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Introduction

The work performed under NASA grant #N3R 14-004-008
(originally NSG-694) and its extensions covered many aspects
of the fluid dynamics of coaxial flows and of rotating flows.
Previous results of this work received publication in the form
of both NASA contractor reports and professional journal
articles. L.sts of these reports and papers are presented in
an Appendix of this report. In the body of this report two
different analytical investigations of fluid dynamics problems
of relevance to the gaseous core nuclear reactor program are
presented. Since all prior work had already been published,
the results of these investigations constitute the final report
of work done under the Grant.

The first of these two works, "Numerical Solutions of
Driven Vortices of Binary Fluid in Cylindrical Geometry" is
an analysis of the vortex type flow which appears in the nuclear
"light bulb" concept. In this work, a numerical treatment is
developed for the rotating flow which includes a description
of the nuclear fuel addition. The problem is formulated with
the complete Navier-Stokes equations in order to show the
interaction between the fuel addition, the main flow and the
boundary layer flow in an accurate manner. The results pre-
sented are the first to show holdup of the nuclear fuel for
the case of steady fuel addition. The results for fuel holdup

are discouraging and it remains to be seen whether optimization

of injection location will provide substantial improvement.

The second work, "Laminar Confined Coaxial Entrance Flow
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with Heat Generation," is an analysis of the fluid flow in

the fuel inlet region for the coaxial flow gaseous core nuclear
reactor concept. This is a region in which analysis is
difficult due to the existence of very large gradients. In

the analysis, the boundary layer form of the equations of
motion is used because the large gradients make a more exact
formulation extremely difficult to solve numerically. Results
demonstrate that the large expansion due to temperature change
will take place axially unless strong radial pressure gradients
are developed by induced non-axial velocity components. This
represents a significant difference from the present conceptual
description.

These two investigations are the culmination of the NASA
sponsored IIT work on gaseous core nuclear reactors. The
first of the two investigations extends the development of
numerical methods for the solution of the Navier-Stokes
equations for appropriate geometries to the case of rotating
flows and almost completes the gas core program requirements
in this area. It is still necessary to extend the capability
for Navier-Stokes equations integration to spherical coordinates
and to increase the range of Reynolds numbers for which
solutions can be found with reasonable computer time usage.

The second investigation demonstrates that even the
conceptual design of the coaxial flow reactor needs further
development. The extension of analytical capability to spherical
coordinates will greatly aid in the further conceptual develop-

ment of the reactor.

JRgar— -

el kA -




" N75 17607

INVESTIGATION A

NUMERICAL SOLUTIONS OF
DRIVEN VORTICES OF BINARY
FLUID IN A CYLINDRICAL GEOMETRY
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and
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ABSTRACT

The steady state laminar motion of a viscous, incom-
pressible and binary fluid is studied for a rotating flow
in a cylindrical geometry. The mathematical model employed
is a cold flow simulation of the fluid mechanics of the
Light-Bulb concept of the gaseous core nuclear engine. The
radial inward convection of angular momentum of the coolant
gas through the porous periphery drives the vortex, mixes
with the fuel gas and eventually leaves the chamber as a
mixture through a small exit hole on one end wall. The fuel
gas addition is mathematically simulated by an interior mass
source.

A new computation method is presented to account for
the interior mass addition. The method uses a potential
function in addition to the stream function and vorticity
used in current methods for solving viscous incompressible
flows. By assuming that the fluid's velocity consists of
two parts; one that is the gradient of a potential function,
and the other calculated by appropriate derivatives of the
stream function, it was found possible to satisfy the con-
tinuity equation which contains a source term. This method
can also be applied to unsteady conpressible flows where
the unsteady continuity term is viewed as a source term
while iterating over an intermediate time level. This
technique is applied to driven vortex flows of a binary

system and carried through to numerical results.
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The governing equations are formulated in terms of
Stokes' stream function, the tangential vorticity and a
potential function as a time dependent problem. Steady
state solutions are then obtained as large time solutions
of the time dependent problem. A numerical method by finite
differences, specifically the alternating-direction-implicit
method, is employed for solving the equations. Once the
velocity field is solved, the pressure is obtained by
solving the Poisson equation of pressure with Neumann
boundary conditions that are determined by given kinematics.
For purposes of computational efficiency, the solution
method by Fourier analysis is based on fast Fourier trans-
forms.

Numerical results were obtained for axial Reynolds
numbers of 1 and 20, tangential Reynolds numbers up to 100
and aspect ratios of 1 and 2. Without rotation, the primary
flow was found to be more or less uniform through the bulk
of the chamber. However, with rotation the bulk of the
fluid flows through the relatively narrow region of the
boundary layers formed along the stationary end walls. Also,
the flow in the main body of the chamber consists of
recirculating secondary flow cells. The intensity of this
flow feature increases with increasing rotation for fixed
through-put and decreases with increasing through-put for
fixed rotation. The results obtained for binary flows show

that the hold-up of internally injected mass increases with
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increasing rotation for fixed primary flow and Schmidt

number.

decreasing the density ratio ( density of fisrionable mat-

erials to density of coolant ) with other parameters kept

constant.

Finally, the containment factor increases with
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NOMENCLATURE

In the following, symbols and abbreviations used in this

thesis are listed. The symbols used only locally are ex-

plained there and hence not included here.

English letters:

D/Dt

e(r,z)

Sy 2 @ X O
>

S¢
w

v =2

aspect ratio

non-dimensional geometry parameter as defined
in (59)

mass fraction—of—component A

mass diffusivity in binary diffusion
material derivative

local error function in the continuity
equation

discretization error

fractional mass addition of component A
relative to that of component B

Ar

'vorticity-like function defined in Eq. 15

Az

length of vortex chamber

number of mesh spacings in z coordinate
mass flux vector of component A

mass flux vector of component B

number of mesh spaciigs in r coordinate

static pressure
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.Y
¢

<

€ =

ex

gﬁ

Greek Letters:

o
8
r
To

iteration parameter in elliptic ADI equation
of potential function

iteration parameter in elliptic ADI equation
of stream function

radial coordinate

interior mass source of component A
exhaust hole radius

chamber rudius

axial Reynolds number

tangential Reynolds number

Schmidt number

time coordinate

radial component velocity

radial injection velocity on periphery
tangential component velocity

velocity vector

tangential velocity on periphery

axial component velocity

axial velocity at the exhaust hole
reference velocity for flow due to interior
mass addition as defined in (60)

axial coordinate

At/hk
h/k
angular momentum

angular momentum on periphery

Al3

!
i
{
i




§
A:,At'Az

Subscripts:
A

hk

radial mesh size, time step, axial mesh size
respectively

del operator

Laplacian operatoxr

divergence operator

curl operator

potential function parameter defined in (59)
tangential component vorticity

containment factor

volumetric coefficient of viscosity

shear coefficient of viscosity

mixture density

density of component A in mixture

density of pure component A

density of component B in mixture

density of pure component B

potential function

Stokes' stream function

vector potential

vorticity vector

refers to component A
refers to component B
refers to exhaust hole
mesh point in radial direction

mesh point in axial direction
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Superscripts:
n
»
Abbreviations:
ADI
FFT
SOR

refers to time level

refers to non-dimensional variable
alternating direction implicit

fast Fourier transform

successive over re laxation
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CHAPTER I

INTRODUCTION

Rotating flows have long been a subject of investiga-

tion to fluid dynamicists as applied to Ranque-Hilsch

tubes$34)* cyclone separators, heat exchangers, MHD vortex

power generators s 23)

and many other devices. Recently ad-
vanced concepts of gaseous core nuclear reactors have fur-
ther stimulated the study o0f vortex flows. The subject has
also been studied for purely academic purposes.(14)
The present study has directly been motivated by one

of the advanced reactor concepts, i.e. the Light-Bulb con-

cept, and is concerned with containment of fissionable ma-
terial and how the phenomena involved in vortex flows in-

fluence containment.
Definition of the Problem

In the Light-Bulb reactor(lg) the fissionable material
is kept inside a cylindrical container and the propellant
flows outside of the cylinder “hrough an annular space. A
transparent cylindrical shell separates the propellant from
the fissionable material. The fuel is maintained in a vapor
state at very high temperature, and transfers heat to the
propellant through the transparent separating shell by
radiation. To maintain the integrity of the shell which
partitions the fissionable material and the propellant, it

* For all numbered references, see bibliography.
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Al7

is necessary to inject coolant gas at the shell. '‘he coolant
gas is intended to play another important role. Since
the coolant is injected with rotation, a vortex is formed
which then causes the formation of boundary layers on the
end walls of the chamber. The flow of fluid in and out of
the boundary layers induces recirculating secondary flow
cells in the main body and fluid dynamically retains the
fissionable material in this region of closed flow cells.
The coolant gas fed to the vortex chamber is withdrawn through
an end wall, cooled and then recirculated. Fuel entrained
by the coolant is separated before recirculation.

In actual operations, a required amount of fissionable
material called the critical mass has to be maintained in
the reactor chamber. This necessitates an attainment of a
certain fuel concentration. The coolant gas that is in-
jected to cool the wall separating the propellant gas and
fissionable material entrains some of the fissionable materi-
al while passing through the chamber. Although the required
concentration level of the fissionable material can.be.........
maintained by replacing the amount entrained by the coolant
gas it is very desirable to keep this as small as possible.
By forming a vortex and therefore inducing recirculating
flows, the critical fuel mass may be held in the closed flow
region with a minimum loss. Because of the particular fea-
tures of the confined vortex flow, the manner in which the

fissionable material is introduced is important. It has
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been suggested that the fissionable material be injected 1
from an end wall in the form of small pellets so that it can j
reach the retention region without being swept out of the i
chamber by the boundary layer flows.

The present study consists of a numerical solution of

a binary fluid system in a cylindrical container of finite

length as shown in Fig. 1. One 6f the components can be the
fissionable material and the other coolant. Addition of

fissionable material is simulated by an interior mass source
in the annular containment region. The coolant fluid enters
through a rotating porous periphery and leaves axially

through a small exhaust hole on one end wall.

e .o R AT & D i S b

Because of the particular manner in which the fission- 5
able material is introduced, the continuity equation con- |
tains a source term. For this reason the conventional com-
putational scheme for obtaining numerical solutions in terms
of the stream function and the vorticity fails.

A new computational method is developed here to treat
this problem of interior mass addition by means of a con-
venient formulation which consists of the stream function,

the vorticity and one other function. This function is a

potential function which is introduced into the formulation i
so that the continuity equation that contains a source temm j
is satisfied. It may be mentioned that the same technique
can be applied to time dependent compressible flow problems. i

In such problems the unsteady term in the continuity




uniform radial injection of simulated coolant

porous rotating periphery

LN}LUU y

exhaust
hole

.

) \k-exit flow

TTTTT

stationary solid walls on both sides

Fig. 1. The Flow Configuration and the Adopted
Coordinate System.
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equation is treated as a source term in the iteration pro-

cess over the time step. The method is used in this study

to obtain numerical solutions for binary driven vortex flows.
The basic differential equations are written in un-

steady form in terms of the stream function, the vorticity
and the newly introduced potential function. A numerical
method by finite differences has been employed as the solu-
tion method. The alternating-direction-implicit metlod is
used for both the parabolic and elliptic equations. After
the kinematics are solved, the pressure is obtained by solv-
ing the Poisson equation of pressure. The method of Fourier
analysis is used for this purpose in which the fast Fourier
transforms have been employed to obtain an efficient comput-

ational procedure.
Literature Review

Rather than attempt to give an uvlaborate historical
survey of vortex flow investigations the discussion here is
limited only to those that are directly related to the pre-
sent problem. Earlier analytical approaches to vortex flow
problems assumed the {low to be one-dimensionalfll) There
have been other investigations which considered the boundary
layer flow formed over a finite disk with some specified

outer velocity distribution, (10)/(12)

These studies have
not considered the influence of one part of the flow on the
other, i.e. the bulk flow affecting the boundary layer flow

and vice versa. Accordingly, results of these studies do
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not render sufficient information to describe the confined
vortex flow problem. The importance of the interaction be-
tween the two flow regions was first noted by Andersonsz)
who considered the laminar boundary layer over the station-
ary end wall. More recently, Rosenzweig, Lewellen and
Ross(31) studied the interaction problem analytically, in
which the flow was divided into three subregions, the end-
wall boundary layer, the primary flow and the central vortex
core. For high rotation rates, they obtained a similarity
solution for an assumed turbulent boundary layer. A com-
prehensive review on confined vortex flows can be found in

(22) , (24) (33)

Lewellen and Rott and Lewellen.

Experimental work on confined vortex flows includes

(30) and Rosa$32)

the flow visualization studies of Roschke
In both of these the secondary flow pattern shown in the
visualization results was obtained for jet-driven vortices.
Roschke studied also the effects of aspect ratio and the end-
wall geometry on resulting flow configuration.

However, no numerical work can be found in the litera-
ture that considers the driven vortex flows in the config-
uration which simulates the Light-Bulb reactor concept. A
numerical method applied to the flow configuration which is
probably closest to that of the present study is given by

a7 He only considered the limiting case of

Hornbeck.
small aspect ratio in which the recirculating flow could

not occur. Nevertheless, the literature of rotating flows

A2l

S A e e i

Ll o

mmtand s

e e il

e e e .

ke o o e ks i o ki




in a system completely enclosed by so.id boundaries or in
a semi-infinite or infinite region is large. Equations of
hydrodynamics may be written in terms of velocity and pres-
sure or in stream function and vorticity. Of the many
studier that employed the stream function-verticity form-
ulation, the important ones include the work of Paoszs)
Brileyfg) Lavanfzo) and Azizf4) Pao considered the second-
ary flows in a finite length cylinder with solid boundaries.
One end wall was stationary and the other wall rotated with
the periphery. Briley investigated the time dependent
motion of spin-up, spin-down and reverse-rotations. Lawvan
examined the development of swirling flows in a circular
duct. On the other hand, in a few cases the velocity-pres-
sure formulation has also been used for numerical solutions

of rotating flows. Williams(3s)

considered a three=dimen-
sional thermal convection problem with rotation in an an-
nular region. It is the author's belief that the work of
Williams is the only published one that uses successfully
the velocity-pressure formulation in rotating flows. Final-
ly, it may be menticned that no publications can be found
that consider the rotating tlow of a binary fluid system.

It is the belief of the author of this thesis that the
method developed here is the one most suitable for obtain-

ing numerical results for confined vortex flow problems

of binary fluids.
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CHAPTER 1I1I
MATHEMATICAL FORMULATION

In this chapter a set of differential equations is ]
written for a binary fluid system. One species of the
system is introduced into the chamber as an interior mass
source, whereas the second component enters through the
porous periphery. The equations are obtained from the
conservation laws of species, momentum, energy and the con-
stitutive laws. The result thus obtained yields a set of
equations in terms of velocity and pressure. By.eliminating

pressure from above velocity-pressure formulation, a i

second formulation is derived in which the equations are
expressed in terms of stream function, vorticity and
potential function. The merit of the stream function-
vorticity formulation in numerical integration schemes is
discussed in this chapter.

Underlying Assumptions |

The important assumptions made in this study are

listed below. The basic differential equations are de-

rived under these conditions.
(1) steady, isothermal, incompressible and axi-sym-

metric flow.

(2) Binary fluid system.
(3) The first species enters the chamber as an %

interior mass source with negligible momentum.

A23
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(4) Density varies with composition only.

(5) Constant viscosity.

(6) Mass diffusion is assumed to take place solely

by concentration gradients.

The compressibility effect is neglected because the vari-
ation of pressure in the system is small when compared to
the high absolute pressure. Constant viscosity is assumed
because the objective of this study is to model a cold flow
simulation of the Light Bulb reactor. And the effects of
concentraticn variations on the viscosity are small. The
viscosity would of course not be constant in the reactor

itself because of the large temperature variations that

exist there. Other assumptions that are considered minor

will be discussed in the specitic places where they occur.

Governing Equations |

Diffusion and Continuity. The continuity equations

for components A and B are obtained respectively'by taking

the mass balances of individual components:(7)

A, vt = (1)
T + V Ny = rA |
30 i
B . |
-5-;:— + V nB 0 (2)

e e s

Adding these two equations yields the continuity equation

of the mixture:
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%% + V- (oV) = 1, (3)

The mass diffusion equation is derived taking into account
the effect of the concentration gradient only. By sub-
stituting Fick's law of binary diffusion into the equation
for species A, Eq. 1, and making use of the mixture con-
tinuity, Eq. 3, the species A equation can be expressed
as follows when the mass diffusivity is constant:

DCA

5T = ABV'(chA) + rA(l-cA) (4)

Momentum Equation. The momentum equation with con-

stant viscosity in the absence of body forces and for

Newtonian fluids is:(3)

DV _ _yp +uV3% + (A+p) V(V°¥) (5)

With Stokes' hypothesis, 3\ + 2up = 0, the momentum equation

reduces to:

Dv 25 . 1 >
PE = -Vp + uVev + guV(V'v) (6)

The tangential component of this vector equation for an

axi-symmetric flow is:
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where the operator %5 under axial symmetry is:

9 9 3
=ﬁ+uﬁ+w§—z-

3"

This tangential component velocity equation is expressed
in terms of the angular momentum by the variable change

' = rv:e

pr 1l *
Ppe = ¥ [Prr -t rzz] (8)

The equations given above constitute the velocity-
pressure formulation and numerical solutions for the veloc-
ity components, density and pressure can be obtained from
their finite difference analogue without further modifi-
cation. However, difficulties have been reported in the
literature(s) in solving the hydrodynamic equations when
the pressure is included. Therefore in the formulation
used here, the pressure is first eliminated by introducing
the vorticity and the vorticity is then expressed in terms

of the stream function. In this manner the same problem

* The subscripts in the equation represent differentiations.
This convention is extensively used throughout this
thesis.




is reformulated in terms of the stream function and vor-
ticity. Since this formulation can be solved without much

difficulties it is adopted in this study and will be de-
veloped in the following.

Vorticity Transport Equation. The vorticity trans-
port equation is obtained by taking a curl of the momentum

equation which for constant viscosity and no body forces

is expressed as:

03 > > -+ > D% 2+
p [5? + (VeV)w - (w'V)v] + Vo x g7 = u¥% (9)

For axi-symmetric flow it is sufficient to consider only

the tangential component of the vorticity vector:

2
D 1, .2 Du v Dw
O[bjt-*'(ur‘*wz)c-'f(‘l)z]+Oz('ﬁ";— - Pr BE
= u(vz - 5-2-) (10)

r

A new function is introduced next by a change of variables:

H= § (11)

This changes the anti-symmetric function Z to a symmetric
function H with respect to r, and upon substitution Eq. 10

reduces to a simpler equation that is especially convenient

for numerical integration.




[o] 2
DH ot o L y2 z2Du _v
D[B-E + (Vev)H "'"'rz (v )z] + T (Dt T )
_Prow, w(v2y + 24 ) (12)*
r Dt rr

An important simplification that results from this change
of variables is that the term, C/r2 no longer appears in
the equation.

Potential Function Equation. A potential function

of an auxiliary nature is introduced in such a way that
it identically satisfies the continuity equation which
has a source term. 1In more conventional problems of in-
compressible flows or compressible steady flows, the Stokes'
stream function satisfies the continuity equation which
in that case has no source term.

In order to make the discussion general, a vector
potential is used, which for an axi-symmetric flow reduces
to a single non-vanishing component, i.e. the tangential

component. Let

ov=Vx{ - pVo (13)

With this definition of the mass average velocity, the

continuity equation for steady flow becomes:

* Eq. 12 is called the vnrticity equation hereafter.
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Ve(Vx ¥ - o) =x,

Since V¢ (V x W) = 0:

V(p¥4) = -r, (14)
This is the equation that the potential function must
satisfy which together with the vector potential $ yields
the velocity vector through Eq. 13. When an unsteady flow
of variable density is considered, the term 3p/3t can be
treated as part of the source term Tpe

The potential function Eq. 14 and the expression for the

velocity vector Eq. 13 are expanded as in the following

for axi-symmetric flow:

P P r
bep * G+ 500 40, + 52, + R (15)

and

1 1l
u= - a;wz =0 W= a;wr -9, (16)

Stream Function Equation. The defining equation

of vorticity is:

(>3
]
L)
»®
<

A29
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Upon substitution for v from Eq. 13 and using the vector
identity, V x (V) = 0, the vorticity is expressed as:

=9 x (%'-Vx$) (17

The tangential component of Eq. 17 is after change of

variables:

1 1
(25 ¥p)y + GF V), + TH = 0 (18)

Mixture Density. The mixture density neglecting

effects of pressure changes is a function of composition

(mass fraction) only:

p
P=3 AP 5 (19)
BQLE + el - EALE)
B,P B,P

Pressure Equation. Two different solution methods

are considered for the pressure. First, the pressure can
be obtained by integrating the momentum equations. A
second method is to solve the Poisson equation obtained by
taking the divergence of the momentum equation. Both of
these methods are used in the work reported here.

In the stream function-vorticity formulation which
is used throughout this work, the kinematics are solved

first independently of pressure. Therefore, the pressure

A30
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may be calculated from known kinematics by either method.
The momentum equation is rewritten in a form con-

venient for the line integration of pressure:

->
U = -pD% + uv%y + FuV (V%) (20)

Also the Poisson equation of pressure obtained as indicatrd

above is:
2 Dv 2> .1 »
Vp = V- [-pD—-‘t’ + uvv + guV(Vov)] (21)

It may be mentioned that when the governing equations are
formulated in terms of the stream function and vorticity,
the error in pressure calculation does not affect the
solution of the kinematics. Primarily this is the reason
why the stream function-vorticity formulation has been
more extensively used than the velocity-pressure formul-
ation. Aziz (4 in his studies with both formulations found
the one using the stream function and vorticity advantag-
eous even for three dimensional problems in which he had

to calculate all three components of both the vorticity

and vector potential (stream function).

Transport Equations in a Conservation Form. In

obtaining numerical solutions by finite differences, it is
preferable to express the convective terms in a conserv-

ation form. The basic idear as can be found in Emmonsfl3)

A3l
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is to conserve the transport quantity even with finite dif-
ferences. The convective terms expressed in terms of a

general transport quantity, q, have the form:

(pV-V)q = V- (pVq) - q(VepV)

Using continuity, Eqd. 3, under steady ..tate conditions the
above equation can be expressed in the following con-

servative form:
(p¥+V)q = ¥+ (p¥a) - rpq (22)

This equation in cylindrical coordinates under axi-sym-

metry reads:
plug, + wg,) = %(rouq)r + (pwq), - rpq (23)

Boundary Conditions

Since all of the differeuntial equations are elliptic
in the spatial variables, boundary conditions on the
entire boundary are required. Along the center line the
condition of symmetry is prescribed, whereas on solid
boundaries the no slip condition on velocities and a van-
ishing concentration gradient are imposed. On the porous

peripheral wall, a uniform injection velocity and zero

flux of species A are assumed. And at the exhaust hole a

porous plug condition and zero concentration gradient are

Al32
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specified. Under these conditions, the total mass flow
rate through the exhaust hole is not known a priori.

Therefore, at each time step of the numerical computation

the total mass flow is computed from the available solution,

and from the overall mass balance the injection velocity
at the periphery is determined for the boundary conditions

of the ' . time step solution.

Tr. yundary conditions for the stream function are:

v(0,2) =0 (24)
¢v(r,0) = 0 (25)

On the periphery, u = -uinj = constant, and hence from

Eq. 16:

Y, = -OR(-uinj + ¢r)

And upon integration:

z
¥(R,2) = -R fp(-uinj + ¢ )dz (26)
o
Also
p(r,L) = V(R,L) for r > e (27)

At the exhaust hole, from Eq. 16:

A33
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r
¥ (z,L) = £ priw,, + ¢,)dz for r < r, (28)

The boundary conditions for vorticity are obtained by
evaluating the stream function equation on the boundary for
no slip conditions. Especially with the introduction of
the potential function which by nature allows slip
velocities, the no slip conditions are attained through
the boundary conditions on the vorticity.

With respect to the axis, r = 0, the axial velocity
is symmetric whereas the radial velocity is anti-symmetric,

and hence this vorticity like function H is symmetric.
Hr(o,z) =0 (29)

At the solid boundary, z = 0, w =.0 and u = 0. Hence

H(r,0) = - %(}p—fwz)z (30a)

in which the no slip condition, u = 0 is satisfied by:
b, = =pTéd, (30b)

On the periphery, r = R, u = '“inj' w=20 and ¢ = 0.

Hence

H(R,2) = = 2o

A34




Expanding this and applying the no slip cordi“ion, w= 0

results in:

H(R,2z) = - —17 wrr (31a)

Pr

where the no slip condition, w = 0 is ensured by an add-

itional condition:

wr = 0 (3lb)

At z = L, u = 0 and hence

H(r,L) = - %[(%—fwr)r + (%-;vz)z]

subject to the condition wz = -pr¢r.

Expanding the above expression gives:

H(r,L) = - %[‘%‘ﬂr’r + =52y, 4 "zz’] (32a)

which is subject to the following condition to satisfy

u = 0:

¥y, = -Prd, (32b)

Boundary conditions for the angular momentum are:

r,z) =0 (33)
r(e,0) = 0 (34)
r(r,z) =T (35)
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r(r,L) = 0 (36)

No mass flux of component A across the periphery and
zero concentration gradient at the exhaust hole are assumed.

Along the center line the condition of symmetry gives:*

c,.(0,z) =0 (37)

Across solid boundaries the total mass transfer as well as
the velocity vanishes. Hence from the expression for the
mass flux,

-+ -
n, = pve - pDABVc

the following boundary conditions result:
e,(r,0) =0 (38)
cz(r,L) = 0 (39)

At the periphery the condition of no flux of component a

yields:

DABcr(R'Z) + uinjc (RIZ) = 0 (40)

The boundary conditions on component B can be deduced from

those on component A. The mass fluxes of each component

are:

* The subscript A is suppressed hereafter in the mass
fraction of component A.
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34
]

aC
> -+ A
ng = pch - DAB 33—

where n represents a local coordinate normal to the boundary.

Adding both equations yields:

HA+KB= A

At the periphery, where i, = 0:

->

., = oV
g~ W

bt e e e e+ e S A i iad

The boundary conditions for the potential function

are the symmetric condition on the axis and zero normal

gradient on solid boundaries. However, at the periphery !

and exhaust hole an- arbitrary functional value, ¢ = 0 is

assigned. In this manner, the conditions on velocity are

satisfied by assigning appropriate values to the stream

function on these boundaries.

© e i e e i i A Achk . AW ALL &) o e aiee

$,(0,2) = 0 (41)

¢z(r'°) = 0 (42) i
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¢$(R,2) = 0 (43)
$,(r,L) = 0 for r,Sr iR (44a)
$(r,L) =0 for 0 <r <r_ (44b)

Non-dimensional Formulation

In this section the system of equations and boundary

conditions in the stream function-vorticity formulation as
obtained in previous sections are non-dimensionalized with
properly chosen reference quantities. The characteristic
reference values are chosen such that the normalized vari-
ables remain of order one. This is important since only
then are the non-dimensional governing parameters meaning-
ful as they appear in the non-dimensionalized governing
differential equationsszz) The non-dimensional variables
are written with a superscript (*), whereas the reference

quantities are written with a subscript (ref) unless al-~

ready specified. Let

* = * = * =
r r/R, 2z z/L, t t/tref

* = * = * =
u u/wex, v v/vo, w w/wex

Pt = 0/Pg, pr Ut = W/ oo HY = H/H (45)

ref

T+

T/Tor 6% = 8/0 pr Ty = TA/Th, ref

W)

A38
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P* = P/Pres (45)

Substitute the above relations into Eg. 16 and obtain:

ut = - b2

Tap ¥ ﬂJ;* - €¢;* (46a)
b2 €
wh = o rE Vie - at* e . (46b)

In above equations two reference quantities are determined

and three non-dimensional parameters are introduced:
'/ = lp rzw : ¢ = w_R

ref = 2°B,Pe"ex’ ®ref m
b = re/R; a = L/R; € = wh/w

where W reépresents the reference velocity for interior

mass addition as the total mass addition averaged over the

entire periphery.

Substituting (45) into the stream function Eq. 18:

1 1 1 1
GFEF Vied o * 7GR Vi) e = - et (47)

- 4
where Href = wreflpa,Pre is used.

The potential function Eq. 15 is normalized using (45):

e i
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1 r* 1 1 z* A
rrer b (e + su)0R, 4+ ;§¢;*z. + it pFtze F ¥ =0 (48)

2
where rA ref pB,P¢ref/R *

Now the vorticity Eq. 12 is normalized to:

1 3 1 Re
HEe = 37EH;*r* + oEil. + ;7“;*2* " pr(rtetutut)

r¥
- l}ri-(p*w*n*)z*] S- [e-—‘} - (u* + —,,- + iy *)J

a
Y Rer® | T3 e - ———:—(u*u* + gwtug,
Rei r#2 Rezp* 1
S =3 o3 ¢ —pr—(utug, + duews,) (49)
e r

where Re = pB,P"ex e/u, Ret = pB,onre/“ and

2
tres = Pp,pR /M.

The angular momentum Eq. 8 after non-dimensionalization

reduces to:

1 1 1 Re
e = de[rtap. - Berg + TMieze -~ BEelrtorurrh),

- gz-(p*w*r*)z.] + —poaT (50)
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The equation for diffusion, Eq. 4, is normalized to:

- Re * okttt - S
W(r p*u¥*c )r* W(p wtc) ,, + YL (51)

where S = —t

¢ Pg,pPaB

The mixture density, Eq. 19, is non-dimensionalized to:

.= Pa,p/°B,P (52)
pA,P/pB,P + c(l - pA,P/pB,P)

Finally, Eq. 20 and 21 involved in pressure calculations

are non-dimensionalized to:

w* Rei vr? b 2 u*
* = ok (utut + Y2 ut, -~ —s b_(ga2ys -
Pre p* (utuy + 3= Uz ReZ ™) + gVt _:7)
e r
*
* gRelule + 5 i (3a)

1 « ot (R W . b vel e b *
5P5e = —p*(utWi, + TWZe) * RVIWE 4 TaRe (Ur*

*
CE e (53b)
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and,

V*zp* = -8%*, where (54a)

S* = Lr(x(F]),. + 1(r3)_, (54b)

where the reference pressure is determined:

2
Pref = PB,p%ex

Non-dimensional governing parameters and reference
quantities determined above are summarized below:
Non-dimensional governing parameters:

Geometry parameters;

a=L/R, b= re/R
Potential function parameter,
€ = wm/w

and

Re = OB,Pwexre/u

(55)
Rey = Pp,pVore/*
u
S =
¢ 0p,pPap

Reference quantities:

, 2 _1 2
tref - °B,PR /v, wref - Ipa,Ptewex'

A42
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4

Href = wref/pB,Pre’

(56)
¢ =wgR, r = p ¢ /R2
ref m' “A,ref B,P'ref '

' = Rv

¥m = fa-BY%nj¢ To o

The boundary conditions are non-dimensionalized in the
same way and presented in the summary section of the dif-
ferential equations and the boundary conditions in

Chapter III.
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CHAPTER III
METHOD OF SOLUTION

Due to the extreme complexity and added difficulties

arising from the non-linearities of the equations, any hope
for an exact analytical solution is remote. Therefore, it
was decided to seek approxim . numerical solutions by
finite differences. The governing equations are formulated
in terms of the stream function, the vorticity and the po-
tential function. The system of equations consists of two

elliptic, three parabolic and an algebraic equation. The

steady state solution is obtained by a large time solution
of an unsteady problem. When a time dependent solution is
sought, the solution procedure requires the solution of two
elliptic equations after every time step. Since the solu-
tion of elliptic equations is the most time consuming, it

is important to select an efficient numerical scheme for
elliptic equations. Both the successive-over-relaxation
(SOR) and the alternating-direction-implicit (ADI) method
are known to be efficient. However, ADI method of Peaceman
and Rachford(zs) has been chosen because of its relatively
high convergence rate compared to SOR as the number of nodes
in the mesh becomes large. This has been shown in the
numerical experiments of Birkhoff, Varga and Youngsa)

ADI is also used for the parabolic equations. The

stationary ADI (fixed parameter) which is used throughout
this study is proven unconditionally stable for a simple

A44
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diffusion equation by Peaceman and Rachford. Later this
property of unconditional stability is shown by Pearson(27)
to apply to the diffusion equation with first order deriva-
tives included. Various numerical schemes used in various
hydrodynamic problems are reviewed by Amessl)
Once the steady state solution is obtained for the
set of equations, the pressure is calculated either by
line integration of the momentum equation or by solving the
Poisson equation obtained by taking the divergence of the
momentum equation. The Poisson equation was solved by the
method of Fourier analysissla) in which a computational

algorithm known as fast Fourier transforms was employed.

Summary of Differential Equations and Boundary Conditions

The set of governing equations and boundary conditions
given in Ch. II are summarized and rewritten below in a non-
dimensional form?#

The stream function equation:

1 1,1 1
(5?11’1.)1. + -7(5—1'“'2)2 = - -TrH (47)
a b
The vorticity equation:
=1 3 1 _ Re _ Re
He =3 [Hrr vyt ziazz pr (FPuH) Eﬁ(pwu)z]
(continued)

* The superscript (*) for the non-dimensional variables
is suppressed from here on.
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r Re
Re A u 1 2b t, n2
*B‘[E'B" ‘“r*;*a"z’] B+ ger| (M),
ar
Rezpz 1 Rei I‘2 Rezpr 1
T g (uup 4 Jwu, - Re2 3 ¢ 5 (uw, + Zuw,)
e” r
(49)
The angular momentum equation:
1 1 1 Re )
Pt = Ta'[rrr - -I-;T'r + ?Pzz s-;(rpur')r
Reer
Re A
- E(owr)z] + —p—T (50) |
|
The mass diffusion equation: !
_1 1, Pr 1 1 P
C = §;[°rr *(E et ;2°zz + a2 3_°z] i
|
i
Reer 3
-ggy(rpuc)r - gga(pwc)z + 55 A (51) ’
The potential function equation: |
i
bppt Dy by oL %z (I
rr r p '‘r ;7¢zz a2 P 'z P




-

The density equation:

P

°a,p/®B,p

Pa,p’?B,p

+ c(1 -

The velocity equations:

bz

U =Zapr¥z

- e¢r

2
_ b - €
w= 3prwr atz

The pressure equations:

where

J!?)
r

pA'p/oB'P)

b

Re

2 u
(Viu - —7)
r

(52)

(46a)

(46b)

(53a)

(53b)

(54a)

(53c)
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And the

w
F, = p(uwr + o,

1 1
S = ;(rl"l)r + ;’(Fz)z

boundary conditions:

"
o

¢ (0,2)

L]
o

y (r,0)

z
p(1,2) = - 2a /

b” o
p(r,1) = y(1,1) for b < r <1
2 T
plr,l) = ;5-!) p(r.l)r[l + -§-¢z(r,l)] dr
for 0 < r <b
Hr(o,z) =0

4 P
b 2
H(r,0) = -[azpr(‘ B—Wz + wzz).

subject to Yy = - [§§59r¢r

b .2 b
) ~®VY JaRe Yy * T

oll,2) [-uinj + ¢p(1,2)] az

(r,0)

(r,0)

(57)

(58)

(59)

(60a)

(60b)

(61)

(62)

A48
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T

H(l,2) = - [ S ](1'3)

A

r

©

subject to V.. (1,z) = © (63)

4 p
bt [ 1 1 P
H(r,1) = - 2 [(p,wg, M sl P ‘Pzz’] (x,1)

ap
2¢ca
subject to y, = - [;3-Dr¢r] (x,1) (64)
r,z) =0 (65)
r(r,0) =0 (66)
ra,z) =1 (67)
r(r,1) = 0 (68)
Cr(ooz) =0 (69)

c,(r,0) =0

(70)
Resc
c,(r,1) = 0 (72)
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$,.(0,2) = 0 (73)
$,(r,0) =0 (74)
$(1,2) =0 "~ (75)
$,(r,1) =0 forb«<r<1l (76a)
$(r,1) = 0 for 0 < r <b (76b)

Now that the parabolic equations are expressed in a general
form the finite difference equations can also be expressed

in a general manner.

The parabolic equations in a conservation form can

be written as:

£, = Af  + Bf + Cf,, + Df, + E{rpuf) + F(pwf),

+GE + H 1

The coefficients A through H appearing in this equation can
be obtained by comparison with individual equations.

The Numerical Method by Finite Differences

In order to apply the finite difference approxi-
mations to the set of governing equations, the region of

interest is divided into a finite number of subregions with
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equal spacings. Since in the numerical computation the %
desired steady state solution is obtained by a large time
solution of unsteady state problem, the time coordinate is |
also divided into a finite number of steps. With this grid
system a differential equation of a continuous function is
transformed into a system of finite difference equations of
discrete mesh functions. The relationship between the

continuous function f(r,z,t) and the mesh function f? j is
’

£ .=

i, f(iAxr, jAz, nAt)

since

ri = iAr' i= 0,1,2.......,N

zj = jAz' j = O,l,2,.....opn 3

tn = nAt' ns= O'lyzpoooooo'L g

Finite Difference Approximations of Parabolic

Equations. The non-iterative implicit numerical scheme,

the alternating-direction-implicit proczedure of Peaceman and
Rachford(zs) is employed for the finite difference approx-
imation. In this method, each equation is written in a
sequence of two difference equations each of which is im-
plicit in only one space coordinate involving only a half
time step. Now the finite difference equations obtained

after applying ADI to the general form of parabolic equations,

VT . o . v v
o .



Eq. 77 are:

for the first time step,

%(fn+l/2 - ¢

i,3 i+l,

i, = 86105 - 25 5 3!

+ (fn+l/2 fn+l/§) + BC(fn

n n
i+1,9 -2 5t £ 540

hD(f n+1/2 n+1/2 n+l/2

n
i, 941 = £i,5-20 * g, 00ht 395+, 3551415

n+l/2 n+1/2

n+l/2
Fi-1Pi-1,3%i-1,3

hF, n n n
£5-1,3) Y 7Py javi, 54155, 501

n n n

n+l/2
i,5-1%i,5-1%1,5-1

-P

and for the second half step,

_(fn+1 _ gh*l/2,

n+1/2 - n+l/2 n+l/2
1,] i,3

)= ‘fx 1,5 ~ 25,5 Y i3

n+1/2
itl,3

n+1/2

n+l n+l n+l

(f i,j=-1 i,J + fl j+1

- £ ;) + BC(f

n+l _ entl kE n+1/2 n+l/2 _n+l/2
+ 5P} i+l T EiL3-1) Y 3 lrieia1) 5%, 5T04105

n+l/2 n+1/2

n+l/2
“ri-1Pi-1,3 Yi-1,j

hF( n+l n+1 fn+1
i-1,3

£ 2 Py, 341%1, 94181, 901

) +

n+l/2

n+l n+l fn+1

) + ——(f 1.5 * fg'j) + SH (78a)

n+l
Pi, - -1y, j-1f1,3- 1) + 5—(f r + fi i ) + 8H (78b)
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where h = Ar, k = A2, a = At/hk, 8 = h/k and § = hk.
Above equations are rearranged and given in a form conve-

nient for numerical computation: j

+ ot gntl/2 « i

n+l/2 n+l/2 = “

* *
af,5fi-1,5 * Pi,5%1,5

+ ntl ax D+l _
£f. L + ci,jfi.j+1 = d;:j (79b)

where

n+l/2 _n+l/2
Ti-1Pi-3,3%i-1,5

2, ,
B'
2

+ X+ ke n+1/2 n+1/2

Ti1Pi41, 3541, 9 (80a)

Q
e
o

"

&

2 n n n
* = - & - -

_h,.n _ n _h n n n
305,941~ £1,9-200 = Zlog, 541%5, 94154, 441

- .n n n o Sqen
Pi,3-1%1,3-1%1,3-2)F = 26%; 5 - oH

P _ho _ hy ntl _n+d
aj,y = BC = 3D - 3P0y S ¥i,3-1

(continued)
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2 §
h_. n+l n+l
o1ty = BC + 3 + 0T, VT, 341 (805)
_ 2.n+l/2 l,.n+l/2 +1/2 +1/2
L X 3 = - - - - -
a1’ ati,j e 75 - 265 300+ A

o kentl/2 | on+l/2 _k n+l/2 n+l/2 n+l/2
7£541,3 ~ £1-1,5'B f(ri+l°i+1,jui+l,jf2+l,j

_ n+l/2 n+l/2 _n+1/2 _ S.entl/2
Ti-1Pi-1,3%-1,3%i-1,5'8 = 26%;,3 s

Finite Difference Approximations of Elliptic Equations.

The ADI of Peaceman and Rachford is also used for the ellip-
tic equations. Iterations are carried out first implicitly
in r coordinate and next in z coordinate in an alternating
manner. Following Birkhoff, Varga and Young(s) for the case
of a single iteration parameter, the finite difference

equations can be expressed as the following.

The finite difference equations of the stream function:

for the first iterate,

2

2
Bloy, 5T = Py, 35110

[ 1
¥i-1,5 * | &

Pi+1,3%1+1 * P4 4%

1 2
+ )+ q ] L -
Pi,3%1 * Pi-1,9%i-1 8] " 1.3 " Bleyy,4%i41 ¥ Py,4TL)
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. ) L )
wi‘i’llj = qswi,j + agri [pi'j.‘_l + pi.j (wi,j‘fl 'pi'j)
1
1,5 + Oi'j_l(wioj wi'j"l)] + f‘riai,j (8la)

and for the second iterate,

2 % 2 1
-3 £ ¥i,5-1 ¢ {'%“‘

2% Py 5+ Py 90 a®r; P13+l " Pily
1 'Y 28 "
+ )+ q ] ¥i,5 ~ 72 ¥i,4+1
pi'j + pi'j-l 8 i'J a ri(pi'j+1 + pi'j) 'j

= qu; +2[ 1 (Wie1,3 = V1,9

_ 1 * 81b
Pi,3%1 * "i-l.jri-l(wi'j wi""j)] ' f?riai'j (81)

The finite difference equations of the potential function:
for the first iterate,

ASS
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8
T2yt hean) * TR g T P Bega T *1,3-1)

+ E_(;&)-_i-l-i (82&)
i.J

and for the second iterate,

Pi,4+1 ~ Pi,4-1 2
(-1 + ed=2ypkr. o+ (52 + g ettt - E5(1
Ba_i 4°i,j ¢i'j 1 -a% P Oifj ;%

L Pi,d+1 ” Piog-1
%1,

1
101%441 = 9p01,5 * glef-1,5 ~ 21,5

Pis+l, 4 ~ Pi-1,§
5hpi' ) (6%41,5 ~ ¢1-1,5

k,l
+ o0%41,4) 7‘?; +

s ra).: .
¢ —A i, (82b)

i,3

In above equations the functions with superscripts (*) and
(**) represent the first and the second iterate respectively.
The Numerical Method and the Finite Difference Approxi-
mations of the Boundary Conditions. The finite difference
equations obtained by ADI method as given above result in a
tridiagonal system of algebraic equations since each equation
is implicit in only one direction. The solution of the tri-

diagonal system is obtained by an efficient matrix inversion
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known as the Thomas method described by Leele) In general,

non-linear problems can be treated as a set of linear prob~-
lems. In the present problem non~linearities exist in the
equations as well as in the boundary conditions, i.e., the
boundary conditions for the vorticity. When it is necessary
to account for non-linearities, the equations and the bound-
ary conditions are iterated over the same time step until a
predetermined convergence criterion is satisfied before ad-
vancing to a new time level.

The boundary conditions are all approximated by finite
differences with second order accuracy to be consistent with
the accuracy associated with the finite difference equations.
The first and second order derivatives for boundary points
are erpressed in finite differences as in the following.

The first order derivative:

1

£,(x}) = e [-3f(xo) +Af(x, + Ax) - £(x_ + 2Ax)]

o
+ O(sz)

£,(x]) = 5—1—; [3f(xo) - af(x, - AX) + £(x_ - 2Ax)]

+ O(sz)

The second order derivative with a specified value of first

order derivative:

o @

it e,
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+ 1 .
£ (x0) = P [-Gf (X )A% = 7£(x.) + 8£(x_ + Ax)

- f(xo + 2Ax)] + o(sz)
£ (X0) = ;i;:-&x'(xo)Ax - 7£(x,) + 8£(x, - Ax)

- £x, - 2Ax)] + 0(ax?)

Finally, the second order derivative with no restriction

on the first order derivative:

+ Ax) + 4f(x_ + 2Ax)

£ (X5) = Zlf [2£0x) = s£x, o

XX"0 x

- f(x° + 3Ax)] + O(sz)

£, .(x7) =

X0 [2f(xo) - Sf(x, - aX) + 4£(x_ - 2Ax)

>
% -

- £(x - 3Ax)] + 0(Ax?)

In the following, the computational procedure is de-
scribed to obtain the near-steady-state solution by the time
dependent formulation. At a certain time level, n, all the
functional values are known from which functional values at
a new time level, n+l, are to be obtained. This procedure

is repeated until a predetermined criterion is met for the

SO
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steady state solution.

1

(1) Compute i solving the ADI equation of T using z

the functional values known at time level n.
an+1

(2) Compute solving the ADI equation of H with

boundary conditions based on current value of
Y and p.

(3) Using the elliptic ADI equation of Y compute wn+l
by repeating the iterations* until the following
convergence criterion is satisfied:

+
Max. |¢?'; - wnl s elwref

where €, is some small positive number and /]

ref
is some reference value of the stream—funetion. ;
(4) Improve u™?! and w™! using current value of v i

computed in step (3).
(8)—Cempute cn+1 solving the ADI equation of ¢ using

the currently available values of other functions

involved.

(6) Update pn+1

using recent value of c obtained in
step (5).
(7) Using the elliptic ADI equation of ¢, compute ¢n+1

by repeating the iterations* until the following

* If only the steady state solution is needed, the iteratinn
is terminated after one cycle, which yields a meaningless in-
termediate solution. However, it results in an appreciable
reduction in computation time.
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(8)

(9)

(10)

(11)

criterion is met:

n+l n <
Max. [¥3,5 = Vi,5] = €20res

where e2 is some small positive number and ¢ref is

some reference value of the potential function.

n+l n+l

Update u and w using current values of y, p

and ¢ obtained in steps (3), (6) and (7) respec-
tively.

Evaluate the boundary values of H based on current
values of y, p and ¢.

Return to step (1) and repeat the cycle without
advancing the time step*. With these non-linear
time iterations the solution approaches that of

the time dependent problem. The iteration is term-

inated when the following convergence criterion is

satisfied.

k+1l k <
Max. ¥i,3 T ¥i,5| © €aVres

where k is the iteration counter and €3 is some
small positive number. This completes the com-
putational procedure for one time step advancing.
For a steady state solution, above procedures are

repeated until the time dependent solution converges

* If interested in large time solution only, this iteration
is not necessary except in the first few time steps.
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to the steady state solution. The convergence

criterion is again:

Max. e wi"j

<
1,3 - e4wref

‘where €4 is some small positive number.

Pressure Calculation

Once the steady state solution is obtained from the
set of governing equations formulated in the stream function,
vorticity and potential function, the pressure is obtained

either by a line integration or solving the Poisson equation

of pressure.

Pressure by Line Inteqration. This method involves
evaluation of pressure gradients at every grid point in the
region and numerical integration along conveniently chosen
paths. In this study, pressure is first integrated axially
along r* = 0.5 from z* = 0 to 2* = 1, and next radially
inward and outward to cover the entire region. Pressure
gradients are obtained using Eq. 53 for known velocity

field. This equation is rewritten below:

Rez 2
w tv b ,.2 u b
Pr= =P+ 38 - 7 t RN - ¢ Re
u, 1
W + T+ % )r (53a)

e a3 i b
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+

Py = =P(uw, + ng’ + %Evzw + 3:Re‘°r + % + %wz)z
(53b)
The integration formula used here is known as Euler's
polygonal curves:
£(x_ - Ax) = £(x ) + AX [-5f (x_ - Ax) - 8f_(x)
o o 12 x "o x'"o
+ £, (x + Ax) ]
£(x,) = £(x, = ax) + §F [52 (x_ - ax) + 8¢ (x )
o o 17 x %o x ‘"o
(83)

-fx(x° + Ax)]

Elxy + 8x) = £(x) + §F [-£,(x, - ax) + 8g, (x)

+ Sfx(xo + Ax)]

Pressure by Solution of Poisson Equation. The pressure

can also be obtained by solving the Poisson equation of

pressure Eq. 54. This equation is rewritten below:

v?p = -8(r,2) (54a)

where the source function 8 is a known function when the

o ————— s ———
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velocity field is obtained. The boundary conditions are
obtained from the known velocity field by Eq. 53a and 53b.
Since it is difficult to solve a Poisson equation with
Neumann boundary conditions all around, it was decided to
obtain solutions by a series expansion in eigenfunctions.
This method is similar to that of Green's function and is
chosen because of its computational efficiency.

The Poisson equation with inhomogeneois boundary con-
ditions is first converted into one with homogeneous boundary
conditions. This is accomplished by constructing a simple
function Po snrh that it satisfies the original inhomogeneous
boundary conditionsfla) Then the solution to the homogeneous

problem p is related with that of the original inhomogeneous

problem p by:

P=P-P, (84)

The resulting Poisson equation with homogeneous Neumann

boundary conditions is:

v?p = -8 (85a)

where
2

§=S+Vp° (85b)
Now assume a form of the solution as a finite sum of Fourier
cosine functions of z and at the same time expand the source

function in a finite cosine series:




N
- 1
p = 5°o(r) + nzl cn(r)cosnﬂz

N
-8 = %do(r) + nil dn(r)cosnwz

The number of terms in the series is taken same as that of : .
the mesh points in 2 coordinates {13) (16) Substituting these i .

equations into Eq. 85a yields a set of ordinary differential

equations for the Fourier amplitudes:

ct(r) + lc“(r) -2 r? c (r) = 4_(r) n=20,1 N
n rn ai n n ’ plpocasn,

(88)

with homogeneous Neumann boundary conditions:
cﬁ(r) =0atr=0andr=1 (89)

This set of ordinary differential equations was solved
numerically by finite differences, in which the Thomas method
is used for the resulting tri-diagonal system. A matter
deserving a comment here is that the fundamental Fourier
amplitude co(r) can best be determined within an additive
cor.stant. This is the reason why the pressure can only be
determined within some constant. Once p is obtained, p is

determined by Eq. 84.
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For purpuses of computational efficiency, a simple ver-
sion of the fast Fourier transforms (FFT) is used. The
reduction in computation time is accomplished by using the
symmetry property of cosine functions to minimize the multi-
pPlicative operations. The reduction in computation time
realized is approximately by a factor of 4. The method of
performing the fast Fourier cosine transforms is given in

Appendix A.

,~\)~ .




CHAPTER IV
ERROR ANALYSIS

In this chapter, various errors involved in the
numerical computation are discussed. Efforts are made to
check the solutions obtained internally as well as extern-
ally by way of comparisons with other related studies. Un-
fortunately, a solution to the present problem in its full
complexity does not exist in the published literature. How-
ever, results of visualization experiments and numerical
studies of similar rotating flows are found and they are
used for both qualitative and quantitative verifications.

There are two major sources of error in solutions
obtained by numerical methods. The discretization error
is the difference between the exact solutions of the finite
difference equat;ons and those of the differential equations.
In addition, actual numerical solutions include another
error called the round~off error since the computing machine
uses only a finite number of digits.

In this work, equations are posed as an initial value
problem and steady state solutions are obtained by contia-
uing the computation until the solution no longer changes.
The solutions thus obtained contain both discretization and
round-off errors. If, in the solution procedures, these
errors remain bounded as time increases, the numerical

scheme is s4id to be stable. As the mesh size decreases,
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the finite difference equations approach the differential
equations since truncated Taylor series expansions are used
for the finite difference representation. The consistency
condition(zg) is thus satisfied. For certain simple linear
problems, the consistency and stability are shown by Lax's

Theorem(zg)

to imply convergence. Hence for simple prob-
lems, it is proved that stable numerical solutions converge
to the solutions of differential equations when the mesh
size approaches zero. However, the theorem does not extend
in general to apply to more complex and non-linear equations.
Therefore, the result of Lax's Theorem can only be used as
guides for non-linear problems and the numerical solutions
obtained in this work are subject to verification as to
their validity as solutions to the differential equations.
In order to answer the question of how closely the
numerical results obtained approximate the true solutions
of the differential equations, a series of checks are made.

They 2 -e briefly listed below and described in the remainder

of this chapter.

(1) Verify how well the numerical solution satisfies
the constraint of the continuity equation on a
discrete basis.

(2) Check how closely the compatibility condition*

is satisfied by individual species (the over-all

* The surface integral of flux on boundary being compatible
with the volume integral of source in the interior.

R T S P = S
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species balance).
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(3) Check how well the numerical solution satisfies

the compatibility condition for the Poisson

equation of pressure.

(4) Establish the uniqueness of the steady state

solution by using different initial conditions.

(5) Compare the numerical results of the present

study with reported visualization experiments

for a qualitative verification.

(6) Use the computer program of this study to solve

the rotating flow problem of Pao(zs)

and compare

the results for a quantitative verification.

(7) Estimate the discretization error by an extra-

polation using different grid sizes.

(8) Calculate the pressure by both line integration

of the momentum equat.ion and by the solution of

the Poisson equation for the pressure and com-

pare the results.

The first three of these checks are considered to

be weak internal checks. Whereas the next four are strong

positive checks. Finally, item (8) is believed sufficient

for the verification of the pressure results.

Internal Checks

The checks mentioned in this section are simple in-

ternal checks which partially contribute tc the verification

of the numerical solutions reported in this work.

The first

ik kL e S A s
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verification is of the continuity equation in the finite
difference approximation. The error in the continuity

equation is:
e(r,z) = £(row), + &, - er, (90)

where e(r,2z) represents the error in a non-dimensional form.
The relative local error, i.e. the absolute error e(r,z)
divided by the largest of the three terms involved, are
computed at every interior grid point for four selected
runs. These four runs were selected in such a way that
they are representative of all the cases considered in this
study and also they are expected to have the maximum error.
The results show that the relative errors are less than
].0"5 at all interior node points except at the two nodes
adjacent to the boundary point at which the exit hole ter-
minates. At these two interior nodes the errors are found
to be as large as 50 percent. It indicates that the viol-
ation of the continuity constraint is localized very close
to a point whiéh is nearly a singular point and does not
extend into the interior.

The second check made is on the over-all balance
of species. For every computer run, the total amount of
interior mass injection and the sum of mass transfer across
the boundary are computed for the component A. This checks

the compatibility condition for the mass diffusion equation

T i AR Sk bt X 1




C g

RS . oSS S .
st ."uz?\r;f-::;;: A T T I e

o2

as well as the general validity of the numerical solution.
The results of this check—shows that the condition is sat-
isfied to within less than 5 percent error.

The third simple check carried out is on the compati-
bility condition of the Poisson equation of pressure. The
source term and the boundary conditions are evaluated from
known solutions of kinematics. If the numerical solution
obtained for the kinematics is valid, the boundary conditions
are expected to be compatible with the differential equation.
This is the reason why the verification of the compatibility
condition serves as a check for a valid solution of kine-
matics. The result shows that this condition is met within
less than 10 percent deviation for all rotating flows con-
sidered. For non-rotating flows, however, the error is found
to be as large as 50 percent. For this reason, the line
integration method was adopted for pressure calculations
of all non-rotating flows.

Finally, the uniqueness of the steady state solution
is established since identical results are obtained from
three different initial conditions for twc chosen flow
cases. The initial conditions considered are those of
solid body rotation, those in which the interior values are
interpolated from boundary conditions, and finally initial
values of zero everywhere in the region. Single component
flows of Re = 20, Ret = 0 and Re = 20, Re, = 50 were used
for this part of the analysis.
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Comparison with Results of Prior Works i

In this section comparisons are made of the results ]
of the present work with those of prior studies of other
investigators. The first comparison is made with the ex-

(30) (32)

perimental visualization results by Roschke and Ross.

These studies were concerned with the secondary flow pat-
terms obtained in jet-driven vortices which had a small
exit hole on one end. Schematic sketches of the over-all
flow pattern were drawn from the visualization results.
These sketches showed features such as boundary layer flows

on stationary end walls and vortex core flows along the

cylinder axis toward the exhaust hole. This over-all second- |
ary flow pattern is consistent with the numerical results
of the present study as given in the next chapter. And
this is considered to be a global, qualitative verification. j

The second check made is with the numerical solution '
of Pao(zs) who considered the steady motion of an incom-

pressible flow in a finite cylindrical container. 1In this

problem one end wall was stationary and the other rotated

with the periphery. The governing equations of this prob-

lem are identical to those of the present study for the

special case of single component flow. Furthermore, this

problem is considered to possess the same mathematical com-

plexity as well as the flow features of the present problem.

the boundary conditions of Pao's problem are:

r=0; u=0, v=20, W, = 0




2]
[l
'—i
e
1]

0,V=l,w=0
2=0;u=0, v=0,w=20

2=1l;u=0,v=1r, w=20

The computer program written for the present problem was
modified to meet the above boundary conditions. This mod-
ified program was used to solve Pao's problem for the case
of Re, = 100* and the result obtained was compared with that
given by Pao. 1In Figure 2 the stream function is compared
for a fixed axial location, 2* = 0.5. The axial velocity
along the cylinder axis is compared in Fig. 3. Finally,
a comparison is made in Fig. 4 of the radial velocity a-
long three different radial distances, r*=0.2,0.4 and0.6.
The comparison is excellent as shown. It may be
mentioned that in both Pao's and the present work, the fi-
nite difference approximations were of second order accuracy
although different numerical schemes were used. Pao's
numerical results are supported by his visualization ex-
periments. The comparison with Pao's solution is considered
to serve as a strong quantitative verification on the valid-

ity of the numerical results reported in this work.

Estimate of Discretization Error

In this section, discretization error is estimated

based on a quadratic extrapolation which is similar to

Richardson's extrapolationfze) The method involves

* The characteristic velocity and the length used in the
tangential Reynolds number are v, and R respectively.
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calculating the approximate mesh function f£(h) for three
different mesh sizes. From these calculations the exact
solution £(0) corresponding to zero mesh size and also the
discretization error E4q can be evaluated. Suppose the
mesh function f which depends on grid size is calculated
for three different grid sizes, h, €¢h and éh where

0 <§ <e <1. Then from Taylor series expansion,

£(h) = £(0) + ah + bhZ + 0(h3)

£(ch) = £(0) + ach + be2h? + 0(h3) (91)

2, o(h3)

£(sh) = £(0) + ash + bs2h
where a and b are constants which depend on the first and
second order derivations of f respectively. But in this
analysis the order of approximation in all the finite
difference equations is of 0(h2) and hence a = 0., There-

fore the ratio,

2,,.2 3
£(h) - £(ch) _ (1 - ¢“)bh® + 0(h”) (92)
Eleh) = £08h) = (2 _ 2ypnZ 4 o(nd)

approaches the limit as the mesh size h tends to zero:

£(h) - £(ch) 1 - &2

= 93)
= (
f(ch) £ (&h) el - 5

The error Ed is obtained from Eq. 91 and 92:

e P s e e tade o o mimm il .
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Bg = £(h) - £(0) = LRI F LN (94)
£? -

This method of error analysis is applied to a non-rotating

flow of Re = 20 using four different grid sizes, 1/20, 1/28,

1/36, 1/44. From the results then the errors are estimated

for grid sizes of 1/20 and 1/28. The errors were calculated

based on the computed values of circulation along six

chosen paths as in the following:

1
[ w*dz* along r* = 0.25, 0.50 and 0.75
o

1l
-f u*dr* along 2z* = 0.25, 0.50 and 0.75
o

The integral quantities were chosen rather than local
quantities since they reflect errors associated with a
group of mesh points along the path of integration.

The results show that the relative discretization
errors associated with grid sizes of 1/20 and 1/28 are 12
and 4% respectively. For rotating flows, however, the
errors are expected to be higher because of the induced
secondary flows and thin boundary layers which have steep
gradients of velocity. Nevertheless, for the range of
flow parameters considered in this study it is believed

that the errors are not much affected by the wall rotation.
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1

The calculated circulations along the chosen paths and their

variation with mesh spacing are shown in Fig. 5 and 6.

Check on Pressure Calculation

Pressure is calculated both by line integration

using the integration formula, Eq. 83, and by solving the

Poisson equation of pressure. A comparison of the results
is given in Fig. 7 for the case of Re = 1 and Re, = 50 of
the single component flow. In this figure the pressure is

plotted against radial distance for three chosen axial ;

locations. The results show good agreement between the
two methods and this is considered sufficient to establish

the validity of the results for the pressure calculations.

Ooncluding Remarks

In light of the results of the error analysis that
are discussed in this chapter, the numerical results re-
ported in the next chapter can be viewed with confidence. !

As pointed out in the earlier section of this chapter, the

details of flow solutions in the vicinity of the exhaust

e ki e e

hole are not considered to be accurately discerned. How-
ever, the associated inaccuracy is very much localized and
limited to the immediate vicinity of the exit port. This
was brought out by the result of the check on continuity
in the previous section. Finally, it is shown by the re-
sults of the compatibility check for the Poisson equation
of pressure that the line integration method should be used X

for all non-rotating flows, whereas for rotating flows, that
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pressure can be obtained by solving the Poisson equation.
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CHAPTER V
NUMERICAL RESULTS

Results of the numerical calculations are oresented
in this chapter. The computer program that was used to
produce them was written in Fortran V for the UNIVAC 1108
and included in Appendix B. 1In early stages of data ac-
quisition, the limits of stable solutions were explored for
the governing parameters, particularly the axial and tan-
gential Reynolds numbers. The result showed that stable
soluticns were obtainable without excessive machine time
for Reynolds numbers upto 20 for rotating flows with tangen-
tial Reynolds numbers as large as 100. Whereas for non-ro-
tating flows stable solutions were obtainable for Reynolds
numbers as inigh as 2000.

The maximum time step and the ootimum iteration
parameters for given flow cases are determined by numerical
experiments for the parabolic and elliptic equations re-
spectively. The exhaust hole radius is kept constant
re = 0.125R for all the flow cases considered. Aspect
ratios considered are 1 and 2 and the Schmidt number is
fixed, i.e. S, = 1 for all binary flows studied.

Although it is possible in principle to compute the
required mass addition rate of component A that is necessary
to maintain a predetermined critical mass in the chamber,

the computation procedure required to do this is difficult.

&
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Therefore, for purposes of simplicity the containment of
component A is calculated for given values of the mass
addition rate. Since it is desirable to keep the mass
addition of simulated fissionable material as small as
possible, relatively small values, 0.01 and 0.05, are con-
sidered for the injection rates of component A(fp_p).

Grid systems of 29 x 29 and 21 x 41 are used for
flows of aspect ratio of 1 and 2 respectively. In Table 1,
single component flows that were considered in this study
are summarized. Whereas Table 2 lists the binary fluid
flow cases studied. The component simulating fissionable
material is introduced by a uniform interior source dis-
tributed over an annular containment region, 0.125 < r* <
0.875 and 0.125 z* < 0.875 for all binary flow cases. '
This choice of mass injection schedule is made in order to
reflect local effects of secondary flows on the resulting
containment factor. Although the assumcd uniform source
distribution may not be an efficient one for achieving high
containment, it is considered most suitable for studying
the effects of local secondary flows on the retention of
figsionable material.

Because only the steady state solution is of interest
it was necessary to iterate the elliptic equations only
once for each time step. Final steady state solutions are
obtained with a minimum of computer time in this way, but
the results produced before convergence is reached does

not renresent the true transient behavior of the flow.
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Results are presented in the following three sections
separately for single component flows, binary fluid flows
and for the pressure respectively. Calculated values are
plotted along selected r* and/or z* values whichever is
deemed appropriate for the particular case under consider-
ation. Results are given in a manner that they show para-
metrically the effects of rotation on the resulting second-
ary flow, concentration field and finally the containment
factor.

Single Component Flows

Flows with an asvmect ratio of 1 are taken up first
for discussion. Streamlines for flows of Re = 1 and for
Rey = 0 and 50, are presented in Fig. 8 and 9 in which the
overall flow configurations can be seen. With no rotation,
i.e. Rey = 0, the fluid enters at the porous wall at the
periphery and flows more or less uniformly throuah the bulk
of the chamber. However, with rotation, Rey = 50, a pair
of recirculating closed flow cells are formed in the main
body of the chamber. The primary fluid injected at the
peripherv flows in the boundary layers on the stationary end
walls and around the recirculatina closed cells. The mass
flow rate in the secondary recirculating cells is measured
by the quantity, |¢| max in the closed cells. This quantity
increases from 0 to 45.9 as the wall rotation, Re, varies
from 0 to 100 for fixed primarvy flow rate of Re = 1, This
is shown in Fig. 13.

It is to be noted that for a particular ratio of
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wall rotation to primary flow, i.e. Rey/R, = 50, a closed
streamline appears, which contains the chamber center
line. The appearance of this particular streamline brings
about a new flow feature worthy of discussion. Half of
the primary flow that flows through the left end wall
boundary layer, changes direction, passes through the
central bulk region and joins with the remaining half to
finally exit through the exhaust hole. This flow con-~
figuration is not a desirable one for fluid dynamic con-
tainment. It may also be mentioned that this flow can not
be studied by the simple analytical model of Rosenzweigq,

Lewellen and Ross(3l) gince they assumed the axial veloc-

ity to be uniform in the region of the central vortex core.

Streamline patterns for a higher orimary flow rate,
Rg = 20, for wall rotations of Rey=0, 50 and 100 are
given in Fig. 10, 11 and 12 respectively. 1In this case a
similar partern of vortex motion is set up by the wall 1
rotation. The primary flow is throuch the end wall bound-
ary layers and around the outside of the induced recir-
culating flow cells. The secondary flow rate, |¢|pax Of the
closed cells varied from 0 to 2.64 as the tangential
Reynolds number increased from 0 to 100. This is shown in
Fig. 13. A comparison of this result with that of Rg = 1
indicates that the secondary flow rate decreases for a fixed
rate of wall rotation as the axial Reynolds number increases.

The streamline patterns show that the fraction of rrimary
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flow that passes through the central bulk region decreases
when the tangential Reynolds number increases from 50 to

100. It may be stated from the streamline patterns for
both Ry, = 1 and 20 that increasing the tangential Reynolds

number will at first decrease the fractional primary flow
turning to the main body when the axial Reynolds number is

fixed. This tendency persists until a minimum is reached.
Further increase in rotation will increase the fractional
primary flow until a flow condition develops where the
closed streamline appears as given in Fig. 9. This sug-
gests the existence of an optimum rotation rate for a
given primary flow that yields the most favorable flow
structure for containment.

In the case of an axial Reynolds number of 20, a
small closed flow cell that contains the chamber
axis is formed in front of the exit port. This has not
been observed in the case of Re = 1, A close examination
of the pressure distribution along the axis revealed a
high pressure point immediately downstream from the cell.
It is thought that the porous plua conditions imposed on
the orimary flow at the exhaust hole causes a region of
local hiagh pressure on the center line so that the primary
flow can adjust within a short distance to comply with the
boundary conditions. The local high pressure induced by
the exit port boundary .onditions then causes a local re-

verse flow to form a closed flow cell. In the case of

i i st it s . b m
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Re = 1, however, the pressure level required for the neces-
sary adjustment was not high enough to cause a back flow.
However, the detailed flow confiquration as given in the
vicinity of the exahust hole should be viewed with reser-
vations. The grid system used in the numerical computation
yields only three and a half nodes across the exit port
and thus the rapid changes in the primary flow in this lo-
cal region have to be approximated by only a few points. A
local high value of the error in the continuity constraint
was also observed in this region as discussed in Ch. IV.

Radial and axial velosity components are plotted for
Re = 1 in Fig. 14 and 15 for Rey = 0 and 50 respectively.
These figures support the discussions given above in regard
to the streamline patterns. With no rotation, an asymmetry
in the veloicty distributions about the mid-plane, z* = 0,5
is shown. At Rey = 50, the relative effect of the primary
flow is low and as a result velocity distributicas are near-
ly symmetric about the mid-plane. The radial velocity dis-
tribution shown in Fig. 15 reveals that the end wall bound-
ary layer thickness grows rapidly as the flow approaches
the chamber axis. The results of Re, = 100 with Re = 1

are not given here since they are similar to the case of

Re¢ = 50 but with an increased intensity of the recirculating

flow features described above.

The distribution of angular momentum is shown for

Re = 1 and Rey = 50 in KHg. 16. It indicates a radial
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distribution which does not vary axially in the main pody
of the chamber. Hence a steep axial gradient exists near @
the end walls. This supports the T (r) assumption made by

Rnsenzweig, Lewellen and Ross (31) in their analytical model
of diiven vortex flows. The observed high axial gradient

of angular momentum near the end walls provides a large so-~
urce term in the vorticity equation. Through the stream fu-
nction equation, this leads in turn to a large variation in

the vorticity and results in boundary layers in this region.

The distribution of angular momentum also is shown to be

symmetric about the mid-plarme.
Plots of radial and axial velocities for Re = 20 |

are given for Rey = 0, 50 and 100 in Fig. 17, 18 and 19. ;

The velocity distributions are similar to those for the case

of Re = 1. But the distribution is less symmetric abcut

the mid-plane because of the higher primary flow rate.

This effect is more pronounced for lower tanaqential Reynolds

numbers and in the region close to the axis. The anqular

momentum is given in Fig. 20 and 21 for Re, = 50 and 100

e

respectively. These figures show distributions similar to
the case of Re = 1., The symmetric distribution of angular
momentum about the mid-~plane is not altered by the incrcased i

nrimary flow rate.

In the rest of this section results for an asvect
ratio of 2 are discussed. Only a few runs are made for é
this case . The streamline patterns of Re=1 are shown in

Fig. 22 and 23 for tangential Reynolds




numbers of 0 and 15 respectively. For the particular value
of the ratio, Ret/Re = 15, the pattern of a closed strcam-
line that joins with the chamber axis is again formed and
it causes a large fraction of the primary flow to pass
through the central region of the chamber. The streamlines
for Re = 20 are given in Fig. 24 and 25 for cases of Rey = 0
and 15 respectively. For these values of parameters, the
fractional primary flow turning to the central region is re-
duced because of the increased axial Reynolds number for
the fixed tengential Reynolds number of 15. The secondary
flow rate for this case in which :he aspect ratio is 2 is
also plotted in Fig. 13, From this figure, it may be seen
that the secondary flow rate increases as the aspect ratio
increases for fixed axial and tengential Reynolds numbers.
Velocities are plotted for Re = 1 in Fig. 26 and 27
for Re, = 0 and 15. The velocities for Re = 20 are given
in Fig. 28 and 29 respectively for Rey = 0 and 15. The
velocity distribution is similar to the case with an aspect
ratio of 1. The asymmetrical distribution of radial and
axlal velocities can be seen for the case of Re = 20 and
Re, = 15. It appears that thinner boundary layers are
formed on the end walls. Angular momentum is given in Figq.
30 and 31 for Re = 1 and 20 respectively. The region in
which the axial qradient of angular iomentum is steen also
seems narrower than that for the case of aspect ratio of 1.

This results in a higher axial qradient of anqular momentum
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and hence a higher secondary flow rate. This is in agree-
ment with the result given in Fig. 13. Finally, the genecral
distribution of angular momentum is similar to the case

with an aspect ratio of 1.
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Binary Fluid Flows

Results for binary fluid flows are presented and
discussed in this section. The relative interior mass add-
ition values of component A, f,_p equal to 0.01 and 0.05
are considered. For thesc low values of f, 5, the result
shows that the velocity field does not deviate much from the
single component flows (without interior mass add-
ition). Moreover, the characterisitc flow featurcs of
driven vortices remain unaltered. Therefore, only the va-
lues of the potential function and mass concentration are
presented and discussed. Results of mass diffusion are
given in such a manner that tihey show the effect of the
tangential Reynolds number on the concentration distribution
for a fixed axial Reynolds number using the pure density
ratio as a parameter. Only the axial Reynolds number of 20
is considered for binary flows since high axial Reynolds
numbers are desirable to achieve convection dominated mass
transfer which is required for fluid dynamic containment.

It may be seen from the equation that the potential
function is insensitive to both the pure density ratio
and the tangential Reynolds number. This is because the
potential function is affected by the tangential Reynolds
number only to the extent that it affects the density
field. And the influence of the density field on the
potential function is mild for the relatively low values

of fa_p considered. This has also been shown by the results.
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For this reason, the potential function is presented only
for a singlc value of the pure density ratio, 0.5, and a
tangential Reynolds number of 100. It is given in Fig. 32
as representative for a family of such figures. It is to
be noted that the potential function equation is decoupled
from the rest of the equations of the system when the pure
density ratio is unity. In this case the potential function
is determined once in the beginning for a specified mass
addition schedule and the result is used for subsequent
calculations of the remaining variables. Results given in
this section are all for a fixed value of aspect ratio of 1.
Results for concentrations of fissionable material
component A, are plotted in Fig. 33, 34 and 35 for tangen-
tial Reynolds numbers of 0, 50 and 100 respectively for the
case of a fixed Schmidt number of 1, fA_Beo.Ol and pure
density ratio of 0.5. It is seen in these figurcs that as
the tangential Reynolds number increases the over-all level
of concentration increascs and also its gradient becomes
steeper. The mass fraction is also plotted in Fig. 36
through 41 for pure density ratios of 1 and 2 each for
tangential Reynolds numﬂérs of 0, 50 and 100, These are
also for a Schmidt number of 1 and a mass addition rate,
fa-B of 0.01. The figures show little variation in concen-
tration distribution due to the variation in the pure
density ratios from 0.5 to 2.0. It may bc stated that

the effect of the pure density ratio on the resulting density

All2

e toat L e e e i



field is mild and hence the concentration equation is only

weakly affected by the variation in the pure density ratio.
The cffect of rotation on concentration in these cases is
similar to the case of the pure density ratio of 0.5. Both
the over-all level and the gradient of concentration.are sh-
own to increase with increasing tangential Reynolds number.

Next, the case with interior mass addition, f, p, of
0.05 is considered. The potential function for a pure
density ratio of 0.5 and a tangential Reynolds number of
50 is plotted in Fig. 42. The distribution of the potential
function obtained is similar to the case with an interior
mass source of 0.01 since the function has been normalized by
appropriate reference quantity. The mass fraction of com-
ponent A is given in Fig. 43 and 44 for the tangential
Reynolds number of 0 and 50 both for the case of Schmidt
number of 1 and pure density ratio of 0.5. The figures
show that the distribution is similar to that obtained with
a mass addition rate, fp_p, of 0.01 discussed above. But
the over-all concentration is increased by a factor approxi-
mately equal to the ratio of the mass addition rates. It
is also seen in this case that the vortex motion increases
the over-all concentration as well as its gradient, which
in..scates the fluid dynamic containment property of driven
vortices.

Finally, the containment factor is calculated accord-

ing to the following expression:
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n = Total Mass of Fuel {(Component A) in the Chamber
Total Fuel Mass 1f 1008 Fuel in the Mass Addit-

ion Region

O ‘=
O *— =

PB,p p*(r*,z*)c(r*,2z*) r*dr*dz*
= (95)

I

r
*drtdzt
pA,P £ r*dr*dz

=% %
% N

The containment factor as expressed above represents a
ratio of an actual average residence time of fissionable
material based on steady operating conditions to that of
an ideal reference tine. This reference time is chosen
as the residence time of fissionable material for an ideal
case of 100% fissionable material in the assumed contain-

ment region. The containment region here is the region in

which the fissionable material source is uniform.

The containment factor is computed numerically by a
double integration using a trapezoidal rule after the steady
state solgtion is obtained. The results for pure density
ratios, pA,P/pa,p of 0.5, 1.0 and 2.0 are plotted against
tangential Reynolds numbers in Fig. 45 for a mass addition
rate, of 0.01. The figure indicates that the containment
factor increases with increasing tangential Reynolds number
for a fixed axial Reynolds number, Schmidt number and pure
density ratio. The containment factor calculated for a mass
addition rate, f, ., of 0.05 and pure density ratio of 0.5
is also included in this figure. The figure shows that it
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nearly follows the curve of £, ,=0.01 when the value is
scaled by the ratio of the two mass addition rates. This
indicates that the over-all concentration of fissionable
material and hence the containment increases more or less
linearly with the fuel mass injection rate. As may be seen
from the mass diffusion equation, a further increase in
containment factor can be realized by an increase in either
the axial Reynolds number or Schmidt number. Finally, it
is seen that decreasing the pure density ratio increases

the containment for fixed rotation.
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Pressure Calculation

Pressure calculations are made only for single com-
ponent flows and they are presented in this section. As
mentioned in Ch. IV, the pressure is calculated by the
method of line integration for non-rotating flows. For
rotating flows it is calculated by solving the Poisson
equation of pressure, in which the Fourier analysis is used
and 1 *ourier cosine transforms are employed as an
effici. omputational algorithm.

The ‘esult for an axial Reynolds number of 1 is pre-
sented in Fig. 46 and 47 for tangential Reynolds numbers
of 0 and 50 respectively. In the absence of rotating motion,
the variation in the pressure is small except in the region
near the exhaust hole where the primary flow is accelerating.
A decrease in pressure is shown toward the chamber axis
near the exit hole. When rotation is present, however, a
high radial pressure gradient is formed in the bulk region
to balance the large centrifugal force field caused by the
anqular momentum distribution induced by wall rotation.

The uniform radial distribution of pressure shown in Fig.

47 is in agreement with the uniform radial distribution

of angular momentum given in Fig. 16. Near the end walls,
the rotating motion is retarded by viscosity and hence the
local centrifugal force is decreased. However, the pressure
in this region is nearly equal to the imposed pressure. The

unbalance between the pressure and the centrifugal force




in this region results in a large radial inwced flow
toward the axis. The mild axial pressure gradient observed
in the end wall boundary layer and near the periphery is
thought to be a result of the continuity constraint inter-
acting with the momentum field. The symmetry of the pres-
sure profile about the mid-plane, z*=0.5 is shown for the
value of the ratio, Re./Re=50.

Results of the pressure calculation for an axial
Reynolds number of 20 are given in Fig. 48 and 49 for
Rey=50 and 100 respectively. These figures indicate that
the pressure as well as its radial gradient increase as the
tangential Reynolds number increases. The radial pressure

gradient is seen to increase with radial distance from

the axis. A comparison of Fig. 47 with 48 reveals a flatter

axial distribution of pressure with lower primary flow rate
for a fixed rate of rotation. The discussion given

for axial keynolds number of 1 also applies in general to
this case of Re=20. Finally, the pressure calculation for
an aspect ratio of 2 is shown for axial Reynolds numbers of
1 and 20, each with a tangential Reynolds number of 15. The
result for Re=1l is given in Fig. 50 and that for Re = 20

in Fig. 51. The pressure profile in general is similar to
those for the aspect ratio of 1. The only noticeable dif-
ference is the asymmetry in the distribution about the mid-
plane. The asymmetry in the pressure profile becomes more
pronounced as the axial Reynolds number increases for a

fixed tangential Reynolds number.
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CHAPTER VI
SUMMARY AND CONCLUSIONS

In the preceding chapters, a numerical study of dri-
ven vortices of single component and binary fluids in a cyl~
indrical container is described. The complete axi-symmetric
egquations of motion and mass diffusion are solved numer-
ically by finite difference techniques. The basic differ-
ential equations modeling the cold flow simulation of the
advanced Light-Bulb reactor concept includes the continuity
equation that contains a source term. Because of the
source term in the continuity equation, the simple conven-
tional scneme of formulating the problem in terms of the
stream function and vorticity fails. Therefore, a method
is developed in this study that enables the solution of this
problem by a formulation in terms of the stream function,
vorticity and one other function. This additional function
is a potential function, and is introduced so that it iden-
tically satisfies the continuity equation that has a source
term. Another possible application of this technique is
to unsteady compressible flow problems in which the transi-
ent term in the continuity equation can be regarded as the
source term.

The governing equations are written with the unsteady
term included in terms of the stream function, vorticity
and the potential function. The steady state solutions are

obtained by large time solutions of time dependent problems.

Al3s

[ Ty s "
. N N

ey

o b R it e e e e e < St S



'i
Rt

Al39

The. implicit numerical scheme of the ADI method is used.
After the kinematics are solved, the pressure is obtained ei-
ther by linc integration or by solving the Poisson equation
of pressure. Fourier analysis has been applied to the Poiss-
on equation as the solution method, in which fast

Fourier transforms arc employed as an efficient computation-
al algorithm. An extensive study is undertaken of the

error analysis for the numerical results obtained in this
study. This includes the estimate of the discretization
error and a comparison with prior studies of other investi-
gators.

Numerical results are obtained to show the effects
of various parameters, in particular the axial and tangent-
ial Reynolds numbers on the secondary flow pattern and
the resulting containment property. Results show that in
the absence of rotation the flow is largely through the ce-
ntral region. When rotation is present, however, a
high radial pressure gradient is formed in the main body
to balance the centrifugal force. Near the stationary end
walls, the viscosity retards the rotational motion and the
imposed radial pressure gradient creates a large radial
inward flow. These end wall boundary layers interacting
with the vortex motion formed in the bulk region, induce
recirculating secondary closed flow cells in the central
region of the chamber. The secondary mass flow rate in

creases with increase in tangential Reynolds number for &
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fixed primary flow rate and aspect ratio. It appears that
the secondary flow rate also increases as the aspect ratio
increases for fixed axial and tangential Reynolds numbers.

Fluid dynamic containment of the component A (sim-
ulated fissionable material) is realized when the convection i
effect dominates the diffusion in the mass transport process |
and the mass is held within the recirculating flow cells
by the convection currents. For a fixed axial Reynolds
number of 20, the results show that the secondary flow rate
increases with the tangential Reynolds number. This en-
hances the relative dominance of the convection effects over
diffusion in the mass transport process. Moreover, the
fraction of primary flow that passes through the bulk region ;

of closed flow cells decreases as the tangential Reynolds

number incrcases. As a result of these flow features, the
containment factor increases as the tangential Reynolds

number increases for a fixed axial Reynolds number, Schmidt

o e AR it o Ao At et s

number and aspect ratio. For a given secondary flow rate,
the containment factor also increases when either the axial
Reynolds number or the Schmidt number increases since it

also increases the convection effect relative to the 4if-

fusion. It appears that an increase in the aspect ratio also

increases the containment factor. Finally, the containment

factor increases as the pure density ratio decreases for a
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fixed Schmidt number, axial and tangential Reynolds
numbers.

The method developed in this thesis seems to be most

suitable and efficient for obtaining numerical solutions
of binary flows with interior mass source. The method
has been applied successfully to the driven vortex flow
problems of binary fluiu, in which one of the fluid com-
ponents.is introduced by an interior mass source. The
numerical results showed that the fluid dynamic contain-
ment of the simulated fuel component, introduced as an
interior mass source, can be achieved by the convection
currents of recirculating closed flow cells formed by the
rotating periphery. The containment property is shown to
increase with increasing the rotation for fixed primary

flow rate.
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ABSTRACT

The gas core nuclear reactor concept was introduced
fifteen years ago because of a possible application as an
engine for space vehicles. Recently, interest has grown in
applying this concept for ground based power generation.

In this thesis the results of a parametric study on the
entrance rlow region in a gas core nuclear reactor are pre-
sented. The physical system 1s modeled as laminar confined,
coaxial flow with heat generation in the inner fluid. The
governing equations include the boundary layer approximations
and the assumptions of only radial radiative transport of
energy represented as an energy diffusion term.

The Von Mises transformation and a ¢ transformation
are used to transform the equations into nonlinear nonhomo-
geneous convective-diffusion equations. A unique combination
of forward and backward difference equations which yields
accurate results at moderate computational times, is used
in the numerical method.

Results show that the rapidly accelerating, heat generat-
ing inner stream actually shrinks in radius as it expands
axlally. This conclusion is in opposition to that assumed

in previous analyses of the flow region downstream of the

entrance reglion.
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Subscripts
i

J=1
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n

R
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Denotes outer stream variables
Finite difference grid index in radial direction

Denotes ratio of inner to outer stream initial
entrance variable values
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CHAPTER I
INTRODUCTION

Fluid mechanics problems assoclated with the concept of
8 gas core nuclear reactor have been studied for many years.
Most of the theoretical work has been limited to the main
portion of the cavity where severe gradients of velocity,
temperature, and pressure do not exist. The reasons for
this limitation are obvious. There is also a general lack
of understanding about the behavior of the transport mech-
anisms in entrance flows. Because of these problems, the
highly complex entrance flow problem of gas core reactors
has been essentially ignored. Only one previous attempt has
been made to solve the complex entrance flow problem and
that analysis used inviscid flow equations.
The obJect of the present work effort is to formulate
& realistic model of the entrance region flow in the reactor
and to study the effects of various parameters on the flow
field. A new transformation is developed to solve not only
this problem but entrance flow problems in general, since
simple solution methods to this problem are not generally
available. A unique combination of forward and backward
difference equations is used in the numerical method, which
yields accurate resulte at moderate computational times.
In an open cycle gas core nuclear reactor concept, it
is presently proposed that a solid uranium rod be continu-
vusly fed into the reactor cavity to produce makeup fuel for

that lost through the nozzle and to maintain a eritical mass.
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The fuel rod enters the cavity on the axis of the working
fluid flow. It 18 exposed to the high neutron flux and is
very rapidly vaporized. The temperature of the uranium
vapor increases by an order of magnitude in a very short
distance downstream of the entrance point. The interaction
of the rapidly expanding uranium stream with the surrounding
working fluid stream is difficult to predict. It has an
important influence on the mixing of the two streams, as
well as on the critical mass requirements in the cavity,
since the fuel stream must expand to a radius many times
that of its inlet radius to keep critical mass requirements
reasonable. It is also the object of this work to analyze
the flow in the region of the fuel injJection point where
temperature changes, and hence velocity and density changes,
are extremely large. This study will provide input for an
analysis of the main portion of the reactor cavity where
gradients of the flow variables are less severe.

The analysis presented here is an approximate one and
attempts to consider only those phenomena which are of funda-
mental importance in the region of interest. The flow is
considered to be coaxial, with the two streams immiscible.
Thus, the diffusion equation can be discarded, and the prob-
lem can be treated as a two region problem. Radial body
forces are neglected. Axial body forces can be incorporated
in the pressure term. Thermal diffusion terms, except for
Rosseland's approximation for radiative energy transport,

are neglected. Internal heat generation occurs in the fuel

coda ke




stream to represent the fission process.

of state 1s used for the whole region.

are very small, and velocities throughout the cavity are

very low subsonic. Physical properties are assumed tc be

uniform.

Initial velocities
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CHAPTER II
BACKGROUND

This thesis 1s concerned with the analysis of flow in
the entrance region of a gas core nuclear reactor. Previous
work relevant to this thesis work can be separated into two
categories. The first of these 1s the literature on model-
ing of flows in reactors and the second is the literature
concerned with entrance region flows ‘n general.

Reactor Modeling

Ever since the concept of gas core reactors for nuclear
rocket engines was proposed in 1953, its development has
been the basis for several experimental and theoretical in-
vestigations. The feasibility of a gas core reactor has
been studied in deta1112’13’23. A status of the art report
by Rom13 refers to the basic work completed in the fields
of hydrodynamics, gaseous radiant heat transfer, neutronics
and system studies.

The exchange of energy from the fissioning fuel to the
propellant stream by thermal radiation has been treated by
Kascaklo using a diffusion (Rosseland's) approximation to
the radiant heat flux, which is valid for optically thick
fluidsz. This treatment 1s adopted for the present analysis.

The analytical work on the flulid mechanics problems of
gas core reactor has been limited to the main portion of the
reactor cavity where gradients are not extreme. These

treatments were numerical integration of the boundary layer

equations, or full Navier Stokes equations for coaxial flow

Bl1l3
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of dissimilar fluids. They were concerned mainly with the
mixing of the two fluid streams and hence concqptrated on
the diffusive terms rather than on the effects of the large
internal heat generation. References 6, 7, 18 and 24 are
examples of this approach.

Ghia” et al. studied isothermal, confined laminar mix-
ing of dissimilar (binary and nonreacting) circular axisym-
metric jets. Their results clearly indicate that the dif-
fusion is negligible for at least one characteristic length.

Only one previous attempt22 was made to simulate the
flow field near the fuel injection location. Using inviscid
equations this analysis showed the effects of large energy
release and the concurrent high acceleration of inner stream
fluid on the coaxial flow field. Results of this study in-
dicated that the rapidly accelerating, heat generating, lnner
stream actually shrinks in radius as it expands axially.
Even though inviscid analysis yielded certain useful results,
it can not simulate a flow with interfacial shear and the
effects of solid wall on the flow field realistically due to
the degenerate nature of the equations. Also, in the invis-
cid analysis, stability problems were experienced and
artificial viscosity type terms were added to the governing
equations to overcome these difficulties. Based on this
previous experience the present analysis is performed using

the boundary layer equati. .s.
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General Entrance Flows

There has been an enormous amount of published liter-
ature on a variety of entrance flow studies. Unfortunately,
none of these is directly applicable to the present analysis.
A general description of this literature is, however, given
to justify the methodology used in formulating and solving
the present problem. It 1s impractical to cite all the pub-
1ished work on entrance flows; therefore, only recent papers
dealing with circular conduits which contain new ideas
and/or a review of previous work are cited.

The reason entrance region flows have been studied so
intensively is because of thelr practical importance in the
investigation of excess pressure drop, flow stability, and
flow separation phenomena. Most of the studies involve
solution of simplified Navier Stokes equations using bound-
ary layer approximations. However, there has been some
controversy over neglecting the axial diffusion terms in the

20 showed rigor-

governing equations for small zs’e. Van Dyke
ously in the case of entry flow in a channel that the full
Navier Stokes equations reduce to boundary layer equations
for the infinite Reynolds number flow. (Solutions of the
ffull Navier Stokes equationsz1 1ndiéate that the boundary
layer approximations are valid only for Reynolds numbers
greater than 250.) In conclusion the flow field description
obtained by uslng boundary layer equations 1s reasonably

accurate for the asymptote of large distance from the

entrance when Reynolds number is large. Boundary layer
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equations are preferred for the present, analysis because
general flow features are the main concern. Also, the
methods of solution for the full Navier Stokes equations
become cumbersome and/or have stability problems for large
Reynolds number flows.

Four basic methods of solution for the boundary layer
equations are encountered in the literature:

1. Finite differences of the complete set of

equations3’9;
" 2. Linearization of inertial termsll’lg;

3. Method of weighted residualsl;
and 4. Patching of solutionsu’17.
Most of these methods are numerical and all have their own
merits and drawbacks. Even though analytical solutions are
preferred, numerical techniques are widely used in engineer-
ing practice because they have the capability of handling
more comprehensive cases with variable fluld properties and
variety of boundary conditions. The simpler numerical
schemes, even though they are easy to set up, usually become
unattractive because large numbers of grid points are required
to resolve the flow characteristics near solid boundaries and
in regions of large gradients. Also, the simpler methods
have stability and convergence problems when derivatives are
large. This problem can sometimes be overcome, however, by
Judiciously invroducing transformations into the basic set of

equations, which results in new independent and dependent

variables before using the numerical technique. Obviously,
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this procedure will work when derivatives of the new depend-
ent variables are much smaller than those of the original
dependent variables.

In this thesis a/series of transformations are used
before solving the partial differential equations. A
combination of explicit and implicit finite difference
methods 1is also utilized with the transformed variables to
obtain the largest possible grid size consistent with

stability and convergence criteria.
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CHAPTER III
MATHEMATICAL MODEL

The geometric model for the analysis consists of two
fluids flowing coaxially within a bounding stream tube of
constant radius (See Fig 1). Radial body forces are neglect-
ed to preserve axial symmetfy in the flow system. Under
these assumptions the steady flow situation 1is represented
mathematically by boundary layer equations with appropriate
boundary conditions. The inner stream has a large internal
heat generation rate and transfers heat to the outer stream
by radiation. The radial conductive transport of energy is
negligible compared to the radial radiative transport. A
diffusion approximation is used for the radiation equations2.
The flulds are considered to be immiscible and no mass trans-
fer occurs across the interface between the two streams.

The interface is a stream line of both fluids. Since the
velocities, temperature and pressure keep changing as the
flulds travel through the tube, the radius of the interface
does not remain constant. The equations are written for
both fluids separately and tied together with the interface
equation.

The following are the governing differential equations:

Fluid I: 0 <r < aR. J=1

Fluid II: aR<r <R, I=2

State: Py = LI T& (1)

Continuity: 9 - - - —- — -

SRR R Gy gy P+ 5 By Yy D) =0 (2)
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- ,_ duy _ duy dFy
Momentum: py (uy sir-+ vy ;g-) - &
oy
+ =50 (r 5= (3)
Energy: 33 5& (ﬁh %;; + Vb %;4)
.5 T k1o zp 20
Gyt T @

Here the inner stream is assumed to generate heat at a
constant rate per unit mass. For the case when the inner
stream generates heat at a constant rate per unit volume,

equation (4) can be written as:

E

)

e}

chJ(JaZ+JaF)¢J+F (rTJa

From now on the subscript J, indicating either the inner
fiuid or the outer fluid, will be omitted for simplicity.
The following are the boundary conditions at the wall
of the tube:
us=0
v = 0 and (5)
Tar,.
Due to the axlal symmetry of the problem, the condi-

tions at the center line can be written as:

e — . N
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AT wyp (6)

ar
The location of the interface can be calculated from

the fact that i1t is the bounding stream line for both the

flulds:
dz El \—fz

r = aR r = aR
Continuity of pressure, temperature, velocities, shear
st.ress and heat flux lead to the following interface condi-
tions:
P (aR) = Py (aR)
T, (aR) = T> (aR)
u; (aR) = up (aR)

ou ou
1 2
Wy = = Uy ——
1oy 2 o7 _
r = aR r = aR
=3 3T1 =3 STZ
or | _ or | _
r = aR r = aR

The lnitial conditions are specific to a given calculation.
To nondimensionalize the equations, the following

dimensionless variables and groups are introduced:

r = r zZ = 2z
R R Re
EJ__ 71 Re
“J = u VJ = u
21 21

B21
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b T
by = -1 7, = E'_,1_.,5,,[.1/3
P24 21
P R u
Py = _1__§%m Re = ___gl_ﬂzi
Pag Upy 2
3
_ k2 T21 _4 R 1/3
Pr ) T Re Pr
Co Mo J €2 toi
- il 2 4
L T S

k n, g, T
.8 J 8 “21
K37 k2 G5 = %2, prl/3

usy

Substituting the above into the dimensional equations

we obtain:

Fluid I: 0O<r<a, J =1
Fluid IT: a <rc<l, J =2
State: P=GpT (9)
v 9 9
ontinuity: T (p u r)-*g;'(p vr) =0 (10)
. du du _ _dP 41
Momentum: P u 32 +pv r = iz + M T3 °
Ju
(r 53) (11)

Energy: P u %% +pv %% s pu ¢+

K oT

T3 (r135D) (12)
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"he boundary conditions are:

u (1) =0
v(l)=0 (13)

T()=T7T

du(0)
r

v (0) =0 (14)

aT(0) _
or =0

and the interface conditions are:

da _ V1 v2
dz u1 u2
= r=aoa
Pl (o) = Py (a)
Ty (@) = Ty (a)
UI (a) = uz (Q)
(16)

v D@ 22l

1l sr ar

I LY 10

1l or or

The cquation set (9)-(12) and (15), with boundary conditions
(13) and (14), and interface conditions (16), is well defined
with a proper set of initial conditions.

Phe Von Mises transformation relationships
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3 = - ovr (17)

and

are introduced to reduce the equations in number by elimi-
nating the continuity equation and the radial velocity

component, v, to the following equations in (z,y) coordinates:

pug—:-‘l»g%sm pug-i;(purz-g%) (18)
%% - % %W (p u r2 T3 %%) + 9 (19)

The equation of state is unchanged under the transformation.
It 1s interesting to note the equation (15) represents a line
in the (z,¢y) plane.

Though the equations become simpler in Protean coordi-
nates, three serious difficulties come—into—focus+
i) The boundary condition at the center line in (z,y)

plane 1is

dJu 1l 9du 0

W *our r *
r=0

Using L'Hospital's rule this may be evaluated as

Ju 33
otxgw - ;;? = finite
r =0 re=290
Similarly, %% can also be shown to be bounded
r =290
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and nonzero. Notice that symmetry 1s lost with respect
toy at v = 0.

11) The first and higher derivatives of u with respect to
¢ at the wall are infinite. This means that wall is a
singular line. Hence Taylor Series expansions cannot
be written at the wall. Moreover, the truncation
errors in finite difference molecules will be rather
large near the vicinity of the wall.

111) If a uniform finite difference grid is used in the
(z,¢) plane, this would amount to having a fine grid
near the center line and a relatively coarse grid near
the wall in the (z,r) plane. Hence, a large amount of

points are needed to simulate the flow situation with

reasconable accuracy. 3
To overcome these difficulties, the following trans-

formations are introduced:

e e, e e L e . anE

2
u
wo=t (20)
T4
0 = =— (21)
4
2 4
v o= (- =314 (22)

2
rdr i

/2w, 0., rar + s p
L = oY Py a Y21 P2i

2 fi (1-r") rar

L is the ratio of total mass of both fluids to the muss
of an incompressible fluid entering with a uniform dimension-

less inlet velocity of 1 and a dimensionless inlet density |

o O . . ; e e e S : '
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of 1. The use of a scale factor, L, 18 convenient, when
simulating coaxial flow of two incompressible fluids. The
methodology used in arriving at the ¢ transformation is out-
lined in Appendix A.

Equations (18) and (19) transform into the following
equat.ons with some manipulation:

aw , 1 4P aa L

1
S A A s A 13 (23)

1 320 30
.a_z. _HSF {0;—;2- ‘|'(0'5—;'} (2“)

;R m—
E hu

and

(25)

]
ne
—~
=

!
L2l

n
~
L

u
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It should be noted that equations (23) and (24) are
analogous to a pair of coupled unsteady nonlinear nonhomo-
geneous diffusion equations. Also, Up is the solution to
the equations describing fully developed flow of two coaxial
streams of incompressible fluids with no generation.

The scaling factor, L, accounts for the effect of
different entrance velocities and densities of the streams
on the magnitude of the fully developed velocities. The
use of L results in mapping of the region 0 < r < 1 into
0<g <1,

The boundary conditions for the above set of equations

transform into:

W(1) =0 ©(26)

0(1) = o, = o

da—Pz% = p(1) {'gé'% + 32 (27)
=1

wo)

000 _ 28)

P, (B) = Py (B)

(8)

(O]
-
~~
L]
~
]
o
n

(8)

=
-
—~
=@
~
n
x
n

(o)
A
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N
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90, (8) . 91 29, () (29)
1 3g G a¢

where B is evaluated from the following equation:

fg up ¢ dg = fg Py 4, radr (30)
Notice that symmetry at the center is preserved under
the transformation and ¢ = 1 1s not a singular line in (z,7)
plane.” The condition on P [equation (27)] 1s arrived at by
using the momentum equation at the wall with the boundary
condition (13) and applying L'Hospital's rule to evaluate

du
the limit of zziat the wall.
r

Obtaining an analytical solution to the above system of
equations 1s not possible due to the highly nonlinear nature
of the problem. Hence, the solution is obtained using
numerical methods.

The fully developed solution for the entrance flow
problem is obtained by solving the equations resulting from
dropping the terms %% and %% from equation set (9) through
(16). The fully developed velocity profile is given by

dP 1 ot + N (1-a°) - r?

BT ]
0<r<a
2
s - %g l1F_ a<rc<l

Tt.e fully developed temperature profile cannot be

obtained analytically for the case where the inner fluid

B28
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generates heat at constant rate per unit mass; but for the
case where the inner fluid generates heat at a constant rate

per unit volume it 1is given by

2
™ = p 4+ 08 ((a2-r?) - & 1n a) 0<rca
y 2
=Ty = &8 S _inr a<pr<l
> > hd
In either case the values of %g and radius of inner stream

for fully developed flow cannot be obtained analytically.
However, in the incompressible isothermal case with two
fluids of the same viscosity the following relationships can

be derived:

dP 2 2

az " - 8 (uRa + l-a“)

2u
~nr 2 / - a R

uR° + l-a

When Pr = 1 and up = 1 these relationships agree with
those for the classical entrance flow through a circular

conduit.
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CHAPTER 1V
NUMERICAL METHOD

Several numerical methods are available for the solution
of a parabolic system of coupled nonlinear partial differen-
tial equations. The finite difference methods were used
because of their simplicity. Also, the stability, conver-
ence and consistency for these methods have been very well
established. 1In the finite difference technique two proce-
dures exist, the explicit and the implicit. In the explicit
methods, forward differences are used to approximate the
derivatives in the axial direction, which lead to linear,
explicit finite difference equations that can each be solved
independently. The implicit methods, however, use backward
differences to approximate the axial derivatives, resulting
in a2 system of simultaneous, nonlinear equations. In
general, the implicit methods are unconditionally stable,
whercas the simple explicit methods are inherently unstable.
In order to obtain stable, accurate solutions by using the
explicit methods, restrictions on the step sizes are necessary.
The proper choice of a computational method depends on the
nature of the problem at hand.

The application of a purely explicit or a purely
implicit method to the system of equations describing the
entrance flow was not satisfactory. Due to the nonlinear
nature of the problem, the restriction on maximum allowable
step size to ensure stability in the case of an explicit

method became progressively worse and the computat {onal time

. . ) . » . : P . . \ - o‘_ .
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became prohiibitive as the temperatures of the flulds started
increasing. On the other hand, convergence problems were
experiencad in the solutions of simultanc us nonlirear equa-
tions near the entrance region in the case of implicit
methods. Hence i1t was decided to use the explicit method
near the entrance region and change to the implicit method
after the gradients become less severe. This approach yields
highly accurate results over the whole region at moderate
computational times.

The flow region is descretized by grid points having
equal spacings Az, (0<z<B) and Az, (B<g<l) in the g direction
and an arbitrary axial step size Az. The discretized rect-
angular grid and the coordinate system used to solve the
problem are shown in Figure 2. The subscript n and the
superscript 1 are grid point indices assoclated with { and 2
respectively. The radial subscript n takes integer values
between 1 and (M+N+2) and the axial subscript 1 ranges from
1 = 0 to any desired value. The interface is labeled b&

n = N+l for the inner fluld and n = N+2 for the outer fluid.

Finite Difference Equations - Explicit Method

Substitution of three point central difference approx-
imations for the radial derivatives and of two point forward
ditrference approximations for the first derivatives in the
axlal direction into Equations (23) and (24), results in the
following two finite difference equations for every interior

point. (1, n) of the finite difference network:

bl S
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wh oo-oowl 4yl
i+l i AP, Az i ntl n n-1
) = W - e + o {v )
n n P E n AT
n n (31)
i i
+ 6% Yot - W }
n 248
i i i
¢] (] o
i+l _ 41 AZ iZn+l - 2%n + “n-1
en en + H Ax + -T {On )
Fi AT
(32)
i © ei
+1 ~ Yn-1
+ mn Jl_jnﬁr___.}
The subscript J, denoting the first or the second fluid,
has been omitted for simplicity.

The numerical stability considerations impose the fol-
lowing restriction on the largest value of Az that can be
used in the above scheme for the known Aclu.

Az < Min { 2 X ag? , 22 ag? } (33)
¢k alln 2°F all n

The value of Af 1s not limited from stability con-
slderations and is selected from the required resolution
and the accuracy of the flow problem.

The boundary conditions, given by equations (26)
through (29), have the following finite difference
representations:

W (M¥N+2) = 0
} (34)

0 (M+N+2) = Oe

2

au ou 35
APy = Pyie2 Bz { 3= + =) (35)

r r

r=}
o . , . ., o N <:
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W2 . = W3

4 1
3 3
0] = % 02 . % 03
P (N+1) = P (N+2)

0 (N+2)
W (N+2)

© (N+1)
W (N+1)

v

4

B34

(36)

Cp { 4 W (N3) - W (N+4) } + 4 W (N) - W (N-1)

W (N+1)

3 ey (37)

Cy {460 (N+3) - O (N+#£) } + 4 O (N) - O (N-1)

0 (N+1l) =

where
S U Bl
1 % ¥y 6; 3%,

and

ACI

5%y

12

1
CZ = KI

3 (1472)

In obtaining finite difference representation for the

derivatives at the center line, the interface, and the wall,

onc sided differences of second order accuracy have been

used.

After prescribing a set of initial conditions, the

tollowing sequence of operations is performed to obtaln the

solution in the entire region of interest:

1. Compute Az for all n from the stability conditlon

(33). Use the smallest value of all these values for further

computations.




2. Compute the value of AP from equation (35).

3. Compute the new values of W and O from equations
(31), (32), (33), (35) and (306).

4. Evaluate the location of stream lines and values

of radial velocities by solving the following equations:

2 r 2 z

T pdp d 2(1-¢ 2)dz 38

T =% '[55‘2‘-/0"%% <%

v =gyl (39)
U3zt

5. Proceed to next axlal step. Repeat steps 1, 2, 3

and 4.
I'inite Difference Equations - Implicit Method

P

B35

The finite difference equations resulting from the
substitution of central difference approximations of fourth
order accuracy for ¢ derivatives and of two point backward
difference approximations for the first derivatives in the

2 direction are:

1+1_gpi+ly i+l _ 141 o141, i+l
(16RY "2-8T, ") W T3 - (3oRv leeltl) i

+ (16RY;+1+8T63+1) wéj%

(40)

i+1 i+1
- gi*l AP _ iy 4+ (Ry - T6 wi+l

1+1 i+l i+l
+ (Ryn +T6n ) wn+2

S S ¥
.
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i+1_gr.itly i+l _ i+ i+ly oi+
(16Rof*1-8Tul*l) ol*s - (30Roi*l + Fitl) oitl
i+l i+l i+l
+ (16Ron +8'1’wn ) 0n+1
(41)
- - (ei+ui+1Az) pi‘l‘l + (Roi+1-Twi+1) 01+1
nn n n n n-2
i+l .. 1+l i+l
+ (Rc!n -l~'1‘mu ) 0n+2
- Az (42)
12 (At )2
Az
- o 43

12(A% ) (43)

The finite difference representations for the boundary
conditions are given by equations (34) through (37). Equa~
tions (36) and (37) take a slightly different form because
of higher order approximations. For any grid size, the use
of five point finite difference approximations ror deriva-
tives results in improved accuracy, compared tc three point
finite difference approximations.

The following procedure is used to advance the solution
from the 1th row (where W and O distributions are known)
to the 1+1th row:

1. Assume a value for AP,

2. Assume (N+M) values of W and (N+M) values of O for
the i+1th row.
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3. Compute new values uf W and © by solving N+M equa-
tions of the form of Equation (40) and of Equation (41) by
t.ridiagonal matrix inversion.

4. Use the newly generated values of W and © and
modified form of Equation (36) to evaluate new values for
wi*l and Oi*l; also compute new values for location of stream

1
lines from Equation (38) and a new value for AP from Equation

(35).

5. Test AP, W and © for convergence of the iteration
scheme.

6. If the convergence requirements are not met, repeat
steps 3, 4 and 5. If the convergence criteria are satisficd,

compute the values of v and proceed to the next axial step

in the marching procedure.

With this computational scheme the solution 1s initi-
ated at the tube entrance, z = 0, where the flow fileld is
prescribed through the initial conditions, and is then obtain-
od at each successive axial position marching down the tube.
Though there is no restriction on the maximum value of Az
used in the computation from riumerical stability considera-
ti{ons, the set of inltial conditions prescribed and the
accuracy required in the final values dictate the practical !
value to be used. In step 4 of the implicit method computa- |
tional scheme, to obtain an improved estimate of the value 3
of AF, the use of - ~laxation and gradient techniques was 3

proven to accelerate the convergence of the iterative scheme.
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CHAPTER V
RESULTS AND DISCUSSION

The results of a parametric study of the coaxial en-
trance flow with heat generation are illustrated in Figures
3 through 22. The values of various system parameters
choosen for run No. 1 are listed in Table 1. For this run,
heat generation was prescribed as constant per unit mass.
Initial velocity and temperature profiles were assumed to
be flat. The base run has an axial velocity ratio of inner
to outer streams of 0.1, and a density ratio of 10. Both
streams have the same initial temperature. The values of
specific heat, thermal conductivity, and gas constant for
uranium and hydrogen were used in evaluating other dimen-

sionless groups.

Table 1. System Parameters

Parameter Value

k 0.01

S 0.01

a, 1.776 (107)
G, 1.776 (108)
a 0.7

Pr 1.0

Tc 1.0

e e i o - 8 a1 R e e is .. MMt ~ At e il e s it R el i
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Figure 3. Axial Velocity Profiles - Constant Generation
per Unit Mass Case - Parameter Set No. 1
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Pigure 6. Axial velocity Profiles - Constant Generation
per Unit Mass Case - Parameter Set No. 2
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A total of seven runs were made to study the effect of
various parameters on the flow fleld. For the first five
runs, the generation term was chosen as constant per unit
mass of fluid. The parameter .riations for the first five
runs are listed in Table 2. The aixth and seventh runs were
made to study the effects of different forms of generation
terms. For the sixth run generation term was chosen as con-
stant per unit volume. Coaxial entrance flow without heat

generation was simulated by the seventh run.
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Table 2. Parameters for Constant Generation Per Unit Mass Case

o
—

Parameter
which 1s
Set No. Varied Value

1 Base -
2 uR 0.05
3 PR 20
4 k 0.005
5 a 0.5

Before discussing the results obtained, it is necessary
tuv explain the shépe of the initial profiles chosen.
Initial Prefilles

Flat initial profiles were chosen for simplicity 1in
calculation. Even though a singularity exists where the
tnner stream meets the outer stream, this flow would be more

stable than two parabolic profiles meeting at the inlet of

the reactor.
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There has been published experimental data which indi-
cate that a back flow reglon is formed at an outer to inner
istream veloclty ratio of 26 for heterogeneous Jets with a
density ratio of u15. Since the nature of the parabolic
governing equations 1s ruch that they cannot handle flow
situations where there 1s a substantial radial varilation of
pressure which will eventually lead to the axial or primary
flow veloclty component becoming negative, a value of 10 is
:hoarn for the outer to inner stream velocity ratio. This
cnsures physical stability in the computational scheme,
afnce it limits the size of the radial pressure gradient
to a negligible fraction of the axial pressure gradient.

Vallidation of Results

There are no known experimental data for the laminar
cuonfined coaxial entrance flow problem with or without heat
peneration. Therefore, checking the validity of the re-
sults by direct comparison is not possible. However,
verification was attempted by simulating the classical iso-
thermal, laminar, Newtonian flow in a tube entrance regilon
for a uniform entrance velocity. Computed velocity profiles,
cntrance lengths and pressure gradients are in excellent
agreement with those reported in published literature.
Detalls of this comparison are described in Appendix B.
f.ven though this proof of validity is not conclusive since
itt 13 inferred from simulating a special case, 1t provides

a parttal check of the method used.
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Discussion of Results

The developing axial velocity profiles and temperature
profiles are shown in Figures 3, 4, 6, 7, 9, 10, 12, 13, 15,
16, 18, 19 and 21. Figures 5, 8, 11, 14, 17, 20 and 22 show
the axial development of center line and interfacial axial
velocity and temperature, interface location and pressure
drop. All the results reported were generated using a 22
point ¢ grid with 11 points in each filuid. The explicit

method finite difference scheme was used up to z = 0.03 and

the implicit method was used thereon until z = 1.0. The
convergence of the solution of finite difference equations
to the solution of partial differential equations was proved
by comparing the results obtained for run No. 1 of constant
seneration per unit mass case using a 42 point ¢ grid, with
those obtained using a 22 point ¢ grid. The results match
within 1% accuracy.

The axial velocity profile plots indicate that in all
cases the flow exhibits the same type of behavior. Close to
the entrance, the faster moving outer stream transfers some
of its momentum to the inner stream, thus accelerating 1t.
Also, the effect of the outer stream coming in contact with

the wall, which forces the velocity of fluld at the wall to

be zero, 1is manifested by a peak in the outer stream axial

velocity to satisfy continuity. The maximum observed in the

axial velo

flow develops axially, and in all cases it 1s seen that at

2 = 1.0 the velocity profiles are parabolic.

city keeps traveling towards the center line as the
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The results show that the inner stream shrinks as it
travels through the tube. This can be explained simply in
the case of zero heat generation. The outer stream con-
tinuously transfers some of its momentum to the inner stream,
thus accelerating 1t. The inner stream must contract in
radius to satisfy continuity. This happens until the flow
is fully developed.

The internal generation of heat in the inner stream
raises the fluid temperature. Since the specific volume of
the fluid is proportional to the temperature, the value of
the center line velocity 1s further enhanced. This again
could result in a shrinking-while-expanding inner stream.

A reasonably accurate prediction as to whether the inner
stream 18 going to expand or shrink in radius can be made
from the value of the ratio of the product of average density
and average axial velocity at any 2z to that at z = 0 of the
inner stream. The inner stream willvshrink or expand 1if
the ratio is greater or less than unity, respectively. All
the runs reported showed a shrinking inner stream. Attempts
Lo obtain values of parameters necessary to generate an
cxpanding inner stream were abandoned due to severe numerical
i1fficulties. It is felt that full Navier-Stokes equations
are necessary to describe such a flow situation.

The profiles generated and flow features are in good

quitlitatlve agreement with those reported using inviseid

o 3o ]
fflow analysis““.
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I.freets of Flow Parameters

Pigures 5, 8, 11, 14, 17, 20 and 73 preaent. Lhe offects

of the following flow parameters on flow variables:

1. Magnitude and type of generation term,

“oe

2 up ratio of inner to outer stream initial entrance

velocitlies,

3. PR ratio of inner to outer stream initial entrance

densitles,

4, K ratio of inner to outer stream thermal con-
ductivities, and

5, a, dimensionless lnner stream radius.

Figures 5, 20 and 23 show the effects of magnitude and
type of generation term on the flow variables. With no
reneration, values of center line velocity u, and inter-
ractal axial velocity uy,, reach values of 1.11 and 1.06
respectively, at 2 = 1.0. The inner stream has a diameter
« of .21 and the pressure drop DP has a value of 5.47. With
the same flow parameter values, but different generation
terms, there 1s a significant increase in the values of all
variables just described. In the first case where the inner

stream generates heat at a constant rate per unit mass,

B63

Ups Ungps center line temperature Tl, interfacial temperature

Thepr © and DP attain values of 1.8, 1.66, 4.39, 1.81, .31
and 9.04, respectively, at z = 1.0, compared to 1.4, 1.28,
2.93, 1.3, .29 and 6.78 respectively, in the second case
where the fluid is assumed to generate heat at a constant

rate per unit volume. Values in the second case are lower
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than those in the first case due to the smaller amount of
heat generated. If the inner stream 1s expanding it is
expected to result in an increase in all values. A com-
parison of values of product of average density and average
axial veloclity explains why the diameter of the inner stream
is larger in the first case compared to the second case. It
is also Interesting to note that the inner fluid temperatures
reach a maximum near the entrance for the second case and
pradually become smaller as the flow develops. This is
cémpletely opposite to the behavior in the first case. A
close look at the pheaumenon explains this behavior.
Initially, the inner stream occupies a large area and as it
goes down the condult it starts to shrink in size and hence
the amount of heat generated decreases. Since the fluid
cannot generate enough heat to compensate for heat transferred

to the outer fluid, thereby sustaining the initial tempera-

rures, the temperatures start falling off. Similar behavior

PRSI

is expected to be seen in the first case also, if the magnitude
nf generation term is not as large.
The effect of change of other parameters is only report-

ed for the constant generation per unit mass case. A similar

IO S PICOP SR TN PRRIC S

study was also made for the constant generation per unit
vnlume case, but the results are not reported since no new

itnformation was obtained.

By decreasing the value of up to 0.05, the final values
Of Uys Upgqs Tl’ TN+1’ a and DP decreased to 1.54, 1.47, 3.7, ;

1.7, .22 and 6.98, respectively. This 1s due to the decrease
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in total initial momentum and amount of heat generating
fluid. The opposite reason explains the increase in the
values of u;, Un4)s Ty Tngys @ and DP to 2.1, 1.9, 5.22,
2,12, .32 and 12.15 resulting from an increase in the value
of pg to 20. A decrease in the value of K reduces the amount
of heat transferred from inner stream to outer stream,
resulting in a hotter inner stream and a colder outer stream.
This leads to smaller u;, Uy, and DP values, and a larger
value of o, The temperature profiles exhibit steeper
gradients in this case. A reduction in the amount of inner
fluld entering the tube (i.e., smaller value of a) results
in a faster moving iruter stream (due to increased total
initial momentum) with smaller temperatures (due to lesser
heat generation).

A comparison with the fully developed profiles was not
made since tho flow does not seem to have been fully developed

at z = 1.0.




CHAPTER VI
CONCLUSTIONS AND RECOMMENDATIONS

The original contributions of this thesis are a model
deseribing transport mechanisms in the entrance region of
the ras-core nuclear reactor, and a { transformation which
makes possible the use of a protean coordinate system for
cont'ined flows.

The results obtained in this thesis using the laminar
flow model show that the rapidly accelerating, heat generat-
ing inner stream actually shrinks in radius as it expands
axially. This conclusion is in opposition to that assumed
in previous analyses of the flow region downstream of the
entrance region.

Since the attempts to obtain an expanding inner stream
by varying the basic system parameters were not successful,
it is recommended that full Navier-Stokes equations be solved
to gain better understanding of the complex entrance flow
problem.

The value of f transformation as an efficient method to

solve confined flows should be further explored.
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;. TRANSIFORMATION

Finite difference schemes using grids with uniform
rpacing are the simplest and the moest convenient. for program-
ming. However, such schemes are not satisfactory for use 1in ]
problems with boundary layers. The numerical solution could
have gross errors even in the stream core, 1f the number of
points 1s not great ecnough to resolve the bourdary layer.

The use of enouph grid polnts to resolve the boundary layer

makes the computational time unacceptably large. This prob-

Tem can be alleviated by introducing an irregular net with

- e abind,

smaller spacing near the boundary in such a way that the
order of magnitude of numerical error is the same throughout
the flow field. One cholce 1s to use grids with discontinu-

ously varying resolutions. However, there are two disadvan-

i eailan . e e e w3

tages to this method: 1) 1t 1s necessary to interpolate
viilues of varlables or their derivatives at intermediate
points, and weak numerical instabilities usually arise at

the boundary between the large and small grid size, and 2)

e it b mben mel e A Max

this method cannot give very small grid intervals without
zreatly Incrcasing the computational time. Another

pogsibllity 1s to vary the grid intervals continuously,

e PN S R SRR

avolding the necessity of intermediate interpolations. This
can be done by defining a stretched coordinate ¢

v = v (g)
such that the grid intervals Ag are constant while the Ay

varies appropriately. ¢ (g) should have the following

properties:
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1. %{’- should be finite over the whole interval and
such that there are no singularities in the region of
interest. If %% becomes infinite at some point, then the
mapping ¢ = ¢ (£) will yield poor resolution near that point,

whlch cannot be improved by increasing the number of points,

since
v QY
2. %% =0 at ¢ = Yy. This will insure a high reso-

lution near ¢ = Yy Elsewhere, %% should be different from
zZero.

An error analysis based on Taylor series expansion
suggests the convenience of choosing a function ¢ = P, (3),
where P, 1s a polynomial of degree greater than one; also,
P, should be the lowest order polynomial such that good
resolution 15 malntained at ¢y = 0.

It 1s also convenient to choose f such that:

1. Symmetry with respect to ¢ = 0 1s restored, and

2. T colincides with r when the flow 1s fully developed.

These requirements strongly suggest an inverse Von
Mises transformation with fully developed axlial velocity
replacing axial veloceity at any point. For flow of an

Iincompressible fluid through a conduit, this yields

ay - 2
5? 2 (1-22) &.

£

“olving this differential equation with the boundary condi-
tion g = 0 at ¢y = 0 the following relationship between ¢
and r, 1s obtained:

e 2 o 1 4
v 2;

LA



e

It can be shown that this transformation satisfies all
the above mentioned requirements. The advantages of the
transformation are best understood by observing the develop-
ment of nonuniformly spaced r grids (recsulting from uniforme-
ly spaced ¢ grids) along the flow. Near the entrance, where
the gradients are very severe, very small grid sizes are
maintained close to the wall. As the flow develops, the
gradients become less severe and r grids become more or less
uniform, thus ensuring errors of the same order of magnitude
in the computational scheme everywhere in the r direction.
This also results in a progressive reductior of average
srror in the r direction along the flow.

A scale factor L 1s required to map the region of
interest 0 < r < 1 into 0 < ¢z < 1, in the case of coaxial
tlow of two Incompressible fluids. The value of L can be

shown to be:

a 1
Sjuyqpyyrar + Jiuy,p,, rdr

1
P 4) (l-P2) rdr

L =

1t is also convenient to use the same stretch factor

for the coaxlal flow of compressible fluids.
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APPENDIX B
ENTRANCE FLOW IN A TUBE

The results of an analysis on the steady, laminar,
incompressible, isothermal, Newtonian entrance flow through
a tube for a uniform entrance velocity were obtained using
the implicit numerical scheme described in Chapter IV and
by specifying that:

a) properties and entrance velocities and temperatures
of both fluids are the same, and

b) the heat generation rate 1s zero.

The only modification in the numerical scheme is that
the pressure drop was calculated using a macroscopic momentum
balance. Results were obtained using a 12 point § grid.

Even though this is a very coarse grid, the results are in
good agreement with values obtained by other sources.

The developing velocity profiles are shown 1n Figure B-1l.
For comparison purposes, values of dimensionless excess pres-
sure drop C defined as

- 2 AP = 162 + C
and entrance length defined as the dimensionless axial posi-
tion at which the center line velocity reached 99% of its

fully developed value, are llsted in Table B-1l.

LY
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Table B-1. Values of C and Reduced Entrance Lengths

e e S e e o e e SRS
e e AR et e s St

Source c Entrance
Length
his study 1.24 0.23
Campbell and Slatteryl 1.18 0.24
Christiansen and Lemmon3 1.33 0.24
collins and Schowalter' 1.33 0.24
Langhaarll 1.28 0.23
Hornbeck? 1.28 0.23
irentas®l 1.18 0.23

The accuracy of the results could further be improved

by Increasing the number of grids in the numerical method.
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