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ABSTRACT

Explicit difference equations are presented for the solution of
a signal of arbitrary waveform propagating in an chmic dielectric,
a cold plasma, a Debye model dielectric, and a Lorentz model dielectric.
These difference equations are derived from the governing time-
dependent integro-differential equations for the electric fields by
a finite difference method. A special difference equation is
derived for the grid point at the boundary of two different media.
Employing this difference equation, transient signal propagation in
an inhomogeneous media can be solved provided that the medium is
approximated in a step-wise fashion. The solutions are generated
simply by marching on in time. By appropriate choice of the time and
space intervals, numerical stability and convergence are always ob-
tained. Numerous examples are given to demonstrate the wide range of
applicability of the difference solution. These include: the trans-
mission and reflection of an electromagnetic pulse normally incident
on a multilayered ohmic dielectric; a step-modulated sine wave
propagating in a dispersive media, a problem originally considered
by Sommerfeld and Brillouin; the reflection of a short gaussian pulse
normally incident on an inhomogeneous Tossy cold plasma with a
longitudinal d.c. magnetic field, and many others. It is concluded
that while the classical transform methods will remain useful in
certain cases, with the development of the finite difference methods
described in this dissertation, an extensive class of problems of
transient signal propagating in stratified dispersive media can be
effectively solved by numerical methods.
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CHAPTER [
INTRODUCTION

The propagation of a transient signal in dispersive media is an
important and interesting problem in electrical science. Take, for
example, the historically famous problem considered by Sommerfeld[1].
In this work he showed that the front of a signal propagates exactly
with the speed of light in free space regardless of what the group
velocity might be. Thus it supported, at a controversial time[2],
one of the fundamental postulates in Einstein’s special theory of
relativity. More recently, there has been an interest in the remote
sensing of the thickness of ice layers over water, and in the sensing
of subsurface geological structure using short pulse techniques[3].
Other applications are the distortion of the waveform of a signal
reflected from the ionosphere[4], and the measurement of the electrical
properties of dielectrics utilizing time-domain reflectometry[5].

To analyze these ftransient problems, Fourier and Laplace transform
methods are usually employed. Ahtough these standard methods apply to
many cases, their failure to accommodate others has warranted additional
and new methods of solution. In the case of cold plasmas, for instance,
Bowhi11[6] proposed the multiple-scattering technique, and Field[7]
suggested the method of characteristics. This dissertation presents
some finite difference methods for the solution of transient signal
propagation problems in stratified dispersive media.

The numerical solution of partial differential equations has its
root deep in the past. In 1928, Courant, Friedrichs and Lewy[8] pub-
1iched a celebrated paper in which they proposed originally the idea
of solving the wave equation, the diffusion equation and the Laplace
eqr ation by algebraic operations. In particular, when they replaced
the wave equation

2 2
(1) E~% S 2 E
d

t 322
by the difference equation

E{z,t+at)-2E(z,t)+E(z,t-at) _ c2-E(z+Az,t)-2E(z,t)+E(z—AzJ_t)_= 0
2 ‘ pd
ot 3z

they found that the numerical solution always converges if the grid
ratio cat/Az is less than or equal to one. Furthermore, if the
equality sign is chosen, the resulting difference equation



(2) E(z,t+At) = - E(z,t-at) + E{z+az,t) + E(z-Az,t)

generates exactly the analytic solution[9]. More than 30 years later,
in 1970 Chiul10] carried this remarkable solution through an inter-
face boundary for the first time. He derived an appropriate difference
equation for this case and showed that the numerical method again
produces an exact solution.

We shall extend these techniques to the integro-differential
equation of the type:

2 2 +
(3) 3_.5_ -2 g ta %‘E‘* bE(z,t) = J K(t-B)E(z,8)d3.
ot a3z 0

As will be seen this type of equation, or various special cases of
it, arises in a wide variety of problems when a plane electromagnetic
wave propagates in Tinear dispersive media.

In Chapter IT we shall discuss in detail the numerical solution
of {3) in a homogeneous medium. A procedure will then be presented
to derive the appropriate difference equation for a stratified medium.
As an example the wave equation is considered here. By approximating
the inhomogeneous dielectric medium with a large number of thin layers,
it will be shown how one of the most challenging boundary-value
problems in electromagnetic field theory, the reflection and trans-
mission of a plane electromagnetic wave from an inhomogeneous di-
ele:tric slab[11], can be solved as an initial-value problem - by
L.i11izing the step-modulated sinusoidal wave as the incident signal
and marching the time domain solution Tong enough to allow the
steady-state to be established.

In Chapter III a difference equation for a stratified Tossy
dielectric medium is first derived. This difference equation is then
utilized to obtain the waveform of a unit-step signal propagating in
a homogeneous lossy dielectric medium, the transmission of a gaussian
pulse from the air into the earth, and the reflected waveform of a
sine-squared pulse from a three-layered lossy dielectric. In all
cases normal incidence is assumed.

In Chapter IV a numerical solution to Sommerfeld's "About the
propagation of light in dispersive media"[1] is investigated., A
difference equation is derived from the governing integro-differential
equation for the electric field. Employing the resulting difference
equation, we have been able to observe the real-time propagation process
vividly on a high-speed digital computer having a CRT display facility.
The dynamic behavior of the precursor of a signal thus can be seen.

We shall reexamine this historical problem and discuss some of our
findings.



Chapter V deals with transient signal propagation in a stratified
cold plasma in which a constant magnetic field parallel to the direction
of propagation can be assumed. The coupled integro-differential
equations for the electric fields are first derived from Maxwell's
equations and the equation of motion for the electrons. They are next
transformed into an explicit difference equation; the solution is
then obtained simply by marching on in time. By approximating the
plasma medium with a large number of thin layers, it is shown that the
time history of a signal of arbitrary waveform in an inhomogeneous,
anisotropic {due to the presence of a constant magnetic field), lossy,
cold plasma can be easily obtained. Again, only the case of normal
incidence is considered.

In Chapter VI we calculate the reflected waveforms of a unit-
step signal normally incident from air to water directly as well as
with an ice layer on it. Here the water is considered as a Debye
dielectric[12]. We first derive the governing time-dependent
integro-differential equation for the electric field propagating in
this type of dispersive medium, and then deduce the corresponding
difference equation. The solution is then generated again by
marching on in time.

Finally in Chapter VII we summarize the results obtained, and
discuss briefly the application to nonlinear dispersive media as de-
veloped elsewhere[13,14], a subject of great interest in recent years[15].

[t is concluded that while the classical Fourier and Laplace
transform methods will remain useful in certain cases, with the de-
vilopment of the finite difference methods described here as well as the
availability of a high-speed digital computer, an extensive class of
problems of transient signal propagation in stratified dispersive media
can be effectively solved by numerical methods.



CHAPTER TI
DIFFERENCE METHODS FOR AN INTEGRO-DIFFERENTIAL EQUATION

Although the numerical solution of partial differential equations
by finite difference metheds is well-established[16,17,18], 1ittle is
known of its application to the initial-value problem of the telegraph
and related equations[19]. 1In this chapter we shall discuss the
numerical methods for the integro-differential equation (3) in detail.
We shali start from the wave equation, then add one lower order term
after another. In this manner, the lossy wave equation, the telegraph
equation, and the integro-differential equation itself are treated.

We shall also present a procedure to derive the difference equation
for a grid point at the boundary of two different media, in order to
be able to treat propagation in inhomogeneous media.

A. The Wave Equation

As was mentioned earlier, if we replace the wave equation
2 2
3°E _ 2 3E _

Btz 322

0

by the difference equation

E(z,t+at)-2E(z,t)+E(z,t-At) _ 2 E(z*az,t)-2E(7,t)+E(z-2z,t)
2 2
At Az

or

?
(4) E(z.,t+at) = -E(z,t-At) +2 [1 -(%%1) ]E(z,t) +

pd
+ (%%E) [E(z+az,t) + E{z-Az,t)]

then the numerical solution always converges if the stability criterion

(5) X q

is satisfied. Furthermore, if the equality sign is chosen, i.e.,



(6) Az = cat,
then the resulting difference equation
(7) E(z,t+at) = - E{z,t-at) + E(z+az,t) + E{z-az,t)

generates exactly the same values as the analytic solution. This is
to say that as far as the numerical values of the solution are con-
cerned, one could not distinguish whether they were either obtained
from solving the intial value problem of the wave equation or ob-
tained from (7) by marching on in time. This fact has long been
known by numerical analysts[9,17].

In order to visualize this remarkable property, let us consider
the Taylor series expansions

E _ E(z+az,t)-2E(z,t)+E(z-az,t)  5°E az2®

322 A22 824 12

82

A similar expression can be obtained for the time variable t. Now

if we approximate the second partial derivatives by only the first

term on the right-hand side, obviously a truncation error results.

Therefore the replacement of the wave equation by (4), which is now
written in the notation E? = E(isz,nat) as

, n+l _ _n-1 _feat n cat n n
() E1. | E1. + 211 (AZ )Z E1. + (AZ )2 (E1.+] + E1‘-1)’
introduce a truncation error
1 (% 2 1 3% 2 .
(9) T=35 170z - T (cat)® | + higher order terms.
9z c ot

Equation (8} tells us that if the initial data at the time steps
n= 0,1 are given, then the fields at subsequent times can be ob-
tained recursively. However the result will be correct only if a
proper value of cat/Az is used.

A procedure to determine the permitted value of this ratio, or
the stability criterion as it is called in numerical analysis, is
described by Hildebrand[17, pp. 235]. Let the solution of (8} be
“the form

(10) E? = ghedo]



where «,B are constants, with o real and j =\-1. Since the numbey
of time steps is arbitrary, the index n can be increased without
bound. Therefore the magnitude of 8 in (10) must be less than one
for a finite solution. This condition is now used to determine the
stability criterion.

Substituting (10) into (8) yields the secular equation
(1) 52-21-2‘:—‘5—921n29‘-s+1=0
Az S P )

Since

2 4
- cAt . 2o
121 By = 2 [1 -2 (_KE) sin” 3 J

where 84, i=1,2 are the roots of (11), the requivement of 65l <1,
1=1,2 implies

cAt .2
1-2 (EE—:T sin” 3

This inequality is true if and only if the absolute value inside the
bracket is less than one,

2
(Eéi) sin2

<1,

ol
AZ 2= 1

Since o is real, the value inside the absolute sign is always
positive,

cAt 1
“hz Sins < 1.

This inequality is true if and only if

(1) <

for all real a. This is the well-known stability criterion for the
numerical solution of the wave equation by the finite difference
methodf16].

If the equality sign in (12) is chosen, three remarkable properties
are seen: '



1. The time increment At is the largest one permitted,
thus allowing a problem to be solved with least number
of time steps.

2. Calculations at each step are reduced to a minimum because
(7) is the simplest version of (4).

3. But above all, exact solution is obtained from the numerical
method because the truncation error in {9) has now vanished.

It is indeed remarkable all these sought-after properties in a
numerical solution of differential equations happen at the same time.

We have therefore identified the scheme Az = cat optimum in every
sense for the numerical solution of the wave equation by the finite
difference method. This scheme seems to force the difference equation
to march along the characteristics of the wave equation. Since an
initial disturbance propagates along the characteristics of the wave
equation without changing form, it is not surprising that the dif-
ference equation produces an exact solution.

The above conjecture can be verified by showing the difference
equation satisfying the general solution of the wave equation. To
do so, let the general solution of the wave equation be the form

E(z,t) = f](z-ct) + f {z+ct).

Al
We compute and verify that

-E(z,t-At) + E{z+az,t) + E(z-az,t)

= [ (z-c(t-at))+ f,(z+c(t-at))] +

?
+ [f1(2+A2—ct)+f2(z+az+ct)] + [f1(2~Az—ct)+f2(2*Az+ct)]

i1

f1(z—ct-Az)+ f2(2+ct+az)

f][z—c(t+at)]+ folzte(ttat)]

E(z,t+at)
Q.E.D.
In these manipulations the relation Az=cAat has been used.

We now proceed to extend these results to a number of more
general situations.



B. The Lossy Wave Equation

The numerical solution to the lossy wave equation

Z 2
13 EE_ 22, E
ot 3z

is also known[17, pp. 311]. While the first two terms are approxi-
mated, as usual, by (8), the first derivative is approximated by
the central finite difference

I gntl  gn-l
(14) 9E, _E(z,t+at)-E{z,t-At) W i
3t 2at 2at

for a better accuracy. Equation (13) becomes

2
- _ _aat j.n-1 _ [ ecat n
t|: (] 2)51 *2[] (Az ”51”

1

T+ 2
aat¥ n ,en

i ( AZ)Z (B Ei»T)] .

Its stability criterion can be determined by following the same steps
as (10)-(12) to obtain

ntl

(15) E1

R4D

2
1 + At 1 + 2t
2 2

The requirement for [gi]| < 1,+1,2 leads to the stability criterion
for the lossy wave equation

cat / aat
(17} o < 1+ 1

Since we shall consider only a > 0, {(17) is always satisfied if the
scheme az=cat is selected. Consequently (15) is simplified to

ntl _ 1 _ _aat) en-i n n
(18) Ei ;—:T:;—E [ (1 5 ) ET + E1+] + Ei-1J

A
2



which is an appropriate difference equation for the numerical solution
to the lossy wave equation by the finite difference method.

C. The Klein-Gordon Equation

The addition of another kind of lower order term to the wave
equation yields the Klein-Gordon equation[20]

(19)  &E_22E 4o,

at ¥4

Although a numerical solution to this equation has been discussed[19],
it has never been carried out according to the best knowledge of the
author. Nevertheless, at the first glance the difference solution

for this case seems quite straight-forward. One simply adds the lower
order term to (8) and obtains

2 2
ntl  _ _ n-] _[cat n cat n (-
(0 By = -E 2 ( 2z ) £ ( 'a‘z) (Ej4q 7By ) -bat ey

However, the stability criterion for this case is found to be

(21) %5 h -;—L—batz.

Herice the scheme az=cat can no longer be chosen if b>0. This is the
case for cold plasmas but not for the Debye dielectrics as will be
seen,

One may of course select a scheme such that (21) is satisfied
and proceed to obtain a numerical solution. In so doing not only
have all the remarkable properties of the difference solution for the
wave equation been lost, but as will be seen later, the scheme p z=cat
is found to play an essential part in the practical aspects of the
numerical solution. There is another reason to reject the above
idea however. It was conjectured previously that the scheme
Az=cAat is not just a numerical convenience, but it also coincides
- with the characteristic theory of the hyperbolic partial differential
equation, in that this scheme forces the difference equation to march
on the characteristics of the wave equation. Since the presence of a
lower order term in the wave equation does not affect its character-
istics[21], it is anticipated that the optimum scheme for the wave
equation should hold true for the Klein-Gordon equation. It turns out
this is correct. ‘
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For the time being, Tet us accept the fact that if we approxi-
mate the electric field in the lower order term by three con-
secutive times such as

n_ 1]1en ., 1T ntl 1 n-1
(22) &5 = 2{? vz Bty E'] ,

then it can be shown that the stability condition for the resulting
difference equation

. r f "y
£
(23) EMT -l 1 1oy _(cat N
! 1 az | i
1+ 1 bat?

2
cat n n 1 2 -n
' (Az ) (Ejgq * Eyq) - 7 bat Ei} ’

agrees exactly with that of the wave equation. Consequently the optimum
scheme Az=cat can be selected again! Equation (23) then simplifies to

ntl _ _ on-1 1 n n _ 1., .2¢cn
(24) By = - BT+ T [Ei+] + Ej_y - 5 bat Eil
A

w. ich is an appropriate difference equation for the Klein-Gordon
equation. We did not find out the scheme (22) by chance however. In
the next section we shall demonstrate how it was derived.

D. The Telegraph Equation

Combining the lower order terms in the two previous cases, we have
the telegraph equation

(25) &k c2 ﬂ_%.+ a oF bE = 0.

When a=GL + RC, b=RG, and 2 = 1/LC, (25) is the familiar transmission
line equation in which R, G, L, C are the resistance, conductance,
inductance, and capacitance per unit length of the transmission line.
Our goal here is to show that the electric field in the last term
should be approximated by three consecutive times as suggested in
(22). The approach will be to find a numerical solution which is
consistent for both the second order partial differential equation

and the first order equations from which it was derived.



11

To deduce this result, let us return to the second order wave
equation
2% 2 3% _ 0
""'2—-(: —2— .
9t zZ

az

It has been shown that if the scheme
{26) Az = cAt

is selected, the resulting difference equation

ntt _ _ en-1 n n
O S T I B

generates exactly analytic solution. This must be true if the cor-
responding first order system of equations, the Maxwell's equations

are used as the starting point for the same problem. Therefore, if we
anproximate (28) by the difference equations[16, pp. 2621

ntl _ ¢n n+1/2 _ m1/2
B B, M tMiap
o At Az ’
(29)
nt3/2 _ ,n+l/2 ntl _ -ntl
D7 T €1 Y N ' Bl B
0 At Az
or
ntl _ on _ 4t ntl/2 _ . ntl/2
SR o Wi - B
(30)
n+3/2 _ ntl/2 _ _At ntl _ ot
Mgz = Minze "z Bia B
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we should be able to obtain (27) by eliminating the magnetic field
in (30). Indeed, we substitute the second difference equation in
(30) to the first difference equation and obtain

7 -6 - A - ot ) BV o )
s G R G R
= £ + (E?~E?-1) + (E5yq - 2E5 + E7_J)
= - E?+1 + E?+1 * E?-1

which is exactly identical to (27).
Now we can do the same thing to the Tossy wave equation
2 2 a2

3 E E
(31) —s - ¢ —5+
at2 322

IQ

9E _
€0 3t 0.

The difference equation for this Tossy wave equation has been given
in (18). It is

ntl _ _ 1 _ _odt ) en-1 n n
S (1 2EO)E1 Bt Ei—]:\ :
Ze
o

The corresponding Maxwell's equations

aEX aH
& 3t '3z TOoE =0,
(33)
?H aE
A _X _
u0 at * 9z 0

A

can be written in difference equation form
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entl o gn pn+1/2 _ yntl/2
i i i+1/2 ~ i-1/2 n+1 Ny _
(34)
ynt3/2 _ n+1/2 gntl En+1
i+1/2 ~ Miviz2 i 0
"o At Az
or
nti_ _ 1 _ oAt \pn At ntl/2 _ ntl/2
" 1+g—£‘£[(] ZEO)Ei iz Az M|
(35)
n+3/2 _ nt1/2 _ At n+l n+l
"iaye T Wiz Tz (B T B

Notice that in (34), the electric field in the lossy term has been
approximated by two consecutive times. It is desired to show that
(32) can be deduced from (35) by eliminating the magnetic field.

We first compute

e Az i+1/2 i-1/2) = e, bz [Ti41/2 © u Bz i+

n-1/2 At

- [Hi-l/z RY: (£ 1)]
n-1/2 _ n-1/2

(Hiaayz = ¥iaz2) - (B

ght ghAt | -n-1
[(‘*%;)Ef*("zz)Ef ]

- ("

(36)
(Hn+1/2 gntl/z - _ At {Fn-]/Z _ At (" En)}

At
A
EO Z

-2g" +E1 1)

i+l 2E * E1 1)
and substitute it to the last bracket in the first difference equation
in (35) to obtain (32). The important feature in (34) is the approxi-
mation made in the electric field in the lossy term. Thus, for the
transmission line equations

(37)
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we can approximate the voltage v in Gv and the current i in Ri by
its average values at two consecutive times as

JI_n /2 n+1/2
o A RS L YV B VAN W
ot Az 2] J

.n+t3/2 .n+1/2 n+l ntl

1. -1 V. - V.
J+1/2 "j+1/2 j+ i 1 ,.n+3/2 n+1/2y
: it M *R2 Ugayz *ingg) =0
or
gat) n+1_ [, _Gat)n st .nt1/2_ne1/2y
(1 *7C )V' (‘ 2¢ )Vj caz Ugn727i5072) = 05
(38)
RAL | .n+3/2 _f. _ Rat ) .n+1/2 _ At , n+l _ n+l
(‘ Yo )‘j+1/2 (‘ 2L ) RV v I R

Now we eliminate the current i in (38) to obtain a difference equation
for the voTtage v by computing first the term

At (in+1/2 _ 1n+1/2) . 1 1 - Rat 1 + 04t oo
CAZ jt1/2 Jj-1/2 []IRAt) 2L 2C 1]
2L

_ _ Gat | n-1 n _,.Nn n
% )"a‘ } * a2yt )

and substituting it into the first difference equation in (38) to obtain
a difference equation for the voltage

(39) |1 + (BLtRC)A | RG(st)® | n+1 __ | _ (GL+RC)st | Re(et)? s
2LC ar; ] 21C AT j

2
n n _ RG(at) n
P0Gt ) T Y

in which the scheme

(40) Az i?if% At

has been used.
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It can be verified easily that if we replace the second order
telegraph equation

2 2
(41)  LC 3—%— - 9—g§-+ (GL+RC) %%-+RG v=0
at 9z
by the difference equation
n+l n, n-1 n n, n n+tl  n-1
V. —2V.Fv, V., =2v.tv. V., -V,
(a2) Lo L—lpd o LIy (gipe) Ll o
At Az .

RG (on, 1 1
tg Wytgvy o

and use the scheme (40). then (39) will result.

It is seen that the voitage v in the Tast term RGv in {41} must
be approximated by its value at three consecutive times in order that
the difference equations for the first order (transmission 1ine) and
the second order (telegraph} partial differential equations are
compatible. It was from here that we have identified the scheme for
the Klein-Gordon equation as presented in (22).

E. The Source Term

We come finally to consider the effect of adding an integral
t
S(z,t) = | K(t-0)ECz.0)de
0

to the wave equation to produce the integro-differential equation of
Eq. (3). It is always possible to reduce the integral to recursive
form by splitting it into two parts

t-At t
$(2,t) j K(t-8)E(z,8)ds +j K(t-8)E(z,8)ds
0 t-at

and integrating the last integral from t-at to t by the trapezoidal
rule of integration. The result is given by

t-at
(43)  S{z,t) =‘[

K[{t-at)-g+at]E(z,R)dB +
o .

+ ,éﬂ_’g [K(0)E(z,t)+K(At)E(z,t-at)].
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Here the first term can always be written in terms of the functional
S(z,t-at).

So far, we have examined the numerical solution of (1) in a
homogeneous medium by finite difference methods in detail. By
recognizing the optimum scheme az=cat for the wave equation, we have
concluded that this scheme can be chosen for the lossy wave equation,
the Klein-Gordon equation and the Telegraph equation. The corresponding
difference equations for each of these cases have been given explicitly
in {18), (24), and (39). The stability for each of these difference
equations has also been analyzed. On the other hand, we have not been
able to analyze the stability of a difference equation resulting from
an integro-differential equation. Stability analysis in this case is
not available at the present time. Under such circumstances, one has
recourse to intuition and numerical evidence. Fortunately, in all
our problems considered later, we have never experienced numerical
instability of any kind.

The developments up to this point are strictly valid for homogeneous
media. Their extensions to stratified media are now in order. In the
next section we shall consider the wave equation and show how the
propagation of an electromagnetic wave in an inhomogeneous dielectric
medium can be solved by the difference method. The other applications
will be followed up in subsequent chapters where some interesting
transient problems in dispersive media will be discussed.

F. Difference Equation for a Stratified Dielectric Medium

To extend previous techniques to a stratified medium, it is
worthwhile to recall again the remarkable property of the scheme

(44) AZ = CAt

for the numerical solution of the wave equation by the finite difference
method, which is that the resulting difference equation

n+tl _ n-1 n n
(45) By = - By FEL Y ED

generates an exact solution. Although this fact has been known for a
long time[9,17] it was believed to be of Jittle value for practical
purposes because the analytic solution for the initial-value problem

of the wave equation is very simple[22]. 1In 1970 Chiu[10] in the study
of stress wave propagation in an elastic bar with discontinuities, made
an important contribution by carrying this remarkabie difference solution
through an interface boundary for the first time. We shall see this can
also be done for a multitude of interface boundaries.
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The generalization of the scheme Az=cat to a problem involving
an interface boundary is not difficult to visualize. Let us consider
this situation as shown in Fig. 1. If we subdivided each region such
that

_ - 1
Az] = C]At, (c1 = )
HoF1
(46)

Az

]
At Ch =
2 = Gttt ( 2 )
VHpE2

the difference equation {45) then applies to all interior grid points
except the interface grid point. In order to complete the solution,
an appropriate difference equation for this interface grid point must
be found. This can be accomplished by considering the following
mathematical procedure.

Ko € Foi€2

z7|z*
— < >—
azpreazss

Fig. 1--Interface between two dielectric media.

Referring to Fig. 1..we see that the wave equation is
defined everywhere within each region, hence it is valid in the
vicinity of the interface boundary. Therefore, the wave equation at
z¥ and z- respectively are

2%E(z,t) 2 3%, _
W, 2,72
(47)
e, | 2 3%,
2 1 2 :
a9t 9z
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At the interface boundary, the boundary conditions on the continuity
of the tangential electric and magnetic fields, lead to the con-
dition

E(Z',t) = E(z7,t),

(48)

aE(z",t) _ 9E(z”,t)
9z Az »

the second of these being a consequence of the fact that the time
derivative of the maagnetic field is alse continuous.

To derive a difference equation from the mathematical problem
as posed in (47) and (48), we expand the fields at z++Az2 and
z7-42, respectively by the Taylor series

2
- 2 - Az
E(z -az,,t) = E{z ,t) - 3E(z ,t Az, + 0 E(z ,t) 1
1 3z 1 322 2
(49) . >
2 + AZ
+ _ + 3E(z ,t a"E{z ,t) 2
E(z +Az2,t) = E(z ,t) + = 8z, * % .

in which the higher order terms have been neqlected. The second partial
derivatives with respect to z in (49) are first substituted by (47) to
obtain ‘

2
- - - 2 - AZ
E(27-82y,t) = E(z7,t) - E(z,t) , , 2%E(zT,t) M
2z ] atz 2c2
(50) 21
+ + oy 2B, 22E(z ey A%
E(Z +AZ'| st) = E(Z ,t) AZA »
3z 2 Btz 2c§

We eliminate the first derivatives by the use of the boundary conditions
in {48) and then replace the second partial derivatives with respect
to time t by the central finite differences

0PE(z5,t) | E(z%,that)-2E(z,t)+E(z", t-at)
at2 Atz

Doing all these steps, we finally obtain a difference equation for the
interface grid point
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(51) E(z+,t+At)= - E(z+,t-at)+——3————-LfE}E(z'-Az1,t)t/géE(z++azz,t)].

€ ffE_

2
in which the condition (46) has been employed.

Since (51} is derived from a canonical problem, it applies to
any interface boundary and hence a multiplicity of plane boundaries
as well. Furthermore, it reduces to (45) when the dielectric medium
at both sides of an interface grid point i is the same. Consequently,
(51) can be used to obtain the time history of a signal in an in-
homogeneous dielectric medium provided that the medium is approxi-
mated in a step-wise fashion.

To be explicit, the general difference equation for a multilayered
lossless dielectric medium is given by

+1 n=1 2 n n
(52) ENT s BT e 2 (e tfe, EfL0)
i i 1 -1 2 "iH
| Jeg e,
where e1,ep are the permittivities of the medium immediately to the

teft and to the right of the grid point i. Note that (52) must be
used in conjunction with the modeling

(53) Az. = at
i
¥ ¥ofy
for the thin Tayers. The subscript i denotes the ith thin Tayer and
At is arbitrary. Because of the constraint in (53), exact modeling
for the slab is possible only when At is extremely small. In practice,

high precision is seldom required, and the approximation (53) produces
results of adequate accuracy.

G. A Numerical Example -- Reflection of a Step-Modulated Sine
Wave from an Inhomogeneous Slab

We illustrate the validity of (52) by the example shown in
Fig. 2. Here a step-modulated sine wave is normally incident on an
inhomogeneous dielectric slab with the profile

(54)  c(z) = 5 (eg%e,) + F (c=e,)cos T2

The slab is first divided into thin layers according to (53), (52} is
then used to produce the reflected waveform of the incident signal.
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Fig. 2--Reflected CW wave from an inhomogenegus
dielectric slab versus N, t=Nat, wat=2n/36.

2k_d £
_T"a 2 .12 2
| = s ka = o uo(e]+€2), E;—— 2.



21

Figure 2c shows the real-time reflected waveform as observed
at the air-dielectric interface boundary for the case of a normalized
slab thickness L=0.75 versus time step N. The steady-state value of
the reflection coefficient obtained by Casey[11] is shown in Fig. 2b.
We see that the amplitude of the time domain solution at late time
does agree with the frequency domain solution. According to Casey's
results, there shall be no reflection of electromagnetic energy at
steady-state when L=1.650 and 2.825. Indeed, Fig. 3 confirms this
result. By varying the frequency of the incident signal and repeating
the calculations for each case, the magnitude of the steady-state
reflection coefficienct can be obtained. By comparing the steady-
state waveform of the time domain solution with a reference signal,
phase information can also be available.

It is interesting to see that the difficult boundary-value
problem of plane electromagnetic wave propagation in an inhomogeneous
dielectric medium[23,24] can be solved in this fashion. In a single
calculation, the reflected field, the transmitted field, and even
the fields in the medium are all available during both the transient
period and at steady-state. However, only the case of normal in-
cidence is considered here.

H. Some Practical Aspects of a Difference Solution

In this section we shall discuss various aspects of the numerical
solution. They include the simulation of the infinite boundary, the
moving time window calculation technique, proper treatment of initial
conditions, numerical modelling, etc.

To illustrate these techniques we consider the problem of a
short pulse incident on an inhomogeneous dielectric slab of finite
thickness (see Fig. 4). This slab is divided into thin layers such
that

t
(55) Az, = -2
;
J Hofy

where A7 e 5 i=2, 3, 4, --- are determined from e(z).

A technique to accomplish this is to determine a temporary thick-
ness

At
[ u,e(0)

and obtain the permittivity of Tayer 2 by

AZZ =
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Fig. 3--Reflected CW wave from an inhomogeneous

dielectric slab versus N, t=Nat.
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(56) ) =;_~ [e(0) + e(az3)].

The actual thickness of layer 2 is then determined

At
J Hof2

The above process is then repeated (considering z=Azp as the initial
guess for Az3) to determine e3, Az3; €4, bzg -+ and so on. In
general, it is impossible to model the slab exactly unless ¢t is
extremely small. However such high precision is usually not re-
quired and the problem can always be solved approximately. Once
the permittivity in each layer is determined, (52) can be used to
generate the fields at all grid points.

AZZ =

Suppose the generator at z < 0 (see Fig. 4) is turned on at n= 0.
As the time step marches on, the signal arrives at the air/dielectric
boundary; reflection and transmission occur. The reflectes wave
will eventually reach the send-end boundary at z<0. Physically this
reflected signal could propagate through the boundary to the left and
never enter the picture again. However, this is not the case
numerically. The zero value of the short pulse at later times.
acts 1ike a perfectly conducting boundary. So the reflected signal
from the slab will appear to be re-reflected from the sending-end
back toward the slab. Here we see the numerical solution generating
a non-physical signal. This fact applies to the far-end boundary as
well. Unless some kind of numerical technique is incorporated at
both boundaries, a large number of grid points is needed to model the
p-cblem so as to prevent these non-physical signals from coming back
to the observation point. Consequently the usefulness of the dif-
ference method will be severely Tlimited.

For the far-end boundary., it turns out that these problems can
be avoided in a simple way by terminating the infinite boundary at
a point just outside the slab. The value at this grid point, rather
than being computed from the difference equation, is assigned by

ntt _ -n
(57)  Erenp = Erewp-1 .

This follows from the fact that a sjgnal at the point E?END- will
propagate without distortion to E?EN in free space. Hence 157)
simulates the infinite boundary exac%ly in this case. A similar
technique exists for sending-end boundary. If we put the generator
at i=1 and the air/dielectric interface at i=2, then when we compute
the fields at d (see Fig. 4) from (52)

- b+ L _
(s8)  d b+f?5iF; ey Eip */5 @)
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Fig. 4--A signal normally incident on an inhomogeneous
dielectric slab in space-time grid points.
z=iAz, t=nat.
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It is important to interprete E?_1 correctly. Physically, the value

at each grid point represents the total field at that point. Therefore,
the quantity E?_] has two components: an incident field to d gen-
erated at c, and a reflected field from b. Thus,

1}

EY_y = incident field + reflected field from b,

(59)
¢ + (b-a)

fl

Once the value of d is determined, the reflected wave can be picked
up at i=2 by

(60) E'(n t) = d-c

In this way all the unnecessary calculation in the free space has been
eliminated and generation of a non-physical signal has also been
avoided. It is worthwhile to mention that all these techniques are
possible because the scheme Az=cat has been selected in the difference
solution.

When the far-end boundary is other than free space, one can always
terminate the infinite boundary at the point

(N'Iobs) . .
(61) Iewp = Tobs ¥~ — * 1 (Iobs=observat1on point,
N=number of time steps

to be calculated)

without affecting the numerical solution. When the initial field is im-
pressed at z=0, the solution is straightforward and no special tech-
nique is required at the sending end.

The above discussion concentrates on the initial conditions
prescribed in time at z=0 or normally incident from z 0. When the
initial conditions are prescribed in space, i.e.,

E(z,0) = f(z)

3E£Z=O! - g(Z)

at

then it is important to model the information at the time step At
correctly. Carelessness here may sometimes lead to unexpected
results. One example is shown in Fig. 5. Here f(z) is assumed to
be a gaussian short pulse (see N=0) and g(z) is zero. It appears
therefore that (62) for this case can be replaced by

(62)
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EY = f,

.y (2,0) _ E(z,at) - E(z,0)

1 . -0 . ak(z ,0 - Z,AL) - r ]
(63)  E; =) (i.e., =93 T )

However the numerical solution is quite strange as can be seen in

the figure. One might attribute the numerical instability to the
numerical solution itself, i.e., an unstable difference solution.
Since we know that the numerical solution should produce an exact
solution in this case as mentioned previously, there must be_ some
other source of error. The truth is that the initial data E! in (63)
is incorrect, because it implies the field at at is exactlylidentical
to the fields at t =0. This is not physical. Consequently, a correct
solution should not be expected.

The correct modelling for this case is to employ the central
finite difference[17, pp. 231]

3E(2,0) _ E{z,-at)-E(z,at)
at 2at

(64)
or
E{z,-at) = E{(z,Art).
EmpToying the difference equation (7) to at
E{(z,at) = - E{z,-at) + E(z+Az,0) + E(z-4z,0),

we can eliminate E(z,-At) to obtain

(65)  E(z,at) = % [E(z+Az,0) + E(z-82,0)]

which is the corrected initial data at At for this case. In general,
one should always ask, if the initial waveform is given at t=0, what
would it be at At physically? By recourse to this kind of physical
reasoning, unexpected solutions may be avoided.

Finally it is always desirable and possible to incorporate the
moving time window calculation technique to minimize unnecessary
calculations in a difference solution. This can be carried out from
a knowledge of the domain of dependence for the observation point.

A computer program which is designed for Casey's problem[11] is
presented in Appendix A (Computer Program 1). Here the techniques
discussed above are worked out in detail.



CHAPTER III
A DIFFERENCE EQUATION FOR STRATIFIED LOSSY DIELECTRICS

In this chapter we shall extend the techniques developed
earlier to the case of a stratified lossy dielectric medium. A
difference equation appropriate for an interface grid point is
derived, as done for the wave equation in the preceding chapter.
The resulting difference equation is employed to solve three
transient problems which were considered by other authors using
standard transform methods. They include: a unit-step signal
propagating in a homogeneous lossy dielectric, the transmission
of a normally incident gaussian puise from air to a conducting
earth; and the reflected waveform of a sine-squared pulse from
a three-layered 1ossy medium. In all cases normal incidence is
assumed.

It has been known for some time that the reflection of short
pulses from stratified media offers a diagnostic tool in geophysics
[25]. For example, Sivaprasad and Stotz[26] recently in a theoretical
investigation concluded that the detection of water layers in dry
earth at depths up to approximtely 10 meters is feasible. From
another view point, the shielding property of the earth for electro-
magnetic puises has been of concern[27].

It will be shown that the solution of these transient problems
can be easily obtained from a simple difference equation developed
in this chapter.

A. A Difference Equation

It has been suggested in Section II.B that the lossy wave
equation in a homogeneous medium[22]

2 2
(66) = Q*%—- gﬁ%-+ Lag %%-= 0
ot 3z

can be approximated by the difference equation

eIl gn opfypt o gl en-l
(67) i i 7 i+] i -1 + i i -
He 2 - 272 HT oA =0
A Z

When the scheme

(68) AZ = cAt

28
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is selected, (67) takes the simple form

n+l _ 1 _ _oAt \en-1 | en n
(69) Ei - 1+ oAt (1 2¢ )E1 E1+1 %-1

2e
which is then the difference eduation for a homogeneous medium.

Toextend it to the case of a stratified medium, let us consider
an interface boundary between two lossy dielectric media as shown in
Fig. 6. Within each thin layer, the lossy wave equation is valid
everywhere, hence it is true in the vicinity of the interface
boundary. We write (66) at z~, zt respectively

aZE(z',t) azE(z',t) + oE(z ,t) . 0
- HqT = ]
at2 a22 171 ot

159
(70)

2e(zN ) dfet ) L 2B g
3 .

1= u
272 atz 2z 2°2 ot

H)2 €10 H21€2,03

2"zt
&

—— *—
Lsz&zl—-ni-lkzé*4

Fig. 6--Interface between two lossy dielectric media.

At the interface the boundary conditions are
E(z7,t) = E(z7,t),

___aE§z+,t) _ 1 3E(z ,t

u2 azZ u1 92

(71)

To derive a difference equation for the mathemat1ca1 problem as
posed in (70) and (71}, we expand the fields at z +A22 and z7-azy
respectively by the Taylor series
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2
+ 20, F (az,)
E(z+,t) + aEgzaét[ 1z, + 3 E(z ,t) 2

+
E{z +Az,) =
2 322 2
(72) 2
E(z -az,) = E{z ,t) - QE&E:JEl—Az + BZE(Z-’t) il
1 * 3z 1 322 2

The second partial derivatives with respect to z in the above ex-
pressions are first replaced by (70), the first partial derivatives
with respect to z are eliminated by the boundary conditions in {71),
and finaily the second and first partial derivatives with respect
to t are approximated by

oPE (25, t) | E(2h teat)-2E (2%, )+ (2 t-at)

L]
Bt2 Atz

(73)

BE(z7,t) _ E(z5,t+at) - E(z%,t-at)
3t 20T

(74)

Doing all these steps, it can be shown that the resulting difference
equation is given by

ntl _ 1 n-1 n
(78) By s g (B EyNELG OBy
where
u1]uaii
aihes o,
t gaAt
= ] ( 9y8 ) 1_( 2 )
e =51+ + 1+ —5—
2 28.E 2 252
B=]-(1 _oiat)+y_(]_czat)
2 281 2 282
and
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AZ, = ! At .

‘ NETL

Note that uy, €1, o7 and p2, =2, o2 are the constant values of the
permeability, permiltivity, conductivity of the thin Tayers to
the Teft and to the right of the interface grid point i respectively.

We see that (75) reduces to (69) when the electrical properties
of the layers at both sides of an interface boundary are the same.
It also simplifies to (52) when the inhomogeneous dielectric is loss-
less, consequently, (75) can be used to obtain the transient response
of a signal in an inhomogeneous lossy dielectric medium provided
that the medium js approximated by many thin layers according to

(76) pz; = At

where the subscript i denotes the ith layer. In practice it is
recommended that At be chosen such that oat/2e < 0.7 for accurate
results.

B. Numerical Examples

Three numerical examples are presented to illustrate the
applications of the difference equations in (75).

(1) Unit-step signal propagating in a homogeneous
Tossy medium

We assume a unit-step signal is impressed at z=0, and it is
desired to receive the signal at z=0.3, 0.6, and 1.05 meter in a
medium with € = 16gg and o = 0.02 mhos/meter. With discrete time
interval At = 1 nanosecond and Az = 0.075 meter, the waveform
received at the corresponding observation point I = 5, 9, 15 are
shown in Fig. 7. These results agree with those computed by Fuller
and Wait[28] by analytical transform techmiques.

(2) Transmission of a gaussian pulse from the
air into the earth

This problem was originally considered by King and Harrison[27]
in order to determine the shielding properties of the earth, They
solved the problem by Fourier transform method. Here we obtain the
time history of the pulse directly in the time domain. This approach,
perhaps, is more efficient because a long excursion in the frequency
domain has been avoided. Figure 8 shows the waveforms of the trans-
mitted puise at depths 0, 10, 25 meters below the surface of the earth
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for the case of dry earth (e = 7e5, o = 0.001 mhos/m). The results
obtained by King and Harrison are also shown. It is seen that the
comparison of the results obtained by the two approaches is ex-
cellent.

(3) Reflection of a sine-squared pulse from a
three-layered lossy dielectric medium

We finally come to consider a three-layered stratified meddum.
Here a sine-squared pulse is normally incident on a layered earth
(e = 7eq, 0 = 0.001 mhos/m) of thickness d with water (e = 81¢eg,
g = 0.081) as the bed rock, and the reflected waveform of the
diagnostic pulse is of interest. Figure 9 shows the results as
obtained from a difference solution for several thicknesses of the
earth layer. Our results again compare favorably with those obtained
by Sivaprasad and Stotz[26] using the Fourier transform methods. It
is interesting to mention in passing that the difference solution used
about 1 second in computer CPU (central processing unit) time while
the frequency domain approach requires about 20 seconds. This is
not surprising because the latter requires responses at many fre-
quencies to construct the time domain results, while the former in-
volves only repetitive additions and multiplications, which are
particularly suited for a digital computer.

In summary, an explicit difference equation for application to a
stratified lossy dielectric medium has been presented., Its validity
has been demonstrated by three examples. A computer program which
is designed for the last example is presented in Computer Program 2
in Appendix A; little change is needed to produce the numerical
r.sults for the other two examples.

One final comment is that the electrical properties of dielectrics
are always frequency-dependent. The propagation of a short pulse in &
medium with constant values of permittivity, permeability and con-
ductivity is thus a convenient rather than a realistic model. Never-
theless, when the electrical properties of the medium do not vary
significantly over the frequency spectrum of the pulse, then this
model is a good approximation to the physical problem, which is often
mathematically intractable by transform methods. One can also employ
the difference equation to obtain the steady-state response for an
inhomogeneous lossy dielectric medium by marching on in time long
enough to allow the steady-state to be established. This has been
illustrated in an example in the previous chapter.
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CHAPTER TV
A NUMERICAL SOLUTION TO SOMMERFELD'S "ABOUT THE
PROPAGATION OF LIGHT IN DISPERSIVE MEDIA"

A. Introduction

One of the famous problems considered by Sommerfeld is a step-
modulated sinusoidal signal propagating in a dispersive medium[1].
When Einstein in 1905 postulated that a signal can never be trans-
mitted with a velocity greater than ¢, the speed of light in free
space, a controversy was raised among the physicists at that time[2]
because according to Stratton[22], it was then generally believed
that the group velocity was necessarily equivalent to the velocity of
energy propagation; but it had also been known that in the absorption
region the group velocity can be greater than c¢. This apparent con-
tradiction was clarified by Sommerfeld who in 1914 used an elegant
mathematical analysis to show that the front of the signal propagates
exactly with ¢ regardless of what group the velocity might be. Thus
at a controversial time, this result conformed with one of the funda-
mental postulates in Einstein's special theory of relativity. Sub-
sequently, Brillouin[29] extended the analysis and gave a complete
picture of the waveform of the precursor. He concluded that the main
signal may be considered as arriving with the appropriate group
velocity in the normally dispersive region, but that the group velocity
loses its significance in the absorption region.

In this chapter we shall present an extremely simple difference
equation for the solution of this historically famous problem. The
difference equation is derived from an integro-differential equation
for the electric field by a finite difference method. The solution is
then generated in a recursive manner in time. Employing the difference
equation, we have been able to simulate the propagation process in
real-time on a high-speed digital computer equipped with a CRT display
facility. The dynamic behavior of the signal in a dispersive medium
thus can be seen. In fact, we have observed vividly the formation
of the precursor as the signal traverses the medium. We shall describe
some of these observations and discuss briefly the numerical method.
Extensive results will be presented to give a clear picture of the
whole shape of the signal.
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B. An Integro-differential Equation for the Electric Field

Consider an x-polarized plane electromagnetic wave propagating
in the z direction in a dispersive medium. The governing equations
for the propagation process are the Maxwell's equations{30]

X 89S _
€& 5t T3z thNegig =0,
(77)
Mo 3t Y3z 0

and the equation of motion for the electrons

2
d™s ds i g
—_= + ""+UJS_—E
dt2 v Ot m X

(78)

where s represents the displacements of the electrons from their
equilibrium positions. Here v, wg are the electron collision
frequency and the electron characteristic frequency respectively.

Assuming the electrons are initiaily undisturbed, i.e., s,
ds/dt = 0 at t = 0, the solution of (78) is given by [47]

a ‘ - el t X
(79) s (t) = E-E-Jo E, (z,8)sin h(t-8) exp[-p(t-8)]de

where h = mg-pz and p = v/2. Eliminating the magnetic field H

(77), the use of (79) yields an integro-differential eguation f%r the

electric field
2B, 0B , ot

(80) —_— - X+ WoE {(z,t) = 20 pJ a{t-p)E_(z,R)dp +
atz 822 px P 0 X

2 (——iil—l J (t-8)E,(2,8)d8

0
where
a(t-8) = cos h{t-8) exp[-p(t-8)],
(81)
t-8) = sin h{t-8) exp[-o(t-8)]
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and ¢ = 1/\iigeg» w2 = N82/m€0, ¢ is the speed of Tight in free space,
wp 15 the plasma fEequency. The subscript x in Ex will be dropped
hereafter.

C. The Difference Equation

The numerical solution for this type of integro-differential
equations has been discussed in Chapter II and is briefly treated
here. The numerical method essentially replaces the second partial
derivatives by the central finite differences

9%E _ Ez+Az,t)-2E(z,t)+E(z-Az.t)

822 A22 ?
(82)

0%E _ E(z,t+at) - 2E(z,t) + E(z,t-at)

ate at?

To ensure a stable solution, it has been demonstrated in Section
II.C that the electric field in the third term in (89) has to be
approximated by the scheme '

(83)  E(z.t) =5 [E(z,t) + 1 E(z,t+at) + L E(z,t-at)].

Finally, the integrals in the right hand side of (80) can be written
as

1 t-at  t
Alz,t) = I JO + Jt_ﬂt) cos h(t-g) exp[-p(t-g)] E(z,8)ds,

1 t-at t .

B(z,t) = ¢ J + I sin h(t-g) exp[-p(t-g)] E(z,8)ds .
0 t-at

Evaluating the integration from t-at to t by the trapezoidal rule of

integration yields the recursive relations

Alz,t) = g[KA(z,t-at)+SB(z,t-at)J+ %—s E(z,t-at),
(84)
B(z,t)

g[KB{z,t-at)-SA(z,t-at)] + %—9 KE(z,t-at) + %-E(Z,t)
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where g=exp[-pat], K=cos(hat), S=sin{hat). Combining the results of
(82)-(84) and employing the notation ER = E(z,t) (80) is readily

transformed into the difference equations %:;ﬁ%
(85) ™1 = gl a Ll [N ! Sy kAT + Kk, B7]
i i ]+l_ 2 i+l "i-1 2 i 1 271
T
4
where
n _ n-1 n-1 1 <cn-1
Ay = g[KAi + SBy 1+ 5 SE5 s
n_ n-1 _ ¢an-1 1 pen-1 .1 0
B, = g[KBi SAi 1+ > gKEi t 5 B
and
| cott, ky = 262(08t), ky = 7ot T [(ht)2-(at)2]
T wp N 1 T \p » 2 m o] .

Note that the scheme

1

€
Yo%0

(86) z=cAt, ¢ =

has been used. In practice, it is recommended that the time increment
At be chosen such that prt < 0.1.

When initial conditions are given, (85) can be used to obtain
the time history of a signal of arbitrary waveform in the dispersive
medium by marching on in time.

D. Numerical Results

It is convenient to summarize Sommerfeld and Brillouin's results
by considering a simulated experiment which we shall do shortly. A
sinusoidal signal generator is Tocated at 7=0; a detector of infinite
sensitivity is set up a distance Z from the origin in the dispersive
medium to detect the signal. For convenience we normalize the space
and time variables by Z = wpz/c and T = wpt. At time T=0 the gen-
erator is turned on. Then according to Sommerfeld and Brillouin[2],
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1. After a period of time T=Z (i.e., t=z/c), the front of the signal
should be detected. The amplitude of the signal received im-
mediately after is very small and can be described by

(87) f(Z,T) = g‘gl Z—(T—EQ I (J22(TZ)) u(T-Z)

This is the first precursor and is valid only for small value
of 2{T-Z)/Z. u{T-Z) is the unit-step function.

2. At time T=Z.J1 + (mn/wn)z the second precursor arrives.

3. At time Tg = Zc/vgq (i.e., t = z/vg, vg is the group velocity)
the detec%or shou?d detect an intensi%y equal to 1/4 the final
intensity of the signal, which is true in the normally dispersive
region.

We shall attempt to verify these theoretical results by performing a
numerical simulated experiment by the use of the difference equation.

Instead of using a single detector, we set up four detectors at
Z=0, 20, 30, and 40 respectively. The dispersive medium is assumed
to be lossless and specifically wO/wp = 1. Later,l0oss will be in-
cluded.

Figure 10 shows the waveforms of the signal received at four
detectors for the case w=0.2wg. It is seen that the signal is not
distorted. This can be easily explained by considering the dis-
parsion relation {assuming eJuwtl)

2
W —
(88) k = %‘/1 + mz - mz '\»JZ -Lg— (for mp/mo =1 and w/wo = 0,2)
0

which indicates that the medium is essentially non-dispersive for low
frequency signals. The signal velocity thus can be defined clearly and
is a Tittle less than 0.7c. We can verify this velocity "experi-
mentally" (in a simulation sense) by measuring the time T for the

first peak of the signal and define without ambiguity the signal
velocity

where Ty is the time when the generator reaches its first peak. Thus
we have in this case
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- _ 20 _
VS(Z_ZO) - 37.2 - 7.8 C - 0.680(:’
_ _ 30 _
VS(Z—BO) "E7-7% 0.683c,
- _ _ 40 -
v (2=80) = === = 0.687c

which agree with the theoretical result. In addition, one may also
notice a minor disturbance in front of the main signal which is
actuaTly the precursor. It begins exactly at T=Z and thus confirms
that the signal front propagates exactly with the speed of light in
free space. We shall prove this later.

Perhaps, a more clear picture of the precursor can be seen by
increasing the frequency to w=0.5wg as shown in Fig. 11. Here a
larger amplitude of the precursor is obtained as predicted by (87),
but the signal no Tonger propagates without distortion. The leading
portion of the signal Toses its amplitude as it is traveling in
the medium. However the waveform received at late times is un-
distorted. A Tittle arrow has also been added on the figure to
indicate where the second precursor should occur as claimed by

.Brillouin. However it cannot be identified as distinctively as the
first precursor.

The actual propagation process in space for this case is shown
in ig. 12. As the signal front is traveling to the right in the
medium, its leading edge breaks up into little pulses. The deeper
the signal travels, the more the numbers of pulses are formed, and
the weaker is the amplitude on the leading peaks of the main signal.
If a detector is located very far from the generator, one should
receive more pulses in the precursor. Figure 13 shows this for a
detector at 7=100.

We now return to continue the experiment and increase the fre-
quency to w = wg. The received signals are shown in Fig. T4. Here
the waveform js distorted to such a degree that it has nothing in
common with the original signal as it was launched (i.e., at 7=0)
Consequently, there will not be a suitable definition for the
velocity of propagation in this case. But one thing is clear: the
front of the signal always arrives with a speed equal to c.
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We further increase the frequency to w=1.5wg. The waveforms
received at each detector are shown in Fig. 15. In this case the
signal is building up gradually and there is no clear distinction
between the precursor and the main signal. One useful characteri-
zation, the build-up time tgq = z/vg, can be defined however.
According to Brillouin, it Should occur at a time when the de-
tector detects an intensity equal to 1/4 the final intensity. Notice
that this also applies to previous cases, when the signal is built up
gradually, such as the case w=0.5m0 in Fig. 13.

Finally, we consider a specific Toss p/wp=0.1 in the medium and
repeat the experiment. The received signals are shown in Figs. 16-
18 for w/wg = 0.2, 0.5, 1.0 respectively. These results indicate
that the presence of Toss simply attenuates the amplitude of the
signa1 This is particularly apparent in the case w=0. 5m by com-
paring Fig. 17 and Fig. 11.

We present here a simple proof, using the difference equation, of
the fact that the front of a signal always propagates with velocity
¢ and that the front also preserves its amplitude in the course of
propagation. Let us consider the space-time grid pattern as shown
in Fig. 19. Here the rectangular net is constructed such that
Az=cAt (z=iAz, t=nAt). The signal generator is located in the first
column i=0. Now we apply the difference equation (85} to all grid
points. along the diagonal 1ine AB and determine

1

n 0 = A
(85} Ei . EO (n=1,2,3,--+; i=n)
[ (w_At) J
1 + ——E———-

which describes the course of propagation for the signal front E
Equation {89) can be approximated by

7 = [1 - L onge at)?] 9,

i 4 P 0
=1 -1+ 2 0
= (1 3 t prt) EO

where t is the time of flight for the signal front from the- source
(Z=0) to the observation point and hence is finite (actually t =
z/c as we shall see). We then have in the 1imit At -+ 0 that

(90) E? = Eg (n=1,2,3,-+-3 i=n).
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Suppose n=1, we have E}=Eg. The interpretation is that the
signal front gg, after spending At seconds, has travelled a distance
Az meters to Ej without losing its amplitude. Hence the velocity of
propagation for the front is

(91} Ve £, S ap - ©

Thus the signal front not only propagates with c, but also preserves
its amplitude in the course of propagation. For example, if an

ideal unit-step signal of zero risetime is suddenly applied at z=0.
then at any point in a dispersive medium one should detect an electric
field of 1 volt/m arriving exactly with the speed of Tight in free
space. In this connection it is found that the statements in some
books such as "--- so that the process starts always from zero ampli-
tude."[22, pp. 337] and "-.. However, the amplitude of the first
impulse is zero---"[31] is true only when EQ=0. This is certainly
the case for a step-modulated sinusoidal signal considered by
Sommerfeld.

E. Summary

In summary, we have found "experimentally" that the front of the
signal indeed always propagates with the speed of 1light in free space.
In addition, the front of a signal preserves its amplitude in the
covrse of propagation. The physical reason for this is that, for the
Lorentz model dielectric, the relative complex dielectric constant
terds to unity for high frequencies. As the signal travels through
the medium, its Teading edge breaks up into little pulses. These pulses
are picked up first by the detector and are known as the precursor.
When w << w,, its amplitude is small and the signal propagates es-
sentially without distortion. As w increases, so does the amplitude
of the precursor. But now the leading portion of the main signal
suffers a decrease in amplitude as it traverses the medium. When
w v owg, the signal is severely distorted. Hence the concept of
velocity of propagation is not useful here even though the front always
travels at speed c. When v >> wy, the signal received at a detector
is built up gradually and there 1s no clear distinction between the
precursor and the main signal. A build-up time can be defined however
and it is related to the group velocity. The presence of loss in the
medium simply attenuates the strength of the signal.

A computer program is presented (Computer Program 3) in Appendix
A which can be used to generate the results in this chapter.
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CHAPTER IV
TRANSTENT SIGNAL PROPAGATION IN COLD STRATIFIED PLASMAS

A. Introduction

The propagation of a transient signal in cold plasmas has heen
investigated extensively in recent years[e.q., 4, 32, 33, 34]. To
analyze this class of problems, Fourier and Laplace transform methods
are usually employed. Although these standard methods apply to a
number of cases, their failure to accommodate others has warranted
additional and new methods of solution. For instance, Bowhil1[6]
suggested the multiple-scattering technique while Field[7] proposed
the method of characteristics.

This chapter extends the previous one to a stratified plasma
where a constant magnetic field parallel to the direction of propa-
gation is also assumed. By approximating the plasma medium with a
large number of thin layers, it is shown that the time history of a
signal of arbitrary waveform in an inhomogeneous, anisotropic {because
of the constant magnetic field), Tossy, cold plasma can be easily
obtained from difference equations by marching on in time. Only the
case of normal incidence is considered.

In Section B the coupled integro-differential equations for the
electric fields are first derived from the Maxwell's equations
together with the equation of motion for the electrons. These
equations are next transformed into difference equations in Section C.
Numerical techniques and examples are presented to demonstrate the
versatile applicability of the resulting difference equations.

B. _Coupled Integro-differential Equations for the Electric Fields

Consider a plane electromagnetic wave propagation in the z
direction in a homogeneous plasma in which a constant magnetic field
B, parallel to the direction of propagation, is assumed. The
governing equations for this problem have been derived from Maxwell's
equations by Stratton[22, pp. 328] and can be written in complex
form

. oE , 9H , . _

ig, SE'+ az T iNev = 0,
(92)

i M 9E

1”0 ot oz 0

with the corresponding equation of motion for the electrons
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(93) g F O tiedv=2E

|

where E = Extify, H = HytiHy, v = dx/dt + 1 dy/dt, and we = eBy/m.
Here N, e, m, v, wc are the electron density, the charge of an
electron, the mass of an electron, the electron collision fre-
quency, and the electron cyclotron frequency respectively.

Assuming the electrons are initially rest, the solution of
(93) s given by

. _
(94) v(z,t) = %-J E(z,8)expl-(v+iu_}{t-8)]ds.
0

Eliminating the magnetic field H in (92), the use of (94) yields
the integro-differential equation

2 2
(95) 25 - cf 2%
ot 22

+ WPE(z,t) = wi(vHi )JtE(z glexp[-(vtin )(t-p)]ds
wp ’ mp v mc . » P v mc

where ¢ = 1/f ugeg» w2 = Nezﬁmeo and ¢ is the speed of light in free
space, wp is the plasma frequency. Equation (95) is further de-
composed into real and imaginary parts to obtain the coupled time-
dependent integro-differential equations for the electric fields

) azEx ) BZEX ) , (t ) )
("6a -c +0E {z.,t) = w J a(t-8)E (z,r)d@
32 222 P X Plo X
2 tb E )d
- up fo (t-g) y(z.s B,
2 2
»°E 3°E t
Y L2 Y P ) =Wl J t-a)E
(96b) 2 c 2 wy y(z, ) @y . a(t-g) y(Z.B)dB

t
+ mg J b(t-g)E,(z,6)ds

where
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a(t-8)=[vc05mc(t-8)+mcsinmc(t—B)]exp[~v(t-B)],
b(t—B)=[ch05wC(t—8)-vsinwc(t-B)]exp[-v(t-B)].

Here we can see clearly the coupling of the electric field com-
ponents which occur in the last terms in (96).

To visualize this coupling, let us consider an x-polarized
plane electromagnetic wave in free space normally incident on a
plasma medium. Before the signal front reaches the air/plasma
interface, the electric fields are, of course, governed by the
wave equation, i.e., by setting wp=0 in {96). Since there is no
Ey component in the incident wave, Ey is identically zerd in this
period of time. At the instant Ey enters the plasma, an Ey field
is set up by the Tast term in (96b). This induced electric field
then propagates both into the plasma and back to the free space.
Therefore, the reflected wave has an Ey component. It is clear
that the Tast terms in {96) are responsible for converting the
polarization of the incident signal. When the kernal b{t-g) is
zero, i.e., there exists no constant magnetic field, then (96)
becomes

2. .2
(97)  25-2E.y
0z

) 2
at?

2 - wﬁv J expl-v(t-8)E(z,8)ds

0

where E can be x or y polarized and the subscript is dropped. Here,
the polarization would be preserved since the equations are now

u. coupled. One can also obtain this integro-differential equation
irrom (80) by setting the characteristic frequency wg=0.

C. _Difference Equations for the Electric Fields

To transform (96) and (97) into difference equations, the plasma
medium is first divided into a number of thin layers of equal thick-
ness

{98) Az=cht
in which the time increment At is arbitrary but small; its choice

will be clear later. We then attach to each interface boundary a
grid point as shown in Fig. 20,
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(1)} Homogeneous plasma

A procedure to derive the difference equations for this case
has been described in Chapter II. The numerical method essentially
replaces the second partial derivatives by the central finite dif-
ferences

2
3 EE _ Eg(z+Az,t).2Eg(z,t)+Eg(z,t-At)
9z¢ Azt
(99)
2
3 Eg i Eg(z,t+ﬂt) 2E£(z,t)+E€(z,t-At)
8t2 At2

where £ stands for both x and y. To ensure a stable numerical
solution the electric fields in the third term in (96) are ap-
proximated by three consecutive times

(100)  E,(z,t) = %—[Eg(z,t) + %-Ea(z,t+At) + %—Eg(z,t-at)].

Finally, the integrals in the right-hand sides of (96), (97) are
written as '

t-at t ‘
Ag(z,t) = (fo + [t_ﬁt ) a(t-B)EE(Z.B)dB.

B (z,t) = (Jt_At+ Jt ) b{t-8)E_({z,B)dR,
0 t-At e

1 f et gt
D(z,t) = 4= fo + Jt_At) expl-v(t-8)JE(z,8)ds.

Evaluating the integration from t-at to t by the trapezoidal rule
of integration yields the recursive relations
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no_ n-1 n-1 1r.en -n-1
Agy = 9(Khz;" + 5B ) + 5 Loy + (0S+ek)gEy '],
no_ n-1 _ ..n-1 1 r. 0 _ n-1i
(101) Bgi = g(KBEi SAai )+ 5 [eEgi + { &K aS)gEEi ]
n_. nn=1 .1 n-1
Dy = gDy "+ 5 [E5 + 9E; 7],
where K=cose, S=sine, g=exp(-a), o=vAt, 8=wc.At and the notation
n. =
ER, EE(Z’t)t=nAt has been used.
Z=iaz

Combining the results of (98)-(101), Eqs. (96) are readily
transformed into the explicit difference equations

2

ntl _ _ n-1 n n _ T n 2,40 _pN
e T I IR R A T G R B
(102)
2 .
ntt _  -n-1 n n TN 2,40 pN
Eyi B Eyi * [Ey i+1 Ey i-1 2 Eyi T (Ayi+Bxi)]
where 1 = w AL, n = 1
P 2
T
1

and similarly (97) is transformed to the difference equation
2

ntl _ cn-] n n T n 2 .n
(103) Ei = —Ei + n[Ei+1 + E1_1 - Ei+or Di].

(2) Stratified Medium

When a grid point is Tocated at the interface between two dif-
ferent plasmas, or the air/plasma interface, strictly speaking
Eq. (102) no Tonger applies. Not only is the finite difference in
(99) for the z variable no longer valid, but even the integro-
differential equations themselves are undefined here. Fortunately,
appropriate difference equations can be derived.

Without Toss of generality let us consider the interface
between Tayer 1 and 2 in Fig. 20. Within each thin layer the
integro-differential equations are continuous everywhere, hence
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they are valid in the vicinity of the interface boundaary. Thus
we write (96) at z*, z~ respectively

+ 2., 4+

BZEE(Z st) 2 3 EE(Z ot) . 2 E + £) s F I E( + )]

————— = (T ——2———— t ., =0 VnsElZ ’
o> 5 2% Pp & Py 2772

(104)

i R N S S

5+ W B (27,t) = wf Pl E (27t
142 572 Py E S L B

where the subscripts 1 and 2 denote the thin layers to the left and
to the right of an interface boundary respectively. Fach of the
above expressions actually stands for two equations; the functionals

F1, F2 are understood as representing the source term in the right-
hand sides of (96).

wpl,v| wpa,va

z-|zt
—~—i —Q H—
Az >tz >

Fig. 20--Interface between two
lossy coid plasmas.

At the interface the boundary conditions are

E (2,t) = E,(27,t),
(105)

+ -
aEg(z ,t) =aEE(z ,t)

3z az
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To derive the difference equations for the mathematical problem
as posed in (104) and (105), we expand the fields at the points zt+Az
and z7-az by the Taylor series expansions

+ 2 +
3E_(z ,t) 9°E (z7,t) .2
E (27 +az,t) = E(zV,8) + —5—" 47 + & bz
& g 2Z 322 2,
{106) - ) _
- - 9E_(z ,t) 3°E_(z ,t) ,.2
E (2 -az,t) =E (2" ,t) - —5——up7 + £ AZ
& £ 9z 272

in which the higher order terms have been neglected. The second
partial derivatives in these two expressions are first substituted
by (104). The first derivatives are next eliminated by the use of
the boundary conditions in (105). Finally we replace the second
partial derivatives with respect to t in the resulting equation by
the finite difference in (99). Performing all these steps, we
obtain the difference equation

(107) EE(2+,t+At) - -Eg(z+,t—At)+Eg(z++Az,t)+E€(z'-Az,t)

+5 (f + D) Bt

Ny —

1 . 2 - 2 +
+ E—{T1F1[v],EE(2 ,t)]+12F2[v2,E€(z RANE

where t1=wpyat, to=wpoat. A "*" is added to indicate that this term
must be approximated Ey the scheme in (100) for numerical stability
considerations.

The above results indicate that for an interface grid point one
simply evaluates the Tower order terms (i.e., the plasma and the
source terms) on both sides of the interface and then take the
average value of them. Therefore, (107) can be written explicitly
as

2
ntl _ -n-l n n _oeh 1 2,40 N
(108)
2
ntl _ _-n-1 n n _ph 1 2,40 n o
Fyit T Ryi Tl gartEy gy T2 jZ] Ty(Ay31*Byy1))
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where
n n-1 g" =1 n
. = .. T +
Aegi = 95(KAggq * SBrjq) +g Loy + (05%ayK)s, i 1
n o _ n- 1 1 r.en - n-1
Bigq = 95(KLgT - ST + 3 [oE] + (oKeaS)oyepy )
and
@ = wp_lfl\t, 'r2‘-' mpzAt, uj = \)J.At, gj=exp(-o¢j), 6 = wcﬂt,
K=cos 9,5 =sinsg, Y= %‘(T%+Tg), n = ] 0
1+5

Similarly, we can write down the difference equations for an isotropic
lossy plasma from (97)

2
- YEY + 1 z 2 DM

ntl _ _ n-1 n n
(109) E.  =-E. +n[E,,, +E. 5 75 051

1 1 i+] i-1

It is seen that (108) reduces to (102) when the plasmas at both
sides of a grid point is the same. Furthermore, since (108) is derived
from a canonical problem of an interface boundary, it appiies to other
interface and hence a multitude of boundaries as well. Consequently,
(108) can be used to obtain the time history of a signal in an in-
hnmogeneous plasma provided the medium is approximated in a step-
wise fashion.

D. Some Practical Aspects of the Difference Solution

To iTlustrate some pertinent techniques for the application of
(108), 1et us consider the space-time grid pattern as shown in
Fig. 21. Here the space is divided into thin layers.of thickness Az.
The time is quantized to an increment at (recall that az=cat). The
field at a grid point is denoted by En Distance and time are
defined as z={i~1)rz, t=nat.

For the time be1ng we assume the incident signal is impressed
at z=0 (i=7). It is desired to obtain the transient response up to
a time T=wnt at the observation point Z=y,yz/c. For simplicity we
consider tﬁat the plasma is homogeneous, ?OSSTeSS and isotropic,
although the discussions that follow apply to a general situation
as well.
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i= 1 2 3 4 I

n=0 A 0
1 0

2 H 0

3 0

D 0

0

0

o

N o

Fig. 21--Space-time grid point pattern,
z=(i-1)az, t=nat.

The difference equation for this case is the simplest one and
is given by

n_ _n-2 1 n-1 n-1 _
ST > (Fin T i

(170) 1+ %.T

(i=233,49' i sI'.I; n=2 :354:° * ',N)

v E.

2 -n-1
™)

™| —

where E may be x or y polarized. At the column i=1 we have the initial
condition

(111) E? = f(nat) (n=0,1,2,--+,N)

where f(t) is the source signal impressed at z=0. Since we have
assumed the plasma is initially undisturbed, we have at n=0,]
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o
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e

Now the field at E% is no longer zero because the signal front at
E? has reached this point. We can however apply (110) and determine

1 _ 1 0
(112) E, = > E

T
1+ 1

Here the fact E';=0 has been used. This follows from causality of
the fields.

We finally select an appropriate value of t, and employ (110)
to generate the solution up to the time step

' =1
(113) M=

At each step the response is simply picked up at the observation point

1114) iws=%‘%+1'

The far-end boundary can be ended at

(115) 1 =i N-1

]
Tobs t E'( )+

obs

without affecting the numerical soiution. This follows from the
domain of dependence for the observation point. For this very same
reason, only those grid points inside and on the trapezoid ABCD in
Fig. 21 need to be calculated.



The condition in (114) is good for an infinite plasma medium.
When the plasma is bounded by a perfectly-conducting boundary, one
can simply set

(116) E? =0 (n=0,1,2,---N)

at the end point of the conducting boundary.

When the plasma slab is bounded by the free space, then the
assignment

n_ -n-1
(117) EI = EI-]

would simulate the infinite free space.

There remains an important case for this class of problems;
that for which the incident signal, rather than being impressed at
z=0, is incident from z<0 in the air. It is then numerically ef-
ficient to assume the signal front arrives at z=0 (i=1) at the
instant t=0. This is equivalent to assigning again the initial
fields to column =1, although a different physical problem is
encountered here.

Now the air/plasma interface can be conveniently chosen at
i=2. While (110} remains valid for all interior points in the
plasma, the difference equation for i=2 is

En_'l + S _ T2 En_1

n_ _gh-2 1
(118) E, = -E, " + 5 (E3 7 > )

1

2 2 1 + %_T
where S is literally equal to 2 1, but has a different physical
significance in this case. Physically the quantity S means the
total field at a point where it is in the air. Thus it has two
components: the incident field and the reflected field. Refer to
Fig. 21 . and suppose EE {say n=3) is being evaluated; then the
total field in the air is given by

(119) S = Primary field H + Reflected field from G
_ n=1 n-2 n-3
= E] + (E2 - E.I ).
Here £N7] is the incidenf field as discussed earlier, gn-2 is the

total }ie1d at G and E?“ is the incident field to G from A.

64
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Hence the reflected field from G is equal to the difference be-
tween these two quantities. The reflected signal 1s then simply
picked up at i=2 according to

(120)  E"(nat) = €5 - E071 (1 <n < W)

The problem is then completely solved.

We now want to comment on the selection of the time step size
At. In practice, it is recommended that At be chosen such that

(127) (prt, w At vat) < 0.1

whenever possible. The reason for the choice (121) is solely due

to numerical stability and accuracy considerations. One should recall
that we have obtained the recursive relations for the integrals by
trapezoidal rule of integration as in (101). When the step size is
too Targe, it is not clear whether the error introduced-at one step
will jeopardize the stability of the solution at later times. Under
such circumstances, we have had recourse to intuition and numerical
evidence, since we have not derived a stability condition for this
type of equation.

E. Numerical Examples

The validity of the resulting djfference equation is demonstrated
by several examples selected from the literature.

The first example is based on the work of McIntosh and
E71-Khany[E35] in which a group velocity concept was used to synthesize
a "chirp pulse", and the transform methods were applied to obtain the
actual "compressed" pulse. Starting with their signal waveform,
we have calculated the waveform received at Z=15 in a homogeneous
isotropic plasma for two cases v/wp = 0, 0.1 (see Fig. 22}. Although
only the lossless case was considered in [35], we see that pulse
enhancement still occurs in a lossy plasma. More recently, pulse
compression in bounded dispersive media has also been demonstrated
by transform methods[36]. With the aid of the difference equation,
the response of the signal constructed from a number of simple models
can be easily computed in various plasma conditions. This practice may
lead to computer-aided design procedure for pulse compression studies.
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The next example compares the difference equation solutions for
the reflection of a unit-step signal with results obtained by Wait[37]
(for the Tossless case only) by transform methods. Figure 23 shows
the reflection of a unit-step signal normally incident on a homogeneous
plasma half-space. The curves are presented for v/iwp = 0.0, 0.1, 0.5
and 1.0. In an accompaning table the difference solution for two
different time step sizes { = 0.1, 0.01) is compared with the
analytic solution[37] for the Tossless plasma case. The convergence
of the numerical solution is clearly indicated. As was mentioned
earlier, if the electric field in the plasma term is not weighted
at three consecutive time steps as in (100}, then the difference
solution is unstable. This solution is given in parenthesis, and is
unrecognizable after T > 5.

The third example is to calculate the waveforms of a short
gaussian pulse reflected from an 1Ehomogeneous plasma having a
linear electron density profile (wp=2X]U1OZ) and constant collision
frequency with a vertical magnetic field. This is shown in Fig. 24.
This problem was originally considered by Hi11 and Wait[38] using
transform methods, and numerical procedures were used to obtain the
results. The difference solution are obtained by the use of (108)
by marching on in time. Comparing Fig. 24 with the corresponding
results in [38], we conclude that the accuracy of the difference
solution is indeed excellent.

The fourth example (Fig. 25) shows the reflection of a unit-step
signal normally incident on a lossless plasma slab for 4 different
normalized slab thickness Z = 30, 5, 2, 1. Notice that the first
casu is essentially the half-space case. Wait[37] has obtained an
analytic expression for this problem in the form of an infinite
series involving Bessel functions. In the presentations of his
curves, there are still noticeable oscillations in the reflected
waveform at T > 10 for the cases Z =1, 2. However, our difference
solution does not exhibit these oscillations. Antonuccil[45] had
constructed an artificial TEM 1ine to simulate the plasma and also
noted that his result did not agree with Wait in these cases because
his results showed no oscillations at Tate times.

The fifth example shows the response at Z = 100 of a step
carrier signal at Z = 0 in a homogeneous losstess cold plasma. Notice
that the signal builds up gradually and oscillates about the steady
state values at late times. This phenomenon is predicted analyti-
cally[32] and confirmed experimentally[48,49] in related problems.

For our final example we show the spatial variation of a step
carrier at z=0 for three frequencies w/mp =1, 1.2, 1.4 propagating
in a lossless plasma at several normalized times (see Fig. 27). When

w = uy (and w<wp), we see that the waveform is strongly attenuated as
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it propagates to the right. But the wavefront of the signal always
propagates with the speed of 1ight. Other velocities become dif-
ficult to define. MWhen « > wps the signal builds up graduaily
depending on the frequency of the propagating signal.

The above results can be obtained from two computer programs
presented in Appendix A. Computer Program 4 calculates the propa-
gation and reflection of a unit-step, step-modulated sinusoidal
signal, and phase-varying rectangular pulse[35] for a homogeneous,
lossy, half-space or slab geometry. Computer Program 5 calculates
the reflected waveforms of a unit-step, step-modulated sinusoidal
wave, and a short gaussian pulse from an inhomogeneous plasma[38]
or homogeneous plasma Ralf-space with a vertical magnetic field.
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wpt Analytic[37] mpAt=0.01 mPAt=0.l

1 ~0,1199 -0.1188(-0.1201) -0.1094(-0.,1218)
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3 =0,7740 -0.7723(-0.7798) -0.7578(~0.8303)

5 -1.1310 -1.1309(-1.1658) -1.1302(-1.4657)

8 -0.9413 -0.9415(-1.3492) -0.9429(-4.8505)

10 -0.9913 -0.9910(-3.2625) ~0,9884(-22,914)
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Fig. 23--Reflection of a unit-step signal from an isotropic
plasma half-space versus N. T=Nwpat, wpat=0.1.
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Fig. 24--Reflected waveforms of a gaussian short pulse normally
incident on an inhomogeneous plasma having a linear electron
density profile with a vertical magnetic field versus N,
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{a) v=100 sec-T, and mc=7x106 for

(b} v=106 sec-1,

(c) v=2x106,

(d) v=0.5x106-E§nC=0 EinCa 1 oyor_(N-11)2/2k2]

¥ 2r(0.02k)2

(k=4, 0<N<22}.
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CHAPTER VI
UNIT-STEP SIGNAL REFLECTED FROM A DEBYE DIELECTRIC

n

A. Introduction

Fellner-Feldeqgq[40,41] and others[42] have recently demonstrated
quantitatively the feasibility of determining the dielectric constant
of dielectrics over a wide band of frequencies by utilizing time-
domain reflectometry, i.e., by measuring the reflection of a unit-
step signal from a sample of the dielectric terminating a coaxial

transmission line. In order to investigate the possibility of a
d-ir-ec+ Aai’n\nm';ﬂ:\'l'-fon Gf +he T -Fv\equency nnmm-;++-:u'i+y, the h-igh

b VL HTBIU L Ll ("3 L) LI} Pulllllbblvlb

frequency permittivity, and the relaxation time spectrum of a
dielectric in the time domain, theoretical calculations of the
reflected waveform of a signal must be made. This has been done

in the past using Laplace transform method[43,44]. In this chapter
it is shown that this problem can also be solved effectively by the
finite difference method. An explicit difference equation is derived
from the governing time-dependent integro-differential equation for
the electric field in a Debye dielectric with a single relaxation
time. Employing this difference equation the time history of a signal
of arbitrary waveform can be generated by marching on in time. Thus
the response of a nonideal unit-step signal with finite rise-time

can be computed. This may give a better comparison wih the meas-
urements, because in practice a signal always has a finite rise-time.
As an example of the treatment of the Debye dielectric case, we shall
also calculate the reflected waveform of a unit-step signal incident
on an ice layer on water. Here the water is assumed to be a Debye
dietectric.

B. An Integro-Differential Equation for the Electric Field

Consider the Maxwell's equations

aD aH
_——x —
(122) ST + EEx- 0,
oH aE
)y X
Mo 3T T 57 0

which is equivalent to

2 2
oD 3 E
(123) -;—;.-L —%=0.
ot M 3z
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For a Debye dielectric with a single relaxation time, we have[12]

(124) Dx(z,m) = E*(m)Ex(Z,m)

where

£, T €,
(125) e*(w) = e t—m

+
1 JMTO

and egsce are the low and high frequency permittivities, Tq 15 the
relaxation time. Then (124) and (125) are transformed intd the time
domain

0,(2,) = [ e(t-o)e, (z.0)as

fp 7 fw t
e(t) = e s(t) + ——exp |- =] u(t)
0 0
and thus,

(126) D (z.t) = e E (z,t) + Ef_s“’ r exp(— —(t—;B—L) E, (z,8)u(t-p)ds.

o 0

Here the Tower integration 1imit can be changed to 0 because of
causality of the fields, and the upper integration Timit can be
c.anged to t by omitting the unit-step function in the integrand.
We differentiate (126) twice with respect to t and obtain from (123)

g 3E
(127) - —5 (E9+ amo) T -awg E,(z,t)

where c_ =

> 1
y & =——— |, and Wy = T -
Juoem €, To

For compieteness the static conductivity agg OFf the Debye dielectric
{(as in the case of sea water) is included. (127) governs the
electric field component of a plane electromagnetic wave in a Debye
dispersive medium.
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C. The Difference Equation

In this section we shall derive the difference equation from
which one can obtain the reflected waveforms of a signal when it
is suddenly applied to the air dielectric interface. The geometry
of the problem is shown in Fig. 28. The Debye dielectric is first
approximated by thin layers of thickness

]
(128) 622 =
}uoem

where At is arbitrary but small. There are two difference equations
needed: one for the interior point in the dielectric, and one for
the interface point. However no calculation is needed for the points
in the air, as discussed in Section II.H, for the signal incident
from z < 0.

At

Employing the notation E? = E(Z’t)z=iaz s the difference equation

t=nat

for interior points can be written directly from (127)

n-1_,-n _-n-1 N _ ,eNyen
29y —i YR 2 Bt EE
at? ” Azg

- gntl_gn-1
0 i i _2exn_ 3 n
+(€ + amo) AT amDE_i amDAt Si'

Here S? denotes S(z,t)z= which is defined as

tonak
t . t-at T
S(z,t) = EE—JO exp[-mo(t-B)}E(z,B)dB = EE(JO + Jt—At)
* expl-u (t-g)]E(z.p)d8
Thus,
(130) S? = gS?-] + %—(E? + gE?-1), g = exb(-moat).

Employing the scheme (128), Eq. (129) can be simplified to
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(131) (‘ * Zsm)Ei (1 7c )E tEL HET

+ a(m At)2 a(w At)
where o=o_taw e,. Equation (131) app}1es to all gr1d points in the

Debye d1e?ectr1c

The difference equation for the interface point can be derived
by the same procedure as used several times previously. Refer to
Fig. 28. In the vicinity of the air/dielectric interface we have

ot 322

20 (- 2., -
(1;2) ARz 2 FE.H) (c-= 1 )

nEe

o 4 20t +
TR ) 2 2Rt 0 SRt 20" )i (et )0
gt 7] aZ Em 0

where

t -w (t-g)
F(z+,t) = amg J e © E(z+,6)ds
0

AIR DEBYE DIELECTRIC
2=zt

->-—

—
A2~ A257]

Fig. 28--Interface between air-Debye dielectric.

The boundary conditions at the interface are
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E(z7,t) = E(z7,t),
(133)

dE(z’ ,t) _ 2E{z7,t)
9Z 9z

To derive the difference equation from (132) and (133), we ap-
proximate the air and dielectric by thin layers with different thick-
ness in each region such that

AZwl = ¢ At,
(134)
A22 = ¢ At.
We then expand the field at z++a.z2 and z“-ﬁxz1 by the Taylor's series
2
+ 200t AZ
¥ = E(z' 3E(z ,t) 3°E(z_,t) 2
E(Z +A223t) E(Z ,t) + 37 AZZ + 322! 2 ,
(135) ,
- 2oym AZ
E(z7-8zy,t) = E(z7,t) - 2EZs8) 4 2E(z,t) 1
1 3z 1 12 5

The second partial derivatives in the above expressions are first
substituted by (132), the first partial derivatives are eliminated
bv the use of the boundary conditions in (133) and second partial
derivatives with respect to t are approximated by the central finite
differences

22E(z5,t) | E(2 . that)-2E(z5,t) + E(z,t-at)

at? at2

Completing all these steps we obtain the difference equation for the
interface point

€
(136) aE?+1 = - BE T Bl *J 2 ET  + %—[a(moat)zE?-a(woat)3s?]
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where

£
0 oAt
(“JE;*E.:),
4
0 aght
(”J"e:“éa)

Since (136) will be used only on the air/dielectric interface at the
point i=2, we can write it specifically

@
11
AR

B:

M=

n+l . __-n=1 _ .n , o .n, 1 2.n 3en
(137) a52 = -BE2 Egt : Ey + > [a(woAt) E2-a(woﬁt) 52].
Here the quantity E? represents the total field for a point in the
air. Thus, for the unit-step signal

Total field E?

Incident field + Reflected field

1.0 + (52'1-1.0)

n=-1
E2 .

n
E

The complete algorithm for the solution of a unit-step signal
reflected from a Debye dielectric is then given by

_ n_ 1.0 (i=1)
=0 ES = 0.0 (451)
n=1] ¢

1.0 (i=1)
n_< ]_E_O._ n-1 i=
E; i ES {i=2)
(138) ~ 0.0 (i>2),
n=2,3,4-*" i
e (i=1)
EY =< 037) (i=2)
(131) (i>2) .

.
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D. Numerical Results

Figure 29 shows the reflected waveform of a unit-step signal
from Debye dielectric with €p=80, £.=8, and og1g/e0=0, 11.3, 113,
1130. These results agree excellently with those obtained by employing
the Laplace transform method[44]. Note that the amplitude of the
waveform for early and late times corresponds to the reflection coeffi-
cient for high and Tow frequencies respectively for the lossless
case[44].

We next consider an ice layer on water as shown in Fig. 30. The
thickness of the ice is 30 cm and its permittivity is e1=3. The water
is assumed to be a Debye dieiectric with eg=4.5, e,=81 and 1, is the
relaxation time. A unit-step signal is suddenly applied to The air/ice
interface; after a time of

_ 0.30

T = 1.73 x 1072 seconds

(0]
3x108 -1
J3

the front of the transmitted signal reaches the ice/water interface;
transmission and reflection occurs, the reflected signal takes another
Ty seconds to return to the air/ice boundary. Thus in the period
0<t<2Ty the waveform received in the air is solely due to the re-
flection from the air/ice interface. Now the reflected signal from
the ice/water will be reflected again by the air/ice boundary, but
this signal will not arrive the jce/water interface until t=3T,.

Thus we may neglect the multiple reflections in the ice by terminating
ti.2 transient response at 3Tg. The result of such a calculation is
shown in Fig. 30. This problem could not be solved practically
without the techniques discussed in Section II.H because then a large
number of grid points (about 30000% is needed to model the ice. This
is because of the exceedingly small relaxation time of the water
relative to the time for propagation through the ice.

A computer program for this problem is given in Computer Program
6 in Appendix A. In this program the static conductivity o is also
included. The result in an earlier example (Fig. 29) can also be
obtained from this program by setting the permittivity of the second
layer, i.e., the ice, equal to 1.
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a1

Fig. 29--Reflected waveform of a unit-step signal normally
incident on a Debye dielectric, £2=80, ew=8,
including static conductivity og-
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CHAPTER VII
DISCUSSION AND CONCLUSIONS

In the previous chapters we have shown how finite difference
methods can be applied to linear dispersive waves., But they are
even more powerful for nonlinear waves, which unlike the linear
case, cannot be handled by transform methods. One of the nonlinear
dispersive waves which caught the attention of many investigators
in recent years is the Korteweg-deVries equation[13, 46]

3
au 3u 2 37u _
(139) st T U g, o 3 0.

This equation was originally suggested for shallow water waves (1895),
but it has been found to describe the Tong-time evolution of small,
but finite amplitude nonlinear dispersive waves, such as the magneto-
hydrodynamic waves and jon-acoustic waves in cold plasmas.

In 1965, Zabusky and Kruskal[13] proposed the difference equation
for (139)

m1_ n-1 n__n
Ei""ﬁg%——'+ %'(”?+1+“?+”?-1) U1+;Azi“1 v 21x3
+ (ufp-2ug g h2uf Uy _p) = 0
wiich can be written as
a0y =T Ll )
- ﬁ;f%-(u?+2 - 2u?+] + 2ur1-]_1 - “?-2)'

Given the initial conditions, (140) can be used to calculate the
evolution of the initial waveform. Such a calculation for the case
of the periodic initial condition

(141) u{x, t=0) = cosmx

83



84

is shown in Fig. 31, given by Zabusky and Kruskal. We see that the
initial waveform breaks up into eight pulses eventually. After that
time these pulses, now called solitons, begin to move without changing
their shapes; and the soliton with large amplitude moves faster than
the one with smaller amplitude. Thus, after a certain period of
time, all these solitons interact and overlap in such a way that the
initial waveform reoccurs. This remarkable phenomenon was first
discovered in 1965 in the difference solution discussed above. This
phenomenon has also been confirmed experimentally and found in
several physical nonlinear systems. Because of this remarkable
property, great efforts have been spent to devise analytical methods
to predict the performance of these nonlinear systems., A1 these
fascinating developments in the last ten years are summarized in a
recent article by Scott[15]. ATthough we have not considered any
non-linear problem here, it can be said that the finite difference

methods are a powerful tool in the analysis of Tinear and nonlinear
dispersive waves.

3.0 ~
(A)ereees ¥20
P G I EEEES A
& 20 = l (C)—— t =361,
5 10fe=H -
% 0 l:kk'.’ \\f\fgfr. - ’;\
-1.0 ‘{g:'_',.-::’f:"ﬂ::\j \JC \J
e 0.5 .0 1.5 2.0
NORMALIZED DISTANCE

Fig. 31--Solutions of the Korteweg-deviries equation,
6=0.022, at three different times. ?t8=1/n)

The main thrust of this dissertation is in the development of
some finite difference methods for linear dispersive waves. To this
end we have obtained simple difference equations for the solution of
transient signal propagation in several kinds of stratified dispersive
media.  We demonstrated the numerical stability and accuracy of the
difference equations, and described a number of practical techniques
to greatly simpliify the calculation procedure. The speed and ef-
ficiency with which time domain solutions may now be obtained using

these methods Tead us to expect many significant applications in
the future.
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APPENDIX A
COMPUTER PROGRAMS

Six computer programs which produce most of the results in
dissertation are collected here.

Computer Program 1 calculates the reflected waveform of a
unit-step sinusoidal wave normally incident on a specific
inhomogeneous dielectric slab in [11]. Input data include:

EPSR = 0.5 or 2.0; e in Casey's paper (¢ =52/51)
NSTEP= number of time steps to be calculated

XL = normalized thickness L of the slab

D = 1.0 if a transition layer,

2.0 if a dielectric duct.

Computer Program 2 calculates the reflection of a sine-squared
pulse from a three-Tayered lossy dielectric medium[26]. Input
data are:

z = thickness of the second layer
NSTEP = number of time steps to be calculated
DT = time step size (e.g., At = 2.5 x 109 sec.)

Computer Program 3 generates the results in Chapter IV -
Sommerfeld and Brillouin's transient problem., Input data are

NSTEP = number of time steps to be calculated
WPDT = wpht

WOWP = mO/mp

PHO = p/uw,

I0BSER= Z1/wpAt + 1

10B2 = Zp/wpht + 1

WWP = w/wp. .
(22 < Z1 where Zi’ Z2 are spatial observation points)

Computer Program 4 calculates the propagation and reflection of
a transient unit-step, step carrier, and a chirp pulse in a
homogeneous Tossy plasma half-space or slab geometry. The
input data are :

ICASE = 1 for propagation, 2 for reflection
GWP = v/u

NSTEP = numger of time steps to be calculated
WPDT = prt
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Z = wpz/c. In the case of propagation (ICASE=1) it
is the observation point. In the case of re-
flection (ICASE=2) it represents the thickness
of the plasma slab.

WWP = w/wp, frequency of the step carrier if applicable

1P = 1 unit-step

2 step carrier
3 chirp pulse.

5. Computer Program 5 computes the reflected waveform of a short
gaussian pulse, a unit-step and a step carrier normally in-
cident on an inhomogeneous lossy piasma (specificaily the iinear
electron density profile[38]) or a homogeneous cold plasma
half-space in which a longitudinal dc magnetic field is

present. The input data are

WPDT1 = wpAt if a homogeneous plasma, or a normalized
factor for the incident short gaussian pulse.

WCDT = mCAt

GDT = vat

WWp = w/wp .

NSTEP = number of time steps to be calculated

1P = 1 unit-step
2 step carrier
3 gaussian short pulse

DT = 0 if a homogeneous half-space, or the time step

size At otherwise.

6.  Computer Program 6 computes the reflected waveform of a
unit-step signal normally incident to an ice layer on water
in which water assumes a Debye model. The input data are

NSTEPT = number of time steps to be calculated

WODT = wpdt (tg=1/wg is the relaxation time)

EPST = dielectric constant of the second layer
(ice in this case)

EPS20 = e; Tow frequency dielectric constant

EPSZN = e, high frequency dielectric constant

CONDO = normalized low frequency conductivity of the
Debye dielectric
GOTO/EO.
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wkkRpkkpkn COMPUTED BOOGPAM | kxkkkxkkaxsx

REFLECTED WAVE F2CM AN INHOMOGENZOUS DIELECTRIC SLAB
BREFERENCE: CASEY, IEEE G-&P, MAY 1972, TP. 368-374
DIMENSION FE(5€2).TI(SE€0),FE(SCR)LEPS(SRR)IDZ(52E)
! WAFORMC(SE@)

DATA PILPI2,Z@,FOLD.DZC11/3+14159,6.2832,0400+0.0.0/
READ(E,-) EPSE. NETEP. YL, D

WRITE(6,9) NSTEF, EPSR, XL, C

FORNMATC' NSTET='L,14/." EPER =',F4.2/," L' =',F5.3/.
1" DITRANSITION LAYZR.,D=1.25 CUCT-D=2.@¥=*,F31//)
PROFILE OF THE INHOMOGENEOUS DIELECTRIC
FDT=1+0/36.2

BA=4.GxFDT/YL

DEL=(EPSRE=1+3)/(EPSR+1.8)

EPS(l)=}.@=DEL

D0 1¢ I=2, 5¢¢

EPSE=] 2~DEL*=C0S(PI*ZIC)

DELZD=AA/SRRT(ETSE)

EPS1=[ .P=-DEL*CCS{PI*{ZB+DELZDC)}
EPS(II)=RE.S%(EPSZ+EPS L)

DZ(IY=AA/S5QPT(EPS(I})

2ZB=2@+DZ (1)

IF(ZB.+GT+D) GO TC 11

IENDI=1

IEND=IENDI+1

WRITEC(G6,16Y (EPSCI),I=1,1ENDI1)

Do 12 I=1, IEND!

EPSCII=SO0RTCEPSCIY)

CW SQURCE AT 1=1; AIR/DIELECTRIC INTERPFACE AT [=2
DO I3 i=1,IEND

F@(I)=0.0

Fi(1)=9.0

FLC1)=SIN{PIZ*FDT)
Fl(2)=2.2=xEPS(I)*FBC(1)/C(ERS(I)I+EPS(2))
YAFORMC1)=F1l{2) - FO{l)}

DO 15 N=2, NSTE®

F2(1)=SIN(N*PIZ2%*FDT)}

IF(N.LT«IENDI]Y MOWING=N+I

DO 14 1=2, MOVING

TOTALF=F1{I-1)

IFCl.S042) TOTALF=F1{(1}+(F2{2)~FOLD)
TI2=2.,8/(EPS(I-1)+ERE(1))
F2(I)==-FA(I»+TI2*x(EPS(I~1}*TOTALF+EPS(IX*FI(I1+]})
F2(IEND)=FI1(IENDI])

WAFORMIN)=F2C¢2)=Fl (]

FOLLD=FE&(1)

DO 15 I=1, IEND

FBCE)=FI1CI)

F1Cl)=F2{1)

FORMAT(® DIZLECTRIC BROFILE'/,I122(18FE.3/0/)
VEITE(G6,17T) (WAFORMIN) »N=L,NSTEP)

FCRMATL'® C¥ RBREFLECTED WAVEFQORM'/,1CE{(10F&.3/)}

END
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DIRECT TIME DQMAIN SOLUTION OF EMP BEFLECTED FROM

A THREE-LAYERED LQSSY DIELECTRIC MEDIUM.
REFERENCE: SIVAPRASAD & STOTZ. IECE

PPe. 161~-164, JULY

1973

DIMENSIOQON FBC(S52€), Fl(S5€Q), F2(5€8),

DATA EPSI.EPS2,EPS3/1.8. 7.0,
DATA COND1, CONDZ2., COND3I/C2.0.
DATA Pl, TaU., EPSP/3.141592,
READ(8.-) Z, NSTEF, DT

IEND=2 + NSTEP/2

IENDI=1END-1
DZ=DT*{3.QE+8/5GRT(EPS2))
I1D=Z/DZ

I12=2+1ID

" Q1=CONDI*DT/(2.0%EPSQ*EDSI)

Q2=CONDE2*DT/{ZQ*EPSBXEDER)
QI=COND3I*DT/{2.2+EPSB*EPS3)
C3I=Sa8BT(EPSZ/EPS1}
CP=@+5*{CIAC1B+RBI+{ 1 B+C1)>
Cl=@5«(C3%(1.2=02)+(1.B~01)}
DE=1.8+02

Dli=}.2«02

E3=SQRT(EPS3/EPS2)
E@c@5%(E3* (124G +C1.0+02))
El=B+5%(E3%(1.0=-Q3)+(1.6-021)
GO=(1.0+03)

G1=(1.0-03>

DO 1@ I=2, IEND

Fall)=Z.0

FI{1)=2.2

Bl.e/s
BT01.
G lE-6,

GECSC.
WAFDRM(SED)
Q.8217
B«BS4E-12/

A SINE~SQUARE PULSE IS GENERATED AT I=I

F@(l)=g.C
Fl1C1)=C(SINCDT*FLATAU} I %%
F1{2)=Fe(1)/CE
WAFORM(L)=FI(2)~-FR{1)}
ECLD=R.¢

DO e N=2, NSTEP

T=N*DT

IF(T +LE«. TAU) F2C1)=C(SIN(T*PI/TAU} I%*2

IFCT +GTs TAUT) F2C11=€.0Q
TCTALF=F1(1) + (F@(2)-EQLD>

I=2 IS5 THE AIR/DIELECTRIC INTEFFACE

F2(2)=(~Cl*FZ(2)+C3%F1(3)+TOTALF} /(0

IF(N «LT. !END1> MOVING=N+]

IF(N «GT. !ENDI1Y MOVING=MOVING=1}

12 IS THE (2ND/3PD)} LAYERS' INTEFEACE

DO 2@ I=3, MOVING

IFCI »LTe I2) F2CI)={-CI*FBCII+FICI-13+FICI+1))/D¢
IFCL +EQe 12) FECI)=(-EIl*FEC(I)+FICI~1)+E3*FI1CI+13)/5¢
LFCI «GT- I2) F2CID)=(-Gl*FRCI)+FICI-1)+F1CI+1))/G2

CONTINUE

ELECTRONICS.
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53 C PICK UP THE ®EFLECTED WAVEFORM & STORZ PREVIOUS FIELDS

54 YAFORMIN)=F2(2)-FI1( >
55 ECLD=Fa(1)

56 DO 32 I=1l, MOVING

57 F@LI)=FI(I)

58 a2 FidIy)=Fac(iy
59 129 CONTINUE

60 Z=1D*DZ

61 WRITE(E,21) NSTEP,Z,DT,(VAFOBRM(N)N=1,NSTED)

62 31 FOBMAT(' NSTEP=',I4/," Z =YL FTe4/:" DT =',E12.3//,
€3 1* SINE-SRUARED PULSE REFLECTEID WAVEFORM'//,5CC19F6.3/))
64 END :

I NSTEP= 1S@

2 Z = 4.9891

3 DT = +2280E =-E

4

S SINE-SQUAPED PULSE REFLECTED VAVEFORM

6

T DBPQ =.002 ~.0089 =019 ~ef34 -u053 =276 -.1021 =+ 130 ~4161

8 =e193 =287 ~.262 =2296 ~.33C ~.263 =.304 =.422 -.448 =.4871

9 290 =505 -.516 =.523 -.525 =.522 ~.516 -+S5@85 =+490 =.472

18 =450 =426 =4399 -a3T71 ~e341 =311 =42B1 ~.25] =.223 -.197
11 =173 -a153 =413E =a128 =.125 ~olZ27 =224 =.143 -4154 =al65
12 =al76 =«IBE -.199 =-.21] =.282 -.232 =-.24) =.24f -.255 -,925%
13 =262 =+262 =4261 -+25€ =-4253 =246 -.237 -.227 =.214 -.20
14 ~a. 186 “o171 ~a155 =138 ~.122 -+ l5 =.EBG «.274 =+ BEE = C87T
IS =eB33 =eB25 “+€16 =.€09 =~.E04 ~.8C! «BE! BE2 824 PE2B6
16 RPEE .21 212 214 WBl6  JB17  «B19  LE2F 822 LE23
17 024 24 « @24 225 224 «B24 « T23 222 «Z221 «222
18 «B1B L2817 215 213 .21 «EBE9  JCZE8 SER6 2248 L2022
19 ERl ~.72C —«B21 =.pm2 -+223 -2 23 =.FE3 “«BB3 =a204 =-«204
20 = P04 =-.PE5 =«ZB5 -~.BE5 =.FF5 “+ 208 =006 =~+BZH -~QG06 =«CET
21 <y @E7 =+QCT7 -«ECT7 ~+CB7 ~+@B7 -uBB7 =oZ07 ~BET ~+GE7 =207

. @‘ﬁﬁ
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dokdckkiokkxk COMPUTES PROGRAM 2 ##skhkxink
A NUMERICAL SOLUTION TOQ SOCMMEFFELG'S YAEQUT THE
PROPAGATION OF LIGHT IN DISPERSIVE MEDIAY“--D+. H. LAM
DIMENSION FECLEC1Y.F1C182312,724126G12,CC1ER1YLEC1EEL),
1 VAFORMCIZEEY,WAVEZEL 1G22
DATA I11,8S,VAFORMILI I TAVERGILY/2:C2«Cu0R202/
READCS, =) MNSTEC,WPOT.WEWS,WYPLPWE, I0RSER, I0QE2
WRITEC(G6, 18) NSTEPLWERDT,VEWPR,WIIR, PUO
FOBRMAT(" NSTEDP=',14/," WEFDT =',F4.2/,"' WEwp =*,
IFda2/," WIR  =',F4.2/, % PYQG =t F42//7)
IEND=NSTEIP/2+I0BS5ER
IENDI=IEND-1
NNI=MNSTZP~IQEBE2
IF(WEZYPWER P« B+ANDPYB+EQ4D«B) GO TO 11
TeDT =V RWP*TPLT
POT=FPYE*ADT
ADT=SORT{(WADTAZDT=-20T*FDT)
ASWPDTHYPDT*2.2%2DT
B=YPDTAW=DT* (ADT*ADT-PDT*PLTI/ADT
=EXPL{-PDT)
CN=COSCADT?
SN=SINCADT)
GN=G*CN
Q2= + 24P 25%kWPOT*UFDT
QAI=D S LDT*UPLT
DO 12 I=1, IEND
CCII=R.0
S{11=0.8
FR(I)=0.2
FICI)=0.9
F2(1)=zZ.0
WOT=WIEXx'PDT
FIC1X=5INCYDT)
Fl(2)=Fg(li/ne
DO 21 N=2, NSTEP
F2{11=SIN{N*WDT)
IF¢H «LTe IENDY) MOVING=N+!
IF(N «GT. IEND!) MOVING=MOVING~1
IF(N «GT. NNI > I111=I11+]
DO 22 I=I11l, MOVING
IF(U TP EL e BB+ ANDPU G EQ.2.8) GO TO 20
SOLD=5(11]
SCIV)=Ca(CN*SCII+ENRC(II+C+5*SN4FE{I)
CLIY=G*(CNACCI)-SN*SOLDI+Z I (FI(L)+GN®FZ(I )
S5=A%C(I)+T%5(1)
FECI)=-FECII+{FICI-12+F1CI+1»=Q3%xFi{(I}+S5) /02
WAFORM{NI=FE2{IQZEER}
WAVE2EZ(W)I=F2C(ICE2)
De 21 1=1, MOVIMG
FRLLI=F1¢])
Fl(Iy=F2(1)
URITE(6,22) IQESZR,(VAFCRM(NILN=1,NS5TEE?
FORMATC" WAFORM SZEN AT I0ESEP=",14/,102¢10F6.3/))
END
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43
a4
45
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a9
50
S

aaaa

2
3

33
1
2
3

11

13

14

30

kkkbkkwkkkdk COMPUTES PRIGRAM 4 kxkkdkikkk

TAIS PRIGRAM CALCULATES THE PRIPAGATION aND REFLECTION
AF A UNIT- STEZ, CWr PAASE-VARIATION FIJLSE 1N AN
ISOTRIPIC PLASMA HALF-S5PACE I3 SLAR GREINET3Y .
DIMENSION FO(HOOI»m1€3003,F2(200Y5 SUMC300), WAFIIACI00)
COMIN wWDTs WWP» WPDTs Zs, L2

READ(Z,=-) ICASE, G4WPs, NSTEPs WPDT» £ WWPs IP
WDT= W2 * i DT

[D=C2+D.00001) 7W=2DT

{2=2+1D

IDBSER=Z/W°DT + 1

[F(ICASE +EQs 2) IDRBRSER=2

TEND=[OHSER + (NSTER=-IDESERIZ2 + 1

TENDI=IEND=1

GDT=GWE*Ww DT

ELP1=E{P(~a3DT?

FA=GEUTHNPDTxWADT

B45=0.5%04

RA3=0.5*%%PDT*wPDT

035=C372.0

Q1=1.0+07572,0

Aozl ,.0+03/2.0

WRITECA, X)) G2, WPDT, 1ENDs NSTEPs £

FIRAATCY GDTAWPDT = ", F7.374, ' o#DT = "3 F7.37,

95

Poe GRIND PIINT USED = *,las," # TIME STEPS RUN = ‘'slarss,

' WPRL/C s 'L FS.177)

WRITECAR, B4) ICASEs. IP, Wy¥, [OUSER
FORAATC' ICASE(PAIPAGATION=1; REFLECTION=Z2) = *,[2/,
POIRCINIT=5TERP=15 CF wWaVE=2) = ', 12/,
POWWRCFRETURNCY QF CY SJURCE) = 'sFRe2//,
'OWAFIRM QBSEAVED AT GRID POINT = *»1377)
D i1 =2, LEND

SMCIN=C.0

FOCiY)=0.9

F100)=0.0

F2C(I)=0.0

FOC1)Y=2"ILSECD)Y

F1Ct1=PlILEECLY

GO T2C12, 13)» ICASE

Fl{2¥=sFOCidral

WAFIHACII=FI{21=2ULSECD)

EINC=D.D

Gl 1O 14

FLOR2y=fa(lis A

WAFIRACL1Y=F1ICIBAER)

D) 21 ds9, NSTE?

F2r1)=v LEKCI)

IFC] «LTe [ENDYY A2 52N+t

G2 TIC3Ds A1ds ICARE

[FCNe BT IR¥NILY 4 W IMG3=4dV[ 93

NY 27 =2, 420DV
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21

20
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101

IF(R8:sGTaRNe) SUACTIISSUACII*EXPI+ A Sk CEAD I FACII+FI1CL))
FRO)==FA DI+ (FILI-1)+F1ICI+1)=-Q3«F1{1)+Q4%504C1»)/R2
WAFORMINY =F2( [ 0RSER)

GO TO 32

I=2 IS5 THE alxs/pLas<as [NTERFACE
SCURCF=FI 1)+ FAL2)=EiwNC)

=2

IFCQaaGT«A0) SUMCLII=SUACT Y X EXP 1+ Sx { EXPI*FACII+F1¢CL)Y )
FRUOIl)=<~FACII+(SUCURCE+FIC T+ 1) ~Q35%F1ICI¥+Qa%« 5S¢ 132 /7101
DU 26 =3, A0GVIwNG

IF(QUaGTeMs +ANDs TeLE«I®?) SUMCII=SUMCIY«FXARL T
1 AuSxk(EAPILFACLI+SIITI))

TFCLLTI2) FRAIY==FACIIHCFICI -1 +FICI+1) =236 10 1)
1 +A4E5IMCE) Y 0P

FFCLSFEGIR) FROII==FALII+C(FItI=1)2+F101+1)-035=F1C[)
i FRUSKSTNCI Y 4]

IFCT«GT«12) Foolr=F101-1>

WAFODRMINDY=F2(2)-F1(1)

EINC=F201)

CONTINJE

SIMULATION s/1a774

FROIEND)=FCLIEND=-1) /01

FACIFNTD =FLI(IRAD)

FICIENI) =F 20 FNDY

DG 21 I=1s X0V1NG

FRA{Iy»=F14(1>

Filclai=rFro(l

WRLTECAS 23 (JaFORACN)I > W=1NSTERD
FORAATO 1AL AFA«3/))

EwND

FUNDTI OGN PULSE A

COAMOUN wDTs» wwPs wWPDTs 1s IP

IFCIP «F0a 3 GU TC 1WA

IFCIP «FQe 1) PILSE=1.42

IFClr aEde 2) PUYLSES3INLSUTENDY

RETURN

IFLN«GI.A)Y G0 TL 191

F=dyp

m=f) e (1

QA= C/7SOHRTCLA-PxD)

S51=42DTr0

TOR=N= 1 /SOAT ¥ -PxI)

LFCWPDT «NFe MNadY NUR=|+TOUHRAYPDT

PILSF=24D

EWCN «GTe NURY HAETURN

Sy=i=*51

CREIAz=®x (P58 TLIN*SN=Da s SuePepP})

PULSF=S5Twt DRTA Y

oW TURN

FND
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97

-THIS PRQGRAM COMPUTES THE REFLECTED WAVEFOPRM OF & SIGNAL

FROM A HOMOGENEQUS AND IMHONOGENEQUS PLASMA HALF-SPALE
WHERE A VERTICAL MAGNETIC FIELD IS ASSUMED .
 DIMENSION EXG(SI@E) ,EXLI(SIZIHEXR(SIB)S¥(51@Y.SYC518),
1 EY@(S12),EYI(SIZYLEY2LS1IBILCX(518),CY(5L2),
2 REFEX(!1228),REFIYLICZD)LWPDTLSI O

COMMON IP., WDT, WPDTI
. DATA EXCIEXILEYR,EY 1,0 CYoSXuEYLEINC/R12%2 051 C%0 .0,
IS1C*0«CusS10%EeB ,S10%0«Bo516%C2,510%Ba2,510%0.3,8.C/
READ(E,-» UPDT!s WCDT» GDT. WYFE, NSTEPs IFs, DT
WRITELG.4) DT.UWPLTI1,VCDT+GET,WYPLNSTED,ID

FORMAT(® DT=",F6«3-"' NANOSECQNDS'/," UPDTI=*,F6+4/,
1 VCDT="sF6.4/." GDT=',F6«4/," TWP='LF6.47,
2% NSTEP=',14/," IP(UNIT=-STEP=1.C% WAVE=2,IMPULSE=2)="
3,12//,' REFLECTED WAVEFORNMSE: EX & ZY'/)

FOR IMPULSE SIGNAL : WPDT1=£.22 WITH 682 TIME STEPS
IEND=2+NSTER/2 '

IENDI=IZND~-1

DZ=@3%DT

LINEAR ELECTRON DENSITY PROFILE

DO S i=2, IEND

Z={I=1+5)%DZ

WPDT(1}=@-eﬂﬂlﬁlﬂ2*DT*5QﬂT(Z}

WPDTC(1Y=0.2

IF(DT.NE«C+B) G0 TO 7

D0 6 I=1, IEND

WPDTC(L)=Y2DT1

AA=UPDTC1 )3 BDT (L)

b0 8 I=2, IEND

BE=UPDTCIX»*WPDTCI)

MORT(l )=0.25%x(aAn+E8)

AN=BE )

C=COS(ICDT)

S=SIN(WCDT)

GG=EXP{(=GDT?

GGS=GG=%5

GEC=GG*C

DDI=GGE*(WCDT*S+GDT*C)

DDE=GG*{WCDT*C-GDT*5}

WDT=WWEx1IPDT1

EX2C1)=PULSE(E)

EX1C1)=PULSEC( D)

EXI(2)=EXACI) /(] +C+TS*UPDT{2))

BEFEX (1) =EX1{23-EXE(1}

REFEY(1)=EVI(2)



1e

11

12

FINITE DIFFERENCE SOLUTION STARTS HERE

DO 11 N=Z, NSTEP

EX2C(1)=PULSE(M)

EY2(1I}=EYi(2)

IFC(N «LT. IENDIIMOVING=N+]

IFCN «GT« IZND1IMOVING=MOVING=1

D0 1@ 1I=2s, MOVING

Ql1=WPDT(I)

Q2=1e0+De5%Q1

W2=2.3%0Q1

SQLD=S¥(

SXCII=C(GEOXSX (I +BGS4CHCIII+B« 5k (GDTH*EXICII4+DDI*EYECI D)
CHUII=(GGC*CRCL) =GGS*S0LD) +B8 .S+ (WCDTH*EX L (1) +DD2*TXACI Y
SOLD=SY{I>

SYCEY=(GACKSY (I ) +CASHCVYIII )+ oS (CDT*EY I (I ) +DDI=EVALI) Y
CY(I)=(GGaC*CY(I)-GOS*SOLD) +D+S*(WCDT*EYI(I)+DD2*EVYECI )
SORCEX=EX1¢(I=12 ’

IF{I1.EQ:2) SORCEX=EX1C¢I[}+(EXE(2)=~EINGC)

SEX=SX(1)=-C¥(l) .
EX2CI}=-EXBCII+(EX1CI+1Y+S0PCEY, ~41%EX1(I)+UB%SSX) /02
SSY=CX{I»+5Y (1) . .
EY2(I)==EYBCIY+{EYI(I+[)I+EYI(I=13~QLl*EYI(II+WEXSSYI/ Q2
COMTINUE

PICK UP THE REFLECTED WAVEFORFM & UPDATE THE FIELDS
REFEX(N)=E¥Z{(2)-EX1C1

REFEY(N)=EY2(2)

EINC=EXEC1)

DO 11 I=1, MOVING

EXZCII=EX1(1)

EXICII=EX2(]1)

EYECII=EYILI)

EYICII=EY2({I)

WRITE(G,12) (EEFEX(NI,N=1, NSTEP)

FORMATCIAGCLIEFT 4/

WRITE(6,12) C(REFEY(HNI»N=)1, NSTER)

END

FUNCTION PULSZ(NJ

COMMON 1P, WDT, WEDTI

DATA K, NQ.NNEZ2, TP/4, 11, 22, 6.28232/

GAUSST AN PULEE PARAMETERS: NZ=H¥xZ.6; NNZ=2*Ne
PULSE=@.0

IFCIP «aEQe 1) PULSE=1.D

TF({IP LEZ. 2) PULSE=S!IH(N)TDT)
IF(IP«EQ+3+ANDHeLT«HNE)

RETURN
END

98
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¥ kkikdorkk COMPUTER PROGRAM 6 kaokskksdkk® kk

THIS PROGTAM COMPUTES THE REFLECTED WAVEFO=M OF A
UNIT~STEF SIGNAL NORMALLY INCIDENT TO & THREE-LAYERED
DISPERSIVE MEDIUM, AIB/ICE/WATER, IN WHICH WATER
ASSUMES A DEEYE NCDEL.

DIMENSION F@CS1BY.FI1(51@).FR2C510),8UNCS]0) ,VAFDDKLZERM)
READ(B.,-) NSTEP!, W8DT, EPSi, EPSER, IDPS2N, CONDO
IEND=2+NSTEPI/2

IENDI=IEND-1

WRITE(6, 102} NSTEPl, WE&DT, EFPSl, EPS2E, EPS2N, CONDA

182 FORMAT(" # OF TIME STEPS RUN = 'LI5/.,' WGDT = 'JF8.5/,

1!

1* DIELECTRIC CONSTANT(2ND LAYER) = *,FS5.2/,
A' LOYW & KFIGH FREQ DIELECTRIC CONSTS. OF WATEDR=',2F0.3/,
2' CONDB(COND*TAUB/EFSAIRY OF WATER = *LF10.2//)
EXPLI=E¥P(-VEDT)

EPS@=1.9

CONDR=CONDE/EPSEN+(EPS2B~ERS2H) /EPS2N
Ql=1.0+0.5%CONDR*YODT

R2=1+2-0.5*CONDI*ZDT

QI=VRDT*WEDT* (EPS2g~ELS2N) /ERPS2N

Q4=Q3%WCDT

EPS21=50PT(ERPS1/TPS2N}

QS=(EZPS21+0R13/2.8

QO=(EPSRI+L2) /2.0

DO Il I=2, IEND

SUMLI)=0.0

FE(I})=R.0

Fidl)=Q.2

REFLECTION & TRANSMISSION COEFF. AT THE AIR/ICE BOUNDARY
DUM=SQRT(EPSAI+SORT(ERPS

TO1=2.6%5QRT(ZPSA) /DUK

TI@=2.9%SORT(EDPS ) ) /DU

RBI={EQRT(EPSE)-30RT(ERS 1)) /DUM

INCIDENT FIELD TC THE WATER SURFACE

Fa{l)=1.9%Te1

F1{I)=1.2%T3|

Fl(2)=ZPS214F3(13/0Q5

WAFQRMO 1) =RBI+(FI(2)-TO1I%T1Q

FINITE DIFFERENCE SQLUTIONS START HIRE

DO 282 N=2, NSTEFI

Felli=ri1(2)

1=2 1% THE ICE/YATZIR INTERFACE

I=2

SUMCIY=SUMCLI*EYPI+{F2(IIREXPI+FI(1)3}/2.2
F2OE}=(~CasFE L) +FI I+ ) +EPS2I*F1 (]~ 140.5%¢Q3%F1¢ )~

1 QAXINI(TIIIILNS

EFFICIENT MOVING TIME WINDOYW CALCULATIONS ADGPTZD

TFCM «LTe IENDI} MOVIN

i

G
IF(N +GTs. IENDI) MOVING
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DO 2@ 1=3, MOVING
SUMCIY=SUMCI)I#Z Pl +(FOCII*EXPI+FICINI/2.48
FECI)=(~02%FECI)+FICI~-13+F1CI+12+Q3*%F1(1)-R&4*xSUM(IJ3/R1
CONTINUE

IPDATE THE FIELDS AT A NEY TIME STEPS

DO 21 I=1l, MOVING

FRCI)=FI1CI}

Fi{I:=F2dl)

PICK UP TEE REFLECTED WAFORI AT THE AIR/ICE INTIRFACE
WAFOMMIN)=R21+(Fl{(2)-T21)*TIE

CONTINUE
VRITE(A., 23} RSI
FORMAT(® FRLFLECTICN OF THE AIR/ICE SOUNDARY = ',FlQ0.4//2

WRITEZL6., 1857

FORMAT(" RIFLICTED WATORM OF A UNIT-S5TEDP SIGNAL FROU',
1" THEE ICEZ/WATER INTERFACE SEIN IN FRED SFACE'//)
WRITECG,22) (WAFORM(NISN=1,HNSTEPL)
FORMATC4QZC I 2FE 4700

END



