NASA CONTRACTOR REPORT

NASA CR-120610


```
UN iOODNESS Or Far (NaSA) j} f HC $3.7S
1 AA
(33/03 111」o
```


THE EFFECTS OF CORREL.ATION ON GOODNESS OF FIT

By Larry J. Kitchens

Department of Mathe matical Sciences
Appalachian State University
Boone, North Carolina 28607

January 6, 1975

Prepared for

NASA-GEORGE.C. MARSHALLSPACE FLIGHT CENTER Marshall Space Flight Center, Alabama 35812

1. WEPONT NO. NASA CR- 1206	2. GOVERNMENT ACCESSION NO	3. Rer!-: ENT'S $^{\text {catalog no. }}$
4. title and subtitle The Effects of Correlation on Goodness of Fit		5. RE:'ORT DATE
7. Authoris) Larry J. Kitchens		8. PEAFORMING ORGANIZATION
9. performing organization mame and address Department of Mathematical Sciences Appalachian State University Boone, North Carolina 28607 12. SPONSORING AGENCY NAME ANO ADORESS National Aeronautics and Space Administration Washington, DC 20546		10. WORK UNIT NO. $\begin{array}{l}\text { 11. CONTRACT OR GRANT NO. } \\ \text { NAS } \\ \text { (29286 }\end{array}$ 13. TYPE OF REPOR: A PERIOD COVERED
		Contractor
15. SUPPLEMENTARY NOTES Prepared under the technical direction of the Aerospace Environment Division, Space Sciences Laboratory, Marshall Space Flight Center; Contract monitor is Mr. Lee W. Falls. 16. abstract In this paper we generate autocorrelated normal random variates via computer and study the effects of various levels of correlation on goodness of fit problems. The results will be useful in determining the distribution or estimating the parameters of populations in which we have correlated observations such as wind speeds and temperature. The model used to generate the autocorrelated data is an autoregressive process of order 1. The Kolmogorov-Smirnov and chi-square statistics are used in the analysis. It was observed in the simulation that high positive correlations tend to shift the sample mean away from the population mean and negative correlations tend to shift the sample mean towards the population mean. In many cases, it was observed that positive and negative correlations tend to decrease the standard deviation. However, since this did not occur in all cases, no definite conclusion could be made regarding the standard deviation. Since the autoregressive process is a linear transformation, it was not suprising that normality was preserved. However, a possible extension of this problem would be to generate non-normal data and observe how the distribution is affected by correlation. Another extension would be to utilize another model such as autogregressive of order k or a moving average process of order k.		
17. KEY WORDS Statistical Analysis Autocorrelation Goodness of Fit Tests Kolmogorov-Smirnov Test Chi-Square Test Autoregresuive Processes Unclassified-Unlimited Intion		
10. SECURITY CLASSiF. (W) thio repan) Unclassified	20. BECUNITY CLASSIF. of this Unclassified	$\|$21. NO. OF PAGES 37 22. PRICE NTIS

I. INTRODUCTION

The problem considered in this paper is to generate autocorrelated random variates via computer and study the effects of various levels of correlation on goodness of fit problems. This is of interest to the Terrestrial Environment Branch, Aerospace Environment Division, Space Sciences Laboratory, George C. Marshall Space Flight Center, Alabama, and the financial support for the project was under NASA contract number NAS8-29286. The results will be useful in determining the distribution or estimating the parameters of populations in which we have correlated observations, such as wind speed and temperature.

The model and simulation techniques are presented in section 2. Utilizing a Univac $70 / 46$ compuier, normal correlated data 1s generated and analyzed in section 3. The Kolmogorov-Smirnov statistic and chi-square goodness of fit are used in the analyais. Section 4 describes the computer programs and their use with the actual programs listed in the appendix.

2. MODEL AND SIMULATION

If X and X are jointly normally distributed, then it is known that $Y \mid X$ is normally distributed with mean
$\mu_{y}+\rho \frac{\sigma_{y}}{\sigma_{x}}\left(x-\mu_{x}\right)$ and variance $\sigma_{y}^{2}\left(1-\rho^{2}\right)$. Assume $\mu_{x}=\mu_{y}=\mu$ and $\sigma_{x}=\sigma_{y}=\sigma$ then

$$
\left.\begin{array}{rl}
& \mathbf{Y} \mid \mathbf{X}
\end{array}\right) \mathrm{N}\left(\mu+\rho(X-\mu), \sigma^{2}\left(1-\rho^{2}\right)\right), \quad \mathbf{Y} \mid \mathbf{X}=\mu+\rho(X-\mu)+\sigma \sqrt{1-\rho^{2}} \cdot \mathbf{Z}
$$

where $\quad Z \sim N(0,1)$.
Thus it was decided to recursively generate a random sample, x_{1}, \ldots, x_{m} via the formula
(2.1) $x_{i}=\mu+\rho\left(x_{i-1}-\mu\right)+\sigma \sqrt{1-\rho^{2}} z_{i}$
where $z_{i} \sim N(0,1)$.
By mathematical induction it can be shown that
(2.2) $E\left[X_{1}\right]=\mu$ and $\operatorname{Var}\left[X_{1}\right]=\sigma^{2}$ for all 1.

Moreover, with a little patience, the auto-correlation function ia given by

$$
\begin{equation*}
\rho_{x x}(\tau)=\rho|\tau| \tag{2.3}
\end{equation*}
$$

Thus with (2.1) we are able to generate a sequence of autocorrelated normal variates.

After searching the literature it was learned that (2.1) is a version of a first order autoregressive process. Mihram [3]
defines an autoregressive process $X(t)$ of order m by

$$
X(t)-\mu_{x}=\sum_{i=1}^{m} a_{i}\left[x(t-i)-\mu_{x}\right]+\varepsilon(t)
$$

where $\{\varepsilon(t)\}$ is a white-noise process of mean zero. Thus we could use (2.1) to generato vaciates of any specified distribution with autocorrelation given in (2.3), by choosing the white-noise appropriately.

One other process that migint be useful in applications, particularly to wind speeds mentioned by Falls [1], is the moving average process of order k. This model is of the form

$$
\begin{equation*}
X(t)-\underset{x}{\mu}=\sum_{i=0}^{k} h_{i} \varepsilon(t-i) \tag{2.4}
\end{equation*}
$$

where $\{\varepsilon(t)\}$ is a white noise process of mean zero. The advantage of this model is that the autocorrelation is zero when the lag τ exceeds k. For example, the second-order moving average process

$$
x(t)-\mu=\varepsilon(t)+.75 \varepsilon(t-1)+.25 \varepsilon(t-2)
$$

has autocorrelation function

$$
\rho_{x x}(\tau)=\left\{\begin{array}{cc}
1 & \tau=0 \\
.577 & \tau=1 \\
.154 & \tau=2 \\
0 & \tau \geq 3
\end{array}\right.
$$

Thus the correlation goes to zero after each third obeervation. The model given in (2.1) was aimulated by first generating k uniformly distributed random numbers in $(0,1)$. By the Central

Limit Theorem it is known that as $\left.k \rightarrow \infty, z=\sum_{i=1}^{k} x_{i}-k / 2\right) / \sqrt{k / 12}$ approaches a standard normal distribution. It is standard procedure to choose $k=12$; thus, for each 12 uniformly distributed random numbers we obtained a single realization from a standard normal population. By this technique samples of aize $n=20,40$, 100 , and 500 were generated. Each ample, $\left\{z_{1}: i=1, \ldots, n\right\}$, was traneformer via (2.1) to yield our autocorrelated samples $\left\{X_{1}: i=1, \ldots, n\right\}$. Correlations of $\pm .1, \pm .3, \pm .5, \pm .7$ and $\pm .9$ were used.

3. RESULTB-GOODNESS OF FIT

To simplify the problem, a mean of zero and standard deviation of one were chosen in all analyses. For each sample size, five distinct samples were generated from the $N(0,1)$ population. These samples were then checked for fit by the Kolmogorov-Smirnov and chi-square statistics before and after applying the transformation. An example is presented in Table 3.1. Naturally, for mall sample sizes the fit of the initial data was not very good in many cases. This was due to the fact that the sample mean was not close to zero or the ample standard deviation was not close to one. Be that as it may, it was observed that after applying the transformation (2.1) mall correlations did not affect the fit as much as large positive correlations. This is pointed out in figures 3.2 through 3.6. In each instance the probability level of the K-S statistic is plotted before and after the transformation. The probability before traneforming is represented by a dot and by a cross after transforming. It is observed that for $0=.1$ there ie not much difference in the probabilitien; however, for $p=.9$ there is a large differance and in many cases the probabilitien approach zero after transforming. Figures 3.7 through 3.10 illuntrate the probabilities for negative correlations. It is interesting to note from figure. 3.10 that a bad fit was corrected by a large negative correlation. The reason for this will be given later.

TABLE 3.1

The next step in the problem was to generate a sample from the $N(0,1)$ population, apply the transformation five time using the correlations of $.1, .3, .5, .7$ and .9 to observe, in addition to checking the goodness of fit, how the means and standard deviations were affected. An example of the output is presented in Table 3.11.

$$
\text { Mean }=0.0 \quad \text { Std.Dev. }=1.0 \quad N=100
$$

Normal Corr. $=0.1$ Corr. $=0.3$ Corr. $=0.5$ Corr. $=0.7$ Corr. $=0.9$

Average	0.0039	0.0046	0.0059	0.0073	0.0103	0.0246
St. Dev.	0.9030	0.9023	0.8934	0.8695	0.8263	0.7392
K-S Stat.	0.0766	0.0933	0.0794	0.0688	0.0900	0.0990
Prob. of	0.6009	0.3489	0.5535	0.7319	0.3923	0.2808
Chi-Sq.	13.2	6.2	17.4	8.0	8.6	14.2
DF	99	99	99	99	99	99

TABLE 3.11

Theoretically, from (2.2) we would expect the mean and standard deviation to remain constant for all levels of correlation. 1 wever, this is not the case since we are sampling from a $小(0,1)$ population and the sample mean will not necessarily be zero nor will the sample standard deviation be one. From Table 3.11 we see that initially the sample mean is positive and after applying increasing levels of correlation the sample mean becomes even more positive. Had the initial sample maan been negative it would have become more negative as the
level of correlation increased. There were five samples of size 20 , five of size 40 , five of size 100 and five of size 500 generated, and in every case where the sample size was 40 or greater the same shift in sample means was observed. That is, applying a positive correlation tended to shift the sample mean away from zero.

We also observe from Table 3.11 that the standard deviation was decreased. Although this did not happen every time, in those cases where the standard deviation increased it only increased slightly. One conjecture that might be made is that observations on the tails of the distribution are affected more drastically than those close to the mean. More specifically, they are shifted towards the mean by the higher correlations resulting in a smaller spread.

Initially, it was belieyed that negative correlations would yield the same results. However, after investigating (five samples of size 20 , ten of size 40 , ten of size 100 and five of size 500) it was learned that negative correlations tend to shift the sample mean the opposite direction towards zero and in a few cases even nast zero. An example of this is presented in Table 3.12.

$$
\text { Mean=0.0 Std.Dev. }=1.0 \quad N=100
$$

	Normal	Corr. $=-.1$	Corr. $=-.3$	Corr. $=-.5$	Corr. $=-.7$	Corr. $=-.9$
Average	0.0680	0.0616	0.0496	0.0381	0.0262	0.0097
St. Dev.	1.1046	1.0993	1.0902	1.0739	1.0243	0.9044
K-S Stat.	0.0897	0.0751	0.0729	0.0615	0.0478	0.0963
Prob. of	0.3963	0.6260	0.6629	0.8434	0.9763	0.3122
Chi-Sq.	8.8000	6.2000	19.2000	7.2000	3.8000	7.2000
DF	99	99	99	99	99	99

TABLE 3.12

As in the case for positive correlations, negative correlations tend to decrease the standard deviation. However, since this did not occur in all cases, no definite conclusion could be made.

In every case studied a histogram of the data was printed and it appeared that in all cases normality was preserved. This should be expected since normality is preserved under a linear transformation. Thus, the bad fits recorded by the $K-S$ statistic was apparently due to the fact that the sample mean and standard deviation were not close to zero and one respectively. Since negative correlations shift the mean towards zero, this would explain why high negative correlation would tend to correct the data and give a better fit to $N(0,1)$.

A possible extension of the problem would be to test the goodness of fit by the $K-S$ statistic using \bar{X} and S for the mean and standard deviation and utilize the tables constructed by Lilliefors [2].

Other extensions of the problem would be to generate nonnormal data and observe how the goodness of fit is affected by Correlations or utilize the moving average process of order k given in (2.4) with normal and non-normal data.

4. COMPUTER PROGRAM USAGE

The main line program is titled NASAI and utilizes seven different subroutines. Subroutine RANDU is a standard random number generator. Subroutine KOLMO which uses subroutines NDTR and SMIRN computes the Kolmogorov-Smirnov statistic and the probability of exceeding the observed value of that statistic. Subroutine CHISQR computes the chi-square statistic. Subroutine FREQUE calculates frequencies for input for HISTO which computes a histogram of the data.

To use the programs you must supply two data cards:
CARD 1
Col 1-10: A large oda integer right justified for a seed of the random number generator

Col 11-14: The size of the sample you wish to generate ($1 \leq N \leq 9999$, right justified)

Col 15: The number of distinct samples of size N you wish to generate ($1 \leq M \leq 9$)

CARD 2
The data may be transformed via equation 2.1 using five distinct correlations. The correlations (positive or negative) are placed in columns 5 through 24. Be sure to punch the decimal point or use a F 4.1 format.

Col 1-4 : blank
Col 5-8 : first correlation
Col 9-12: second correlation
Col 13 - 16: third correlation
Col 17 - 20: fourth correlation
Col 21-24: fifth correlation
Cul 25-27: The mean of the population you wish
to generate your sample from. Purich
the decimal point or use F3.0.
Col 28 - 30: The standard deviation of the popu-
lation you wish to generate your sample
from. Punch the decimal point or use
F3. 0 .
The output of the program will be a table similar to Table 3.11 followed by six histograms. The first is a histogram of the uncorrelated normal data. Then the next five histograms will be of the correlated data with the five different degrees of correlation. This procedure will be repeated the number of times you specified in column 15 of the first data card.

Several observations can be made from analyzing the data generated in this project. First, it should be observed that there is no observable distinction between samples of size 100 and samples of size 500. Thus we may assume that the process tends to converge after 100 iterations. Next, the degree of correlation built in did adversely affect the distribution. The higher the correlation between observations the more the data was transformed. This can be observed by investigating figures 3.2 through 3.6 . The probability of the $\mathrm{K}-\mathrm{S}$ statistic dropped significantly for larger positive correlations. This is due to the fact that positive correlations tend to shift the sample mean away from the population mean--the larger the correlation the greater the shift; and, in most instances the standard deviation became smaller. This is pointed out by Table 3.ll. Although no statistical technique was used, it was observed from the histograms that normality was preserved, so the apparent lack of fit was due to the shift in means and change in the standard deviation.

For negative correlation the changes were not as drastic. The shift of the sample mean was towards the population mean rather than away as was the case for positive correlations. Tisis is probably due to an oscillating effect. This also explains why in many cases a bad fit due to a shifted mean was corrected to give a better fit. The same change in standard
deviation was observed. Also, a study of the histograms for the negative correlations indicates that the lack of fit was not due to a change in the distribution but rather a change in the parameters of the distribution.

References

1. Falls, Lee W., Personal Communica. ion inovember, 1974), rshall Space Flight Center, Nosi, Alabama.
2. Lilljefors, Hubert W., "On the X.inogornv-Smirnov Test for Normality With Mean ind i:2"ance Unknown," Journal - E the American Statistical zssociation, 62, 399-402.
3. Mintas, G. Arthur, Simula+: Statistical Foundations and Hethocology, Acader, \because s, New York.

ACKNOWLEDGEMENTS

The author wishes to express his appreciation to O. E. Smith and L. W. Falls for their valuable comments and criticisms. Also, many thanks to Larry Bridges and Leland Jones for writing most of the computer programs used in this project.

APPENDIX

Program Listings

昜

A FIJKIRAHIV (VLH L43) SHURCE LISTING:

F,JRT	HAll	IV	(Vtk L43)	SIURCE	LISTINC:	NASAI	Pkilgrala	01/14/75	2	PAGL	
	10		FIJRMAI(1	, 'SII:	1,6(F	. $5,1 \times 1$					
b 2			WKIIF16, ? 5) Sta?							
ל3	35		FURMAT (1	, k -S S	SIAI 1,011	. $5,(x)$					
54			akIIt (6,4)) HK 2							
り"	41		FURMAT('	, PrRIH	UF 1, 61 F	. $5 .(x)$					
36			WKIIE 6,91) $11 / 2$							
57	87		FURMNT('	, ${ }^{\text {CHI-S }}$	$50 \quad 1,61 F$. $5,1 \mathrm{x}$)					
28			WKIIE 0,80) xut?							
b9	88		FURMAT('	, UEGKE	FKE',OIF	. 5, 1×1					
00)U11KKK=1,								
01			RKR=RU(kKK								
02			CALL HREQU	(\times, KKk							
03			CALL HISTO	(RRK) FR	Rt, 14, KSTA	, NSPCE	UASH)				
64	11		CUivilnut.								
65			10104k $=1, N$								
06			SuSUx,k) = S	ISUx(k))/1						
07	1114		Sus):Ix(k) =	susillx	(k)/4						
08			WR1! (f) I) susux.	- bljstix						
69	17		FURMAT(')'	,'sum A	AVRE.'G(F9	3, 1x),	SIO AVRE				
7)			,o(19.5.1x								
11			gutuluo								
13			FNO								

1 SUBKIUUTINE KANDU(IX,IY,YFL)

2
3
4
6 6 $Y+L=I Y$
7
H
9
16
$5 \quad 5 \quad I Y=1 Y+2147483041+1$
RENL* Y Y L
$I Y=1 X * 65539$
IF(IY)5,6,6

YFL=YFL*. $4656013 E-9$
$I X=I Y$
RETUHIN
(NI)

$$
\begin{aligned}
& \text { 1)IMLTiSIUA } x(6), r(0) \\
& \text { If(x(k)-. © } 7 \text {) } 1,1, \text { ? } \\
& Y(K)=U . U \\
& \text { rutus } \\
& \text { If(x(k)-1.0)3,6,6 } \\
& \bar{r}, 1=t \times p(-1.233101 / x(k) \neq \$ 2) \\
& r ; L=G 1 * G 1 \\
& \text { (; } 4=6 \text {) } * \mathbb{C}, 2
\end{aligned}
$$

$$
\begin{aligned}
& r, 8=0.0 \\
& Y(K)=(? .506028 / x(K)) * G 1 *(1.0+G 8 *(1.0+G \bar{B} 08)) \\
& \text { rutug } \\
& \text { It (x(k)-3.1)8.7.7 } \\
& Y(k)=1 . U \\
& \text { r.ilue } \\
& \text { (il } \left.\left.=f x_{1}\right)(-) .04 x(k) * x(k)\right) \\
& r_{1} l=6 l * O_{1} \\
& 1,4=67 * r_{1}, 2 \\
& 1, y=64 *(; 4 \\
& Y(K)=1 \cdot U-\therefore \cdot U *(C, L-(, 4+C, 8 *(C i l-U 甘)) \\
& \text { FLTUR1, } \\
& \text { + HII }
\end{aligned}
$$

SURKIUTINF CÖISUK（A，H，K，CHIVAL，XIJF）
1）IMENSIUII A（ $6,10 O U), H(9), C E L L(1 U), X U F(6), C H I V A L(6)$
（II） $1 \quad \mid x=1,10$
CtLI（IX）＝0．0）
CHIVAL（K）＝0．0
$B(1)=-1.2011$
$\mathrm{B}(2)=-0.3410$
$B(3)=-0.2244$
$A(4)=-0.2533$
$f(5)=0.0$
いて」 $=0,4$
$4(J)=-13(1(1)-J)$
$\Gamma \times P \vee \wedge I=+L \cup \wedge I(N) / l い 。$
1113 $L=1,11$
\｜（A（K，L）．LI．H（1））CEIL（1）＝CELL（1）＋1．

rus $1=1,10$
CHIVAL（K）$=$ CHIVAL（K）＋（（（CFLL（！）－KXPVAL）＊＊2）／EXPVAL）
$x \| l(k)=1,-1$
ロtiofa
≤ 4
FWh

A FIJPTHAIV IV (VLH L43) SUUKLE LISTING: IKFWUE SUBKLIUTINE 01/14/75 9 PAG

