Appendix A (Ref. 50) and in
generalized tensor form in Chapter III.

In the analysis presented in Section (5.1), we have used a
eylindrical rotating coordinate system while, in Section {(5.2), we have

used a curvilinear coordinate system. The choice of the systems is
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dependent upon the type of the rotor geometry considered. In the
" following sections, we shall consider two types of rotor geometries; one

with unstaggered rotor blades and a second with staggered rotor blades.

5.1 Wakes of Unstaggered Rotor Blades

This is a very restricted case and the investigation of this
geometry was undertaken solely as a basic step in the eventual analysis
of the generalized rotor wake model., The analysis is applicable to
unloaded or slightly loaded rotor blades and is termed as the fan wake
model (Ref. 50). Although the analysis is restricted, it provides a
 considerable insight into the viscid and quasi-three-dimensional

character of the rotor wakes.

5.1,1 Mean Velocity Profiles

In this section, mean characteristics of the near and the far
wake of an unstaggered rotor blade are analyzed and simplified wake
models are developed to predict the mean axial and radial velocity
distribution. The cylindrical rotating coordinate system is employed
for the analysis (see Figure 5.1 for notation).

Consider the equations of mean motion (A-5 to A-7 in Appendix A,
Ref. 50) and apply the following assumptions:

(a) Inviscid flow outside the wake is in radial equilibrium and

the absolute tangential velocity is specified.

(b) Static pressures outside and inside the wake are equal.

(c) The boundary layer thickness (§), the mean radius (rm) of a

fan and the distance (21) downstream of the trailing edge, in

the region of interest are such that § < < 2; << T



Figure 5.1

Schematic Representation of the Wakes of Unstaggered
Rotor Blades and Notations Used.

59 -
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{d) There is no flow separation at the trailing edge of the blade.

(e} The radial component of velocity ﬁr, the speed of rotation
(@) and the boundary layer thickness (4) are such that
08~ T and Q38 << 0,

(f) The hub to tip ratio of the.rotor is large so that the
variations in the flow properties in the radial direction can
be neglected.

{g) The viscous diffusion terms which are.assumed to=be.small
compared to the turbulence diffusion terms are.ignored..

(h) The distance from the trailing edge where the wake defecﬁ
recovers to about 60 to 70 percent of the free stream velocity
is small (in terms of chord length) (Ref. 49), so that the far
wake apprqximations are applicable and ﬁz is replacéd by Uzo'

Using the above assumptions together witﬁ the concept of éddy

viscosity v, in r and z womentum equations, we get

T
[ 270 |
Vo 57~ W5 = Vp 7 - 5.1
90 .

and - 2.
8l 20, |
Y20 52 * V1 T3 (5.2)

T30

Equations (5.1) and (5.2) are valid for a blade row with zero
stagger and large spacing since the rotation term in Equation (5.1)
originates only due to the spreading of the wake and there is no inter-
action of the wakes of the one blade with the other. |

I1f self-similarity in the mean axial velocity profile is maintained
and the axial moment is conserved, then, the asymptotic solution of

Equation (5.2) is
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i] U 2 -
z _ - 1/2 zo (r8) -
1 - — = Kg {z) exp ( ~ 53577 » (5.3)
U T
20
where K8 is a constant of proportionality depending upon the blade

characteristics and the turbulence structure of the wake.

Substituting Equation (5.3) in Equation (5.1) and using continuity

we obtain:
50 340 QK. (r0) 0 (re)°
~ T Y T _ 8 zo exp Z0
z0 3z T r2882 z3/2 4sz
- g 1/2
. 8 - G
with 1, = e (=23
_ 1 z1/2 ZvT

The above equation can be rewritten as follows:

11 | . .
0 +n 0 =¢n exp (-n/2) - (5.4)
where
2y 1/2
6, = (49K (=
i
Z0

is constant and has dimensions of velocity. Therefore, the dimension-

less form of Equation (5.4) is, writing Gr =gd;,

n 1

_ 2
g +N; & =Ny exp (- n1/2) . (5.5)

The general solution of Equation (5.5) constitutes a set of error.

functions and is written as follows:

) 2 2 2 ‘
g -J nl /2 exp(—nlfz)dnl+ Cl J exp(—n1/2) dn1 f_Cz.

(5.6}
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If there is no radial flow outside the wake, then the constant C2 in
Equation (5.6) is identically zero. The nature of g is now dependent
upon the constant Cl and the functions under the integral sign. There
are two possibilities; in the first, the set of the error functions may -
be arranged to satisfy the boundary conditions such that their
combination vanishes at the edge of the wake (C, = - 1). The radial
velocity profile in thi; case turns out to be antisymmetric. 1In the
second case, the combination of the error functions ?oes not vanish
(Cl > 0) at the wake edge. Such a situation corresponds to the secondary
flow in the blade passage and is not consistent with the assumptions:
made in the analysis,

The analysis carried out above indicates that the'wake decay law
for velocity defect in the axial plane is similar to that of an
isolated airfoil or a cascade of airfoils. However, the empirical
constants necessary to describe the quantitative behavior of the wake
velocity defect in the case of a rotor wake will be different from that
of a cascade of airfoils or an isolated airfoil. The behavior of the
radial‘velocity profile in the above analysis is surprising. It
indicates that either there is no radial flow or, if there is a radial
flow, it does not decay downstream of the rotor but remains self—similaf.‘

The above analysis also indicates that it is, in general, feasible
to represent the rotor wake mean velocity profiles in axial and radial
planes in the following form:

u =u__ - Ud f (n

z zO (5.7)

2

[wani}
1]

Y - ¢2g1(n2)'
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Consider the second case, i.e., when the wakes of adjacent
blades interact. Such a situation is possible in many ways, e.g.,
in the case of very closely spaced blades or far downstream of the
rotor. The solution of Equation (5.1) in this case will be periodic
and will be similar to that of equally spaced cylinders given by

Olsson (44}; i.e.,

[l

M
1 cos _2 s (5.8)

z
— T4 278 2

1 -

-

Z0

where n, = 2r6/5, and S is the blade spacing.

Substituting Equation (5.8) in the continuity equation, we get

1] 2 T
= zo S _. 2
Ue = - -0 —gsin —- (5.9)
. z
Substituting Equations (5.9) and (5.8) in Equation (5.1), we get,
wrltlng Ur = ¢2(Z) g]. (nz) Ld
1
o) 20 3 A m 4y
. ] . T "
[s $—jﬁ g, * [—ﬁ"§'$lﬂ sin _52'= [——] g 1 (5.10)
2 - z 2 Uzos

2
and g [terms in the square brackets of Equation (5.10)] should be

If the similarity exists, then the coefficients of g, sin = 7

constant. Therefore, the following decay laws result

or 4, (2/9)" °

¢, e
The two solutions are not identical, even though the qualitative
trend is similar. The general trend of the functions is shown in
Figure 5.2. Therefore, Equation (5.10) takes the following form after

multiplying throughout by UZOS/4uT, i.e.,

1" . T
g4 + A2 g = AS sin 5 n, . (5.11)
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Figure 5.2 Behavior of General Functions Governing The Decay of Isolated Alrfoll
Cascade and Turbomachinery Wakes
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The general solution of Equation (5.11) is

g = A4 cos Fz n., +A5 sin ; ny - (5.12)
As before [see Equation (5.6)], there are two possible profiles of ﬁr
corresponding to function g In one case, 81 does not vanish when
n, = 1. This case corresponds to secondary flows in the blade passage.
In the second case, g, is antisymmetric but satisfies the boundary
condition at the edge of the wake.

The asbove analysis indicates that the decay rate of the axial
component of velocity due to interaction of wakes of adjaéent blades
increases compared to é single blade [Equations (5.3) and-(5.6)]; VThe
decay rate of the radial component of velocity is faster thén that of

the axial compeonent of velocity.

5,1.2 Turbulence Structure

Raj and Lumley (50) have carried out an extensive investigation.on
the behavior of turbulence intensities in the wake of an unstaggered
rotor using Reynolds stress and mean momentum equations. Some |
conclusions of the analysis are given below:

(i) A non-zero value of ﬁ‘r is necessary to see an.effect of

rotation.

(ii) If speed of rotation Q is very small compared to ﬁ'r then

v 2 v 2 V2

U > U >y
T &) z

.
(iii) If speed of rotation Q is large compared to U " then
1 1 []
U 2 >4 2 > U 2
8 r Z
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5.2 Wakes of Stagggred Rotor Blades

A more general case is considered in this section. The. rotor wake
model developed in the previous section is valid only for a particular
case, i.e., when the wake leaves the trailing edge of the rotor blade
axially. However, that is not the case in actual compressors oOr
turbines. In all those cases of axial flow turbomachinery where the
flow leaves the trailing edge at some stagger angle, the velocity
distribution in the main stream as well as in the radial direction is
affected by the Coriolis forces; i.e. there is distortion of velocity
profiles in both of these planes in contrast to previous cases where
the Coriolis forces distort only the velocity distribution in the
radial plane.

The equations of motion (see Figure 3.1 for notations) for a flow
field in which the inviscid main stream direction is at an angle to the
axis of the shaft of rotation can be written in the rotating coordinate
system as follows (ignoring viscous diffusion and unsteady terms};

In the r-direction:

_ 90, _ 80, _aﬁr } )
Ur 5;—-+ Un 5E—~+ US v + 28 Un cos A - ZQUS sin A -
62 [-]2 * —_—_— o A R
s o2, Uno 2, L U T2 oy
- Fsinth - meosth s - e s iUy O YY)
-t 5
U‘ 2 U' 2 , U 2 ,
P N Rt W sin® A }.
T T
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In the n-direction:

11 A1 30 U0 )
0 —2+0 ~2+ 0 24+ 200 coshr + L cos A
r or n on 5 95
" Ul U'
. _lop 9 o' 2 T n a2
T T pdn T {Br (U U+ (1+cos N5 temYa 7t
9 T
+-é-§-(UnU S) ¥,
In the s-direction:
_ 3l _ ad _ 30 . ugu 5
0 —+0 =—+0 S + 200 sin A+ sin” A
T 9T n on s ds T
* v
__1l3p 3 L2 r s 3 !
T T p8s {Br (u - s) + (1 +sinh) T " 5n (u nU s)
‘ ) N
*%5:” 51 | | a3

where P* =P - p/2 erz, and A is the angle of the reference direction
and is equal inviscid blade outlet angle. |
The following assumptions are now made to simplify the,equatipns
of motion with a view to develop a simplified rotor wake model to
predict the mean axial and the radial velocity profiles. The
assumptions are:
1. The boundary layer does not separate from the_trailiné edge
and the boundary layer thickness (&)}, the mid—radius_(rm) and .
the distance {51) downstream which the flow is inﬁestigated

are such that

d < <sg, < <7
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The turbulence of the rotor wake is weakly anisotropic and

homogeneous such that

' ] [
o' 2 v 2

2 2.
n S TWO(U)

0 (ud)

] 1 t 1 1 1
vy U

s 1
The distance from the trailing edge where the boundary layér
approximations begin to apply is small.
The choice of the coordinate leads to

and U
n s T

It is assumed that the hub/tip ratio of the rotor is large so

that any variation in the radial direction is negligible.

6. The turbulent stresses can be represented by

Trn/p = - U nU

Tsn/p B " n s

where Vg = eddy viscosity.
Using the above assumptions, the.

(5.13)] can be simplified to

R
US T 2QUs sin A = -
and .
BUS _
U0 —=+ 200_ sin A = -
s 4ds T

Equations (5.14) and (5.15) are non-linear equations.

only a numerical solution is possible.

UT BUT/Bn

v BUS/Bn

T

equations of mean motion [Equation

1 BR* o, '
- + Vo, ( ] {(5.14)
p 3r T anz 4
13 * 326s
5-55-—+ vy (—3) (5.15)
an
Therefore,

Since the wake defect decays to

about 80 to 90 percent in a very short distance {(referred to blade
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spacing) behind the trailing edge (Chépter VIII), it is possible to
apply the far wake approximation. Also, assuming that the external

pressure gradient is impressed on the wake flow,

e
L3 .,
p 95
and
*
Lo . 200 sin A,
p ar S0

With these assumptions, Equations (5.14) and . (5.15) reduce to

Coen | 220
'USO s + 20 _(USO - US) sin A = \)T (—a—-z‘) ' . (5.16)
n .
and _ 2
- eug B 3 Gs | _
Uso e _f 20 Ur sin A =‘vT ( 2) . : _ (5.;7)

on

Eliminating Gr from Equations (5.16) and (5.17) and writing

Uéo 3 d 3
~wake width, the following equation results:

-0, =0, £ (n,), where n, = n/% and L is half the (5.18)

2 2=
p YV o an dl, .
Ud ds Ud
ae.2 . 2 M ' a2 '
(97 (6" + 2ngf'] - 18 . S IngE )
_ ds
S R S e Bl B
_ % ds 3 - = ds
u . u
S0 so0 d
av - N . 2.2 .2
bl Ly e Sl (AR Y g (5.19)
0 223 7
50 50 SO

where U, is the defect in centerline velocity (ﬁso - ﬁs min) .

d
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The condition of self similarity in longitudinal velocity (ﬁs)
prbfile is satisfied only if the coefficients of £, nsfi, ", ngf",
nsf"l and f'"' are constant. This is a remote possibility in the
present form of Equation (5.19). However, some simplification can be
made at this point. Assume that the rotor we are considering isrof
high solidity; i.e., the wakes of two adjacent blades start interacting.
In this case, the wake width is constant and is equal to the blade
spacing (S cos A) width. Under such circumstances, it is possible to
consider half blade spacing as the characteristic length so. that di/ds =
0. This situation also corresponds to that of a far wake or high
solidity rotors. Equation (5.19), with these considerations, takes the

following form:

2. .
Szcos2 A d Ud1 2\’T dUd "
[—— = £ - [—— 1+
4Ud ds USDUd
2 .
49 2.2
[l ] o= o (L8 cos®a sin®A] £ (5.20)
s%cos?A T_ 2 G
S0 S0

If similarity exists, coefficients of f and £ in the first two

terms of the above equation should be constant. Hence,

-B.0 S cos A
1 so s

( 31,
T S cosA

(5.21)

where B1 is a constant.

It is also evident that,

4v 2

T
Scos g <<t
50

[
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So that Equation (5.20) along with Equation (5.21) can be written as,

(A +¢) £+ Blf" =0, {5.22)
where A and B1 are constants and
2.2
¢'= ? 52 sin cos’x .
Uso

The solution of Equation (5.22) is

£ = A, cos {[AB*I' ¢']1/2n;3}_ (5.23)

Therefore, substituting Equations (5.23) and (5.21) in Equation

(5.17), we get:

-2(A+¢} v, + U B.S cos .
! 17 5017 T g cos ()20 3 L (s
1

- = X 2 2
U Uso Blﬂ sin A (8% cos™A)

An estimate of the unknown constarits A and B1 can be carried out.
The coefficient A can be expressed in terms of the coefficient B1 using

Equation (5.21), _ .
i s -
A =3B 2 (39?2 (5.25)
O

1 ’ .
where S = S cosA. Applying the boundary conditions (n3 =1, £=10) to

Equation (5.23) we get:

A+ PLl/2 '
Ari/z 1 (5.26)
B 2
1
Eliminating A from Equations (5.25} and (5.26), we get:

.

. U s 2

B2 (539 + o'
T

e B, . (5.27)

1

hlﬂ

Hence, B, can be calculated from Equation (5.27).:

1
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For the rotor under investigation, the value of rotation parameter

$'is of the order of 0.02; hence the value of B, from Equation (5.27)

1
can be nearly expressed as:
- 1
u s 2
2 50
By=m /( 2V )

- t
Denoting USO s /ZvT by Rs’ we get:

Hence, the decay law for wake velocity defect [Equation (5.21)] can be

written. as

4 s 5

= exp - [ &
5

L=}
[97]

50
It is important to comment on the value Rs. In the regions very close
to the trailing edge, the value of Rs is of order one, since eddy
viscosity is very large in these regions. Farther downstream, the
value of Rs is of the order of ten and remains nearly constant.
Therefore, basically, we should use two decay laws governing decay of
rotor wake, one closer to the trailing edge; i.e., s/S’ < 0.1 and the
other for s/Sl > 0.1.
Although the analysis presented in this section is over simplified,
it provides very importan; information.
1. The rate of decay of ﬁr is the same as that of the velocity
defect in the longitudinal directiom.
2. The radial velocity profile is a function of the longitudinal
velocity profile, speed of rotation, rotor cascade parameters

and the turbulence characteristics.
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3. The decay law for the rotor wake is much different than that
of a cascade or an isolated airfoil for the same case and is

the fastest of the three.
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CHAPTER VI

EXPERIMENTAL EQUIPMENT, METHODS, INSTRUMENTATION AND DATA PROCESSING

The primary cbjective of the experimental program was to study the
characteristics of a cascade of airfoils and rotor wake. The study
included the measurement of the mean velocity, turbulence intensity,
Reynolds stress and their decay characteristics downstream of the
blade trailing edge. All the measurements were carried out in a
stationary frame of reference. The abovementioned experimental
information was needed, not only for an understanding of the wake
characteristics, but also for the simplification of the various terms
in the equations of motion used in the theoretical formulation of the
wake models and verification of the assumptions made in the theoretical
analysis., The measurements also aided in the evaluation of some
constants in the analytical solution which otherwise could not be
determined from the boundary conditions or other theoretical

considerations.,

6.1 Cascade Wake Experiment

6.1.1 Equipment Used in the Experiment

6.1.1.1 Subsonic Cascade Tunnel, A subsonic cascade tunnel

with porous side walls, designed and constructed at the ARL {Applied
Research Laboratory), The Pennsylvania State University was used in the
experiment. The cascade set up is shown in Figure 6.1. The cascade
test section permits a blade span of fourteen inches. Details on

subsonic cascade tunnel design is given in Reference {(25). The
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Figure 6.1 Set Up for Cascade Wake Measurements.
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condition of two-dimensionality and its practical realization during

the test was carried out according to Reference (11).

6.1.1.2 Cascade Blade Configuration. The profile of the

blades used in the cascade is shown in Figure 6,2, The blade span and
the chord are 14 and 7 inches respectively. The blade profile was
designed at the ARL, The blade profile {(of trailing edge loaded type)

is very similar to the NACA-65 (8A )} 10-blade section. The only

2"8b
difference lies in the thickness distribution. The ARL blade profile
is thinner in the loading edge region to reduce the tendency of high
surface velocities due to the blade thickness blockage. The maximum
thickness is near the fifty—five'percent chord position and its value
is ten percent of the chord length. The cascade was operated with the
following characteristics:

Number of Blades 7

1}

45°

#

Inlet Angle (Bl)
Solidity (¢/S) = 1.505

Incidence (i) = -60, 00, +2°

Turning Angle (64) = 220, 280, 30°
The turbulence quantities were measured only for -6° incidence.
The velocity of the free stream flow was 90 ft/sec and Reynolds number

based on the chord length was 3.2 x 105. The free-stream turbulence

level was 0.16 percent,

6.1.1.3 Traversing Mechapism , Two different types of

traversing mechanisms were used for measurements of mean velocity

profile (with a five-hole prism-shaped probe) and turbulence guantities
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Figure 6:2 Profile of Blade Used for Cascade Set Up.
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(with cross wire). Both types of traversing mechanisms could control
the three motions of the probe:

(1) Traversing the probe across the wake (v direction).

(i1} Varying the axial location of the probe (z direction).

(1ii) Rotating the probe about its own axis.

All these motions were controlled mechanically, The traversing
mechanisms are shown in Figure 6.1, Both the traversing mechanisms
were made rigid enough sc that the vibrations and the consequent

fluctuating voltages were small,

6.1.2 Experimental Method and Ingtrumentation

6.1.2.1 Measurements of Mean Velocity Profile., A five-hole

prism-shaped probe manufactured by the United Sensors was used to
measure total and static pressures. Three pressure transducers of
Validyne Type DP1l5 (with pressure range t 0.5 P.8.1.D.) along with a
Validyne Type CD15 carrier demodulator were used to transfer
mechanical to electrical signals. The pressure transducers along with
carrier demcdulator were calibrated against a precision manometer. The
first transducer was used to measure the difference between the total
and the static pressure (PT - Ps) upstream of the cascade. The second
pressure transducer was used to measure the difference hetween the

total and the static pressure (P - PS) downstream of the cascade. The

T
third pressure transducer was used to locate the direction of the flow
so that the difference between the measurements of two static pressure
holes is zero. All the three pressure transducers were fed to a Serial

Converter Type 264 of the Non-Linear Incorporation. The Serial Ceonverter

was connected to a Friden Flexowriter Type FIL for printing the data.
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The measurements were taken at five axial stations (see Figure
4.1). The probe was traversed across the full wake width so as to
clearly determine the wake edge and wake centerline. The calculations
for mean velocity in the wake non-dimensionalized with respect to local

edge velocity were performed according to the following relation:

U P, - P 1/2

T
:E.= [———S ) . (6.1)
Uzo (PT h Ps)zo

6.1.2.2 Measurement of Turbulent Quantities. The turbulence
2

‘s v2 '
quantities (U 5 ? u y

, and U'zUly) were measured across the wake at
eight different axial locations (see Figure 4.1). The block diagram
for turbulence instrumentation is shown.in Figure 6.3. A two sensor
cross wire with nearly equal resistances (10.85, 10.84 ohms) and length
to diameter ratio (QI/Dl) = 250 was used for this purpose. The cali-
bration of the cross wire was done in the inviscid core of a jet, Thé
signals from the cross wires weréw}ed to two DISA Type 55D01 constant
temperature anemometers. An overheat ratio of 1.8 was used in the
anemometers. No linearizers were used since the level .of turbulence
intensity was less than twenty percent, Moreover, the addition of
linearizers in the circuit introduces an error of M 2%. Also, the

2 ~1/2

calibration curve E2 - E « U

o was linear in the velocity range

used in the experiment. The output from Channel 2 of the anemometer
was fed to the DISA Type 55D25 auxiliary unit so as to inverse the
input signal. The signals were then fed to a DISA Type 55D71 battery
operated dual summing unit. The summing unit introﬁuced=a gain of 0,33,

The two outputs e and e, from the summing unit were fed to two DISA
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Figure 6.3 Block Diagram of Turbulence Instrumentation for Cascade.
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Figure 6.4 Axial Flow Research Fan Facility of the Applied Research Laboratory.
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lift on the rotor can be produced by controlling the relative
speed of the fan and the rotor.

A twelve-bladed rotor used in the test program is shown in Figure
6.5. The rotor blades are symmetrical airfoils with a zero camber.
The blades are twisted from the hub to the tip so that the blades have
no loading at all thé radial locations. The rotor blades are of
circular arc (British profile C1) base profile with a maximum thickness-
to-chord-length ratio (t/c) of 0.1 at 33 percent chord point. The
blades have a chord of 6 inches and a span of 5.9 inches. The operating
conditions of the rotor were:

Speed of rotationr(rev/min) = 1010

Blade chord/spacing ratio (c¢/S) at the mean radius = 1.98

Flow coefficient = 0,58
Stagger angle at the mean radius = 45°
Coefficient of drag (cd) = 0,012,

A photocell mounted on the rotor shaft was used to measure the

rotor speed to an accuracy of 1/10 of a revolution per minute,

6.2,1.2 Probes Used in the Experiment. Three types of probes

were used in the experiment: spherical heat static pressure probe; a
single sensor hot-wire probe, and -a three-sensor hot-wire probe.

The static pressure probe used in the experiment was ﬁanufactured
by the Flow Corporation. The diameter of the sphere was 1/8 inch. The
probe has two separate rings mounted on the sphere to stabilize the
wake region by tripping the boundary layer on the sphere. The probe
was insensitive to yaw.and pitch angles in a wide range of

variation (t 400).



-

Figure 6.5 Axial Flow Research Fan Test Rotor
Blades Installed.

with Twelve
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The single- and three-sensor hot-wire probes used in the experiment
were manufactured by the Thermo-Systems, Inc. The length-to-diameter
ratio (21/01) was 400 with resistance of 6.72 ohms. The three-sensor
hot-wire probe used in the experiment is shown in Figure 6.6. The
probe:had three sensors orthogonal to each other. The material of the
sensors was tungsten. The length-to-diameter-ratio (leDl) of all the
sensors was 400 with resistances of 7.02, 7.08, and 7.05 ohms. The

leads from the sensors were properly shielded.

6.2,1.3 Traversing Mechanism. A traversing mechanism was

built for traversing the probe upstream and downstream of the rotor.
The traversing mechanism was mounted on the outercasing of the‘rotor.
and is shown in Figure 6.7. The principle function of this mechanism
was to locate the probe direction such that the vortex line of the cone
formed by the three sensors of the hot-wire probe always pointed in the
direction of the machine axis. This adjustment was carried out with
the help of two allen head screws 1 and 2 (see Figure 6.7). The %
pointer 3 could slide only in a vertical slot along with the probe
holder and the probe could be held-in any vertical position by the
allen head screw 2. This arrangement avoided the circumferential
motion of the probe holder while changing the radial location. The
probe and the probe holder had marks which could be easily aligned to
give a known direction to the sensors of the probe relative to the
machine axes. The probe was located in the probe holder with the help

of two allen head screws.
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Figure 6.6 Three Sensor Hot Wire Probe Used in the
Rotor Wake Measurements.
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A second traversing mechanism was built to be used for carrying
out future measurements in a relative rotating frame of reference.

Description of this mechanism is given in Appendix B.

6.2.1.4 Tape Recorder. A magnitic tape recorder/reproducer

CPR-4010 of Bell and Howell was used to record the A.C. signals from the
three channels of tﬁe anemometers and a pulse signal from photo cell.
The tape recorder used was a l4-channel system and was set to operate

as an FM recorder. The recording was carried out at a tape speed of

15 i.p.s. The choice of the speed was based on the maximum frequency
limit on the wake data required. The tape speed accuracy was 2 0.15%.
The signal-to-noise ratio was 44 dB. The center frequency of recording
was 54 khz and the frequency of the signals to be recorded could vary
from 0 to 10 khz. The band width adjustment was of the wide band

group. The ampliitude of input signal had to be kept from 0.5 to

110 volts peak to peak for 1 40% deviation. The system drift after 10
minutes of warmup was I 0.5% of full deviation in 8 hours with a tempera-

ture variation of 20°C in the operating range of 0° to 50°C.

6.2.1.5 Analog to Digital Conversion Unit (ADC Unit). For

conversion of analog to digital data, ADC unit of Pastoriza Electronics,
Inc., was used. It has seven channels for analog input voltages and
each channel may be set to a gain of 8, 4, 2, or 1 by adjusting the
input gain selectors. The ADC unit transmits the digital data into an
Ampex digital tape recorder which writes each data point as one byte or
8 bits on the IBM tape in binary format. This gives a 7 bit resolution,

which corresponds to a range of integer numbers between 1 and 255. With
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the gain set to one, the input peak-to-peak acceptable voltage is +4
to ~4 volts. The sampling rate of the ADC units is 36,000 data points
per second. The record length can be set by the Bytes/Record Switch
from 4K to 512K (X=100). Before the mathematical operations can be
performed on the digitized data, it is necessary to decode the
digitized tape. The reason is that IBM operates in integer mode in

two or four bytes and in real mode in four bytes.

6.2.2 Experimental Method and Hot-Wire Equations

6.2.2.1 Static Pressure Measurements. The static pressure

(PS] measurements were carried out using a spherical probe de;qribed
in the Section (6.2.1.2). The probe measured the average pressure in the
wake of the sphere and the wake pressure [pw) was then correlated to
the free-stream static pressure at that point. The probe was precali-
brafed in a known static pressure and was evaluated as follows:
1
P, ~P =K (Pp-P)

t

where K, is a calibration constant and P, is the total pressure. The

T
value of K: could be evaluated from the calibration curve Figure '6.8:°
In the present experiment, the probe was connected to a pre-calibrated
pressure transducer whose one end was open to the atmosphere. The
reading on the integrating digital voltmeter was read as owPa. The
static pressure is measured ét five axial locations and six radial

locations corresponding to each axial location downstream of the rotor

{Figure 6.9).

6.2.2.2 Hot-Wire Measurement Method:. The hot-wire measure-

ments (with the three-sensor probe) and data processing technique are
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Figure 6.8 Calibration Curve for Three-Dimensional
Static Pressure Probe.
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similar to that used by Lakshminarayana and Poncet (33). Additional
information on the experimental details and the difficulties encountered
in the data processing is described in the following sections.

The block diagram of instrumentation used for the measurement with
a three-sensor hot-wire probe is shown in Figure 6.10. The measurements
were carried out at five axial locations and at eight radial locations
corresponding to each axial location (Figure 6.9). Electrical signals
from the three-sensor probe were fed to the three DISA Type 55D01
constant temperature anemometers. An overheat ratio of 1.5 and a
frequency gain of 4 was set. A frequency gain of 4 provided a range of
frequency in data from 16 to 100 khz. No linearizers were used since
the measurements with a single sensor hot-wire probe (Chapter VIII)
indicated that the disturbance levels were much below twenty percent.

In addition, single sensor hot-wire measurements were carried out
with an objective to measure the overall disturbance levels up#tream
and downstream of the rotor and to study the effect of rotation on the
overall disturbance level (Chapter VIII}.

The output from the hot-wire anemometers Qas divided into two
branches. One of these went to the integrating digital voltmeter and
the second branch was fed to an amplifier. The readings from the
integrating digital voltmeter were read and noted while the signals
from the amplifiers were memorized in a tape recorder. It is extremely
important that the amplification does not introduce a phase lag between
the three anemometer signals. Therefore, three identical amplifiers
were used for amplifying the signals from the three anemometers.
Secondly, the amplification of the signals is dependent upon the

acceptable range of the input recording voltage of the tape recorder
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{see Section {6.2.1.4)]. For details on the alignment of the probe

direction see Section (6.2.1.3).

6.2.2.3 BHot-Wire Equations. Standard hot-wire equations

were used to process the data. The well-known King's Law was used to

convert voltages (Ecmﬁ) to cooling velocities (chg)’

g2 _p M
= ( cmi o

B ) (6.4)

v
cm 2

where subscript ¢ corresponds to cooling, m corresponds to an instanta-
. 2

neous point and & corresponds to probe sensor. Constants E0 and B2

are obtained from the calibration curve (Figure 6.11) of the three-

sensor hot-wire probe. The value of n, was found to be 0.5. The

instantaneous cooling velocities [chﬁ) sensed by the sensors 1, 2,

and 3 (Figure 6.12) were referred to chl’ ch2’ and ch respectively.

n3

~Knowing V chz, and V it is possible to determine the absolute

¢cml’ cm3’

value of the instantaneous velocity vector Vom by applying the cosine
law to all the three sensors of the probe s;%arately and, adding the
resulting equations we get:

3 Vv 0.5

v} =5 =,y (6.5)

om Ve
- =1 2+kg

Deviation from the cosine law correction is also incorporated in the

above derivation. In Equation (6.5), K, is a constant whose value

q
depends upon length-to-diameter ratio, [il/Dl), of the sensor. The

value of Kg for the sensor used (Kg = 0.19) in these experiments was

derived from Reference (9) and is the same for all the sensors. Once

the absolute value of vom is known, it is possible to establish the

direction of Vom relative to the sensors of the probe; - i.e.,
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Figure 6.11 Calibration Curve for Three-Sensor Hot-Wire Probe.
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Figure 6.12 (continued) Coordinate Transformation and
Symbols Used in Hot-Wire Data Processing.
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2 0.5
Y- K92/1 _ k2

9 ]
Vol

Also, it is possible to obtain components of the. absolute velocity

- [(chR

sin o {6.6)

vector along the three-sensors of the probe; i.e.,

ol (6.7)

There is a need for the transformation of ‘the velocity components

Vo = IYPN| cos o

obtained so far (Figure 6.12) to the coordinate axes of the machine (r,
z, and y) for design purposes and to the coordinate axes (s, n, and r)
used in the theoretical analysis. This, involved in the present case
two transformations (Figure 6.12, a and 6.12, b)}.

'(a) The plane containing wires 1 and 2 is rotated by an angle Ql
so that wire 3 is in the radial direction. The magnitude of angle 81
is 350 {obtained from probe configuration)}.

(bY The plane containing wires 1 and Z is rotated about the
radial direction by an angle 62 so that the probe sensors point in the
direction of the machine axes. Here 62 is 45° (obtained from the probe
configuration). |

If 1, 2, and 3 are the directions of the three sensors of the probe

(Figure 6.12) which form an orthogonal coordinate system, then the

first transformation of the component of velocities give

| 2 2.0.5 2 2.0.5 '
% ] d = :
(le + sz j] (Vﬁl + sz ) cos 81 + Vm3 sin el
(6.8)
2 2.0.5
er = - (le + sz ) sin 81 + Vﬁs cos 81;
where
2 2.0.5 .
o1 * V2 ) - IYpml SN0 g
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1f 93 is the angle, the velocity ]Vomlsin oz makes relative to the

wire 1 then,

cos‘e3 = cos O, /sinum5
and
sin 93 = cos O, /sinotm3
Hence
2 2 0.5
Vﬁ1‘ = (le' + sz' ) cos 63
and
2 2 0,5
Vm2' - (Vﬁl' * Vm2l ) sin 83

From the probe configuration, it is clear that Vm ! and Vm ' make an

1 2

angle (82] of 45° to the machine axes.
Therefore, the component of the tangential and axial velocity are

given by the following relations, respectively:

)
. | - 1
Vi = 0:707 (Vo' = Vi

and (6.9)

L] 1
Vo = 0707 (Vb Y 0

In the relative coordinate system we have:

W =YV ,
mz mz

Voo = fir - Vind

and

W=V . (6.10)

In the streamwise coordinate system we have:

Uﬁs sz coS BC + WmB sin Bc

and

1
[ e}
)

=W cos Bc - W

Jirtal mz

16508 Bc | (6.11)
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where

tan Bc = wme/wmz

BC is the flow angle, which the wake centerline velocity makes with
the machine axis. Wme and sz are time averaged relative tangential
and axial velocities.

6.2,3 Data Processing

The flow at the exit of a rotor (viewed from a stationary frame of
reference) is three-dimensional and unsteady with periodic as well as
random components as shown in Figure 6.13. The extent of three
dimensionality and the.statistical properties of turbulence depend, to-
a large extent, on the Reynolds number, Mach number, Rossby number and
the type of machinery. Any component of the wake velocity consists of
a turbulent fluctuation V' superposed on a mean velocity V (ensemble
average of velocities at any particular location of blade passage or
wake). The periodicity is 27m/Q, where is the angular velocity of the
rotor. The block diagram for processing the data from the tape reéorder
is shown in Figure 6.14. The undermentioned steps were.followed in |
processing the data:

Step!i: Digitizing the analog data using ADC unit is a very
crucial step, since it determines the number of data points (M) we can
get in one blade passage. Depending upon the necessity of the number
of data points, the speed of the tape recorder can be adjusted according
to the foliowing equation: .

M= 2nf/0n , (6.12)
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(a)

(b)

Figure 6.13 Flow Field Behind a Rotor,
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where f is the sampling frequency of the ADC unit. The ADC unit used
in the Department of Aerospace Engineering of "The Pennsylvania State
University has a fixed digitizing speed of ‘9000 words per second per
channel. Hence, the number of data points within blade passage would
be 44.5 at Q@ = 105.71., However, this number of data points was not
enough to locate the wake. Hence, the tape recorder speed was reduced
to 1/8 of the speed at which data was recorded-and:the number of records
made per set of data was 128. The number of wakes to be processed was
160,

Step 2: A computer program (Appendix A) was used to copy the
digitized tapes on a nine track labelled tape.for use in the IBM 370.
The program was developed to write every thirteenth wake which assures
that the sampling points belong physically to the same passage, because
the number of rotor blades were 12,

Step 3: For derivation of the mean velocity, turbulence intensity
and Reynolds stress another computer program was written., The number of
sampling points across the wake chosen for this purpose was 301; 150 on
the one side of the peak and 150 on the other side of the peak. The.
computer program follows the undermentioned steps:

(i) Conversion of all voltages to velocities using King;s Law,

(ii) Using Equatien (6.7), determine the velocity components along
the three-sensors of the probe. -

(iii) Knowing the angles, which the probe sensors make with the
machine axes, coordinate transformations of velocity components are
carried out according to Equations (6.8 te 6.11). One set of Equations
(6.10) transfer velocity compenents in the relative coordinate system
while the second set of Equations. (6.11) transfer the velocity
components in the streamwise coordinate system. The data is processed

in both coordinate systems,
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- (iv) Pointwise point ensemble average is carried out.(33). Only
the relative coordinate system is considered. - The technique follows
similarly for the streamwise coordinate system. Consider mth point on
the recorded wake, If N1 is the total number of similar wakes, then
the averaged velocity along the z direction is obtained as follows:

. N=N1

'
sz (r,z,ed) = Nfl sz(r,z,ﬁ )/Nl’

where
1
6 = Bo + 27N,
80 is the location of the blade passage at which the mean velocity is
evaluated. Similarly other two components of velocity can be evaluated.
This approaches the time averaged value given below for large

values of N, i.e.,

1
T.

Wo(x) = 1T f W (x,0) dt. (6.14)

o}

where T is the period of integration.
The error involved in the estimate is given by the following
expression (39, 33):

error = Jq?/ﬁom/. N1 ) (6.15)

where ;i}ﬁom is the overall turbulence intensity and-Nl is the number
of wakes.

(v) The components of fluctuating velocities are obtained as
follows:

W =W -W . (6.16)
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(vi}) The turbulence intensities and Reynolds stress correlations
are obtained as follows:

Turbulence Intensity:

—y W,
w ) = Nfl W 0 Ny . - (6.17)
Reynolds Stress:
=Ty N=N1 ' 1
mzw 0 - E W sz mﬁ/Nl . (6.18)

Similarly, the other two components of turbulent intensity and
Reynolds stress are evaluated.

The technique described in steps IV, V, and VI is similarly
applied in the streanwise coordinate system to evaluate the components
of mean velocity, turbulence intensity and Reynolds stress.

The overall error involved in evaluating the mean velocity,
turbulence intensity and Reynolds stress is within two, five, and

fifteen percents respectively.
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CHAPTER VII
EXPERIMENTAL RESULTS AND COMPARISON WITH

PREDICTIONS FOR CASCADE WAKE

The general behavior of the mean and turbulent characteristics of
a cascade wake is predicted in Chapter IV. A few of the unknown
constants -are needed to specify the quantitative behavior of the cascade
wake. These constants are evaluated from the experimental data
discussed in this chapter. The cascade used and the measurement techni-
que is described in the previous chapter. The general trend in the
experimental data is found to be consistant with the theoretical.
analysis. The experimental data on the mean and turbulence quantities
is compared with other available data on a flat plate (Ref. 14),
isolated airfoil (Ref. 48) and cascade of airfoils (Ref. 37). A
general discussion on the behavior 6f the mean and turbulence guantities
is presented. Empirical decay laws for the turbulence quantities are
established. The region where the flow achieves self-preservation is
determined. Expressions are also given for evaluating the mixing losses-

in the wake.

7.1 Mean Velocity Profile

As already .stated, mean velocity profile measurements in the wake
of a cascade were carried out for three angles of incidence (-6°, 00,
+29). The choice of angle of incidence was based on the fact that
there was sudden rise in the coefficient of drag beyond -6° and +29
angle of incidence for the cascade under investigation. Plots of mean

velocity profile across the wake at different axial locations and at

different angles of incidence are shown in Figures 7.1; 7.2, 7.3.
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Figure 7.1 Mean Velocity Profile in a Turbulent Cascade Near
Wake (incidence = 09},
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(See Figure 7.1 for Notation)

o 0.50F-
(3]

+0,2 +0.1 0.0 -0.1 =0Q.2
y/c

Figure 7.2 Mean Velocity Profile in a Tugbulent Cascade Near
Wake {(incidence = +27}.
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{See Figure 7.1 for Notation)
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Figure 7.3 Mean Velocity Profile in a Turbulent Cascade Near
Wake (incidence = -69).



110

At the trailing edge (z/c = 0.0), the profiles exhibit character-
istic features of boundary layer. The profiles are nearly symmetrical
for zero angle of incidence, but show appreciable asymmetry at other
angles of incidence (Figures 7.2 and-7.3). This asymmetry is
preserved even at z/c = 0.56. The boundary layer thickness near the
trailing edge is greater on the suction surface for angles of incidences,

i = ¢ and 20, and the trend is reversed for incidence at i = -6°

7.1.1 Self-S5imilarity

In Figures 7.4a and b, an attempt is made to reduce the mean
velocity data to a single curve using scaling velocity as difference

between the maximum and minimum velocity (Ud =0 - ﬁc) and two

zZ0
different scaling lengths (gos and Rop), which are distances on suction
. and pressure side of the wake centerline from the point of minimum
velocity to a point where the velocity is 1/2 (ﬁzo - ﬁc).

Figures 7.4a and b show the existence of similarity in the velocity
profiles, when the velocity and the length scales described above are 
used. The profiles also become symmetrical about the wake centerline.w
The mean velocity can be represented by an expression of the type
(1 - n3/2)2, where n = Y/Qos, or y/lop depending uponithe suction or
pressure side of the airfoil, respectively. The-length‘scales Qos_and
20p are different in the present case due to past history of the fldw;
However, in the case of the cylinder, flat plate or symmetrical airfoil
at zero angle of incidence, Ros = gop'

The ratio ﬁd 2/ﬁ0 ¢ is found to be nearly constant at all axial

zt

locations and angles of incidence (Figure 7.5). This confirms the

self-similarity assumption made in deriving Equation (40121;
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(See Figure 7.1 for Notation)

0.8} exp (-n2/2)

Figure 7.4 Similarity in Mean Velocity Profile of Turbulent Cascade
Near Wake at Incidences: 00, 2°,
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7.1.2 Wake Centerline Velocity

In Figures 7.6 a and.b are shown.the variation of the wake
centerline velocity with downstream distance at various angles of
incidence. Leiblein and Roudebush's (37) data for a cascade, Chevray
and Kovasznay's (14) data for a flat plate and Preston et al.'s (48)
data for an isolated airfoil are shown compared with the authors's
cascade data in Figure 7.6b.

It is clear from Figure 7.6a that the experimental results are in
excellent agreement with the theoretical expression [Equation (4.19)].
Values of K and z _/c are found to be 1.25 and 0.02, respectively.

The values of coefficients of,drag used for determining the constant k
in the present investigation are determined experimentally. In the
present investigation, (-m+1/2) changes from 0.39 to 0.487 for the
thange in angle of incidence from -6° to +2°. It is interesting to
note that the value of k reported by Spence (58) for an isolated airfoil
and the author's: for a cascade of airfoils are about the same. While
Spence's expression for ﬁc is valid for zero pressure gradient (m = 0),
the author's [Eguation (4.27)] for a cascade is more general.

A few important observations can be made from Figure 74.2; about
the mean properties of cascade near wake.:

(1) The wake centerline velocity is recovered to within 70 to
80 percent between trailing edge and half a chord length downstream.

(ii) Wake of a cascade decays slower than the wake of an isolated.
airfoil. |

{(iii) Wake decay of a cascade ié dependent on the solidity and

angle of incidence.



(See Figure 7.5  for Notation)
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Log, (z/c + 0,02)

Figure 7.6(a) Logarithmic Variation of Wake Centerline Velocity

. with Downstream Distance at Incidences: 0%, 29,

-6°
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{iv) Wake decay of a cascade is dependent upon the geometry of the
airfoil used. This is clear from the comparison of the wake of a flat
plate and the symmetrical 12/40 Piercy airfoil (Ref. 48) at zero angle
of incidence. These conclusions are in confirmity with the
theoretical predictions (Chapter IV},

No measurements were carried out far downstream (z/c > 1). There-
fore, it is difficult to comment on the accuracy of expression (4.28).

However, Equation (4.28) for ¢, = 1 reduces to the.case of a far wake

d
of equally spaced row of bars investigated by Olsson (44) who showed

good agreement between experimental and theoretical results.

7.1.3 Wake Edge Velocity

The wake edge velocity measured in the cascade at various angles
of incidence are shown plotted and compared with isclated airfoil data
in Figuré 7.7. It is evident that the wake edge velocity for a cascade
first decreases very sharply near the trailing and then at a much
slower rate. This trend is easily explained on the basis of . the
continuity equation

o ray L
Uzo_t (Sn §%) constant,

where ﬁzo is the wake edge velocity at the trailing edge and &§* is

t
the displacement thickness and Sn is defined in Figure 4.1. &%
decreases rapidly near the trailing edge and at a slower rate further
downstream. The wake edge velocity for an isolated airfoil increases,
while that for a cascade decreases downstream (Figure 7.7).

The edge velocity can be expressed as (Figure 7.7),

0
"
Uzo 1/z s
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where the value of m is found to be - 0,028 for an isoclated airfoil
and 0,16, 0.08 and 0.03 for cascade at angles of incidence »60, 0° and
20, respectively. Based on this, the exponent of (z/c + zo/c) in
Equation (4.27) should be 0.42, 0.46, and 0.485, respectively, for the

0; and 20, respectively. Values of this

cascade of blades at -60, 0
exponent derived directly from the wake measurements (Figure 7.6) are
found to be 0.39, 0.46, and 0.487, respectively. Thus, the agreement
between the theoretically predicted decay rate [Equation (4.27)] and

the measured rate is good. This clearly points out the effect of

external pressure gradient {m # 0) and its effect on wake decay.

7.1.4 Wake Width

A logrithmic plot of the variation of the wake width at various
distances downstream is shown in Figure 7.8, It is interesting to
note that most of the wake width data follows the relationship

b -b
0

ccd1/2

8

= 1.35 (z/c + zoyc)°°5 (7.1)

where b = wake width, bo its value at the trailing edge. The values of
3 used in Figure 7.8 are the measured values. The points up to z/c =
0.35 seem to be well represented by this equation and the exponent

in Equation (7.1} is nearly 0.5 beyond this point.

Theoretically, the exponent in Equation (7.1) should be 0.58, 0,54,
and 0.515 [Equation (4.18)] with m = 0.16, 0.08, and 0.03 for -6°, 0°,
and 20, respectively. The discrepancy between the theory and the
experiment may be due to the difficulty in assessing the value of b
from the measurements. Nevertheless, it is evident that the widely

used representation of wake width (b v zllz) is not accurate, especially

for a cascade wake with pressure gradient in the external flow.
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(See Figure 7.5 for Notation)
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Figure 7.8 Logarithmic Variation of Wake:EdgeJelogity with
Downstream Distance at Incidences; 07, 27, -67.
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7.1.5 Momentum Thickness (0*) and Shape Factor (H}

A plot of the variation of the momentum thickness 6* is given by

-~ U
0% = f -2y,
UZO UZO

and the shape factor H (where H = §*/0) with downstream distance from
the trailing edge is given in Figure 7.9. The magnitude of the
momentum thickness first increases and then becomes almost constant
while the shape factor decreases first and then becomes nearly constant.
Therefore, the maximum of mixing losses takes place very close to the
trailing edge.

The characteristic behavior of 6* is explained on the basis of
the well-known Von Karman's momentum integral equation:.

ggi s @+ 2) 2 dl;-;" - 'i° - (7.2)

P Y20 o

In a wake, skin friction is zero; therefore, Equation (7.2) reduces to

the following form:

ﬁ,
dg* Ay 0% Tzo
T + (H +2) U—_——- 5 ° 0 (7.3)
Z0

Equation (7.3) shows that increase or decrease of 6* depends upon the
variation of ﬁzo' If ﬁzo increases, then 6* decreases (isolated); if
Gzo decreases, then 8* increases (cascade}. This is evident from

Figure 7.9. The variation of shape factor with downstream distance from

the trailing edge of an isolated airfoil is given by Spence (58):

(1 - %g = (1 - %na (40 z/c + l)f 172 s (7.4)
t
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where Ht is shape factor at the trailing edge. The same expression
accurately predicts the variation of H.in a cascade near wake {Figure
7.9).

Since H can be predicted and ﬁzo is known, 8% for the cascade can

be predicted from Equation (7.3).

7.2 Turbulence Quantities

7.2.1 Turbulence Intensity

In Figures 7.10 and 7.11 are shown. the plot of turbulence

intensities in streamwise [J ] and transverse WU ] directions
in the cascade wake at different axial locations. Inltlally, the
curves are asymmetric about the wake centerline and the asymmetry is
retained in the region of investigation (0 < z/c < 0.72). The asymmetry
about the wake centerline is due to the past history of the flow.
However, far downstream, the asymmetry may disappear because the flow
tries to forget its past history. The maximum of turbulence intensity
in the present case occurs almost at‘the wake centerline. The reasons
for this are as follows. Exactly at the wake centerline Reynolds
stress is either zero or has a very small value.. The anisotropy
introduced into the flow due to the presence of the body is an
additional source of turbulence intensity at the wake centerline
besides being the transport of turbulence energy by advection. The
conversioﬁ of the energy of mean flow to turbulent energy takes place
through the process of diffusion along the velocity gradients.
Transport cannot bring kinetic energy from the center of the wake:

because gradients of turbulence intensities are negligible there.

Therefore, the deposit of energy due to advection and turbulence
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production are completely dissipated there. At the same.time, the
region of maximum shear close to the wake centerline will behave in a
different way. Due to the existence of large gradients, most of the
energy transported to the outer part of the wake originates here, while
the remaining dissipates. Hence, it is not unlikely that a maximum of
turbulence intensity will occur at the wake centerline in the present
situation.

However, far downstream of the cascade the maximum of turbulence
intensity will not usually occur at the wake centerline, because the
production due to anisotropy is negligibly small at the wake centerline
and the turbulence production peaks (in the.region of maximum shear)
will be away from the centerline. Therefore, there will be a gradient
transport of energy to the outer part of the wake, and hence, dissipation
will be considerably less than in the case of the near wake.

The distance downstream where the peak of turbulence intensity will
cease to occur at the wake centerline depends upon the maximum thickness-
to-chord-length ratio in cascade of slender bodies. For a very thin
flat plate, the peak of turbulence intensity may not occur at the wake
centerline even close to the trailing edge of the plate (Ref. 14).

q T2 e ["'_2"_..

The decay rate of the maximum of Tuz [ Uz /Uz] and Tuy Uy /Uz]
with distance downstream from the trailing edge is shown in Figure 7.12.
As is evident from Figure 7.12 (Tuz)maxdecays faster than (Tuy)max in
the region of investigation (0 < z/c <10.72). This confirms the
earlier conclusion, based on theoretical considerations, made in

Section @.3.1) [Equation (4.30)]. The variation of (Tuz)m and (Tuy)

ax max

in a cascade can be represented by the following expressions:
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0,35 (7.5)

t -
Tuzﬁ 8 (z/c + z /c)

and

g 0.20

4.6 (z/c + zo'/c)‘ (7.6)

Tuy
It should be remarked here that all intensities are normalized with
respect to local mean velocity. The value of the virtual origin
[zo|/c]'in this case is found to be 0.05.

(Tuz)max is found to be roughly twice as large as (Tuy}max near
the trailing edge as expected due to wall constraints. Farther down-
stream they tend to become equal (Figures 7.10, 7.11, and 7.12). The
quantitative nature of behavior of turbulence intensities at the wake
centerline is consistent with EBquation (4.30). Although the turbulence
intensity Tux was not measured, but it is predicted that Tux will be
close to Tu}r than- to Tuz in magnitude. But away from the trailing
edge (z/c > 0.1) it will take an intermediate value between Tuz and Tuy“

It is interesting to note that (Tuz)max and'(Tuy)max in the case

of a flat plate (Ref. 14), also decay with the same power law as cascade,

Equations (7.5) and (7.6) (see Figure 7.13).

7.2.2 Reynolds Stress

Figure 7.14 shows the distribution of Reynolds stress in a wake
behind the cascade at different axial locations. It should be noted
here that Reynolds stress changes sign abruptly at the wake centerline
and the maximum of Reynolds stress on either side of the wake center-
line need not necessarily be the same in magnitude and are in fact
found to be different near the trailing edge (Figure 7.14) of the

cascade of cambered airfoils investigated here. However, away from the
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trailing edge, this difference disappears. The maximum value of
Reynolds stress decreases rapidly along the streamwise direction up to

a distance of z/c = 0.35 (Figure 7.12).  But beyond z/c > 0.35, the rate
of decrease is small. Variation of [T/pﬁzz]max with distance downstream
is given by the following expression (Figure 7.12):

|

[ 1_:_ zlmax = 0,005 [z/c + 0.05 ]_0'72‘ (7.7)
pU .

Z

Near the wake center, the shear stress varies linearly across the
wake. A very sound qualitative explanation for such behavior has been
given by Townsend (62) for a far wake,— The same reasoning applies
also to a near wake. It should be observed that (3T/3y)y=0 is decreasing
with streamwise direction and the region of maximum shear is displaced
away from the wake centerline with streamwise distance downstream.

In the present investigation, it is found that the point where
Bﬁz/ay = 0 (wake centerline) need not necessarily be the same where
Reynolds stress is zero. This clearly indicates that mixing length

hypothesis is not valid for predicting the mean and turbulence quantities

in such a region. The variation of U'ZU'y/U'Z2 with distance downstream
from the trailing edge is shown in Figure 7.15 and is found to be
constant (0.515) near half the wake width. The constant value is found
to be little higher than in flows with uniform distortion of homogeneous
turbulence (0.4) or the theoretical value (0.354) predicted in Section

(4:3.2).

7.2.3 Self-Preservation

An attempt was made to correct turbulence intensities and Reynolds

stress data using the same velocity and length scales as that used for
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mean velocity. The data could not be reduced to a single curve as in
the case of mean velocity profile. This shows that the flow is not
completely self-preserved. An explanation for such behavior can be
given by considering the turbulent energy equation. In a two-
dimensional mean motion, the two energy production temms can be written

as

a0 —_— = 3l
1 T z 12 l2 Z
-UzUya—);——and(Uz—Uy)F . (7.8)

The first of these terms is usually ignored in homogeneous distorted
turbulence, while the second in isotropic far wake. Therefore, the
term introducing nonself-preservation in the flow is the second term.
Since at the trailing edge of the cascade there is production of
turbulence intensity and the flow is anisotropic, the second term is of
comparable magnitude to the first term. The production of turbulent
energy differs for various bodies and depends upon the shape of the body.
In the case of bluff bodies the second term is of much higher order
(3 to 4 times) compared to streamlined bodies or flat plate. This is
the reason whf in the case of streamlined bodies the self-preservation
is attained much earlier than in the case of bluff bodies. Reynolds
(53) deduced a criterion for self-preservation based on the above two
energy production temms,
v' u' a0 /e
P=[d_j_{’;_'z/y1_£ (7.9
W 2.0 Bobsez
Z ¥y Z

where % is half the wake width., If P > 1, (i.e., shear dominated flows)
and equal to 3 the flow tends to be nearly self-preserved. But for

complete self-preservation, P has to have a much larger value (> 10).
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If P < 1, the flow is not self-preserved. Variation of P downstream
in the streamwise direction of the cascade is shown in Figure 7.16.

This shows that, from z/c = 0.24 onward the wake is nearly self-

preserved.
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CHAPTER VIII
EXPERIMENTAL RESULTS AND COMPARISON WITH

PREDICTIONS FOR ROTOR WAKE

The general behavior of the mean flow characteristics of a rotor
wake was predicted in Chapter V. A few of the unknown constants are
needed to specify the quantitative behavior of the rotor wake. These
constants are evaluated from the experimental data discussed in this
chapter. The general trend in the experimental data is found to be
consistent with the theoretical analysis. The data on the mean and
turbulence quantities is compared with the data of an isolated airfoil
(Ref. 48) and a cascade of airfoils (Ref. 49). A general discussion on
behavior of the mean and turbulence quantities is presented. Empirical
decay laws are established for the turbulence quantities.

The measurements with a single sensor hot-wire probe, static pres-
sure probe and three-sensor hot-wire probe will be presented and

discussed.

8.1 Overall Disturbance Level

Plots of overall disturbance level TD = Vz/v, V= circumferential
average, of downstream distance from the trailing edge and speed of
rotation of the machine are shown in Figure 8.1. Measurement of the
overall disturbance level was undertaken due to the following reasons:

(1) It will aid in the selection of the turbulence instrumentation

for measurement with a three-sensor hot-wire probe.

(ii) It provides information on the gross characteristics of wake

turbulence downstream of a rotor.
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(ii1) In addition, it provides an easy means of studying the
effect of rotation on overall disturbance level at the
design operating condition..

The overali disturbance level was measured with a single-sensor
hot-wire probe. Two sets of experiments were carried out. In the first
set of experiments, the probe was traversed downstream of the trailing
édge. However, the radial position of the probe at the downstream
stations was kept the same (r/rt = 0.72). In the second set of experi-
ments, the position of the probe was.not changed but the speed of the
rotor was varied.

As is evident from Figure 8.1, there is a rapid drop in the overall
disturbance level close to the blade trailing edge. Farther downstream,
the drop in overall disturbance level is considerably smaller. The
effect of the variation in speed of rotation on the overall disturbance
level is also shown in Figure 8.1. It should be noted that the flow
coefficient was kept the same while the speed of rotation was .changed.
This is the main reason why the effect of rotation is insignificant.

It should be pointed out here that the overall disturbance level changes
with flow coefficient (Ref. 23, 24). Since the rotor in this case was
always operating at design condition, very little change in overall

disturbance is observed.

8.2 Static Pressure Distribution

A static pressure probe, manufactured by The Flow Corporation,
was used to measure the static pressure at the exit of the rotor. The
probe is 3.2 mm in diameter and has two separation rings to assure

stability of the sphere's wake region. It is insensitive to yaw and
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pitch angles in 2 wide range of angles of variation (: 40%.
Calibration of the probe is described in Chapter VI.

The radial distribution of static pressure coefficient (ws) at
various axial stations is shown in Figure 8.2. It is evident from this
figure that the variation of ws in the axial direction is small, The
measured gradients in static pressure (dp/dr) is inxclose agreement
with the predictions based on the equation

é— gl:;= 20 0 sink + e . (8.1)
This confirms the validity of the assumptions made in the theoretical

analysis,

8.3 Mean Velocity Profile

As indicated earlier, mean velocity profile measurements in the
wake of a retor were carried out at eight raaial stétions and five -
axigl stations. However, only one radial station is considered in this
discussion. The radial station selected is r/rt = 0.58, Plets of mean
streamwise and radial velocities are shown in Figures 8.3, 8.4. The
radial cﬁmponent of velocity in.the wake close to the trailing edge is
about ten percent of the free stream velocity and the radial flow in
the inviscid region is of -the order of one percent of the free streaﬁ
velocity [USO). The trend was similar at all other radial stations of
measurement downstream of - the rotor.

The velocity profiles shown in Figures 8.3, 8.4 are typical of a
three-dimensional wake and are unsymmetrical .abo_ut the wake centerline,
The asymmetry is preserved downstream of the rotor.  The appearance of

radial flows in the wake is due to the imbalance of centrifugal and
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pressure forces inside the wake and its direction is outward very
close to the wake centerline. The peak radial velocities occur away
from the wake centerline and radial velocities are very small at the

wake edge and the wake centerline.

8.3.1 Self Similarity

In Figure 8.5, an attempt is made to reduce ﬁhe streamwise mean
component of velocity to a single curve using the scaling velocity ﬁd
and two different length scales‘(ﬂ.oS and Rop), which'are-distances on
the suction and pressure sides of the wake centerline from the point of
minimum velocity to a poin£ where the velocity defect is ﬁd/2.

Figure 8.5 shows the existence.of similarity in.the velocity
pfofile when the velocity and 1éngth,scales described above are used.
"The profiles become nearly symmnetrical about the wake centerline. The
streamwise veloéity profile does not show close agreement with the
gaussian distribution [i.e., efn32 or (1-n33/2)2] unliké a cascade wake’
(Ref. 49), except near the wake centerline. |

A close examination of Figure 8.4 also shows that the mean

components of radial velocity are also nearly similar.

8.3.2 The Decay Laws

Figure 8.6 shows the variation of the wake centerline velocity
defect (streamwise component) with streamwise distance downstream of the
rotor. The data for cascade of airfoils (Ref, 49) and isolated airfoil.
"(Ref. 48) are compared with rotor wake data in Figure 8.6.

The data on rotor wakes was used to find the'RS in Equation (5.28).

Due to finite thickness of the trailing edge, it is necessary to add a
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value of the virtual origin to s in Equation (5.28). With the above-

mentioned additions, Equation (5.28) takes the following form:

4 < exp (- 7P/R, (s/8' + s /ST . (8.2)

ot

50

The'éoﬁstant.so in the above expfessioh depend§ on the trailing
edge thickness and Rs should depend on the flow and blade parameters
of the rotor.

The rate of wake decay very near the trailing edge is found to be
very targe (Figure 8.6) and, in this region, R, = 0.71 and so/S' = 0.013.
Equation (8.2), with these constants, is valid up to s/S = 0.15.

These conétants will be different farther downstreém, since theldiffusion
properties which control the value of Rs through eddy Viscosity-chgnges;
Furthermore, the virtual origin is now dependent on the slope of the

wake spread and not the trailing edge thickness. In the region s/S'

> 0.15, the constants in Equation (8.2) were found to be sO/S',= 3.46

and Rs = 14.00.

A few important observations.can be made from Figure 8.6, (a) The
streamwise component of wake centerline velocity recovered to within 30
percent between trailing edge and one quarter chord léngth downstream.
(b) The rate of decay of rotor wake velocity defect in the streamwise
direction is faster than those of a cascade of airfoils (Ref.‘49) or an
isolated airfoil (Ref. 57). (c) Different values of Rs indicate that
the wake diffusion properties change considerably from the trailing
edge to disténces farther downstream.

The decay rate of the radial component of velocity (maximum value)
is shown in Figure 8.7. The decay of the maximum radial velocity seems

to follow the following relationship (Figure 8.7):
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6y .- (0 ) , 2 s
Toax IO L, exp [ Crr ) 1. (8.3)
S S

U .
-50max

These constants are the same as those for the decay of streamwise

component with the exception of KlO' The value of K. is found to be

10
t
equal to 0.75 for s/S > 0.1,

8.3.3 Wake Width

The variation of half the wake width (R) along streamwise and
.radial.direction is plotted in Figure 8.8. At r/rt = 0.58, there is
- negligible variation in '&’ aiong the radial direction, except near the
hub wall. The largest value of half the wake width at the hub may be
due ﬁo complex interaction of wake, hub wall boundary layer and
seeondary_flows. A logarithmic plot of the variation of half the wake
width () with streémwise direéction 1s shown in Figure 8.9 for s/S' >
0.15, the half wake width at r/rt =.0.S8 satisfy the foilowing
relationship: | |

= 1.93 (s/s )2 318

pIF

o (8.4)

1
where 20 is the value of haif the wake width at s/5 = 0.15 (first

measuring station).

8.4 Turbulence Quantities

8.4.1 Turbulence Intensity

The distribution of turbulence intensities in the streamwise (TS),
transverse (Tn) and in radial directions (Tr) at various axial stations

is shown in Figures 8.10, 8.11, 8.12, 8.13. The data is presented for



0.4
Station
O 1
0.3 L v 2
O o 3
A 4
v A
0.2 L
(93]
.
="}
0.1 =3
0 1 % 1
0.50 0.75 1.00.
r/ft

Figure 8.8 Streamwise and Radial Variation -of Half the Wake Width (&) in a Rotor Wake

8%71



1.6 - A  Experimental Results (r/rt = 0.58)
' Equation (8.4)
r‘\o 1.2 -
@
e
= ‘
o 0.8 }
=]
Q
w
0.4 L
a t : . $ 1 i
-2.133 -1.333 -0.533 - 0.267 ¢ 1.067
_ .
Loge (s/5)

Figure 8.9 Logarithmic Plot of the Variation of Half the Wake Width with Streamwise Distance
' (r/r, = 0.58).
Tt

671



150

.04

.00 .

07

.00

I

.00

Figure 8.10 Distribution of Turbulence Intensities Tg, T,
and T, Across the Rotor Wake at Station 1 (r/rt) = 0,.58).



151

024 ¢

w 013

-002 N " ) i e

.036

o .020 f

.003

L

1 t
-2n/8S +2n/S

.052

., .028

.003

Figure 8.11 Distribution of Turbulence Intensities T_, 0’ and

Tr Across the Rotor Wake at Station 2.(r/rt = 0?58).



152

.026 .
= .014
.002 _ _ o
.8 .5 .1 .1 .5 .8
[}
-2n/s’ +2n/8
L027 .
5 015
.003 | . _ .
8 .5 .1 .1 .5 .8
n2n/S' +2n/S'
L0417y
eHoo.022¢
.004 , .
.8 .5 .1 .1 .5 .8
-2n/S' +2n/S'

Figure 8.12 Distribution of Turbulence Intensities Tg, T, and
Tr Across the Rotor Wake at Station 3 (r/rt = 0.58).



153

.021

= L011L

.001

.024

T

L& 013

.002

037

H o .020

.003

Figure 8.13 Distribution of Turbulence Intensities T

o T, and
Tr Across the Rotor Wake at Station 4 (r/rt ="0.5

8).



154

one radial station (r/rt = 0,58}, since the trend is similar at all
~other radial stations. The turbulence intensity profiles are asymmetric
about the wake centerline and this asymmetry is retained even far down-
stream of the rotor (one chord length). Furthermﬁre, there is a tendancy
(in the radial and streamwise directions) for the occurrence of a dip
close to the wake centerline,

The largest component of turbulence intensity is in the radial -
direction. The ratio of Tr/Tn and Tr/Ts are 1,49 and 2,34, respectively,
near the trailing edge and 1.47 and 1.69 farther downstream of the
trailing edge. The ratio of turbulence intensities shows that the
tﬁrbulence is highly anisotropic close to the trailing edge of the
rotor blade and has the tendency towards isotropy further downstream.
The free stream turbulence level is found to be about 0,1 percent.

A theoretical explanation of the redistribution of energy between
the three components of fluctuating velocities is given by Raj and
Lumley (50). It is pointed out that, if the gradient of the radial
component of mean velocity across the wake is much larger than the
angular velocity of the machine, then,

Tr > Tn >.TS
This is confirmed by data presented here. The anisotropy introduced
into the flow 1is due to the presence\bf blade, rotation and the
pressure gradients.

The decay rate of the turbulence intensities with streamwise
distance downstream of the rotor is shown in Figure 8.14 and compared
with the decay rates of turbulence intensities in a cascade wake. It

is evident from Figure 8.14 that all the components of turbulence
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intensities decay at the same rate close to the trailing edge
1
according to the following expression (0.15 < s/S < 0.36):

(D, = As/s) T8 (8.5)

The value of constant A is found to be 0.109, 0.017, and 0,025,
respectively, for s, n, and r components. Farther downstream, the
intensities decay at different rates as represented by the following

relations (S/S' > 0.,36):

) '.-0.32
(T oy = 0-057 (5/S)
) ' -0.249
(T hax = 0.028 (s/5 ) (8.6)
_ t.-0.122
(T))_,. = 0.021 (s/S)

The above relations show thét decay rate of (Tr)max is the 1arge§t of
all components of turbulence intensities.

A comparison of the decay rates of turbulence intensities of rotor.
and cascade wakes (Ref. 49) shows that the turbulence level, anisotropy

and decay rate in a rotor wake is higher than that of cascade wake,

8.4.2 Reynolds Stress

In figures 8.15, 8.16, 8.17, 8.18 are shown the distribution
of components of Reynolds stress Ten® Ton? and Tsr'at all ‘the axial
stations downstream of the trailing edge of the rotor blade for r/rt =
0.58.

The largest component of Reynolds stress is Ton” The ratios Trn/
Ten and Trn/Tsr are 2 and 3.1 respectively near the trailing edge and 1

and 1.5 farther downstream. The ratio of Reynolds stresses show that

they have a tendency to reach the same value. The theoretical
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explanation for the occurrence of the largest value of Reynolds stress
can be based on the largest values of mean velocity gradients in the n
direction.

While no analysis is carried out for the prediction of Reynolds
stresses, decay laws can be derived from the experimental data. A plot
of the variation of maximum values of the components of Reynolds stress
(Tsn’ Trn’ and Tsr) downstream of the rotor is shown in Figure 8.19.
it is clear that all Reynolds stresses first decrease rapidly (0.15 <

1
s/S < 0.36). Then, they decay at nearly the same rate. Near.the

t
trailing edge (0.15 < s/5 < 0.36}, the decay follows the expressions

LI
Ty = 0.001 (s/S ) 2.05
T = 0.0006 (s/s') 192 (8.7)
sn
1. -1.92
T = 0.0004 (s/S )

Farther downstream, all the components of Reynolds stress decay at
nearly the same rate and 1s given by:

', -0.267

T = 0.0003 (s/S ) (8.8)

It is necessary to point out that the data on Reynolds stress is
qualitative in nature.

A comparison of decay laws for Reynolds stress in a cascade wake
{Ref. 49) and that of a rotor wake indicate that Reynolds stress decays

faster in the rotor wake.
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8.4.3 Ratio of Total Reynolds Stress (Toj

to Total Turbulence Energy [pq%)

A plot of G([To[/pqz)at various axial stations across the wake is
shown in Figure 8.20 for r/rt = 0,58, It is clear from this that the
variation of G.across the wake is not constant and has a wide variation
ranging from 0.06 to 0.48. This serves as a caution for those who are
contemplating to use Bradshaw et al.'s (6) turbulence model (where G is

assumed to be constant) for predicting three-dimensional wake flows.
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CHAPTER IX

CONCLUSIONS

9.1 Cascade Wake

The experimental and analytical investigations reported in Chapter
VII indicate that the wake of a cascade of airfoils differs from that
of a cylinder, flat plate, or isolated (symmetrical) airfoil at zero
incidence, in several respects.

(i) The wake is asymmetrical. When two different length scales
are used, one for each side of the wake, mean velocity profiles become
symmetrical about the wake centerline,

(ii) The wake edge velocity changes continuously, giving rise to
either slower decay of the wake defect (as in the case of a cascade
with decelerating free-stream flow) or faster decay (as in the case of
accelerating mean flow). The mean velocity profile is of the type
{1 - n3/2)2, where n = y/ios or y/Rop, and ﬁos’ Lop are length scales
on the suction and pressure side of the wake, respectively. The wake
centerline velocity is well represented by Equation {4.27), and the
width of the wake by Equation (7.1).

-(iii) Turbulence intensities are higher than those of a flat plate
wake, even though decay characteristics shown in Equations (7.5) and
(7.6) are nearly the same. Maximum Reynolds stress and decay
characteristics are given by Equation (7.7).

The change in cascade parameters (e.g., solidity ¢/S and incidencé
i) has a dual effect. Solidity is likely to change the wake edge velo-
city (m in the equation Gzo " 2™ and the profile drag. Both of theée

change the wake decay characteristics. But in the far wake, where
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UZo " const., the velocity defect at the wake centerline is inversely
proportional to solidity. The incidence and camber effects (which
directly control boundary-layer growth, blade loading and drag
coefficient) would similarly influence the decay rate through the
parameters ¢, and m. The results reported here adequately demonstrate
this.

Schlichting (56), while investigating the far wake of a cascade of
circular cylinders, derived a theoretical expression for the mean
velocity, which shows no dependency on €1’ This is due to the fact
that the 4 for a circular cylinder in the Reynolds number range of
104 to 105 is nearly unity, while that of a cascade of blades is two
or three orders of magnitude less.

The peak in turbulence intensity may occur at the wake centerline
in a cascade, depending on the thickness of the blade and the downstream
distances., Experimental data of Reynolds (53) show a similar trend.

For large-diameter c¢cylinders, the interaction of the mean-velocity
defect and the turbulence intensity is delayed, resulting in the occur-
rence of the turbulence peak at the wake centerline. However, the
turbulence intensity peak will be away from the wake centerline for the
same cylinder at larger downstream distances.

No attempt is made in this paper to investigate the effect of
inlet turbulence. At higher levels of free-stream turbulence, the
wake decay characteristics may be different. The data of Eagleson et al.
(21} for a flat plate wake in a water tunnel indicate that the near wake

decay law changes from z 1/2 6 27 when the turbulence level is
around 4 to 7 percent. This is an area where further research is

needed.
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9.2 Rotor Wake

The experimental and analytical investigations reported in
Chapter VIII indicate that the wake of a rotor blade differs from that
of an isolated airfoil and a cascade of airfoils in several respects.

(i) The decay rate of wake defect of a rotor blade is higher
than that of an isolated airfoil or a cascade of airfoils. The decay
law is given by Equation (8.2). However, two differing constants are
needed to prescribe the wake decay rate; one closer to the trailing
edge, and the second further downstream.

(ii) Although the profiles of mean velocity are nearly similar,
the similarity is less pronounced near the edges of the rotor wake as
compared to those of an isolated airfoil or cascade of airfoils,

(iii) The anisotropy, the magnitude of turbulence intensities
and Reynolds stresses are much higher than that of a cascade wake. The
decay rate of the turbulence intensities and Reynolds stresses is also
larger compared to a cascade wake.

The large decay in mean velocity gradients immediately downstream
of the rotor is due to intense mixing of the wake with the free stream.
However, due to large mean velocity gradients, there is a large
production of turbulence such that turbulence decay cannot adjust
itself to the abrupt changes. Consequently, at some points downstream
of the rotor, the gradients in turbulence quantities become larger than
those of mean velocities. This is-an extremely inequilibrium situation
and part of the energy contained in turbulence is fed back to the mean
velocity, thus preventing the wake from decaying completely until an

equilibrium situation is reached.
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One of the important features of ‘this investigation is the fact
that the contribution from the wake to the total unsteadiness in the
subsequent blade row comes equally from the wake turbulence and the
defect in mean velocity. Due to physical constraints, it was not
possible to investigate the flow regions in the vicinity of. the
trailing edge (s/St < 0.15) or the boundary léyer characteristics at
the trailing edge of the rotor blade. Therefore, it should be planned
to fully investigate the wake flow using a rotating hot-wire and

conventional probe as described in Appendix B.
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APPENDIX A

LISTING OF COMPUTER PROGRAMS
FOR ROTOR WAKE DATA PROCESSING

A) FORTRAN PROGRAM TO WRITE EVERY THIRTEENTH WAKE

/*TAPE RISHO2
/*TAPE MEHO07,M,W

// EXEC FGCG
//SOURCE, INPUT DD «

100

10

1001

51

100

REAL * Lk V1(5000), V2(5000), V3(5000)

REAL ~ &4 V1BK(150), V2BK(150), V3BK(150)

LOGICAL * 1 cC(16384)

DATA NUM/O/, IPTR/L4097/,IREC/0/,IFILE/L1/, MARK/L/

Do 10 1=1,11

|KEY = 0

CALL PEAK(V1,V2,VY3,V1BK,V2BK,V3BK, IPTR, | KEY, | SWTCH)

IFCIKEY.NE.0) GO TO 1001

IPTR = IPTR + 151

IKEY = 0

CALL PEAK(V1,v2,V3,V1BK,V2BK,V3BK, |PTR, IKEY, |SWTCH)

IF(IKEY.NE.G) GO TO 1001

IKEY = 0 -

CALL WRITE (Vv1,V2,V3,V1BK,V2BK,V3BK, ! PTR, |KEY,
IMARK, IREC)

[F(IKEY.NE.O) GO TO 1001

IPTR = |PTR + 151

GO TO 100

WRITE(6,51) IFILE, IREC

IREC = 0

IFILE = IFILE + 1

IMARK = 1

IPTR = 4087

ENDFILE 70

GO TO ‘100

FORMAT(' ',10X,'FILE NUMBER =',13,10X,

'"NUMBER OF RECORDS=',13)

END

SUBROUTINE RESET(V1,V2,V3,IPTR, | SWTCH, IKEY)

REAL * 4 V1(5000), v2(5000), V3(5000)

LOGICAL * 1 CC(16384), L(4)

EQUIVALENCE (L(1), INT)

INT = 0

[SWTCH = 0

CALL GET (60,CC,16384, IKEY)

IFCIKEY.NE.O) RETURN

DO 10 I=1,L096

ITEMP = (1=1) * 4 + 1

L{(4) = CC(ITEMP)

V3{1) = FLOATCINT)

L(4) = CCCITEMP+1)

VICI) = FLOAT(INT)
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L{4) = CCUITEMP+2)
V2¢1) = FLOAT(INT)
10 CONTINUE
{PTR = &4
RETURN
END
SUBROUTINE REBK(V1,V2,V3,V1BK,V2BK,V3BK, |SWTCH)
REAL * 4% V1(5000), v2(5000), Vv3(5000)
REAL * &4 V1BK(150), V2BK(150), V3BK(150)
IKNT = 1
ISWTCH = 1
DO 10 i=3947,4096
VIBK(IKNT) = V1(I)
V2BK(IKNT) = v2(!)
VIBKCIKNT) = v3(I)

10 IKNT = IKNT + 1
RETURN
END
SUBROUTINE PEAK (V1,Vv2,V3,V1BK,V2BK,V3BK,IPTR,
X IKEY, ISWTCH)

REAL * 4 VI(5000), v2(5000), Vv3(5000), MIN
REAL * &4 VIBK(1l50), V2BK(150), V3BK(150)
IFCIPTR.GT.4096) CALL RESET(V1,V2,V3,1PTR,
X ISWTCH, L KEY)
IFCIKEY.NE.Q) RETURN
1 DO 10 I=I1PTR,4096
TEMP = V1(I«3) - VI(l)
TEMP = TEMP/V1(i-3)
IF(TEMP,GT.0.20) GO TO 11
IFCISWTCH.EQ.1) GO TO 10
IF(1.GT.151) CALL REBK(V1,VvZ,V3,V1BK,V2BK,
X V3BK, ISWTCH)
10 IPTR = |
CALL RESET(V1,V2,V3,IPTR,ISWTCH, IKEY)
IFCIKEY.NE.Q) RETURN
GO TO0 1
11 |ADD = 0
[END = IPTR + 100
IPTR = IPTR = 2
IF(IEND.LE.54096) GO TO 12
IADD = IEND - 4096
|END = 4096
12 MIN = 10000.0
DO 20 I=IPTR, |END
[F(VIC(E) . GE.MIN) GO TO 20
MIN = V1(1)
IMIN = |
20 CONT I NUE
IFCIADD,.EQ.0) GO TO 21
CALL RESET(V1,Vv2,V3,IPTR,ISWTCH, | KEY)
JFCIKEY.NE.Q0) RETURN
DO 30 I=1,I1ADRD
IF(VI(I).GE.MIN) GO TO 30
MIN = V1(I1)



30
21

10
11

20

30
21

22

40

50
160

IMIN = 1
CONTINUE
{PTR = iMIN
RETURN

END
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SUBROUTINE WRITE(V1,v2,V3,V1BK,V2BK, V38K, IPTR, IKEY,

I MARK, IREC)
REAL + L v1(5000), v2(5000), V3(5000)
REAL ~ &4 VIBK(150), V2BK(150), V3BK(150)
REAL + & VIF(301), V2F(301), V3F(301)
LOGICAL + 1 ACCUM(18060), L(B)
EQUIVALENCE (INT, L(1))
FKNT = 1
FF(IPTR.LT.151) GO TO 11
{FC(IPTR,GT.3946) GO TO 21
ISTRT = IPTR = 150
[END = {PTR + 150
DO 10 (=ISTRT, IEND
VIF(IRNT) = V1(I)
V2F(IKNT) = va(l)
V3F(IKNT) = V3(1))
FKNT = [KNT + 1
GO TO 100
DO 20 1=1PTR,150

VIF(IKNT) = VIBK(1)
V2F{IKNT) = V2BK(§)
V3F(IKNT) = V3BK(1)

TKNT = [KNT + 1

IEND = {PTR + 150

DO 30 {=iPTR,IEND
VIF(IKNT) = V1(1)
V2FCIKNTY = v2(i)
VEF(IKNT) = V3(1)

[KNT = JKNT + 1

GO TO 100

i TEMP = {PTR
IF(ISWTCH.EQ.0) GO TO 22
CALL RESET (V1,V2,V3,IPTR, ISWTCH, IKEY)
iF(CIKEY,NE.0) RETURN
ISTRT = ITEMP = 3946

DO 40 §={STRT, 150
VI1F(IKNT) = VIBK(i}
V2F(IKNT) = V2BK(1)
V3F(EKNT) = V3BK(1)

FKNT = IKNT + 1

fEND = [TEMP + 150

DO S50 1=ITEMP,IEND
VIFCIKNT) = v1(i)
V2FCIKNT) = v2(l)
VIFCIKNTY = V3(i)

TKNT = [KNT + 1

MIN = VIF(151)

DO 60 i=1,301 -
PE(MIN,LE.VIF(i)) GO TO 60



1F(!.,GT.,155.0R, | . LT.147) GO TO 71
60 CONTINUE

DO 70 1=1,301

INT = IFIX{V1F(I1))

ACCUMC IMARK) = L(4)

IMARK = IMARK + 1

(INT = [FIX{V2F(I1))

ACCUM( IMARK) = L{4)

IMARK = IMARK + 1

INT = IFIX{V3F(I))

ACCUM( IMARK) = L{4&)

IMARK = IMARK + 1
70 CONT!NUE

IFCIMARK.NE.18061) RETURN

CALL PUT(70,ACCUM,18060, |KEY)

IREC = [REC + 1

IMARK = 1
71 RETURN

END
//DATA.FTE0F001 DD UNIT=(TAPEA,,DEFER),VOL=SER=RISHO1,
// LABEL=(1,SLJ),DSN=F|LEL '
//DATA.FT60F002 DD UN!T=(TAPEA,,DEFER),VOL=SER=RISHO1,
// LABEL=(2,SL),DSN=F|LE2
//DATA.FT60F003 DD UNIT=(TAPEA,,DEFER),VOL=SER=R{SHO1,
// LABEL=(3,SL),DSN=FiLE3
//DATA.FT60F004 DD UNIT=(TAPEA,,DEFER),VOL=SER=RI[SHO1,
// LABEL=(4,SL),DSN=FILEL
//DATA,.FT60F005 DD UNIT=(TAPEA,,DEFER),VOL=SER=RiSHO1,
// LABEL=(5,SL),DSN=FILES
//DATA,FTB0F006 DD UNIT={TAPEA,,DEFER),VOL=SER=RISH01,
// LABEL=(6,5L),DSN=FILE6
//DATA.FT60FQ07 DD UMIT=(TAPEA,,DEFER),VOL=SER=RISHO1,
// LABEL={7,S5L),DSN=FILE7
//DATA.ETEOF008 DD UNIT=(TAPEA,,DEFER),VOL=SER=RISHO1,
// LABEL=(8,SL),DSN=F|LES
//DATA.FT60F009 DD UNIT=(TAPEA,,DEFER),VOL=SER=RISHO1,
// LABEL=(9,S8L),DSN=F[LE9
//DATA.FT60F010 DD UNIT=(TAPEA,,DEFER),VOL=SER=RISHO1,
// LABEL=(10,SL),DSN=F}LE1O
//DATA.FT70F001 DD UNIT=(TAPEB,,DEFER),VOL=SER=MEH0G,
// DSN=MARK.F1l,DCB=(RECFM=F, LRECL=18060,BLKSIZE=18060},
/{ LABEL=(1,SL)
. J/DATA.FT70F002 DD UNIT=(TAPEB,,DEFER),VOL=SER=MEH0E,
// DSN=MARK.F2,DCB=(RECFM=F,LRECL=18060,BLKSIZE=18060),
// LABEL=(2,SL)
//DATA.FT70F003 DD UNIT=(TAPEB,,DEFER), VOL=SER=MEHOG,

// DSN=MARK.F3,DCB=(RECFM=F,LRECL=18060,BLKSIZE=18060),

// LABEL=(3,5L)

//DATA.FT70F004 DD UNIT=(TAPEB,,DEFER), VOL=SER=MEHOS,
// DSN=MARK.Fk4,DCB=(RECFM=F,LRECL=18060,BLKSIZE=18060),
// LABEL=(L,SL)

//DATA.FTZ0F005 DD UNIT=(TAPEB,,DEFER),VOL=SER=MEH06,
// DSN=MARK.F5,DCB=(RECFM=F, LRECL=18060,BLKSIZE=18060),
// LABEL=(5,SL)

177



J/OATA.FT70F006 DD UNIT=(TAPEB,,DEFER),VOL=SER=MEHOG,
// DSN=MARK.F6,DCB=(RECFM=F, LRFCL=13060 BLKSI1ZE=18060),
// LABEL=(6, SL)

//DATA. FT?DFOO? DD UNIT=(TAPEB,,DEFER),VOL=SER=MEH06,
// DSN=MARK.F7,DCB={RECFM=F, LRFC[=18060 BLKSIZE=18060),
// LABEL=(7, sL)

//DATA, FT70F008 DD UNIT=(TAPEB, ,DEFER), VOL=SER=MEH0G,
// DSN=MARK,F8,DCB=(RECFM=F, LRECL=18060,BLKS|ZE=18060),
/! LABEL=(8, 519

//DATA. ET70£009 DD UNIT=(TAPERB, ,DEFER),VOL=SER=MEHOG,
// DSM=MARK.F9,DCB=(RECFM=F,LRECL=18060,BLKS1ZE=18060),
// LABEL=(9,5L)

//DATA.FT70F010 DD UNIT=(TAPER,,DEFER),VOL=SER=MEH06,
// DSN=MARK.F10,DCB=(RECFMaF,LRECL=18060,BLKSIZE=18060),
J// LABEL=(10,SL)

B) FORTRAN PROGRAM TO OBTAIN MEAN VELOCITY, TURBULENCE
INTENSITY AND REYNOLDS STRESS,

// MSGLEVEL=(1,1)
/*TAPE MEHO7 :
/*USERID MEHN2
J/WTLOG EXEC PGM=WTLOG
//STEPLIB DD DSN=COMPLIB,DiSP= SHR
//ETOSEQO0L DD =+
RISH
PLOTS
//STEPL EXEC FGCG
J/SOURCE.INPUT DD =
REAL * & K2

DIMENSION Vv1(6020), v2(6020), V3(6020), SUMV(6020)}

DIMENSION SINA(E020), SINB(56020), SINC(6020)
DIMENSION AVGV1{301), AVGV2(301}, AVGV3(301)
DIMENSION AVGV1S(301), AVGV2S(301), AVGV3S(301)
DIMENSION SMV1IV2{(301), SMV2V3(301), SMV3V1(301)
DIMENSION TEMP2(301), AVG123{301), SUMAVG(301)
LOGICAL » 1 CC(18060), L(L)
DATA IREC/1/,Di1V/351,0/,1AVG/6020/,K2/0.029/
DATA V1ICON/13.3/,V200N/6.6/,V3C0N/16.0/,NREC/3/
DATA EL1CON/3,210/,E2CON/3.237/,E3CON/3.230/
EQUIVALENCE (L(1},INT)
EQUIVALENCE (AVGV1(1l), cC(1))
EQUIVALENCE (AVGV2(1), €£C(1205))
EQUIVALENCE (AVGV3(1), CC(2409))
EQUIVALENCE (AVGV1S(1),CC(3613))
FQUIVALENCE (AVGV2S(1),CC(u817))
EQUIVALENCE (AVGV3S5(1),CC(6021))
EQUIVALENCE (SMV1V2{(1),CC{7225))
EQUIVALENCE (SMV2V3(1),CC(8429))
EQUIVALENCE (SMVSVl(l),CC{QGSB);
7

EQUIVALENCE (AVG123(1),CC(10837))
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102

10

11

20

EQUIVALENCE (SUMAVG(1),CC(12041))
TAVG = 20,0 » FLOAT(NREC)
INT = 0

DO 1000 1REC=1,NREC

CALL GET (91,CC,18060,KEY)
IFCKEY) 101,102,103

CONST = 3.985/255.0

K2P2 = K2 + 2.0

DC 10 I=1,1AVG

ITEMP = (1-1)*%3 +1

L{L4) = CC(ITEMP)

TEMP = FLOAT(INT=128)*CONST
TINT = (TEMP/V3CON) + E3CON

V3(1) = ((TINT#*%2 = 3,95)/0.802)#%*2

L(4) = CC(ITEMP+1)
TEMP = FLOATCINT=128)*CONST
TINT = (TEMP/VICON) + ELCON

VI(I) = ((TINT*%*2 = 3,85)/0.802)%»2

L{u) = CCCITEMP+2)
TEMP = FLOAT({INT=128)*CONST
TINT = (TEMP/VZCON) + E2CON

V2({1) = ((TINT#*2 = 3,95)/0.802)%»2
SUMVOIL) =((VI{1)w*24V2(1)#%2+¢V3(1}*%2)/K2P2)%%0,5

DO 20 I=1,1AVG
SINACI) = VI(1)/SUMV(I)

FF(SINA(I),GT.1.0,0R,SINACI).LT.~1.0) GO TO 11

SINACI) = ARSIN(SINA(CL))
SINBCI) = V2(1)/SUMV(I)

JF(SINB(I).GT,1.0.0R.SINB(}),LT.=-1.0} GO TO 11

SINB(I) = ARSIN(SINB(I1))
SINC{1) = V3(1)/SUMV(I])

IF(SINC(1),GT.1.0,0R,SINC(1).LT.~1.0) GO TO 11

SINC(!) = ARSIN(SINC(1))

GO TO 20

SINACI) = SINACI=1)
SINB(I1) = SINB(!-1)
SINC{Il) = SINC(i=1)
SUMV(I) = SUMV(!I=1)

VI{1) = Vv1(i=1)

v2(1) = v2(1-1)

V(1) = v3(i=1)

CONTINUE

DO 30 I=1,1AVG

COMVAL = (VI(1J)/SUMV(I]))*w2

TEMP = ({COMVAL=K2}/(1,0-K22))*%0.5
SINACI) = ARSIN(TEMP)

COMVAL = (V2(12)/SUMV(I))*x2

TEMP = ((COMVAL=-K2)/(1,0-K2))w*#*0.5
SINB(I) = ARSIN(TEMP)

COMVAL = (V3(1)/SUMV(I))**2

TEMP = ((COMVAL=K2)/(1.0-K2))**0.5
SINC(1) = ARSIN(TEMP)
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1100
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2000
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3000

180

COORDINATE TRANSFORMATION

VIC(1) = COS(SINACI))/TEMP*SUMV(1)+(0.82+TEMP+
0.575+COS(SINCI)))
COS(SINB(1))/TEMP*SUMV(1)#(0,824TEMP+
0.575+COS(SINC(1)))

vaeld

V3(i) = SUMY(1)*(~D.575«TEMP + 0.82+COS(SINC(1)))
VI(1) = 0,707 « (V1{1) + v2(1))
V2(i) = 0.707 * (V1(1) - v2{(1))

V2(i) = 59,5 - v2(1l)
CONTINUE

CALL PUT (80,V1,2L080,IKEY)
CALL PUT (80,V2,24080,IKEY)
CALL PUT (80,V3,2L080,IKEY)

CONTINUE

REWIND 80

DO 1100 1
AVGV1(1i
AVGY2{
AVGV3(

1,3

=
=
=
=

OO

DO DDODs o o«

" 8 R " a

SMV3VI (|
CONTINUE

BEGINNING OF THE AVERAGING PROCEDURE

DO 2000 JREC=1,NREC s
CALL GET {(80,V1,24080,1KEY)

CALL GET (80,V2,24080,1KEY)

CALL GET (80,V3,24080,1KEY)

DO 2000 iKNT=1,301

DO 50 i=iKNT, IAVG,301

AVGVI(IKNT) = AVGVI(IKNT) + vi(1)
AVGV2(IKNT) = AVGV2(IKNT) + v2{1)
AVGV3(TKNT) = AVGV3I(IKNT) + V3(!)
CONT I NUE

VIMAXL = =10000.0

CONT i NUE

DO 3000 iKNT=1,301

MEAN VELOCITY

AVGVI(IKNT)/TAVG

AVGV2(IKNT) AVGYZ2 (I KNT)/TAVG

AVGV3 (1KNT) AVGV3 (IKNT)/TAVG

IFCAVGVL(IKNT) .GT.VIMAXL) VIMAXL = AVGVI(IKNT)
CONTINUE -

REWIND 80

AVGVI(IKNT)



3100

3300

60
Looo

[ pR N ol

4100
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DO 3100
AVGV1S (|
AVGV2S(l
AVGV3S(1
I
i

e

SMV1V2(
SMV2V3(
SMV3V1(|
CONTINUE
D. = AVGV2(151)/AVGV1(151)

D = ATAN(D)

DO 3300 I=1,301

AVGVI(1) = AVGV1(1)+COS(D) + AVGV2(1)*SIN(D)
AVGV2(l) = =AVGVI(I)*SIN(D) + AVGV2({)~COS(D)
CONTINUE

DO 4000 IREC=1,NREC

CALL GET(80,V1,24080,IKEY)

CALL GET(80,Vv2,24080,IKEY)

CALL GET(80,V3,24080,1KEY)

DO 4000 1KNT=1,301

DO 60 I=IKNT,lAVG,301

VI(1) = VI(1)*COS(D) + V2(1)*SIN(D)

V2(1) = =V1(1)*SIN(D) + V2(i)*COS(D)

AVGVLIS{IKNT) AVGVISCIKNT)+(V1(1)=AVGVLI(IKNT))**2
AVGVZS(IKNT) AVGV2S(IKNT)+(V2(1)=AVGVZ(IKNT) ) **2
AVGV3S(IKNT) AVGV3SC(IKNT)+(V3(1)~AVGV3{IKNT) ) **2
CONTINUE

CONTINVE

REWIND 80

I I L

|
)
)
)
)
)
)

E N

TURBULENCE INTENSITY

DO 4100 IKNT=1,301

AVGVIS(IKNT) = AVGVIS(IKNT)/TAVG

AVGV2S(IKNT) AVGV2S(I KNT)/TAVG

AVGV3S (I KNT) AVGV3S(IKNT)/TAVG"
AVGIZ3(IKNT) (AVGVIS(IKNT) + AVGV2S(IKNT) +
CAVGV3S{IKNT) }**0.5
AVGVIS(IKNT)*%0.5
AVGV2S(IKNT)*%0,5
AVGV3S(IKNT)*=*0,5

AVGV1S(IKNT)
AVGV2S(1KNT)
AVGV3S(IKNT)
CONTINUE

PO 5000 JREC=1,NREC

CALL GET(80,V1,24080,IKEY)

CALL GET(80,V2,24080,1KEY)

CALL GET(80,V3,24080,|KEY)

DO 5000 IKNT=1,301

DO 70 I=1KNT,|AVG, 301

VI(1) = VI(1)*COS(D) + V2(1)*SIN(D)
V2(1) = =V1I(1)*SIN(D) + V2(1)*C0OS(D)
TVl = V1i(l) - AVGV1(IKNT)

TV2 = Vv2(1) = AVGV2{IKNT)

TV3 = V3(f) = AVGV3I(IKNT)
SMVIV2(IKNT) = SMVIV2(IKNT) + TV1i*TV2

H A



70
5000

D000

5100

80

90

701

702

703

101
103

61
62

71

182

SMV2V3{IKNT) = SMV2V3(IKNT) + TV2«TV3
SMV3VI{IKNT) = SMY3VI(IKNT) + TV3+TV1
CONTINUE
CONTINUE

REYNOLDS STRESS

DO 5100 IKNT=1,301

SMVIV2(IKNT) = SMVIV2(IKNT)/TAVG

SMV2V3 (I KNT) = SMV2V3(IKNT)/TAVG

SMV3VI(IKNT) = SMV3VI(IKNT)/TAVG

SUMAVGCIKNT) = (SMVIV2(IKNT)#*2+SMV2V3{IKNT)**2+
SMVBVLIUIKNT) ##2)%#0 , 5/AVGL23 (I KNT ) »*2

CONTINUE

VIMAX = ~-100000.0

D0 80 1=1,301

IFCAVGVL(1),.GT.VIMAX) VIMAX = AVGV1(I)

CONT INUE

VIMAX2 = VIMAX#*2

Do 90 1=1,301

AVYGV1(1) = AVGV1(])}/VIMAX

AVGV2(1) = AVGV2(1)}/VIMAX

AVGV3 (1) = AVGV3(1)/VIMAX

AVGVIS(1) = AVGV1IS(I)/VIMAX
AVGV2S(1) = AVGV2S(])/VIMAX
AVGV3IS(1) = AYGV3S(|)/VIMAX
AVG123(1) = AVGL23(1)/VIMAX
SMY1V2{1) = SMV1IV2{(1)/VIMAX2
SMV2V3 (1) = SMV2V3(1)/VIMAX2
SMV3IV1(1) = SMV3V1(1)/VIMAX2
" CONTINUE

WRITE(6,82) [REC,VIMAXL,VIMAX
WRITE{6,71)
DO 701 1=1,301

WRITE(H,81) I,AVGYYI(1),AVGV2(1) , AVEGV3(1),TEMP2(1)

WRITE(6,72)

- DO 702 1=1,301

WRITE(G,81) I,AVGV1S{1),AVGV2S(}), AVGV3S()),
AVYG123(1)

WRITE(6,73)

DD 703 1=1,301

WRETE(G,81) 1,SMV1vV2(1),SMV2V3(1),SMV3VL(}),
"SUMAVG(1)

CALL PUT(70,CC,13244, 1KEY)

STOP

WRITE(6,61)

STOP

WRITE(G,62)

STOP '

FORMAT('-', T10, 'ERROR OMN TAPE')

FORMAT{('-~?, T10, "END OF FILE ON TAPE')

FORMAT('~', T10, 'RECORD NUMBER',2X,15)

FORMAT('-',T28,'AVGV1', T58, 'AVGY2',T88, 'AVGV3',



X T118,'TEMP /1)
72 FORMAT('=',6T28, "AVGV1S', 758, AVGV2S' TBB,'AVGV3S'
X T118 'AVGl23 /1)
73 FORMAT( '~ ,T28,'SMV1V2' T58,'SMvav3',T88, 'SMV3VL',
X ‘ TllS,'SUMAVG /1)
81 FORMAT(' ',15,4(10X%,F20.8))
82 FORMAT (! 1',10X,'DATA SET NUMBER',IS SX,'VIMAXLﬂ
X F10.5,10X, 'VIMAX="',Fl10.5///)
END

. //DATA.SYSLIN DD DSN=&&0BMOD, DISP=(OLD DELETE DELETE),
// DCB=(RECFM=FB, LRECL=80, BLKSIZE=3120)
//DATA. FT70F001 DD UNIT=3330 VOL=SER=SYSDAl, DSN=MARK.F1l,
// DCB=(RECFM=FT,LRECL=13244,BLKSIZE=13244, BUFNOﬂl),
// DISP=(NEW,PASS,DELETE),SPACE=(CYL, (5, 1))
//DATA,FT80FCO1 DD UNIT=3330 VOL= SER*SYSDAl DSN=TEMP,
// DCB=(RECFM=FT,LRECL=24080,BLKS1ZE=24080, BUFNO=1),
_// DISP=(NEW,DELETE),SPACE= (CYL,(S 2))
//DATALFTO91FOGL DD UNITﬂ(ZhUO,,DEFER) VoL = SER=MEH07,
// LABEL=(1,8L),DSN=MARK,.F1l,DCB=BUFNO=1
//STEP2 EXEC FGCG
//SOURCE. INPUT DD =
REAL ~ L DATA(301,11),Y(301),X(301),0P(6,2000)
INTEGER * 2 AP(ZOOU), BP(EOOOJ, CP(ZOUU)
LOGICAL * 1 LABEL(%0,2), SYM/'%x'/, GRAPH(132QQ)
EQU) VALENCE (DATA(1, 1) GRAPH(1))
DATA N/301/
CALL INITQ (AP,EBP,CP,DP,2000)
CALL GET(50,GRAPH, 132&&,IKEY)
‘ D0 10 I=1,N
10 X(1) = FLOAT(I-lSl)/l?S.O
DO 100 1GR=1,11
DC 90 t=1,301

90 Y(1) = DATA(I, IGR}
LOGX = @
LOGY = 0
XAXIS = 7.0
YAXIS = 5,0
XMIN = 100000.0
XMAX = =10000.0
Do 15 1=1,N

TECXC1).GT. XMAX) XMAX = X(1)
LECXCE) . LT.XMINY XMIN = X(1)

15 CONTINUE
: XINC = (XMAX=-XMIN)}/5.0
NXDEC = 5
YMIN = 10000.0
YMAX = =~10000.0
DO 20 I1=1,N

IFCY(1).GT.YMAX) YMAX = Y(I)

FFCY (D) L LTOYMIND) YMIN = Y(I)
20 CONTINUE

YINC = (YMAX=YMIN)/4.90

NYDEC = &4

XSMIN = XMIN
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XSMAX = XMAX

YSMIN = YMIHN

YSMAX = YMAX

ICON = 0O

HT = 0.15

NDECX = 2

HDECY = 2

PF(YSMIN,LT.0.01) HDECY = L

HTS = 0,15

READ(5,51) (LABEL(1,1),1=1,40)

READ(5,51) (LABEL(1,2),1=1,40)

CALL PLOTIT(Y N, LOGX, LOGY, XAXIS YAX1S,XMIN, XINC,
NXDEC, YMIN, YINC NYBFC LABEL XSM!N,
KSMAX, YSMlN YSMAX X, SYM ICGN HT,
NDECX,NDECY,HTS)

CALL PAWZQ

CONTINUE

RETURN

FORMAT(40AL)

END

J/DATAL.FTO7F00Y DD UNIT=BAT,FILES=($T2F1B1,$T2F182)

J/DATA.FTSNFO0Y DD UNIT=3330,V0L=SER=SYSDA1l,DSN=MARK.F1, "

// LABEL=(1,S8L.),DiSP=(0LD,DELETE)
//DATA, INPUT DD »

-2Y/5S +2Y/5S
AVGUS/AVGUSMAX T2F1
-2Y/S +2Y/5
AVGUN/AVGUSMAX '
-2Y/S +2Y/S
AVGUR/AVGUSMAX
-2Y/S +2Y/S
AVGUS2+%0,.5/AVGUSMAX
-2Y/S +2Y/8
AVGUN2*%0 .5/ AVGUSMAX
-2Y/S +2Y/5S
AVGUR2+*%0.5/AVGUSMAX
-2Y/S +2Y/5
AVGUSUN/AVGUSMAX %2
=2Y/5 +2Y/5S
AVGUNUR/AVGUSMAX + %2
-2Y/S +2¥/5
AVGURUS/AVGUSMAX *«2
-2Y/S +2Y/S

Q
-2¥/S +2Y/S
T/Qwx*2
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APPENDIX B

ROTATING PROBE MEASUREMENT

It has been indicated in Chapter IX that it is not feasible to
investigate regions s/S' < 0.15 with a stationary three-sensor hot
wire probe due to physical limitations., However, the largest decay of
the wake centerline velocity (up to 90 percent) occurs in this region.
Moreover, the investigations were carried out in a rotor specifically
designed to operate at zero loading. Even though the actual rotor has
a smail loading, it cannot be operated at high 1lift coefficients
normally encountered in practice.

The abovementioned difficulties can be overcome by carrying out
measurements in a rotating frame of reference and on a loaded rotor.
Therefore, it is first planned to repeat the stationary probe measure-
ment with a rotating probe measurement with a special emphasis on
regions close to the trailing edge (S/S' < 0.15) and boundary layer on
the trailing edge to know the initial conditions and regions very
close to the hub and the annulus wall.

For carrying out rotating probe measurement, the Axial Flow Research
Fan Facility of the Applied Research Laboratory is being modified. A
rotating traversing mechanism (Figure B-1) is being installed. The
traversing mechanism, when in full operation, will provide two degrees
of freedom to the probe in rotation (one about its own axis and the
second in the circumferential direction). While stationary, the probe
location can be changed radially and axially.

The block diagram of turbulence instrumentation for rotating

probe measurement is shown in Figure B-2. The quantities obtained



Figure B-1

Traversing Mechanism.
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Tri Axial
Hot Wire Probe
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Anemometer 1

E +e

Anemometer 2

Anemometer 3

Figure B-2 Block Diagram of Turbulence Instrumentation for Mean
Velocity, Turbulence Intensity, and-Shear Stresses.
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can be transferred in any new coordinate system by using the standard
method of coordinate transformation.
The program of rotating probe measurements is outlined in

Reference (34).





