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ABSTRACT

Analytic theory for two-dimensional turbulent equilibria for

the inviscid Navier-Stokes equation (or the electrostatic guiding

center plasma) is tested numerically. A good fit is demonstrated

for the approach to a predicted energy per Fourier mode obtained

from the two-temperature canonical ensemble of Kraichnan:

( u(k)12) = (a + Pk2) - 1 , where k is the wave number and a and P

are reciprodal energy and enstrophy temperatures. Negative as well

as positive temperature regimes are explored. Fluctuations about

the mean energy per mode also compare well with theory. In the

regime a < 0, B > 0, with the minimum value of a + Pk2 near zero,

contour plots of the stream function reveal macroscopic vortex

structures similar to those seen previously in discrete vortex

simulations by Joyce and Montgomery. Kraichnan's assertion that

thermodynamic limits exist for the negative temperature states is

questioned. Eulerian direct interaction equations, which can be used

to follow the approach to inviscid equilibrium, are derived.



I. INTRODUCTION

It is unnecessary by now to repeat justifications for studying

two-dimensional models for hydrodynamic turbulence. We note, however,

that among the more compelling of these is the ease with which

analytical predictions can be "experimentally" tested under closely

controlled circumstances by numerical solution of two-dimensional

hydrodynamic equations.

Our primary purpose in this article is to describe some numerical

tests we have made of the inviscid equilibrium theory of Kraichnan.
1'2'3

In Sec. II, the predictions of this theory are set down. In Sec. III,

numerical results are compared with theoretical predictions. Sec. IV

summarizes an analytical framework which may be used to follow the

approach to equilibrium, though explorations of its consequences

are deferred to a later publication. Sec. V summarizes and discusses

the results.

As is by now well-known, the mathematical description applies

equally well, under appropriate substitutions to the two-dimensional

electrostatic guiding center plasma and to the two-dimensional

inviscid Navier-Stokes fluid. Because the theoretical predictions

to be tested first arose in the hydrodynamic context, the language

used here is primarily that of hydrodynamics.



II. PREDICTIONS OF THE EQUILIBRIUM INVISCID THEORY

Since there is no physical system which obeys in all particulars

the two-dimensional zero-viscosity Navier-Stokes equation, it is

inevitable that we shall be talking about models. The models are

defined by the differential equations and the boundary conditions

which govern them. Though the question of the relation of one model

to another is an interesting one, arguments about which model is

more "physical" can have little significant content. There are three

distinct two-dimensional models which can be confused, and it is

worthwhile to define each one carefully. These are: (1) the inviscid

Navier-Stokes equation in position space with smooth initial data;

(2) the truncated inviscid Navier-Stokes equation in Fourier-

transform space with initial data which are Fourier transforms of

spatially smooth functions; (3) the inviscid Navier-Stokes equation

in position space with delta-function initial conditions (the

Lin-Onsager discrete line-vortex model). At present, no satisfactory

proofs exist that, even if various conceivable limits are taken, the

results for any two of these models converge to each other for all

time. Statements that one or the other is more fundamental than

the others can at this point have only aesthetic significance.

First we consider the inviscid Navier-Stokes equation in two

dimensions. For our purposes it is most conveniently written in

dimensionless form in the vorticity representation:
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where P = p(x, t) = P(x,y,t) is the magnitude of the vorticity vector

p(x,t) = VXU, and u is the fluid velocity. u(x,t) = u (x,y,t) has

only x and y components, and nothing varies with z. P(x,t) = p,

where b is a unit vector in the z-direction. It is convenient to

write u ='b x E, where E = u xB = - V$, and 0 = 0 (x,y,t) plays the

role of a stream function (electrostatic potential, in the plasma

analogue). Contours of constant 0 at fixed t are streamlines. The

connection between E and 0 and P is Poisson's equation:

S •E = -v2 = p (2)

The incompressibility condition V * u = 0 is automatically satisfied.

Models (1) and (3) described above both obey Eqs. (1) and (2).

Model (1) involves spatially smooth functions P(x,O), and Model (3)

is distinguished from Model (1) by the presence of a discrete

delta-function initial distribution of vortices, P(x,O) = EZ Ki 6(x-xi),

where x. is the initial location of the ith vortex and

K. is its strength. Model (5) is due to Lin4 and Onsager5 and has
1

6-15
been the subject of several recent publications. At present,

virtually no information exists about the general solutions of Model

(1), and speculation is rife that the solutions become ill-behaved

after finite times ("intermittency"), in perhaps somewhat the same

way that singularities develop for the Euler equations in compressible

flow. The present article is devoted to Model (2), which represents
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the field variables as truncated Fourier series, in the way now to

be described.

Periodic boundary conditions are assumed over a basic square

box of edge L. All quantities are expanded in Fourier series,

p(x,t) = Cp(k,t) exp (i k . x)

u(x,t) = Zu(k,t) exp (i k . x)

E(x,t) = E(k,t) exp (i k . x)

O(x,t) = (~v,t) exp (i k x) (3)

where the summations extend over the set of wave vectors k = (k , k )

2n (n , n )/L, where n and n are positive or negative integers, not
y x y

both zero. Since P, ,, Z, 0 are all real functions, reversing the

sign of k in their Fourier transforms is the same as complex

conjugation. Thus the transforms are determined by giving them only

over a half-space in k. The transforms are related as follows:

i k • E (k,t) = P(k,t) = k2 (k,t)

u (k,t) ='X E(k,t)

with kx E(k, t) =k u(k,t) = 0 (4)

The Fourier-transformed version of Eq. (1) is conveniently

written as:

- P(k,t) = M(r,p) p(r,t) p(p,t) (5)
p+r=k
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where
b - (rx ) 1

M(r,p) 2 M(p,r) (6)

Kraichnan's equilibrium theory1 ,2 is formulated in k-space,

and seems to be difficult to handle unless the number of k's is kept

finite. This question will be addressed further in Sec. III, but

for present purposes, a truncation in k-space is effected by summing

2 12 2 2
only over k's which lie in a ring defined by k < k = k + k <

ow =o x y

k2 k = 2rr/L and is a non-controversial lower limit provided
max. 0

by the box size. There appears to be no physical determination for

k for a zero-viscosity fluid, but for present purposes it will be
max

chosen as large as is compatible with available computer time. It

will be remarked upon later that many of the physical predictions

do not become independent of kmax, no matter how large k becomes.

Thus what we are discussing is, strictly speaking, the statistical

theory of Eq. (5), truncated in the way just described, and for the

present, the precise relation to Model (1) remains unclear.

Two constants of the motion which are preserved-by Eqs. (1)

and (2), or (4) and (5) when periodic boundary conditions apply, are

the energy density e and the "enstrophy" density 1:

e - E2 d =Z IE(k,t)12 = lu(k,t)12 = I P(k, t)1 2 k-2

(7)

S (V X u,) 2 kIp E(k,t)!2 . 2 I ,t)l 2

=llP(,t)l2 • (8)
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The spatial volume V is given by V-= L 2. Both e and n are constants

of the motion for Eq. (5) even if the sums over k are truncated. Many

other constants of the motion implied by Eqs. (1) and (2) do not

survive this truncation -- i.e., unless the sums in Eqs. (3) and (5)

are allowed to range over the full infinity of permitted wave numbers,

these quantities are no longer constant. It is not known whether

other constants of the motion exist.for the truncated version of

Eq. (5) besides 8 and n. The indications of Sec. III, it will be

seen, are that there are not.

Though Eqs.(5) with a finite set of k's apparently do not

define a Hamiltonian system, they do permit the introduction of a

"phase space" whose coordinates are the real and imaginary parts of

16
the Fourier coefficients. A Liouville equation can be proved in

this phase space, opening the possibility of "ensembles," or stationary

probability distributions in the phase space, from which expectation

values, or "ensemble averages," of physical quantities can be computed.

The hope is that these expectation values will be good predictions for

individual realizations of the turbulent field in the way that has

become familiar in the statistical mechanics of systems of classical

Hamiltonian particles.

Kraichnan proposes1, 2 a canonical ensemble as the appropriate

distribution for thermal equilibrium.17 Abbreviating the different

Fourier coefficients symbolically as u(kl) , u( 2 ), ... , the canonical

ensemble is defined by the probability distribution
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P (U (kl ) = c exp (-ae- P)

= c exp ( (a + Pk 2 ) I u(k) (9)

where c is a normalizing constant chosen so that

d (kl) d ( 2 ) P = 1. (10)

The real and imaginary parts of g(k) = ur(k) + i ui(k) are to be

integrated independently, subject to the constraints that

k • u (k) = 0 (i.e., for each k, only one direction for the vector

u(k) is permitted) and that u(k) = u*(-k) (i.e., that the independent

u(k)'s are just defined over a half space in k). a and 1 are

constants, possibly negative, chosen to satisfy

d a(k) (k 2) .Z( ku(k)i2 P = (11)

and

Sd dU(kl) d u(2) ."'. k2  ,u(k), P= a (12)

- -1

a 1 and -1 define two "temperatures," one for energy and one for

enstrophy. Obviously, from Eq. (4), the same statistics apply to

the Z((k)12 and the IP(k)/kl2.

The primary purpose of Sec. III is to subject Eq. (9) to

numerical test by a solution of the truncated Navier-Stokes Eq. (5)

over a long enough time interval that certain average properties of the

system become time independent. The most obvious quantity is the

"spectrum" or spectral density

(O (k)12 = (I () 12) = (a + Pk2 )- 1 (15)
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The ( ) means an expectation value computed with Eq. (9). Since in

several cases, our k's are not densely spaced enough to replace the

sums over k by integrals, we do not follow the usual convention of

multiplying the expression (13) by rrk dk to get an "energy spectrum."

The lack of isotropy at the lower values of k also mitigates against

the use of integrated spectra.

Other predictions that follow from Eq. (9) are for the fluctuation

X(ia)12 - )I 2)2 1 (14)

( u(k) 122

and the mean value of u(k):

(u(k)) = 0 (15)

Note that Eq. (15) implies that (u(xt) ) = 0 and that (P(x,t)) = 0.

It is to be noted that the fluctuations are not "small," and

that they do not become "smaller" as more and more k's are included.

It is one of the unhappier features of the theory that, particularly

for some cases (a < 0 and P slightly greater than -a/k2 , for example),

the ensemble average predictions for some physical properties may

look nothing like the actual values of those properties for most of

the individual systems which are the realizations of the ensemble.

In the example just given, for instance, the systems which are the

realizations of the ensemble all have a highly non-uniform vorticity

distribution on a macroscopic scale, while the macroscopic ensemble-

averaged vorticity density is zero! Thus there are differences

of some significance between the ensemble average and the "most



probable state" of a system which have no parallel in the statistical

mechanics of ordinary gases, for example.

Finally, note that the probability distribution for

Iu(k)I2/( u(k)l ) derived from Eq. (9) ia a universal Gaussian,

independent of k. It can readily be computed in any computation

which computes an equilibrium set of u(k)'s, by ensemble averaging or

(making the assumption of ergodicity) by time averaging.

A number of the major features of the taxonomy of the different

regimes of a and B are lost if we confine attention to k-space alone.

Spectra which may appear qualitatively "similar" in k-space may

represent functions which look quite different in x-space.

Streamlines and contour plots of the stream function are exhibited

in Sec. III as evidence to the contrary of Fox and Orszag's con-

clusion18 that "nothing very interesting" distinguishes the different

temperature regimes.

The ranges of permissible a and P are circumscribed by the

requirement 12 that the expression (9) be normalizable, or that the

integrals in Eq. (10) all exist. Thus, (a + Pk2 ) I u(k)12 must be

a monotonically increasing function of lu(k) 2 . This is always

satisfied when a > 0 and P > 0 (Kraichnan's Case II), is never

satisfied for a < 0 and P < 0, and may or may not be satisfied

when a and P are of opposite sign. The situation for which a < 0

and Ok2 + a> 0 (Kraichnan's Case I) appears to be believable

enough, since for all allowed k, the integrals in Eq. (10) are finite.

The situation for which P < 0 and a + Pk2  > 0 (Kraichnan's Case III)
max
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is more problematical, since by including enough wave numbers in the

summations, the normalizability can always be violated for specific

fixed values of the two temperatures. Any claim of the existence of

a thermodynamic limit, in the conventional sense of the term,19 is

dubious for C1 and P of opposite sign. For at fixed temperatures,

the integrals which define the partition function always diverge

above a certain maximum spatial volume or above a certain maximum

number of degrees of freedom. This is not "thermodynamic behavior"

in any sense with which we are familiar. 19 But for finite, fixed volumes

and finite, fixed numbers of terms in the k-summations, the predictions

of Eq. (9) are well defined, and sample cases for both Case I and Case II

are included in the numerical solutions displayed in Sec. III.

1.2
The boundaries between the regimes are determined'

2 by the

parameter k2  n/8. The five cases for which we exhibit solutions

in Sec. III have values of 0, 8, and kI1 shown in Table 1. The

appropriate values of a and B are determined from the numerical

solution of the relations

P E + Pk2 -1

= k2(a + k2)-1  (16)
k

Nowhere have we made use of integral forms for e and Q. Since n/e

is the crucial number, we may sum Eq. (16) over a half-space in k,

or over the full space. We sum it over a half space.
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Table 1

Parameters for Numerical Solutions

2
RUN CASE 8 k a

A I 0.30 3.0 10 -116 125

B I 0.15 3.0 20 - 91.1 118

C II 0.08 3.0 37.5 27.5 112

D II 0.055 3.0 54.5 597 102

The details of the computed solutions are discussed in more

detail in the following section. Note that for Run C, the "threshold"

run, e and D are such as to put a on the slightly negative side of

the boundary, if the integral expressions are used.

Run A corresponds to a situation in which over 70 percent

of the energy is predicted to go to the lowest wave number ko: a

behavior called "condensation" by Kraichnan ' 2 and the most conspicuous

feature of the negative temperature states seen in numerical

simulations6 -15 of the Lin-Onsager Model (3). Run B still lies in

the regime a < 0, P > 0, but the fundamental ko contains less than

half the total energy, according to Eq. (9). Run C is a threshold

run for which we should have close to a k-2 variation of (ju(k)12.

Run D concerns the more "conventional" regime where both temperatures

are large positive numbers. No runs were carried out in Regime III,

which in any case might be thought unphysical because of the sensi-

tivity of the spectral shape to kmax
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III. NUMERICAL RESULTS

The methods by which Eqs. (1) and (2) are solved have been

described in detail elsewhere.2 0 ,2 1 The essence of the method is that

Eq. (5) is solved in x-space. The right hand side is obtained by

fast Fourier transforming P, calculating Vp and u in k-space,

and transforming back to x-space at each time step. The temporal

advancement is carried out by a predictor-corrector method.

Diagnostics that are readily printed out at any time step are

the lu(k,t)1 2 = IE(k,t) 2 as a function of k, and contour plots of 0 or

P(x,t) = const. at given fixed t. Typical initial loading consisted

of choosing u (k,O) - 0 except for a few values of k. As t increased,

the region of non-zero u(k,t) typically spread out to both larger and

smaller values of Ikl than those initially excited. The initial

locations of the non-zero u(k,O) in the k ,k array, were chosen tox y

achieve the desired ratio of Q to 8. Usually, the region of non-

zero u (k,O) was approximately a circular annulus, though we stress

that the modes are not dense enough in k-space to avoid the necessity

of summing them individually. Amplitudes Iu(k, 0) were chosen as of

the same order of magnitude, when non-zero, and the associated phases

were chosen randomly. Changes in phases and amplitudes with the

same 8 and Q led to no qualitative differences in behavior. The

box dimension, L, was chosen to be 2T, so that (k , k y) are integers.

2 2 2
The Fourier modes computed are defined by k = 1 < k < k = 220,0 = - max
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with k > 0 and the modes with k = 0 and k < 0 omitted. (Thex = x y =

other u(k,t) can all be inferred from symmetry considerations.)

Typical runs evolved toward thermal equilibrium in such a way

that the time-averaged spectra show systematic variations when averaged

over two hundred time steps up to a given relaxation time, after which

time averages over two hundred time steps show no further systematic

variation. This statement was true for all runs.

Figures 1 through 4 show spectra for runs A through D,

respectively. In the panels labelled "a," initial values of the

Ju(k,O) 2  are plotted versus k2 . Averages for fixed k2's are

separate points, since more than one mode may correspond to a given

value of k2 . At the high end of the spectrum, the density

of modes gets so high that it is necessary to average over several

adjacent modes; these averages are.indicated by crosses. In panels

labelled "b," the spectra at an intermediate time (indicated on the

graph) are shown, averaged over two hundred time steps. In panels

labelled "c," the averages of the spectra over the last two hundred

time steps of the run are shown, together with the theoretical

prediction of Eq. (13).

In Fig. 5, an instantaneous spectrum is shown for a typical

point of Run C, and in Fig. 3c, the corresponding time average over

200 time steps is displayed. The purpose of Figs. 5 and 3c.is to show the

extent to which additional smoothing of the spectra is introduced by

time averaging. Figure 6 shows the time history of lu(k,t)l 2 for a



16

typical initially unexcited mode (kx, ky) = (2,2) for Run B. It

is seen that the mode never becomes time independent, but executes

unsystematic drifts which only become regular upon time averaging.

Because of the large amounts of computer time consumed by each run,

ensemble averaging did not appear feasible.

The principal accuracy checks we have at our disposal are

conservation of e and Q. Table 2 shows the percentage of non-

conservation of g and 2 at an intermediate time chosen as halfway

between the beginning and end of the run, and at the end of the run.

Also shown is the time step and total time of each run.

Table 2

Tests of Conservation Laws

Total
Time A6/e A/e ,Q/g2 AO//

Run Steps At halfway end halfway end

A 3400 .01& .2% .2% 2.6% 2.5%
.005

B 3400 .01 .1% .5% L.oo 4.2%

C 3400 .01 .1% .1% .3% .8%o

D 3400 .01 <.1% <.1% <.<.1%

( Run A had At = .01 for the first 1000 time
steps and At = .005 for the last 2400 time steps.)
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As previously noted, the shapes of.the spectra are not

qualitatively different for the two different regimes of a and B.

However, rather dissimilar configurations result when the Fourier

transforms are inverted and contours of constant 0(x,t) are plotted

(streamlines). In Fig. 7, (a) through (d), contours are plotted for

runs A through D, respectively. The three plots for each case are

the initial-value contours, the contours at an intermediate time, and

the final contours.. The most striking effect is one first pointed

22
out in the finite-viscosity case by Deem and Zabusky, and now

commonplace5 - 1 5 in the discrete vortex simulations. Namely, the

more negative a is, the greater is the degree of long-range order,

and the macroscopic configuration to which the system evolves is a

pair of large counter-rotating vortices which pretty well fill up

the box. For the higher values of n/8, this effect is not readily

observable.

Figure 8 shows the distribution of normalized values of

Ju(k) 2 for Run A and several values of k, and the theoretical Gaussian

curve which should pass through them. The level of the fluctuation

5k_ ((Iu(k) I2 - ( u(k) 2 )) 2 (u(k)1 2 )-2 (which should be unity

according to Eq. (14)) appears on each graph.

Figure 9 shows a plot for a spectrum which evolves strictly

from a 1/k 2 initial condition (a = 0), the "threshold distribution"

in the discrete vortex theory. Its time average and instantaneous

value are shown. Figure 10 shows the effect on the final

state of varying the number of allowed k's for Run A.
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IV. THE "DIRECT INTERACTION" EQUATIONS

The numerical data presented in Sec. II are to be compared

with theoretical predictions of the thermal equilibrium theory implied

by Eq. (9). It is also obvious that interesting physics is involved

in the first parts of the runs, when the thermalization is taking

place. The most successful analytical descriptions of evolving

turbulence in three dimensions that have been given so far are variants

of Kraichnan's "direct interaction" approximation.
2 3-25 It is

natural to attempt to apply that theory to the two-dimensional case.

Even though unanswered questions remain in justifying the basic

assumptions of the theory, its relatively dramatic successes in three

dimensions suggest that a fundamental advance has occurred.

Here we derive, by a route which is in some respects new,26

a pair of coupled equations for the two-time vorticity autocorrelation

in Fourier space and the "infinitessimal unit response function" G

of Kraichnan in the so-called Eulerian Direct Interaction Approximation

(EDIA). Consequences of this pair of equations will be explored in

a later publication.

A. The Infinitessimal Unit Response Function G

By G(k, ko, t, tf) we mean the change of P(k,t) in Eq. (5)

produced by introducing a unit delta-function impulsive perturbation
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in P(k ,t) at a time t = t'. We assume that the linearized version

of Eq. (5) governs G ever after, so that

a- G(k,ko,t,t') - 2 M(r,Z) P(r,t) G(E,ko,t,t')

n+r=k

= 6 (k - k ) 6(t-t') (17)

for t t', and G 0 for t < t'.

Notice that G is a different function for every realization of

the ensemble (i.e., for every separate set of P(k,t)'s). Our goal is

to get an approximate expression for the ensemble average of G for

an ensemble consisting of non-thermal initial distributions of the

P(k,t).

It is helpful to split G into "diagonal" (k = k o) and

"off-diagonal" (k f k ) parts, so that

SG(kolo5tt? ) - 2 M(r,Z) p(r,t) G(Z,ko,t,t') = 6(t-t')
e+r=k

(18)

for k = ko, while for k / k we may write (17) with the diagonal

contribution singled out for special attention:

SG(k,k 2 M(,) P( ,t) G(, k, t,t')

o+r=k
Ho

= 2M(k - ko, k ) P(k - k ,t) G(k, k ,t,t') . (19)~ ~o 10 ~0 ~o o0
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We may formally solve Eq. (19) for the off-diagonal part of

G in terms of the Green's function gk (k,t,t') defined by
"'

Sgko(k,t,t ') - 2 M(r,Z) P(r,t) gk (;,,tt') = 6(t-t') (20)
-+ r=k "0

with g O 0for t < t'. For k / ko, we have
k -0
~O

t

G(k,k ,t,t') = 2 Y ds gk (k,t,s) M(k-k 0 k ) P(k-k ,s) G( k ,ko,s,t').
o0 -0

(21)

Substituting Eq. (21) into Eq. (18) gives

_ G(ko,ko,tt 4 M(r,) (r,t) ds M(-ko,ko
rk t

P(Z-ko,s) G(ko,ko,s,t') gk (,t,s) = 6(t - t') , (22)
~o

which formally involves only the Green's function g and the diagonal

part G(k ,k ,s,t').-0 -0

We wish to argue now, however, that to a good approximation

g (k,t,t') and G(k,k,t,t') are the same function, a result which is

by no means obvious at this point. Notice that Eq. (20) for

g9(k,t,t') becomes formally identical with Eq. (18) for G(k,k,t,t')

if the single term with Z = k is not omitted from the large number

of terms in the sum on the left hand side of Eq. (20). Notice also

that G(k,k,t,t') and gk (k,t,t') obey identical initial conditions.
"-0
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Notice finally that with the term p = k included, the Eq. (20)
-0

defining g (k,t,t') becomes independent of k . With this single
-0

(apparently very mild) approximation, we may drop the subscript

altogether and write

gk (k,t,t') = g(k,t,t') = G(k,k,t,t'). (23)
ko

Eq. (22) is now an equation for G alone, and involves only P(k,t):

Sg(k,t,t') - 4 T M(r,) p(r,t) das M(p-l,k)

p(Z-k,s) g(k,s,t') g(Z,t,s) = 6(t-t') (24)

We shall return to Eq. (24) after we have discussed the equation

for the spectral function.

B. The Vorticity Autocorrelation Q

The second fundamental quantity for the direct interaction

theory is the vorticity autocorrelation Q,

Q(k,t,t') (P(-k,t') P(k,t)) (25)

where now the ensemble average ( ) is general, and is not an average

over the equilibrium distribution (9). It is readily seen that

_ Q(k,t,t') = M(r,Z) (P(-k,t') P(r,t) P(2,t)) (26)at -Y Y z
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For isotropic turbulence, Q depends upon k as a function of Ikl

alone, but it is not necessary to assume isotropy yet. Clearly,

what is desirable to close Eq. (26) is an approximate expression for

(p(-k,t') p(r,t) p(E,t)), where +r=k, in terms of Q and g.

If p(-k,t'), P(r,t), P(Z,t) are distributed with independent

Gaussian distributions with (p(k,t)) = 0, then (p(-,k,t') p(rt) p(p,t))

will vanish identically. The evolution of Q depends upon p(k,t)'s

being distributed at least to some degree in a non-Gaussian way. We

hypothesize, therefore, that p(k,t) consists of a "Gaussian part"

PG(k,t) and a "non-Gaussian part" 6P(k,t) which 
is treated as a small

perturbation: P(k,t) = PG(k,t) + 6P(k,t). Products of non-Gaussian

parts are neglected, so that

<p(-k,t') P(r,t) P(Z,t)) - (6p(-k,t') PG(r,t) PG(,t)>

+ (PG(-k,t') 6p(r,t) PG( ,t))

+ (pG(-k,t') PG(r,t) 6P(Z,t)) (27)

The problem, then, is to calculate the 6P(k,t) in terms of PG to

carry out the averaging indicated in Eq. (27) with a Gaussian

distribution assumed for PG, and to substitute the result back into

Eq. (26). It is PG that makes the major contribution to Q.

The essence of the Kraichnan method is that the effects of

the various M(r,g) coefficients in Eq. (5) are treated as independent

perturbations which induce correlations between triads of modes

~, k. The novel feature of the perturbation theory is that the
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coefficients are turned on and allowed to achieve their independent

additive effects not against a background or "zeroth order" in

which there is no turbulence ( P(k,t) = 0) but against a background

in which all the other P(k,t)'s are allowed to have very nearly

their fully-developed values.

The last sentence can be made precise by considering a system

of equations which is closely related to Eq. (5):

a- P(k,t) = iM(r,Z) p(r,t) p(Z,t) (28)

where M(r,Z) is the same as M(r,Z) unless r = ro and 2 = 2o' in

which case M(ro,2o) = 0. Thus Eqs. (28) differ from Eq. (5) only by

the fact that the one coefficient M(r o) has been "turned off."

Assume now that the term involving M(r o, ) is added to the right

hand side of Eq. (28) and that as a consequence P acquires a small

increment, so that

S[p(k,t) + 6Po(k,t)] = M(r,) [P(r,t) + 6Po(r,t)]

[p(E,t) + 6po(2,t)] (29)

We now subtract Eq. (28) from Eq. (29) and neglect quadratic terms

in the increment 6Po to get for k = ko

5po(k ,t) - 2 M(r,p) P(r,t) 8P°(p,t)
p+r=k

= M(r ) P(r ,t) p(p ,t), (30)1, Io -0 -0



and for k k we may write

t 6p (k,t) - 2 C M(r,Z) P(;,t) 6Po(r,t)

rk o

= 2M(k-k ,k ) p(k-ko,t ) 6Po(ko,t ) . (1)

We now observe a connection between Eqs. (30) and (31) and

the pair (18) and (19); namely, that they are identical except in the

respect that there is a source term on the right hand side of

Eq. (30), but only a delta function with unit coefficient in Eq. (18).

It is clear that G (or g) acts as a Green's function for the pair

(30), (31), and we can write at once that

t
6Po(ko,t) = ds M(r ,o) P(ro,s) P(Z 0o,) g(ko,t,s). (32)

The assumption which is basic to the direct interacticn theory

is that the 6P's that are needed for Eq. (27) can be obtained by

superposing independent additive expressions of the form of Eq. (32).

All different values of r o and zo which satisfy ro +o = k are

included, and the P's which appear on the right hand side of Eq. (32)

are to be approximated by the zeroth-order Gaussian Variables pG"
Replacing ko by -k, t by t', and dropping the superscript zero,

we carry out the above program and find

(6p(-k,t') PG( 't) PG(r,t)) = dZ ds M(.,) (G(-k,t',s)
G+X=k o

PG( t ) G(rt) PG(- s ) PG(-,s) (3)
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The final step in obtaining the EDIA approximation to Eq. (31)

consists of neglecting the correlation between G and pG for the

different realizations of the ensemble. That is, we replace G by

(G) in Eq. (33). Using the Gaussian properties of PG' we have

ultimately that
t'

(6p(-k,t') pG( ,t) PG(r,t)) = 2 Y0 ds (g(-k,t',s))

M(r,;e) Q(r,t,s) Ck(;e,t,s) (34)

The permutation of the arguments in Eq. (34) give three similar

terms which, when added together, make Eq. (26) become

_ Q(k,t,t') =

2 M(r, 2 ) (t'(-k,t',s)) M(r,2) Q(r,t,s) Q(2,t,s) ds

-Yt (g(r,t,s)) M(E,k) Q(,t,s) Q(-k,t',s) ds

-Yt (g(E,t,s)) M(k,r)Q(-k,t',s) Q(r,t,s) ds

(35)

This is one of the two EDIA equations. The other one is

obtained by ensemble averaging Eq. (24). Again we ignore the

correlations between p and G, and use pG for P in Eq. (24). The

result is, for t > t',
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S(g(k,t,t')) + 4 M(r,2) jt, as Q(r,t,s) M(r,k)

(g(k,s,t')) (g(Z,t,s)) = 6.(t-t') (36)

with (g) O, t < t'.

The equation for Q can be considerably simplified for an

ensemble in equilibrium. For then Q(k,t,t') = Q(k, t-t') only,

and the assumption (g(k, t-t') = Q(k, t-t')/Q(k,O) reduces Eq. (35)

to Eq. (36) provided that

M(2,:) M(k,r) M(jk,Z)

Qk,0) - Q 2,0) Q(r, 0)

is satisfied. Equation (35) then reduces to

aQ(k,7) M( M
Qt Z T+ d s , T-s) Q(,s) Q(,s) = 0

S(38)

where T = t-t'. We also note that Eq. (37) is satisfied uniquely

by Q(k,O) = k2(a + k2 )-1, which is the thermal equilibrium spectrum

predicted by Kraichnan. Conservation of 8 and Q are easy to prove,

but an H-theorem (i.e., a proof that all solutions of the coupled

equations for Q and g tend to an equilibrium) is apparently difficult

to prove.
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V. DISCUSSION

Numerical evidence has been offered in support of the

applicability of the Kraichnan two-temperature canonical ensemble, as

it relates to the truncated Fourier representation of continuous

inviscid Navier-Stokes fluids in two dimensions. Spectral densities,

streamlines, probability distributions for fluctuations, have been

employed as diagnostics. Details of the thermalization process

have been recorded on tape and are available for future comparisons

with calculations of velocity autocorrelations from the direct

interaction equations. The claim for the existence of a thermodynamic

limit, in the sense in which the term is conventionally employed

in statistical mechanics, is disputed for the situation in which

either temperature is negative. Relations to the Lin-Onsager

discrete-vortex model predictions remain unclear.
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FIGURE CAPTIONS

Fig. 1 Energy spectra for Run A: (a) initially; (b) a time

average over 200 time steps in the middle of the run;

and (c) a time average over the last 200 time steps of

the run. The solid curve is the theoretical prediction,

Eq. (13). Crosses indicate averages over several closely-

spaced values of k 2

Fig. 2 Energy spectra for Run B: (a) initially; (b) a time average

over 200 time steps in the middle of the run; and (c)

a time average over the last two hundred time steps of the

run. The solid curve is the theoretical prediction,

Eq. (13). Crosses indicate averages over several closely-

spaced values of k 2 .

Fig. 3 Energy spectra for Run C: (a) initially; (b) a time

average over 200 time steps in the middle of the run;

and (c) a time average over the last two hundred time

steps of the run. The solid curve is the theoretical

prediction, Eq. (13). Crosses indicate averages over

several closely-spaced values of k2

Fig. 4 Energy spectra for Run D: (a) initially; (b) a time

average over 200 time steps in the middle of the run;

and (c) a time average over the last two hundred time steps

of the run. The solid curve is the theoretical prediction,

Eq. (13). Crosses indicate averages over several closely-

spaced values of k2
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Fig. 5 Instantaneous energy spectrum for a typical point of

Run C. The intention is to indicate the typical level of

fluctuations about the time averaged values.

Fig. 6 Time history of Iu(k,t)I for a typical mode: (kx, ky) =

(2,2) for Run B. The amplitude appears to pass through

zero at irregular intervals.

Fig. 7 (a-d) Contours of constant 0 (streamlines) for runs A

through D. The left panels are the initial values, the

center panels are the contours halfway through the runs,

and the right panels are the final contours. Note the

formation of large vortex structures in Run A, the case

in which a is most negative.

Fig. 8 Plots of Iu(k)1 2 , normalized to their time averages, for

typical values of (kx, k y) in Run A. The solid curve is

the theoretical Gaussian which should describe them

according to Eq. (13).

Fig. 9 Test of the constancy of the "threshold" spectrum

(k)12~ k -2: instaneous value and time average.

Fig. 10 The effect of using the initial conditions of Run A in the

presence of two different values of the allowed number

of Fourier modes. Note that the final state does not,

and should not, become independent of the number of

k-modes employed.
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