AEROPHYSICS RESEARCH CORPORATION TECHNICAL NOTE

GTM: GEOMETRY TECHNOLOGY MODULE
 VOLUME II - PROGRAMMERS' MANUAL

By: S. J. Reiners, G. N. Hirsch
G. E. Alford and C. R. Glatt

Prepared for:
Raproduced by
NATIONAL TECHNICAL
INFORMATION SERVICE
US Department of Comimerce
Springfield, VA. 22151
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Johnson Spacecraft Center
Houston, Texas 77058
December 1974
PRICES SuBECT TO CHAMGE
NOTIC E

THIS DOCUMENT HAS BEEN REPRODUCED FROM THE BEST COPY FURNISHED US BY THE SPONSORING AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE.

AEROPHYSICS RESEARCH CORPORATION

GTM: GEOMETRY TECHNOLOGY MODULE VOLUME II - PROGRAMMERS' MANUAL

By: S. J. Reiners, G. N. Hirsch, W. N. Colquitt, G. E. Alford and C. R. Glatt

Prepared for:
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Johnson Spacecraft Center Houston, Texas 77058

December 1974

FORWARD

This final report describing the formulation of the Geometry Technology Module (GTM) is provided in accordance with NASA Contract NAS9-13584. The report is presented in two volumes as follows:

VOLUME I Geometry Technology Module Engineering Description and Utilization Manual.

VOLUME II Geometry Technology Module Programmers' Manual

This work was conducted under the direction of Mr. Robert Abel of the Engineering Analysis Division, National Aeronautics and Space Administration, Johnson Spacecraft Center.

The authors wish to express their appreciation to Sigma Corporation, Houston, Texas, and its employees for significant contributions to the preparation of these reports.

TABLE OF CONTENTS

Page

SUMMARY I
INTRODUCTION
PROGRAM STRUCTURE
Unit Designation. 2
Tree Structured Data. 4
DMAN Software Package 5
DMAN Usage 6
A Discussion of IT. 7
A Discussion of IOP
Subroutine Descriptions. 9
OVERLAY STRUCTURE 34
REFERENCES 72
APPENDIX A - FLOWCHARTS OF SELECTED SUBROUTINES 73
DMAN 74
NWBLK. 110
PACK7. 114
REDBF 115
RITBF 117
UPACK 7 118

VOLUME II - PROGRAMMERS' MANUAL

By: S. J. Reiners, G. N. Hirsch, W. N. Colquitt, G. E. Alford and C. R. Glatt

Aerophysics Research Corporation
SUMMARY

This volume documents the program logic, subroutine descriptions and other information concerning the Geometry Technology Module of interest to the programmer.

INTRODUCTION

The program was written to provide complete generality wherever possible without sacrificing computational speed or computer storage. The guidelines used were as follows:

1. Computer core size of approximately 24000 decimal (overlayed).
2. Fortran V programming language.
3. Minimum program execution language.
4. Modular program construction.
5. Generalized routines to allow creation or manipulation of geometry.
6. Generalized routines for interfacing to the EDIN System.

Information pertinent to the programmer is presented in the following sections of this report. Included are descriptions of the program logic and overlay structure, flow diagrams and subroutine descriptions.

PROGRAM STRUCTURE

The Geometry Technology Module is coded in Fortian V. Overlays are used to minimize computer core requirements on the Exec 8 system. The total program requires approximately 24000 decimal of computer storage.

The GTM is composed of several major executive levels. These levels are called by the GTM executive. The major executive levels are the input module, cluster edit module and segment edit module. Figure 1 illustrates the GTM executive structure.

The MASTER module (GTM Executive) is the control point in the GTM from which all sublevel executives are accessed. It contains its own language set which allows the user to perform data base management functions, access sublevel executives and general program control. Three primary sublevel languages are available, input, segment edit and cluster.

The INPUT sublevel executive is provided for reading data which is stored in specific geometry formats. Two are available, the Gentry format of reference l and the GTM format. GTM format allows free-field data to be entered. The data may be any type of information. This data is read in and stored in the data base geometry tree structure. The INPUT module contains its own language set and associated menus, which can be displayed upon command.

The CLUSTER EDIT Module contains a language subset and instructions necessary for creating and maintaining the geometric data tree structure. Functions are also provided for translation, rotation and scaling of tree stored data and output of the data in forms for interfacing with other EDIN technology modules. In addition, it contains the necessary logic to display geometry for image viewing. The display functions have a number of features which allow the user to zoom in on a specific region, overlay geometry, scale geometry and filter geometry for resolution. Mass properties evaluations are also commanded from the CLUSTER EDIT Module.

The SEGMENT EDIT Module provides the capability to compose geometric shapes, manipulate geometry at the segment level and display of geometric segments. Specific operations include translation, rotations, scaling, point redistributions, segment cutting, point edit commands and display. The module contains its own language subset addressable by the user.

Unit Designation

Unit 1 Internal file designation for the geometry data base.
Unit 3 Output file for Gentry geometry.
Unit 5 The system card reader.
Unit 6 The system printer.

FIGURE 1 GTM EXECUTIVE STRUCTURE,

The GTM uses a tree structuring method which allows data to be stored independently but can be associated with other stored data. The association may be permanent or temporary depending upon user specified structuring. The GTM data structuring technique is referred to as tree structuring and is defined at three levels (branches or nodes). The sketch below illustrates the several levels:

One level below the section level, called a segment level, may be defined but this data is freely stored and not associated with a tree. One level above the cluster level is the vehicle which can consist of several clusters but is not included in the tree structure logic. This section deals primarily with the tree structure logic in the GTM.

The discussion begins with the description of the control registers, those core locations reserved for indices to the actual data stored on disk. Throughout the GTM there is a labeled common block called TREEV which contains the control registers. The most significant registers are maintained in the IACV array of dimension 40. IACV contains the locations of an access address as to the tree structured data used in the GTM. The array is broken up into eight groups of five word groups. The meaning of these eight words in each group is as follows:

The first position is a pointer of the cluster name in the list of available clusters, data block.

The second position is the name and first word address of the cluster.

The third position is the position within the vehicle of the data block of the name and address of the current or accessed component name.

The fourth position is the component name and first word address of the component data.

The fifth position of the pointer is the component data block of the currently accessed section.

The sixth position is the section name and first word address of the section which has been currently accessed.

The seventh data block is the current position pointer of the data within the section that has been accessed.

The eighth position block is independent of the tree structure but is necessary information. This block contains the next available address location in the packed data structure used within the GTM. This location is used to control the access limit of all of the functions dealing with tree data withinin the GiM.

The access or the limits of the operation are controlled by the lowest level of the access register which is filled. For example, if an operation is to apply to a whole vehicle, then the controlling is done by having the only position filled within the access register being the second address block, the rest being zero. If only a section is to be processed, then all positions must be filled through and including the sixth block or the section named in the first. named address of that section. All operations within the GTM are controlled by an implied limitation and that limitation is that the extent of the tree to be addressed and processed begins at the lowest level of the access register that is filled. In other words, if a vehicle name is the lowest level filled, then the entire vehicle is to be processed. If a component name is the lowest level filled, then only a component is to be processed. If the section name is the lowest level filled, then only a section name is to be processed. A number of routines within the GTM have been written to create, maintain and utilize this particular access register. These will be described in this document.

DMAN Software Package

DMAN provides all of the basic data management functions to handle variable length data pages while allowing them to be referenced by name. A data page may be stored on any file which has been established for data base use. All or portions of a data page contents may be retrieved. Modification of the contents of a data page is permitted, including that which requires increasing or decreasing the size of a page. Finally, removal of a data page from a file may be accomplished.

DMAN Usage. - The DMAN data management system is a Fortran callable software package which has been written for access and retrieval of data from the EDIN data base. The package consists of the following subroutines which must be included in the calling program:

DMAN	Basic Read/Write Controller.
NXTAD	Extend File Routine.
UPACK7	Character Unpack Routine.
RITBF	Write Routine.
PACK7	Character Packing Routine.
REDBF	Read Routine.
NWBLK	Create a New Block for Data.

The use requires the following declarations in the user program:
COMMON/UNITS/IAREA (273)
DATA IAREA/0, n, 271*0/
INTEGER IT(5), IBUF(256)
where n is the file number where the data base is stored. The usage is as follows:

CALL DMAN(IOP,IT,N,IDATA,IBUF,IAREA (1), IAREA (2))
IOP The read/write option. A further discussion of these options is given later.

IT A five word array containing the data title. A further discussion of the titles is given below.
$\mathrm{N} \quad$ This variable contains the number of words in IDATA to be read or written. When reading, and the requested list cannot be satisfied, this value is reset to the number of words actually read, so this item must always be a variable when reading data.

IDATA An integer or real array containing the data to be stored in the data base. There is no restriction on the length of this array.

IBUF A 256 word buffer area for use by DMAN.

IAREA This is a unit dependent area needed by DMAN. It must be dimensioned 273. One IAREA is required for each unit using DMAN. The double appearance of this array in the calling sequence is required for interal addressing purposes. This area must be protected, such as in COMMON, and must be reserved for use by DMAN while this file is being used.

A Discussion of IT. - There are two significant portions to the five word array IT. The first three words of the title are user supplied hollerith words which represent the name of the data item which is to be accessed or stored in the data base. If this is the first access of this data in the data base, the fourth word must be set to zero. This zeroing of the fourth title word will also return access to the beginning of the data set stored under the title given in the first three words.

The fourth and fifth words of the title are reserved for use by DMAN. If the fourth word is zero, a search is made of index arrays to find the address of the desired data set. This address is then inserted into these two words. Each time some activity occurs using this title, the address stored in these two words is updated so that this address always refers to the next word after the last word accessed. This eliminates the need to search the index arrays for each access of the data.

A Discussion of IOP. - IOP controls the type of reading or writing done by DMAN. The I/O options are:

IOP $=10$ - write a matrix. The complete data set to be stored under the title IT is present in IDATA. $=-10$ - read a matrix.
$=20$ - write a single fixed length record.
$=-20$ - read a single fixed length record.
$=21$ - write a single variable length record. Using this type of write option, an end-of-record mark is inserted after the end of the record. Any variable length record read will not pass this mark when reading. If the read is a fixed length record read, however, this mark will be ignored.
$=-21$ - read a variable length record. In this case, N is the number of words requested. The read will continue until N words have been read, and end-of-record mark is found, or the data set is exhausted, whichever comes first. The value of N will be set to the number of words actually returned.
$=30$ - extend a data set with a fixed length record. The data in IDATA is to be appended to the existing data set stored under the title in IT.
$=31$ - extend a data set with a variable length record.

NOTE: If a read attempt is made, which will extend the read past the end of the stored data set, or the data set requested has not been stored, the following values will be returned by DMAN:

$$
N=0 \text { and } \operatorname{IDATA}(1)=3 \mathrm{LEOD} .
$$

IOP $=6$ HPURGE - this option will cause the title given in IT to be purged from the index array.

IOP $=6$ HCLEAR - this action will cause the buffer IBUF to be cleared. That is output to disc if necessary. This action is necessary before releasing the buffer to other uses, or existing a subroutine or overlay under conditions which will not protect the buffer.

IOP $=6$ HCLOSE - this action conditions the data base so that the entire contents of the data base do in fact reside on disc. It is necessary to execute this statement on any catalogued data base to insure that its entire contents are on disc. Normal activity may proceed after the function is called, and this function may be called as many times as desired.

The GTM is divided into three classes of subroutines categorized by the functions which they perform. Applications subroutines process the input commands. Tree structuring routines construct and maintain the system of pointers called registers which control the access to related sets of geometry data. General utility routines are used for performing utility functions such as string processing, sorting and merging operations, vector and matrix arithmetic, etc.

This section presents a selected set of subroutine descriptions for the GTM. Flow charts are presented in Appendix A.

Subroutine ADDCOM. - The purpose of this routine is to execute the command, ADD component.

Subroutine ADDSEC. - The purpose of this routine is to execute the command, ADD section.

Subroutine ADDSEG. 0 The purpose of this routine is to execute the command, ADD segment.

Subroutine ADDVEH. - The purpose of this routine is to execute the command, ADD vehicle or ADD cluster.

Subroutine AFILT. - The purpose of this routine is to filter out geometric panels for drawing purposes. All panels less than a given area are deleted from the plot buffer.

Subroutine BCOMLS. - The purpose of this routine is to execute the command, BUILD component.

Subroutine BLDACC. - The purpose of this routine is to execute the command, ACCESS component.

Subroutine BLDACS. - The purpose of this routine is to execute the command, ACCESS section.

Subroutine BLDACV. - The purpose of this routine is to execute the command, ACCESS cluster.

Subroutine BLDAPT. - The purpose of this routine is to execute the command, ADD point.

Subroutine BLDCOM. - The purpose of this routine is to execute the command, BUILD component.

Subroutine BLDCSC. - The purpose of this routine is to execess the command, COPY section.

Subroutine BLDCSG. - The purpose of this routine is to execute the command, COPY segment.

Subroutine BLDDPT. - The purpose of this routine is to execute the command, DELETE point.

Subroutine BLDEQR. - The purpose of this routine is to execute the command, EQLEN.

Subroutine BLDEXT. - The purpose of this routine is to execute the command, EXTERNAL name. The command will cause control to be transferred from the GTM to the ED Processor for the purpose of editing a segment of data. The routine first copies the segment data to a BCD file (logical Unit 8) so that it can be edited. An operations stack internal to the GTM is employed to accomplish the actual transfer out of the GTM and back again.

Subroutine BLDFPT. - The purpose of this routine is to execute the command, FIND point.

Subroutine BLDHLG. - The purpose of this routine is to execute commands of the highest level language. The commands processed by this routine are IMAGE INPUT, CLUSTER EDIT, SEGMENT EDIT, INPUT, CALCULATOR, MENU, STOP, SAVE DATA BASE, OPSTACK and EXTERNAL. The commands IMAGE INPUT, CLUSTER EDIT, SEGMENT EDIT, INPUT and CALCULATOR all transfer control from this routine to other language processors. The remaining commands are executed within this routine.
Subroutine BLDIPT. - The purpose of this rouine is to execute the command, INSERT point.

Subroutine BLDLSC. - The purpose of this routine is to execute the command, LIST section.

Subroutine BLDLSG. - The purpose of this routine is to execute the command, LIST segment.

Subroutine BLDMNU. - The purpose of this routine is to execute the command, MENU.

Subroutine BLDRPT. - The purpose of this routine is to execute the command, REPLACE point.

Subroutine BLDSEC. - The purpose of this routine is to execute the command, BUILD section.

Subroutine BLDSTP. - The purpose of this routine is to execute the command, STOP.

Subroutine BLDSTR. - The purpose of this routine is to execute the command, START.

Subroutine BLDVEH. - The purpose of this routine is to execute the command, BUILD cluster.

Subroutine BLOCCM. - The purpose of this routine is to execute the command, LOCATE component.

Subroutine BLOCSC. - The purpose of this routine is to execute the command, LOCATE section.

Subroutine BLOCSG. - The purpose of this routine is to execute the command, LOCATE segment.

Subroutine BLOCVH. - The purpose of this routine is to execute the command, LOCATE cluster.
Subroutine BUFSET. - The purpose of this routine is to initialize a data area as a buffer pool for use by DMAN.

Subroutine CALCUL. - The purpose of this routine is to execute the command, CALCUL. The routine provides the user a quickly accessible calculator type functions within the GTM.

Subroutine CLEAR. - The purpose of this routine is to clear the buffer data area assigned to DMAN prior to releasing the core area
Subroutine COMROT. - The purpose of this routine is to execute the rotation, scaling and translation functions on tree stored clusters, components and sections.

Subroutine COPLST. - The purpose of this routine is to execute the commands, COPY cluster, COPY component.

Subroutine COPYCM. - This routine performs the data transfer for the command, COPY component.
Subroutine COPYTH. - This routine writes geometry data stored in the data base in Gentry format.
Subroutine COPYVH. - This routine executes the command COPY cluster.

Subroutine COPY3. - The purpose of this routine is to perform the copying of tree stored data into a sequential Gentry formatted data file.

Subroutine CUTSEG. - The routine will cut a segment with a plane and define a new segment containing all of the points either above or below the specified plane.

Subroutine DELCOM. - The purpose of this routine is to execute the command, DELETE component.

Subroutine DELSEG. - The purpose of this routine is to execute the command, DELETE section.

Subroutine DELVEH. - The purpose of this routine is to execute the command, DELETE cluster.

DIRCOS. - This routine will compute the direction cosines of a plane or a vector having the principal angles of PSI, THETA and PHI. The calling arguemnts are:

CALL DIRCOS (PSI,THETA,PHI,DXG,DYG,DZG)
PSI Yaw angle, degrees.
THETA Pitch angle in degrees.
PHI Roll angle in degrees.
DXG X-direction cosine.
DYG Y-direction cosine.
DZG Z-direction cosine.

Subroutine DISCF. - The purpose of this routine is to calculate the scale factor for plotting or for displaying the geometry. The scaling is based on the maximum vehicle dimensions and the allowed display area on the display device.

Subroutine DISERC. - The calling parameters for this routine are:
CALL DISERC (IOP,IT,LEN,IBUF,FOUND,IUNDAT)
Definitions of the calling parameters are:
IOP (Operation Control) This may have anyone of the following values: 3LDEL, 3LREP, 3LINS, 3LADD.

IT Contains the title or address position of the level of which this operation is to take place.

LEN | This is the length of the record which is to be |
| :--- |
| inserted or handled. |

KT | This is the record. LEN is the length of KT. |
| :--- |
| KT contains the name which is to be inserted, |
| if necessary. |

FOUND A logical variable, if true, the operation was successful. If false, the operation was not successful.

This routine is the main utility called by the routines TREECH, TREEV8 and TREESC. It will accomplish the table search and in addition, will perform the instructions as specified in the following table:

3LDEL Delete the value if given in $K T$ from the block named in IT.

3LREP Replace the value found previously by a call to this routine with an option of 3LFND with the present value given in KT.

3LINS Insert the record or title given in $K T$ into the block IT as a position which must have been previously specified by a 3LFND operation.

3LADD Add the title given in $K T$ to the block IT, either at the end of the location.

3LFND This is a FIND or access command in this routine to locate and return the correct addresses in IT and KT.

The entire address is not expected in the array $K T$ but rather the first three hollerith names of the DMAN title are expected. The basic storage technique used in the tree structure is straight linear type. The searches are linear and the data is put into the table in a linear manner.

Subroutine DISPLY. - The purpose of this routine is to execute the commands, DISPLY+, DISPLY-, DISPLAY and ZOOM.

Subroutine EXTERN. - The purpose of this routine is to transfer control from the GTM to another program.

GETLNG. - This is a short utility routine which can be used to retrieve the proper language from the permanent data base. In many cases, the same core storage area will be used for several different languages. This utility can be used to test this area to see if the proper language is in core, and if not, retrieve the proper language from the data base. The calling sequence for this subroutine is as follows:

CALL GETLNG(IT,LGVAL,IBUF,IER)
IT A three word array containing the name of the language desired.

LGVAL The storage array described in LANG. Note: For the present time this area must be dimensioned at 1503 words.

IBUF A buffer area for use by DMAN.
IER An error flag set to .TRUE., if the desired languag: could not be found in the data base.

Subroutine GETPAN. - The purpose of this routine is to read a five point panel of data from the data base. The data returned by the subroutine is five points comprising four vectors which represent the boundary of a geometric panel

Subroutine GTMINP. - This is an executive subroutine for controlling input data in Gentry format.

Subroutine GTMPLT. - The purpose of this routine is to plot an array of data points. This array is assumed to consist of two dimensional points after having been rotated into the viewing plane.

IDIREC. - The purpose of this function subroutine is to determine whether or not the line or the direction of the line defined by the array LINE is facing towards or away from the plane as defined in the array PLANE (see PIERCE). The calling arguments are:
$I=\operatorname{IDIREC}$ (LINE, PLANE)
LINE $\quad 6$-Word array defining two points $\left(x, y, z, X_{2}, Y_{2} Z_{2}\right)$ on a line.

PLANE 6 -Word array defining a point in the direction cosines of a plane (see PIERCE).
I. If I is returned as negative, the normal of the plane and the line points in the opposite direction. If I is returned as positive, the normal and the line are in the same direction.

IDSRT. - This subroutine will sort a section in a radial manner. The average point of the section is computed using the routine PTAVG. This point then forms the center about which the data is sorted. Angles are computed between the average point and every other point on the section. The points are then sorted into order based on the value of the angle. This sort routine can only be used if the average point is interior to all section points. The calling parameters are:

CALL IDSRT (IOP,IT,IBUF,KBUF,IUNDAT)

$$
\left.\begin{array}{l}
\text { IOP Integer identification of the sort type. } \\
\text { If IOP }=1 \text {, Sort the section based on its projection } \\
\text { on the } x-y \text { plane. }
\end{array} \quad \begin{array}{l}
\text { If IOP }=2 \text {, Sort the section based on its projection } \\
\text { on the } x-z \text { plane. }
\end{array}\right] \begin{aligned}
& \text { If IOP }=3 \text {, Sort the section based on its projection } \\
& \text { on the } y-z \text { plane. }
\end{aligned}
$$

Function IGOOD. - This function checks the validity of a point to determine if the point falls within the boundaries of the plot window.

Subroutine INPUT. - The purpose of this routine is to read
input data from the data base.
INTBCD. - This function subroutine has one calling argument. The purpose of this routine is to convert an integer binary value into a hollerith character string. The calling argument is the binary value which is to be converted. The subroutine returns the string left justified and blank filled. That is an integer 1 being input will be returned from the function INTBCD as 11

INTERO. - This subroutine is the primary input interrogation subroutine. Its purpose is to accept a list of characters and construct a list of words based on previously defined word boundary delimiters. The calling arguments for subroutine INTERO are:

CALL INTERO (NC,IC,NVL,IVL,XVL,ITP,IDEL,IOP)
NC This is the number of characters in array IC.
IC An array containing the characters to be interrogated. The characters must be stored in this array in 1 R format.

NVL This is the number of words in the character sequence given in IC.

IVL An array returned containing the hollerith representation of the words found. These are right justified blank filled words. For use on Univac 1100 series computers, this array must be dimensioned twice the size of XVL. Each word can be up to 12 characters in length so this requires two Univac words.

XVL An array returned containing the numeric values of this word if the word is a numeric word. The values returned are always real. If integers are required, the values must be converted in the calling program.

ITP An integer array returned containing a type key as to the type of values found. The values returned and their meanings are as follows:
0 Nul word inserted between two non-blank delimiters if the option was specified.
1 Word found, was a numeric word.
2 Word found, was an illegal numeric word (a word which begins as a number and ends with alpha characters).
3 Word found was a legal name.

- N These values are reserved for delimiter identifications. If the correct option is specified delimiters will be included in the returned list of recognized words. See the documentation on delimiters. NOTE: blank always a delimiter.

IDEL An array containing the non-blank delimiters to be used. See the documentation of subroutine STING for further information.

IOP The interrogation control option. The meaning of the four acceptable options are:
0 . Return words and values found only.
1 Insert nul words in the returned list of words between back-to-back non-blank delimiters.

2 Return both words and non-blank delimiters found.

3 Return both words and non-blank delimiters found with nul words inserted between back-toback non-blank delimiters.

The following example illustrates the use of the routines. The input card is:

$$
\operatorname{TEST}=1, \quad, \quad 3.999764 \mathrm{E}-10
$$

This card has been read using an 80 Rl format. The results are given for using INTERO with each of the four options.
$I O F=0$

$$
N V L=\Xi
$$

$I O P=1$

$$
N V L=5
$$

$\mathrm{SOH}^{2}=2$			
$N V L=7$			
TVL		XVL	TIP
6HTEST	61	0.	3
6H=	5 H	0.	-1
EFH1	OH	1.	1
BH,	BH	0.	-2
EH,	6H	0.	-2
EH.	EH	0.	-2
$6+3.9997$	6H64E-10	()	1
IUF $=3$			
$N V=9$			
IVL		$X V$	ITP
EHTEST	5 H	0.	3
$6 \mathrm{H}=$	6 H	0.	-1
6H1	6 H	1.	1
6 H,	6 H	0.	-2
6H	6H	0.	0
EH,	6H	0.	-2
6 H	6-1	0.	0
6 H,	6 H	0.	-2

INTER2. - Function to determine the type of an input character. This function is dependent upon the Univac collating sequence which determines whether the character input is a number or an ALPHA character. The calling argument to this function is:
$I=\operatorname{INTER} 2(I C)$
IC Input character right justified and blank filled (1R format).

If it is a number, the integer value is returned. A minus one indicates that the character IC is not numeric.
INTER3.. - A routine for packing characters into a two word array. This is a machine dependent subroutine using the Univac Fortran IV FLD function. The three calling arguments are:

$$
I=I N T E R 3(N V L, I V L, K C)
$$

NVL
IVL A two word array into which the hollerith representation of a word is to be packed.

KC The number of characters to be packed.
INTGR. - This is a function included in the GTM to insure that the conversion from real to integer is rounded up in such a manner that the correct value of the integer form. A floating point number is always returned. This function is used frequently in conjunction with INTERO which always returns real values. The calling sequence is:

$$
I=\operatorname{INTGR}(F)
$$

IRXBCD. - This subroutine converts a real value into a hollerith string. It will automatically select the format which will yield the maximum number of characters possible and still yield the correct value. The format will be F for values which will fit within that field. If the field is not sufficient for a format, then it automatically switches to an E format. The routine is primarily used in the GTM to output the Harris formatted information. The routine is not particularly efficient but it does function very well. It should also be noted chat this routine will round correctly in all cases except where an additional character is added. That is, if ten is internally represented as 9.9999 , this routine can not round it up to 10 but will output it as 9.999. In all other cases, the numbers are corrently rounded. The calling arguments for subroutine IRXBCD are:

CALL IRXBCD (NCHAR,XVAL,WRD,IOPT)
NCHAR The number of characters which are to appear in the converted string. It should be noted that the mininum number of characters which can be displayed and give a correct representation for any range of values is 7. This would allow for a sign, an argument, a decimal, an exponent, if necessary, and a sign on the exponent. Therefore, the minimum should be 7 .

XVAL The binary real word which is to be converted into a character string.

WRD An array which will contain the output string. It should be noted that this is an array because the output character string will, most likely, exceed the character capacity of one machine word. It automatically continues on to the next word. Therefore, for the Univac lllo, a 7 character return would have the first six characters in WRD(1) and 1 character in WRD (2).

IOPT This is an option which allows the suppression of the letter E in the exponent designation.
If IOPT is 0 , the exponent is supressed.
If IOPT is l, the character E is included if the exponential form is selected.

Subroutine ISRTCM. - The purpose of this routine is to execute the command, INSERT component.

Subroutine ISRTSC. - The purpose of this routine is to execute the command, INSERT section.

Subroutine ISRTVH. - The purpose of this routine is to execute the command, INSERT cluster.

KEYF. - The purpose of the function is to provide an interface for the expansion of the RANDAC hash code computation for collision avoidance. A coded return value of the function KEYF is the first value of KEY. It is intended to hash code a multiword key. The calling parameters are:
$\mathrm{K}=\mathrm{KEYF}(\mathrm{KEE}, \mathrm{MKEY})$

LANG. - Function LANG is the primary language statement recognition routine. This function will accept INTERO output and return a determination as to whether the statement contains a phrase which is part of an established language. The calling arguments for function LANG are:

IVAL $=$ LANG(NVL,IVL,I,LGVAL)
IVAL The phrase number found in this statement. If no phrase was found, this variable is set to zero.

NVL The number of words in this statement. This value is returned by INTERO.

IVL The hollerith representation of the statement (returned by INTERO).

I The first word in this statement to be part of the phrase. If a phrase is found, this pointer is reset to the next word which was not part of the phrase found.

LGVAL This array contains the stored phrase information. This information is packed into this array in the proper manner by subroutine LANGST. For use with GTM, a data storage program has been written which will execute the proper functions and enter any language into the data base in its proper stored manner.
LANGST. - This is a subroutine which interfaces the information from the language routine INECO to a format acceptable to the RANDAC directory routine. The definitions of the calling parameters are:

CALL LANGST (NVL,IVL, XVL,LGVAL)
NVL, IVL and XVL are all values returned from subroutine INTERO.

LGVAL This is an array set aside for storing the language information in a RANDAC form.

When language blocks are being created, they are created from separate elements. Each language element consists of two portions. The first is the non-zero numeric value followed by one or more words of information. The information is read in BCD format and interpreted by INTERO. The information output from INTERO is passed by the array LGVAL for use by RANDAC.

LGPREP. - This is an initialization subroutine for establishing the RANDAC directory and associated attributes. The definitions of these calling parameters are:

CALI LGPREP (IATRIV,LGVAL,LGVLEN)
IATRIV This is the attribute table for the RANDAC addressable block. The attributes which must be input are:

IATRIV $_{1}$ The length of the key name.
IATRIV $_{2}$ The number of unique key names.
IATRIV $_{3}$ The maximum length of the longest
IATRIV $_{4}$ The number of unique titles.
LGVAL This is the directory which will be set up for the RANDAC calls.

LGVLEN This is the length of the directory LGVAL.
LINTRV. - This routine generates a modified distribution of surface points based on a given geometric point set and input value of x, y or z. The calling parameters are:

CALL LINTRV(IOP,IFIRST,IT,VALI,VALO,VALH,IBUF,IUNDAT)
IOP Integer identification of interpolation type. $I O P=1$, then x is input interpolating for y. IOP $=2$, then x is input interpolating for z. IOP $=3$, then y is input interpolating for z. IOP $=4$, then y is input interpolating for x. IOP $=5$, then z is input interpolating for x. IOP $=6$, then z is input interpolating for y. If IOP is positive, then the sequence input is defined by the title IT as an increasing sequence. If IOP is negative, then the sequence is decreasing.

IFIRST This routine will allow an envelope type interpolation. That is, the function input can be double valued function. If FIRST is set to 0 , then this is the first call to the routine. It means that the title put in IT is to be reset to its initial value and the search is to begin from the beginning for this value.

The 5 word title of the section to search.
VALI This contains the input argument which is the value to be interpolated.

VALO This contains the interpolative value found. It should be noted that VALO is set $=3$ LERRR, then the interpolation was out of range. Extrapolation is not allowed in this routine.

VALH An 11 word array required by this routine but is used internally. No initialization requirements are placed on this particular array.

IBUF and IUNDAT are data management requirements (see DMAN).
Subroutine LISTAV. - The purpose of this routine is to execute the command, LIST available clusters.

Subroutine LISTCM. - The purpose of this routine is to execute the rommand. LIST component.

Subroutine LISTVH. - The purpose of this routine is to execute the commands, LIST cluster and TREE list.

Subroutine LOCBUF. - The purpose of this routine is to manage the buffer area assigned to DMAN and to control I/O to satisfy DMAN requests.

Subroutine LSTDAT. - This routine is the main data retrieval routine for tree structured data. The routine is called by all subroutines extracting data from a tree structure.

MAXMIN. - The use of the routine is to determine maximum-minimum extent for use with plotting, etc. It should be noted that the array VALS must be initialized prior to being called by this routine. The calling parameters to this subroutine are:

CALL MAXMIN(IT,VALS,IBUF,IUNDAT)
IT
This is the title of the item to search for MAXMIN values. This is a dimension array, dimension 5.

VALS This is a dimension 6. This array will contain the maximum and minimum x, y, z values for data information. The maximums and minimums are stored in the following manner:

POSITION 1	Maximum x
POSITION 2	Minimum x

POSITION 3	Maximum y
POSITION 4	Minimum y
POSITION 5	Maximum z
POSITION 6	Minimum z

IBUF These are requirements of the data base management and system. IUNDAT
MXV. - This subroutine multiplies a 3 x 3 matrix by a 3 x 1 matrix resulting in a 3 x 1 matrix (vector) result. The calling sequence is:

CALL MXV (M,V,VV)
M $\quad 3 \times 3$ input matrix.
$\mathrm{V} \quad 3 \mathrm{x} 1$ input matrix.
VV 3×1 output vector.
All three arrays are real and V and $V V$ may be the same array, if so desired.

Subroutine MXVALS. - The purpose of this routine is to determine the maximum and minimum points of a geometric set.

Subroutine NWBLK. - The purpose of this routine is to store the pointers to the data blocks written on disks.

PACKWG. - This routine is used for packing partial word information. It can be used for packing characters into full words or for packing small integers into larger words. The GTM uses it for both purposes. The routine calls the Univac function FLD, for the bit manipulation. The calling arguments of this routine are:

CALL PACKWG (IVL,IC,NC,IBP,IBPW)
IVL An array into which the characters will be packed. This array must be long enough to take the packed string of characters IC.

IC An array containing the characters or integers which are to be packed. Characters must be stored in a right justified format. That is an 1 R format, one character per word.

NC The number of characters in the array IC which are to ke packed.

IBPB The number of bits per bite (or character) used for packing for the Univac 1llo. This value is six, meaning six bits in each bite.

IBPW The number of bits per word. Again, with the Univac 1110, the standard value is 36 .

PIERCE. - This is a routine written by NASA Langley Research $\overline{\text { Center }}$ for use in the GTM. Given a plane defined by its directive cosines and a point in the plane, the routine computes the intersecting point of a line defined by two arbitrary points. Calling parameters are:

CALL PIERCE (PLANE,LINE, POINT, INTSER)
PLANE This is an array of dimension 6. The first three locations contain the x, y and z coordinates of a point on the plane. The last three positions contain the three direction cosines of the plane.

LINE This is a 6 word array containing two points which define a line in space. The first three positions contain the x, y and z of the first point. The last three positions contain the x, y and z of the second point.

POINT POINT is an output array of dimension 3 which contains the x, y and z values of the point at which the line intersects the plane.
INTSEC This is a code returned by the subroutine. If INTSEC $=0$, then the line pierces the plane but not between its two defining points. If INTSEC $=1$, then the plane intersects the line between the two input points. If INTSEC $\neq 1$ or 0 , then the line does not intersect the plane.

Subroutine PLTGTM. - The purpose of this routine is to draw a single vector. It also checks the end points of the vector to determine the position of the vector with respect to a specified window. The vector is truncated to fit within the window.

POINTR. - The purpose of this subroutine is to provide a pointer to a new or unused block of disk storage in the DMAN data base system. This particular routine is called from the TREEV structuring routines and its purpose is to provide the address of disk space for titles or for information which is not addressed from DMAN itself but is rather addressed from the tree structured data system. The calling arguments for this routine are:

CALL POINTR(IT,IUNDAT)
IT A five word title array.
IUNDAT The fieldata array IUNDAT which is discussed in the documentation of DMAN.

PTAVG. - This routine will compute the average point of a section. The calling arguments are:

CALL PTAVG(KT,VALS,IFIRST,IBUF,IUNDAT)
KT An array dimension 5 containing the title of the section for which the average point is to be computed.

VALS An array dimension 3 which contains the x, y and z coordinates of the average point of the section.

IFIRST IFIRST must be set equal to 0 prior to the first call. Including this particular parameter in the calling sequence allows you to compute a running average over several sections of values encompassed by more than one section.

IBUF These are data management requirement values. (See and DMAN). IUNDAT

Subroutine PTPAIR. - The purpose of this routine is to provide a pair of points from parallel sections in a component of data in a tree structured data array.

Subroutine PUSHDW. - The purpose of this routine is to establish and maintain a push down stack.

RANDAC. - RANDAC is an access and retrieval subroutine for maintaining a directory of data base information. RANDAC uses the hash and collision methods of entering a table of data by keys. The table may contain the actual data or refer to alternate storage location (and/or devices). A chaining method assures uniqueness of all entries in the directory. The definitions of the calling parameters are:

CALL RANDAC(JOB,KEY,NAME,FOUND,FSL)
$J O B \quad J O B$ may have an integer value of 1 to 5 . The meaning of the values are:

If $J O B=1$, the option is to initialize the directory.

If $J O B=2$, the option is locate the KEYed entry.
If $J O B=3$, the option is install the KEYed entry.
If $J O B=4$, the option is delete the KEYed entry. If $J O B=5$, the option is write the directory.

KEY A dimensional array containing the multiword hollerith key to be used for entering the table. The names can be variable length for different directories but must be fixed for the given directory.

NAME The value which is to be stored in the table associated with the name of the variable found in KEY. It can be data or a reference to other data locations.

FOUND FOUND is a logical variable which is set equal to TRUE and if the JOB option is successful.

FSL. An array used for storage of the directory. FSL must be prepared prior to usage by a call to a subroutine LGPREP.

Subroutine REDBF. - The purpose of this routine is to read geometry data blocks from a disk.

Subroutine RITBF. - The purpose of this routine is to write geometry data blocks on a disk.

Subroutine RPCPT. The purpose of this routine is to replace a point in a section or a point in a segment of data.

SCMVRT. = This routine will sort a section of geometric data, that is x, y and z points, into an increasing or decreasing sequence of x, y or z depending upon the parameters. The definitions of the calling parameters are:

CALL SCMVRT (IOP,LEN,ISRTWD,IT,IBUF,IUNDAT)
IOP
If $I O P=1$, then an ascending order sort is to be executed.

If $I O P=-1$, then a descending order sort is to be accomplished.

LEN This is the record length. This is equal to 3 for geometric data.

ISRTWD This is the key on which to sort. The sort will work only for fixed length records. In the case of geometric data, if this variable is set to l, then we are to sort on x; if equal to 2 , then sort on y; if equal to 3 , then sort on z.

IT This is the 5 word title array containing the first word address of the section or data block to sort.

IBUF and IUNDAT are data management requirements (see DMAN).
SECARE. - This routine will determine the projected area of any section of data as it is projected on any one of the three principal planes. Following is a definition of the calling parameters:

CALL SECARE (IOP,IT,AVG,AREA,IBUF,IUNDAT)
IOP If IOP $=1$, the area is to be computed on the $x-y$ projection.

If $I O P=2$, the area is to be computed as projected on the $x-z$ plane.

If $I O P=3$, the area is to be computed as projected on the $y-z$ plane.

IT This is the title of the section for which the area is to be computed.

AVG This is an array, dimension 3, containing a point which is to be used as the HUB of the area projection. The area is computed by making a triangle of this point and pairs of points of the section from which the area is to be computed. The area of this triangle is then computed and summed over the entire section.

AREA This is the value of the area which is returned.
IBUF These are requirements of the data management and system (see DMAN). IUNDAT
It should be noted that negative areas are not computed. Areas are always positive. Therefore, correct areas can only be arrived at if the AVG point is internal to the area encompassed by the section.

Subroutine SEGDIS. - The purpose of this routine is to execute the command, DISPLAY segment.

Subroutine SEGNAM. - The purpose of this routine is to check the names of segments to determine if certain types of operations may be performed on them.

SETIT. - This subroutine is an utility used to establish data base title names or DMAN title names. The purpose is to place titles into the representative title positions when they are input from the keyboard. If the title is input, and is less than five words long, the remainder of the words are blank filled. The calling arguments for this subroutine are:

CALL SETIT (IT,NVL,IVL, JPOS)
IT A five word array into which the title is to be placed.

NVL These are values returned. IVL is an array and and NVL is the number of words in IV. IVL

JPOS The position of the first unused word in IVI.
SETVAL. - The purpose of this routine is to copy the contents of one array to another. The parameters are:

CALL SETVAL (N,IDATIN, IDATOT)
N The length of the arxays IDATIN and IDATOT.
IDATIN An array containing the data which is to be copied to the array IDATOT.

IDATOT Output array for contents of IDATIN.

STRING. - This routine is a string recognization routine. However, it functions a little differently than most commonly used string routines. These differences will be pointed out. The calling arguments for routine ST'RING are:

CALL STRING (LISTCH,IVGN,ILAST,IUSED,LISTDL,NVSTR)
LISTCH An array containing the list of characters which are to be examined. Note that these characters must be stored in an 1 R format or a right justified one character per word.

IVGN The position in the array LISTCH which must be the first character of a string. In other words, the first character of every string which can be recognized must be in this position.

ILAST The last character position which can be compared. (i.e. the length of the string of characters of input in LISTCH)

LUSED This routine can handle strings of varying lengths. Therefore, this parameter is the number of characters that were found.

LISTDL This is an array containing the strings which are to be searched. A further description of how the data is stored in this array will be given later.

NVSTR. Every string is assigned or must be given a non-zero code number. When a string is found, this number will be returned and will also serve as a flag that a string has been encountered.

Storing the string information into an array LISTDL: position 1 always contains the number of strings which are in the array. If the number is positive, then all of the strings are single character strings. That is, there is only one character to be recognized. In this case, the data is stored into the array in the following manner:

POSITION 1 Contains the number of strings.
POSITION 2 Contains the first character which is a string.
POSITION 3 Contains the code number associated with that string.
POSITION 4 Contains the second single character string.

POSITION 5 Contains the code number associated with that string and etc. throughout the length of the string.

If multiple delimiters using characters of more than one string are to be input, it must be done in the following manner. The first position of LISTDL will be the number of delimiters. In this case, it must be assigned a negative value. Position 2 contains the number of characters in the string. Positions 3 through $n+2$, where n is the number of characters in the string, contain the string itself. Position $n+3$ contains the code word which identifies this string. This sequence is repeated for every delimiter which is to be placed in this list. Special attention must be paid to delimiters which carry the same sequence of letters; one being longer than the other. In this case, in order to recognize them, the longest one must be input first. For example, $A A A$ and $A A$ can be recognized as legitimate strings if AAA is input into this list before the double A string. This routine uses a linear search of both the data and the delimiter list.

Subroutine TISWAP. - The purpose of this routine is to exchange the titles on two data names.

Subroutine TITST. - This is an error test routine used to determine whether two titles are the same.

Subroutine TREECM. - This routine has the identical calling parameters and the identical definitions of the calling parameters to the routine TREEV8. There is only one difference in its operation. The routine operates at the component level rather than the vehicle or cluster level. In all cases the vehicle must have been accessed before any component operation can occur.

Subroutine TREESC. - This routine has the identical calling parameters and calling parameter definitions to TREECM and TREEV8. Again there are no differences in the way this routine operates from the other routines except that this operates at the section level instead of the component or cluster level.

Subroutine TREEV8. - The calling parameters of this routine are:
CALL TREEV8 (IOP, IT, FOUND, IVTREE, IBUF, IUNDAT) Definitions of calling parameters of this routine are:

IOP This is the option controlling the action to be taken by this routine. The values which IOP may have are: INSERT, REPLACD, ADD, FIND and DELETE. These values are all hollerith names which are input to this routine.

IT This is a five word DMAN which is to be entered or accessed from the tree depending upon the value of IOP.

FOUND Is a logical variable returned TRUE if the action specified is completed, returned FALSE if the action specified could not be completed.

IVTREE This is the 40 word access array.
IBUF and Are used by DMAN.
IUNDAT
The command INSERT results in the insertion of a new vehicle or cluster into the list of available clusters. It also implies that a position for this insertion has been specified by a previous access at the cluster level so that the cluster array has information or title positions in the access register. In this case, the vehicle or cluster is inserted in a position in front of the currently accessed vehicle.

REPLACE is a command to replace the vehicle which has been previously accessed and whose name is in register 2 with the value input under the title IT.

ADD adds the title input in title (1) IT, to the list of available clusters. In this case, the cluster need not have been accessed prior to this call. It should be noted that if this title duplicates a title that is already in the list of available clusters, this title replaces the one which is currently there. This is done automatically and no message is given.

FIND is the access operation of this routine. FIND will locate the vehicle given by the title in IT and will establish the access register to reflect the fact that this cluster has been located.

DELETE will delete the clusters specified in IT from the list of available clusters.

UNPKRG. - This subroutine has an identical calling sequence to the routine PACKWG and it is the inverse routine of PACKWG. The arguments are identical. This routine will unpack full word arrays and place the information into the specified array. It can be used for unpacking characters read in A6 format into lR format. It is also used in certain places for unpacking small integers which are stored several to a word.

Subroutine USEOPS. - The purpose of this routine is to transfer control to a stored operations stack.

XFORM. - This subroutine computes the transformation matrix for a yaw, pitch and roll rotation sequence. The calling sequence is:

CALL $\operatorname{XFORM}(A, B, C, X)$
A Yaw angle in degrees.
B. Pitch angle in degrees.

C Roll angle in degrees.
x The output 3×3 matrix and transformation cosines.
2ERO. - The purpose of this routine is to set an array equal to 0 . The calling arguments are:

CALL ZERO (N,IDAT)
$N \quad$ The number of values of IDAT to be set to zero.
IDAT The array to be zeroed.
Subroutine ZOOMSC. - The purpose of this routine is to compute a new scale factor and zeros for plotting of geometric data.


```
    L. GMEmemme
    E. का Ermermemat
    3. int Tatu
    & iम% math-F|E
    5. SEE if|ly
    B. M, BT
    F= |ी TKT&
    B. ती TEM\
    # आ Tिए,
H. Hy GT|um
```



```
LE AM बापए,
```



```
4% IH Bimhilic
GE% GX, (mमH
IE= IN GTMDN
```



```
&. आ क्बा
```



```
E|. In HTTHL
```



```
Ce. In का-itm
```



```
E4. IN INFUT
\square. In ETRTM
```



```
E%. TM सE\"
E. If m,MEE,
ag IH Intege
```



```
ब. TH 1HTEEO
```



```
G. IM EEGIS
```



```
za H-pLmitt
```



```
Q. I! BLHFT
```



```
40. In ELngle
```



```
42. Li THIE
```



```
AG
```


ORIGINAL PAGE IS
 OF POOR QUALIIT

```
\because,
    A, % %
        \! \because, %
        #, ब!, % %|!
        (i) कानT
```



```
        |ि का.-ए
        #%",
        | #, %
```



```
        TH
```



```
        H !-п,
        #G DHi&% (TB!
```



```
        H पालक%
        | Tिए,
```



```
        TH =H,
```



```
        T, की,
```



```
        \square #-%
```



```
        IU %, आQ
```



```
    TH BOी|,T
```



```
    TH EGTG
```



```
    TH Qimbo
```



```
    | BLT,
```



```
    # a,mit
```



```
    14 क15%%
    TH FGO
```



```
    | HDEEF
```



```
    IN Tक, %%:
```



```
    It TFQTG
    FT, ##, (H#)
    \ M, & %'%
```



```
    10. In WEWmb
```



```
    He. M #E|EH
```



```
    HE, IH i,ETMN
```



```
    1B गH पिएपा
```



```
    11, IN कीfe%
```



```
    110. In Quter
```



```
    Hs, Iी कांकी
    11% 5% HE%, (##)
    E|. t! Emb%
```



```
    Q3. Ga mbem,mit
    #4, M बDन, (f
    धa, lf बा%,
```



```
    H?. It EMTEI
    HE. डE זिक, (G)
    HF IN MTST
```



```
    13. TH %-GE|
    1Ge. Un (1,y
```



```
    184. Th Tefegt
    15马, |N WGE
    B# Wी TEEH
    BTa HATREEBC
```



```
    19% li, Fi|mm
    140, काG Eकएक, mat
    14% TH Ji,G%
    1&E. GEG BBE#By(ilial
    14S. In FH|NT
    14% %G #BEG% (#BE%
    14% In \M,
    L& IN BETHW!
    14, un FTHate
```



```
    &,4,
```



```
    G% |! I|,#
```



```
gament imm
Gmage betema
G&|EO 1G7GE
```



```
क11 ש1E6 19146
```



```
\&il \(1414+\arg\)
Qel 04160 g41ET
```



```
a,
```


曰й
 Moerey mity

WE1 O4S53 -4344

GQRLIEPMEGLFTDEG

Gepelmbempintrorge

511 का464 का4165

आ1 aby

$$
\begin{aligned}
& \text { tif B44Ee b44क? }
\end{aligned}
$$

SGMCIEt.MTAES IGL

6448424450

 Anmen Heme HIICs

 IRLLE

 HEH：HETGUs AnGes

$$
\begin{aligned}
& \text { +11 日14es al4at }
\end{aligned}
$$

 MHLE：EPE：FETNT

以

SGFRLBF.GETFFDEG

± 11 01495014446

$$
\text { 511 } 015111216157
$$

511 015160 al5es4
ज6 246143 24614?
\&द s.muctutat

EAE BHEETEATBAGAFT

(1)	abes 91594	*10	0481506489
41	TrTenta	\pm El	Btatmombitu

Era-benestak in mhtot

चक Tिए

-10 ataen alella

,

$$
\begin{aligned}
& \therefore \text { +1) alell 01519 }
\end{aligned}
$$

जa Magernge

ORIGINAL PAGE TA OF POOR QUALTTY

$$
\begin{aligned}
& \text { \#! TAT: }
\end{aligned}
$$

\$11	9raed 1694	* 6	7 9485a
	TएTh\%	\cdots	अ-nt\%

\#11	2ts50 0184i	\# (\%)	atciat 04810
\cdots	TKTEth	* (e)	Bifutum

EMe-GBEETELIE, HENAG

 मिद्ध

Ers-adaeteratermat

Ene-abertar

 HETA?
AETB ,

, 呈 1 ,
$\therefore 1 \quad \therefore 1 \quad$ जि

$$
\begin{array}{ll}
\text { Gu atan } \\
\text { th }
\end{array}
$$

$$
\begin{aligned}
& \text { (a) Bultanthlit }
\end{aligned}
$$

$$
\begin{aligned}
& \text { *(G) TATA }
\end{aligned}
$$

FHe-groerterime Fiot

 Er\& bagemTELLB. DELL

ExA- MadentroneITBr

$$
\begin{aligned}
& \text { an agag ag } \\
& \text { ab }
\end{aligned}
$$

Ere andenprs. Fn+

Ere-anaverfondman

$$
\begin{aligned}
& \text { जब }
\end{aligned}
$$

For उMmbombut

$$
\begin{array}{ll}
\text { He texe aten } \\
\text { ate }
\end{array}
$$

FTEEAL FEGFAGES HEREA

> *i! Gezeg gevell
> ag butab gurg

GTE日tit arexelies: iffact

+ib बG

95017 6017

जकान बGकाड

EAE-G日GETF

± 11	9eng aeame	Fibl	ay ar ater
4	Whem	siel	B
का	UH1TS	\square	Ttatife

 Meres mena neres:

Fwe anaemprontat

FhTrat mathemed
घुनदe बक 48
arfal bevme

$$
\begin{aligned}
& \therefore \text { EG unts }
\end{aligned}
$$

$$
\begin{aligned}
& \text { EG UNTE }
\end{aligned}
$$

ब玉2ll ar
कुate astas

$$
\begin{aligned}
& \text { \& (}
\end{aligned}
$$

ज日 चु 11 ghbed

En+ Ghacman-FETE, ifhe\%
41) कुन कह 1

1	gematereva	E!	65159 5760
-	TTMEts	Eior	

EETVAT EES
randor owithet dath

$$
\begin{aligned}
& \text { Fig GTHE } \\
& 5 \text { inlts } \because 41 \text { guten } \\
& \text { *T Treve *iby ExTGT } \\
& \text { abatider }
\end{aligned}
$$

$$
\begin{aligned}
& \because \theta \text { MATS }
\end{aligned}
$$

Fr\&e-bugethr ELMFT

$$
\begin{aligned}
& \text { G G GTE } \\
& \therefore \text { OH MTE }
\end{aligned}
$$

*11	Qesela	¢emer	*!	67, abels
*!	Teter		\#!	
\$6	Stera		914	GTtetif
47			50]	HITE

GAtEAT

Er\& DademThy. MTTAL

$$
\begin{aligned}
& \text { *is जाET Hi+ BTmbr } \\
& \text { Eig Bnts }
\end{aligned}
$$

 म्ब्रद

ETIEAT ELT.	Qecll mesem	
Fhame gebitht dath		


```
at105
```


Enc-burgerfronainil

4it	tesebr acemas	*im	25156 6170
\%	TEEX	\& E	प-mhumbth
\&	डाए	44	
		\%	HITE

इBitat 8 B Etivit GOtEAT DI

=11

सी
को की

Er,
 ¢

E,

WQ EnA

$$
\therefore 10 \text { किध }
$$

-

$\therefore 11$ ag \&

$$
\begin{aligned}
& \text { *if) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { \& }
\end{aligned}
$$

Fr,

$$
\begin{aligned}
& \text { s क Tिदा }
\end{aligned}
$$

$$
\begin{aligned}
& \text { F! も }
\end{aligned}
$$

Ere-Gberwtan manma

$$
\tan \operatorname{del}
$$

$$
\begin{aligned}
& \text { \& G GTBU }+41 \text { TPEE } \\
& 4 \text { UHTE FIG SGTEA }
\end{aligned}
$$

rae-bederformblt

$$
\begin{aligned}
& \text { \&5 STETE } \\
& \text { +iक Hमाद }
\end{aligned}
$$

*ij	acesem atores	*10	ロus, mets
$\because 1$	Trared	+iel	BLatmathtot
\%	\%6\|\%	* 1	TTmbif
		*i.1	EIITE

Eve nenatho.BLSTF

\#1		ث!	
\%!	Temed	*iz	BLattenthtit
$\because 5$	SETEN	± 14	STmam
		+63	HitTE

+11	tesed aesta	± 1010	
	TEEU	Fle)	ELtEtambtit
\%T	Stem	F14)	GTME
		+is	M11T3

$$
\begin{aligned}
& \text { \& छ डिए }
\end{aligned}
$$

सद उ母नी

Ere－bugetrrand

$$
\begin{aligned}
& \text { GY TEE }
\end{aligned}
$$

$$
\begin{aligned}
& \text { © © पमाढ }
\end{aligned}
$$

 मerest

ErA DemerprorenT

E\％e－bubempramut

$$
\begin{aligned}
& \text { 大⿱日 जीयाक }
\end{aligned}
$$

 HDes मिest

SETEIT	Wb－m	2esec atso	कetse aczi
Fumat	gEment mi		

EAE－G日entry，SUPT

41		54	melsemedrl
＋13	Trew	ate	दntromhtil
St	जकाE	2， 6	वापय
		\cdots	HTT\％

wremoderar atoma

कामी गT

S11	Gesme becer	tibl	amelse metar
＋ 9	TEEE	＋e！	\％－4tatht
\％）	SETE	Sifl	पएササ
F17	जाएक	8	Hute

E4E－buterpramog

$$
\begin{aligned}
& \text { जि उदाए } \\
& \text { at MATE }
\end{aligned}
$$

 मिस्य

$$
\begin{aligned}
& \text { ज口 जिए }
\end{aligned}
$$

上，
-

जe menemproner
\&

$$
\because \dot{A} \text { जीमिभानी }
$$

Fr，

41		$\because(6)$	
¢ 6	TEEC	± 0	
＊	－6T01	\％	¢TEA
为	काती	Y	咕TS

Era－babertrro．Intrac

जिए

$$
\begin{aligned}
& \text { (7) } \\
& \therefore \text { धि धीTE }
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \text { 品 That }
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \text { (6) }
\end{aligned}
$$

 hula huew Amers

211	מ¢tar axab	$\bigcirc 1$	1804066
\＃13	TEEs	もあ	
$\bigcirc 0$	उपाE4	4	जTए
		816	mitts

 hater bareze

EमE－DGtempr

E111	alme	agecs	＊	
9 S	TEEU		Fel	B Finkemtith
\％	¢ाET		± 1.4	GTEIE
\＃1	matum		\＄13	UHITE

Enteradatprtoretut

\％ 1 ！	maty	$\triangle \\|$	masumate
\cdots	Trabl	$\because(E)$	
－1：1	\cdots－	914	－Timala

$$
\begin{aligned}
& \text { +6 H1IT: }
\end{aligned}
$$

 Mres herest

Tomber segitum in

Fhe-bnaterfrymbir

$$
\begin{aligned}
& \text { *(S) Tred ste mantmbtht }
\end{aligned}
$$

$$
\begin{aligned}
& \text { सि UnTO }
\end{aligned}
$$

GGRETT नFE:
231639170
860642648

$$
\begin{aligned}
& \text { \&G EGTE }+4+1 \text { GTBUF } \\
& \text { - Gig UHTE }
\end{aligned}
$$

Gutent ant		W964 2014
Ghamg gemat ma		

az-bugetrevangat

$$
\begin{aligned}
& \text { Ais) intto }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (a) Unts }
\end{aligned}
$$

 Moed tepeas

Er土 - Baterpronamat

$$
\begin{aligned}
& \text { +ial muts }
\end{aligned}
$$

ERe-gatertro. auder

$$
\begin{aligned}
& \text { *ic M1TTE }
\end{aligned}
$$

FTLidf GEdEnT an

Ene मaterfrsugta

$$
\begin{aligned}
& \text { *iق TEG *ie) Biftecththi }
\end{aligned}
$$

$$
\begin{aligned}
& \text { *it UnTs }
\end{aligned}
$$

निमा जिए

世,

$$
\begin{aligned}
& \text { (G) जकाओ }
\end{aligned}
$$

Sil		50	Deas mbser
4 S	Trede	\%	B-ntrathtit
4 5	STEM	Et	वTmbim
		Et	यमT\%

QEGEAT GATM
memb agesi moge gegat
Fibune gratiot Bat

Fras-ghnewtronelion

S11	99159 9e9el	¢6	6094 6\%971
+6	TREEU	FE	
Et	SGmit	4	जापऐ-
		\%	H1T3

 Munt ATGes Maिet

E,

$$
\begin{aligned}
& \text { Fta TeE }
\end{aligned}
$$

$$
\begin{aligned}
& \text { जक inताक }
\end{aligned}
$$

Finme obiven ma

S1		at	65064 60314
51	Treed	4	Smpterintut
\%		4	atinut
		40	MATE

ORIGINAL PAGE IS

OF POOR QUALITY

Exa-batewtronIETU

Bre-menctrfornmom

$$
\begin{aligned}
& \text { ta Tret wien minksulfon }
\end{aligned}
$$

$$
\begin{aligned}
& \text { *E UITT }
\end{aligned}
$$

Folmba gradmatha

$$
\begin{aligned}
& \text { Yक mमाड }
\end{aligned}
$$

下曰


```
    %a,
ala \(69, \quad 1\)
```


$\because 1$		\＃19	－894
\cdots	Tur．e＇	OE！	
\because		\therefore ¢	
		$\therefore \mathrm{A}$	\％dita

काtr －

\％11		\＃10	m9\％ 6 m
＋i	Tefel	4 H	\％－6mothth
\because	\％Gtul	8 ¢ 4	आTELI
		\％ir	H1TT3

 मी

जो

$$
\begin{aligned}
& \text { 41 } \\
& \text { © }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 母ig blem }
\end{aligned}
$$

 णी
matan в18

$$
\begin{aligned}
& \text { 保 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { \& }
\end{aligned}
$$

 hages dumber ththme niges

Erfe-bunctrronarur
 Arais, Mies betes

 मिक: जिए

$$
\because 11 \text { aget aesta }
$$

$$
\begin{aligned}
& \text { ث(6) intte }
\end{aligned}
$$

$$
\begin{aligned}
& \text { robimb gevath aif }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Fi TिE bien Gintrmothet } \\
& \text { F\% काए }
\end{aligned}
$$

只 -
 जlam

 \&

Etitil 2 at

सक
 GGGEAT BED

0

Fil	-69 m^{4}	$\triangle 1$	
± 1	जाtul	\%1	

$\because 1$	\%-6		9,
81	-	\%E1	Sthlat
Fi\%	Fty monatity	iti	

नi,

E4e-anerformand

Fhamb suctuat

Exa-batacxpr= - Tind

Externgevtron InTE

± 11		41	10310 6848
* 18	GTber	*!	
* 6	Stama	*14	TEE
(1)	एपात	*is)	UnT3
*allimma		± 121	P1Pen
		+id	दाए।

 जिएक

romma getarat int

$$
\begin{aligned}
& \text { sel Bantcombth }
\end{aligned}
$$


```
\square口\mp@code{ma कचmatm aे}
```


जn asera gacer tid begta ancer

 \&E ध

Erse-ghermpromatat

$$
\begin{aligned}
& \text { सक Wमण जक उसमझाओमी } \\
& \text { (4) काए }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (क) फTिए }
\end{aligned}
$$

-

 iteres

मीn - 1 arg

$$
\begin{aligned}
& \text { जीकाGTmb }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (4) जाएR }
\end{aligned}
$$

$$
\begin{aligned}
& \text { F(G) Uमा }
\end{aligned}
$$

```
%,%;
```



```
#%%%
M,
    &,
                    #%% (1,0
            Ma, 招
            ##% &, (
            T|, %=
            Fthe FE
```



```
    #m, (%)
            ##% (%)
            W% S-S
                BG% (1,45%
            अस% |, %
                                    #% |
    #,\mp@code{m}
G## आएठ)
            G%% (1G%)
            #क !ि&
            आ% &%!
            #% %
            #%%%
            ##% E- !
```

$$
\begin{aligned}
& \text { जना: } \\
& \text { जn? } 64 \\
& \text { Hap 1-4 } \\
& \text { लma ils } \\
& \text { जीन } 1 \mathrm{AE} \\
& \text { Ante is? } \\
& \text { नम क बा } \\
& \text { An ab } \\
& \text { जnT: © } \\
& \text { नान (1) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { जTa } 1 \mathrm{~EB} \\
& \text { जिte 4. } \\
& \text { मीय } \\
& \text { ח\# (} 184 \\
& \text { ताध: ! }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Tuin i95 } \\
& \text { ITT lege } \\
& \text { गH: (159 } \\
& \text { Whe (174 } \\
& \text { जा (171) } \\
& \text { TE: } \\
& \text { आह धि } \\
& \text { T0円 } 10 \mathrm{~B} \\
& \text { जn\% ! } 1 \mathrm{~B}
\end{aligned}
$$

$$
\begin{aligned}
& \text { जि } \\
& \cdots \\
& \text { Min vor }
\end{aligned}
$$

$$
\begin{aligned}
& \text { मिए धिय } \\
& \text { क्सः I } \\
& \text { ता: © } 1 \text { ? } \\
& \text { …………- } \\
& \text { एक }+\mathrm{B} \\
& \text { स (15, } \\
& \text { …)- } \\
& \text { \% } 17 \% 4 \\
& \mathrm{Fr} \text { (315 } \\
& \text { प\% (1601) }
\end{aligned}
$$

Mr
3 34
जा:
(1)
Me í
MT: 10
Tि 6
Me CHiz
जो (197)
ORIGINAL PAGE TEOF POOR QUALITY

REFERENCES

1. Gentry, A.: Hypersonic Arbitrary Body Aerodynamic Program. Douglas Report. DAC56080. June 1967.
APPENDIX A -
FLOWCHARTS OF SELECTED SUBROUTINES
This appendix contains automatically generated flowcharts ofselected subroutines from GTM. A computer program FLOGEN wasused to generate the flowcharts. Additional flowcharts may begenerated using the following procedure:
aRUN
@COPY,S GTM.,TPF\$.
@MAP,N FM9*FLOWGEN. FLOWGM,TPF\$.
@XQT
INPUT
IREAD=1, ISPEC=2
\$END
The above procedure will produce microfilm output of all sub-routines in the GTM.

ORIGINAL PAGE IS OF POOR QUALITY

CONT. ON PG 9
DMAN
PG 8 OF 36

CONT. ON PG 10
DMAN
PG 9 OF 36

ORIGINAL PAGE IS OF POOR QUALITY

CONT. ON PG 19
DMAN
PG 18 OF 36

CONT. ON PG 20
OMAN
PG 19 OF $\quad 36$

CONT. ONPG 23
DMAN
PG $22 \mathrm{OF} \quad 36$

CONT. ON PG 30
DMAN PG 29 OF $\quad 36$

CONT. ON PG 2
NWBLK
PG 1 OF 3

NwBLK
PG 3 FINAL

NXTAD
PG_1
FINAL

REOBF
PG 2 FINAL

RITBF
PG 1 FINAL

END

UPACK7
PG 1 FINAL

