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DEVELOPMENT OF AN ANALYSIS FOR THE DETERMINATION OF

COUPLED HELICOPTER ROTOR/CONTROL SYSTEM DYNAMIC RESPONSE
PART I - ANALYSIS AND APPLICATIONS*
By Lawrence R, Sutton and Stephen A. Rinehart

Rochester Applied Science Associates, Inc.
SUMMARY

A theoretical analysis is developed for a coupled heli-
copter rotor system to allow determination of the steady-
state dynamic response behavior of helicopter rotor systems in
steady-state forward flight or maneuvers. The effects of an
anisotropically supported swashplate or gyroscope control system
and a deformed free-wake on the rotor system dynamic response
behavior are included in this analysis.

The analysis involves the utilization of a combination of
Laplace transform and transfer matrix techniques such that a set
of Laplace transformed equations in matrix form result which in-
clude interharmonic coupling of the blades due to the control
system and blade aerodynamic coupling. The solution of the matrik
equations results in the determination of the harmonic content of
the blade response; deflections, slopes, moments, and shears; and
of the control system response. The consideration of a deformed
free-wake requires an iterative procedure to be applied to the
fundamental analysis since the rotor system will respond to a
downwash distribution resulting in a modified downwash distribu-
tion on the rotor system. Wake-induced velocity influence co-
efficients and the initial nondimensionalized bound circulation
values necessary to determine the initial downwash distribution are
obtained from use of an existing free-wake analysis.

A digital computer program based upon the analysis developed
was executed for a swashplate controlled, articulated rotor
system in steady-~state forward and maneuver flight configurations
including a deformed free-wake to ascertain the viability of this
theoretical analysis. The dynamic response results obtained from
these calculations indicate that the coupled rotor system dynamic
response analysis provides an accurate and improved simulation of
a helicopter rotor system.

*PART 11 - Computer Program Listing 18 NASA CR-2453.



INTRODUCTION

In recent years the design of helicopter and V/STOL rotor
systems has required a more realistic representation of the
dynamic and aeroelastic behavior of rotor systems. The pre-
diction of rotor-induced aerodynamic flows has recently under-
gone extensive refinement, primarily due to the need for im-
proved predictions and to the development of large-—capacity
digital computer systems. The desire for increased performance
and other considerations have stimulated the development of im-
proved analytical tools for use in the design of helicopters. In
spite of the technological advances which have been accomplished,
helicopters continue to be limited in their operational envelope
often as a result of severe oscillatory airloads and rotor system
response. There still exists a need for a better understanding
of the causative physical phenomena for the behavior of fully-
coupled rotor systems.

The analysis which was developed and the computer pcogram
which resulted are a part of an increased effort to develop
better theoretical methods for the study of helicopter rotor
systems. Improved high-harmonic airloads determination alone
is of limited usefulness in blade response analysis unless
compatible blade models are employed in the dynamic response
computations. Inter-blade coupling due to the control system
and aerodynamic coupling can have significant effects on the
torsional dynamic response behavior of a rotating helicopter
blade. In order that the behavior of helicopter rotor systems
can be more accurately predicted, a theoretical analysis was
developed which includes the effects of; high harmonic airloads,
anisotropic control systems, interharmonic blade coupling, and
coupling of blade motions with a deformed free-wake,

SYMBOLS *

a speed of sound

a length of rigid rocker arm attached to mzﬁ
blade, positive if rocker arm aft of
quarter chord,m

*All units given in SI units but equivalent English units may
be used if applied to all definitions of program variables.

2



21, 51 (1)

{Bk,n

p (1)

k,n°m

'k,n]m .

(1)

Np

m

(1)

real time and Laplace transformed blade
transfer matrix associated with mass and

inertia effects for the iEE station on the

nEl blade

real part of a Np harmonic state variable
inboard of the iEE station

rigid offset of jEE linear spring swash-
plate attachment from neutral axis of ring
(positive if offset is toward the center
of ring)

real time and Laplace transformed blade
transfer matrix associated with a bend or
finite twist of a blade section

transfer matrix relating contribution to
the k-shifted state vector harimonic coef-
ficients at the inboard end of section i

of blade m from the n-shifted blade tip un-
knowns harmonic coefficients, where, for
example, a k shift denotes a harmonic
~k/rev. relative to the Np/rev. harmonic
(this double subscript notation denotes

the same form of relationship in other
arrays)

portion of final set of rotor and swash-

plate equations associated with the mEE

blade

matrix relating contribution to state

vector for the mEE blade at iEE blade

station from the control torque applied to
blade through rocker arm

imaginary part of a Np harmonic state vari-
able inboard of the iEE station
linear damper strength of jEE cyclic

spring-damper unit supporting the swash-
plate, N-sec/m



C

}

(1)

(i)

k,n" m

T,

lateral angular damper strength of jEE

cyclic spring~-damper unit supporting the
swashplate, N-sec/m

longitudinal angular damper strength of

jEE cyclic spring-damper unit supporting
the swashplate, N-sec/m

defines the blade chord at the ifl blade

station of the mEll blade

matrix relating contribution to state

vector at iE-Il blade station from the dis-
continuity in torsional deflection at the
pitch bearings

portion of final set of rcotor and swash-
plate equation coefficients associated

with the coupling of the mEE blade with

the swashplate response, defined by
Equation (150)

blade transfer matrix associated with a
lumped aerodynamic station, accounts for
periodically varying aerodynamic terms
involiving d/dt

harmonic blade transfer matrix associ=-
ated with lumped aerodynamic station
obtained by Fourier analysis of previous
variable '

total aerodynamic blade transfer matrix for

a transfer across the iEE station on the

mEE blade

lift coefficient

lift coefficient limit for special stall
model

lift curve slope at 0 radians angle of
attack

drag coefficient



cm
2D,
stalled

e

CGx

CGy

e

C!

d(let)’d(e't)

(g 3 (1)

k,n" m

(i)

{d} m

(i) ;5 , (1)
{da_} {dn} n

n m'

n~k,n m

two~dimensional stall limit moment

damper strength of collective spring-damper
unit supporting gyroscope,N-sec/m

lateral damping coefficient of gyroscope
foundation support, N-m-sec/rad

longitudinal damping coefficient of gyro-
scope foundation support, N-m-sec/rad

damper strength of collective (foundation)
spring~damper unit supporting swashplate,
N-sec/m

average of longitudinal and lateral gyro-
scope damping coefficient, N~m-sec/rad

lateral gyroscopic damping minus the longi-
tudinal damping coefficient /2, N-m-sec/rad
rigid offset of m—i_:-l'l control rod attachment
point from neutral axis of ring (positive
if offset is outward from center of ring),
m

definitions involving swashplate deflections
to reduce length of equations

matrix relating contribution to state vector

at iiz-—Il blade station from the discontinuity

in flap angle at the flap hinge

forcing function due tc aercdynamics at an
aerodynamic station

real time and Laplace transformed harmonic
aerodynamic forcing function obtained by
Fourier analysis of the previous variable

portion of final set of rotor and swashplate/

gyroscope equation coefficients associated
with coupling of the swashplate or gyroscope

response to that of the mEE blade, defined
by Equation (148)
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{Fk}*

{Ftk}*

blade transfer matrix of terms not multiplied
by a time derivative for an aerodynamic
station

real time and Laplace transformed harmonic
transfer matrix based on previous variable

blade sweep hinge radial offset, m

real time and Laplace transformed blade
transfer matrix associated with a massless
elastic section

local edgewise bending rigidity of iEE

blade section,N—m2

local flapwise bending rigidity of the iEE

blade section, N-m
bending stiffness of swashplate, N—m2

variable involving swashplate stiffness to
reduce equation length as defined after
Equation (37)

real time and Laplace transformed forcing
function due to the mass and inertial effects,
k subscript is added for shifted harmonics

steady forcing function due to mass and
inertia effects

amplitude of +1/rev forcing function due to
mass and inertia effects

amplitude of -1l/rev forcing function due to
mass and inertia effects

total forcing function effect in final
solution as defined by Equation (153)

total swashplate forcing function, always
zero
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totas blade forcing function in final solu-
tion representation and as defined in
Equation (154)

gravity constant, m/sec2

local torsional rigidity of iEE blade

section, N—m2
torsional stiffness of swashplate, N—m2

real time and Laplace transform version
of total section transfer matrix associated

with the iEE section of the mEE'blade

radial distance ( positive outward) of a
blade mass point from the origin of the
reference coordinate system at the rotor
hub when % and © are zero in value, m

distance of neutral axis ahead of pitch
axis assumed to be at quarter chord,m

total forcing function at the iEE station

of the mEE blade due to all outboard external

forces and moments

- imaginary number, V=1

orthogonal unit vectors for gyroscope in a

perturbed system

orthogonal unit vectors for the fixed; shaft,
swashplate, and gyrcscope systems

inertia dyadic of the gyroscope

orthogeonal unit vectors for the rotating;
shaft, swashplate, and gyroscope systems

orthogonal unit vectors in local blade

coordinate system at the :4'.-15--:tlw station
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Kl

lateral moment of inertia of gyroscope,
kg--m2

longitudinal moment of inertia of gyroscope,
kg-—m2

polar moment of inertia of gyroscope,

kg--m2

polar mass moment of inertia of a section
about the neutral axis, kg—m2

flapwise mass moment of inertia of a

section, kg-m2
edgewise mass moment of inertia of a
section, kg—m2

stiffness of collective spring-damper unit
supporting swashplate or gyroscope, N/m

average cyclic stiffness of the gyroscope,
N-m/rad

lateral minus longitudinal cyclic stiffness
divided by 2, N-m/rad

variable to reduce equation length as
defined after Equations (17) and (18)

variable to reduce equation length as
defined after Equation (157)

variable to reduce equation length as
defined after Equation (67)

variable to reduce equation length as
defined after Eqgquation (69)

variable to reduce equation length as
defined after Equation (69)



GX

GY

lateral angular spring stiffness of gyro-
scope support, N-m/rad

longitudinal angular spring stiffness of
gyroscope support, N-m/rad

stiffness of jEE cyclic spring-damper unit
supporting swashplate or gyroscope, N/m

lateral angular spring stiffness of jEE

swashplate or gyroscope support, N-m/rad

longitudinal angular spring stiffness of
th swashplate or gyroscope support, N-m/rad

stiffness of the control rod attaching the

mEE blade to the swashplate or gyroscope,N/m

stiffness of torsion spring, N-m/rad
stiffness of flapwise moment spring, N-m/rad
gtiffness of chordwise moment spring, N-m/rad

length of the aerodynamic field for the iEE

section if it has aerodynamics,m

length of massless elastic section, m

h

lift acting on the 18 section for azimuth-

al location denoted by k if aerodynamic
section, N

operator indicating Laplace transform with
respect to time t

mass of swashplate, kg

blade section mass, kg

moment acting on gyroscope from blade, N-m
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M

MM, ,T

Mass of gyroscope, kg

flapwise bending moment, edgewise bending
moment and pitching moment in a rotor
blade, N~m

azimuthal harmonic of bending moment in
swashplate, N-m

bending moment in swashplate, N-m
number of rotor blades

blade station immediately inboard of which
the rocker arm, pitch bearings, and flap
hinge occurs, respectively

number of concentrated supports below swash-
plate or gyroscope

maximum number of harmonics included for
interharmonic coupling

maximum number of blade loading harmonics to
be used

highest azimuthal harmonic of swashplate
deformation accounted for

harmonic response of interest

number of stations or segments into which a
blade is divided

centrifugal force components acting in the
local spanwise direction, N

real time and Laplace transformed counter-

part of force in control rod of the mEE

blade, N

column of blade tip unknowns and blade
discontinuities

variable involving swashplate stiffnesses
defined to reduce size of equations



distribution of forces acting on swashplate
in a downward sense, N/m

QEE fourier harmonic of the loading

column containing dependent variables of all
blades plus swashplate or gyroscope

blade radius from axis of rotation, m

position vector of blade attachment point
to the gyroscope

real time and Laplace transformed blade
transfer matrix associated with a rigid
massless segment-may be used for an offset
in neutral axis

column containing harmonics of swashplate

deflection or rigid body response of
gyrnscope

amplitude of a Np/rev variable of interest

at the iEE section

radius of gyroscope, m

radius of swashplate, m

row vectors having 12 elements, all of which
are zero except for a value of unity in the

~third, fourth, and eleventh positions,

respectively

complex number which is the Laplace trans-
form variable corresponding to time t,
rad/sec

variable to reduce equation size defined
following Equation (37)

portion of the final set of rotor and swash-
plate equation coefficients associated with
the swashplate impedance, defined by
Equation (147)
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{Sn}(;);{§h}(;) real time and Laplace transformed version
of the state vector at station i of the

ﬁEE blade, subscript n meaning the Laplace

transform variable s is replaced by s-ing,-
added to superscript denotes vector at
inboard end of section where + denotes
outboard
= 1 (Tip)
{Sn}m Laplace transformed state vector for n
shift and mEE blade consisting of all
twelve state variables

Laplace transformed modified state vector

for n shift and nEl blade consisting of

six non-zero tip state variables

= 1 *(Tip)
s 1,

[SK](;),[E?](;) real time and Laplace transformed version
of blade transfer matrix associated with
concentrated spring-damper unit (lead-lag
spring-damper unit) '

t time, sec

[Tk n] contains coefficients for final set of
! equations governing swashplate or gyroscope
response, blade tip unknowns and blade
discontinuities, defined by Equation (146)

T azimuthal harmonic of swashplate torque, N-m
SP torque in the swashplate, N-m

uo(t),ﬁo(s) real time and Laplacé transformed displace-
ment downward of swashplate base, m
u_,u.,u perturbation deflections of blade neutral
axis in radial, edgewise, and flapwise
senses, respectively, m

<
N

(1) induced velocity at iEE section if uniform
azimuthally, m/sec

12



V(Q't)

Vo
ij
(i)
Vz(t)
Vy,VZ,N

(v.)
vSP
(1)
vy(wk) A
(i)
vz(wk)

W(d),t)

displacement downward of swashplate as a
function of azimuth and time (referred to
fixed frame), m

induced downwash (inflow) velocity at the
iEE blade section and j-ti}-l azimuthal station,
m/sec

freestream velocity at the irf‘--}l section and

kEE azimuthal location, m/sec

azimuthal harmonic of v (6,t)

edgewise shear force, flapwise shear force,
and radial force in blade, respectively, N

azimuthal harmonic of VSP, N

transverse shear force in swashplate, N

chordwise and flapwise shear forces acting
at inboard end of section (i) at the
azimuthal position Yer N

Np/rev harmonic of the flapwise shear force
at the inboard end of section (i), N

real-time flapwise shear force at inboard

end cf section (i), N

gyroscope impedances associated with
asymmetry of support configuration

forward speed of helicopter, m/sec

displacement of swashplate as a function of
azimuth and time (referred to rotating
frame), m

azimuthal harmonic of w(¢,t), real-time and
Laplace transformed versions for swash-
plate, respectively
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Xac'Yag’ %ac
Xrlyr/zr

Xrb’yrb’zrb

""k'n
q, %

o=k ,n
d,2

|
=y

i
fo JB]

azimuthal harmonic of w(¢,t,), real time
and Laplace transformed version for gyro-
scope, respectively

rectangular Cartesian coordinate nonrotating
shaft svstem

perturhed gyroscope coordinate system

rectangular Cartesian coordinate system
rotating about z,. axis at @ radians/second

local right-handed coordinate system attach-~
ed to blade, Yoy directed along chord,zrb

normal to blade

swashplate impedances associated with
asymmetry of support configuration

gyroscope impedances associated with

asymmetry of support configuration

complex function characterizing rocker arm
length and control rod retardation time

swashplate impedances associated with
symmetric properties of swashplate and its
support configuration

gyroscope impedances associated with
symmetry of support configuration

total blade section angle of attack at the
iEE section and kEE azimuthal position, rad

boundary condition array on blade root dis-
placements and slopes

amplitude of cyclic input, rad
lateral cyclic angle, rad

longitudinal cyclic angle, rad



Cg
B
g(o,t)
B, (t)
(1)
BNp
r
(1)
Tx
i
%5
s( )
(Tt s
—.flap
(T
-k, t, — %
(3, }mc t,{An}ﬁfea
— . *flap
(T
(BT, (TF,)
(a y)m
€ry
6
o(e,t)

shaft tilt angle, rad (n/2 for hover)

O,
cyclic phase angle, tan 1(__lc
ls

), rad

applied torque per unit length acting on
ring, N-m/m

Fourier harmonic of g(se,t), N-m/m

phase angle of state variable as shown in
Equation (167), rad

nondimensionalized circulation

circulation at the iEE section and kE-11

azimuthal position, m/sec

kronecker delta, equals unity if i=j,
equals zero if i#j

Delta function

discontinuity columns defined by Equations
(91), (87) and (89), respectively

discontinuity single element arrays defined
by Equation (95) with Laplace transform
variable shifted by -ing

discontinuities in blade torque, torsional
deflection and flap angle of mEE blade

distance of mass center of gravity ahead of
elastic axis, m

azimuthal independent coordinate for swash-
plate unknowns referred to fixed frame of
reference, rad

local bending slope of elastic ring repre-
sentation of swashplate, rad
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6 collective pitch, rad

c

Oﬁ(t) Fourier harmonic of o(s,t), rad
- XXX S ses s : . .
k,n}m initialization array with xxx superscript

equal; c.t. , fea , and flap ; correspond-
ing to control torque, feathering angle,
and flap angle, respectively, as defined

by Equation (96) for harmonic k and shifted

by -ing
Tip .  q s N
[A]m 12 by 6 matrix utilized to eliminate zero
value tip variables
u mass per unit arc length of swashplate, kg/m
0 air mass density, kg/m?3
n Pi, 3.1415927
[o] wake-induced velocity influence coefficient
matrix
o(e,t) applied moment per unit length acting on
swashplate, N-~m/m
Gl(t) Fourier harmonic of o(6,t), N-m/m
T damper time constant associated with spring-
m . .
damper unit representation of control rod
connecting mEE blade to swashplate, sec
$,0,v finite angles defining orientation of blade
surface at an arbitrary radial point, ¢
corresponds to forward sweep, © corresponds
to downward coning, ¥ corresponds to nose-
up pre~twist and/or collective angle of
attack, rad
¢ azimuthal independent coordinate for swash-
plate motion referred to rotating frame of
reference, rad
elo,t) swashplate local twist, rad

®£(t) Fourier harmonic of ¢(¢,t), rad



]
o

phase angle of mEE blade (2n(m~—l)/Nb for

equally spaced blades), rad

perturbation on ¢ OF blade wrap—-up angle

on the mEE blade,.rad

perturbation twist, flapwise bending slope,
and edgewise bending slope respectively,
rad

gyroscope perturbation variables, rad
azimuthal angle of jEE spring-damper unit
suppeorting swashplate, rad

blade azimuth angle, measured from down-
stream position plus #/2 in direction of
rotation, rad

operating speed of rotor system, rad/sec

vortex interaction frequency

Subscripts and Superscripts:

i or (i)

3
L,n,p,9,k

m

c.t.,fea,flap

()

[ ]
{3

superscript denoting iEE blade station

counting inboard from tip to root, has
successive values from 1 to NS

index

indices used for harmonic number

index indicating mEE blade

employed as superscripts to indicate the
outboard and inboard ends of a blade segment
or radial station, respectively

employed as superscripts to indicate a
matrix product or state vector evaluated at

the control torque, pitch bearings, and flap
hinges, respectively

as in (r3) to indicate a row vector

indicates a matrix

indicates a column vector
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HELICOPTER ROTOR SYSTEM MODEL

The analysis to be presented is dependent upon the defi-
nition of the coupled helicopter rotor system model. Basically,
the rotor system configuration is comprised of a rotor consist-
ing of an arbitrary number of flexible blades, arbitrarily
located azimuthally, with either a flexible swashplate or gyro
control system. To provide model flexibility such that the
analysis will be applicable to various rotor systems, the re-

presentation of each of these major components consists of several
relevant characteristics.

The model of the blades comprising the rotor allows for the
inclusion of all blade characteristics believed to be significant.
For example, the blade model allows:

(a) arbitrary location of the blade elastic axis and
aerodynamic center,

(b) arbitrary location of center of mass relative to blade
elastic axis,

(c) arbitrary blade precone and presweep,

(d) arbitrary variable twist distribution,
(e) arbitrary mass and inertia distributions,
(f) arbitrary stiffness distributions,

(g} gyroscopic forces

(h) aerodynamic loading including damping,

(i) flapwise, chordwise, and torsional blade root restraints
ranging from rigid to fully articulated and, also,
blade root damping.

A lumped parameter approach to the modeling of the blades has been
adopted as a suitable means of representation of the blade distri-
buted properties.

The main component of the swashplate control system model is
represented by a flexible ring consisting of two parts which is
allowed to translate only along the shaft axis but may rotate
about two mutually orthogonal axes perpendicular to the shaft
axis. The upper portion of the ring is also allowed to rotate
about the shaft axis since it is attached to blade pitch arms by
control rods having both stiffness and damping characteristics.
The lower portion of this ring is supported by an arbitrary number

18



of supports which have stiffness and damping characteristics and
are attached to a ring allowed only translational motion in the
shaft direction (collective motion). The support for this final
ring has an arbitrary effective stiffness and damping value.
This final support is necessary since the collective stiffness
can be much lower than the cyclic stiffness of the control
system. Thus, by variation of stiffness and damping characteri-
stics of the supports involved any degree of anisotropic support
of the swashplate control system can be obtained. Additional
capabilities included in the swashplate control system model are
presented in a subsequent section.

The gyro control system model considers a rigid gyroscope
that is rotating about its center of gravity which is allowed to -
translate in the shaft axis direction. The gyroscope is supported
in such a manner that arbitrary lateral, longitudinal, and col-
lective stiffness and damping values can be associated with the
support system. The gyroscope is attached to the blade pitch arms
by control rods having stiffness and damping characteristics.
Additional information on this control system configuration is
presented in a subsequent section.

The general rotor blade coupling to a control system is
shown schematically in Figure 1, for a swashplate control system.
Also depicted in this figure are aerodynamic load points and
their attached trailing vortices representation and the relation-
ship between the rotating shaft coordinate system (r-subscripted)
and the nonrotating or fixed shaft coordinate system (f-sub-
scripted) which will be involved in the analysis to be presented.

GENERAL SOLUTION METHOD

In contrast to computation of blade response by use of normal
modes of free vibration as generalized coordinates, the method of
analysis that is used is based upon a direct inverse of a dynamic
matrix. This method eliminates the need for normal mode fre-
quency and mode shape information in determination of the dynamic
response of a helicopter rotor system and also eliminates various
engineering judgments such as the number and types of normal modes
which must be included to yield proper results. The development
of the dynamic matrix and its associated forcing function and
subsequent solution by taking a direct inverse is straightforward.
The basic method of solution can be easily adapted to provide
coupling of a deformed free-wake to the blade motions by an iter-
ative procedure.

The analysis for representing blade behavior in the dynamic
matrix generation is accomplished by application of a transfer
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matrix approach in the lumped parameter blade model. Basically,
the usual transfer matrix procedure consists of the following:

(a) a modeling procedure in which the distributed blade
properties are converted to a lumped parameter form
representing the blade as consisting of uniform
massless elastic beam sections, in tension due to
centrifugal loading with point mass, inertias, and
aerodynamics located at the ends of the massless
lengths,

(b} a process in which section transfer matrices associated
with successive sections of a blade and relating shears,
moments, slopes, and deflections at each end of the
section are multiplied together to form the transfer or
associated matrix for the total blade.

The transfer matrix procedure used in this analysis is a
modification of that outlined above. The usual transfer matrix
technique involves arrays of real numbers since the governing
equations from which the transfer matrices are developed are
ordinary linear differential equations with constant coefficients
and have no damping or gyroscopic terms. For natural frequency
prediction, the second time derivative may be replaced by the
negative of the natural frequency squared. However, for an
n-bladed rotor system which is subject to aerodynamic, gyroscopic,
and damping forces, the governing differential equations have
periodically varying coefficients such that it is no longer
possible to simply replace the differential operator by a natural
frequency term. By applying the Laplace transform to all wvari-
ables, including periodically varying coefficients and different-
ial operators, in the real-time transfer matrices, the transfer
matrices are altered to arrays of complex numbers. The process
of combining the complex transfer matrices to form the associated
matrix module representing the rotor blades is straightforward
but differs considerably from the common transfer matrix procedure
because of harmonic coupling introduced by the aerodynamic time-
varying coefficients.

Application of the modified transfer matrix procedure across
the blade sections from blade tip to blade root yields the de-
finition of the shears, moments, slopes, and deflections at the
blade root in terms of the corresponding unknown tip values.
Boundary conditions that are used in the generation of the final
blade governing equations require that the shears and moments at
the blade tip be zero and that the slopes and deflections at the
blade root are zero,

The anisotropically supported swashplate or gyroscope control
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system is represented by analytical expressions for the control
system motion obtained from application of the differential
equations of continuity and eguilibrium to the control system
model. Since the blade and control system reference coordinate
systems differ, the resulting equations of motion which include
coupling to the blades thru the control rod forces are trans-
formed to the blade reference coordinate system to provide com-
patibility of force application. Also, the control system equa-
tions of motion are Laplace transformed to replace differential
operators with a complex number representation compatible with
the blade analysis.

The control system equations and the blade equations re- -
sulting from application of blade boundary conditions are used
to construct a dynamic matrix and a forcing function column.
The solution for the unknown tip quantities and the control system
unknowns is obtained by multiplication of the forcing column by
the inverse of the dynamic matrix. From a knowledge of the blade
tip unknowns the transfer matrix procedure is repeated across the
blade sections to obtain the radial distributions in complex
number form representing both amplitude and azimuthal phasing
for shears, moments, slopes, and deflections. This method of
solution obtains the blade response by harmonics of the rotation-
al speed where the value for the Laplace transform variable de-
termines for which harmonic the analysis 1is being solved. The
total real-time radial and azimuthal distributions of a dynamic
response variable is obtained by a proper summation of harmonic
components of that variable.

A general representation of the solution method without free-
wake coupling included is presented in flow chart form in
Figure 2. The notation,"intermediate terms", denotes terms that
are not a function of the Laplace transform variable and there-
fore need not be recalculated for different harmonics of dynamic
response., Downwash velocities may be taken as uniform, radially
varying, or both radial and azimuthally varying in this solution
form in which the blade response includes downwash velocity
effects on the aerodynamic terms but coupling of the free-wake
and blade motion is not allowed.

Deformed free-wake effects on the helicopter rotor system
dynamic response are included in the analysis by modifying the
solution method to include an iterative procedure which couples
the free-wake to the blade motions. The iterative procedure
developed requires the execution of a free-wake analysis program
(wake geometry program) developed for reference 1 but a similar
free-wake analysis program could be substituted if it provides
the necessary information. The wake geometry program with
flapping and cyclic blade positions defined from either an airloads
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calculation or experimental values uses a real-time analysis to
generate a fully deformed free-wake corresponding to the blade
positions. In addition, the wake-induced velocity influence co-
efficient matrix, [c], and the nondimensionalized bound circula-
tion distribution, {I'}, are determined and available for use in
the dynamic response iteration procedure.

The o's and I''s from the wake geometry program are used to
determine the initial wake~induced velocity (downwash) at the
blade radial and azimuthal loading points (i. e. [o] {I'} « {v}).
This initial downwash distribution is introduced into the aero-
dynamics analysis in which associated angles of attack and
resultant velocities are used to determine the harmonics of blade
aerodynamic loadings. With these loadings, the harmonics of
dynamic response including control system effects from steady
response up to the highest harmonic of response to be included in
the wake iteration procedure are determined., But the dynamic
response of the system includes blade motions which alter blade
aerodynamic loading. From consideration of the total shear re-
sponses acting on both sides of the blade aerodynamic load points,
radially and azimuthally located, a lift distribution can be
obtained which provides a new bound circulation distribution,
{r}. A new downwash distribution is obtained by use of the
initial wake-induced velocity coefficient matrix and the new
{r}. This new set of downwash values which includes coupling of
the free-wake to the blade motions is then inserted into the
aerodynamics analysis and the procedure repeated.

The procedure involved from one set of downwash values to
the obtaining of a modified set of downwash values (an iteration)
can be repeated until a specified maximum number of iterations
between blade circulations and blade motions are performed or
the values of blade circulations for successive iterations agree
to within a certain specified value (convergence criteria).
When either of these conditions occur, the harmonic content, in
complex form, of the blade moments, shears, slopes, and deflec-
tions along the blade and of the swashplate motion can be obtained.

A general representation of the solution method with free-
wake coupling to blade motions included is depicted in flow chart
form in Figure 3 where the segment with the notation,"dynamic
response segment"s represents operations which are part of the
basic solution method and is labeled on Figure 2. Aerodynamic
analysis must be included in the free-wake iteration solution
method.
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ANALYSIS

Derivation of the Governing Equations for an
Anisotropically Supported Gyroscope

In order to allow flexibility in the choice of control systems
which may be utilized in the analysis representing a coupled heli-
copter rotor system, the analysis for a form of a gyroscopic
control system is developed. This analysis provides the necessary
representation for the gyroscope control system behavior and for
the coupling which occurs between this control system and the
blade behavior.

Gyroscope control system model.- The model chosen for the
development of analysis representing a gyroscope control system
consists of a rigid gyroscope, which may be nonsymmetrical, that
is supported by a set of spring-damper units to allow anisotropic
support. In addition, the gyroscope is attached to the rotor
blades by flexible control rods having both stiffness and damping
characteristics. The complexity of the analysis is restricted by
assuming the gyroscope to be allowed only translational motion
of its center of gravity in the shaft direction and rotational
motion about three mutually orthogonal axes located at the center
of gravity. Analysis based on these assumptions should represent
the major portion of the gyroscope control system effects on the
blade dynamic response behavior.

Coordinate systems involved.- A development of analysis to
represent the gyroscoplc control system behavior requires the de-
finition of three mutually orthogonal coordinate systems. These
three coordinate systems consist of a fixed (stationary) system,

a rotating system, and a perturbation (local) gyroscope coordinate
systemnm.

The fixed gyroscope coordinate system is located in space
such that the gyroscope center of gravity location in an unper-
turbed situation (point O) coincides with its origin as shown in

Figure 4 where the fixed system unit vectors If, ff, and Ef corres-

pond to the x and z. axes, respectively. This fixed coordi-

£r Ygr £
nate system has its axes oriented in the same directions as the
shaft fixed coordinate system which will be used in later sections.
These two fixed systems are different in that their origin loca-
tions may occur at different positions in the shaft direction.

The rotating gyroscope coordinate system has the same origin
and z axis as the fixed coordinate system but its x and y axes
are rotating at a rotational speed of § relative to the fixed
system x and y axes. The rotating coordinate system axes and unit
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Figure 4. Coordinate systems and orientation
' relative to fixed coordinate system Ox

Yfl Zf‘
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vectors are denoted by r subscripts as shown in Figure 4. Also
shown in Figure 4 is a top view of the coincident x~y planes of
the fixed and rotating gyroscope coordinate systems from which
the rotating coordinate system can be seen to be related to the
fixed coordinate system by the coordinate transformation

el

1r cosqt sinQt 0 £
jr = |-sinQt cosqQt 0 Jg
kr 0 0 1 kf (1)

where t represents time and 9ot represents the instantaneous angle
between the two systems. The rotating gyroscope coordinate
system also exhibits the same relationship to the shaft rotating
coordinate system which will be used in later sections as was
noted for the fixed gyroscope system versus the fixed shaft
system.

The local gyroscope coordinate system, dG subscripts, has its
origin at the center of gravity of the gyroscope (point G) and
translates as the gyroscope translates. The Zaa axis always co-

incides with the principal axis of inertia of the gyroscope that
is perpendicular to the plane of the gyroscope. The other two
mutually orthogonal axes lie in the plane of the gyroscope such
that if the plane of the gyroscope is parallel to the rotating
coordinate system the x and y axes of the local coordinate system
would be in the same direction as the x and y axes of the rotating
coordinate system. This coordinate system is presented in general
concept with the other two coordinate systems in Figure 4.

The orientation of the local gyroscope coordinate system (XdG’YdG’

sz) relative to the rotating coordinate system (xr, Yo Zr) is
obtained by performing three successive orthogonal rotations; ¢,
r
¢, and 6, i on the rotating coordinate system as depicted in

yr iy

Figure 5. 1In terms of the unit vectors of the two coordinate
systems and the perturbation rotations relating these coordinate
systems, the relation of the local gyroscope system to the rotating
gyroscope system assuming small angle approximations is expressed
by the coordinate transformation
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Figure 5. Gyfoscope local coordinate system orientation,
slash marks refer to X,.,¥.~, and z axes,
respectively de’~deG a6



(T ) = (T
i 1 ¢ -6 (1
dac zr Yy r
*jdG* = -¢Zr 1 ¢Xr 13,
k - 1 k 12)
\ dGJ L ¢yr d)xr ] \ T °

1 1 ~4 0.1 [Tg6]
r z, Yy dG
43 ¥ == q) 1 -(‘) 3 ]
r z, X, ac
K - 3 1] |k
LX) L.¢yr X 3 t daGg) . (3)

Real-time analytical derivation.- The real-time analysis for
representation of the gyroscope control system requires the de-
velopment of the equations of motion of the gyroscope. These
equations of motion are developed considering the perturbation
rotation related equations to be independent of the translational
egquation of motion. In regard to the analysis presented in this
section; notation of the form, a, is used to represent the first
time derivative of the variable, a, and notation of the form,

a, is used to represent the second time derivative of the variable,
a. In addition, the time derivative of a vector guantity includes
a contribution due to the vector product of the rotational vector
and the vector -of interest.

The rotational velocity (angular velocity) vector of the ro-
tating coordinate system can be represented by

T=0 K . (4)

The angular velocity of the gyroscope is given by

- = — ° -r . * —
ngro oke + ¢Xr i+ ¢yr it e, ko (5)

referred to the Xor Yypr Z, rotating coordinate system or

0 = (¢, - 6. I+ (b, + o DI+ (5. + 0k
gyro X, y, 4G Y, x. ' -dG z. aG (6)
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as referred to the body local system of axes with the components
being along the instantaneous direction of the axes.

The inertia dyadic of the gyroscope at its center of gravity
G, referred to the axes X3’ Yag’ Z4c is

Toy Jac Jac * Igz Kag &

¥, =

¢ = Tox tag Iac *t 4G (7)

The angular momentum vector of the gyroscope at its center
of gravity (principal axes) is, from Equations (6) and (7)

= I, (¢ - ¢ Q)1 + I y(¢ i} + ¢Xrn)jdG + IGZ(Q + ¢zr)de

(8)

Referring to the Xt Yoo Z rotating coordinate system the angular

r
momentum is given by

Gy v, X, , Gz °r
* g, (0 4§, )R, | (9)
or rearranging
Lo = gy 0+ gy - IG;)Q¢ 11,
r r
[IGy ¢Yr + (IGY = Ig,) 00 r]Jr
+ [IGZ(Q + ¢Zr)]kr . (10)

31



Then, it follows that

. - o _— _ e
Lo = gy ¢xr t Ty ~ Tk IGy)Q¢yr Loy ~ Izl ¢xr]lr
; i . ) N
+ [IGy ¢yr + (IGy Io, IGX)Q¢Xr + (IGZ IGX)Q ¢yr]3r
+ [IGz ¢, ]kr . (11)

r

The moment acting on the gyroscope from the support system is

_ K + K'cos2qt —KﬁsinZQt (T&
M, =~ (4, ¢, ) _ .
’ r Yr |[-K'sin2qt i K - K'cos2nt I,
C + C'cos2ot ~C'sin2at T
L3 - r
r r |-C'sin2Qt C = C'cos20t Iy
C'sin2qt ~C + C'cos20ot| |T
Fale, b ) * (12)
£r Yy |T + C'cos20t ~C'sin2Qt 3
] r
K. +K K. -K C._+C,. C..=C.._
where K = .._.C:?E_z__..Gl. B K" = ...EEEET_G—Z- ; O 0= ._.%.33.2._91 ’ c' = ——g&z-—gy- ’
with KGx’ KGy being the lateral and longitudinal stiffnesses of the

gyroscope support system and C C being the lateral and

Gx" TGy
longitudinal damping coefficients of the gyroscope support system.
The moment acting from the blade on the gyroscope is
N

qu_—__.

m=1

|
o~

fﬁ X Pm(t)E¥ ’ (13)

or replacing Eﬁ_with its equivalent
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Ny

M = R, mzl P (t) [cos(s - b

)3, = sinCp, ~ ¢ 1T 1 (14)

where N, is tihne number of blades,
Pm(t) is the force in the mEE control rod,
R_ is the radius of the gyroscope,
o is the starting azimuthal position of each blade, and

) is the perturbation on o (blade wrap-up angle).

The governing equation of motion of the gyroscope for rota-
tions is

s o - -

Lo = M, + M . (15)
The governing equation of motion of the gyroscope for vert-

ical translation is

N

b
X
=+ K z_= - ) P_(t) (16)
G dt r =1 m

d2zr dz
M, —= + C

G ge2

where MG is the mass of the gyroscope,

K is the collective stiffness, and

Cq is the collective damping.

The final real-time equation of motion of the gyroscope rota-
tions is obtained in vector form by insertion of Equations (11),
(12) , and (14) into Equation (15) and replacing the sin(2qt) and
cos (20t) by their exponential equivalents. Since Equation (15)
must hold on a vector component basis, two expressions are obtained
by considering only the terms multiplying the I? and 3}, independ-

ently. The resulting real-time equations of motion for gyroscope
rotations are

. $ v ez, - 1,0 + kK 4R +R+T &
GX .2 Gz Gy 1 -1 3t | x
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+ [ Q(IGZ - IGX IGy) I + 1K, ~ iK -~ 0 CJ ¢yr
Ny,
= - V 3 - a
Rp L p_(t) sin(¢_ ¢mp) (i, terms) (17)
[-ae(zx. - I. -1I,) d_ 4 ig! - ix7! 4+ ¢ C]
2ils, Gy ex! g T ™ S| ¢xr
a2 1 -1 - =4
+ [T, — + Q2 (L, -~ 1 - K; - K . + K+ C 5
g at2 (g Gx! 1 -1 3% ! ¢yr
Nb _
= R, Z P (t) cos(¢ - ¢mp) (3, terms) (18)
m=1

where for convenience

Kg = o231t (g1 4 pocri 4+ %E)/z ]

The final real-time governing equation of motion for gyroscope
translation is obtained by rewriting Equation (16) in the form

Ny

o c + K) z. - Zl Pm(t) . (19)
t m=

d2
(MG —_— 4+ C

Q.-{‘Q:
ot

Application of Laplace transforms.- The final real-time gyro-
scope governlng equations are Laplace transformed to eliminate the
derivative type of representation and replace it with an alge-
braic form in addition to providing compatibility with the blade
equations which will be developed. In taking the Laplace trans-
forms of the governing equations of motion quiescent boundary

conditions are assumed and the following Laplace transformations
required:

(a) Lt [F(t)] = F(s),
(b) L. [F(£)] = s F(s),
(c) L, [F(t)] = s2 F(s)

t
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(@ o, [MF ry]
(e) L, [eiat é"(t)]

where F(t) is a function of time. With these definitions, the

Laplace transformed versions of the necessary equations can be
obtained.

F(s-ia)

(s-ia) F(s-ia)

The Laplace transformed versions of Equations (17), (19),
and (18) are

2 2 - = = - y :
[IGX s4 4+ Q (IGZ IGy) + K + C s] ¢Xr(s) + K1 ¢Xr(s + 21iQ)
+ K_1 ¢xr(s - 2iQ) + [Q(IGZ - IGX —IGy) s - 0 C] ¢Yr(s)
- » _— . . - — -S-Z
J.K1 ¢yr(s + 21iQ) + 1K_1 ¢yr(s 219)
Nb B
= - Rp mzl P,(s) sin (o - ¢mp) (20)
Nb ,
, = - - _ _
M, s z(s) + Cg s z(s) + K z(s) = ; Pm(s) (21)
[—Q(IGZ - IGy - IGX) s + QCl] ¢xr(s) - iKl ¢Xr(s + 2iQ)
: - 91 2 2 - 7 el -
+ 1K_1 ¢Xr(s 2iQ) + [IGy s + @ (IGZ IGX) + K + C s] ¢yr(s)

- Kl é. (s + 2iqQ) - K_1 ¢y (s = 21iq)
r r

b _
=R, ) P _(s) cos (¢ - ¢mp) (22)
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where for convenience

K

b =

(K' + bac'i + C's)/2

The control rod forces §m(s) couple the rotor blade motions

to the gyroscope motions. The relations expressed by Equations
(20), (21), and (22) are the objective of this section and will be
used in a later section of this report.

Derivation of the Governing Equations for an

Anisotropically Supported Swashplate

The form of control system utilized in the majority of heli-
copter rotor systems is of a swashplate type. In this section the
analysis for a general form of swashplate control system is de-

veloped.

This analysis provides the necessary representation for

the swashplate control system behavior and for the coupling which
occurs between this control system and the blade behavior.

Swashplate control system model.— Even though the basic swash-

plate model has been previously described there exist additional
model capabilities. The general swashplate control system model as
shown in Figure 6 consists of:

{1

(2)

36

a flexible ring having uniform mass consisting of two
parts which are allowed to translate only along the shaft
axis but may rotate about the mutually orthogonal axes
perpendicular to the shaft axis and where the upper por-
tion is also rotating about the shaft axis,

a set of supports which have stiffriess and damping
characteristics which allow anisotropic supporting of the
flexible ring and which may be attached to the ring an
offset distance from the ring radius,

a single collective support which has stiffness and damp-
ing characteristics in series with the previous group,

control rods with stiffness and damping characteristics
connecting the blades to the flexible ring and which may
be attached to the ring an offset distance from the

ring radius,

a collective base plate which is allowed to only trans-
late in the shaft axis direction, and

torsional spring-damper units which counteract the local
bending slope and twist of the ring at each azimuthal
location of the supports of (2) (shown on Figure 6 at



(4) 0
control
rod

representative
helicopter
blade

(2)
cyclic
spring-
damnper
unit

effective
attachment
point

H

(4)

A (forward)

(1)
uniform
elastic

\ ring

(5)
collective
base plate

(3)
collective
spring-damper

unit

t\\grow.ind

Figure 6. Swashplate system model
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only one location).

Due to the generality of the configuration various swash-
plate systems can be represented by- choice of the parameters
used in the swashplate control system analysis.

Coordinate systems involved.- Two mutually orthogonal co-
ordinate systems are utilized in the development of the analysis
representing the swashplate behavior. The first coordinate
system is a fixed (non-rotating) coordinate system whose orienta-
tion in space is identical to the shaft (hub) and gyroscope fixed
coordinate system. However, the origins of these three fixed
coordinate systems may be at different positions on the shaft axis
(shaft centerline)., 1In these systems; the y-axis is perpendicular
to the shaft axis and in a direction toward the nose of the heli~
copter, the x=-axis is perpendicular to the shaft axis and in a
direction toward the helicopter's starboard side (advancing blade
position), and the z—axis is coincident with the shaft axis. The
swashplate fixed coordinate system has been included in Figure 6.

The second swashplate coordinate system is a rotating coordi-
nate system whose origin and z-axis coincide with the swashplate
fixed coordinate system but is rotating at a rotational speed,

2, such that the same relationship between the rotating and fixed
swashplate coordinate systems exists as was depicted for the
gyroscope coordinate systems in Figure 4. The swashplate, gyro-
scope, and shaft rotating coordinate systems all have the same
orientation as a function of time.

Real-time analytical derivation.- The governing equations of
motion of an elastic ring in terms of variables which are defined
relative to the fixed swashplate coordinate system are used to
obtain a governing differential equation for deflection behavior
of the swashplate relative to the swashplate rotating coordinate
system. The final form of the governing equation can not ke ob-
tained without the use of Laplace transformations.

Fixed-frame governing equations involving loading functions:
The governing differential equations for motion of an elastic
ring involving variables which are a function of 8, the azimuthal
location of a point of interest on the ring relative to the
xf—axis, and time, t, consist of the equilibrium, stress-strain,

and strain-displacement equations:
sp
1 3V 32v (6, t)

Rsp 88 at?

- Q(elt) (23)
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1 sp T°P
= -V - = - g(8,t) (24)
R ’
sp  2° v Rep
P
1 5(TSPy M
e = = B(6,t) (25)
sp sp
1 3se0(e,t) _ _ 1 5(6.t) + sz
R 36 - R ’ EJ (26)
sp sp z )
1 3v(e,t) _
Rrp =5 = 0(8,t) (27)

1 9s¢(e,t) _ o(e,t) , TP

R 56~ R * &7 (28)
sp sSp t

where Vsp, sz, and T°P are shear force, bending moment, and torque,

respectively;
v(8,t) is the local displacement of the swashplate;
u is the mass per unit arc length of the swashplate ring;

0(6,t) and ¢(6,t) are the local bending slope and twist
angle of the ring;

RSp is the swashplate radius;
EJZ is the bending stiffness of the ring;

GJt is the torsional stiffness of the ring;

c(6,t) is the applied moment per unit length acting on
the ring;

B(o,t) is the applied torgue per unit length acting on
the ring; and

Q(e,t) is the applied force per unit length acting on the
ring.
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The effects of concentrated moments or torgques applied to the
swashplate on the swashplate behavior are incorporated in terms
appearing in Equations (24) and (25). The orientation of each
of the variables used in Equation (23) through (28) are shown in
Figure 7.

z
K~
vy (forward)
f
\ Q(e,t)
0
\

MZ,O,O(G,t)

T,2,8(0,t)

Figure 7. Coordinates of swashplate variables

The dependence of the governing swashplate partial differ-
ential equations may be removed by going to a Fourier transform.

s s
Since each of the quantities v(6,t}, ¢(o,t), 0(o,t), TSP, Vyp, and

sz are periodic with respect to 6, each of these variables satis-

fies relationships of the form exemplified by v(6,t) in the two
Equations, (29) and (30). ‘

v(e,t) = ] Vz(t)eiﬂe (29)
L=

- 00

27
1 ~ig6
Vl(t) = 5 [ V(B,t)e de (30)

0
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Thus, Equations (23) through (28) are multiplied by

e-lﬂ,e de

and the integration is performed over ¢ from 0 to 2r7. After using
the conditions of periodicity and the definitions exemplified by
Equation (30) above, the following set of ordinary differential
equations with time as the single independent variable result.

(v_) 32v (&)
i —=¥r o=y 2 g (4 (31)
. 2 Q, v
sp gt
M) T
i 2% = - (v -2 5 (e (32)
Y ¢ R L
Sp sp
T (M_)
. 2 2’ %
is = = x5 - Bz(t) (33)
sSp sp .
0, (t) o (&) (M)
i g = - 2 , (34)
sp sp Z
Vz(t)
if = 0, (t) , (35)
sp

®£(t) ez(t) T

i = + (36)
Rsp RSp GJt

The same set of equations are also obtainable by direct.substltuf
tion of variable definitions based on Fhe form of Equation (29) 1ni
to Eguations (23) through (28) and taking the equations correspond
ing to a specific value of .

Eguations (31) through (36) can be combined to construct the
followfng equation for Vl(t) in terms of the applied loading
variable harmonics.

32v%(t)
u +
ot?

F (1) _is
= v, (£) = 0, (8)

sp sp

Ul(t) + 8, B%(t) (37)
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where for convenience

a2 (a2-1)?2

F(a) =
1 a2
= + | R
GJt EJZ sp
and
2 ”
¢ - a (GJt + EJZ)
a 2
(a GJt + EJZ) RSp

When ¢ = 0 or +1, F(1} and Sz are zero and swashplate stiffnesses
have no effect on vz(t) since these are rigid body degrees of

freedom of the swashplate. During the manipulation of Equations
(31) through (36) to obtain Egquation (37}, additional equations
can be obtained to represent the remaining swashplate slopes,
moments, and shear variables in terms of the swashplate deflect-
ion and applied loading functions. These equations are

. i8S R
2
(v, =+ v ) - 2 FR (0 - o0 (37a)
2 RSp
22 (22-1) Rsp ,
(Mz)ﬁ = ————— Vy(t) + TN Bl(t) (37b)
RSPZ P, v t g
TQ, = }-—&-———Li-———llﬂ Vﬁ(t) + Ej‘“‘-—gﬁ Bﬂ,(t) (37¢)
Rsp P% t
R 2
3, (t) =8, v, (£) + gz—ab—p B, (¥) (374)
Mz t 2
0,(t) = ;“ v, (t) (37e)
sSp
where for convenience
1 zz]
P, = |== +
2 {GJt EJ )
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The variables defined by Equation (37) and Equations (37a)
through(37e) and the loading functions involved in these express-

ions correspond to the amplitude of the‘zzﬁ harmonic of the related
time dependent variable at the azimuthal position on the swash-
plate corresponding to the X axis of the fixed coordinate system

(6 = 0). However, in order to couple the swashplate motion with
the motion of the rotor blades, it is necessary to have both
motions determined relative to either fixed coordinate systems or
rotating coordinate systems. It has proven to be more convenient
to use the swashplate deflections measured relative to a rotating
reference frame corresponding to the blade rotating frame.

Governing deflection equation in rotating frame involving
fixed frame loading functions: By defining

w(g,t) = v(Qt + ¢,t) : (38)

where 2 is the operating speed of the rotor, the quantity w(¢,t) is
equal to the downward vertical displacement of the swashplate at
time, t, measured at an azimuth angle, ¢ radians, in advance of the
reference blade. This assumes that the reference blade makes an
angle ot with the x-axis as shown in Figure 6.

By exercising the Fourier representation as shown in Equation
(29)

wio,t) = J w,(t) et*?

f =m0

and

Vot + 6,8) = ) Vz(t) eil(9t+¢),.

fmme=co

Substitution of these expressions into Equation (38) and taking
advantage of the characteristic that the resulting equation must
hold for each harmonic

ei2(9t+¢) - ig¢

v, (t) W, (t) e

or in an alternate form

-i0t
\

L () (39)

Vz(t) = e

where
o2

w, (t) = %? £ wio,t) e ay . (40)
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The wz(t) deflections, defined at the reference blade posi-

ion as it rotates, will be the dependent swashplate unknowns from
this point on. Once these quantities are found, the actual swash-
plate displacements can be found from either of the following two
equations:

rotating frame

w, (£), (41)

non-rotating frame

vie,0) = | T g (g (42)

Substitution of the expression for v, (t) as given by Equation

(39) into Equation (37} and multiplying by the factor e 118t
the governing equation for each wz(t) which is

yields

3%w, (t) 3w (t) .
b2~ 2is0 .ﬁ-&-——— - 2202 w (£) | + F(%) W, (t)
3t? Rsp3
. .
= L0t 0, (E) - &= o, (£) + S, 8, (t)| . (43)
S

P>

Definition of applied loading function.—~ The harmonics of
swashplate loadings requlred by the right hand side of this equa-
tion can be obtained in terms of the swashplate dlsplacement,
twist, bending slope and colliective base deflection.

Recall that Ql(t) was obtained from the Fourier transform of
Equation (23) so that
27

{ 0te,t) e 140 44 (44)

I\J’I--'
=

0, (t) =
0

and similarily from Equations (24) and (25)
2T

o, (t) = %? [ o(o,t) e %0 g9 (45)

0
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and 1 2" -ige
Bl(t) = T B(o,t)e ds (46)

One contribution to Q(6,t) comes from the discrete forces due
to the rotating control rods which couple the swashplate with the
rotor blades. The other contribution comes from the forces in the
spring-damper units shown as item (2) in Figure 6.

A Dirac delta representation of the concentrated forces,
moments, and torqgues leads to the following expressions for
p(e,t), Q(6,t) and o(6,t);

Ny,
B(o,t = mzn P ()4 8(6 - at - ¢+ ¢mp)
. -
€.S. ) 3
+ jzl §(6 - xj)bj (fkj + cy = ) d(e,t)
N
.S, : 3 ,
- jzl s(g - Xj)(k¢5 + c¢j =) o(6,t) (47)
Ny ; .
a(e,t) = mzl Palt)s(e = at ~ o+ ¢ )
N
C.S. 5
- j__z_l s(o - xj)(kj + e, sg)  d(e,t) (48)
and Ne.s. P
o(o,t) = - .z 6(6-xj)(ke' + oy EE) o(e,t) (49)
j=1 3 j

where d(o,t) = v(e,t) - bjé(e,t) - ug(t),
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Nb is the number of blades,
Pm(t) is the force in the mEE control rod,

d is'the rigid offset of the mEE control rod attachment
point from the neutral axis of the ring, positive outward,

o = iﬂ%llgl for equal spacing between control rods,
b
) = blade wrap-up angle,

N, o is the number of spring-damper units directly
supporting the swashplate,

X. 1is the azimuthal angle locating the jEE support
relative to swashplate e axis

b. 1is the offset of the jEE linear spring attachment point
from the neutral axis of the ring, positive inward

kj and cj are the linear stiffness and damping values for

the jE—Il spring~damper unit,
ke and c, are the torsional stiffness and damping values
3 ]
the ]EE torsional spring-damper unit counteracting local

lateral swashplate rotation,

k¢ and Cy are the torsional stiffness and damping values
3 ] :

for- the jEE torsional spring-damper unit counteracting
local longitudinal swashplate rotation,

ug (t) is the vertical downward displacement of the base
which supports the spring-damper units,

and 6§ (06-06p5) is defined such that

27
J £(6)6(0 - 69)R_ db = £(8,) (50)

0

(69 being an arbitrary azimuthal angle).
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The wvariable, ¢m’ is further defined as the azimuthal location
(phase angle) of the mEE blade relative to the swashplate x_-axis

£
when t equals zero and ¢mp is taken as zero in value.

The required expressions for Bﬂ(t), Q%(t), and cz(t), needed

in Equation (43), are obtained by substituting the forms for g (6,t)
, Q(6,t), and o(6,t), as given by Equations (47), (48), and (49),
into the integrand of Equations (46), (44), and (45), respective-
ly. Taking proper care with regard to the integral of the Dirac
delta functions, the Fourier transforms of g(6,t), Q(s,t), and

and o(6,t) are

N

b -is(Qt + ¢ = ¢_)
- 1 m mp
Bt =g L Ppt) dpe |
sp m=1
N .
1 eis. e 5 5 b. al £) ~1L¥ .
+ .+ Cc. = . Xav e
N . .
1 eis. x 3 ) ( 6 -1£Xj (51)
— em——— + c —— o] X2 e
21 R . . . ot
"Rsp 3=1 ¥ b5 J
) 1 Ny, ‘ -ig (ot + o ¢mp)
Q8 = grg— L Pult) e |
sp m=1
1 Ne;s. 5 ‘ —i%xj
- ) (k. + c. —) d(x.,t) e (52)
1 Ne.s. 5 izxj
08 = =g L K o, 5 Olxyith e (53)
sp J=1 ] J

i

where d(xj,t) v(xj,t) - bj @(Xj,t) - u,(t).

The quantities; v(xj,t), e(xj,t), @(Xj,t) and d(xj,t); in the

previous equations.represent the swashplate; local deflection,
local bending slope, local twist and local spring-damper unit

deflection at the azimuthal location, Xj’ of the jE—12 spring-

damper unit. These variables can be expressed in terms of the
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Fourier harmonic components of the swashplate deflection in the
rotating frame.

Replacing 6 with the specific value, Xj' and altering the
dummy variable over which the summation is taken, Equation (42)
becomes

o ip(Xj—Qt)
V(xj,t) = ) Wp(t) e (54)
p:—oo N

Using the same procedure with the form of Equation (29),
e(xj,t) can be expressed as

o ipxj ,
0(x.,t) = ) 0_(t) e (55)
J p=—o p
Replacing £ with p in Equations (39) and (37e), the equations

e—int

I

vp(t) wp(t) (56)

and

Il

@P(t) ip vp(t) / R

sp

are obtained. Substitution of Fquation (56) into the last equa-
tion results in an expression for ep(t) which when inserted into
Equation (55) yields the expression | '

1 o ip(y.— t)

@(xj,t) = 7 ip wp(t) e J (57)
sp p=-%

The gquantity @(Xj,t) can be expressed in the same form as
e(xj,t) in Egquation (55), that is

i ipX.
e(x.,t) = )L ¢ (t) e I (58)
j pe—w P

Alterlng the dummy variable, &, to p in Equation (37d] and dropm
ping the B (t) term since its contribution, based on a comparison

of the effects of the terms on @P(t), is negligible results in

@p(t) = Sp Vp(t)
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Substitution of Equation (56) into this equation yields an ex-
pression which when inserted into Equation (58) yields the ex-
pression for ®(xj,t) in the form

o(xsst) = J S_w () erP(X570t) (59)
j pe—w PP

By substituting Equations (54) and (59) into the expression
for d(xj,t) following Equation (53), an expression for d(xj,t) as

a function of swashplate rotating frame deflections and the collec-
tive base plate deflection can be obtained in the form

,/d(xj;t)'~ L (L - bjsp) Wp(t) e -u, (t) (60)

The collective base deflection, u, (t) , can be related to the

deflection of the swashplate by consideration of the force equili-
brium of the collective base plate which results in the expression

N

3 .5, 3
(K + C 5p) uwo(t) = jgl (kj + oy =% d(xj,t) . (61)

Insertion of Equation (60) into this expression provides a relat-
ionship between the base plate and swashplate deflections in the
form

3 e.5., 3
&+ C ) + '21 (ky + ¢y 39) | wolt)
w Mo g, 5 ip (x4=0t)
= 7 Yoo ~bS ) (kg + ey 5p) W (b) e J (62)

p=—c° j:l

which cannot be solved for uj(t) without use of Laplace trans-
forms.

Expressions relating the swashplate loading harmonics to the
swashplate deflections in the rotating reference frame and the
collective base deflection can now be obtained. Insertion of
Equations (57), (59), and (60), as required, into Equations (51)
through (53) results in the equations
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i

N . .
% dm Pm(t) . 1z(¢m - ¢mp)
2T

-12Q
St t 2
m=1 sp

By (t)

.5, 3
b, (L - b,5 ) (k. + c. &
) j 35p) (kg *+ ¢y 7p)

+
[

w_(t) i(px.—2x.-pat)
S5y Oyt 0| Eame 0
J J sp
«Sa uo(t) -18x.
- I by (ky + e 2 ] (63)

_.......) e
3 3t’ 27 R
Sp

. b -if -
-120t Pm(t) * (¢m ¢mp)
e m——— ()
27 R
sSp

0, (t)

w_(t) ifpx.-ix.-pat)
- 2 - b i 7
) ) (kj + oy ) (1 bjSp) 7 Ry e

538 IR © (64)
sp

©  Ta,8. 5 ip w_(t) if{px.-tx.-pat)

I 1 &y tcy g —E—e I (65)
— Lo 0} . 2
p=-« j=1 J J 2 Rep

Il
1

g, (£

Application of Laplace transforms.- The real-time swash-
plate governing equation is Laplace transformed to replace the
derivatives involved with algebraic forms in addition to pro-
viding compatibility with the blade equations which will be de-
veloped. In addition to the specialized Laplace transformations
which were presented previously pertaining to the development of
analysis for representation of the gyroscope control system, two
more are required for this section. These are

(@) L, [%lg“t W () e‘lpﬂé] - Wb(s—i%ﬂ+ipﬂ)
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(b) L, [eimt %E (w, (£) e‘ipﬂt)] = (s-i20) W, (s-i20+ipa).

The Laplace transformed version of Equation (43) assuming
quiescent initial conditions is given by

[} (82 - 2i20s - 2202) + F(zg]ﬁz(s)

RSp

B igLot it is igot
= Lt[% Q, (t) e ﬁ;; cz(t) + e S, Bz(t{]. (66)

The Laplace transform of each of the terms appearing on the right
hand side of the above equation can be obtained. .

Multiplication of Equation (63) by eliht and application of

the Laplace transformation yields the expression

N

) b P _(s) -i2 (o = ¢__)
Lt[%lzﬂt Qz(tﬂ - Z 2? = e m mp
m=1 sp
- Ne.s, W _(s-igqe+ipQ) iy (1-p)
- L1 (1= byS) RC, R e "]
p==« j=1 sp
N — . .
eis. __ up(s=-iw@) “lZXj 67}
+ KC ———————— e 67
j=1 L 27 Rsp
where for convenience
¥C = k. + (s-iaQ) c.
a 3 ( ) 3

It is important to realize that the derivatives involved in Equa-
tion (63) through (65) do not operate on the multiplying factor,

elzgt. The quantity, ﬁ?(s—i29+ip9), is not to be interpreted as

a product but rather as a shifted argument of the function where-
as the term, (s~-12Q) cj, does represent a product of two terms.

In a similar manner as was used to obtain Equation §67),
Equation (64) and (65) can be used to obtain the expressions
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iset _

= Ne.g, _—
+ S b. (1 - b.s KC

m=1 Rsp

w (s-itQ+ipQ -ix. (&=

- s_Kc WJE(Sl p)e XJ( ?)
¢ 2T R

P e sp

S. __ up(s-iQ) _.
e lM(j (68)

.S. _ W_(s-ifQ+ipQ) -ix, (2-p)
=+ ) ) wp KC, - - e 7
=1 2 2% RSP

(69}

KC = k + (s—-iafl) c
¢a ¢j ¢j

and

5 ke + (s-iaQ) Cy

a 3 J

=
O
Il

The Laplace transformed version of Equation (62) makes it
convenient to solve for u,(8) as

N X
o e.s. o ipx. _ ]
y y (1 -b.s) KCy e J w_(s+ipa)
— pzmoo j:l j p p
upg(s) = 5 (70)
€.S. —_—
K+Cs+ | KCy
j=1
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The expression for uy(s-ig@) which is required in Equations (67)
and (68) may be obtained by replacing s by (s-i2Q) ( shifting the
argument of the function]) in Equation (70) which results in

N .
oo (SIS le .
1-b.5) KE e I

w_(s-igq+ipq)
- p=-—w j=l p

T (s—-1i28)

€.S. ___
KC

K + (s-i2Q) C + 1y

Ij o~

j=1
This expression can be substituted into Equations (67) and
(68) which with Equation (69) can replace the terms appearing on
the right hand side of Equation (66) resulting in the final
swashplate control system governing equation of motion. By re-
placing the index & with g and then the index p with ¢ in the
resulting expression, for convenience in later use, and multi-
plying by 2nRSp, the following system of coupled equations for the

Laplace transformed versions of the swashplate unknowns, wq's, in

terms of the control rod forces, 5&(3), results.

m (s?2 - 2iges - g2Q2) + 2m F(q) w_(s)

2 d
Rsp
( \
Ne.s. — i'Q’Xj
© Ne.s. _ -igy. ‘£1 (r - bjsl) KC, e
+ - 1 (1 - b.S ) KC_e J J -
g==c j=1 J 4 g e.s.
K + (s-igq) C + RC
(s~igq) _zl g
L J )
Ne.s. . L
+ ¥ | -b.s) (1-b.,s) K + -2 F
j=1 J 2 Jq a g 2 )
J sp q
— —in(q—Q/) — ) )
+ Sq S KC¢ e wz(s—1q9+1gg)
g
N [}
° iq (o, = o)
= 5 m mp
= L+ a8y Pp(s) e (71)
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where m is the mass of the swashplate and is equal to ZHRSPH.
When the governing matrix equations for the rotor blades are

developed in the next section it will be the control rod forces

(P (s)} which couple the swashplate equations or the gyroscope

equatlons to the blade equations. These relations will be used to
develop the final complete set of equations for the control system-
coupled rotor blade system.

Representation of Rotor Blades
by Transfer Matrices

In this section the analysis, using a transfer matrix
approach, is developed for representation of the blade behavior
due to forces and moments of aerodynamic, mass, and inertia origin
acting on the blade. Since the transfer matrix method is compli-
cated by consideration of aerodynamic blade sections, the matrix
approach is presented, initially, for sections not involving aero-
dynamic considerations and then extended to the form required for
aerodynamic representation. The resultant analysis provides the
necessary representation for blade behavior including coupling
with the control system behavior.

General blade model.~- A lumped parameter approach has been
utilized as the means of representing the allowed blade distributed
properties which were listed previously in the section pertaining
to helicopter rotor system modeling. Each rotor blade is repre-
sented by a specified number of basic sections. Each blade
section can have either (1) concentrated mass and inertia, uniform
elastic properties, and geometric characteristics such as offsets,
precone, presweep, and blade twist, or (2) aerodynamic and certain
geometric characteristics. The separation -of aerodynamic charac-
teristics, section type (2), from the characteristics of section
type (1) is necessary for proper determination of the modified
aerodynamic forces acting on the blade section when the free-wake
coupled solution method is to be applied. However, if the free-
wake coupled iteration solution is not to be applied to the model
of interest, the model can consist of sections each having both
type (1) and type (2) characteristics. The general construction
of a blade section showing the order in which specific character-
istics are considered in going outboard to inboard along the
section is illustrated in Figure 8.
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concentrated elastic

mass and inertia section
or aergdynamics ,~// bend
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rigid
offset
concentrated

spring-damper

Figure 8. A general blade section

It should be noted that concentrated spring-damper units, bends,
and rigid offsets are allowed in three mutually perpendicular
directions and that the section center of mass and elastic axis
may be offset from the gquarter chord (pitch axis) of the blade.

Coordinate system involved.- The coordinate systems defined
for representation of blade behavior consist of a fixed (non-
rotating) coordinate system, rotating coordinate systems,and local
blade coordinate systems. The orientation of the axis of the
fixed shaft (hub) coordinate system has been specified previously
in the discussion concerning the swashplate coordinate systems.
The origin of this system is taken to be on the shaft centerline
in the plane of the rotor blades when the blades are not preconed
or preswept. The shaft (blade) rotating coordinate systems have
their x and y axis in the same plane as the respective axes of the
non-rotating shaft coordinate system but are rotating at a speed
of @ relative to the fixed shaft system. For each blade there
exists a rotating shaft coordinate system whose x-axis is located
along the spanwise axis of the blade when in the unconed and un-
swept position and which can be related to the shaft fixed co-
ordinate system by the coordinate transformation.

[ B . N (=)

1m cos(Qt+¢m) 51n(Qt+¢m) 0 ie

gl = p ) - .

Vipm( = |-sin(at+e ) cos(at+e ) 0O Tet (72a)
VR 0 N

where Qt and ¢m have‘been defined.

The blade local coordinate system (Xrb’yrb’zrb) is obtained
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respectively



from the associated shaft rotating coordinate system
‘er’yrm’zrm) by performing three orthogonal rotations; ¢, 6; and
¥; in consecutive order where

o) corresponds to forward presweep

0 corresponds to downward precone, and

14 correSponds to nose-up pre-twist and/or
collective angle of attack '

The relationship between the blade local coordinate system and its
associated shaft rotating coordinate system is depicted in Figure
9. The mathematical relationship between the two coordinate sys-
tems is represented by the coordinate transformation

() —

T (. )
ip Ce CO Se Cy -S0 i
33,7 = |7Se C¥ + Co Se S¥Y C¢ CY + S SO SY  CO SV «jrmr (72b)
k S¢ SY + Cé S0 C¥ -C& SV +
Kb i Ce SY¥ + S¢ SO C¥ Ceo c¥| kkrm,

where a short form of denoting the sine and cosine functions
has been utilized, (e.g., S® represents sin¢ and C¢ represents
cosd). Since the transfer matrix approach which will be de-
veloped in the next section relates the blade deflections,
slopes, forces, and moments along the blade relative to its
local coordinate system, the transformation shown above can be
used to obtain blade variables in the disk plane.

Transfer matrix representation of blade model without aero-
dynamic loading and hinge or bearing discontinuities.- The trans-
fer matrix approach utilized for a blade without aerodynamics
included in the blade model is presented initially to provide a
mathematical foundation for the presentation of the modified
transfer matrix approach required for representation of aerody-
namic effects on the blade behavior. The basic transfer matrices
to be utilized in this section consist of essentially three basic
types. These are (1) section individual transfer matrices which
are used to construct- (2) section transfer matrices which in turn
are used to construct (3) associated transfer matrices. Corre-
sponding to these types of transfer matrices there also will be
involved corresponding types of forcing functions. Each type of
transfer matrix and forcing function can be represented in a real-
time form which upon application of Laplace transforms results in
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a related transfer matrix involving complex variable notations.
In this initial analytical development for representation of the
rotor blade behavior it is convenient to consider the basic
real-time relationships only briefly and carry out the develop-
ment of analysis utilizing Laplace transformed representation.,

A section transfer matrix can be developed which relates a
state vector at either end of a section such that

(1)~ _ (1) (i) + ; (1)
{s}m = [G]m {s}m + {F}m (73)

The + and - signs in Equation (73) refer, respectively, to the
outboard and inboard ends of the ith section of mth blade, the
sections being numbered outboard to inboard. The state vector,

{S}, is a column of twelve quantities expressed as

{S} = {ux N ¢X T uy ¢Z MZ - Vy -u, ¢y My VZ}

where Ugr Yo, 8 are blade displacements in the blade local
¥ X, v, and z directions;

v are axial force, edgewise shear force, and

Np V 4
4 z flapwise shear force, respectively;
) d _, 4 are local torsional deflection, flapwise

bending slope and edgewise bending slope,
respectively; and

T, M , M are local pitching moment, flapwise bending
moment, and edgewise bending moment,
respectively.

The positive sense of the twelve state variables comprising the
state vector has been shown in Figure 9 as they would act on the
outboard end of the next inboard section from the section to which
the transfer matrix has been applied. The vector,{F}, in Equation
(73) is a section individual forcing function consisting of mass,
inertia, and maneuver loading effects on the shear and moment
variables in the state vector and may also be considered to be the
section forcing function since aerodynamic considerations are
being omitted initially. Contributions to the section forcing
function due to other individual characteristic portions of a
section do not occur.

In general the transfer matrix is a 12 x 12 array whose ele-

ments are differential operators when each of the state variables
is a real time quantity. By taking the Laplace transform of

58



Equation (72) the differential operators are converted to complex
linear algebraic equatlons. Assuming quiescent initial conditions
the transformed version of Equation (73) is

i (L)— _ (1) (L) + =1 (1)
e A R G (74)

The section transfer matrix [?]él) can be expressed in terms

of more fundamental transfer matrices which are associated with the
mass, elastic, and geometric properties of the section, individual-

U e BORCBEReRE o

where the individual transfer matrices are constructed such that
R accounts for a rigid offset in the elastic axis or a
- - translation of the local coordinate system;

B accounts for a bend in the elastic axis or more generally
-4 a rotation of local coordinates;

E accounts for a uniform elastic section with centrifugal
. -4 gtiffness included;

[%K accounts for a concentrated spring-damper (used normally
- for lead-lag hinge only); and

T .
[é accounts for a concentrated mass and inertia.

Taking the Laplace transform, it can be shown that

[G]4 - [ fsr] 2 [0 IR 6

where each matrix consists of time independent terms and/or Laplace
operators. In practice some of the individual transfer matrices

may not be necessary in representing a blade section and would be
omitted from Equation (76).

In order to develop the associated matrix across a rotor blade,
consider the transfer across the (1+l)th blade section which from
Equation (74) is given by

{g}(i+l)— _ [é](i+l){§}(i+l)+ N {ﬁ}(i+l) | (77)
m m m m
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However,

{g}(i+l)+ - {é}(i)“ (78)

Substitution of Equation (74) into Equation (78) and insertion
of the resulting expression into Equation (77) yields the
equation '

{g}n(li+l)— _ [é]n(lifl) l:é]n(li){g}rgi)+ N I:(—;:ln(li+l){f,}n(1i) N {;E-,}Iéi+l) (79)

for transferring across the (i+l)th and ith blade section. Extend-
ing Equation (79), the expression which relates the state vector

at the inboard position of the ith section to the state vector at
the blade tip can be written in The form

, i . , i-1|[ i . ,
ple LB e - BBl - fe
j=1 LM m j=1| |k=3j+1 L™ n m

(80)
The blade tip state vector denoted by {§}£Tlp) has the
moments and shears equal to zero due to the free boundary condition.

It is convenient to use this fact in the blade transfer process
and define :

r _ \(Tip)f— ]
u 1 0 0 0 0 0
X .
N 0 0 0
by 1 0 0
T O 0 0 0o 0 ( ﬁx‘(Tlp)
u 0 1 0 0 p
9, \ 0o 0 0 1 o0 0 ﬁy
18(=loc o o o o0 o0 1= (81)
Z ¢Z
-V 0 0 0 0 0 0 -
v -u,
-u o 0 o0 0 1 © -
V4
- LY,
$ o 0 Oo0 0 o0 1
y
M 0 0 0 0 0 0
y
v, O 0 0 o0 o0 O
\ Jm N —m
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This matrix eguation can be rewritten as

{_g} (Tip) _ [—A—] Tip {g}* (Tip) (82)
m 1 m m

The reason for writing Equation (8l) in the form shown is connected
with the modified transfer matrix procedure used to solve the flnal
system of equations for the dynamic forced response.

The fact that the [?]ilp matrix is a 12 x 6 instead of a

12 x 12 reduces the number of computations required to obtain the
associated transfer matrix for the whole blade.

On insertion of Equation (82) into Equation'(SO), the

equation
= B i s

is obtained where the associated matrix is defined as

. i . .
[B] & | 5 [g] 9 (7] ne (84)
m . m m
Jj=1
and the associated forcing function column is defined as
AW a BN P rm|me ], Ho
H}m = ) i [G}m {F}m + {F}m (85)
j=1{ [k=3+1

Equation (83) is the blade matrix equation which is valid for any
section which is outboard of all possible hinge and bearing dis-
continuities in the blade model.

Representation of blade hinge and bearing discontinuities
without aerodynamics.- The analysis being developed includes the
representation necessary for consideration of flap hinge, pitch
bearing, and rocker arm attachment point discontinuities in the
blade model. At these locations there are discontinuities in flap
angle, torsional deflection, and blade torque, respectively.

The state vector relationship across the pitch bearing dis-
continuity location may be written in the form
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=i (fea)~ _ [zl (fea)+ -\ fea
Fla = e - (56

where the  column vector

—\fea _ o~ '
{A}m = {0 0 A¢X 00000O0O00O0 O}m . (87)

The state vector relationship across the flap hinge discon-

tinuity location, provided there exists a flap hinge in the blade
model, is given by

={ (flap)- _ [zl (flap)+ _ [=lflap
flgren - e - o

where the column vector
—\flap { — }
A =<0 0 0 000000 A 00 . 89
{ }m ¢Y m (89)

In transferring across the rocker arm attachment point it is
assumed that only the torque applied to the blade from the control
system is significant. Thus the transfer inboard across the cont-
rol torque point can be written as

sllc.t )= _ Jzllec.t)+ _ [+lc.t.
e - e - o

where the column vector

- C-t. — ey
{A}m = {0 00ATOO0OO0O0OOO O}m . (91)

The quantities 7T, KEX, and KE& ate additional blade unknowns which
are to be solved for in the final system of equations.

Equations (Y0), (86), and (88) can then be replaced by the
matrix equations

=l(c.t)- _ Jgllc.t)+ _ J=lec.t.|=|*c.t.
A U U A U 92

{g}(fea)— - {g}(fea)+ - {X}fea{x}*fea (93)
m m m m
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m. m m

{g}éflap)— _ {g}(flap)+ _ {i}flap{z}*flap (94)
where the following arrays only have one element:

)% - - — - —_)
e e ), Bl )y o

and

‘
v
-~
"
=

fea _ Jol {X}flap _

mn F . (96)

Yty
>1
[—
g Q
L]
(-r
-
1
OO QOOOOOROOO
T
>1
\"ﬁ(“J
=]
|
QOO OTCOOOOHOO

,

COOMHFOOOOOOOOO

,
e

r
-~

m m m

Expression (83) can now be replaced by the matrix equation
which provides the state vector at the inboard end of an arbitrary
blade section which is

= (1)~ ] (1) jg{*(Tip) = (1) [=l*c.t.
D S R
- {E}éi){z}*fea'_ {a}éi){z};flap.+ {ﬁ}éi) (97)

where by letting N be the blade section numbers

c.t.” Neear and Nflap
immediately inboard of which the control torque, pitch bearings,
and flap hinge are respectively located, the new matrices appearing
in Equation (97) are defined as

) . . (N +1)

=1 (1) = (i) ]z} (i-1) = c.t. -lc.t. .

{b}m [G]m [G:Im [G]m {A}m * Ne.t.
~lc.t. .

{A}m : 1= Nc.t.

{0} < Ng g (98)

e
v

lic>

lie>



=1 (i) [=] (i-1) ZNe ot (<) fea .

[G:lm [G]m [G]m ea _m i>Ne o
=1fea s

{A}m 1= Nfea

{o} PN, (99)

fea

e ]
Ql
N—
oo
[N
|

li>

>

>

. , . (N +1)
Jxl{i) A |z (1) |z](i-1) =] ‘" flap flap :
{d}m 2 [G]m ]:G]m l:G:]m {A}m _ 1 Ney o

- |flap ——
{x}m 1= Nflap

(1>

>

{0} 1< Nejap (100

With the above definitions the state vector, {5};1)“, when evaluated

at 1 equal to N .t fea or Nfl

of the control torque point, the pltch bearings or the flap hinge,
respectively.

will be immediately inboard

Application of blade root and discontinuity boundary condi-
tions when no aerodynamic loading.- By use of the boundary
conditions which occur at the blade root and the conditions which
must occur at the control torque point, pitch bearing, and flap
hinge, the governing blade equations in terms of blade tip un-
knowns and discontinuity unknowns can be obtained when aerody-
namic sections are not allowed.

Displacement and slope boundary condition applications:
Letting NS be the number of blade sections, the state vector at
the blade root is determined from Equation (97) by letting i
equal NS. If the boundary conditions at the root of each blade
are such that all displacements and slopes vanish, then these
conditions are expressed by the matrix equation

[ - )
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Or, from Eguation (97)

where
[1 0000000DHD00O0GO0
001000000000
s 00001 Q 00000CO0 (103)
¢ 000001000000
000000001000
000000000010

Eguation (102) provides six equations for each blade. However,
there are nine possible unknowns due to the control torque, pitch
bearing, and flap discontinuities. The other three equations are
obtained from the condition of zero bending moment and torgque at
the flap hinges and pitch bearings respectively, in addition to the
relationship between the control torgque and the blade torsional
deflection at the rocker arm attachment point.

Application of zero torque condition at pitch bearing:
Consider the condition of zero torque at the blade pitch bear-
ings. The state vector at the pitch bearings is' given by

=) MNead) .
{S}m fea . In order for the torque (which is the fourth

quantity in the state vector) to vanish the equation

( ) -
{rq]{§}meea =0 (104)

must be satisfied. Or equivalently

) la 2o o™ - () By o )i
- (rq}{a};Nfea){K};flap + (ru}{ﬁ};Nfea) -0 (105)
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where Fq] = (000100000O0O0DO0).

Application of control torgue condition for coupling with
swashplate or gyroscope control system: The equation for the con-
trol torque must reflect the coupling between the blade and the-
swashplate or gyroscope motion, In real time the balance of

forces on the mth control rod which connects the rocker arm to the
swashplate is given by

w_,) = P80 ~¢_ )
(a7) = a k (1 + 7 %E)[%m(¢x)m c.t.” _ z_il +4d_s)w (t)e mmp

(106)

where km and T, are the linear stiffness and damping coefficients
of the mth control rod, respectively, and a, is the distance of con-

trol rod rocker arm attachment point aft of quarter chord. Divid-
ing by km and taking the Laplace transform yields

(N )
_l ryenst — 2 - c.t.
km (AT)m am(l + Tms)(¢x)m

® i (o_~¢_ ) _
+ J@+as)a (1+rse W

==

SZ,(S) = 0. (107)

Referring to Equations (90), (91), and (92)

. _C.t. y*c.t.
(AT)m = (rq){l}m {A}m (108)
and also
(N ) _ (N ) (N ) (Y% (s
), c.t.’ _ (rs]{s}m c.t.’ _ (r3) - c. t. {S}m(Tlp)

where [rg] = (001000000000 ).

Thus, the control torque equation can be written in terms of the
blade tip and internal discontinuity unknowns as
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- a2(1 + Tms)[rg}[%];Nc.t.){g};(Tip)+k;1(rq]{x}g.t.{z};c.t.

_) (N ) ) (N
- aZ(1 + TmS)(rgj{H}mbc't' +a2(1 + Tms)(r3}{d} c.t.){z}mflap

m
® inCep=op)_
+ 2Z_w(l +ds)a (1 + 1 se w,{s) =0 . (110)

If the swashplate is replaced by a gyroscopic control system,
the equation for the control torque must reflect the coupling
between the rotor blade and the rigid body motion of the gyroscope.
In real time the balance of forces on the mth control rod which
connects the rocker arm to the gyroscope is given by

3 (NC.t.) :
(Ax)m = amkm(l o EE) am(¢x)m - Wi(t) (111)

where the W, guantities now stand for the rigid body motions of the

gyroscope (i.e., see Equations (17), (18), and (19) for eguations
of motion of the gyroscope) and are given as

' —_ 3 -
w!, = ¢Xr Rp sin(¢_ ¢mp)
WB == 2z,
w!o= ¢Yr R, cos (¢ - ¢mp) : (112)

Dividing by km and taking the Laplace transform yields

4o N )L _
k, (AT - aé(l s ) T+ lz_lam(l + o S)wi(s) =0 .

(113)

Therefore, whether the rotor blades are coupled through the swash-

plate or the gyroscope, the general formulation is essentially the

same with the only difference being the functionality involving the
(¢m - ¢mp) tern.

Application of flapwise moment condition at flap hinge: If
a flap hinge is present the condition that the flapwise moment
vanish gives the last equation needed. Since the flapwise
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moment is the eleventh quantity in the state vector, this condl—
tion is satisfied provided
)

(N
(r“H }m HEP =0 (114)
where [rll] = (000000000010).

Referring back to Equation (97), the zero flap hinge moment is
expressed by

o) Ela 2 {50 - o) B (i
m m m m
)
n[rll){a};Nflap){z};fea + [rll){ﬁ};ﬁflap- - 0. ’ 1115}

For a blade without aerodynamic loading, Equation (97) re-
lates the state vector variables at the inboard end of the ith
section of the mth blade to the blade tip unknowns and discon-
tinuity unknowns and thus may be utilized to obtain the blade
shape if all unknowns have been determined. Values for the un-
knowns are obtained by use of Equations (102), (105), (115), and
either (110) or (113) depending on the type of control system
involved.

Shift of transform variable in sectional transfer matrix
Equation and its interpretation.- Prior to the inclusion of aero-
dynamic blade sections into the blade model which compounds the
complexity of the transfer matrix approach, consideration of the
representation implied by the use of Laplace ‘transform shifted and
unshifted variables will be advantageous.

In the previous development of the transfer matrix equation,
Equation (74), the Laplace transformed arrays are a function of the
Laplace transform variable, s, although this dependency was not
explicitly shown. This dependency is directly observable by re-
writing Equation (74) in the form

{S(s)}(l) = E?(s{]éi){§(s)}éi)+ + {F(S)}(l) : (116)

In the dynamic response type of solution the total state vectors
and forcing function corresponding to those in the above express-
ion are expressible in real-time notation in a Fourier series form
exemplified for the state vector by

{S(t)}(l) 7 {Sn}éi)— Jinat

n==—o
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where the S" harmonic coefficients may be complex variables and
correspond to the commonly denoted; 0/rev., :*l/rev., and etc.;
blade responses and forcing functions for the state vectors and
forcing function arrays, respectively. Substitution of iNpgp for
the Laplace transform variable, s, in Equation (116) provides the
transfer matrix equation relating Np/rev. coefficients of the state

vectors on both ends of a section and of the forcing function on
the section.

This can be shown by first applying the Laplace transform
operations as specified in Equation (116) to the real-time state
vectors and forcing function such that

@ s (i) - (1) g i+ . = o (i)
nz_w{(s—lnﬁ)}m = [%(S{] Z {(s 1n9)} + ] {(s—IHH)}m

results. Multiplication of both sides of the above expression by
(s=iNpQ) vyields the equation

Np) (i) - % f(s-iNp@) s™) (i)~ _ (i) T [(s-iNpg) s™) (i)+
{S }m + Z { (s-1nQ) }m - [%(S{] Z { (s-1n9) }m

n==o
n#Np n#Np
= (1) {Np) (i) + Np| (1) S [(s-iNpQ) FT) (i)
+ E%(s{]m {S }m + {F }m + nz—m{ G5oinm }m
n#Np

which in the limit as s approaches iNpQR reduces to the form

O e

relating the Np/rev. harmonic coefficients of the state vectors
and forcing function involved.. Thus, substitution of iNpQ for s
in Equation (116) corresponds to the relationship shown in the
last expression.

Shifted Laplace transform variables of the form (s-ikQ) re-
present harmonics relative to the main harmonic of interest de-
noted by the value of s. By shifting the argument of Equation
(116}, that is, replacing s by (s-ikQ), the expression

{S(s 1kﬂ)}(l) = [%(s —ikQ) (l){S(s le)}(l)+ + {F(S 1k9)}(l) (117)
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is obtained. Application of the same procedure that was used on
Equation (116) to Equation (117) yields when s is replaced by iNpQ

{SNp—k}n(li)- ) Eé(i(Np_k)m]n(Ii){SNp—k}IgiH + {FNp-k}n(li)

which relates the (Np-k)/rev. harmonic coefficients of the state
vectors and the forcing function. In this equation and Equation
(117) a positive value for k corresponds to a downward shift in
the harmonic from that specified by s whereas a negative k de-
notes an upward shift in harmonic. The quantity, s, taken as iNpQ
in Equation (117) provides the relationship shown in the last ex-
pression. This shifted Laplace transform concept is valid for

any originally time dependent variable used in this report.

For convenience in the representation of the transfer matrix
approach when aerodynamic sections are included in the blade model
Equation (117) can be written in the subscripted form

- _ [z W[ L@+, [z )@
e - s e+ (B o

Transfer matrix representation of transfer across an aero-
dynamic section.- The transfer across an aerodynamic section in
real-time notation can be represented by the matrix relationship

o [0 g per JIopes e w

where [C](l) and [é](l) are transfer arrays involving periodic

functions and the column vector, {d}(l), is the aerodynamic forc-

ing function also consisting of periodic functions. Each of these
arrays can be expanded in a Fourier series form. For example,

[c](i)= ](l) ingt (120)
n——m

Defining [?é];}) relative to the initial position of the first

blade and replacing 9t with (Qt+¢m-¢mp), Equation (120) becomes
for the mth blade

. in(atts o )
[c]n(nl) = [ ](l) . (121)
n"——oo

Applying the same procedure to the other two arrays appearing in
Equation (119) and substituting into Equation (119) results in

70



Ay- o3 dnletde -g ) (1) d (1) ][] )+
= 1 T &+ Bfels

w in(Qt+¢_~¢_ ) .
] e m - mp {dn}(l)

+

o . (122)

T .00

The Laplace transform of Egquation (122), assuming guiescent
initial conditions and also shifting the Laplace transform
variable, s, is

_ oy o - . . _ . in(¢_~¢o_ )
{Sk};\l) = 7 l}s—ikﬂ—inﬂ)l}?r;]él) + l:Bn]rf\l) {Sn+k}lt(\l)+ e M TP

n=-

. {d }(i) Qin(e ~¢ )
+ 7 LRI ° (123)
N o (s-1ikQ-1inQ) *

The summation on the first term of the aboVe expression can
be taken from n=—Nf to Nf where Nf is the number of harmonics

above and coupled to the frequency being solved for. The summa-

tion on the second term can be taken from n=—fo to fo where fo

is maximum number of aerodynamic forcing function variable har-
monics not including the steady, that are obtainable.

However, when these limits are placed on the respective
summations involved in Equation (123), it can be o6bserved that the
equation representing shifted harmonics of the state vector, k
not zero, involves harmonics further removed from the main harmonic
of interest. For example, if N is taken as 1 corresponding to

inclusion of interharmonic coupling 1l/rev. above and below the
harmonic corresponding to k equal to zero, the version of Equation
(123) for k equal 1 would include a term involving (n+k) equal to
2 which corresponds to a harmonic 2/rev. below the main harmonic
and similarily, for k equal -1, a term involving (n+k) equal to -2
results. This addition of extra harmonics above and below the
range specified by the value for N is not desired since these

additional harmonics would in turn have to be represented and
thereby result in further additional harmonics and so on.

To overcome this problem the summation involved in the first

term of Equation (123) can be taken from n=—Nf—k to Nf—k. How~

ever, since n includes (-k) the same result is obtained if the
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summation is taken over n=-—Nf to Nf and n in Equation (123) in

the first term is replaced by (n-k). This yields

Y - i(n=k) (op=0pp)
{Sk}ngl)‘ Z_N l}s -inQ) [Cn 4l (1) [n k](l)} (1)+
£

Neg {d }(i) eln(q)m_ mp)
+ ) L KL :
(s=1kQ-1nQ)

n=-Ng. (124)
which can be written in the form
Ne i(n-k) (¢ _=é_ )
{—S-}(i)—= 7T ](i){§}<i)+e m “mp
Kjm n=-N n-k,nim njm
£
+ Z njm (
L (s=1k0-1inQ) 125)
n= fo

where [%h—k ;]él) represents the aerodynamic section transfer
14

matrix for a given section with (n-k) denoting which harmonic of
the C and D matrices is involved and n representing the shift on
s inherent in the matrix.

Transfer matrix representation of blade model with aerody-
namics but without hinge or bearing discontinuities.- Equation
(118) representing thé transier across a non-aerodynamic section
and Equation (125) representing the transfer across an aerody-
namic section provide the fundamental relationships necessary to
construct the associated transfer matrix representation relating
the state vector at the inboard end of a blade section to the
blade tip unknowns.

In order to include the aerodynamic interharmonic coupling
effects, Equation (83) is modified to the form

{gk}éi)- l: ](1){5 }“(Tlp) N {ﬁk}éi) (126)

n*—N
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where the k and n subscripts denote the degree of harmonic shift
relative to the harmonic specified by the Laplace transform
variable, s, as previously noted. The modified associated

transfer matrices of the form, E? :](l), represent the effects of

n-shifted harmonic coefficients of the blade tip slopes and de-
flections on the k-shifted harmonic coefficients of the state
vector variables at the inboard end of the ith section and for
the mth blade. The modified associated forcing function vectors

of the form, {ﬁk} él) , represents the effects of the k~-shifted

forcing function harmonic coefficients on the k-shifted harmonic
coefficients of the state vector variables at the inboard end

of the ith section due to aerodynamlc, mass, and 1nert1a 1oad1ngs
on and outboard of this blade section.

Since inclusion of aerodynamlcs into the blade model results
in interharmonic coupling which is apparent in Equation (125),
the subscripted associated transfer matrix arrays and associated
forcing function vectors cannot be expressed in the simple forms
exemplified by Equations (84) and (85) when aerodynamics are in-
cluded. Instead, the relationships between the associated
transfer arrays and forcing functions at the inboard end of a
section and the associated transfer arrays and forcing functions
at the outboard end of a section for the two types of blade
sections can be determined.

For a non-aerodynamic section, Equation (126) with the (i)
superscripts replaced by (i-1l) superscripts can be inserted into
Equation (118) for the (i)+ superscripted state vector (making use
of the form of Equation (78)) such that the equation

Ne
{ }(1)-— [](l) [§ (i-1) {S }*(Tip)
kjm n=—N k,n njm
B e« e

results. From a comparison of this expression and Equation (126),
the relationships of the associated transfer matrices and asso-
ciated forcing function vectors of a section to those of the
previous section can be expressed as

B - [ [t e am

e - B i« e
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For an aerodynamic section the same form of comparison can
be used. In this case, the superscript in Equation (126) is
altered in the previous manner but the k subscript is replaced
by p such that when the resulting expression is inserted into a
form of Equation (125) where the dummy index n has been replaced
by p in the first term the following equation results

N
= l@-_ § |z (1) G G ) ) -1
Sy = ) C e i
m i p-k,p|m Pjm
p= Nf

Ne
s 7 E? :](1—1){5 }*(Tip)
ne-y_ L p,mim n
£

I N
njm

vl (s-1k0=1In0) (123)
i
Referring back to Equation (126)
Ne i(p-k) (6 =6 )
= (1) _ = (1) {3 (i-1) B m 'm
E’k,rjm B _Z_ [Cp-k,:]m E"p,r;‘m € P (130)
p—_Nf
and
Ve (n-k) ( )
{ }u) _ [ ](1){ }u 1y Fek G =dn,
n——N n-k
N (1) _Inleyop )
£f E } o p
) B (131)

SN, {s-ikfi-inQ)
f££

It should be noted that the associated transfer matrices
for k not equal to n consist of all zero elements until an
aerodynamic section is encountered since non-aerodynamic stations
do not provide interharmonic coupling. This can be observed by
noting that the definition of tip state vectors in terms of the
tip unknowns by application of tip boundary conditions is repre-
sented by a subscript form of Equation (82) which is
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= \ (Tip) _|= |Tip [= |*(Tip)
B =[5 s

where the matrix [fg]ilp is defined for each value of k as pre-

viously defined by Equation (81). The above expression can be
extended to the form

N
£ .
= | (Tip) _ [— ](Tip) = |*(Tip)
{Sk}m = 1 A ®nfm (132)
n=—Nf g
where the |7 I(Tip) i i
k,n'm array 1s defined for k equal to n as in

Equation (81} and consists of all zero elements if k is not equal

to n. Thus, if the first section is a non-aerodynamic section,
Equation (127) would be replaced by

- (1) _ [z ][+ Trip
Ehnm "de Ehgm

based on a subscript form of Equation (84) when i is equal to 1.
Thus, from this expression and Equation (127), the associated
transfer matrices for k not equal to n can be seen to consist of
all zeroes until an aerodynamic section is crossed at which
point the associated transfer matrices for k not equal to n re-

ceive a contribution due to interharmonic coupling as shown by
Equation (130).

With the inclusion of aerodynamic sections, Equation (126)
has become the general matrix transfer equation for sections
outboard of hinge or bearing discontinuities where the asso-
ciated transfer matrices are related by either Equation (127) or

(130) and the associated forcing function vectors are related by
Equations (128) or (131)

Hinge and bearing discontinuities representation modifica-
tions due to inclusion of aerodynamics.- The state vector at the
inboard end of any arbitrary blade section on extending Equation
(97) to a subscripted form is defined by
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{ }(1)- j_—N [k J(l){ }*(Tlp) _ {Ek n}(m){ n}:‘nct

N pa—

£ . .
_ - (i) *fea = (i) |- l*flap = | (1)
;;N { “x n} {An}m * {gk,n}m {An}m + {Hk}m

£
(133)

Since, normally, an aerodynamic section would not occur inboard of
the flap hinge, pitch bearings, or rocker arm attachment point
Equations (98), (99), and (100) can be extended to

; — =1 (s — =1 (N )
= (1) _ |z [ (1) = c.t.+1’ [= c.t.
{bk,n}m - B .. [&da {xk'n}m
. ~ s - - (N )
- (1) _ |z [ (1) = fea+l’ [= fea
{ck,n}m - _?k_m cee L_Gk__m {Ak,n}m
. — . - =1 (N ) :
= (1) _ [= 1@ = flap+l’ |- flap
{dk,n}m B _Fk_m *ec _?k_m {Ak,n}m (134)

= c.t. - fea - flap . .
where {Ak,n}m ’ {Ak n} , and {Ak n} are defined in

Equation (96) when k is equal to n and consist of all zeroces if k
is not equal to n. If an aerodynamic section does occur inboard

of the flap hinge, pitch bearings or rocker arm attachment point,
then, as the result of a transfer across this section, the arrays
defined in Equation (134) are altered such that, for example,

N .

- : i(p=k) (¢ =4 _ )

{bk }(1) = l: (l) (l D e m mp (135)
n p“""’N p_ ’ (m) pl

i . = () = @)
and similar equatlons occur for {ck,n}m and dk,n m

Application of blade root and discontinuity boundary condi-
tions with aerodynamics.—- From the general form for the state
vector inboard of any arbitrary section as represented by Equa-
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tion (133) the boundary conditions at the blade root and the dis-
continuity conditions can be applied as in Equations (101)
through (115) to yield the representative equations when aero-
dynamic sections are included.

Displacement and slope boundary condition applications: With
the slopes and displacements being zero in value at the blade
root irrespective of- the value of k, the insertion of Equation
(133) for i equal to NS into Equation (101) with k subscript
added to the blade root state vector yields

N .
£ .
= (NS) [ |*(Tip) _ [+ (NS) [« |*c.t. = | (NS)
O°] ) [E%k,n m {Sn}m {bk,n}m {An}m :] * [é]{Hk}mv
n=--Nf
Ne — 1 (NS) [+~ ) *fea - (NS) ; *flap
- [g] z {ck,nfm {An}m * {dk n} { n}m =0 .(136)

n——Nf

Application of zero torque condition at pitch bearlng The
condition of zero torgue at the blade pitch bearing is achieved
if the Laplace shifted (subscripted) form of Equation (104) which
is

() e e -

is satisfied. Insertion of Equation (133) with i replaced by Neoa

into the above expression and noting that the fourth element in

(N
— fea
each {ck,n}

equation

N
f (N ) * : - (N ) - *
= £ = (Tip) fea c.t.
[z+) L [Eak,rjm = {Sn}m i {bkrn}m {An}m ]
n=—Nf

N
£ Nees) ()
= fea’ [+ |*flap = fea’ _
—(ru} ZN {dkln}m {An}m * [r“]{Hk}m = 0 . (137)
=-N_ ‘

Application of control torque condition for coupllng with
swashplate or gyroscope control systems: The equation represent-
ing the coupling between the blade and the swashplate motion
when aerodynamics are allowed can be obtained by first considering
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the modifications necessary to Equations (107), (108), and (109).

Shifting of the Laplace transform variable of Equation (107)
yields ‘

(N )
-1, — oK - c.t.
kp (BT ) = ap Yo (o) m
* -k ijl'((b '-(b )_ .
+ E_il +d S,)Y e m “mp W, (s-ike) = 0 (138)

where

7 b 4 [} + T (s—ikQ{]
m m m

Equations (108) and (109) can be extended to the subscripted forms

N

£
— — - c.t.j= |*c.t.
@ = (2] L (ol {ala
f
and
(Nc.t.) = (Nc t.) Nf = (Nc t ) (2 *(Tip)
Fadm 5 = (25 Sfn =% = [55) L, Benln =
n=—Nf
N¢ (N, ) N_ )
_ I5 c.t.” |+ |*flap = c.t.
(9] L [Beinhn = {5 o ) e
g (Nc t )
in which the {bk n}m *7"  terms have been dropped since the
' (N )
c.t.

third element in each array is zero in value and the {Ek n}m
4

terms have been neglected since the pitch bearing should occur at

or inboard of the control torque application point. The substi-

tution of these last two equations into Equation (138) yields

the control torque discontinuity equation in the form
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(N )
k *(Tip) [~ } c.t.’ |
- Y
a r3 n-—_N [k n:] { }'m * 1H

£ (N )
— —k =1 C.t. ~ ]*flap -1 e C.t. e *Cato
NE-N [%m Ym(r3]{dk,n}m {An m * kn [r“}{kk,n}m {Ar}m :}
£
(¢ =¢ ) _
+ ]+ as)EE m Tmp -
zg_m )Y W, (s-ika) = 0 (139)

For a gyroscope control system the last term in Equation (139)

is replaced with a summation from 2=-1 to +1 of the term
oK =1 .
Ym W, (s=ikQ) .

Application of flapwise moment condition at flap hinge: The
condition of zero flapwise moment at the flap hinge is achieved
if the Laplace shifted (subscripted) form of Equation (114)

which is
(N )
= £
[rll]{sk}m lap® _

is satisfied. Insertion of Equation (133) with i replaced by
Nflap into the above expression and noting that the eleventh

(N )
. flap
element in each”{ak’n}m

flapwise discontinuity equation

N
£ (N ) % (md _ (N Yo V%
= fl - (Tip) flap c.t.
w0 Ly (Broaln 2 e ™ - Frontn - ol
n=-N, !

N
o f (N ) E =4 (N‘c )
- £1 - fea = flap —
- (r11] ) {Ck,n}m P {An}m ¥ (rll]{yk}m = 0. e

n=-N_

is zero in value results in the

In conjunction with the swashplate equations of motion,
Equations (136), (137), (139), and (140) provide the necessary
relations to obtain the solution when aerodynamic coupling is
included. The state vector at any section can be obtained by use

of Equation (133) after the values for tip unknowns have been
obtained.
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Development of the Final Matrix Equations Governing
Dynamic Forced Response Behavior of Rotor Blades
Coupled Through a Swashplate

The basic governing equations have been developed which are
necessary to represent the dynamic forced response behavior of
a rotor blade system coupled with a swashplate or gyroscope
control system. These equations, however, have not been com-
bined to construct the final form of the matrix Equations which
must be solved in order to obtain blade tip and control system
unknowns. To accomplish this, the swashplate governing equa-
tions will be reduced to a coefficient form suitable for inclu-
sion with an array coefficient form of the blade representation
into a final matrix form. In addition, a similar coefficient
form of the gyroscope equations will be constructed to replace
the swashplate representation if this type of control is desired.

General coefficient representation of swashplate governing
equations of motion.- The swashplate governing equation of
motion, Equation (71), can be written in the form

00 o]

z z m(s?2 - 2ig90s - 2202) + 27 F (L)
OO e 0O 2
n A 'R"""""—"Sp
\
rNe.s. . isz
Ne.s. . ~igy. zl (1 - b,sl) KCQ e
) ! g , N
J=l e.s. ———
K+ (s-iz0) ¢+ ] KC,
l shy
Ne S
- » L 2 . 2' n
vl (1 - b;S,)2 KC) + RE. + 8 2R, ||e" ¢
j=1 32 2T 2 8, ) o, ||%a o
sp
N »
e.S. . _ —lX. (q_z)
+ z S S KC + ﬁ.&_ KC e J
J=1 9 Ry, q
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e.s. . i’%X3
. 1 - b.sS KC e
- ) (1L -Db.s ) RC_ e : i
j=l 74 a €.S.
K + (s-igr) ¢+ ) KC
=1 9
tess- 1-b.5) (L -b,s ) &K gl o (s-ing)
- .S - . e 8 W S=1n
* jzl ( S i°q! g a-2 ("2
qa# s
Mo (BT, ~iq(ey=oy)
= ¥ (1L+4ds) e (141)
=1 mq m

where 6; igs the Kronecker delta function defined such that

§, =1 for i =3

i ]
and

i . .

Gj =0 for i#3j .

Also, in obtaining Equation (141), the force in the control rods,
Pm(s), has been replaced by the control torques, (AT)m, divided

by the respective control rod attachment point offset.

On observation of Equation (141), it appears that there would
be more unknowns than equations because of the shifting of the
Laplace transform variable. There is, however, an implicit

relationship between wz(s) and Wl(s—inﬂ). In this analysis, more

equations are constructed from the basic ones by additional shift-
ing of the Laplace transform variable such that s is replaced by

(s-ikQ) throughout Equation (141). The end result in general form
is

v v 2 .n v =k,n _n+p w (s-inQ)
5q Sk * kz_m a8 Skiq| V2

L#q
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b (BT)_ ~ig(é _-¢__)
= ] (1+ds) =l M WP (142)
m=1 d m
where
7h = m[(s—in@)z - 2i20(s~inQ) - 2292J 4 20 E(2)
n R 2
sp
Neis. . —1£xj eis. - 1£xj
(1 - b.S.) KC e (1 - b.S.) KC e
) 521 i 2L+n = 328 2+n ,
N
e.s8.
K + (s-ing-i2Q) Cc + ) RCy 0
j=1
N
e.S. 2 — Q,z —— 2 ———
+ ‘Z (1 - b.s,)?KC,, + > KC, + s, KC¢ ,  (143)
j=1 L+n 2+n
sp
N .
€.S. — —lX' (q_Q/)
22'2 L |syS, KC, + qzz RC, e J
14 LR,
j=1 2+n Rsp 24+n
jzl (1 - bss) KCp e jzl (1 -bys,) KCy e
Ne.s. —_—
K + (s~inQ-iq) C + ) KC)n
j=1
Ne.s. . -ix(a-1) \
+ jzl (1 - bjsz) (1 - bjsq) RKCy . © (144)

Note that (KTk which appears in Egquation (142) is the same term

)
m
which appears in Equation (138) and defined following that equa-
tion.
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Final matrix form of equation for determination of unknown
quantities.- The complete set of equations representing the
coupled rotor-swashplate system can be written for the k denoted
harmonic relative to that specified by the value used for the
Laplace transform variable in the matrix form

Nf - Cvs N ‘
n_z_NfE-‘k,;J{qn} + {Fk} = {o} k=0, £1,...5N, (145)

where [%k é] is representative of the terms multiplying the
14

- \* * v
unknown quantities {qn} and {Fk} consists of the forcing function

terms for all blades and swashplate. 2All the terms involved may be
obtained from Equations (136), (137), (139), (140) and (142).

The [%k é] array for a three-bladed rotor can be represented,
4

utilizing integers for blade subscripts, as

Eod | Bod | Beds | Bed.
T md | o |

k
n
Ejf' ] - (146)
k,n K
n
k
n

!
o

J

0 | Egk;l;]z 0
0 0 ESkIIJS

) T
N

Fertil !

ki3

L

where, if the number of spacial harmonics retained in the swash-
plate is limited by letting the summation over & range from

—Nmax to Nmax’ for Nmax equal 1 the swashplate impedances from
Equation (142) are represented by

——

-=1n sk,n «n sk,n n+1
n k X—l,osk—l X—1,1 5k—1

S iz k,n _n-1 =0 n =k,n _n+1 47
l}k,n] = |X Iy 6y 2o 8% |Xoo1 Ok (147)
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and swashplate coupling to the blade, m, is given by

Tl (- c.t. i((bm-'q’mp)
~(1 +d_S_)) ‘(‘a;l{"k,n}m e 0
p _ 17 cols.~» qul - c.t.
[?k,é]m - of -1+ dy Sp ) a_ {Ak,n}m 0
L_zeros L—;l v )
Tl e c.t. “FUp0np
-(1 + dm Sl) am {}‘k,n}m 0
(148)

The blade root condition and discontinuity equations provide the
generalized impedances of the blade, m, as

[%k,é]m -

= (NS) - = (NS) - = | (s) 15 (NS)
[oz]l}Sk’nm [u:l{ckrn}m [a}{bkln}m [a]{ rn}m
N ) ™) e
= fea > fea = fea
=) Bl I T el A ICAN
N Nep)
.3 7 c.t.) -1 = llc.t) |, 3 = | ok
amY]n{x[r:‘;] l,%k,r;}m 0 % (r“){)‘k,n}m am'm[r3J{ ,n}m
(N ) L (N ) (N )
= flap _ = flap’ | _ = flap
) Benl ™ [l ™ ) B :
(149)
and the blade coupling to the swashplate as
— \
7 rows of zeros
¥
=i - i(e -6 )
. _k l(d)m (bmp) —k __k 1 m mp
[ck]m = |Y (1+d S )e Ym(l+dmsz) Y (1+d S )e
0 0 0
| —
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It should be noted that {Kk n};'t', appearing in Equations (148)
14

and (149) has a non-zero element only when k is equal to n.

o *
The column of unknowns, 9, r represents the blade and

swashplate unknowns in the form of

! | (151)

where in general,

Y_g (s=inQ) . \
max = * (Tip)

’ njm

ﬁ_l(s-inﬂ) - |*fea
pos = 5 {An}m (152)
{rn} = {wp (s=-1inQ) ¥ and Pofm = 3 r°

wi (s-inQ) 3 (¥c.t.

. njm

GN (s=inQ) {Z }*flap

| max ) njm

The forcing function in Equation (145) can be expressed in
the form
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{ﬁrk}
{Feu;
= 1* _ pk 1
{Fk} - — (153)
F
{Feul,
o
[1FPy
| 3
where {Frk}*consists of (2Nmax+l) zero elements and
[} B |
)
- * ( } { } '
PPy fm = N ) : (154)
~a_¥% r3|{H c.t.
m m[ 3} k/m
(N )
= fla
({20

7/

Modifications of final matrix representation for gyroscope
control system.- If a gyro system 1s used, the Laplace transform
variable s can be shifted by ik@ in Equations (20), (21) and (22)
and manipulated similar to the swashplate governing equation,
Equation (71), such that the gyro governing equations can be
written in the form similar to Equation (142) as

N

£ 1
) i 7% 6% + vt s 4D 4 xekon (5" b 5t [6n
T o R T n gk a,2f{!"qg " "g JUk-2

£

n - .
+ 6k+2I] wz(s—lnﬂ)

b (AT 1 _ -1 )
o le 5 (g " Bp SInUnTinp) 8q = R oS oy op,) ¢ q] (155)
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where

{>3

w_, (s-inQ) $¥ (s~ing)

r

N>

wo (s-inQ) = Zz(s-ingQ) (156)

>

w; (s-in®) $& (s-inQ)

r

and

N
0
1

A Cion2 2 _ = =
IGx(s inf)4 + @ (IGz IGy) + K + C(s=-inf)

&l
i

A o .
MG(s inQ) < + CG(s ing) 4+ K

al
—
>

—ing)2 2 - = Siai
IGy(s inf) 4 + Q (IGz IGX) + K + C(s-inf) (157)

P
>

z[Q(IGZ - IGx - IGy)(s—an) - Qc]

[}(k;n) (g=2) ; _ (g+£i]
2 2 2

~
o
r>

= K
¢ "k-n,k
q, ~5—

where

>

1 12 1 _
Kb,k [K' + bQC i+ C'(s-1ikQ)1.

From Egquation (155), for a gyro instead of a swashplate,
Equation (147) would be replaced with

Z@;ISE . Vﬁhéi
+ 75.{?-1[6§—2 * 5§+2] ¥ Xaﬁ{?l[aﬁ‘z * 62+2}
[?k,é] = 0 TG0 ° (198)
Ve, ep . 7T, 5
) || ) |
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wo—— —--—-0
where use has been made of the fact that XG%'? and VG are zero.
r

In addition, Equation (148) would be replaced with

i T c.t. _. ]
+ R, . {Ak,n}m 51n(¢m—¢mp) |10
<7 cols.~ ry
3 - c.t
= l } -t. . (159
[?k,é]m zeggs * an {xk,n}m 0 ( )
!.rq!
- C.t.
Rp am {Ak,n}m cos(¢m ¢mp) 0
L' —

The control torque discontinuity equation for the gyro representa-

tion, Equation (113), would result in the replacement of Eguation
(150) with

4

7 rows
of
Zeros
4’ -
=1 _ |- sk _. _ _sk ok _
[?é}m = Rp Ym 51n(¢m ¢mp) Y. Rp Ym cos(¢m ¢mp) . (160)

Having reduced the analysis to the matrix form of Equation

(145) , the method of solution and wake iteration scheme can now
be presented.

Solution Scheme For Obtaining Forced Response
Unknowns and Wake Iteration Procedure

In the previous analytical section, the necessary expressions
have been obtained to enable solution for the dynamic response
variables for a helicopter rotor system coupled with a swashplate
or gyroscope control system. This section is concerned with the
basic solution to obtain values for the swashplate and blade tip
unknowns, harmonically, and subsequent determination of the state
vector variables and with the extension of this basic solution

scheme to incorporate the effects of a deformed free wake on the
dynamic response variable involved.
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Solution scheme to obtain swashplate and blade tip unknowns,-
In the development of analysis, use has been made of Laplace
transform variables such as (s-inQ) where the integer, n, repre-
sents the harmonic shift relative to the particular harmonic of
interest which has previously been denoted as Np. To solve for
the Np/rev. swashplate and blade tip unknowns, the value of s in
the analytical expressions necessary to obtain the terms involved
in Equation (145) is taken as iNpQ. Thus, these terms will be
dependent on the value of Np in addition to the wvalues of k and/
or n. Consideration of Equation (145) for —fokaf results in a
matrix equation of the form exemplified by taking N

f=l which is

—— - - - - —_ 4 - *\ f (. *'w
3 7 7 {q_ F_
;_"ll"l_ -1,0 ._"'111__ 1 1
[~ ] [~ ] . 1 * — )
_To,—l_ _'_ro,o_ _To,1_ {qo { 0
. 1 - R 7] - * - *
T -1 Ti,o ] Fan q, } F1

L - = - - B I ¢ J \ )

and when multiplied by the inverse of the square matrix yields the
solution for the unknowns as

- * - 1 = T - ] F %*
o, ) ol ]| 1)
* - 7= 1= - )%
- _ J ! (162)
W{qo = To,-1] E0,0_ To,1 ] {FO } ,
{ql J ;Irl'—l—- 1,0 ] L1,1 : J

where the [%k é] arrays consist of Laplace transform operators and
4

time dependent constants and the column arrays represent harmonics
above, below, and at the harmonic of interest depending on the
value of the subscript as referred to in the section pertaining

to interpretation of the use of shifted Laplace transform vari-
ables. Thus, for a given value of Np, N., and N oax’ Equation (161)

tan be constructed and solved by Equation (162) for the (Np+l)/rev.,
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Np/rev., and (Np-l)/rev. blade tip and swashplate unknowns.

Determination of the total state vector variable distribu-
tions.~- Once the unknowns are obtained by Equation (162) for s
equal to iNp®, Equation (133) is used with k equal to zero to
determine the Np/rev. state vector variable harmonic coeffi-
cients at the inboard end of each blade section. For a particular

(1)

harmonic coefficient of the shear force in the local z direction
inboard of the ith section, is obtained in the form

state vector variable, for example V ,Np, which is the Np/rev.

V( ) Np = AN + B(l) i, (163)

As previously noted the state vector variables can be ex-
pressed in a Fourier series form such that for example

g ()=

Z

(9 =] 7 up etNeoe
Np=0
Taking advantage of the fact that -n/rev. harmonic coefficients

are complex conjugates of the +n/rev. harmonic coefficients, sub-
stitution of Equation (163) into the last expression yields

(i) _ (1) (1), 1] _iNpat (i) (i) . ] -iNpot
v, () = NX_ [ANp Byt J U {ANP ~ Pap lle ? i] (164)
p= p##0

where B; = 0.

This can also be written in the form

véi*Yt) = adt) 42 Z=1Ré;)cos[Nth + e(;)} (165)
where
Ré /%Nl)2+ 3(1)2 (166)
and
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. B(;l
5§;)= arctan —%§Tmr . o (167)
Pp

If Vi represents the azimuthal position of the blade relative
to its position at t = 0, Equation (165) can be written as .

Vz(wk)(l) = Aél) + 2 Né:l Ré;) cos{prk + é;)] ‘ (168)

which represents the real value of the shear force acting perpen-
dicular to the chord at Vk for section (i).

Other time dependent state vector variablés can be obtained.
utilizing the same representation as in Equation (168) where the
harmonic coefficients used would correspond to the variable of
interest. To obtain the total state vector variables as a func-
tion of blade radius and azimuthal position the harmonic coeffi-

cients for each state wvector variable must be determined for
successively increasing values of Np(beginning with zero) until

the magnitude of the harmonic coefficients can be considered to
be negligible compared to the lower harmonic coefficients. The
harmonic coefficients for each state vector variable can then
be utilized in the form of Equation (168) with the upper limit
on the summation being determined by the highest non-negligible
harmonic to obtain the radial and azimuthal distribution of the
state variable of interest.

Solution scheme for inclusion of deformed free-wake effects
on dynamic response.— The inclusion of the effects of a free
wake utilizes the previously discussed solution scheme used
when free-wake effects are not included as an integral part of

an iterative procedure which allows the blade response and free-
wake to interact.

The free-wake effect is initially taken into account by using
the wake-induced velocity influence coefficient matrix (o-matrix)
and the bound circulation matrix (I-matrix) generated by the free-
wake program to compute the wake induced velocities at the blade
aerodynamic section azimuthal locations. With the initial induced
velocity distribution known, these values are introduced into the
analysis for proper determination of angles of attack and aero-
dynamic loads and moments at azimuthal positions for each aero-

91



dynamic section. This information allows the construction of the
aerodynamic transfer matrices necessary for the determination of

the blade dynamic response in terms of a summation of the steady
and harmonic response.

From the dynamic response, in particular shear force
quantities, a radial and azimuthal 1ift distribution acting on the
blades can be obtained. This distribution includes the effects
due to blade response which in turn is a function of the initial
velocity field. To facilitate the determination of 1lift values,
the blade sections with aerodynamics representation are taken to
consist of only aerodynamic characteristics such that-a differ-
ence in the shear forces acting on the inboard end of the aero-
dynamic blade section and inboard end of the previous outboard
non-aerodynamic blade section can be utilized to obtain the
actual 1lift forces acting on the aerodynamic blade section. For
consistency in shear force vector orientation to insure proper
shear difference determination both the aerodynamic and the pre-
vious outboard non-aerodynamic blade section must have the same
local coordinate system (i.e., the values for %, 0, ¥ must be
identical for both sections).

The actual shear forces applied to an aercdynamic blade
section, i, at the azimuthal position, Yy s due to aerodynamic and
blade response effects on this section can be expressed as

(1)) _ (1) (i-1)
e[, B = v e @ v e
(169)

(1)) _ (1) { o g, 4 (i-1)
A{—vy(wk) ) = = V) = =Y () J

where the (i-1) superscript denotes the previous outboard non-aero-

dynamic blade section. The shear forcé, Vz(wk)(l), which has been

defined by Equation (168) is the force acting on the outboard end
of the (i+l)th section in the local blade coordinate system z
direction (perpendicular to the blade section chordline not per

turbed by cyclic pitch). The shear force, —Vy(wk)(l)

defined by a similar form of Equation (168) is the force acting on
the outboard end of the (i+l)th section in the local blade co-
ordinate system -y direction (parallel to the blade section chord-
line not perturbed by cyclic pitch). It should be noted that the
direction of the local blade coordinate system z axis does not
coincide with the direction of lift acting on the blade.

, which is
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The lift distribution acting on the ith aerodynamic blade
section at the kth azimuthal position with variable induced velo-
city and blade response effects included can be defined as

AL A{vz(wk) (i)]cos ol - A[—Vy(ll!k) ‘i)]sin oL w70

where the angle, « , 1s the angle between the section chord line
(zero cyclic pitch¥ and the resultant velocity vector acting on
the ith aerodynamlc blade station at the kth azimuthal position.
This angle is defined approximately by the expression

(1)

T
where o is the cyclic pitch, defined positive for airfoil lead-
k
ing edge rotated upward, and %5k is the angle of attack of air-
14

foil including cyclic pitch at section, i, and azimuthal position
denoted by wk determined during the previous blade dynamic re-

sponse calculations. Thus, in order to determine the 1lift distri-
bution as in Equation (170) it is necessary to consider several
harmonic coefficients of the shear forces for use in the form of
Equation (168) and subsequently in Equations (169).

(i)

A new nondimensional circulation distribution, Fk ;, pre-

viously termed I'-matrix, is obtained by use of the expression

(1) . (1) (1) (1) .2
rel Ly /E vt L sm] (171)

where L(l)ls the effective length of the ith aerodynamic section
and Vé i) is amplitude of the resultant velocity vector determined

during the previous blade dynamic response calculations acting on
the ith aerodynamic section at the kth azimuthal location. In the
aerodynamic representation the aerodynamic loading is applied at

a point but the loading values represent that due to an effective

spanwise aerodynamic length, L(l), over which length the aerody-
namic characteristics such as angle of attack and velocities are
identical. This method of determining the new nondimensional cir-
culation distribution is an approximation since both the angle of
attack and velocity distributions used are those obtained during
the previous dynamic response calculations (1teratlon) 51nce the
exact values are unobtainable.
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The new Fél) is combined with the o0ld [o)l-matrix from the

free-wake program tc obtain a new nondimensional induced wvelocity
distribution which when multiplied by QR results in a new induced
velocity distribution reflecting the coupling of the wake to the
blade motions. This distribution can then be reinserted into the
aerodynamic analysis and a new lift, circulation, and induced
velocity distribution obtained. This process can be repeated
until the desired degree of accuracy (or repeatability) is estab-
lished at which time additional higher harmonics, not required
during the wake iteration procedure, may be calculated. This
section concludes the discussion of the analytical representation
required to investigate the effects of a nonuniform swashplate on
the dynamic response, and control loads of a helicopter.

APPLICATION OF COMPUTER PROGRAM

The computer program developed on the basis of the analyti-
cal study was utilized to obtain the blade dynamic response of a
four bladed H-34 rotor system model with various collective and
cyclic control system stiffnesses. The results obtained showed
only minor effects on blade dynamic response due to changes in
the support system stiffness characteristics since the H-34
system is stiff and restricts interblade coupling which would
alter the natural frequencies and result in additional frequen-
cies as was seen in the investigation of the much softer OH-6A
support system investigated in reference 2. The use of artifi-
cial elastic axis and mass offsets originally used to enhance
coupling, instead of the zero values the H-34 blade normally
has, resulted in steady and harmonic pitch horn loads altered
significantly from those obtained from experimental results.
This section will be concerned with the flight condition and
swashplate control system configurations for which the computer
program was executed and some of the results obtained. It
should be noted that the SI system of units will be used for
purposes of discussion although the British system of units were
employed in the actual program execution.

The fundamental H-34 rotor system information was obtained
from reference 3. The model of the blade (lumped parameter model)
was based on the blade model employed for reference 1 with some
modification to reduce the number of stations representing the
mass, elastic, and geometric blade characteristics. This data
included elastic axis and mass offsets which were originally
thought to have little, if any, significant effect on the results.
The final blade data employed is presented in Appendix A in tabu-
lar form. The aerodynamic effects on the blade were included by
using eight aerodynamic stations with effective aerodynamic
lengths to represent the NACA 0012 airfoil which begins at 1.397
meters from the axis of rotation and ends at the blade tip. The
effective aerodynamic length of the outboard aerodynamic section
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was modified to take into account tip losses. The blades had a
uniform blade twist of -.139626 radians (outboard sections rotated
leading edge down compared to inboard sections) over the blade
airfoil length. On the basis of measurements reported in
reference 3 the blade steady coning angle used was -.07854 radians
(blade coned upward) and the lag angle used was -.10472 radians
(blade lagged aft). The pitch bearing (feathering), lead-lag
hinge (sweep), and flap hinge were located .3048 meters from the
rotor hub centerline and oriented going inboard to outboard in

the order; flap, lead-lag, and pitch.

The control rods were attached to the blade shaft by the
pitch horn ahead of the blade pitch axis a distance of .20318
meters. Attempts to.acquire information concerning the breakdown
of the H~34 swashplate support system stiffnesses were not
successful. Reference 3 provided a value of approximately
78,638 Newton-meters per radian for the control system stiffness.
Using this value as a basis, a collective system stiffness of
32,091 Newton-meters per radian and lateral and longitudinal
cyclic control system stiffnesses of 63,307 Newton-meters per
radian were chosen as the reference uniform stiffness character-
istics of the control system. Torsional response calculations
were carried out for five flight conditions consisting of one
cruise speed flight, .172; one high speed flight, p=.291; one
right turn, u=.235 and l 34g loading; one left turn, p=. 244 and
1.35g loading; and for one pullup, p=.223 and a 1l.4g loading.

The values for the advance ratio, U, given above are based only
on the ratio of forward speed to rotational tip speed and do not
include induced effects. Of these five flight conditions the
first (cruise flight) was not based directly on a flight case in
reference 3 since the desired advance ratio was not available
whereas the remaining four are based in the order given on the
experimental flights referred to as Flight 16, Flight 39, Flight
40, and Flight 89 (Data Table 123), respectively, in reference 3.
From these experimental conditions and ones similar to the cruise
flight condition, values for the forward speed, rotational speed,
air density, shaft tilt angles, collective pitch angle, and cyclic
pitch angles were obtained.

The program was initially executed for the five flight con-
ditions with the reference uniform control system stiffness and
with uniform downwash velocities based on Gessow and Myers (see
reference 4) to ascertain if the necessary thrust was being
obtained and also to obtain the steady and one per rev flap motions
necessary for the wake geometry program developed in reference 1.
The resultant steady thrust values per blade obtained from these
runs were much less than the weight of the aircraft. To increase
the thrust for each case, the values of lateral and longitudinal
cyclic pitch angles were fixed slightly decreased from the orig-
inal values while maintaining the same azimuthal position of
maximum negative cyclic (defined as B radians ahead of the posi-
tion Y=0 degrees in our convention or Y=90 degrees in the standard
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convention) and the collective pitch increased. For each flight
the effects of an increase in collective pitch angle increased
the thrust in essentially a linear fashion (straight line curve)
such that the necessary collective pitch values for the desired
thrust could be obtained by interpolation. The criterion for
the proper thrust per blade in forward flight was that the value
for thrust should be between 12,788.6 Newton's (average weight
of helicopter divided by the number of blades, four for the H-34
helicopter) and 12,010.2 Newton's (the first value minus the
blade weight) since the program internally considers the blade
weight effects. For the maneuver type conditions the g factor
was applied to the upper and lower limits to obtain the desired
thrust range. The resulting collective and cyclic pitch input
values obtained for each flight condition to yield the required
thrust and, in addition, the uniform downwash velocities and the
resultant thrust per blade are presented in Table I. The method
utilized to obtain cyclic and collective pitch values represents
only a trimming of control variables in regards to thrust values
and does not include criteria related to roll and pitch moment
values.

The sets of control system stiffness values utilized by the
program with various flight conditions were chosen to allow a
rough determination of the general effect of changes in collec-
tive stiffness, cyclic stiffness, or the control rod stiffness
on the blade dynamic response behavior in addition to veri-
fication of correct program operation. The parameters which
were previously presented, necessary to define the lateral
cyclic, longitudinal cyclic and collective control system stiff-
ness, are the linear spring stiffnesses; kj, K and km; the

linear offsets; bj' dm' and a i the location angles; ¢m and xj;
and the integer controls; Nb and Ne . With the assumption

of four blades equally spaced and the offsets bj and dm equal to

zero, the collective stiffness, lateral cyciic stiffness, and
longitudinal cyclic stiffness can be expressed in the form*:

N
e.s.
= 52
K o11. aZ /|l/k + N/ jzl kj + N, /K
— N Yy 1
) eis. ) y eis. X y
K = ja k.cos“y. 2 + k.cos?x.|/k
lat. m 521 .| | - L 5=1 3 I—Tl_
N B (N 1 7]
- e.s. L, e.S. L
Klong. = |aZ jzl kj51n X5 / |12 + L j£1 kj81n X5 /K

*The derivation of these equations is available in reference 5
which is the documentation pertaining to this computer program.
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These expressions, assuming three equally spaced elastic supports
(i.e. Ne.s. = 3, Xy = 0, Xy = %1, and Xy = %ﬁo,were used to
obtain the control system collective, lateral cyclic, and longi-
tudinal cyclic stiffnesses corresponding to given sets of input
values for the variables associated with the linear spring-damper
units involved in the representation of the swashplate control
system. The input spring-damper stiffness values which were

used and the resulting collective, lateral cyclic, and longi-
tudinal cyclic control system stiffnesses are presented in

Table II.

Wake iteration program runs were executed for various
combinations of flight conditions and control system stiffness
configurations using the steady, one per rev., and two per rev.
dynamic responses to determine the induced velocity distribution
for each subsequent iteration. All of these runs are listed by
flight conditions in Table III with information as to the rotor
rotational speed, Q (radians/second); forward flight speed,

V (meters/second); air density, p (kilograms/cubic meter); and
shaft tilt angle, o (radians above the position of the shaft

parallel to the direction of forward flight). The run code con-
sists of a numeric character signifying the flight condition
involved and an alphabetic character denoting the control system
stiffness configuration used. The resulting steady blade root;
pitch angle (positive leading edge rotated upward), coning angle
(positive blade tip rotated downward), lead-lag angle (positive
blade tip rotated forward), and thrust per blade are also
included. ; '

The blade root angles are obtained by adding the resulting
blade root perturbation angles; ¢x' ¢y’ and ¢z; in respective

order to the collective pitch, coning, and lead-lag input values
corresponding to the flight condition involved. The steady
blade root pitch, coning, and lead-lag values in Table III are
their respective values just outboard of the feathering bearing,
flap hinge, and lead-lag hinge, respectively. The changes in
the steady blade root coning and lead-lag angles from their
respective input values are more pronounced than the changes in
the steady blade root pitch angles from their input values.

This is due to the fact that the input coning and lead-lag angles
are only approximate and define the orientation of the blade
spanwise axis in the local coordinate system (reference system
for determination of response variables) as if the blade was
rigidly rotated about the flap and lead-lag hinge axes. When
the blade is allowed to respond to the applied forces and
moments, as in a dynamic response calculation, the blade may
deflect significantly from the reference positions at each
radial section including blade root position. The change in
steady root pitch is directly related to the control system
collective stiffness which in the runs executed was sufficiently
high such that only a very small steady pitch angle perturbation
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TABLE III
PROGRAM RUNS EXECUTED

Run Flight

Variable Steady Root Values
Pitch Coning Lead-lag Thrust
(rad) (rad) (rad) (N)

1-C | 9=22.4100 0.29943 | -0.08112 | -0.13617 12,082.7
V=55.5993

1-D | p=1.09775 0.29919 )] -0.08126 | -0.13615 ] 12,108.1
us=l.4661

1-1 0.30203 | -0.08369 | -0.13840 | 12,428.3

1-J 0.29910 ] -0.08151 | -0.13572 | 12,147.6

2-C | ©=22.4000 0.25773} -0.,08147 { ~0.10053 | 12,112.5
Vv=32.9581

2-D | p=1.08229 0.25754 | -0.08145 | -0.10003 | 12,110.7
us=l.5208~ -

2-E 0.25672 | -0.08070 | -0.09983 ] 12,012.4

2-F 0.25726 | -0.08119 { -0.09997 | 12,077.8

2-G 0.25495}| -0.07952 | -0.09814 | 11,862.5

2-H 0.25548 | -0.,08001 | -0.09828 | 11,927.0

2-I 0.26019 | -0.08367 | -0.10123 | 12,401.6

2-J 0.25748 | ~-0.08159 { -0.09943 | 12,132.5
R=22.8290 |

3-A V=45. 8179 0.29767 { -0.10374 —0.;1018 15,795.2
p=1.08229

3-B as=l.5202 0.298681{ -0.10381 | -0.11170 | 15,790.3
0=22.5150

4-A V=46 . 8470 0.29767{ -0.10463 | -0.10809 §15,782.7
p=1.08229

4-B as=l.5179 0.298681{ -0.10467 | -0.,11031 | 15,773.8
$=23.0380

5-A V=43. 7602 0.25697 | -0.09688 | -0.15158 | 15,138.2
p=1.08229 '
as=1.6545




was necessary to counteract the blade torgque at the control
torque application point in order to have zero torque at the
pitch bearing.

Comparison of blade root thrust values presented in Table I
(thrust trim runs) and Table III (wake iteration runs) provides
information as to the effect of inclusion of free-wake effects
in the induced velocity distribution determination on the blade
root thrust value. 1In the high speed forward flight condition,
the thrust value dropped from 12,699.7 Newtons with a uniform
induced velocity field to 12,082.7 Newtons with the free-wake
generated induced velocity field (v5% drop) where the same
control system stiffness, stiffness case C, was employed. In
the cruise speed forward flight condition, the thrust value
dropped from 12,481.7 Newtons to 12,112.5 Newtons (V3% drop).

In a similar manner, using thrust values from Table III corre-
sponding to the control system stiffness case B which has
essentially the same collective control system stiffness as

that in control system stiffness case C, the effect of including
the free-wake effects in the maneuver flight conditions resulted
in; a drop in the thrust from 16,792.0 Newtons to 15,790.3
Newtons (Vv6% drop) for the right turn maneuver, a drop in the
thrust from 16,769.8 Newtons to 15,773.8 Newtons (v6% drop) for
the left turn maneuver, and a drop in the thrust from 17,543.8
Newtons to 15,138.2 Newtons (v14% drop) for the pullup maneuver.
Thus, the inclusion of free-wake effects in the blade response
calculations significantly reduced the thrust per blade compared
to that obtained with blade response calculations utilizing a
uniform downwash distribution. However, the above percentages
are dependent upon the input uniform induced velocity value

used in each flight condition to determine the base thrust
value.

The independent effects of the control system; collective
stiffness, lateral cyclic stiffness, and longitudinal cyclic
stiffness; on the behavior of the four steady root variables
presented in Table III cannot be ascertained in detail since
the number of control system stiffness configurations for any
one flight case is not sufficient to separate the cause and
effect relationships involved. However, some general behavior
characteristics of the steady root variables can be noted.
Except for a few exceptions, the absolute values of the four
steady root variables behave in the same manner as a result of
a change in control system stiffness configuration. That is,
for a given change in control system stiffness parameters all
of the variables either increased or decreased in absolute
value. Control system collective stiffness changes appear to
be the dominant contributing factor to changes in the values
for the steady root variables as would be expected. This
conclusion is borne out to some extent by noting that of the
runs pertaining to the cruise forward flight condition the
highest absolute values for the steady root variables were
obtained with the stiffest stiffness configuration, stiffness
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case I, where the control system collective stiffness was
60,935.7 Newtons-meters/radian and the lowest absolute values
for the steady root variables were obtained for stiffness
case G in which the control system collective stiffness was
27,669.9 Newton-meters/radian.

The results of the program runs were scanned to verify that
the analysis operational in the computer program was performing
correctly. The dynamic response variables; blade slopes, blade
displacements, blade shears, blade moments, pitch horn loads
(control loads), and swashplate control system deflections;
resulting from each run in harmonic form were observed to
satisfy all boundary conditions and discontinuity conditions
employed by the program. Due to the magnitude of the values
used in the control system stiffness configurations only minor
changes resulted in the dynamic response variables as a result
of changes in control system stiffness characteristics. Some
of the harmonic results were employed to generate azimuthal
distributions for comparison with experimental results obtained
in reference 3. With the exception of pitch horn load distri-
butions and torsional moment (blade torque) distributions the
results compared favorably with the experimental results
considering that the values for collective and cyclic pitch
were different than those measured in reference 3 and that only
the steady, one per rev. and two per rev. shear responses
were utilized to obtain the free-wake generated variable in-
duced velocity fields.

The large discrepancy between the theoretically predicted
and experimentally obtained pitch horn loading azimuthal distri-
butions was investigated to ascertain its probable cause., This
discrepancy in predicted and experimental pitch horn loadings
for the high speed forward flight condition is depicted in
Figure 10, which represents the pitch horn loading azimuthal
distribution obtained from program run 1-C and that obtained
from reference 3. The sign convention for the pitch horn load-
ing was based on assuming the pitch horn load to be positive
when its effect is counteracting a positive blade torque (posi-~
tive for moment tending to rotate the blade leading edge upward).
Thus, for the H-34 helicopter rotor system in which the control
rod is attached to the pitch horn ahead of the pitch axis, a
positive pitch horn load represents a downward force applied to
the pitch horn with the control rod being in tension. The
azimuthal variable utilized in Figure 10 corresponds to the

standard definition of azimuthal location (i.e. wstandard is

zero when blade is directly aft) and not the azimuthal reference
variable utilized in the analysis. This required the theoretical
pitch horn loading to be determined relative to the reference

variable, Y, used in the analysis and then plotted at wstandard

equal to ¢ + /2. The values for the pitch horn loading har-
monics were obtained by dividing the (AT) variable outputted
in the solution vector for each harmonic by the distance, a.r
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where, depending on the blade model, the (AT) harmonic is equal
or approximately equal to the blade torgue harmonic of the
section outboard of the section inboard of which the control
torque is applied.

On comparison of the theoretically and experimentally deter-
mined pitch horn loading distributions it is obvious that a-
significant difference in the steady component occurs. The
experimental results obtained from reference 3 were harmonically
analyzed to obtain the harmonic amplitudes and associated phase
angles for comparison with the corresponding theoretical values.
The pitch horn loading harmonic content, amplitude and phasing,
of the theoretical and experimental distributions shown in
Figure 10 is compared in Figures 11 and 12. The harmonic content
shown in these figures has been determined relative to the
azimuthal position defined by the reference variable, ¥, equal
to zero. By taking the theoretical steady pitch horn to be that
of the experimental data and using the theoretical harmonics,

a third distribution (shifted) was obtained and added to

Figure 10. The shifted theoretical curve is in better agreement
with the experimental results. It can be concluded that a
primary difference in the experimental and theoretical results
is the magnitude and sign of the steady pitch loads.

In an investigation to determine the cause of the large
steady negative pitch horn loads, it was found that the mass
and elastic offsets reported for the H-34 blade in reference 1
and used in the present analysis were the significant contri-
butors to large steady feathering torques which are directly
related to steady pitch horn loadings. In the high speed
flight condition the center of mass offsets of 0.00417 meters
ahead of the neutral axis combined with perturbation quantities
and centrifugal force components for all mass stations occurring
outboard of the airfoil cutout was found to contribute approxi-
mately 85 percent of the negative feathering torque acting at
the control torgue discontinuity application point. Roughly,
an additional 10 percent of the negative feathering torque was
due to the aerodynamic forces acting at quarter chord which
was 0.002083 meters aft of the elastic axis. In addition,
these artificial offsets may result in differences in the
harmonic content of feathering torque and thereby pitch horn
loadings both due to their involvement in the analytical rotor
system representation for all dynamic response harmonics. and
due to interharmonic coupling in which the harmonics above and
below the harmonic of interest can effect the results obtained
for the harmonic of interest. Since these small offsets were
not present in the physical system, it was concluded that these
offsets were a major cause of the difference between the experi-
mental and predicted results. This effect of the small offsets
suggest that the dynamic response of a helicopter rotor system
may be much more sensitive to the spanwise distribution of the
center of mass and elastic axis locations than previously
suspected.
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Representative azimuthal plots of the predicted flapwise
bending moment, chordwise bending moment, and torsional moment
for the same high speed flight condition are compared with the
measured results from reference 3 in Figures 13 thru 15. Since
the H-34 blade system is highly uncoupled it is not expected
that the neutral axis and mass offsets would provide a very
significant effect of the high negative torsional loading on -
the bending moments. This is borne out in that the behavior of
the predicted results seems to follow the azimuthal trend of
the experimental data. The comparison of experimental and
theoretical results would be further improved if additional
harmonics were included in the interharmonic coupling repre-
sentation (one/rev. above and below the harmonic of interest
was used in program runs) and ir the free-wake induced velocity
determination and if the artificial offsets were removed.

CONCLUDING REMARKS AND RECOMMENDATIONS

The program which has been developed for this investigation
is a highly sophisticated theoretical representation of heli-
copter rotor systems. The coded analysis includes the effect
of an anisotropically mounted flexible swashplate or a gyroscope
control system and the effects of a deformed free-wake. The
analysis has the capability of predicting the response charac-
teristics of helicopter rotor systems in both forward flight
and steady-state maneuver conditions. The quasi-steady blade
aerodynamics representation can utilize an induced velocity
field which is either uniform, variably defined, or one which
is generated on successive iterations based on information
from a free-wake analysis. The programmed analysis includes
aerodynanic interharmonic coupling and also structural inter-
harmonic coupling thru the swashplate or gyroscope without
the necessity of information concerning the rotor system
natural frequencies or related mode shapes. The analytical
method employed allows for the straightforward extension of
the program to include unsteady phenomena such as transient
maneuvers and gust loading effects. Also the program is in a
form such that it could be modified to investigate the stability
and vibration characteristics of helicopter rotor systems in
forward flight or maneuvers.

The blade dynamic response calculations which were carried
out indicate that even with the high control system stiffnesses
involved that the program provides an effective method of inves-
tigating the dynamic response behavior of present or future
helicopter rotor systems. Considering the extensive information
that can be obtained by use of this program, the program is a
very efficient tool for use in investigating the effects of
various parameters on the dynamic characteristics of a heli-
copter rotor system. A significant result of the execution of
the program for the H-34 rotor system was the observation that
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there is a significant effect of small offsets of the center of
mass from the blade neutral axis and of the blade neutral

axis from the blade aerodynamic center on the pitch horn loads
and torsional moments. This result suggests that the blade
pitch horn control loads may be more sensitive to the spanwise
distribution of center of mass, neutral axis, and aerodynamic
center locations than previously thought.

It is recommended that the program be extended to repre-
sent the unsteady phenomena a helicopter system might encounter
as well as altering the program to provide the option of calcu-
lating the vibrational or stability characteristics of helicopter
rotor systems. In addition, it is recommended that in order to
more fully investigate the capabilities of the program and to
show the effects of a nonuniform swashplate that the program be
used to investigate the dynamic characteristics of a rotor
system having a soft control system such as the OH-GA.
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APPENDIX B

CONVERSION OF UNITS

The following conversion relationships are those which were
utilized to convert variable values originally in the British
system of units to the corresponding values in the SI system of
units for purposes of discussion in this report.

1 foot = .3048006 meters

1 pound = 4.448222 Newtons

1l slug = 14.59388 kilograms

1 foot/second = .3048006 meters/second
1 foot-pound = 1.355821 Newton-meters
1 pound/foot = 14,59388 Newtons/meter
1

pound-foot2 = .4132550 Newton—meters2

2

1 slug-foot 1.355821 kilogram—meters2

I

i

1 slug/foot3 515.3750 kilograms/meter3
1 foot-pound/radian = 1.355821 Newton-meters/radian

1 radian/(foot-pound) = .7375607 radians/(Newton-meter)
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