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equation (4)
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A model is presented for the contrarotating vortex pair that is
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INTRODUCTION

An interesting aerodynamic problem occurs when a vertical takeoff
énd landing aircraft transitions from hovering to forward flight. The
cross flow cauéed by the aircraft's forward flight inﬁeracts with the
aircraft's lifting jets, and brings about a loss of performance in
addition to stability problems. Figure 1 is a sketch of a VIOL air-
craft with a singie lifting jet transitidning from hovering to forward
flight. The intefference between the lifting jet and the cross flow
induces a lowrpreséure region in the jet wake and a distribution of
pressure induced forces over the aircraft as indicated schematically
in the figure. The flow field associated with a VIOL aircraft aﬁd its
multiple lifting jets is very complex. In order to simplify the
problem,'whilelstill retaining the essential characteristics of the
jet and ecross fiow interaction process, it has been customary to
restrict fhe problem to that of é single, subsonic jet ekhausting
normally through a flat plate into a uniform, subsonic cross flow.
Other applications of the jet in a cross flow are the cooling of jet
turbine combustors, where coolant gases are injected into the combustors
to dissipate heat, and the envirommental problem of the discharge of
cooling water from a power plant into a waterway.

Early investigations into the jet in a croés flow were coﬁcerﬁed
with a qualitative description of the flow. Several of these investi-
gations resulted in empirical equations for the jet centerline, which

was defined to be the locus of maximum velocity in the symmetry plane.



Many of the flow“characteristics, it was found, depended on the jet to
cross flow momentqm ratio. BSeveral investigators found it convenient
to use the square root of the momentum ratio and defined it as the
effective velocity ratio. In certain restrictive cases, it was.shown
that the effective velocity ratio reduced to the jet to cross flow
velocity ratrio. (ref. 1).

Recently thére have been several detailed studies into the Qeloc—
ity and pressure fields associated with the jet in a cross flow. In
each of these investigations it was fqund that the jef wake was dbminated
by a pair of céntrarotating vortices. Kamotani and Greber (ref. 2) and
Harms (ref. 3)Viﬁvestigated'the effect pf heated jets on the flow field.
Thompson (ref. 4), utilizing an unheated jet, conducted a study of tﬁe
pressure distribution on a flat plate and the velocity field induéed by
a jet in a cross flow. Fearn and Weston (ref. 1 and 5) investigated the
velocity and pres#ure fields associated with an unheated jet directed
normally into a cross flow. Fearn and Weston presented simple analytic
models for the vortex pair associated with a jet in a cross flow.

This paper will investigate the effect of varying certain parameters
in one of the models presented by Fearn and Weston. The vortex model
will also be extended to give a more convenient means of determining

the vortex properties.



LITERATURE REVIEW

An important feature of thé jet in a cross flow is the contra-
rotating vortices that roll up in the wake region. Figure 2 is a
sketch qf the wake region induced by a jet'in a cross flow. A plane
of symmetry (¥=0) is seen to exist in the flow field. The vortex
centers ére defined as the points of maximum vorticity in a cross
section and are shown schematically in figure 2. The loci of the
vortex centers are commonly referred to as the vortexltrajectories.
It is convenient to define the projections of the vortex trajectories
onto the symmétry plane as the vortex curve, shown schematically in
figure 3. The vortex curve 1s then described as the locus of the
midpoints of the line joining the vortex centers. It is seen in
figure 3 that the vortex curve falls slightly below the jet centerline.
Figure 3 also illustrates the reference frames commonly in use. One
reference frame ﬁas its origin at the center of the jet exit andlis
aligned with the tunnel coordinate system. Two other coordinate sys-
tems are aligned with cross sections perpendicular to the jet center-
line and the vortex curve. The system referred to the jet certerliine
has its axes denoted with a subscript j while the system referred to
the vortex curve has its axes -denoted with a subséript v,

Kamotani and Greber {(ref. 2), who were prompted by the gas turbine
combustor cooling problem, utilized a 1/4 inch diameter jet in their
study of heated.and unheated jets in a cross flow. Tﬁe authors found
that the flow was dominated by a pair of contrarotating vortices thét

form behind the jet and persist for a long distance downstream of the
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jet orifice. This compares with the findings of Pratte and Baines
(ref. 6), in whicﬁ the vortices were located as far as 1000 jet diam—
eters downstream of the jet orifice. Kamotani and Greber presented

the data as plots of velocity and temperature distributions in the
symmetfy plane and—in planes ﬁerpendicular to the jet centerline. The
vortices were apparent when the velocity vectors in the wake region
were projected into cross section planes perpendicular to the jet
centerline. Results were shown for effective velocity ratios of 3.91
and 7.72. The authors made no attempt to calculate the strength of the
vortex pair.

The aerodynamié problems associated with V/STOL aircraft have
motivated several recent papers. Harms (ref. 3) studied the temperature
effects on the velocity field induced.by a 5 centimeter diameter jet
issuing into a cross flow, Extensive velocity measurements were taken
in planes perpendicular to the tunmel axis for an effective velocity
ratio of 8. It was found that the position of the vortex centers re-
mained essentially the same for hot and cold jets of the same effective
velocity ratio. The only difference being that for the hot jet the
vortices were more diffuse., Harms stated that the vortex palr absoxrbed
the axial momentum of the jet and were dissipated in tﬁe far field by
the action of viscous forces. Harms' study was similar to Kamotani and
Greber in that he recognized that the voftices were the dominant feature,
but no attempt was made to calculate their strength.

Thompson (ref. 4) investigated the ground board pressure diStriﬁu—
tion and velocity field induced by unheated jgts issuing.into a cross

flow. Thompson utilized a one inch diameter jet, in addition to elliptic



jets of comparable exit area. Velocify measurements were taken in
cross section plaﬁes perpendicular to the jet centerline.

Thompson attempted to infer the strength and location of the
vortices induced by a circular jet for effective velocity raticsof
2, 4 and 8. The vortex centers were located from the distribution
of the sidewash:component (Vv); of the velocity in cross section
planes approximately perpendicular to the vortex curve. The Vv dis-
‘tributions were found by taking velocity measurements in traverses
paréllél to the Z, and Yv axes in the cross section plane. Figure 4a
is a sketch illusfrating typical Vv distributions in Fhe Ccross section
planes. The Vv component changed sign as the line joining the vortex
centers was traversed in a Zv direction. The vortex separation was
determined by locating the peaks in the Vv distribution as the in-
dividual vortiqés were traversed in a Yv direction. Thompson assumeﬁ
that the vortex properties changed slowly enough with Xv that the
vortices could be treated as though they were two—diﬁensional. The
velocity inducedlbﬁ a single, two-dimensional vortex filament was equal
to T'/2nr , where I' was the vortex strength and r was the,raﬁial distance
ffom the vortex center. Thompson measured the VV component of velocity
in 4 traverse parallel to the Zv axis in the cross section and passing
through the vortex center. Figure 4b is a sketch of typical velocity
distributions determined by this procedure. Plots of 2ﬁVva versus ZV
were made assuming that the curve should asymptote to the value of ﬁhe
vortex strength once a distance had been traversed that was sufficient
to account for all the vorticity. Thompson encountered some difficulty
with his asymptotic method for calculating the vortex strength. The

author found that the entire vorticity field had not been covered inside



the traversed area since the vortices were more diffuse than he
expected. Thé author recognized this fact and stated that the

given values for the vortex strengths were low for effective velocity
ratios of 6 and 8. Thompson's method assumed the vortices were dis-
crete and the velocity field fell off as 1/r, as in the single vortex
filament. Since the vortices were diffuse, there was interaction
between them which would also keep the asymptotic method from approach-
ing the true value of the vortex strength.

Fearn and Weston (ref. 1) conducted a study of the velocity field
associated with a jet in a cross flew. The purpose of tﬁeif study was
to relate the velocity field, in cross sectiqns perpendicular to the
vortex curve, to the vortex properties throﬁgh simple analytic models.
A four inch diaméter, unheated, circular jet directed normally through
a4 ft. by 9 ft. ground board was employed in the experiment., Velocity
measurements were taken for effective velocity ratios from 3 to 10 and
for a range of downstream distances of 2 to 45 jet diameters. The
measurements were taken with a rake of seven yaw-pitch probes that was
traversed in c¢ross section planes.

The authors presented twé models for the contrarotating vortex
pair associated with a jet in a cross flow. Like Thompsou, the authors
assumed that the vortex properties change gradually in the Xv diréc;ion.
In both models the vortices were treated as though they were two-
dimensional and no attempt was made to account for an axial velocity
component. The.filament model approximated the vortex‘pair with two
vortex filaments of strength 4T and located at Y, = +h. The diffusel

model assumed a Gaussian distributdion of vorticity within each of the



vortices. In both models the projection of measured velocities cnto
cross section plénes were used to infer the location and strength'of
the vortices at that cross section.

The filament model used measured velocities along the Zv axis to
determine the wortex properties. It was felt that the large upwash
velocities (W&), that occur along the Zv axis would give the best re-
sults in determining the vortex properties. The filament model assumed
the velocity in a cross section was the result of the superpositidn of
the free stream component of velocity in the plane of the cross section
with the velociﬁy:induced by the vortex pair. Reference 1 gave the

equation for the upwash velocity along the Zv axis as
W = Th/[vh® + 2 2)] - U sin ¢ | (1)
v v % v

where ¢v is the angle Eetween the Z and the Zv axis. The vortex pro-
perties were determined by fitting the measured upwash veloéities in a
least squares sense to equation (1)}.

The diffuse model used a large number of measured upwash velocities
in a cross section to determine the vortex properties., By fitting the
measured upwash.velocities in a least squares sense to the equation for
the velocity predicted by the model, the strength FO » Spacing ho , and
diffusivity 8 , of the two diffuse vortices were determined. Figure 5
illustrates the coordinate system used in the development of the diffuse

model. The vorticity w was assumed to be

2 2

i .
wlr,B) = wo(e 1 -e* T2 ) : (2)



where W is the maximum vorticity of each vortex. The velocity at
any point in the cross sectién was assumed to be the result of the
superposition of the velocity induced by the vortex distribution given
in équatién (2) and the component of the_free stream ﬁelocity in the

cross section plane.

T : -g2r.2%, . -g2r. 2, . ~

=52 Ll:f_f_.,__}._)_ee - Q:s;__.ilee - U, sin ¢, e, (3)
i 1 1 2 2 v

The integrated strength To , of a single diffuse vortex was defined to

be
o _p2.2 :
r = f f w e Bx rdrds ‘ ‘ (4)

Figure 6 shows the measured velocity vectors projected into a cross
section plane together with the velocity predicted by the diffuse model.
It is seen that the diffuse model provides an adequate déscription of
these velocities.

The authors were able to obtain sevéral analytic relationships
from the model. The effective strength ' of each diffuse wvortex was
defined to be the net flux of vorticity across the half plane of the
CYOSS section-énd was given by

nf2 e

r= | J w(r,8) rdrds (5)
~nf2 o

The effective spacing or center of vorticity h , was defined as



h =-% J | [ w(r,8) ¥ _rdrdo ' (6)
~nf2 o

Since diffusion and cancellation of vorticity were expected across the
‘symmetry plane; T may be smaller then To. The authors pointed out that
the effective strength and spacing determined by the diffuse model_was
aésumed to be equal to the strength and spacing determined by the fila-
- ment model. Eﬁﬁétions rel;ting the parameters of the diffuse model were

found by evaluating equations (5) and (6). The results were

I = T_ erf(gh_) | Q)
and h = hO/erf(Bho) (8)
Ah P
2 o -t
where erf (Bh } = — f e dt
0 i1 o

is the error function.
The relationship between the diffusivity and the vortex core size T, >

was given by
B = 1.121/1:c (9

where r. was defined to be the distance from the vortex center to the
point where the maximum tangential velocity occurs. The authors presented
most of the data in non-dimensionalized graphical form. The parameters

h, ho’ and r  were non~dimensionalized by the jet diameter. The

strength of the vortices was non-dimensionalized by the quantity 2DU_
»
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i.e. y = ['/2DU_ and Yo = I‘OIZDUUo - ‘The quantity 2DU_ ﬁas shown by
Chang~Lu (ref. 7) to be equal to the roll up of the vorticity arcund
a two-dimensional cylinder.

The results of the experiment By Fearn and Weston (ref. 1) pro-
vided several interesting implications. The authors found the vortex
strength was_esséntially constant for each veldcity ratio and could be

described in a linear form

y = AR : | (10)

where R was the effective velocity ratio. By fitting the data for each
velocity ratio separately, the constant was determined to be, A = 0.72.
The fact that T, was related to R in a linear manner suggests that ry
was a function 6f the jet exit velocity and diameter. The authors

presented a qualitative description of the vortex system:

The vortex pair is formed very close to the
jet orifice with an initial strength that is directly
proportional to the speed of the jet at the orifice
and to the diameter of the jet. The vortices are de-—
flected by the cross flow and they diffuse at a rate
which is a function of the arc length along the vortex
curve, but which is a weak function of effective veloecity
ratio. The vortices gradually weaken each other by
diffusion of vorticity across the symmetry plane. (p. 1671)

To summarize, Featn and Weston were able to predict the velocity field
induced bylthe vortex pair to an adequate degree by the diffuse mbdel.
Equations (6) thfough (9) were obtained relating several of the vortex
parameters,

It was later shown by Fearn (ref. 8) that

8D a (s/p)"1/2 | a1y
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where s was an arc length along the vortex curve and D was the jet
diameter. This relationship was not without physical significance,
in that equation (11) could be related to a "kinematic or eddy”

viscosity for turbulent flow.



EFFECT OF VARYING Yo IN THE DIFFUSE MODEL

The equation Yo = AR, given by Fearn and Weston, is an importaht
result of their diffusé model. Since the equation will be used in
almost any effort to extend the diffuse model, a study is conducted
as to its validity. An investigation is made into the procedure for
determining the constant A, together with the effect that var&ing Yo
has on the vortex properties.

The investigation is performed by varying the value of A in the
two-parameter, diffuse model computer prﬁgram developed By Robert Weston.
The program is listed for reference in Appendix 1. The computer program
utilizes the method of differential corrections (ref. 9), to fit the
measured upwash velocities in a cross section to the'Zv component of
equation (3). The computer program sets Y, equal to a constant and
varies ho and B for the best fit, in é least squares sensé, to the
measured upwash velocities. Once a fit is obtained for a.cross section,
the program calculates the 'quality" of the fit in terms of a standard
deviation ¢ (ref., 10). In this sﬁudy the computer program calculaﬁes

the quality of the fit in terms of a percent standard deviation

100 S (12)

where Vmax is the maximum upwash velocity induced by the vortex pair
alone. Through an iterative procedure, the program is- able to search

and find the wvalue of Y, = AR, which corresponds to the minimum O and
thus the best fit to the upwash velocities.

12
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In this étﬁdy only the measured velocity data for an effective
velocity ratio of 8 is used since it is the most extensively studied
by Fearn and Wéston. Figure 7 is a plot of o, veréus the constant A
in Yo © AR. Tabie‘l contains information showing the size, location
and number of veloéity measurements for each cross section in Figuré 7.
. The overall q, curve is calculated by fitting the measured upwash
velocities for ail cross sections togethér. It is interesting te note
from figure 7, that although a minimum point does exist for most of
the cross sections, only a cutoff for small values of Yo is predicted
by the diffuse modgl. The value of Y, can increase indefinitely
(increase A) once a certain value of A has been reached, with no
significant increase in a9 To determine if this trend is a function
of the ﬁumber of.ielocity measurements in a cross section, the measured
velocities from Harms' experiment (ref.'3) are input into thé two-
- parameter, diffuse model program. Table 1 iilustrafes that one of the
cross sections stﬁdied by Harms contains more velocity measurements
than a similar cross section of Pearn and Weston. Figure 8 shows the .
versus A curve thaf is the result of Harms' measurements, It can he
seen In figure 8 that the same large plateau exists in the o, curve.
It appears that the number of velocity measurements dées not change
the large plateau in the o, curve for inecreasing Y, o

In an effort to gain some insight into why the plateau occurs in
the g, curves, the manner in which the diffuse model describes the upwash
velocities for a range of A is investigated. The upwash velocities pre-
dicted by the model are examined for values of A equal to 0.4, 0.72 and

5.0. The cross section at X/D = 8.3 is examined since it is the most
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extensively studied cross section for an effective velocity ratio of
8. Figure 9 15 a blot of the upwash velocities (Wv), versus Zv aiong
the symmetry plaﬁe of the cross section. The upwash velocities are
non—dimensionaiized by the free stream velocity. Figure 9 shows that
the model describe;‘the upwash velocities adequately for values df A
edual to 0.72'gnd 5.0. It is also seen that the model cannot describe
the upwash velocities for an A = 0.4. Figure 9 infers that a.certain
value of y is necessary to describe the upwash velocities and once this
valué of v is feached the net flux of vorticity across the half pléne
remains constant for increasing T, This is also illustrated in figure
10, which is a plﬁf of y versus the constant A. For values of A > 1.0,
it is seen that y remains essentiaily constant for each cross section.
ihe plateaulin the o, curves in figures 7 and 8 can then be ex-

plained from

Y =¥, erfl(Bho) 7 (1)

together with the knowledge of how the vortex properties vary with Ty -
Figures 10, 11 and 12 illustrate that the properties y, h and T. remain
essentially constant for A.é 1.0. TFigure 13 shows the vortex spacing
h0 decreases rgpidly with increasing Y, - The diffuse model atteﬁpts-
to keep the value of y in equation (7) constant by shifting the various
vortex paramete?s. For increasing Yo the term erf (Bho) in equation
(7) must decrease to keep y constant. The properties.‘rc or B remain
essentially consfant while h0 decreases in such a way that erf (Bho)
decreases to keep y constant. For decreasing Yo » the term erf (Bhé)'

must increase to keep y constant. The parameter T, decreases
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(B increases), as the vortices tend toward filaments in an effort to
match the upwash ﬁelocities. The vortex spacing h0 also increases{
but the term erf (Bho} asfmptotes to a value of one and cannot in-
crease further. The result is that for Yo below a ceftain value, the
effeétive vortex strength ¥ decreases (figure 10). The vortices are
then too weak to aescribe the measured upwash velocitiés which causes
lUW to increase._

In summary,.this investigation did not find an error in the value
of A= 0.72 given' by Fearn and Weston, since the overall fit for R = 8
does have a physical minimum in this region (figure 7). This study

does show that any value of A > 0.6 will work almost as well.



"EXTENSION OF DIFFUSE MODEL

Fearn and Weston present most of the vortex properties in
graphicai form. It will be more convenient to an aircraft designer
if the vortex properties are exﬁfésééd algebraically as a function
of arc length along the vortex curve for a given effective velocity
ratio. This study, as stated previously, will consider only the
diffuse vortex pfoperties for an effectiﬁe velocity ratio of 8.

Fearn and Weston (ref. 1) present several equations relating the

vortex properties, which are listed again for reference.

v = vgerf (h ) | @
h = holerf (Bho) (8)_
v, = AR | (10)

In addition, from reference 8 it is found,
e a (s/p)"1/? - - (11)

It is seen from eduations {(7), (8), (10) and (11), that 4 equations with’

5 unknowns ( v, Y,e h, ho, 8 ), are available to describe the vortex

properties. An additional equation is needed together with an explicit

statement concerning equation (11) in order to describe the vortex

properties algebraically. Before the projection of velocity field onto

16
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a cross section plane can be reconstructed from the vortex parameters
together with equation (3), a description is needed for the vortex
curve. Fearn and Weston (ref, 1) present'an empirical equation for

the vortex curve, which is given by
. b c .
Z/D = a, R (/D) " . (13)

where g = 0.3%73, bv = 1.127 and c, = 0.4291. Values of ¢ and s/D
can then be calculated for a range of X/D.

In this study the two-parameter diffuse model program is used to
generate the vortex properties at each cross section for an A = 0.72,
From equation (9), it is seen that a one to one correspondence OcCurs
between B énd r,- Since the diffusivity B is more difficult to
visualize than the core size rc, the latter will be given in the
figures. For convenience, B will be used in determining the vortex
properties and converted to T, through equation (9). Figure 14 is a
plot of thé vortex core size versus s/D. It is seen that no data is
available near the jet orifice (s/D < 5), therefore, any empiricél
équations for-rc or § will be an extrapolation in this region. .This‘
will alse be true for ény additional equations obtained from the re-
sults of data presently available. From equation (11), the simplest
possible description of § is given by

B

BD = ——7> S
(s/py/? - |

where B is a constant.
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The constant B is.determined by fitting the values of Bﬁ.predicted by
the diffuse model, in a least squares sense to equation (14). It,is
noted that equation (14) infers that the vortices approach filaments
at the jet exit. Figure 14 shows that the empirical équation gives

an adequate description of the vortex core size. Since B8 (or rc) is

a weak function of the effective velocity ratio, equation (14) will
give a fairly reasonable description of B for other effective velocity
ratios as well.

To make the system of equations complete, an additional equation
is required which does not introduce still another unknown. One
poésibility is an equation dgscribing the vortex spacing ho s 48 a
function Qf s/D. By examining the values of h0 predicted by the diffuse
model, two possible options are obtained for the vortex spacing. Both
options are based on assumptions for the starting positions of the
vortices in the region near the jet orifice, Figure 15 shows the two
options and 4 equations that this study will use to describe the vortex
spacing.

Figure 15 shows that option 1 assumes the vortices start as two
concurrent vortex filaments at the jet exit. Since the contrarotating
vortices are concurrent at the jet exit, this model forces the vortex
strength to zero at the orifice. Two gquations are shown that describe

the vortex spacing adequately,

h -3/D .

— = C(l-e K) | 15
or

ho s/D

D T T (s/D)+Cy {32)
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where C, C1 and C2 are constants.

Figure 15 shows’that option 2 assumes the vortices start as
vortex filaments that emerge from the side of the jet orifice. Option
2 gives the possibility of a non-zero vortex strength at the jet ori-
fice and will resemble the qualitative description of the vortices
given by Fearn and Weston (ref., 1). The equations descfibing the

vortex spacing are simple modifications of the two previous equations,

h -s/D .

& =C(-e R)+.5 : 16)
ox

h .

o _ s/D :

D ¢ (s/D)HC, * -3 ' {6a)

where C, Cl and 02 are constants.

The extended model consists of equations (7), (8), (10) and (14)
together with one of the four equations for the vortex spacing. Each
option of the extended model is denoted by the equation that is used to
calculate hD . The undetermined constants in the 4 options for the
vortex spacing are determined by fitting the values of y predicted by
the diffuse model, in a least squares sense, &o the eduation for vy
obtained from the extended model. Some question may occur over thg
decision té fit to vy instead of the more straightforwérd method of
firting to ho . It is felt that the vortex strength';s the most im-
portant property and the best description of the strength is obtained
by fitting to y . In addition, a later chapter will show that a 1argé

amount of uncertainty exists in the values of hO predicted by the
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diffuse model. A description is given as to how the constant is
determined in one of the options. For example option (la) will

calculate the vortex strength y , from

-5/D
v = ARerf —~—~§I7§- C(l-e -éﬁb - (17)
(s/D)

The undetermined constant C is calculated by fitting the values of vy
predicted by the diffuse model, in a least squares sense, to equation

(17). The constants C, C, and C2 in the other options are’foundvin

1
a similar manner.

Figure 16 is a summary of the extended models for an A = 0.?2.
The figure illﬁstrates all the equations for each option together with
-values for all the constants. Figures 17 through 19 illustrate how
well the differént options déscribe the vortex properties for an A.=.0.72.
Figure 17 showg the Qortex spacing h0 » together with the ewpirical re-
sults from the four options of the extended model. It is seen in
-figure 17 that there is little difference in options (la) and (1b).
Similarly there is little difference in optioms (2a) and (2b). It is
interesting to note, thaﬁ for s/D greater tﬁan 10, it mékes-littlé
difference whether the vortices start at the origin (options (la) and
(1b)) or emerge from the side of the jet exit {options (2a) and (2Zb)).
Figure 18 shows that the vortex strength vy , is independeﬁt of initial
vortex position for s/D greater than 10. It is also seen in figure
18 that y does depend quite drastically on the iﬁitial vortex position
for s/D less than 5. No conclusion can be reached on the value of Y.

near the jet orifice until more data on the vortex strength and spacing



21

is obtained in ﬁhis region. Figure 18 also shows the standard de-
viation ¢ of each option in fitting to vy . Figure 19 shows that the
effective vortex spacing h , is. independent of initial vortex position
for s/D greater tﬁan 4.

To illustrate how the model is used to calculate the vortex
properties, a.sample calculation will be made Qith the use of option
{(la). For a cross section 10cated at X/D = 15.23, a value of ¢v = tan_l
{d(Z/D)/A(X/D)] can be calculated from equation (13). By a numerical
jintegration of equation (13), a corresponding'value of /D can be ob-
tained. In this manmer the values of ¢V = 18° and s/D = 20.5 are ob-

tained. TFor an s/D of 20.5, the vortex properties are calculated as,

Yo © (.72)8 = 5.76
-20.5

h, /D = 2.04(1-e 8 ) =1.88

gD =‘2.11/(20.5)1/2 = 0.466
Y=Y, erf(Bho) = 4.537

h/D = (hO/D)/erf(Bho) = 2,396.

The projection ofrthe velocity fleld onto this cross séction plane can
then be calculated at any point throughout the cross section from
equation {3).

In summary, several options are obtained to extend the diffuse
model given by Fearn and Weston. With the use of these options, the
vortex propefties and the projection of the velocity field onto any

cross section plané can be caleculated. It is noted however, the



22

options are extrapolations of available data in the region of the jet
orifice. TFor s/D > 10, the vortex properties are adequately described

by any one of the four options.



UNCERTAINTY IN EXTENDED MODEL

Since thé extended models are the result of curve fitting to the
diffuse vortex properties, some insight into the uncertainty of the
diffuse vortex properties is necessary. The criteria that are used
to set the limits on the uncertainty of the diffuse vo;tex properties
are established with the use of figure 7. As stated previously, the
lower cutoff on Yo is distinct. For each cross section in figure 7
the lower or percentage cutoff is defined to be the value of the con-
stant A that.cofresponds to twice the value of o at the minimum of
the cross section. The plateau on the g, curves raises some question
as to a proper cutoff limit for large values of A. Since the constant
A can increase indefinitely without a large increase in the value of
Uw‘, the value of A = 2.0 is arbitrarily chosen. This value‘of Ais
sufficiently far out on the plateau that thelvortex prqﬁerties (with
the exception of ho) are not changing rapidly with A. With this
eriteria established, figures 10 through 13 are used to determine the .
diffuse vortex properties at the percentage (lower) and plateau (upper)
cutoffs. It should be noted that the percentage cutoff will vary from
cross section to cross section but the plateau cutoff remains at
A= 2.0,

Figure 20 is a plot of the core size from the diffuse model for a
constant A ='0.72. The uncértainty bars are shown for each cross
séction. The bars marked with the double tick mark are the result of

the percentage cutoff for each cross section. The bars marked with a

23
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single tick mark are the result of the plateau cutoff. It is
necessary to determine if the empirical equation for L equation (14)
together with equation (9), will still describe the vértex properties
throughout the region of uncertainty. Equation (14) is fit in least
squares sense to the values of RD predicted by the diffuse model for
constants of A equal to 0.48 and 2.0. These two values of the constant
A correspond to the percentage and plateau cutoff as determined from
the overall fit for all cross sections in figure 7. These two values
of A will then be used to set uncertainty'limits on the extended model.
Figure 20 shows that the empirical equations will describe the vortex
core size adequately in the region of uncertainty.'

In the remaining portion of this study, options (la) and (2a) are
used because of their relative simplicity. The diffuse vortex pro-
perties shown in figures 21 through 26 are determined from the diffﬁse
modél for a comstant A = 0.72. Figures 21 through 23 show the uncer-
tainty'in the diffuse vortex properties together with the empirical

‘"descriptions given by option (la)., Figure 21 illustratgs that there is
a 1afge uncerfainty in the vortex spacing ho given by the diffuse model.
It is also seen in figure 21 that option (la) still gives an adéquate
description‘of‘the vortex spacimg in the region of uncertainty. Figuré
22 shows the uncertainty in the effective vortex streﬁgth vy, from the
diffuse model together with the filament model results‘(ref. 1).
Extended model (la) is seen to describe the vortex strength adequately
and the standard deviation o, in fitting to ¥y is given for each curve.
Figure 23 shows that there is very little uncertainty in the effective

vortex spacing given by the diffuse model. For all but one cross section,
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the uncertainty bars remained within the symbol width, There is a
discrepancy in that some of the filament model fesults lie outside of
the uﬁcertainty limite of the diffuse vortex properties and the extended
model curves. It is believed that at these points an insufficient
number of velocity.measurements were taken for the filament model to
adequately descfibé the upwash velocity distribution. This will cause
‘the_filament modél fo give unreliable values for the vortex properties,.

Figures 24 through 26 are similar to figures 21 through 23 except
the empirical .curves are determined by option (2a). It is seen in
figure 25 that.option {2a) encounters difficulty in describing the
vortex strength y, for a constant ﬁf A= 2.0.

In summary, ﬁhe extended model will give adequate descriptions
throughout the range of uncertainty in the diffuse vortex properties.
The one exception is that option (2a) cannot describe the vortex

strength for a value of A = 2.0.



SUMMARY AND CONCLUSIONS

An investigation is conducted into the diffuse vortex model
given.by Fearn and Weston {ref. 1)}. The equation, Yo = AR, presented
by the authors, is examined in detail as to the procedure for determin-
ing the cpnstant A. As in reference 1, the valﬁe of A‘= 0.72 is found
to give the best description of the upwash velocities in a cross
section for an effective velocity ratio of 8. However, this study

‘has also shown that, inla practical sénse, any value of A greater
than 0.6 will work almost as well.

The diffuse vortex properties presenteﬂ by Fearn and Weston, are
extended from a graphical to an algebraic-description of the vortex
properties for an effective velocity ratio of 8. The extended model
consists of the analytic equations given in refereﬁce 1, together with
empirical eqﬁations given in this paper. With tﬁe use of the extended
model, the vortex properties together with the projection‘of the
velocity field in a cross section plane can be calculated for any
cross section In the flow. However, in the region ﬁear the jet orifice,
the extended model represents an extrapclation of avallable data. The
extended model gives an adequatérdeééription of thé vortéx properties
for s/D > 10. The uncertainty in the results of therextended model is

also investigated.

26
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Figure 1. Sketch of VTOL Aircraft Transitioning
from Hovering to Forward Flight
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Jet Centerline '——7

sketch of Jet Wake Region with
Vortex Centers

Vortex Centers
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Jet Centerline ——q\\\\

Vortex Curve

X

Figure 3. Sketch of Jet Centerline and Vortex
Curve with Coordinate Systems
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(a) Typical Vv Distributions Used to

Determine Vortex Locations

(b) Typical V, Distribution Used to

Determine Vortex Strength

Figure 4. Typical Vy Distributions in

the Zv - Y

v Plane.

OF POOR QU



31

s, Geometry of Vortex Model

Figure
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Figure 7.
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QPTION 1
Y

EQUATIONS USED

' -s/D
(a) ho = ((l-e R ) or () ho =

s/D
¢y (SID)+C2

OPTION 2

Y

EQUATIONS USED

, -s/D l/D
(a) h0 = C{l-e fE_)+.5 or (b) ho = 5

i +.5
Cl(s/?)+C2

Figure 15. oOptions for Vortex Spacing
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EXTENDED VORTEX MODEL

AR where A = (.72

Y, =
_ ~1/2 -
BD = B/ (s/D) where B = 2,11 (rC = 1,121/8)
OPTION (la) . . OPTION (1b)
h - C(l_e_éﬁg) . _- h = ._..__.§.Z_Q._.___
o : o C. (s/D)+C
) 1 2 S
C = 2.04 - c, = 0.425
C, = 2.670
OPTION (2a) OPTION (2b)
—séD -
h, = C(l-e }+.§ b ¢ (/07 +.5
‘ + ~
¢ = 1.389 | C, = 0.504 \\r<i;\;‘
| C, = 5.660
Y =y, erf (Sho)
h =

ho/erf (Bho)

Figuré 16. 'Summary of extended model, A = 0.72
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Figure 18. Effective Vortex Strength, R = 8
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(@ Diffuse Model, A = 0.72
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Figure 20. Uncertainty in Vortex Coere 5ize,

Equation (14), R = 8
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Figure 23. Uncertainty in Effective Vortex
Spacing, Option (la), R = 8
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Figure 25. Uncertainty in Effective Vortex
Strength, Option (2a), R =8
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TABLE I a
SUMMARY OF CROSS SECTION DATA®, R = 8

VELOCITY X/ | z/p s/D | dy CROSS SECTION SIZE

HEASUREMENTS . {deg. | JET DIA. EFF. VORTEX_SPACING

49 2.13 | 4.87 5.52 | 51.7 | 2.50D x 2.48D  2.17h x 2.16h

135 5.24 | 7.56 9.65 | 33.0 | 4.99D x 6.97D 2.72h x 3.80h

36 6.01 | 7.98 10.53 | 30.7 | 2.49D x 2.50D 1.48h x 1.49h

216 8.34 | 9.14 | 13.11 |26.2 |6.28D x 8.44D 3.02h x 4.05h

140 15.23 | 11.83 20.5 |18.0 | 4.49D x 6.52D 1.86h x 2.70h

49 35.57 | 15.85 41,29 | 10.9 | 2.94D x 2.99D 0.87h x 0.89h

b340 15.0 | 11.16 20.6 | 17.7 | 5.41D x 8.43D 2.36h x 3.68h

8 Fearn and Weston (ref. 1)

b Harms (ref. 3)

£s




APPENDIX I

TWO-PARAMETER DIFFUSE MODEL COMPUTER PROGRAM



KIFIVAS #00d 40

§I AOVd TYNIDTHO

OGO OO0 O

C

1¢

2C

TH
VE

IS PREGRAM FITS A GAUSSIAN-CISTRIBULTED VORTEX PAIR TC THE CROSS-SECTICN
LCCITY FIELD FGR A JEY IN A CROSSFLOMW

ALL VELCCITIES ARE IN FT./SEC. ,
A CENCTES THE CIRCULATICN IN FT#%2/SEC ANC GAMMA DENOTES THE CIMENSICNLESS

IF
LF
IF

CIRCULATICN, GAMNA=A/Z(2%0%VINF), WHERE O IS THE CIAMETER OF THE JET ANC
VINF IS THE FREE STREAM VELCCITY. '

CENGTES THE CIFEUSICN CCNSTANT IN THE GAUSSIAN DISTRIBUTION. 1T HAS UNITS

CF 1/FT.

CENCTES THE HALF SPACINC BETWEEN THE CENTERS UF THE TWO E1FFUSE VARTICESS
CENCTES THE FALF SPACING IN JET CIAMETERS, H=C/D. LET BETA CENCTE TEHE
CIMENSIONKLESS CIFFUSION CONSTANT, BETA=8%C. :

CIMENSICN RMSG{E) 4RMST{E),P{E),S(3),MBC(5)

COMMCN IYZCCDsI1YZoNRGNCyBoBoCoZC, VINFoVSINA,VY{21,12)9VI421,12),
1Y(3412)52(21)4R¥S4NCRPF, IPRNT,NPTS, IRMS,RMSVZO(245) , IPRTN§NRAK
COMMCN/ONE/ MK JNEATA IRUNT4) yRyAMIET y X424y SCoANGVRT o VRANG

REAL#8 P,+S,0

CC 2 [=146

RMSTI(1)=0.0

CTR=1.745329E-2

REAC 1,CONST)GPER,IPRTM, IRMS

FORMAT{L14X FB8.3,17X,F8.8,7Xy[146Xs11}

IPRT¥=0 ,NO MATRICES PRINT CUT. If [PRTM=1 ,ALL MATRICES PRINT QUT.
IPRTM=2 (VORTICITY MATRIX CCESNT PRINT CUT,s BUT CTHERS [C.

IRMS=Cy CVERALL FIT IS INK PER CENT If 1RMS=1 OVERALE FIT IS IN FI/SEC
GPER=.01*GPER : . ‘

CC 10 I=1,6

RMSG{I1=C.0

NG=C

NBC=0

N=0

VINF=C. L ~

AMJET=0. :

CCMSULTY FCRMAT NC. 5C FCGR CESCRIPTICN CF VARIABLES IN FOLLOWING STATEMENT

REAC(5,30+ENC=9559) ANGVRT,2CsNRAK,NORPF s NDRPL yNCGAMMABETASH,NZ,

€S



a8 100d H0
TYNIOTIO

TRITTY

g1 ®OVd

[N al

120C

NZ IS THE NUMBER CF THE RAKE CCNTAINING THE VORTEX CENTER.

ZOC=STEF CHANGE IN Z USEC IN ZC PERTURBATICN ANALYSIS

30 FORMAT{10X o Fael 18Xy F5.42,5Xs 11y 12Xe 017Xy 11/12,37X43(F5.246X)4114
1F7.2} .

AL ANC Cl USED IN REFERENCING RAKE PCSITICNc IN THE CRCSS-SECTICN

40" AL=TAN{ANGVRT*DTR)

Cl=8CAT(L.+A1%A1)
NR=NC. CF RCWS CF CATA
MR=THNRAK-NECRPF-NDRPL
11=7
IF(NZL.EQ.NRAK) IZ=T7-NDRPL _
WRITE(6,50) ANGVRT,,Z0,12,NZ,ZQC 4NRAKyNORPFNORPL ¢NC 2 GAMMAJBETAH
50 FORMAT(*LINPULT CATACL VCRTEX ANGLE =%4FS.ly' CEG'yTXe*ZQ =*9F 62y
1' IN. FRCM PRGBE'412,' CF RAKE'.12,7X+"LELTA 20 =%,F5.2/
1 15X,11," RAKES OF INPLUT *,12,' PROBES FROM FIRST RAKE ARE O
2ELETED*/33X,11,' PRCBES FROM LAST RAKE ARE DELETED'/15X,12¢ * YAM
IPOSITICNSY//Y INITIAL ESTIMATESC GAMMA =1,F5.2/ 21X, 'BETA =%,
4F5.2/ 21X%4 'H ) =1,F5.2)
R=0.

DC LCCP 110 REACS IN VELOCITY FIELD DATA AND RAKE PUSITICNSy AND CCONVERTS

THESE TC THE CRCSS-SECTICN CCORCINATE SYSTEM
CC 11C I=1,NRAK
REAC(5,60) IRUN{TIVY,AKGRAK,Q RECsX4924482,5(Y{14J),J=14NRC)
60 FCRMAT(3X913,11XeF4. 1’3X,F6 35X FBebs2{4XeF5.2)493X4F5.2/12F6:2)
R=R+42
IF{I.ECe1) ClsZ4-Al%X4
Coe={Al%xxX4~744Cl)/01
VINF=VINFASQRT{Z.*Q/RKC)
CA={ANGRAK-ANGVRTI*CTR
SINCA=SINIDA) '
COSCA=COS4DA)
Ll=1
L=hed

9s
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S1 AHVd TYNIOTHO

c

V=L
IF{I.EG.1) LI=14NDRPF
[F{l.EC.1} L=tL1
h=N+7
IF{I.ECG.NRAK ]} N=N=NCRPL
IF{I.NE.NZ) CC TC 7C
XD=X4/4,
I0=24/4.
RAKEZC=1IC
VRECS=C0SDA
VRANG=ANGRAK*DTR
1Z2=N
I0=2C%COSCA
Z0C=20C*kC0SDA/1Z.
7C CC 9€ K=14NC
REAC{5480) (VY(JeK)sVZ{JsK)2Z{Id)sJ=M,N)
B0 FORMAT(11F7.2/1CFT7.2)
IFI I EC NRAK JANLD. NLRPL.GT.3) READ(S5,80) DA
CC 9C J=LyN
YY{Jd-L1415K}=VY {J,K]
90 VZI{J-L1+]1+K}=2(J)*SINCA + VZ‘J K)*CCSCA
CC 1CC J=L,N
100 2(J4-L1+1)=D4+(J-LeL 1}%2.%¥CCSCA
110 TF{l.EG.1} N=N—NLRPF
~ R=R/ARAK
CANMMA=CCNST*R
IFINZREQ.Ll) 1Z=12~- NERPF
VIKNF=VINF/NRAK
CCMPUTE NOMINAL JET MACKE NUFMBER USING ESTIMATE CF PINF
AMJET=R¥*SCRT(C/{C.T7#213CL))
NCMR=INT(R+0.5)
CALL GCMAJINGOMR,AL,AZ,23) -
NK={0

(21304

PSFA)

AN
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C GCE

136
135
140

C St

IF{ARSIC-A2)YJlLTa2) MK=2

IF(ABS(G-AL)} LT .2.) MK=1

VSINA=VINF®S IN{ ANGVRT*DTR)

CC 12¢ J=1,NR

Z{J)1=2Z(NR)I=21(J)

20=Z{172%+10

REFZC=20
TERMINE INLITIAL ESTIMATES

A=2 ,VINFRCANMA/ I,

C=H/3.

B=RETA/C

RSAV=R

CSAv=C

WRITE(G2130) AyEaCaVINFoRy(IRUN{I)}yI=1,NRAK}

FORMAT(/14H A{FT#%¥2/SEC)I=yF1Ca2y? BIL/FT)=",F10.44" C(FTYI2!,F10.3/
1/% AvG VINF s',Fei1/% AVE R =t ,F6.2/" RUNS READ INQOS,4%4)
FRINT 135,AMJET MK ‘

FCRMAT(/% NOMINAL MACKF NCe =%4FS5.3,1CXs"'G CCNDITICN =%,12)
A1=VRANG/DTR

PRINT 14CyNZsXC+ZCyA1

FCRNAT(/' PRCBE 4 OF RAKE',12,% AT X/C =",F6a2y'y Z/D ='pF64242%4
1* RAKE ANGLE =',F5.1,"' CEG*')

CALL AUXIL $53555%%
T 2 SPACING CF 5 VCRTEX CENTER CASES. FCR PERTURBATICN ANALYSHS.
RMSV2Ci2,1)=0.

RMSVZIOL12,2)=—-24.%70C

RMSYZ0{2,3)=—20C*12.

RMSVIQ(2,4)=20C%12.

RMSVZIC(2,5)1=24,%20C

205AavI=1¢C :

HMS=0.

- MG=~1

c v

IS TRHE IMDEX CF THE GAMMAQ ﬂhQ VELOCITY CCMPONENT BEING CCUNDECTEE.
IGF=C

8¢
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CO 720 KG=1,3

DC ANALYSIS FOR 3 SETTINGS CF GAMMAQ

IF{KG.EQa2) A=(l.¥GPER}*A
IF{KC.ECa3) A={1.-GPER}I*A/(1.+GPER)

10S5Av=10SAVL

DC ANALYSIS FOR FIT TQ Z VELOCITY COMPONENT.

JLZ=1 :

IF LAST TIME BOMBEC CUT, RESET INITIAL GUESSES. OTHERWISE, START wiTH
RESULTS CF PREVICUS TIME.

340

350

IF{RMS.EG.0.) GC TO 34C
BSAVZ=B

CSAVZI=C

GC TC 35¢

BSAVI=BSAV

CSAVZI=CSAY

10=2CSAY

S Iy2=3-J4L1

1Y2zCCE=1Y2

IYZCOGE=1 FCR VY CALCULATICA 52 FOR VvZ CALCULATICA

NIT=C

NIT IS NUMBER CQF RE-SHIFTS CF 2C. LIMITED TC SG.

360
370

380

cc

IFIKG.EQ.1) WRITELE,3IEC)

FORMAT(1IFL)

MNIT=NET#]

20P=2C*12. _
[F{KGEQ.1) PRINT 380,NIT,2(P
FCRNAT(/' ITER =95124%y 20 =',F¢€.2)

IPRAT=0

IRG=C '

IF(NIT.EG.9) GC TG 54C

LCCP 430 PERFORNMS FIT FCR S Z0 CASES
CC 430 LZI=1.5

IF{L2.EQs1) CC TC 3S0

CIF{LZ.EQ.2) 20=20-2.%20C
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g1 movd

IF({LZ.EQ.3) 2C=IC+ICC
IF(LZEQa.4) 20=2C+2.%IGC
CIF(L2.EQ.5) I0=ZC+ZGC
390 [F(JLZ.EC.l «AN[C< KC.NEL1) GC TO 400
IF(RMSLEGL0.) GC TO 41C
‘BSAY=E ‘ o
CS5av=C ' ‘
GG TC 42¢
400 BSAV=BSAVZ
CSAV=CSAVZ
410 EBsBSAV
C=CSAY
420 CALL DIFCCR
C [OLFCCR CALCULATES LEAST SQUARE FIT TC TkE VELOCITIES
RMSVICI{1,L7)sRMS
IF(RMS.EG.0.) IRC=IRQ+1
¢ IRC IS THE NUMBER CF BOMB-CUTS CF THE 5 ATTEMPTS.
430 CCONTINUE
20=7C-2.%10C
IF(IRQ.GT.2) GC TC 4170
IF{KG.EQ.1} PRINT 44Cy ({RMSVZOTT4d)21=122)9d71s5)
440 FORNAT(® RMS =1,F8.4,% AT VIC =',F6.2})
F{l1)=0.0
P(21=0.0
P13)=C.0
P{4)=C.0
F{5)1=0.0
S(1)=C.0
51421=C.0
${31)=C.0 .
C PERFCRM SUMMATICNS FCR PARAEQLIC FIT TC RMS VERSUS 20
: LCC 460 i=1,5 .
IF(RMSVIC(1,1).EC€.C.} GC TO 460
Al=1. .
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CC 450 431,45
PLJY=P(J)+AL
IF(J.GT.3) GC TC 45C
S(J)=S{JI+AL#RMSVIC(1,1)
450 Al=A1%RMSVZO{Z+1}
460 CCNTINUE .
CCALL MINV3(P,C)
IF{C.NE.C.)} GC TC 5€C |
470 PRINT 480, {RMSVZO(T,4)e1=142)9J=145)
480 FORMAT(/' NO PARABCLIC SCLUTICN TC RMS VERSUS 2C'//° INPUT wASQ'/
1{" RMS =t ,FB.4," AT VIO =',F6.21})
IFINIT.EG.9) GC TC 53C
IF(IRC.NEL5) GC TO 51C
IPRNT=3
C IF ALL 5 ATTEMPTS FAILEC, LCOP 500 SEARCHES FOR A SOLUTION 8Y VARYING IC up
C ANC DChN.
CC SCC J=1.6
IF(J.EG.1) ZC=ZC-3.%20C
IfF(J.EG.2) 20=2C-10C
[F(J.EG.3) 2C=2C-10C
IF{J.EQ.4)Y ZC=2C+8.%ICC
IF(J.GE.S) Z03ZC+10C
E=BSAV
C=CSav
CALL CIFCCR
. 10P=20%12.
PRINT 49C,RMS,ZCP '
490 FORMAT(' RMS=',F8.4y* AT 20=",F6.2)
IF(RNMS.NELO.) GC TC 27C
500 CCNTINUE:
CC TC 53C , ' ‘ | :
€520 AN ATTEMPT THAT WORKED IS USEG AS THE NEW CENTER CF THE 20 SPREAD.
510 CC 52C J=245 -
IF{RESVZIC(1,J).EC<0.) GU TG 520

19



IF{J.EG.2) 20C=ZC-2.%70C

IF(J.EG.3} 2€=2C-20C
IF{J.EQ.4) 2C=ZC+Z0C
IF(J.EG.5) 20=2C+2.%2CC
GC TC 37¢C.

520 CONTINUE

530 MG=MG+2 ‘
IF{JLZ.ECal} IGF=1
6C TC 720

540 FRINT 55C

55C FORMAT(/* ITERATICN LIMIT EXCEEDED IN FITTING RMS VERSUS 2013
CC TC 47¢

C COMPUTE NEW Z0 {AT MINIMUM CF THE LSQ PARABCLIC FIT)

56¢C EZO“(S(Ii*P(21+S(2]*P{4)+S(3)*P{53}/[24 (S1IXP(3)+4S(2)1%B(57+
1S{3)3P(6)))

A1=5.%20C
IF{ABS(D20).GT.21) C2C=SIGN(AL,LZC}
10=720-DZC

C METECL IS [TERATED UNTIL THE ZC VERSUS RMS CULRVE HAS ITS MINIMUN WITHIN THE
C Z0 RANGE.

IF(ABRS{DZ20)GT.(1.2%2CC)) GC TO 370
ZOP=20%*12.
PRINT B57C+20P )
573 FORMATI/Y FINAL VALUE FCR IC =%,F7.2)
. Al=, 5% {RAKEZQ+{Z0P-REFZC)/VRCOS~6. )
X4=XE-AL*SIN(VRANG)
24=2C+A1#%CCSIVRANEG)
Bl=24-,347308%R%%Y.12653&%K4%%,429137
SC=ARCLNCG{X4,R) + AL¥SIN{ANCYRT*{TR)
- PRINT 5BCyX4924450
580 FORMAT{/' VORTEX CENTER AT X/C "fFé 2!
1CTE (S/0) "!Fé.Z] _
IPRNT=1
C NCw PERFCRM LEAST SELUARES FIT AT THE MINIMUM RMS LCCATION.

9
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& movd TYNIOIE0

590 CALL CIFCER
IF (KG.NEL1) GC TC T71C
IF{IPRTM.EQ.G) CC TC 71C
CALL PRINMAT : $$548553
- T10 FG=MG+2
PERFCRM SUMMATICNS FOR CVERALL RMS CGMPUTATICNS FOR ALL CASES AT THE SIAGLE
VELCCITY RATIC BEING CONSILEREL.
RMST{MG)=RMS*RMSHNCATA
IF{JLZ.EC.2) GC TC 72C
20SAvViI=I(
IF({RMS.EC.Ca)} ZCSAVL=20SAV
720 CONTINUE
1F{ICF.NE.1} GC YC 730
iGF=1 IF CNE OF THE GAMMAC CASES BOMBED GUT IN FITTING I CCMPENENT.
THIS RUN IS THEN NCT INCLULED IN THE CVERALL RM5 CALCULATICNG
NBC=MNEBC+]
FBCUNBC)Y=TRUN{1)
GCC TC 20
T30 CC 74C I=146
740 RMSG({I)=RMSG(I)4RMST( I}
AG=NGC+NDATA
CC TC 20
G559 CC 1CCCO I=14¢

1CCCQ RMSG(I)=SCRT{RMSG{T}/NGC)

Al={1.+GPER)*CCAST

£2={1.~GPER)*CONST :

PRINT 10C10,RMSG{1),RMSG(2}, CONST JRMSG(3) JRMSG(4) 1AL, RHSG!S’:

 1RMSG(6),4A2

1C010 FCRNAT(///1X,28(1K%)/29F #RMS VALUES FOR CVERALL FIT#/1X428(1H¥}//
11 7 RMS =%,FB.4y's Y RNS =9,FB.4,' FCR CENTRAL CCNST =#,F6.3/

21 I RMS =%,FBuaby'y Y RMS =9,F8.4,' FCR HIGH CCNST =',F6.3/

30 7 RMS ='4F 844y, Y RMS =%,FBa.4,' FCR LCh CONST =*,F6a23)

‘A}=GPER*CCNST

p2= [RNSG{3)-RMSCI5)1/(2,%41)

£9
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A3= (RMSGI{3)+RMSC(S)-2.¥RNSG(L))/(2.%21%A1)
Al=-C.5%p2/A3
E=CCNST+AlL
A=RMSG{1)I+AL*{AZ+A3%A]))
IFCIRMSLEC.O) PRINT 1CO02CsA4B9NG _ ,
16020 FORMATI(/* MINIMULM RMS =’,F8 4,’ PER CENT AT CONST =1',F6.37/154" PC
LINTS CF CATAY) S a
IF{IRMS.EQ.1) PRINT 1C021,A, E NG
1C021 FORMATU(/' MINIMUM RMS =',FB.44" FT/SEC AT CONST =',F6.3//415,* PCIN
17S CF CATAY)
IF{NEC.EC.0} STCP
PRINT 10030,{(MBC{1},1=1,NBC)
1CQ30 FORMATI(/* RUNS NCT USECC'+5(14s*y ')
STCP
ENC
SUBRGUTINE OIFCCR
THIS SUBRCUTINE PERFORNS LEAST SQUARE FITTING USING THE CIFFERENTIAL
CCRRECTICN METHCC FCR £ GAUSSIAN-DISTRIBUTED VCRTEX PAIR.
TWC PARAMETER FITC GAMMA IS KELC CCNSTANT € AND C ARE VARIED FCR BESTY FIT.
COMMON TYZCGOCsIYZ,NRyNCsA+B4CsZO0»VINF,VSINAZYY{21,12V4VI121412),
1Y{3412) 2121V 4RNSHNCRPF 5 IPRAT¢NP TS, IRMS+RMSVIO(245) 2 IPRTMINRAK
COMMON/ONE/MKyNCATA IRUN{4Y sRyAMUET 4 X4, 24,50, ANGVRT, VRANG
CCMMCN/DVE/FIB,FIC
CATA ERRCR/4.CE-4/
C ERRCR = ACCEPTABLE ERRCR FCR VARIAELE CCEFFICIENTS.
IFUIPRNT.EC.2) CC TC 1CC

s EeNel

ITER=C
IYZCCE=1IYZ
€ TWC VARIABLE COEFFICIENTS { BsC 1}
< :
C PERFCRFM SUMMATICNS FCR CCEFFICIENTS IN NORMAL EQUATICNS
10 SFB82=0.0 )
SFC2=C.0

SFEC=0.0

%9
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SFER=C.0
SFCR=G-0
SRIZ=0.0
ANPTS=C

- LC 2C 1=1,NR

 K={ [+NCRPF+6)/7
CC 2C J=1uNC S
IF(vY{lsJ)eGT.5L0.) GC YC 2C
IF(IYZEGCal) VIY=VY({I,J)
IF(IYZ.EG2) VIY=VZ{1,J)4VSINA
RI=F{Y(KsJ},201))-VIY
FIA=CFL{Y{KyJ )2 (1))
SRIZ2={SRIZ24RI*RI)
SFE2=5FB2 + FIB*F1B

SEC2=SFC2 + FIC*FIC
SFBC=SFBC + FIE*FIC
SFER=SFBR ~ FIB*RI

SFCR=SFCR — FIC*RI
NPTS=NPTS+1
20 CONTINUE
RMS=SCRT{SRI2/NPTS} -
SCLVE NCRMAL EQUATICNS FGR THE CORRECTIGNS TC THE ESTIMATES
L =SFB2%#SFC2 - SFBC*SFBC
IF{C.EQ.C.) CC TC SS6
£1={SFBR*SFL2 ~ SFCRASFEC)/L
Cl={SFB2*SFCR — SFBC#*SFERI/L
IF(ITER.GT.2C) CC TC 4C
IF{ITER.GT.1IC) €C YC 7C
1F{AES{B1/B).6T..05) GG TC 20
IF{AES{CE/C).LT..0S) GC TC 1IC
CAMP THE CORRECTICNS =-mm—mme— e s e e i e = mmimm m s —
30 IF(ITER.GT.5) GC TC SC.
FRAC={ITER+3)/2C. :
GC- TC &0

59



40 FRAC=0.5
GO ¥C 60
50 FRAC=(ITER-1)/1C.
60 R1=FRAC*B1
C1=FRAC*C1
C UPLCATE ESTIMATES ANLC TEST FCR CENVERGENCE
70 ITER=ITER#1
B=g+£1
C=C+Cl
IF(IPRNT4EQ.3) PRINT BG+ITER RMS4A,8,C
80 FORNMAT(2CX,*ITERS?313,%y RMS=%,F8.4,%, A=",FBatys'y BaALFBid,?y Cat
1,F8.4) ‘
IF(ITER.GT.3C) €CC TC S9S
IF{B.LT.C.) B=—8
IF(ARS(B1/B) .CT.ERRCR.CR.ABSICL/C).GT.ERRCR) GO TC 10
SRIZ2=C.
C CCMPUTE STANDARE LDEVIATICNS.
CO0 9C I=1,NR
Ks{I+NCRPF+61)/77
L0 90 J=1,NC
IFIvY(1,0).5T.5CC.) GC 1C 9c
IF{IYZWEQwl) VZY=VY(1,4J) :
IF{IYZ.EGQe2) VIY=VIU(I4J)4VSINA
RISFIY(KyJ)Z{I)I-VZY
SRIZ=(SRIZ2+RI¥RI)
90 CCONTINUE
RMS=SQRT{SRIZ/NFTS)
IF{IRMS.EG.1)Y GC TG S5
: IF(IPRNT.EQ.1) GC TC 1CC
C CALCULATE PERCENT RMS ERROR
’ RMS=314. 15926*RNS*C/{A*(1.—EXP(-{8*C)**2)))
95 IF{IPRNT.NE.1} RETURN
1CO GAMMAG=).5%A/VINF
BEAR=B*(C

99
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F0=3.%C
ERFE=ERF({EBAR)}
CEFF=GAMMAQ*ERFE
HEFF=FD/ERFB '

VMAXUP=2 ,*VINFRCAMMACH{ 1 .—EXP(~ BEAR**Z})/{HD*B 141593) VSINA :
IF{IPRNT.EQ.21 €C TC 14C

EL=1COL*RMS/{VMAXUP+VSINA) o _ S '
ssissssssssssssss$s$ssssssstisssssassssassﬁa

C PUNCH FARAMETERSS$34$51845¢83855%%

Al1=8BAR/KD %4

Bl=.C1l%*E1 $%
Cl=VRANG#*57.29578

PUNCE 105¢MKyNCATAS IRUN(L)yRyAMIET y X4y Z4oHEFF,GEFF, B1sSDYANGVRT,C14 $3

13 VINFaGAMMAG KOy AL $%

105 FORMAT(I1alHOs 13914 9F5.29F5.3942F5.242F5.3+F5.4,2F5.2,F4214F5.1 $%$

$s

14F5.24F5.3,F€04)
C $$$$$$$$$$$$!$$5$$$$$$$$$$$$i$$$$$$$$$$$$5$$$$$$$$$$$$$ii&ﬁii!$$$$$i!$$$$§$$$i

WRITE(6,110) ITER,A1,81,C1,A4B4Co RMS:EI
110 FCRMAT{//* FINAL RESULTSC ITER *,13,', Al,Bl,C1 ='33F8.6&//
118X,'A=',F9.4,’, B:‘—"thqt'f' :',FQ.‘.I!IEX,'RMS CF FIT =-“Fgo‘t'
2' ET/SEC =',F6.2,9H PER CENT)
IFUIRMSLEGC.O) R¥MSSEL
C SWITCH YZCCCE FCR ALTERNATE RMS CALCULATICN
1YZCCL=3-1IY2
SR12=0.
CC 12C I=14NR .
K={ [+NCRPF+61/7
CC 120 J=1NC
IF(VY({I,J2.6T.500.) GO TC 12C
IF{IYZ.EG.2) VIY=VY(I4J)
IFLIYZ.ECLL) VZY=VZ(1,J)4VSINA
RI=F(Y{K,yJ),2{1))~VZY
SRIZ2={SRI2+R[#R1])}
120 CCNTIANUE .
SRI2=SQRT(SRIZ/NPTS)

L9



| %0
, Tgﬂb'ﬁOOE
B ova VNl

RS

EL=1CC.*SRI2/{V¥AXUP+VSINA)

WRITE(6,130) SRI2,El
130 FORMAT (18X, 12HCRCSS RMS =,F9.4,9H FT/SEC =,F6.249H PER CENT)
140 Al=ERBAR/KC '

FRINT 15CGAMMAC.GEFF4HC,HEFF,BBAR,AL,VMAXUP =

150 FORMAT(/18X, GAMMAL  =',F6.3,4X,"EFFECTIVE GAMMA =',F6.3718X,
1'HO/C =" 3F6.344X, "EFFECTIVE H/D . =',F6.3/18X,"BETA BAR =¥,
2F6.3,4%, 1THBETA * [ " =4FE£.3/38X,'MAX UPWASH VEL ='4F&.2//)

RETURN -

599 RMS=(.,

RETURN
ENC
SUBRCUTINE PRTMAT
COMMON IYZCOD,IYZ o NReNC A, BoCpZ0,VINFQVSINA,VY(21,12)9¥2021,12),
1Y(3312)42{21),RMS,NCRPF, IPRNToNPTSy IRMSRMSVIC(2+5)» IPRTMINRAK
CINENSICN VC{12)4CHAR{S) +CRRI12)
CATA CHAR/2E ,2k 42k 42H$$,LHY,1HZ/
1=4+1YZ
LO 6C0 J=1,4NC
6§00 VCLJ)=12.2Y(1,J)
[1=1.6%R¥SVZO(1,1)+4C.5
IF{IPRNTEQe2) T11=0.1%VINF
IF(I1.LT.1} I1=1
[2=-11 ’
13=2%11
Al=11
A2=12
A3=1]13 ’
. WRITE(6+610) CrHAR{I)11,12,13,{VC{J},sJ=1+NC)

610 FORMAT(///44GXy 3THMATRIX GF CROSS-SECTICN VELCCITLES//32X34BHCA
ILCULATED VELCCITIES FRCM LEAST SGQUARES FIT 7O 4Als 22H CEMPONENT G
2F VELCCITY///' Y,Z CENCTE Y,Z VELCCITY CCMPCNENT DATA®/ * C  DENC
3TES THE CALCULATEGC VELCCITIES®//? INDICATES {V-VCALC) GREATER T
4-AN?413,%. FT/SECY'/ ¢ INCICATES (V=VCALC) LESS THAN' 145" FT/§

89



C

620

Bt

630
64C

S5EC*'/?
BO(1F2)/3XeaH1

WRITE(6,620)
FCRMAT(LX,13C{1¢%))

LECP &70 WRITES CUT TEE. VELCCITY FIELD UATA AND THE VELGEITIES USING FIT

CO 670 I=1sNR

In=12+%2(1}

K={ [+NCRPF+86)}/7

IvyZCCC=1

C0 640 J=1,.NC
CHR(JI=CEAR(]1)
VO(J)=F(Y{KyJ)a2(L}])
IF(VY{I,J}.GT.1E2)} GC TC 64C
El=VvY{I,Jd)=-VC(J)
IFCABS{ELY.LT<AL)Y GC TC £4C
IF{ABS{EL)«GTLA2) GC TC €30
IF{EL1.CT.AY) CHR(J)=CFARIZ2)
IF{EL.LT.A2) CHEREJI=CHAR(D)
CC TC 64C

CHR({JI=CHAR(4)

CCNTINUE

WRITE(6+680) (VY TsJd)sed=14NC)

$5 INDICATES ABS{v-VCALC) GREATER THAN'»I?:'. FF/SECI /71X ,13
V951X *APPRCX.

Y PGSITICNS'!EX,lH*,F?AZ.IJF!O%ZF

WRITE[656G0) (VCUJYsCHER(JV4Jz214NC)

iviccC=2
EC €€0Q J=1,NC

CHR(J)=CHAR(1])

VCIJ)2F(Y(Ked)pZi1) )~ VS INA
IF(VZ{I,J).GTa1E2} GC TC €6C
E1=VZ(1,4}-VC{J)

IF(ABS{ELY.LT.ALl) GC TC €6C

IF(ABS(EY1}.GT.A3) GC TC €5¢C
IF(EL.CT.AL) CHRUJ)=CHAR(Z2)
IF(EL.LT4A2) CHRUG)I=CHAR(])
GC TC 66C o
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65C CHR({J)=CrAR(4)}
£60 CCNTIKUE
WRITE(6,7C0) zu,tvztl,JJ J= 1,Nc:
670 WRITE{L,690) AVC(J)CHR{I)},J=1NRC)
680 FORMAT(O6X o IHE/E6Xs1H%,1201X,F6aly'Y 1))
690 FORMATIEXs1H%,12{1XsF6.1,"C'¢A2}) :
7C0 FORNMAT(FEe2y IH#*,y12(1XgF€aly?*Z "))
RETURN :
END
FUNCTICN F{Y.22)

C FUNCTICN F CALGULATES THE VELCCITY INDUCED BY A PAIR OF DISTRiBUTEG VCRTICES.
COMMCN IYZCOC,IYZANRGNC1A4B,C 20
COMMON/DVE/FIBLFIC
1=21-10
g2=02P
YPC=Y+C
YMC=Y-C
R12=2%1+YPC*YPC
R22=I%I+YMCHYMC
If (R12.EQ.04} R12=1£-1C
IF {R22.E0.0.1 R22=1E~1C
EXPL=EXPI{-B2%R12)

EXP2=EXP({-B2#%R22)

El=(1.-EXPl}/R1Z

E2={1.~EXP2)/R22 :

IF {(R12.LE.1E-1C) El1sp2

[F {(R22.LE.1E-1C) E2=B2Z

IF (IYZCCL.E§.2) GC TC 1

Fz=A%2*(E2-E1)/6.283185

RETURN
1 F=A% (E1%*YPC- EE#YNC)Ie 2E318°%

RETURN

ENTRY CFLY,Z12) ' ‘ '
C ENTRY CF CALCULATE< THE PARTIAL DERIVATIVES LSED IN A CIFFERENTIAL CBRRECTIEN

0L



C METHCC FCR A GAUSSIAN~CISTRIBUTEDL VORTEX PAIR.

IF (R12.GT<1E-1C) CVh1=2.%YPC*{EXPL*(1.+B2%R12)-1.)/{R12*R12)}
IF (R12.LE.1E-1C) DVh1l=—2.%YPC5B2%B2

IF (R22.GT.1E~1C} DVE2=2.%YNCH{EXP2*(1.+B2%RZ22)-1.)/{R228R22Y
IF (R22.LEelE-1C) OVHZ=-2.%YMC¥B2%B2

CF=F/A ' :

If {IYZCCLC.EG.2) GC TC 2 -

FIR=A%2%E*{EXP2-EXP1)/3.1415%3

FIC=-A%2*{DVKE14LVF2) /6. 283185

RETURN

FIB=A%R% (YPCHEXP1-YMCH*EXP2)/3.141593
FIC=A*(EL+CVI15YPC+E24DVE2%YNC) /64283185

RETLAN

ENE

SURBRCQUTINE AUXIL

C PERFORMS AUXILIARY CPERATICNS UPCN INPUT CATA.

150

16¢C

COMNON [YZCOCsIYZoNR G NCyAsBsCysZCsVINF,VSINA,VY(21,12),VZ121,12),
1Y{3:12),Z(21)+RNS,NCRPF, IPRNToNPTS, IRMSyRN¥SVZO(2,5), IPRTMy NRAK
COMMON/ONE/MKyNCATA o IRUN(4) 3Ry AMIET ) X424 SCy ANGVRT 5 VRANG
CIMENSION VCI12)

CATA AST/1H%/

IF{IPRTM.EQ.C) GC TC 185

WRITE(6,150) _ ‘

FORMAT(//10X,* INPUT PCSITICN CATAQY)

OC 170 I=1,NR -

K={ [+NCRPF+6)/7

WRITE(6,160) (Y{K,d},J=1,NC)

FORMAT(/12(FT.2,4'Y"))

170 WRITE{6,180) AZ{1),J=14N0)
180G FCRMAT(12(F7.2,'1%)) _ _
£ CCUNT NUMBER OF USABLE CATA PCINTS

185

F=NRANC
CLC 2C0 [=1,NR :

TL



a0

o

HO0L
o1 AHvd TVNE

e

!

IF(ABS{Z(I)~Z{I-1))eLTFae5) M=M=NC
190 CC 2CQ J=1,NC '
IF{VY{I,J}.LT.5CC.) GC TC 2CC
p=p-1
VY{I,J)=1E&
VZ(l,J)=1E6
200 CCATINUE '
_ PRINT 21CyM :
210 FCRMAT(/I4,' CATA PLINTS}
NCATA=M
C PERFORVM VCRTICITY CALCULATICNS
A2=0.
IF(IPRTMJEQ.1) PRINT 22C _ :
220 FORMAT(//* VCRTICITY CALCULATIONS?y1CXs24HUNITSC UPPER - ET#%¥2/SEC
1/40X%X,"LOKER - 1/SEC'/) '
CC 290 I=2,NR
IF{IPRTML.EQ.L]) PRINT 23C,{AST,J=1,NC)
230 FCRMAT( S5Xs12(A1,7%X))
Al=2{1-1)=-Z2(1)
Ks{I+NCRPF+61/1
L=([+NDRPF+5)/7
COQ 2éC J=2,NC
IF(VY{I-14J-1}.CT.1E3) GC TC 24C
IF{VY{I 3J-1).GT.1E3) GC TC 24¢C
IF{vY{I-1,J ).GT.1E3) GC TC 240
~ IF(VYLTD  3J  ).LTL1E2) GC TC 250
24¢ vC(J)Y=1E6 '
CC TC 260
250 VO =HIvY{I=1yd=10=VY{ T4 J) 13 (Y ILad ) =Y {Ks J=1 D)+ {VY (I=15J)-VY{],J-1
D) YUY AKy I =YL aJ= 1) P -UVZUI=19J=104VZU o J=1)=VZ{T-14J)=VZUl14J})%AL)
2724, ' ‘ o - - :
A2=A24VC (1)
260 CCNTINUE : :
IFCIPRTMAEQal) PRINT 27Co(VCIJ)»d=24NC)

(43



Td0

00& 0
oq WOV TVNID

pit

RIFTVOD

270 FORMATI{5X¢12{1XsF7.3))
CC 28C J=24NC
28C VC(J)=VClJ)*EES.IABS{AI*inK.J)+Y{L.J)-Y{K,J—l}-Y{L.J~1)§}
IF(IPRTMLEQ.1) PRINT 30C,(VC(J)»J=2,NC}
290 CCONTINUE :
300 FORMAT{S5X412FB8.2} ' _ ‘
 1F(IPRTM.EQ.1) PRINT 23Cs(AST.J=1,NC}
A3=1.5%A2/VINF '
PRINT 31C4A2,43 '
310 FORMAT{/' SUMMET VORTICITY ='¢F9.3,21H FT#22/SEC GAMMA =,F6.3)
0C LCCPS 32C ANL 33C CCNVERT PCSITICN LATA TC FEET
CC 32C I=1,NR
3120 2{1)=2¢1)/12.
10=21C/12.
£C 230 [=1,NRAK
£C 230 J=1,NC
330 Y(I,d)=YlIsJ}/12.
RETURN
ENE _
SUBREUTINE QMAJ(NOMR,CGMJ,CMN1,QMN2) :
PURPOSEC CHCCSE THE MAJCR AND MINOR @ CONDITICNS FCR THE GIVEN VELCCHTY RATIC
EVJI=C.0
CMN1I=C.0
CMN2=0.0
CC TC (28928921 422+422+24+253526928927)¢4NCMR
21 C¥J=35.9
GMN1=15.5
RETURN
22 CMJ=2C.2
CMAN1=52.8
GMNZ=8.T
. RETURN
23 (MJ=33.3
RETURN

1



C

24 €MpJ=23.1

GMN1=35,0
LMN2=9.1
RETURN

25 CMJ=26.1

RETURN

26 CMJ=19.9

CMN1=12.G
CMN2=5.1
RETURN
27 GMJ=12.8
CMNL1=8.2
CMN2=3.2
28 RETURN
ENC
FUNCTICN ARCLNG(X4R)
PURPCSEC CALCULATE THE ARC LENCTH ALONG THE LNIFIED VORTEX PATH EQUATICN,
GIVEN X/C ANU R.
CIMENSION GU&8)},vI(8)
CAT2 V/. 0950125..2816035,.4580167..61787&2..7554044
19.8656312,29445750,.9894C09/,G/.1894506,.182¢6034,
2016915654 .1495959,.1246266, .0951585,.0€22535,.0271524/
CATA E2,A1,A3/2.66051€, .4633684,~1.141726/
E3—.1414484*R**¢.253672*!**&3
S=0.
£EC 1 I=1.+8
1 S=S4+G(I)#(SQRT{(1,+V {1} )**E2+E3) + SQRT((I.—V(I))**EZ#EB!I
ARCLNG=A1%X*S
RETURN
ENC .
SUBRCUTINE MINV2(A,C) :
PURPCSEC PERFORN MATRIX INVERSE UF NGRNAL EGLATIDN MATRIX FROM LEAST SCUARES.
CIMENSICN Al6).8{(3)
REAL®E A,BeCsl

kA



B(l)=A(3)%A(5}-A(4)%A(4)
BI2)=A(3)%A14)-A(2)%A({5)
B(3)=A{2)%A(4)-2(3)%A(3}

C=A(11%B{L)+A{2)%B(2)+A(2}*E(3)

IFIC.EQaC.) RETURN o
¢ =(A(L)I%A(S)-A(3)%AL2))/L

ALS)=(AC21%A{2)=A{1)%AL4) /L

AtEY=(ALLYRA(3)-A{2)28(2)1)/L
A(1)=B(1)/D

A(2)=8(2}/C

A{3)=p{3)/C

Al4)=C

RETURN

ENC
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