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ON THE EXCESS ATTENUATION OF.SOUND IN THE ATMOSPHERE

By Richard DeLoach

Langley Research Center

SUMMARY

The attenuation suffered by a sound wave propagating from an elevated source to the

ground, in excess of spherical spreading losses and classical and molecular absorption

effects, is studied. Reported discrepancies between attenuation measurements made in

the field and the predictions of theories based only on absorption effects are discussed.

It is concluded that atmospheric dynamics (turbulence) is a major contributor to the atten-

uation of sound waves propagating vertically in the atmosphere.

Earlier theories on the attenuation of sound due to scattering which have been

addressed separately to either the problem of inertial scattering induced by momentum

fluctuations or the problem of scattering induced by temperature fluctuations have led to

predictions of a strong (square-law) frequency dependence and relatively large magnitudes

which are not supported by the available field data. The present theory considers both

inertial and thermal scattering and predicts a square-law frequency dependence only for

the special case of a medium for which the scattering of sound can be described as a sim-

ple Bragg diffraction process. In a medium for which the Bragg condition represents only

a first approximation to the scattering process, a much milder frequency dependence is

predicted which approaches a cube root dependence for the case of an outer scale of tur-

bulence that is large compared with half an acoustic wavelength (the general case for audio

frequencies in the atmosphere). This prediction is supported by field data, as are the

excess attenuation magnitudes predicted by the present theory.

The theory is applied to explain the results of certain field measurements and lab-

oratory experiments which previous theories have not explained. Potential applications

of the theory to the solution of aircraft noise measurement problems are discussed.

INTRODUCTION

The recent introduction of stringent aircraft noise certification requirements by the

FAA and a general reemphasis on acoustics research and development priorities at the

national level have enhanced the need for greater precision in evaluating the results of

aircraft noise measurements. In order to achieve the desired precision, it is necessary

to correct raw aircraft noise data accurately to reference meteorological conditions,

since the attenuation of sound in the atmosphere can depend quite sensitively on local

atmospheric conditions.



Standard values of atmospheric attenuation for evaluating aircraft noise were pub-

lished in 1964 by the Society of Automotive Engineers (SAE) as Aerospace Recommended

Practice 866 (ARP 866) and have been widely used since that time to correct aircraft

noise measurements. (See ref. 1.) These standards are based on the theoretical work

of Kneser (ref. 2) as modified by the laboratory experiments of Harris (ref. 3). The

results of Kneser and Harris can only be applied rigorously to the description of sound

attenuation in still air in a controlled environment; there are additional attenuation mech-

anisms unaccounted for in their work which come into play when noise measurements are

made in the free atmosphere. These mechanisms, which result in what has come to be

called the "excess" attenuation, were not well understood when the SAE published refer-

ence 1 in 1964. The results of Kneser and Harris were therefore altered, based on air-

craft noise data then available, in an attempt to compensate empirically for the excess

attenuation.

In recent years there have been occasions when the use of ARP 866 has resulted in

data exhibiting certain ambiguities. These developments should not have been wholly

unanticipated since ARP 866 has its roots in a theory which does not include all the atten-

uation mechanisms which are active in the atmosphere. In particular, the problem of

acoustic interactions with turbulent density fluctuations in the atmosphere is not treated

in the Kneser theory.

In this paper, the theory of sound attenuation in the free atmosphere is reexamined,

particular attention being paid to the effects of atmospheric turbulence on the transmission

of sound. A formula is derived for the excess attenuation coefficient which depends on the

structure constants which characterize atmospheric turbulence and a technique for meas-

uring these structure constants is discussed briefly. The theory is applied to explain cer-

tain general features of the excess attenuation which have not been explained by previous

theories and potential applications of the theory to aircraft noise measurement problems

are discussed.

SYMBOLS

A cross-sectional area of a volume element

A s  accumulated excess attenuation

a,b empirical constants

C T  temperature structure constant
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CV wind structure constant

c speed of sound

D diameter of cylindrical bars in turbulence grid

DF(r) covariance function of F(r)

d separation between transmission path and turbulence grid

dP differential acoustic power loss

dr differential line element

da(o) differential scattering cross section

df2 differential solid angle

E(K) energy spectral density function for wind-induced turbulence

F(F) a random function of F

f acoustic frequency

H relative humidity

h height

h' ratio of water vapor pressure to barometric pressure

I intensity

11 = s cos 2 cos 2  sin 0 E(K) dO

12 = cos 2 sin 0 4(K) dO

K turbulence wave number
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Ko  outer scale turbulence wave number

k acoustic wave number

k s  acoustic wave number of scattered wave

L scale of turbulence in direction of propagation

f eddy size parameter

-o inner scale of turbulence

M separation between grid cylinders

m,n numerical constants

P acoustic power

PO acoustic source power

q wind-tunnel dynamic pressure

R ratio of grid cylinder diameter to distance between grid and transmission path

'F a displacement vector

r1 a position vector

S = 2L cos
2

T temperature

T, a temperature constant

U* friction velocity

V scattering volume

4



V mean flow velocity

y = sin 0
2

K

o 2k

a attenuation coefficient

ac classical absorption coefficient

am molecular absorption coefficient

a s  coefficient of attenuation due to scattering

r gamma function

y = I2/3

AF fluctuation of function F about its mean value

AT 2  mean-square temperature fluctuation

Av 2  mean-square velocity fluctuation

0 Bragg scattering angle

9c  difference between true scattering angle and Bragg scattering angle

00 smallest angle through which sound of a given frequency will scatter when
encountering an eddy of a given size; defined by the Bragg condition

K Von Karman constant

acoustic wavelength

max maximum molecular absorption per wavelength

, ',4,r' coefficients of spectral density functions
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ID>(K) energy spectral density function for thermally induced turbulence

Wo angular molecular relaxation frequency

GENERAL DESCRIPTION OF ATTENUATION PROBLEM

A certain fraction of the power of an acoustic plane wave is lost by absorption mech-

anisms when the wave passes through a volume of air. The fractional loss in power is

proportional to the distance that the wave travels through the medium

dP = a dr (1)
P

where a is a proportionality constant. Figure 1 illustrates the general problem:

A

P P-dP

- dr -

Figure 1.- Plane wave attenuation through.a volume with

cross-sectional area A and thickness dr.

Consider a plane wave propagating vertically in the free atmosphere from an ele-

vated source such as an airplane which is at some height h. (The fact that plane wave

sources do not exist in nature will be supplanted with the usual plane wave approximations

with the tacit assumption that spherical wave corrections to the derived results, which

can be calculated in principle, are sufficiently small to be ignored to first order.) The

acoustic power reaching the ground can be computed by integrating both sides of equa-

tion (1), with the following result:

- ah dr
P = Poe 0 (2)

If the medium is homogeneous, a is independent of altitude and equation (2) reduces to

P = Po e - a h  (3)
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The attenuation coefficient a depends in a complicated way on meteorological

parameters and certain thermodynamic properties of the medium. A formula for this

coefficient, derived from thermodynamic first principles in the nineteenth century, was

found by Knudsen in 1931 (ref. 4) to be at least an order of magnitude too small to account

for the attenuation observed experimentally in the audio range. Such observations led

Kneser (ref. 2) to propose an additional attenuation mechanism involving the conversion

of acoustic energy into the internal vibrational energy of the medium's constituent mole-

cules. Thus, the absorption coefficient has been expressed as follows:

a = ac + am (4)

where, for a given frequency, the classical absorption coefficient ac depends primarily

on thermodynamic parameters and the molecular absorption coefficient am depends on

the concentration of impurity molecules such as H20.

The theory of classical plus molecular absorption has been shown to be in general

agreement with experimental results in the audio range for measurements made under

controlled laboratory conditions (refs. 3 and 12) but a number of measurements made out

of doors have revealed the existence of an additional source of attenuation. (See refs. 5

to 11 and 13 to 16.) That is, it appears that for outdoor measurements, equation (4) must

be modified to include a third term:

a = ac + am + a s  (5)

This additional attenuation (generally called the excess attenuation) has not been well

understood. There is no universal agreement even on the mechanism for the phenomenon,
since several possibilities exist, including refraction, interactions with suspended particu-

late matter or fog, scattering induced by turbulent density fluctuations, and certain anom-

alous vibrational relaxation processes yet to be defined.

A brief review of some experimental data is presented in the next section. Such a

review will be helpful in determining the most likely candidate for the excess attenuation

mechanism and will serve as an empirical guide for the formulation of an excess attenua-

tion theory.

EMPIRICAL DESCRIPTION OF EXCESS ATTENUATION

Observations on the magnitude of the excess attenuation coefficient as well as its

dependence on source altitude, frequency, and wind-speed gradients are discussed

separately.
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Magnitude

There have been quite a wide range of magnitudes reported for the excess attenua-

tion. In an experiment discussed in reference 17, Sieg measured the excess attenuation

of a sound wave propagating from a source 12 m above the ground to a receiver near the

ground and recorded values which were typically from 1 to 6 dB per 100 m. However,

since the receiver was located near the ground in these measurements, it is likely that

ground effects may have interfered with the measurement. It is therefore likely that the

values reported by Sieg represent an upper limit on the magnitude of the excess attenuation.

Ingard and Oleson (ref. 16) attempted to minimize ground effects by reversing the

experimental procedure of Sieg. A source was mounted near the ground and a series of

elevated receivers were arranged in a straight line oriented at an angle of about 10 with

respect to the horizontal. Although an excess attenuation was consistently observed,

typical magnitudes were smaller than those reported by Sieg.

Outdoor attenuation measurements conducted by Delsasso and Leonard (ref. 13) were

consistently found to exceed laboratory measurements by 20 percent to 80 percent. The

experiment was conducted over a horizontal propagation path extending across a valley

in the mountains of California where the source and receiver were at an altitude of approx-

imately 3 km and separated by a distance of about 2 km. Because the path length was so

long, the results of this measurement probably only represent the average of extreme

values for the excess attenuation coefficient along the path. Thus, it is reasonable to

expect a wider range in the magnitude of the excess attenuation coefficient than that

reported in reference 13. Furthermore, if the excess attenuation is due primarily to

turbulence, then the results in reference 13 probably underestimate the excess attenua-

tion for the case of vertical propagation paths, over which meteorological gradients are

much larger than those for horizontal propagation. The fact that turbulence levels

decrease with increasing altitude also suggests that the results of this high-altitude

experiment might represent a lower limit on typical excess attenuation magnitudes.

Beran et al. (refs. 5 and 11) studied the excess attenuation for a vertical propagation

path by using a fixed receiver on the ground and a sound source mounted in a descending

glider. Their results varied in magnitude from 0.01 to over 10 times greater than the

classical plus molecular absorption. In a similar experiment in which a propeller-driven

aircraft was used as a source, Benson et al. (refs. 7 to 10) reported an average excess

attenuation of about the same order of magnitude as the classical plus molecular

absorption.

Much of the available data on the excess attenuation have been supplied by the air-

craft industry in the form of reported discrepancies between attenuation values measured

in the field and published standard absorption values which are based on the classical plus

molecular absorption theory alone, augmented by laboratory measurements in still air.
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For example, Coles (ref. 14) has analyzed the results of about 250 aircraft flyover meas-

urements conducted by- Rolls Royce over a period of several years. He concludes that the

field data are substantially larger than theoretical predictions based on equation (4) and

that on the average, the theoretical predictions must be increased by a factor of from one

to two to bring them in line with the measured data.

Although the magnitude of the excess attenuation coefficient appears to fluctuate a

great deal from measurement to measurement, it is clear from the experimental results

reviewed here that, in general, the magnitude of the excess attenuation in outdoor sound

propagation is of the order of the classical plus molecular absorption.

Altitude Dependence

Two of the studies mentioned report data on the variation of the excess attenuation

with source altitude. The data in both reports indicate that the excess attenuation coeffi-

cient depends on source altitude.

It is reported in references 7 to 10 that the excess attenuation is more pronounced

near the Earth's surface than at higher altitudes. Figure 2, taken from reference 8, illus-

trates the altitude dependence of the excess attenuation schematically. The slope of this

curve at a given height represents the excess attenuation coefficient at that height. It

decreases with increasing height to a distance ho from the ground and remains almost

constant above that distance. The value of ho is given as approximately 200 m (600 ft);

this implies that the excess attenuation mechanism is active mainly below this altitude.

A

hh

Figure 2.- Schematic diagram of variation of excess attenuation

with altitude (from ref. 8).
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Although the dependence of the excess attenuation or source altitude was not dis-

cussed by Beran et al. (ref. 5), their data also indicate that the excess attenuation is

greater at lower altitudes than at higher altitudes.

Frequency Dependence

Because the magnitude of the excess attenuation coefficient fluctuates so much from

measurement to measurement even for a constant acoustic frequency, it is very difficult

to specify the exact frequency dependence. Beran et al. (ref. 5) observed that the fre-

quency dependence of the excess attenuation coefficient is weaker than the frequency

dependence of the classical plus molecular absorption coefficient, which depends on fre-

quency squared in the frequency range studied. Other observers also agree on the rela-

tively weak frequency dependence of the excess attenuation.

In figure 3, the average values of many measurements of the excess attenuation

coefficient are plotted against frequency to the one-third power. The data when expressed

1.4

1.3

1.2

1.1 0I..

1.0O

.9 -

.8
0
_ .7- o

Ca .6

.5-
E

t .3

0 I 2 3 4 5 6 7 8 9 10 II 12 13
f 1/3

Figure 3.- Variation of excess attenuation with frequency to the one-third power
(from ref. 8). as = 0.036fl/3 dB/100 m or O.llfl/3 dB/1000 ft.
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in units of dB/1000 ft fall on a straight line with a slope of 0.11 and lead to the following

empirical formula for the excess attenuation coefficient:

a s = 0.11fl/ 3 dB/1000 ft (6a)

where f is the frequency in Hz. These data are taken from reference 8. An equiv-

alent representation for this formula is

a s = 0.036f1/3 dB/100 m /(6b)

Windspeed Gradients

Ingard concludes in reference 19 that the excess attenuation depends on the

"gustiness" of the wind. When the windspeed is irregular, the excess attenuation is

generally higher than under calmer conditions.

A correlation between the excess attenuation and wind shear squared is reported in

references 5, 6, and 11. It is concluded in these reports that inertial scattering, closely

related to the energy input from wind shear, is the dominant excess attenuation mecha-

nism but that other effects can play a significant role in the case of low shear.

Figure 4, taken from reference 16, illustrates that the excess attenuation is some

nonlinear function of the mean windspeed. Since the magnitude of windspeed fluctuations

may be expected to depend on the mean windspeed, this figure also tends to indicate that

the excess attenuation increases with the irregularity (or "gustiness") of the mean flow.

a-
Mean windspeed

- 0
-C 5

CD mph mrn/s4-

oa 10-13 4-6
> -o 3-
> C 3-6 1-3

a 6-10 3-4

1 - 1-3 .4-1a ,o %_

- 0 1000 2000 3000 4000 5000 6000

Frequency, Hz

Figure 4.- Variation of scatter attenuation with frequency (after Ingard
and Oleson). DD denotes double distance.
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Effect of Time of Day

In at least one report (ref. 5), there are data presented which reveal a correlation

between the magnitude of the excess attenuation and the time of day during which the

measurement was made. The relatively small number of data points and the limited

range of meteorological conditions encountered in this experiment prohibit the results

from being conclusive, but in nine series of measurements conducted over a 4-day period,

the average excess attenuation at a given frequency was generally significantly greater in

the early morning than in the late afternoon.

Summary of Previous Experimental Results

The results of the experiments reviewed are as follows:

(1) In general, the excess attenuation has as much effect on the propagation of out-

door sound as the classical plus molecular absorption.

(2) The instantaneous value of the excess attenuation coefficient undergoes rapid

fluctuations over a wide range of magnitudes. The ratio of the excess attenuation coeffi-

cient to the classical plus molecular absorption coefficient can change by an order of mag-

nitude in the period of a few minutes.

(3) The excess attenuation coefficient is a function of altitude; it is larger near the

surface than at higher altitudes.

(4) The excess attenuation exhibits a weak frequency dependence. At least one

observer has noted a cube root frequency dependence. In any case, the frequency depend-

ence of the excess attenuation is much milder than the frequency dependence of the classi-

cal plus molecular absorption coefficient.

(5) There is a correlation between the excess attenuation and gradients in the wind-

speed. The more irregular the wind, the greater the excess attenuation; however, the

excess attenuation is nonzero even when the wind shear is negligible.

(6) The data from at least one investigation indicates a correlation between the

average magnitude of the excess attenuation and the time of day, larger values being

observed in the early morning than in the late afternoon.

POTENTIAL MECHANISMS FOR EXCESS ATTENUATION

An excess attenuation can be the result of a number of effects, including refraction,

ground attenuation, and interactions of the sound wave with turbulent density fluctuations

or suspended particulate matter, including dust, solid pollutants, and fog droplets. Some

molecular relaxation process, as yet not fully understood, may also be responsible for

some aspects of the phenomenon. These possibilities are considered separately.

12



Refraction

When the temperature of the atmosphere varies with height, the speed of sound also

varies and results in curved sound ray paths instead of straight-line ray paths. During

the day, the temperature usually decreases with increasing altitude. Sound rays which

would tend to propagate horizontally in the absence of thermal gradients bend upward and

this bending creates a shadow zone near the surface. At night, the thermal gradients

reverse direction and the sound rays tend to bend downward in a phenomenon called focus-

ing. Shadow zone formation and focusing also result from windspeed gradients. The

windspeed usually increases with height so that sound rays propagating against the wind

bend upward whereas sound rays propagating with the wind bend downward.

Under normal atmospheric conditions, vertical wind and temperature gradients are

generally much larger than horizontal gradients. Refraction effects are therefore much

more pronounced over horizontal propagation paths than over vertical propagation paths.

It is reported in references 7 to 10 that the excess attenuation is virtually independent of

propagation angle for propagation paths directed between 900 and 14.50 with respect to the

horizontal. This implies that refraction effects are essentially negligible except for near-

horizontal propagation.

After performing a Snell's Law analysis based on sound velocities extracted from a

measured vertical temperature profile, Beran et al. (ref. 5), concludes that in his excess

attenuation measurements, refraction effects caused a reduction in received energy of

less than 3 percent of the spherical spreading loss and was therefore too small to cause

the observed excess attenuation.

Thomson and Shapiro (ref. 18) report the results of a calculation in which the atmos-

phere is divided into five layers, each of which is assigned a different set of meteorologi-

cal conditions. The spectrum of perceived noise levels which would be received from a

reference spectrum generated at an altitude of 1000 ft (304.8 m) is calculated. The cal-

culation is repeated for a source height of 2000 ft (609.6 m). It is concluded in this report

that the errors due to ray-path curvature are smaller than the normal uncertainty asso-

ciated with precision field acoustic measurements, even for the most extreme meteoro-

logical profiles likely to be encountered in a vertical propagation experiment. The results

of the studies reviewed here imply that for the case of nonhorizontal propagation paths, it

is unlikely that refraction effects contribute substantially to the excess attenuation.

Ground Attenuation

Ground attenuation has the greatest effect on sound propagating horizontally and

near the surface. The magnitude of the ground attenuation depends on the acoustic imped-

ance of the terrain and, according to calculations discussed in reference 19, it is a maxi-

mum at frequencies for which the wavelength is on the order of one-half to two-thirds the

13



height of the source above the ground. This result implies that in the audio range ground

attenuation should make only a small contribution to the excess attenuation associated

with an aircraft flyover. The fact that Delsasso and Leonard (ref. 13) observed a large

excess attenuation over a wide mountain valley also suggests that ground effects do not

contribute substantially to the excess attenuation, since in this experiment the propaga-

tion path was far above the ground.

Effects of Dust

Henley and Hoidale (ref. 20) have studied the effects of suspended particulate matter

on sound propagation in the atmosphere and have concluded that although dust affects the

dispersion, under normal atmospheric conditions the attenuation due to dust is negligible.

This conclusion is supported by observations made in reference 5, in which an appreciable

excess attenuation was measured at a site remote from pollution sources and under gen-

eral synoptic conditions which led the investigators to conclude that dust concentrations

were not responsible for the observed excess attenuation.

Although suspended particulate matter in very high concentrations can have an

appreciable effect on sound transmission (ref. 21), typical atmospheric dust concentra-

tions are generally so small that it is unlikely that dust is responsible for the excess

attenuation.

Effects of Fog

A discussion of some of the observed effects of fog on sound transmission in the

atmosphere has been given by Ingard (ref. 19). A number of experimental investigations

are cited, the results of which indicate that sound is transmitted easily through fog. A

theory to describe sound attenuation due to fog has been put forth by Cole and Dobbins

(ref. 22) which predicts a relatively weak interaction under typical fog conditions in the

atmosphere. Data reported by Harris (refs. 23 and 24) indicate that molecular attenua-

tion for the case of sound propagating through saturated air is less than for the case of

sound propagating through less humid air. Thus, there are conditions when the attenua-

tion of sound can be less in fog than in clear air with a relatively reduced moisture

content.

Tyndall (ref. 25) attributed the ease with which sound propagates through fog as a

reflection of the relatively calm atmospheric conditions, devoid of strong wind and tem-

perature gradients, which generally accompany fog. In any case, there have been a suffi-

ciently large number of excess attenuation measurements made in the absence of fog to

eliminate it as the primary cause of the excess attenuation.

14



Relaxation Processes

Relaxation processes involving 02 vibrational resonances are primarily responsible

for the molecular absorption. The possibility that other relaxation processes might be

responsible for the excess attenuation is discussed in reference 15; however, the peculiar

altitude and frequency dependence of the excess attenuation, the strong correlation with

windspeed gradients, and the fact that a large excess attenuation is basically an outdoor

phenomenon all argue against this possibility.

Effects of Turbulence

As a sound wave propagates through a turbulent medium, it interacts with turbulent

density fluctuations in the medium. Local momentum fluctuations induced by eddy motion

cause changes in the local pressure which radiate away as a scattered acoustic wave.

This type of interaction is referred to as inertial scattering. Temperature fluctuations

in the atmosphere and local changes in the acoustic index of refraction caused by the

resulting density fluctuations are also responsible for scattering.

The effect of inertial and thermal scattering is to direct some of the incident acous-

tic energy away from the original propagation direction. There is no reduction in the

total transmitted acoustic power but that power is diffused over a wider area, with the

result that the received intensity along the original direction is diminished. There is no

way for the receiver to distinguish between this effect and a bona-fide absorption loss.

Turbulence is related to wind shear and "gustiness" which have been observed to

produce large increases in the excess attenuation (refs. 5, 6, 11, 16, and 19). The depend-

ence on height above ground also suggests a boundary-layer type of mechanism.

The small effects observed and/or calculated for the other factors and the positive

correlation between wind effects and the excess attenuation suggest that scattering due

to turbulence is responsible for most of the excess attenuation measured out of doors over

nonhorizontal propagation paths. The effects of turbulence on sound propagation are con-

sidered in more detail in the remainder of this report.

BRIEF REVIEW OF EARLIER THEORIES, FOUNDATION, AND APPROACH

Historically, the theory of sound propagation in a turbulent medium has advanced

along two parallel lines of development. In the first approach, the atmosphere is assumed

to consist of an ensemble of vortical eddies; for this medium the problem of acoustic

scattering reduces to an extension of single vortex theory to the case of multiple scatter-

ing among many vortical eddies. This approach is used by Lindsay (ref. 26) and Miller
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and Matschat (ref. 27) among others. In the second approach, turbulence is described in

terms of stochastic processes in the atmosphere in which such ensemble characteristics

as means and correlation coefficients play a central role. Among those workers who

have used this approach are Obukov (refs. 28 and 29), Batchelor (ref. 30), Kraichnan

(ref. 31), Pekeris (ref. 32), Blokhintzev (refs. 33 and 34), Tatarski (ref. 35), Kallistratova

(ref. 36), Kallistratova and Tatarski (ref. 37), Monin (ref. 38), and Lighthill (ref. 39).

The single vortex extension technique has certain disadvantages associated with it

which have retarded its application to the solution of "real world" problems. For exam-

ple, because of the computational complexities involved in a theory of multiple vortex

scattering, certain unrealistic assumptions must often be made about the uniformity of

the eddy sizes. The mean vortex radius, which is difficult to determine experimentally,

appears as a fundamental parameter in the theory. Furthermore, thermal scattering is

neglected; only the effects of velocity perturbations resulting in inertial scattering are

considered in the multiple scattering method.

Miller and Matschat (ref. 27) applied the single vortex extension method to derive a

formula for the excess attenuation coefficient which reduces to the following form for the

case of acoustic wavelengths that are small compared with the turbulence scale:

s = 20 1 - 2(log e) 2 Lk2  (7a)
c

or

-s 
= 3.156 2 Lk2  (7b)

This result is valid, according to the Miiller-Matschat theory, when the sound is propagat-

ing in a direction perpendicular to the vortex axes. Here, L is the mean vortex radius,

Av 2 is the mean-square turbulence velocity fluctuation, c is the speed of sound, and k

is the acoustic wave number. (In the notation of ref. 27, Av2/c2 is called M 2 , the mean

turbulence Mach number squared, and the symbol ra is used in place of L.)

Lighthill (ref. 39) used a more representative model for atmospheric turbulence in

which the assumption of a uniform eddy size is replaced with the concept of a spectrum of

eddy sizes. Starting from his general theory of aerodynamically generated sound (ref. 40),

he derived the following formula for the coefficient of attenuation due to scattering for the

case of isotropic turbulence:

a s = 2 Lk2  (8)
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where L has units of length and is a measure of the "width" of the main energy-bearing

eddies in the direction of propagation. (In ref. 40, L is called L1, c is called a, and

as is called P. The attenuation is expressed in terms of wavelength instead of wave

number in the original reference.) Batchelor (ref. 30) derived this same result by using

a different approach.

Chernov (ref. 41) considered the interaction of sound waves with thermally induced

refractive index fluctuations. Assuming an exponential form for the spatial correlation

coefficient describing these fluctuations, he derived the following result for the excess

attenuation coefficient:

8p 2k4L
3

s = 1 + 4k 2 L 2

where 112 is the mean-square departure of the refractive index from its mean value. It
-2

is shown by Buell (ref. 42) that pt2 - AT2  where T is the absolute temperature and
4T 2

AT 2 is the mean-square temperature fluctuation. If the wavelength of the incident acous-

tic wave is small compared with the turbulence scale L, then equation (9) reduces to

a T 2 Lk2 (10)

which is of the same functional form as the formula describing the coefficient of attenua-

tion due to inertial scattering (eqs. (7) and (8)).

The early theories which have been described briefly here all predict the same gen-

eral features for the coefficient of attenuation due to scattering; namely, it is a function

of turbulent velocity or temperature fluctuations in the medium and it is proportional to

a length scale which is in some sense a measure of the size of the turbulent eddies. Both

of these results are in harmony with intuitive expectations and the first agrees in general

with experimental observations. However, the square-law frequency dependence predicted

by these earlier theories is not confirmed experimentally and the observed excess attenua-

tion is much smaller than that predicted by equations (7), (8), and (10). For example,

Lighthill (ref. 39) compared his theoretical result (eq. (8)) with the experimental results

of Kneser, Knudsen, and others and found that it predicted an excess attenuation per wave-

length which would exceed the maximum measured molecular attenuation per wavelength

(attained at a frequency which depends on the moisture content, among other things) when

the mean-square turbulence velocity fluctuations exceed the rather modest value of

1.7 m/sec, even if the turbulence scale L were as small as one wavelength. The turbu-

lence scale is typically at least an order of magnitude larger than one wavelength for audio
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frequencies in the atmosphere. Therefore, the theory of Lighthill (and also those of

Batchelor, Miller and Matschat, and Chernov) predicts excess attenuation magnitudes

which are much larger than the measured values. As a further example, Ingard and

Weiner (ref. 43) compared the results of field measurements of the excess attenuation

with the Lighthill theory and noted that the observed excess attenuation was much smaller

than this theory predicts. It was also noted that the strong frequency dependence pre-

dicted in the Lighthill theory was not confirmed experimentally. The purpose of the

present study is to explain the experimental observations noted here and earlier in this

report.

Early advances in the statistical theory of turbulence eventually led to a scattering

cross-section formula developed by Tatarski (ref. 35) and further refined by Kallistratova

and Tatarski (ref. 37):

dm = 2irk 4V cos2E(K) cos 2 1 + 4(K) (11)d c2  2 4T2

This same result was derived independently by Monin (ref. 38). - The differential scatter-

ing cross section describes the fraction of the incident acoustic power scattered into a

solid angle dn by a volume V of turbulence, where E(K) and '4(K) are the spec-

tral density functions describing velocity and temperature fluctuations, respectively. The

spectral density functions depend on K, the turbulence wave number, where K = 2f/f

and f is an eddy size parameter. The scattering angle 0 is with respect to the direc-

tion of propagation; c and T are the speed of sound and the mean absolute temperature,
respectively. Equation (11) has been shown to agree satisfactorily with experiment (see

refs. 36 and 44 for cross-section measurements) and the calculations which follow are

based on this representation for the scattering cross section.

PRESENT DEVELOPMENT

Turbulence Model

Turbulence is very difficult to define succinctly except by its contrast with laminar

flow and there is no universally accepted model to describe quantitatively the details of a
turbulent medium. For the purposes of this study, it is assumed that turbulence in the

lower atmosphere (the first few hundreds of meters) has the following properties:

(1) The atmosphere is assumed to consist of an ensemble of turbulent eddies, each
of which is characterized by a length scale f which in some sense represents the size
of the eddy.
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(2) There exists a bounded spectrum of eddy sizes ranging from a minimum value

fo called the inner scale of turbulence, to some maximum outer scale size. The inner

scale depends on viscosity and the energy dissipation rate of the medium and is typically

on the order of a few millimeters in the lower atmosphere. The outer scale depends on

the synoptic climatology and also on the physical features of the local terrain and may

range in magnitude from tens to several hundreds of meters.

(3) The spectrum of eddy sizes is continuous between the inner and outer scale;

that is, there are no "forbidden" eddy sizes within the spectrum.

(4) Each eddy is classified as either a "small-scale" eddy or a "large-scale" eddy.

(The large-scale eddies are also called "outer-scale" eddies in this report.) The small-

scale eddies are basically homogeneous and isotropic whereas the large-scale eddies

generally are not.

(5) An eddy is called homogeneous if the mean values of the random meteorological

fields which characterize that eddy are constant and if the correlation functions describ-

ing those fields are insensitive to displacement within the eddy. A homogeneous eddy is

called isotropic if the correlation functions are also insensitive to rotations and mirror

reflections within the eddy.

At the onset of turbulence, energy is introduced into the medium through the largest

eddies by the effects of wind shear and convective heating. The large-scale eddies form

and transfer energy to smaller eddies. Energy continues to cascade in this manner to

smaller and smaller eddies until the inner scale is reached, where viscous effects cause

the energy to be dissipated.

The energy of a turbulence spectrum is described mathematically with an energy

spectral density function, generally expressed in terms of the so-called turbulence wave

number K, which can be related to the eddy size in the same way that the wave number

of an acoustic plane wave is related to its wavelength. This interpretation of the turbu-

lence wave number is somewhat intuitive but a more rigorous discussion of the concept

can be found in reference 39.

The form of the energy spectral density function cannot be uniquely determined for

eddies on the order of the outer scale (small K values) since the behavior of these

eddies depends on the local mechanisms responsible for introducing energy into the tur-

bulence spectrum and is therefore influenced by such factors as local climatology and

terrain roughness. For eddies which are small compared with the outer scale and large

compared with the inner scale, the spectral density function has been shown theoretically

and experimentally to have a K-11/3 dependence. This range of wave numbers is called

the inertial subrange.
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If the Reynolds number is large, as is generally the case in the atmosphere, the

inertial subrange is fairly extensive. (See ref. 35.) For example, measurements

reported in reference 45 reveal an inertial subrange covering five orders of magnitude

in K space. For K > 2//f o , the spectral density functions are known to fall off faster

than K-11/3 but because the small-scale eddies contribute so little to the total energy

of the spectrum, the assumption of a K- 11/3 dependence in this, the so-called dissipa-

tion range, is not a bad approximation, at least as far as the sound propagation problem

is concerned. In any case, it has been shown that eddies which are small compared with

half a wavelength of the incident acoustic plane wave do not affect the propagation of sound

significantly. (See ref. 39.) Therefore, the precise functional form for the spectral den-

sity functions for very large K is not important in this investigation. A typical spectral

density function is represented schematically in figure 5.

Input DissipationInertial subrange
0 range range

oc .

t I

z
100 101 102  103  104  105

K / Ko

Figure 5.- Energy spectral density function.

Theory

Consider a plane wave with wave number 1 incident on a turbulent eddy as in

figure 6. Some of the incident energy is scattered at an angle 9. The scattered wave

Eddy

Figure 6.- Scattering of sound by turbulence.
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has a wave number ks where, Doppler shifts being neglected, k I = It is custo-

mary to characterize a turbulent eddy by a vector K(O) which represents the vector dif-

ference between the incident and scattered wave number vectors:

K(O) = k - k5  (12)

Since l I = ikf, equation (12) can be shown to have the following form:

K = 2k sin 0 (13)
2

If the customary assumption is made that K can be expressed in terms of an eddy size

R in the same way that an acoustic wave number is expressed in terms of wavelength,
then equation (13) can be rewritten as

X = 2P sin 0 (14)

Equation (14) describes the angle through which an incident acoustic plane wave with wave-

length A will be scattered when it encounters an eddy characterized by a scale length P.

This is just a statement of the familiar Bragg condition which describes X-ray diffraction

in crystals. Thus, the scattering of sound by turbulence can be modeled as a Bragg dif-

fraction phenomenon in which the turbulence eddies form diffraction gratings in the atmos-

phere which are responsible for scattering the incident sound just as the atoms of a cry-

stal form the "diffraction gratings" which cause X-rays to scatter in a crystal. Because

there is a continuous spectrum of eddy sizes in a turbulent medium, the atmosphere is

really a continuous superposition of gratings, each with a different period f and each

responsible for scattering a given wavelength in a particular direction, according to

equation (14).

Equation (14) was obtained in a very general way, with no particular constraints

placed on the scattering eddy. However, it is reasonable to suspect the range of validity

of this result. The "atmospheric crystal" model might be expected to hold in the case of

small-scale eddies which are sufficiently homogeneous to have the same general effect on

an incident acoustic plane wave as crystalline atoms have on an incident electromagnetic

plane wave, but the crystal model should break down for the outer scale eddies, which are

patently inhomogeneous. Hence, although the Bragg condition may be valid for small-

scale eddies, it is unlikely that it is valid near the outer scale.

The remainder of this section is divided into two parts. In the first part, a homo-

geneous and isotropic medium will be considered in which the Bragg condition (eq. (14))

applies for all eddies, including those on the order of the outer scale. In the second part,
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a different medium is considered in which the conventional Bragg condition represents

only a first approximation to the scattering process.

(1) Homogeneous and Isotropic Turbulence

The scattering cross section (eq. (11)) describes the fraction of power scattered

into the solid angle d62 in the 0 direction for a given incident intensity I:

dP =I d (15)
d2 dQ

Insert equation (11) into equation (15) to obtain

dP = 2irk 4 IV cos2 ) cos 2  + T d (16)

Figure 1 illustrates a plane wave incident on a volume of air with cross-sectional

area A and thickness dr. If the air contains turbulence, then the reduction in power

suffered by the incident sound wave due to scattering is described by equation (16) where

V = A dr. The product of the incident intensity and the cross-sectional area of the turbu-

lent region is just the power P incident upon the volume A dr. Thus, equation (16)

becomes

dP = 21k 4 P cos2e cos 2  + -(K Jd2 dr (17)

Because of the azimuthal symmetry of the scattering process, the differential solid angle

dQ can be written as 2 T sin 0 dO and equation (17) becomes

dP = 42k4cos2 K) cos 2  + sin 0 dO dr (18)
P c 2  2 4T 2

Note the similarity between this equation and equation (1), which describes the general

absorption problem. If a plane wave is propagating from a height h, where its power is

Po, to a receiver on the ground, then the power reaching the receiver can be computed,

absorption effects for the moment being neglected, by integrating both sides of equation (18

with the following result:

P = Po exp h 47r2k4cos2 ) cos 2  + Ksin 0 d d (19)
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By comparing equation (19) with equation (2), it is clear that the coefficient of attenuation

due to scattering is as follows:

a s = 4 2 k4 cos 2 e0 cos2 + 4 d (20)

L c2  2 4T 2 _in 0 d (20)

where K is a function of 0. In an idealized medium, for which the Bragg condition

applies even to the outer scale eddies, K and 0 are related through equation (13).

It has already been stated that the small K functional forms of the spectral density

functions E(K) and cb(K) are not universal, depending as they do on local terrain con-

ditions and synoptic climatology. It is therefore impossible to arrive at a completely

general formula for the coefficient of attenuation due to scattering.by solving the integral

in equation (20); the integrand is slightly different for every special case. However, for

a turbulent medium such as the lower atmosphere, with an inertial subrange which is very

large compared with the range of large-scale eddies, it will be shown that to first order,

the coefficient of attenuation due to scattering is independent of the precise functional form

of the spectral density functions near the origin. It is therefore possible to evaluate the

integral in equation (20) without knowing the details of the spectral density functions for

small K. To see this, express the spectral density functions in the following general

form:

S K n  (K > KO) (21a)

E(K)K
['Km  (K ! Ko) (21b)

(K) K n  (K > Ko) 
(21c)

7 ,Km (K Ko) (21d)

Here, Ko represents some outer scale turbulence wave number which marks the

threshold between the inertial subrange and the range of large-scale eddies, as in fig-

ure 5. For K > Ko, the spectral density functions are understood and the unprimed coef-

ficients and n are therefore known. The primed coefficients and m describe the spec-

tral density functions near the origin. Their values depend on the local conditions respon-

sible for introducing energy into the turbulence spectrum and are therefore not universal

and are generally unknown.

The integral in equation (20) is evaluated in appendix A by using the spectral density

functions of equations (21). By assuming that the outer scale is large compared with a
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half wavelength and imposing some very mild constraints on m and n, the following

first-order result is obtained:

42k2K n+ 2

CIS +2) (22)
s= -(n+ 2) c 2  4T

Note that neither m nor either of the primed coefficients of equations (21) appear in

this result. Thus, the excess attenuation coefficient depends only on the large K form

of the spectral density functions.

Tatarski (ref. 35) gives the following formulas for the spectral density functions in

the inertial subrange:

11F(-)sin 'r 2

E(K) = 3 V K-11/ 3  (23a)
2412

( sin C 2
D(K) = \3 3 T K-11/3 (23b)

4 2

where C V and CT are called the structure constants for wind shear and thermally

induced turbulence, respectively. The constant n and the coefficients and 77 can

be determined by comparing equations (23) with equations (21a) and (21c):

11 ( sinr CV2
3= (24a)

24n 2

'()sin CT 2

= (24b)
472

n = - 1 (24c)
3
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When equations (24) are inserted into equation (22), the result is

s .ir(1T sin k2Ko5/3V2 + _ T2) (25a)

or, after combining the numerical constants,

= + 0.136 CT2 (25b)

Equations (25) represent a first-order formula for the coefficient of attenuation due

to scattering in a homogeneous, isotropic medium with a low mean flow speed for the case

of audio wavelengths which are small compared with the outer scale of turbulence. This

result does not depend on the details of the spectral density functions for small K, sub-

ject to some very mild conditions which can always be expected to be met for a physically

realizable turbulence spectrum. (See appendix A.)

One can compare the present result with the results of earlier investigations by

transforming equations (25) from a structure constant representation to a representation

in terms of wind and temperature fluctuations. Applying a method used by Strohbehn

(ref. 46) to the case of a homogeneous and isotropic spectrum of turbulence for which

equations (21) describe the spectral density functions, the structure constants C V and

C T can be expressed in terms of mean-square fluctuations in the windspeed and the

temperature, respectively. This calculation is performed in appendix B with the fol-

lowing results:

CV2 = (26a)
TI r(3)sin7

2/3 KT2
CT2 = 27K/ (26b)

3r( )sin 3
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Insert equations (26) into equations (25) to obtain

c 2  4T 2 /

The difference between this result and the earlier results of Lighthill (eq. (8)) and Chernov

(eq. (10)) is that the numerical coefficient in equation (27) is an order of magnitude smaller

than the corresponding numerical coefficient in these earlier results. This is consistent

with the experimental results of Ingard and Wiener (ref. 43) whose field measurements of

the excess attenuation were much smaller than the Lighthill theory predicts.

Ingard and Wiener also reported a milder frequency dependence than that predicted

by either equation (27) or the earlier excess attenuation theories. This observation,

which is also reported in references 5 to 11, 16, and 19, cannot be explained with the

simple scattering model considered. It will be shown in the next section that the exper-

imentally observed frequency dependence of the excess attenuation can be explained if

the Bragg condition (eq. (13)) is replaced with a more general expression relating the

scattering angle and eddy size.

(2) Extension of Model to Real Atmosphere

It has been assumed previously that the scattering of acoustic plane waves by

atmospheric turbulence is described by equation (13), the Bragg condition. The simple

model upon which this assumption is based is not likely to be entirely valid for the real

atmosphere, where the inhomogeneity and anisotropy of the outer scale eddies, fluctua-

tions in the size of the eddies, and other departures from the simple model considered

above influence the scattering process. It is appropriate to ask how the vector repre-

senting a scattered wave in the real atmosphere would differ from a scattered wave

vector in the ideal medium considered previously. The scattering process in the real

atmosphere may be represented by figure 7.

AK

Eddy

Figure 7.- Scattering by large scale eddy.
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In figure 7, k is the incident wave number vector, ks Is the wave number vector

which would describe the scattered wave if equation (13) were valid, and ks ' is the actual

scattered wave number vector. The angle Oc then represents the average difference

between the actual scattering direction and the scattering direction predicted by the con-

ventional Bragg diffraction model considered earlier. As can be seen in the figure, the

vectors R, K', and AR are related to the acoustic wave number vectors as follows:

S= k - ks (28a)

R' =R - AK (28b)

ZAK =k -ks' (28c)

Doppler effects being neglected, k = = .ks' = k. Therefore, With some manip-

ulation of equations (28), it can be shown that

K 2k sin (29a)

AK = 2k sin 0 c (29b)

K' 2 = K2 + (AK)2 - 2K AK cos 6 (29c)

It can also be shown that 5 is related to 0 and 0 c as follows:

cos 6=-cosl(O+c) (30)

Thus, equation (29c) becomes

K 2 = K2 + (AK) 2 + 2K AK cos( oc) (31)

By adding and subtracting 2K AK to the right side of equation (31) and employing some

trigonometric identities, one obtains the following result:

2

K' 2 = (K + AK) 2 - [2 sin 2  KAK (32)
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or, inserting equations (29a) and (29b) into equation (32) and dropping the prime notation:

K2 = 4k 2  in + sin - 4 sin2  sinsin (33)
4 si 2 2 4sn 4 2

or

1/2

4 sin2/+ csin 2 sin O1
K=2k in + sin - 4 (34)

sin + sin

Equation (34) describes the scattering process in a medium for which equation (13)

is not valid. Measurements of the scattering cross section have agreed in general with

theories based on the validity of equation (13), for scattering angles as small as =100.

These measurements imply that the angle 0 c is small compared with 100. It will be

shown below that typical values for ec in the lower atmosphere are on the order of 10

or less. Therefore, equation (34) can be written to a very good approximation as follows:

K = 2k in + sin (35)

It is clear from equation (35) that even in a nonideal medium, the conventional

Bragg condition (eq. (13)) can be used to a good approximation to describe the scatter-
ing of sound through angles that are large compared with Oc, but for smaller scattering
angles, the conventional Bragg condition must be modified as in equation (35) to include
a term which depends only on the properties of the medium and is independent of the
acoustic frequency. This simple modification to the Bragg condition can account for
the mild frequency dependence which is observed in measurements of the excess

attenuation.

To see this, note that when K is equal to the Ko of equations (25), by equa-
tion (14), sin = sin - = k' where L is the outer scale length. Then, from

equation (35)

Ko = 2k + sin -c (36)
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When the integral in equation (20) is solved by using equations (35) and (36), the result

for small 0c is

s = 0.455 + 0.136 C-T2 /3i- + sin -5/3 (37)C2 T2)( 2

The angle 0c is in some sense a measure of the difference between the real atmos-

phere and the simple model upon which the development in the previous section is based.

If the Bragg condition were in fact exactly applicable to the scattering process, then 6c

would be zero and equation (37) would reduce to equation (35) (or, equivalently, eq. (27)),

for which case the excess attenuation coefficient would display the square-law frequency

dependence predicted by previous theories. If, however, the sin oc/2 term were on the

same order or larger than the r/kL term in equation (37), then the frequency dependence

would be much milder than the second power and would approach a cube-root dependence

for sufficiently large 0 c . For example, for a plane wave with a frequency of 2 kHz prop-

agating in a medium where L has a value of 50 m, the 7/kL term has a value of

1.7 x 10 - 3 . Therefore, if Oc 
> 0.20, the sin Oc/2 term will be larger than the r/kL

term. That is, under ordinary conditions, if a sound wave is actually scattered in a direc-

tion which differs by as little as 0.20 from the direction it would have been scattered in

an idealized medium, then the frequency dependence of the excess attenuation coefficient

is much milder than the square law dependence predicted by earlier theories. This is in

fact what has been observed experimentally and reported in the papers discussed earlier

in the section entitled "Empirical Description of the Excess Attenuation," some of which

are discussed further in the next section.

APPLICATION OF THE THEORY AND A COMPARISON

WITH EXPERIMENTAL RESULTS

Equation (37) describes the excess attenuation coefficient in terms of the turbulence

structure constants, CV and CT, the angle 0 c, and a scale length L. It would be dif-

ficult to determine either 0 c or L experimentally and measurements of the structure

constants, especially CV, are difficult to perform. Without such data to support measure-

ments of the excess attenuation, it is difficult to confirm the present calculations conclu-

sively. However, it can be shown that equation (37) does in fact explain those experimental

observations reported earlier as well as some other experimental results to be discussed

subsequently.

29



To date there have only been a small number of propagation experiments conducted

over vertical transmission paths in the lower atmosphere and, to the author's knowledge,

only one of these had as its objective a systematic investigation of the excess attenuation.

This experiment, reported in references 5, 6, and 11, was conducted by Beran, Reynolds,

and Gething in Australia in 1969. A sailplane was used as a platform for a sound source

which consisted of a speaker mounted flush with the underside of the sailplane wing. The

glider was made to spiral down from some initial altitude above a receiver on the ground.

Each time the glider passed directly over the receiver, a tone was transmitted from the

speaker. The total attenuation was obtained as a function of source height and frequency

by measuring the difference in received sound pressure level between successive passes

of the glider as it descended. The classical and molecular absorption coefficients were

computed from meteorological data recorded by instruments carried on the glider. The

difference between the calculated absorption and the total attenuation above spherical

spreading was called the excess attenuation.

There were nine successful glider descents in this experiment with data recorded

at four frequencies over an altitude range of several hundred meters. The data were

reported in a graphical format. Figure 8 is a schematic illustration of a typical plot.

Absorption Total
attenuation

Attenuation

Figure 8.- Schematic representation of data from reference 5.

Both the computed absorption and total attenuation above spherical spreading are plotted

as a function of height for a given frequency and glider run. The difference between

these two curves represents the excess attenuation. The experimental data from refer-

ences 5, 6, and 11 have been reanalyzed for five source altitudes from 0.5 to 2.5 km in

multiples of 0.5 km. For each glider descent and for each frequency, the excess attenua-

tion was determined at the five selected source altitudes from the plotted data. (For this

purpose, a smooth curve was first fitted by eye through the data points representing the

total measured attenuation.) Then the average excess attenuation for a given source alti-

tude and frequency was obtained by averaging the results of all the glider runs at that alti-

tude and frequency. The average accumulated excess attenuation obtained in this way is
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given in table I as a function of frequency for each of the five source altitudes selected

for analysis. The uncertainty represents the standard deviation, in averaging over the

glider runs.

TABLE I.- AVERAGE ACCUMULATED EXCESS ATTENUATION (dB)

DATA FROM REFERENCE 5

Height, Average excess attenuation, dB, for frequency of -

m 750 Hz 1060 Hz 1600 Hz 2500 Hz

500 1.8 + 1.4 2.2 + 1.5 3.4 + 1.8 4.6 + 2.7

1000 3.6 + 2.0 4.9 + 3.0 8.4 + 3.4 9.2 + 5.1

1500 5.1 + 2.2 5.3 + 3.8 10.3 ± 4.8 12.3 + 2.8

2000 5.9 + 2.1 6.0 + 3.4 10.3 + 4.8 16.3 ± 2.5

2500 6.2 + 2.7 6.3 + 4.2 12.5 + 4.9 15.0 + 4.0

To compare these measured values for the excess attenuation with theory, it is

necessary to calculate the accumulated excess attenuation As by integrating equa-

tion (37) over the propagation path. For a vertical propagation path extending from

some source height h to the ground

A s = a C(r) dr (38)

where a s is given by equation (37). All the terms which describe the medium in equa-

tion (37) depend to some degree on altitude, but if one assumes the range dependence of

the temperature is weak compared with the range dependence of the structure constants

CV and CT, then it is only necessary to consider the range dependence of the structure

constants in performing the integration in equation (38). Tatarski (ref. 35) gives expres-

sions for the structure constants which display their range dependence explicitly. These

formulas, with some notational modifications, are as follows:

C 2 = 24/3T*2  (39a)
T r 2/3

CV2 b2u*2 (39b)

(Kr) 2 / 3
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Here, K is the Von Karman constant with a numerical value of 0.4 and a and b are

empirical constants with numerical values of 2.40 and 1.4, respectively. The quantity u,
is called the friction velocity and it depends on the surface roughness. Values of u, are
tabulated in standard meteorological references for different kinds of naturally occur-
ring terrains. The quantity T, is a temperature constant which undergoes seasonal

variations.

When equations (39) are inserted in equation (37) and the integral in equation (38) is

evaluated, the result is as follows. Values for the numerical constants have been com-

bined, along with a neper-to-decibel conversion factor:

2 2)( 0c- - 5/3As = 21.4 + 0.0693 - + sin k/3h/3 (dB) (40)

The glider experiment was conducted over what was described as a vegetated pad-

dock, and from a table in reference 47, a value for the friction velocity u, of 0.4 m/sec
was selected as representative of this type of terrain. According to Ingard (ref. 17), typi-
cal daytime values for the temperature constant T, range from 0.10 C in the winter to
0.50 C in the summer. Since this experiment was conducted in the summer (November in
Australia), a value of 0.50 C was selected for T,. With these values of u, and T,,
the method of least squares was used to determine the values of L and 0c for each of
the five source heights which gave the best fit of equation (40) to the data in table I. The
results of this analysis are presented in table II.

TABLE II.- RESULTS OF LEAST-SQUARES FIT OF

DATA IN TABLE I TO EQUATION (40)

Height, 0c' L,
m deg m

500 0.60 65
1000 .40 77
1500 .42 100
2000 .40 96

2500 .41 98

In figure 9, calculated values of As are plotted against frequency for the five
source heights by using values for 0c and L from table II. The discrete points
represent data from table I.
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Figure 9.- Variation of As with f (data from ref. 5).
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The large standard deviation in this experiment is typical of outdoor sound propa-

gation measurements and reflects the fact that the turbulence intensity at a given altitude

fluctuated a great deal between successive glider descents. The standard deviation illus-

trates the dynamic nature of the atmosphere which makes it difficult to conduct a system-

atic empirical investigation of the excess attenuation. Although the data are fairly coarse,

figure 9 indicates that the results of this experiment agree with the present theory within

experimental error. The outer scale lengths which give the best agreement between

theory and experiment are quite representative of the outer scale lengths which generally

characterize turbulence in the atmosphere and the 0 c values of best fit are small, as

expected. Also, the frequency dependence of the measured excess attenuation lies between

the second power and the one-third power, as predicted by equation (37).

The structure constants, C V and CT, were not measured in this experiment; how-

ever, there were measurements made of the wind shear, which is related to CV . Fig-

ure 10, taken from reference 5, is a plot of excess attenuation against wind shear squared

for three different frequencies. (In the original paper, data taken at 2500 Hz were also
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plotted but the quality of the 2500-Hz data was questioned.) These plots indicate that as

the square of the wind shear increases, the excess attenuation increases, but the fact that

the regression curves do not intersect the origin led Beran and his collaborators to con-

clude that other effects might play a dominant role under conditions of low wind shear.

This result is also predicted by equation (37). Because CV 2 /c 2 is generally of the

same order of magnitude as CT2/T2 in the atmosphere, the numerical factor of 0.136

in front of the temperature term in equation (37) causes the wind shear term to dominate

most of the time. Therefore, the excess attenuation usually depends in a relatively sensi-

tive way on the wind shear. However, the temperature term keeps the excess attenuation

from goin to zero as the wind shear goes to zero, and under conditions of very low shear,
CV CT 2

when << 0.136 , the excess attenuation will not depend as strongly on the wind
c2 2

shear. In fact, in Beran's experiment the fairly strong correlation between wind shear

squared and the excess attenuation was observed in all glider descents except one. For

that run, the wind shear was described as low to moderate and a fairly strong convective

activity was reported. Under such conditions it is to be expected that the CT term

would dominate the C V term in equation (37) and the excess attenuation would not

depend as strongly on wind shear.

The atmosphere is a very unsatisfactory medium in which to conduct a sound propa-

gation experiment because meteorological fields and turbulence conditions can undergo

severe fluctuations in relatively short periods of time in a way which cannot be controlled

by the experimenter. It would be much more desirable to conduct a propagation experi-

ment in an environment featuring turbulence conditions and meteorological fields which

the experimenter could alter independently. Such a controlled environment, while unat-

tainable out of doors, can be generated in the laboratory. The technique is to inject a

grid of parallel, cylindrical bars into a wind tunnel in which a laminar flow has been

established, and cause turbulence to be generated downstream from the grid. The scale

of turbulence at any point downstream from the grid can be altered by changing the grid

geometry (see ref. 48) and the turbulence intensity can be varied by changing the dynamic

pressure in the tunnel.

The scattering theory is not restricted to atmospheric turbulence but applies to

any turbulent medium with a low mean flow speed in which the acoustic wavelengths are

small compared with the outer scale of turbulence, provided the Reynolds number is

sufficiently large for the inertial subrange to occupy a fairly large part of the turbu-

lence spectrum. By using ultrasonic frequencies in a wind tunnel so that the ratio of

the turbulence scale to the acoustic wavelength is about the same as in an atmospheric

experiment in which audio frequencies are used, it is possible to perform a "scale

model" scattering experiment under controlled laboratory conditions. Such an exper-

iment has been performed by Schmidt and is reported in reference 49.
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The experimental arrangement in Schmidt's experiment is illustrated in figure 11.

An ultrasonic transmitter and receiver were mbunted in opposite walls of a wind-tunnel

test section 30 cm apart so that an acoustic signal traveling from the transmitter to the

receiver would travel across the flow. Each data point was taken in a two-step procedure.

First, an acoustic signal was transmitted through laminar flow to the receiver to establish

a reference sound pressure level. Then a grid of cylindrical bars was placed in the flow

upstream from the transmission path and the same signal was passed through the turbu-

lence induced by the grid. The signal passing through the turbulent medium suffered an

attenuation relative to the signal passing through the laminar flow. This excess attenu-

ation was due to the effects of the turbulence. (The temperature and humidity were unaf-

fected by the presence of the grid so that the molecular and classical absorption were the

same for both the laminar and turbulent cases.)

Schmidt's experiment was conducted to test the theory developed by Muller and

Matschat (ref. 27). This theory, which was discussed earlier, culminated in an expression

which reduced to equation (7a) for the case of sound propagating perpendicular to the eddy

axes with wavelengths small compared with the turbulence scale. For convenience, equa-

tion (7a) is repeated here

as 20(1 - )(log e) A v 2 Lk 2

Like the theories of Lighthill and Batchelor which are represented by equation (8),

the theory of Miller and Matschat predicts that the coefficient of attenuation due to inertial

scattering depends on the square of the acoustic frequency and on the mean-square turbu-

lence fluctuation velocity in the direction of sound propagation Av 2 . To test this depend-

ence, a series of measurements were made by Schmidt in which the acoustic frequency

and q, the dynamic pressure of the wind tunnel, were varied. The dynamic pressure is

proportional to the square of the mean flow velocity V, and V is proportional to the

mean turbulence fluctuation velocity, Av. Therefore, the mean-square fluctuation veloc-

ity is proportional to the dynamic pressure and, according to the earlier theories, the

Turbulence grid Sound receiver

Turbulent airE flow
E flow To blowerAir inlet (0 *

' 'Path of the sound pulses

Sound transmitter

Figure 11.- Arrangement for experiment of reference 49.
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excess attenuation should be directly proportional to qf 2 , where f is the acoustic

frequency.

The results of one series of measurements are presented in figure 12(a), which is

taken from reference 49. The grid cylinders were 0.15 cm in diameter and separated

by a distance of 2.50 cm in these measurements. The transmission path was 30.0 cm

long and located 5.0 cm downstream from the grid. For these turbulence conditions, the

excess attenuation increased linearly with qf 2 as predicted by the earlier theories;

however, the measurements began to deviate from this linear dependence at higher val-

ues of qf 2 when they were repeated under different conditions of turbulence. See, for

example, figures 12(b) to 12(d).

The earlier theories seemed to break down systematically, according to the follow-

ing scheme. The greater the ratio of the grid cylinder diameter to the distance between

the transmission path and the grid, the greater the deviation between experiment and

theory. This ratio is denoted by R in figure 12. The turbulence intensity is greater

near the grid than further downstream. (At a great distance downstream the turbulence

would all be dissipated and the flow would again be laminar.) The turbulence intensity

also increases with increasing grid cylinder diameter. (In the limiting case of zero cyl-

inder diameter, the flow would be laminar.) Therefore, the experimental results exhibit

the greatest deviation from the linear qf2 dependence when the turbulence intensity is

the greatest.

From the data presented in reference 49, it is not possible to tell whether the linear

f2 dependence is breaking down at high qf 2 values in figures 12(b) to 12(d) or whether

it is the linear q that is, Av2) dependence which is breaking down. To separate the

effects of varying q from the effects of varying f, the data from figures 12(b) to 12(d)

were analyzed in the present study as follows: First, the dynamic pressure, frequency,

and measured excess attenuation were tabulated for each data point. (The excess attenua-

tion was read directly from the ordinate axis of the graphs while the dynamic pressure

was computed by dividing the qf 2 abscissa coordinate of each data point by f2 , which is

given for each point.) In figure 13 the excess attenuation is plotted against frequency for

three different values of q. In figure 14, the excess attenuation is plotted against dynamic

pressure for various frequencies.

The data are much more illuminating when presented in this way. First, note that

in figure 13, the excess attenuation does depart from an f2 dependence and approaches

a weaker frequency dependence at relatively high frequencies. This high frequency depar-

ture from the f 2 dependence increases with increasing dynamic pressure. The excess

attenuation also departs from a linear q dependence at higher q values, as can be

seen in figure 14, and approaches a milder dependence on q than q to the first power.

The higher the frequency, the more pronounced this departure is.
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Figure 12.- Data from Schmidt (ref. 49).
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The excess attenuation theory developed in this report can explain the f-dependence

and the q-dependence which is displayed in figuires 13 and 14. First, note that in Schmidt's

experiment, there were no temperature-induced inhomogeneities in the wind-tunnel flow

so the CT term in equation (37) can be neglected

s = 0.455 k1/3k + sin 0- 5/ 3  (41)

Consider the frequency dependence which equation (41) predicts. If the frequency

is sufficiently low for the i/kL term to dominate the sin O0/ 2 term, then as will

approach a square-law frequency dependence. As the frequency is increased, the i/kL

term decreases and a s exhibits a weaker frequency dependence and approaches f1 /3

for very high frequencies. This is in fact what was observed experimentally, as may be

seen in figure 13; the higher the frequency, the milder the frequency dependence.

This trend is accentuated when the turbulence intensity is increased, either by

increasing the dynamic pressure q or by increasing the grid cylinder diameter D or

by decreasing the distance d between the turbulence grid and the transmission path.

When the dynamic pressure is increased or the propagation path is moved closer to the

grid, the sound beam encounters a flow field which is more irregular than it would encoun-

ter under milder turbulence conditions. The Oc term in equation (41) is therefore

increased. According to reference 49, the turbulence scale is related to the grid cyl-

inder diameter and the separation between the grid and the transmission path as follows:

L =0.125D 1 + 0.92 (42)
D

Increasing the grid cylinder diameter D therefore increases the turbulence scale. Thus,
the net effect of increasing D or q or decreasing d is to increase the sin 0c/2 term

in equation (41) relative to the 7T/kL term and thereby decrease the strength of the fre-

quency dependence. This is the result observed in Schmidt's experiment.

Now, consider how the excess attenuation depends on the dynamic pressure q. The

dynamic pressure is proportional to Av 2 as was stated above. For small q, the turbu-

lence field exhibits a very small departure from laminar flow and the 0 c term in equa-

tion (41) is small compared with the 7/kL term. As q increases, Av 2 increases

proportionately and therefore so does CV 2 , by equation (26a). Thus, for small q, as
increases approximately linearly with CV 2 (that is, with q) by equation (41). For

larger q, the flow becomes more irregular and the sin Oc/ 2 term in equation (41)

begins to have an effect. As q is increased, both CV 2 and 0 c increase but although
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increasing CV2 causes a s to increase, increasing 6c causes a s to decrease, with

the net result that at high q values, the rate of increase of a s with q slows down.

This saturation effect is the effect that was observed experimentally in Schmidt's meas-

urements, as can be seen in figure 14.

It may be mentioned here that Beran et al. (ref. 5) reported that the excess attenua-

tion increased as a nonlinear function of wind shear squared in his experiment and in com-

paring the results of field measurements with the theory of Lighthill (ref. 40), Ingard and

Wiener (ref. 43) reported a much milder dependence on wind effects than would be expected

on the basis of the Lighthill theory.

One of the objectives of the NASA research into the atmospheric excess attenuation

problem is to gain some detailed knowledge of the effect of turbulence on sound radiated

from an aircraft. An outdoor propagation experiment is reported in references 7 to 10

in which an aircraft was in fact used as the sound source. In this experiment, a propeller-

driven aircraft made a combination of level flybys and dive passes over a microphone

station on the ground. The experiment was conducted at two field sites, one at LaFox,

Illinois, about 40 miles west of Chicago, and one at a leased airfield about 25 miles west

of Phoenix, Arizona. Measurements at the Illinois site were made during the period of

July 1956 to October 1956, and measurements at the Arizona site were made during the

period of November 1956 to February 1957. The Arizona site was described as flat, with

sparse vegetation whereas the Illinois site was described as typical farm country with

corn growing along one side of the landing strip and the stubble from a harvested stand

of winter wheat on the other. The strip was overgrown with coarse grass 6 to 10 inches

high. Thus, measurements were made over a fairly wide range of meteorological and

terrain conditions. The 110 flights yielded a total of 40 000 data points for the flyby

data and 130 000 data points for the dive-pass data.

An excess attenuation was consistently observed in this experiment and when aver-

age values of the excess attenuation coefficient measured at both field sites were plotted

as a function of frequency to the one-third power, a linear relationship was observed.

(See fig. 3.) This linear dependence on f1/3 suggests that in this experiment the aver-

age outer length L or the average value of the angle 0c, or both, were sufficiently large

for the sin Oc/2 term in equation (37) to dominate the r/kL term to the extent that the

i/kL term could be effectively neglected. The slope of the curve in figure 3 is 0.11 and

thus equation (6a) is given in references 7 to 10 as an empirical formula for the average

excess attenuation coefficient (f in Hz):

-s = 0.11f1 /3 dB/1000 ft
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To compare this empirical result with the present theory, it is necessary to calcu-

late the average excess attenuation suffered by a sound wave propagating from a height

h to a height ho, as follows:

s = -h as dr (43)

where a s can be expressed in terms of u, and T, as was done above. When this

integral is evaluated, the result is

- 2.14 x 104 ( + 0.0693 T -- /3 sin-5/3 f 1/3 (44)

where, when all terms are expressed in English units, - is in units of dB/1000 ft. The

/kL term from equation (37) is neglected here.

In order for equation (44) to coincide with equations (6), the bracketed term must

have a numerical value of 0.11. Unfortunately, values for u, and T, were not

reported in references 7 to 10 nor is 8c known for this experiment. However, it is

possible to make reasonable estimates of u, and T, from a general description of

the experimental conditions and then compute the value of 0 c which gives the best

agreement between theory (eq. (44)) and experiment (eqs. (6)). It is found that a value

for Oc of 0.870 gives the best agreement when T, is estimated at 0.30 C and u, is

computed to be 0.7 m/sec. (According to ref. 47, the friction velocity u, can be esti-

mated as approximately 12 percent of the mean windspeed for relatively rough terrains.

This is how u, was estimated in this calculation.) The value of 0.870 for 0 c is in

good agreement with the values of 9 c which best fit the present theory to the data from

the glider experiments of Beran and his collaborators (refs. 5, 6, and 11). See table II.

It is reported in references 7 to 10 that the accumulated excess attenuation does

not increase linearly with source-receiver separation but instead appears to increase

logarithmically, as in figure 2. In this experiment, the accumulated excess attenuation

increases sharply with height to a height of about 200 m (600 ft). Beyond that, it increased

approximately linearly with height. Since the slope of the curve of excess attenuation

against height represents the excess attenuation coefficient, it is clear from figure 2 that

the excess attenuation coefficient is greater near the surface than at greater altitudes.
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This experimental result is explained by noting that the turbulence structure constants,

C V and CT, both display an r - 2/3 altitude dependence. (See eqs. (39).) If the tem-

perature does not change very much over the altitude range of interest, then the accumu-

lated excess attenuation, obtained by integrating equation (37) over the propagation path,

will display a cube root source height dependence as in equation (40).

In figure 15, equation (40) is plotted against h for a frequency of 1 kHz. The gen-

eral shape of this curve is the same as in figure 2; it increases relatively steeply below

about 200 m (600 ft) and then appears to increase nearly linearly with height above that.

Thus, equation (40) predicts the general source height dependence which was observed

experimentally.

The purpose of developing the excess attenuation theory in this report is to provide

an improved scheme for correcting raw acoustic field data for atmospheric effects. The

data in figure 16 are taken from reference 15 and represent a composite of the total meas-

ured attenuation coefficient as a function of frequency for several sets of field data accu-

mulated under different average meteorological conditions and from different sources

listed in reference 15. The dashed line represents the theoretical curve for the classi-

cal plus molecular absorption and the solid line represents the theoretical curve for the

10

8

6

2

0 100 200 300 400 500 600 700 800
h, meters

Figure 15.- Variation of excess attenuation with height (theory).
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total attenuation, including both the absorption effects and the excess attenuation as it is

described in the present theory.

Equation (37) expresses the excess attenuation coefficient in nepers/meter. In

order to compare the present theory with the data in figure 16, this formula is expressed

in dB/1000 ft as follows:

s= 602 + 0.136 Tk1/3 + sin 5/3 (45)

Measurements (unpublished) made by William Neff and John Gaynor of the National Oceanic

and Atmospheric Administration Wave Propagation Laboratory indicate that CT takes

on values in the range of a few hundredths to a few tenths OK/ml/3 in the lower few

hundred meters of the atmosphere and the vertical component of CV ranges between

0.01 m/sec and 0.5 m2/3/sec in the same region. For the purpose of making a compar-

ison between theory and measurement, certain values within these ranges were assumed

for the structure constants in equation (45) and the values of L and 0 c which give the

best fit of the data in figure 16 were determined by the method of least squares. The

humidity and temperature data represent average measured values for these parame-

ters and the turbulence parameters of best fit are given for each figure.

The molecular absorption coefficient is given in reference 5 as follows (with

notational changes):

am =  2maxf  (46)

27Tf o)

where f is the acoustic frequency, c is the speed of sound, wo is angular molecular

relaxation frequency, and tAmax is the maximum molecular absorption per wavelength,
which can be computed by the following formula from reference 15:

Amax = (0.079)(2239 2  e2239/T
(e2239/T - 1

where T is in kelvins. The molecular relaxation frequency wo depends sensitively on

the moisture content of the atmosphere and is given in reference 50 as
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o 1750h' + 61 400h' 1.12 + lOh' (48)
2 1r 10.4 + 10h

where h' is the ratio of water vapor pressure to barometric pressure. According to

reference 15, h' is related to the relative humidity H in the range of 00 C to 250 C

by the following relation:

h' H= (49)
(5.6)(30 -)e 

6 6  1

Equations (46) to (49) can be used to calculate the molecular absorption of a given fre-

quency from the temperature and relative humidity. The classical absorption can be

computed by the following expression, which is based on a formula from reference 15:

ac = 4.77 x 10-8(1 + 0.001T)f 2 dB/1000 ft (50)

where T is in OC and f is in Hz.

Equations (46) to (50) were used to compute the straight-line absorption curves in

figure 16 from temperature and humidity data. The curve for the total attenuation, which

includes the excess attenuation as well as the absorption, is computed from equations (45)

to (50). Note in figure 16, the classical plus molecular absorption theory does not ade-

quately describe the total attenuation which is observed in typical field data, especially

at the lower frequencies. When this absorption theory is augmented by the excess atten-

uation theory developed in this paper, the agreement between theory and measurement is

much improved.

DISCUSSION

The Angle 0 c

Equations (25) can be expressed in terms of a minimum scattering angle 0o which

has the following value according to equation (14):

00 = 2 sin -1 X (51)

where L is the outer scale eddy size. This is the smallest angle through which sound of

a given frequency will be scattered if equation (14) is valid. By equation (13),
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Ko = 2k sin 0- (52)

and equations (25) become

a =0.455k/3 0.136 T sin-5/3 (53)

If one assumes that the conventional Bragg condition (eq. (13)) is valid for all eddy sizes

including the largest eddies, then one is forced to conclude that the minimum angle through

which sound will scatter from a given eddy is inversely proportional to the acoustic fre-

quency and thus, that the minimum scattering angle 90 can be made arbitrarily small

by increasing the frequency sufficiently. This assumption leads directly to equations (25)

and the conclusion that the excess attenuation coefficient must display a square-law fre-

quency dependence. Note, however, that if the minimum scattering angle in equation (53)

were not a function of frequency, then the excess attenuation coefficient would display a

cube-root frequency dependence. Benson et al. (refs. 7 to 10) did, in fact, report a cube-

root frequency dependence for the excess attenuation measured out of doors. Further-

more, Schmidt's wind-tunnel data (ref. 49) show a square-law frequency dependence for

the excess attenuation coefficient under relatively mild turbulence conditions but the

strength of the frequency dependence in his data decreases as the flow becomes more and

more irregular and approaches a cube-root dependence asymptotically as the turbulence

is increased. (See fig. 13.) These experimental observations led the author to hypothe-

size that in a relatively irregular turbulence field, the minimum scattering angle is in

fact independent of the acoustic frequency and therefore that the conventional Bragg con-

dition (eq. (13)) does not adequately describe the scattering of sound in such a medium.

This hypothesis led to the empirical derivation of a modified Bragg condition (eq. (34))

which is expressed in terms of a frequency independent angle Oc . The angle 0 c can

be interpreted physically by comparing equations (37) and (53); thus,

00 = 2 sin-l( + sin (54)

As the acoustic frequency increases, the minimum scattering angle approaches 0 c
instead of zero. The angle 8c therefore represents the smallest angle through which

a sound wave will scatter in a medium for which the conventional Bragg condition breaks

down. The fact that this angle is independent of frequency leads to the relatively mild fre-

quency dependence which is predicted by equation (37) and which is observed experimen-

tally. In figure 17, equations (51) and (54) are both plotted against wavelength to compare

the two cases.
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Figure 17.- Variation of sin o/2 with wavelength for L = 50 m. ec from equation (54).

One of the difficulties with equation (37) is that it is hard to determine either L
or Oc by direct measurement. Note, however, that if either Oc or L were suffi-

ciently large, the F/kL term could be neglected in equation (37) and then the excess
attenuation coefficient would be essentially independent of L. Although there are not

enough available excess attenuation data to establish it conclusively, the mild frequency
dependence which is consistently associated with outdoor excess attenuation measure-
ments is a strong indication that for audio frequencies the sin Oc/2 term in equation (37)
does in fact dominate the r/kL term most of the time.

The 0 c parameter, although difficult to determine experimentally, seems to vary
over a fairly small range, judging from the little data that are currently available. Note,
for example, that the 8c values which best fit Beran's glider experiment data to the
present theory coincide very closely with the 0 c values which best fit Benson's aircraft
flyover data to the theory, even though the two sets of data were taken over 10 years
apart, in different parts of the world, and at different times of the year. It is possible
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that the 8c parameter depends in some way on the general terrain features and wind

conditions, just as the friction velocity u, does. Perhaps as more excess attenuation

data becomes available, it will be possible to tabulate typical values for 0 c correspond-

ing to different types of terrain, just as had been done for the friction velocity.

Limits of Applicability of Theory

The calculations performed in this paper are based on the Kalistratova-Tatarski-

Monin representation for the scattering cross section (eq. (11)) and all the assumptions

which were made in deriving this result are inherent in the present theory. Among these

are the assumptions that the medium is inviscid, that the propagation process is adiabatic,

and that the scattering volume is large enough for turbulent fluctuations in different parts

of the volume to be statistically independent yet sufficiently small for the turbulence char-

acteristics to remain unchanged during the passage of a sound wave. This last condition

is called the frozen turbulence approximation and allows the temporal frequency depend-

ence of the spectral density functions to be ignored to first order. It is further assumed

that the acoustic wavelengths are small compared with the outer scale of turbulence and

that the mean flow velocity is small compared with the speed of sound. Finally, it is
assumed that the Reynolds number is sufficiently large to allow the inertial subrange to
occupy a large part of the turbulence spectrum.

Certain limitations originally ascribed to the cross-section formula by early workers
in the field have since been shown by those workers and others to be unnecessarily restric-
tive. For example, Tatarski originally derived the cross-section formula for a homoge-
neous, isotropic medium, but he later demonstrated that the derivation also applies to a
medium which is only locally homogeneous and isotropic. Kalistratova (ref. 36) originally
proposed a lower limit on the angular acoustic frequency of 104 sec- 1 for which the scat-
tering cross section could be considered valid, but Gething (ref. 51) has shown that this
lower frequency limit can be replaced by the assumption of a quasi-stationary turbulence
field. This is just an extension of the frozen turbulence assumption which requires that
the time derivatives of the correlation functions describing the turbulent fluctuations be
small.

The scattering cross-section formula was derived by using a perturbation technique
in which the density, pressure, entropy, and speed of sound were each represented as the
sum of a zero-order term and small perturbation terms of higher order which are due to
the acoustic disturbance. Terms of second order and higher were neglected.

Although there are several approximations and assumptions built into the excess
attenuation theory and the general scattering theory upon which it is based, each of these
approximations and assumptions can be expected to hold fairly well for the case of audio
frequencies propagating in the lower atmosphere. The fact that there is agreement within
experimental error between the scattering theory and experiment bears this fact out.
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Application of the Theory to the Solution of Aircraft

Noise Measurement Problems

NASA is interested in the excess attenuation problem because of the effects it has

on the precision with which aircraft noise can be measured in the field. Current data

acquisition systems are capable of measuring sound pressure levels with an absolute

accuracy approaching 0.1 dB, yet field data is seldom repeatable to this accuracy. The

typical decibel spread in field aircraft noise data is generally more than an order of

magnitude greater than the rated accuracy of the acquisition system, even when the

sound source conditions are the same and the same absorption corrections are made

for all the data.

One of the reasons for this relative lack of precision in "precision" aircraft field

measurements is that not all the atmospheric effects are accounted for in reducing the

data. Field noise data are generally supported only by measurements of mean meteoro-

logical parameters; the relatively rapid fluctuations in these parameters are not usually

measured. Although this "dc" meteorological support may be sufficient to account for

classical and molecular absorption effects, it is necessary to measure the "ac" compo-

nents of the meteorological fields to account for the excess attenuation. According to

observations discussed earlier, the excess attenuation generally has about the same effect

on sound propagation as the classical plus molecular absorption; thus, for the purpose of

supporting sound propagation measurements, it is just as important to measure fluctua-

tions in the meteorological parameters as it is to measure their mean values.

Federal Aviation Regulations Part 36 (ref. 52) (designated FAR-36), which pre-

scribes the noise standards and certification requirements by which the FAA aircraft

noise abatement regulatory program is implemented, provides detailed instructions for

normalizing raw acoustic data to reference mean meteorological conditions, but only one

brief paragraph deals with turbulence effects. This paragraph prohibits the taking of

aircraft flyover data for noise certification purposes when there are ". . . tempera-

ture inversions or anomalous wind conditions that would significantly affect the noise

level . . . ." The fact that there are no further guidelines in FAR-36 establishing which

effects are significant (or even what is meant by "significant") has limited the applica-

tion of this guideline to real-world measurement problems. In practical applications of

FAR-36, the assumption is necessarily made that the effects of atmospheric dynamics

are never significant, since a means for correcting raw acoustic data for these effects

has never been developed.

There is clearly a need for quantitative guidelines dealing with the effects of turbu-

lence on sound propagation to aid in the acquisition and analysis of aircraft noise certifi-

cation data and field noise data in general. One possible approach would be to require

that raw acoustic data be considered acceptable for conventional analysis only when
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the turbulence structure constants, CV and CT, are below some established upper

limit. These limiting values for CV and CT would define the levels of "significant"

turbulence. Another possibility is to correct for the excess attenuation by normalizing

the raw acoustic data to some set of reference turbulence conditions in the same way that

absorption effects are accounted for by current data analysis techniques. Before any

effective guidelines can be established for correcting raw noise data for the effects of

atmospheric dynamics, more propagation measurements must be made which are sup-

ported by turbulence measurements.

Recent advances in remote turbulence detection techniques have made data on atmos-

pheric dynamics much more readily available than in the past, when such data were only

available from in situ point sensors. One of the most promising remote turbulence detec-

tion techniques is acoustic radar, which operates in much the same way as conventional

electromagnetic radar systems do. A high-intensity pulse of sound is directed into the

air and echoes are produced when some of the sound scatters from atmospheric turbu-

lence. The intensity of the received echo is proportional to the turbulence structure con-

stants, CV and C T . The time of return for the echo is related through the speed of

sound to the altitude of the turbulence scattering center which caused the echo. Thus, it

is possible to profile the turbulence structure of the atmosphere along the entire propa-

gation path of a sound wave originating from a point within the range of the radar (typi-

cally approximately 2 km). References 53 to 59 deal with the construction and operation

of acoustic radar systems.

No matter what measurement technique is used, it is clear that measurements of

turbulence must be added to the spectrum of meteorological measurements which rou-

tinely support precision field acoustic data-acquisition activities. The attenuation due to

scattering, which is responsible for much of the total atmospheric attenuation, can only

be accounted for by monitoring the dynamics of the atmosphere.

CONCLUSIONS

The attenuation suffered by a sound wave propagating from an elevated source to

the ground in excess of spherical spreading losses and classical and molecular absorp-

tion effects has been studied. The principal findings of this investigation are summa-

rized as follows:

1. A nonnegligible attenuation in excess of classical and molecular absorption effects

has been consistently reported in sound propagation experiments conducted out of doors.

2. The magnitude of the excess attenuation coefficient has been reported to fluctuate

over a wide range of values, but under certain circumstances, it has just as great an effect

on sound propagation as the classical and molecular absorption.
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3. Failure to correct for the excess attenuation contributes substantially to the

relatively large standard deviation which usually characterizes outdoor sound propaga-

tion measurements.

4. Although there are other mechanisms which also play a role, the scattering of

sound by turbulent density and momentum fluctuations is a major cause of the excess

attenuation for the case of air-to-ground propagation.

5. The scattering of sound by turbulence can be interpreted as a Bragg diffraction

process if the conventional Bragg condition is modified by introducing a minimum scat-

tering angle which depends only on properties of the medium and is independent of the

acoustic frequency.

6. The formula for the coefficient of attenuation due to scattering in a turbulent

medium as is

= .455 + 036 2)k/ 3  + sin 5/3

where

CT temperature structure constant

C V  wind structure constant

c speed of sound

k acoustic wave number

L scale of turbulence in direction of propagation

T temperature

Oc  difference between true scattering angle and Bragg scattering angle

7. The frequency dependence of the excess attenuation lies between a square-law

dependence and a cube root dependence. For a homogeneous isotropic medium, the

excess attenuation depends on the square of the frequency, but for a medium with a more

irregular outer scale, the frequency dependence is much weaker. In such a medium, the
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frequency (f) dependence is very nearly fl/3 when the outer scale is large compared

with half an acoustic wavelength (the general case for audio frequencies in the atmosphere).

8. The reported nonlinear altitude dependence of the excess attenuation is attributed

to the decrease in atmospheric turbulence intensity with increasing altitude.

9. The correlation which has been reported between the magnitude of the excess
attenuation and windspeed gradients is due to wind-shear-induced energy input into the
turbulence spectrum.

10. A primary contributor to the excess attenuation observed under calm conditions
(low windspeed and small windspeed gradients) is the turbulence induced by temperature

fluctuations in the atmosphere.

11. In meteorological measurements which routinely support outdoor acoustic data
acquisition activities, only mean values for the meteorological parameters are recorded.
It is recommended that this meteorological data be augmented with turbulence measure-
ments in order to account for the attenuation due to scattering. Only by accounting for
the effects of atmospheric dynamics can the accuracy of outdoor sound propagation meas-
urements be made to approach the rated accuracy of state-of-the-art data acquisition
systems.

Langley Research Center,
National Aeronautics and Space Administration,

Hampton, Va., December 19, 1974.
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APPENDIX A

EVALUATION OF THE EXCESS ATTENUATION INTEGRAL

The excess attenuation coefficient is expressed as an integral in equation (20).

This integral is evaluated

a 4 T2k4cos2o - cos 2  + sin 0 de (Al)

Equation (Al) can be expressed as follows:

el s = 4r2k4(j + I4 ) (A2)

where

I1 =7 cos2 cos 2 1 sin 0 E(K) dO (A3)

and

12 = cos20 sin 0 (D(K) dO (A4)

Assume that K and 0 are related by the Bragg condition

K = 2k sin (A5)

Express the spectral density functions, E(K) and 4(K), as in equations (21) and intro-

duce the following change of variables:

y = sin (A6)
2
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APPENDIX A - Continued

Then, by equation (A5),

K = 2ky (A7)

and equations (A3) and (A4) become

I1 = 4 '(2k)m o (y - 5y 3 + 8y 5 - 4y7)ymdy

+ 4 (2k)n 1 (y - 5y3 + 8y 5 - 4y7)yndy (A8)
o

12 = 4'(2k)m o (y - 4y 3 + 4y5)ymdy

+ 47(2k)n S y - 4y 3 + 4y5)yndy (A9)

where

y K (A10)
o 2k

The integrals in equations (A8) and (A9) can be evaluated as follows:

(m+2 5ym+4 gym+6 m+8

1 = 4'(2k)m 5o o 4y
+2 m+4 + - 3 ° - - -

S2 m +4 m+6 m+8

12 - yn+2  5(1- yn+4 8(1- yn+6) 4(l- yn+8
+ 4 (2k)n - o o + + 6 (All)

n+2 n+4 n+6 n +8

2=m+2 4ym+4 4ym+6)

I2 = 4'(2k)mo +Yo
m+2 m+4 m+ 6/

1 -yn+2 4(1 -y yn + 4 )  4(1 - yn+6
+ 44(2k)n -o + (A12)

n+2 n+4 n+6
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APPENDIX A - Concluded

For audio wavelengths in the atmosphere, yo << 1. Therefore, those terms in

equations (All) and (A12) in which yo is raised to a nonnegative 'exponent are negligibly

small compared with those terms in which yo is raised to a negative exponent. If, for

example, m > -2 and -4 < n < -2, and assuming (' <  and i7' < 7), equations (All)

and (A12) reduce to the following:

4 (2 k)nyn+2 
_k-2Kn+

2

I=o ==-_ o (A13)
1 -(n + 2) -(n + 2)

4n(2k)nyn+2 
_k-2Kn+

2

12 = 0 7(A14)-12 (n + 2) -(n + 2)

Insert equations (A13) and (A14) into equation (A2) to obtain

4.2k2Kn+2(
a 0 o (A15)s -(n + 2) \c 2  4T

Equation (A15) is identical to equation (22).
K o

This result is valid for m > -2 and for -4 < n < -2, provided that yo << 1.
o2k

These relations are, in fact, very mild constraints which are almost always met. For

example, if the spectral density functions are to represent something physical, they must

be nonsingular at the origin; this means that m in equations (21) must be nonnegative.

The necessary condition that m be greater than -2 is therefore met for physically real-

izable spectral density functions. The value of n is known to be - 11 in the inertial sub-

range and since this value lies between -4 and -2, the constraint on n is satisfied.
Finally, the condition that K << 1 requires that the outer scale eddies be large com-

2k
pared with half an acoustic wavelength. This condition is almost always met for the case

of audio wavelengths in the atmosphere.
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APPENDIX B

A REPRESENTATION OF THE STRUCTURE CONSTANTS IN TERMS OF

FLUCTUATIONS IN WIND AND TEMPERATURE

The turbulence structure constants, CV and CT, can be expressed in terms of

fluctuations in the windspeed and the temperature, respectively, by applying a method

used by Strohbehn (ref. 46) to the case of a homogeneous and isotropic spectrum of tur-

bulence for which equations (21) describe the spectral density functions. Begin by con-

sidering a covariance function D(F) which describes a random function F(F). By

definition,

DF(F) = [F( 1) - F(fj)]E(rIl + F) - F(r1 + it] (BI)

where the bar represents an average value, _1 is a position vector, and rF is a dis-

placement vector. Define AF as the fluctuation of F about its average value:

AF = F(ir) - F(rl) (B2)

By equations (B1) and (B2),

lim DF(F) = (AF)2  (B3)
r-0

The covariance function describing wind fluctuations (which reduces to a simple

correlation function for zero mean wind) is related to the spectral density function for

wind fluctuations E(K) by a Fourier transformation. That is, if the random function

v(F) represents the fluctuating component of the windspeed, then Dv(F ) and E(K)

are Fourier transform pairs

+oo

E(R) = 1 5 Dv(F)e-iR. (B4)
(27)3 o_

and

+Oo

Dv(F) = 5 E(K)ei ' F dK (B5)
-064
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APPENDIX B - Continued

If v(F) is statistically isotropic, the vector notation can be dropped in equa-

tions (B4) and (B5), spherical coordinates can be-introduced, and the angular integration

can be carried out explicitly, with the following result:

E(K) = 1 rDv(r) sin(Kr) dr (B6)
2u2K 0

Dv(r) = 4 KE(K) sin(Kr) dK (B7)

By equations (B3) and (B7),

(Av)2 = lim 4_7 KE(K) sin(Kr) dr (B8)
r-O r

(Av)2 = 47r K2 E(K) dK (B9)

Insert equation (21a) into equation (B9) to obtain

(Av)2 = 45r O 'Km + 2 dK + 47r 5 Kn+2 dK (B10)

After integrating,

(Av) 2 = 47_ +3 3) (B11)
\m+3 n+3

By equation (24), n = - and equation (B11) becomes

Av 2 = 4 7(r o + ~ _K32/) (B12)
m6+ 3
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APPENDIX B - Concluded

In the atmosphere Ko is generally small compared with one and, as it is argued in

appendix A, m must be nonnegative. Therefore, the first term inside the parentheses

in equation (B12) is small compared with the second and equation (B12) becomes

Av2 6rK-2 / 3  (B13)

Let y = Ko2 / 3  Then, by equation (B13),

Av 2

6ff

By equations (21) (for K > Ko),

E(K) = yK2/3K - 1 1 / 3  (B14)

or

E(K) = K 1/3 K(K> Ko) (B15)

Equation (B15) is equivalent to equation (23a). Therefore,

11_ (8 s i n 
_ (Av)2Ko2 /3

24~r2 V 67

or

CV 2 = 4 7rK/3(AV)2 (B17)
11F sin 7

This is equation (26a). The transform relationship between the covariance function

describing temperature fluctuations and the temperature structure density function can be

exploited in a similar manner to express CT 2 in terms of (AT) 2 with the following

result:

S 2/nK3 (T)2
CT2 = (B18)

3r( sin
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